Examples: Solving \boldsymbol{n} th Order Equations

- Atoms
- L. Euler's Theorem
- The Atom List
- First Order. Solve $2 y^{\prime}+5 y=0$.
- Second Order.

Solve $y^{\prime \prime}+2 y^{\prime}+y=0, y^{\prime \prime}+3 y^{\prime}+2 y=0$ and $y^{\prime \prime}+2 y^{\prime}+5 y=0$.

- Third Order. Solve $\boldsymbol{y}^{\prime \prime \prime}-\boldsymbol{y}^{\prime}=\mathbf{0}$ and $\boldsymbol{y}^{\prime \prime \prime}-\boldsymbol{y}^{\prime \prime}=\mathbf{0}$.
- Fourth Order. Solve $\boldsymbol{y}^{i v}-\boldsymbol{y}^{\prime \prime}=0$.

Atoms

An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of

$$
x^{j} e^{a x}(\cos c x+i \sin c x), \quad j=0,1,2, \ldots,
$$

where \boldsymbol{a} and \boldsymbol{c} represent real numbers and $\boldsymbol{c} \geq 0$. By definition, zero is not an atom.

Theorem 1 (L. Euler)

The function $\boldsymbol{y}=\boldsymbol{x}^{j} \boldsymbol{e}^{r_{1} x}$ is a solution of a constant-coefficient linear homogeneous differential of the \boldsymbol{n} th order if and only if $\left(\boldsymbol{r}-\boldsymbol{r}_{1}\right)^{j+1}$ divides the characteristic polynomial.

Euler's theorem is used to construct solutions of the \boldsymbol{n} th order differential equation. The solutions so constructed are \boldsymbol{n} distinct atoms, hence independent. Picard's theorem implies the list of atoms is a basis for the solution space.

The Atom List

1. If \boldsymbol{r}_{1} is a real root, then the atom list for \boldsymbol{r}_{1} begins with $\boldsymbol{e}^{r_{1} \boldsymbol{x}}$. The revised atom list is

$$
e^{r_{1} x}, x e^{r_{1} x}, \ldots, x^{k-1} e^{r_{1} x}
$$

provided \boldsymbol{r}_{1} is a root of multiplicity \boldsymbol{k}. This means that factor $\left(\boldsymbol{r}-\boldsymbol{r}_{1}\right)^{\boldsymbol{k}}$ divides the characteristic polynomial, but factor $\left(r-r_{1}\right)^{k+1}$ does not.
2. If $\boldsymbol{r}_{1}=\boldsymbol{\alpha}+\boldsymbol{i} \boldsymbol{\beta}$, with $\boldsymbol{\beta}>\mathbf{0}$ and its conjugate $\boldsymbol{r}_{2}=\boldsymbol{\alpha}-\boldsymbol{i} \boldsymbol{\beta}$ are roots of the characteristic equation, then the atom list for this pair of roots (both \boldsymbol{r}_{1} and \boldsymbol{r}_{2} counted) begins with

$$
e^{\alpha x} \cos \beta x, \quad e^{\alpha x} \sin \beta x
$$

For a root of multiplicity \boldsymbol{k}, these real atoms are multiplied by atoms $\mathbf{1}, \ldots, \boldsymbol{x}^{k-1}$ to obtain a list of $2 \boldsymbol{k}$ atoms

$$
\begin{array}{llll}
e^{\alpha x} \cos \beta x, & x e^{\alpha x} \cos \beta x, & \ldots, x^{k-1} e^{\alpha x} \cos \beta x \\
e^{\alpha x} \sin \beta x, & x e^{\alpha x} \sin \beta x, & \ldots, x^{k-1} e^{\alpha x} \sin \beta x
\end{array}
$$

1 Example (First Order) Solve $2 y^{\prime}+5 y=0$ by Euler's method, verifying $y_{h}=$ $c_{1} e^{-5 x / 2}$.

Solution

$2 y^{\prime}+5 y=0 \quad$ Given differential equation.
$2 \boldsymbol{r}+5=0 \quad$ Characteristic equation. Find it by replacement $\boldsymbol{y}^{(n)} \rightarrow \boldsymbol{r}^{n}$.
$r=-5 / 2 \quad$ Exactly one real root.
Atom $=e^{-5 x / 2} \quad$ For a real root r, the atom is $e^{r x}$.
$y_{h}=c_{1} e^{-5 x / 2} \quad$ The general solution y_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, \ldots.

2 Example (Second Order I) Solve $y^{\prime \prime}+2 y^{\prime}+y=0$ by Euler's method, showing $y_{h}=c_{1} e^{-x}+c_{2} x e^{-x}$.

Solution

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+y=0 \\
& r^{2}+2 r+1=0 \\
& r=-1,-1 \\
& \text { Atoms }=e^{-x}, x e^{-x} \\
& y_{h}=c_{1} e^{-x}+c_{2} x e^{-x}
\end{aligned}
$$

Characteristic equation. Use $\boldsymbol{y}^{(n)} \rightarrow \boldsymbol{r}^{\boldsymbol{n}}$.
Exactly two real roots.
For a double root r, the atom list is $e^{r x}, x e^{r x}$.
The general solution y_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, \ldots.

3 Example (Second Order II) Solve $y^{\prime \prime}+3 y^{\prime}+2 y=0$ by Euler's method, showing $y_{h}=c_{1} e^{-x}+c_{2} e^{-2 x}$.

Solution

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0 \quad \text { Given differential equation. }
$$

$$
r^{2}+3 r+2=0
$$

$$
r=-1,-2
$$

Atoms $=e^{-x}, e^{-2 x}$
$y_{h}=c_{1} e^{-x}+c_{2} e^{-2 x}$

Factorization $(r+2)(r+1)=0$.
For a real root r of multiplicity one, the atom is $e^{r x}$. The general solution \boldsymbol{y}_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, \ldots.

4 Example (Second Order III) Solve $y^{\prime \prime}+2 y^{\prime}+5 y=0$ by Euler's method, showing $y_{h}=c_{1} e^{-x} \cos 2 x+c_{2} x e^{-x} \sin 2 x$.

Solution

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+5 y=0 \\
& r^{2}+2 r+5=0 \\
& r=-1+2 i,-1-2 i \\
& \text { Atoms }=e^{-x} \cos 2 x, e^{-x} \sin 2 x \\
& y_{h}=c_{1} e^{-x} \cos 2 x+c_{2} e^{-x} \sin 2 x
\end{aligned}
$$

Given differential equation.
Characteristic equation. Use $\boldsymbol{y}^{(n)} \rightarrow$ \boldsymbol{r}^{n}.
Factorization $(r+1)^{2}+4=0$.
For a complex root $\boldsymbol{r}=\boldsymbol{\alpha}+\boldsymbol{i} \boldsymbol{\beta}$ of multiplicity one, the atoms are $e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$.
The general solution y_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, \ldots

5 Example (Third Order I) Solve $\boldsymbol{y}^{\prime \prime \prime}-\boldsymbol{y}^{\prime}=\mathbf{0}$ by Euler's method, showing $\boldsymbol{y}_{h}=$ $c_{1}+c_{2} e^{x}+c_{3} e^{-x}$.

Solution

$$
\begin{aligned}
& y^{\prime \prime \prime}-y^{\prime}=0 \\
& r^{3}-r=0 \\
& r=0,1,-1 \\
& \text { Atoms }=1, e^{-x}, e^{x} \\
& y_{h}=c_{1}+c_{2} e^{-x}+c_{3} e^{x}
\end{aligned}
$$

Given differential equation.
Characteristic equation. Use $\boldsymbol{y}^{(n)} \rightarrow \boldsymbol{r}^{n}$.
Factorization $r(r+1)(r-1)=0$.
For a real root r of multiplicity one, the atom is $e^{r x}$.
The general solution y_{h} is written by multiplying the atom list by constants $c_{1}, c_{2}, c_{3}, \ldots$

6 Example (Third Order II) Solve $y^{\prime \prime \prime}-y^{\prime \prime}=0$ by Euler's method, showing $y_{h}=$ $c_{1}+c_{2} x+c_{3} e^{x}$.

Solution

$y^{\prime \prime \prime}-y^{\prime \prime}=0$
$r^{3}-r^{2}=0$
$r=0,0,1$
Atoms $=1, x, e^{x}$
$y_{h}=c_{1}+c_{2} x+c_{3} e^{x}$

Given differential equation.
Characteristic equation. Use $\boldsymbol{y}^{(n)} \rightarrow \boldsymbol{r}^{n}$.
Factorization $r^{2}(r-1)=0$.
For a real root r of multiplicity one, the atom is $e^{r x}$.
The general solution \boldsymbol{y}_{h} is written by multiplying the atom list by constants $c_{1}, c_{2}, c_{3}, \ldots$

7 Example (Fourth Order) Solve $\boldsymbol{y}^{i v}-\boldsymbol{y}^{\prime \prime}=0$ by Euler's method, showing $\boldsymbol{y}_{h}=$ $c_{1}+c_{2} x+c_{3} e^{x}+c_{4} e^{-x}$.

Solution

$$
\begin{aligned}
& y^{i v}-y^{\prime \prime}=0 \\
& \boldsymbol{r}^{4}-r^{2}=0 \\
& r=0,0,1,-1
\end{aligned}
$$

Atoms $=1, x, e^{x}, e^{-x}$
$y_{h}=c_{1}+c_{2} x+c_{3} e^{x}+c_{4} e^{-x}$

Given differential equation.
Characteristic equation. Use $\boldsymbol{y}^{(n)} \rightarrow \boldsymbol{r}^{n}$.
Factorization $r^{2}(r-1)(r+1)=0$.
For a real root r of multiplicity one, the atom is $e^{r x}$. For a double root, the atoms are $e^{r x}, x e^{r x}$.
The general solution \boldsymbol{y}_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, c_{3}, c_{4}, \ldots

