Basic Theory of Linear Differential Equations

- Picard-Lindelöf Existence-Uniqueness
- Vector \boldsymbol{n} th Order Theorem
- Second Order Linear Theorem
- Higher Order Linear Theorem
- Homogeneous Structure
- Recipe for Constant-Coefficient Linear Homogeneous Differential Equations
- First Order
- Second Order
- \boldsymbol{n} th Order
- Superposition
- Non-Homogeneous Structure

Theorem 1 (Picard-Lindelöf Existence-Uniqueness)

Let the \boldsymbol{n}-vector function $\mathrm{f}(\boldsymbol{x}, \mathrm{y})$ be continuous for real \boldsymbol{x} satisfying $\left|\boldsymbol{x}-x_{0}\right| \leq a$ and for all vectors y in \boldsymbol{R}^{n} satisfying $\left\|\mathbf{y}-\mathrm{y}_{0}\right\| \leq b$. Additionally, assume that $\partial \mathrm{f} / \partial \mathrm{y}$ is continuous on this domain. Then the initial value problem

$$
\left\{\begin{array}{l}
\mathrm{y}^{\prime}=\mathrm{f}(x, \mathrm{y}) \\
\mathrm{y}\left(x_{0}\right)=\mathrm{y}_{0}
\end{array}\right.
$$

has a unique solution $\mathbf{y}(\boldsymbol{x})$ defined on $\left|\boldsymbol{x}-\boldsymbol{x}_{0}\right| \leq \boldsymbol{h}$, satisfying $\left\|\mathrm{y}-\mathrm{y}_{0}\right\| \leq \boldsymbol{b}$, for some constant $h, 0<h<a$.

The unique solution can be written in terms of the Picard Iterates

$$
\mathrm{y}_{n+1}(x)=\mathrm{y}_{0}+\int_{x_{0}}^{x} \mathrm{f}\left(t, \mathrm{y}_{n}(t)\right) d t, \quad \mathrm{y}_{0}(x) \equiv \mathrm{y}_{0}
$$

as the formula

$$
\mathrm{y}(x)=\mathrm{y}_{n}(x)+R_{n}(x), \quad \lim _{n \rightarrow \infty} R_{n}(x)=0
$$

The formula means $\mathbf{y}(\boldsymbol{x})$ can be computed as the iterate $\mathrm{y}_{\boldsymbol{n}}(\boldsymbol{x})$ for large \boldsymbol{n}.

Theorem 2 (Second Order Linear Picard-Lindelöf Existence-Uniqueness)

Let the coefficients $a(x), \boldsymbol{b}(x), \boldsymbol{c}(x), f(x)$ be continuous on an interval J containing $x=x_{0}$. Assume $a(x) \neq 0$ on J. Let g_{1} and g_{2} be real constants. The initial value problem

$$
\left\{\begin{array}{l}
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x), \\
y\left(x_{0}\right)=g_{1} \\
y^{\prime}\left(x_{0}\right)=g_{2}
\end{array}\right.
$$

has a unique solution $\boldsymbol{y}(\boldsymbol{x})$ defined on \boldsymbol{J}.

Theorem 3 (Higher Order Linear Picard-Lindelöf Existence-Uniqueness)

Let the coefficients $a_{0}(x), \ldots, a_{n}(x), f(x)$ be continuous on an interval J containing $x=x_{0}$. Assume $a_{n}(x) \neq 0$ on J. Let g_{1}, \ldots, g_{n} be constants. Then the initial value problem

$$
\left\{\begin{array}{l}
a_{n}(x) y^{(n)}(x)+\cdots+a_{0}(x) y=f(x) \\
y\left(x_{0}\right) \\
y^{\prime}\left(x_{0}\right)=g_{1} \\
\\
=g_{2} \\
y^{(n-1)}\left(x_{0}\right)=g_{n}
\end{array}\right.
$$

has a unique solution $\boldsymbol{y}(\boldsymbol{x})$ defined on \boldsymbol{J}.

Theorem 4 (Homogeneous Structure 2nd Order)
The homogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ has a general solution of the form

$$
y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x),
$$

where c_{1}, c_{2} are arbitrary constants and $y_{1}(x), y_{2}(x)$ are independent solutions.

Theorem 5 (Homogeneous Structure nth Order)

The homogeneous equation $a_{n}(x) y^{(n)}+\cdots+a_{0}(x) y=0$ has a general solution of the form

$$
y_{h}(x)=c_{1} y_{1}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, \ldots, \boldsymbol{c}_{n}$ are arbitrary constants and $\boldsymbol{y}_{1}(\boldsymbol{x}), \ldots, \boldsymbol{y}_{n}(\boldsymbol{x})$ are independent solutions.

Theorem 6 (First Order Recipe)

Let \boldsymbol{a} and \boldsymbol{b} be constants, $\boldsymbol{a} \neq 0$. Let \boldsymbol{r}_{1} denote the root of $a r+b=0$ and construct its corresponding atom $e^{r_{1} x}$. Multiply the atom by arbitrary constant c_{1}. Then $y=c_{1} e^{r_{1} x}$ is the general solution of the first order equation

$$
a y^{\prime}+b y=0
$$

The equation $\boldsymbol{a r}+\boldsymbol{b}=\mathbf{0}$, called the characteristic equation, is found by the formal replacements $\boldsymbol{y}^{\prime} \rightarrow \boldsymbol{r}, \boldsymbol{y} \rightarrow \mathbf{1}$ in the differential equation $\boldsymbol{a} \boldsymbol{y}^{\prime}+\boldsymbol{b} \boldsymbol{y}=\mathbf{0}$.

Theorem 7 (Second Order Recipe)

Let $a \neq 0, b$ and c be real constant. Then the general solution of

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

is given by the expression $y=c_{1} y_{1}+c_{2} y_{2}$, where c_{1}, c_{2} are arbitrary constants and y_{1}, y_{2} are two atoms constructed as outlined below from the roots of the characteristic equation

$$
a r^{2}+b r+c=0 .
$$

The characteristic equation $a r^{2}+b r+c=0$ is found by the formal replacements $y^{\prime \prime} \rightarrow r^{2}, y^{\prime} \rightarrow r, y \rightarrow 1$ in the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Construction of Atoms for Second Order

The atom construction from the roots $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$ of $\boldsymbol{a} \boldsymbol{r}^{2}+\boldsymbol{b r}+\boldsymbol{c}=\mathbf{0}$ is based on Euler's theorem below, organized by the sign of the discriminant $D=b^{2}-4 a c$.

$$
\begin{array}{ll}
\left.\boldsymbol{D}>0 \text { (Real distinct roots } \boldsymbol{r}_{1} \neq \boldsymbol{r}_{2}\right) & \boldsymbol{y}_{1}=\boldsymbol{e}^{r_{1} x}, \quad \boldsymbol{y}_{2}=\boldsymbol{e}^{r_{2} x} \\
\left.\boldsymbol{D}=\mathbf{0} \text { (Real equal roots } \boldsymbol{r}_{1}=\boldsymbol{r}_{2}\right) & \boldsymbol{y}_{1}=\boldsymbol{e}^{r_{1} x}, \quad \boldsymbol{y}_{2}=\boldsymbol{x} e^{r_{1} x} \\
\left.\boldsymbol{D}<\mathbf{0} \text { (Conjugate roots } \boldsymbol{r}_{1}=\overline{\boldsymbol{r}}_{2}=\boldsymbol{\alpha}+\boldsymbol{i} \boldsymbol{\beta}\right) & \boldsymbol{y}_{1}=\boldsymbol{e}^{\alpha x} \cos (\boldsymbol{\beta} \boldsymbol{x}) \\
& \boldsymbol{y}_{2}=\boldsymbol{e}^{\alpha x} \sin (\boldsymbol{\beta} \boldsymbol{x})
\end{array}
$$

Theorem 8 (Euler's Theorem)

The atom $y=x^{k} e^{\alpha x} \cos \beta x$ is a solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ if and only if $\boldsymbol{r}_{1}=\boldsymbol{\alpha}+\boldsymbol{i} \boldsymbol{\beta}$ is a root of the characteristic equation $a r^{2}+b r+c=0$ and $\left(\boldsymbol{r}-r_{1}\right)^{k}$ divides $a r^{2}+\boldsymbol{b r}+\boldsymbol{c}$.

Valid also for $\sin \beta x$ when $\beta>0$. Always, $\beta \geq 0$. For second order, only $k=1,2$ are possible.
Euler's theorem is valid for any order differential equation: replace the equation by $a_{n} y^{(n)}+\cdots+a_{0} y=0$ and the characteristic equation by $a_{n} r^{n}+\cdots+a_{0}=0$.

Theorem 9 (Recipe for nth Order)

Let $a_{n} \neq 0, \ldots, a_{0}$ be real constants. Let $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}$ be the list of \boldsymbol{n} distinct atoms constructed by Euler's Theorem from the \boldsymbol{n} roots of the characteristic equation

$$
a_{n} r^{n}+\cdots+a_{0}=0
$$

Then $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}$ are independent solutions of

$$
a_{n} y^{(n)}+\cdots+a_{0} y=0
$$

and all solutions are given by the general solution formula

$$
y=c_{1} y_{1}+\cdots+c_{n} y_{n}
$$

where c_{1}, \ldots, c_{n} are arbitrary constants.
The characteristic equation is found by the formal replacements $\boldsymbol{y}^{(n)} \rightarrow \boldsymbol{r}^{n}, \ldots, \boldsymbol{y}^{\prime} \rightarrow \boldsymbol{r}$, $y \rightarrow 1$ in the differential equation.

Theorem 10 (Superposition)

The homogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ has the superposition property:

If $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}$ are solutions and c_{1}, c_{2} are constants, then the combination $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is a solution.

The result implies that linear combinations of solutions are also solutions.

The theorem applies as well to an nth order linear homogeneous differential equation with continuous coefficients $a_{0}(x), \ldots, a_{n}(x)$.

The result can be extended to more than two solutions. If $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}$ are solutions of the differential equation, then all linear combinations of these solutions are also solutions.

The solution space of a linear homogeneous \boldsymbol{n} th order linear differential equation is a subspace \boldsymbol{S} of the vector space V of all functions on the common domain J of continuity of the coefficients.

Theorem 11 (Non-Homogeneous Structure 2nd Order)

The non-homogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)$ has general solution

$$
y(x)=y_{h}(x)+y_{p}(x)
$$

where

- $\boldsymbol{y}_{h}(\boldsymbol{x})$ is the general solution of the homogeneous equation $\boldsymbol{a}(\boldsymbol{x}) \boldsymbol{y}^{\prime \prime}+\boldsymbol{b}(\boldsymbol{x}) \boldsymbol{y}^{\prime}+\boldsymbol{c}(\boldsymbol{x}) \boldsymbol{y}=0$, and
- $y_{p}(\boldsymbol{x})$ is a particular solution of the nonhomogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)$.

The theorem is valid for higher order equations: the general solution of the non-homogeneous equation is $\boldsymbol{y}=\boldsymbol{y}_{h}+\boldsymbol{y}_{p}$, where \boldsymbol{y}_{h} is the general solution of the homogeneous equation and \boldsymbol{y}_{p} is any particular solution of the non-homogeneous equation.

An Example

For equation $y^{\prime \prime}-y=10$, the homogeneous equation $y^{\prime \prime}-y=0$ has general solution $y_{h}=c_{1} e^{x}+c_{2} e^{-x}$. Select $y_{p}=-10$, an equilibrium solution. Then $y=y_{h}+y_{p}=c_{1} e^{x}+c_{2} e^{-x}-10$.

Theorem 12 (Non-Homogeneous Structure nth Order)

The non-homogeneous equation $a_{n}(x) y^{(n)}+\cdots+a_{0}(x) y=f(x)$ has general solution

$$
y(x)=y_{h}(x)+y_{p}(x),
$$

where

- $y_{h}(x)$ is the general solution of the homogeneous equation $a_{n}(x) y^{(n)}+\cdots+a_{0}(x) y=0$, and
- $y_{p}(x)$ is a particular solution of the nonhomogeneous equation $a_{n}(x) y^{(n)}+\cdots+a_{0}(x) y=f(x)$.

