Examples: Solving *n*th Order Equations

- Atoms
- L. Euler's Theorem
- The Atom List
- First Order. Solve 2y' + 5y = 0.
- Second Order. Solve y'' + 2y' + y = 0, y'' + 3y' + 2y = 0 and y'' + 2y' + 5y = 0.
- Third Order. Solve y''' y' = 0 and y''' y'' = 0.
- Fourth Order. Solve $y^{iv} y'' = 0$.

Atoms

An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of

$$x^j e^{ax}(\cos cx+i\sin cx), \hspace{1em} j=0,1,2,\ldots,$$

where a and c represent real numbers and $c \ge 0$. By definition, zero is not an atom.

Theorem 1 (L. Euler)

The function $y = x^j e^{r_1 x}$ is a solution of a constant-coefficient linear homogeneous differential of the *n*th order if and only if $(r - r_1)^{j+1}$ divides the characteristic polynomial.

Euler's theorem is used to construct solutions of the nth order differential equation. The solutions so constructed are n distinct atoms, hence independent. Picard's theorem implies the list of atoms is a basis for the solution space.

The Atom List

1. If r_1 is a real root, then the atom list for r_1 begins with e^{r_1x} . The revised atom list is

$$e^{r_1x}, xe^{r_1x}, \dots, x^{k-1}e^{r_1x}$$

provided r_1 is a root of multiplicity k. This means that factor $(r - r_1)^k$ divides the characteristic polynomial, but factor $(r - r_1)^{k+1}$ does not.

2. If $r_1 = \alpha + i\beta$, with $\beta > 0$ and its conjugate $r_2 = \alpha - i\beta$ are roots of the characteristic equation, then the atom list for this pair of roots (both r_1 and r_2 counted) begins with

$$e^{lpha x}\coseta x, \ \ e^{lpha x}\sineta x.$$

For a root of multiplicity k, these real atoms are multiplied by atoms $1, \ldots, x^{k-1}$ to obtain a list of 2k atoms

$$e^{lpha x}\coseta x,\; xe^{lpha x}\coseta x,\; \ldots,\; x^{k-1}e^{lpha x}\coseta x,\ e^{lpha x}\sineta x,\; xe^{lpha x}\sineta x,\; \ldots,\; x^{k-1}e^{lpha x}\sineta x.$$

1 Example (First Order) Solve 2y' + 5y = 0 by Euler's method, verifying $y_h = c_1 e^{-5x/2}$.

Solution

 $\begin{array}{ll} 2y'+5y=0 & \mbox{Given differential equation.}\\ 2r+5=0 & \mbox{Characteristic equation. Find it by replacement }y^{(n)}\rightarrow r^n.\\ r=-5/2 & \mbox{Exactly one real root.}\\ \mbox{Atom}=e^{-5x/2} & \mbox{For a real root }r, \mbox{ the atom is }e^{rx}.\\ y_h=c_1e^{-5x/2} & \mbox{The general solution }y_h \mbox{ is written by multiplying the atom list}\\ \mbox{by constants }c_1, c_2, \dots. \end{array}$

2 Example (Second Order I) Solve y'' + 2y' + y = 0 by Euler's method, showing $y_h = c_1 e^{-x} + c_2 x e^{-x}$.

Solution

 $egin{aligned} y''+2y'+y&=0\ r^2+2r+1&=0\ r&=-1,-1\ ext{Atoms}&=e^{-x},\ xe^{-x}\ y_h&=c_1e^{-x}+c_2xe^{-x} \end{aligned}$

Given differential equation.

Characteristic equation. Use $y^{(n)} \rightarrow r^n$.

Exactly two real roots.

For a double root r, the atom list is e^{rx} , xe^{rx} .

The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots .

3 Example (Second Order II) Solve y'' + 3y' + 2y = 0 by Euler's method, showing $y_h = c_1 e^{-x} + c_2 e^{-2x}$.

Solution

 $egin{aligned} y''+3y'+2y&=0\ r^2+3r+2&=0\ r&=-1,-2\ {
m Atoms}&=e^{-x},\ e^{-2x}\ y_h&=c_1e^{-x}+c_2e^{-2x} \end{aligned}$

Given differential equation.

Characteristic equation. Use $y^{(n)} \rightarrow r^n$.

Factorization (r+2)(r+1) = 0.

For a real root r of multiplicity one, the atom is e^{rx} . The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots . 4 Example (Second Order III) Solve y''+2y'+5y=0 by Euler's method, showing $y_h=c_1e^{-x}\cos 2x+c_2xe^{-x}\sin 2x.$

Solution

$$egin{array}{ll} y''+2y'+5y=0\ r^2+2r+5=0 \end{array}$$

$$r=-1+2i,-1-2i$$

Atoms = $e^{-x}\cos 2x,\ e^{-x}\sin 2x$

 $y_h=c_1e^{-x}\cos 2x+c_2e^{-x}\sin 2x$

Given differential equation.

Characteristic equation. Use $y^{(n)} \rightarrow r^n$.

Factorization $(r+1)^2 + 4 = 0$.

For a complex root $r = \alpha + i\beta$ of multiplicity one, the atoms are $e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$.

The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots

5 Example (Third Order I) Solve y''' - y' = 0 by Euler's method, showing $y_h = c_1 + c_2 e^x + c_3 e^{-x}$.

Solution

 $y^{\prime\prime\prime}-y^\prime=0$

$$r^3 - r = 0$$

r=0,1,-1

Atoms = 1, e^{-x} , e^x

$$y_h = c_1 + c_2 e^{-x} + c_3 e^x$$

Given differential equation.

Characteristic equation. Use $y^{(n)} \rightarrow r^n$.

Factorization r(r+1)(r-1) = 0.

For a real root r of multiplicity one, the atom is e^{rx} .

The general solution y_h is written by multiplying the atom list by constants c_1, c_2, c_3, \ldots 6 Example (Third Order II) Solve y''' - y'' = 0 by Euler's method, showing $y_h = c_1 + c_2 x + c_3 e^x$.

Solution

 $egin{aligned} y''' &- y'' &= 0 \ r^3 &- r^2 &= 0 \ r &= 0, 0, 1 \ ext{Atoms} &= 1, x, e^x \ y_h &= c_1 + c_2 x + c_3 e^x \end{aligned}$

Given differential equation.

Characteristic equation. Use $y^{(n)} \rightarrow r^n$.

Factorization $r^2(r-1) = 0$.

For a real root r of multiplicity one, the atom is e^{rx} . The general solution y_h is written by multiplying the atom list by constants c_1, c_2, c_3, \ldots . 7 Example (Fourth Order) Solve $y^{iv} - y'' = 0$ by Euler's method, showing $y_h = c_1 + c_2 x + c_3 e^x + c_4 e^{-x}$.

Solution

 $egin{aligned} y^{iv}-y''&=0\ r^4-r^2&=0\ r&=0,0,1,-1\ ext{Atoms}&=1,x,e^x,e^{-x} \end{aligned}$

 $y_h = c_1 + c_2 x + c_3 e^x + c_4 e^{-x}$

Given differential equation.

Characteristic equation. Use $y^{(n)} \rightarrow r^n$.

Factorization $r^2(r-1)(r+1) = 0$.

For a real root r of multiplicity one, the atom is e^{rx} . For a double root, the atoms are e^{rx} , xe^{rx} .

The general solution y_h is written by multiplying the atom list by constants c_1 , c_2 , c_3 , c_4 ,