1. (Matrices, bases and independence)

(a) Prove that the column positions of leading ones in \(\text{rref}(A) \) identify columns of \(A \) which form a basis for \(\text{im}(A) \).

(b) Find a basis for the image of any invertible \(n \times n \) matrix.

(c) Let \(T \) be the linear transformation on \(\mathbb{R}^3 \) defined by mapping the columns of the identity respectively into three independent vectors \(v_1, v_2, v_3 \). Define \(u_1 = v_1 + 2v_3, u_2 = v_1 + 3v_2, u_3 = v_2 + 4v_3 \). Verify that \(B = \{u_1, u_2, u_3\} \) is a basis for \(\mathbb{R}^3 \) and report the \(B \)-matrix of \(T \) (Otto Bretscher 3E, page 142).
2. (Kernel and similarity)

(a) Prove or disprove: $AB = I$ with A, B possibly non-square implies $\ker(A) = \{0\}$.
(b) Prove or disprove: $\ker(\text{rref}(BA)) = \ker(A)$, for all invertible matrices B.
(c) Prove or disprove: $\text{im}(\text{rref}(BA)) = \text{im}(A)$, for all invertible matrices B.
(d) Prove or disprove: Similar matrices A and B satisfy $\text{nullity}(A) = \text{nullity}(B)$.
3. (Independence and bases)
 (a) Let A be an $n \times m$ matrix. Report a condition on A such that all possible finite sets of independent vectors v_1, \ldots, v_k are mapped by A into independent vectors Av_1, \ldots, Av_k. Prove that any matrix A satisfying the condition maps independent sets into independent sets.

 (b) Let V be the vector space of all polynomials $c_0 + c_1x + c_2x^2$ under function addition and scalar multiplication. Prove that $1 - x$, $2x + 1$, $(x - 1)^2$ form a basis of V.

Please staple this page to the front of your submitted exam problem 3.
4. (Linear transformations)
(a) Let L be a line through the origin in \mathbb{R}^3 with unit direction u. Let T be a reflection through L. Define T precisely. Compute and display its representation matrix A, i.e., the unique matrix A such that $T(x) = Ax$.

(b) Let T be a linear transformation from \mathbb{R}^n into \mathbb{R}^m. Given a basis v_1, \ldots, v_n of \mathbb{R}^n, let A be the matrix whose columns are $T(v_1), \ldots, T(v_n)$. Prove that $T(x) = Ax$.

(c) Consider the equations

$$
I = \frac{1}{3}(R + G + B) \\
L = R - G \\
S = B - \frac{1}{2}(R + G).
$$

On page 94 of Otto Bretscher 3E, these equations are discussed as representing the intensity I, long-wave signal L and short-wave signal S in terms of the amounts R, G, B of red, green and blue light. Submit all parts of problem 86, page 94.

In the last part 86d, let T be the eye-brain transformation with matrix M and let T_1 be the transformation in 86a, having matrix P. Otto wants T_1T to be the sunglass-eye-brain composite transformation of 86c. This explains why 86c and 86d are different questions. A class discussion will help to clarify the Bretscher statement of the problem.
5. (Vector spaces)

 (a) Show that the set of all 5×4 matrices A which have exactly one element equal to 1, and all other elements zero, form a basis for the vector space of all 5×4 matrices.

 (b) Let W be the set of all functions defined on the real line, using the usual definitions of function addition and scalar multiplication. Let V be the set of all polynomials spanned by $1, x, x^2, x^3, x^4$. Assume W is known to be a vector space. Prove that V is a subspace of W.