An RREF Method for Finding Inverses

An efficient method to find the inverse B of a square matrix A, should it happen to exist, is to form the augmented matrix $C = \text{aug}(A, I)$ and then read off B as the package of the last n columns of $\text{rref}(C)$. This method is based upon the equivalence

$$\text{rref}(\text{aug}(A, I)) = \text{aug}(I, B) \quad \text{if and only if} \quad AB = I.$$
Main Results

Theorem 1 (Inverse Test)
If A and B are square matrices such that $AB = I$, then also $BA = I$. Therefore, only one of the equalities $AB = I$ or $BA = I$ is required to check an inverse.

Theorem 2 (The \texttt{rref} Inversion Method)
Let A and B denote square matrices. Then

(a) If $\text{rref}(\text{aug}(A, I)) = \text{aug}(I, B)$, then $AB = BA = I$ and B is the inverse of A.

(b) If $AB = BA = I$, then $\text{rref}(\text{aug}(A, I)) = \text{aug}(I, B)$.

(c) If $\text{rref}(\text{aug}(A, I)) = \text{aug}(C, B)$ and $C \neq I$, then A is not invertible.
Finding inverses

The \texttt{rref} inversion method will be illustrated for the matrix

\[
A = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{pmatrix}.
\]

Define the first frame of the sequence to be \(C_1 = \text{aug}(C, I) \), then compute the frame sequence to \(\text{rref}(C) \) as follows.
<table>
<thead>
<tr>
<th>Frame</th>
<th>Matrix</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Frame</td>
<td>$C_1 = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \ 0 & 1 & -1 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C_2 = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \ 0 & 1 & -1 & 0 & 1 & 0 \ 0 & 0 & 2 & 0 & -1 & 1 \end{pmatrix}$ combo $(3, 2, -1)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C_3 = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \ 0 & 1 & -1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & -1/2 & 1/2 \end{pmatrix}$ mult $(3, 1/2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C_4 = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 1/2 & 1/2 \ 0 & 0 & 1 & 0 & -1/2 & 1/2 \end{pmatrix}$ combo $(3, 2, 1)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C_5 = \begin{pmatrix} 1 & 0 & 0 & 1 & 1/2 & -1/2 \ 0 & 1 & 0 & 0 & 1/2 & 1/2 \ 0 & 0 & 1 & 0 & -1/2 & 1/2 \end{pmatrix}$ combo $(3, 1, -1)$</td>
<td></td>
</tr>
<tr>
<td>Last Frame</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The theory

\[\text{rref}(\text{aug}(A, I)) = \text{aug}(I, B) \quad \text{if and only if} \quad AB = I \]

implies that the inverse of \(A \) is the matrix in the right half of the last frame:

\[
A^{-1} = \begin{pmatrix}
1 & 1/2 & -1/2 \\
0 & 1/2 & 1/2 \\
0 & -1/2 & 1/2
\end{pmatrix}
\]