Atoms

An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of

\[x^j e^{ax + ix}, \quad j = 0, 1, 2, \ldots, \]

where \(a \) and \(c \) represent real numbers and \(c \geq 0 \).

Theorem 1 ((Independence of Atoms))

Any finite list of distinct atoms is linearly independent.

Details and Remarks

- The definition plus Euler’s formula \(e^{i\theta} = \cos \theta + i \sin \theta \) implies that an atom is a term of one of the following types:

 \[x^n, \; x^n e^{ax}, \; x^n e^{ax} \cos bx, \; x^n e^{ax} \sin bx. \]

 The symbol \(n \) is an integer 0, 1, 2, \ldots and \(a, b \) are real numbers with \(b > 0 \).

- In particular, 1, \(x, \; x^2, \ldots, \; x^k \) are atoms and this list is independent.

- The term that makes up an atom has coefficient 1, therefore \(2e^x \) is not an atom, but the 2 can be stripped off to create the atom \(e^x \). Linear combinations like \(2x + 3x^2 \) are not atoms, but the individual terms \(x \) and \(x^2 \) are indeed atoms. Terms like \(e^{x^2}, \ln |x| \) and \(x/(1 + x^2) \) are not atoms, nor are they constructed from atoms.
Construction of the general solution from a list of distinct atoms

- The general solution \(y \) of a homogeneous constant-coefficient linear differential equation
 \[y^{(n)} + p_{n-1}y^{(n-1)} + \cdots + p_1y' + p_0y = 0 \]

is known to be a formal linear combination of the atoms of this equation, using symbols \(c_1, \ldots, c_n \) for the coefficients:
\[
y = c_1(\text{atom } 1) + \cdots + c_n(\text{atom } n).\]

In particular, each atom listed is itself a solution of the differential equation.

- **Euler’s theorem infra** explains how to construct a list of distinct atoms, each of which is a solution of the differential equation, from the roots of the characteristic equation
 \[r^n + p_{n-1}r^{n-1} + \cdots + p_1r + p_0 = 0. \]

- The **Fundamental Theorem of Algebra** states that there are exactly \(n \) roots \(r \), real or complex, for an \(n \)th order polynomial equation. The result explains how we know that the characteristic equation has exactly \(n \) roots.

- **Picard’s theorem** says that the constructed atom list is a basis for the solution space of the differential equation, provided it contains \(n \) independent elements.

 Because the list of atoms constructed by Euler’s theorem has \(n \) distinct elements, which are independent, then these atoms form a basis for the general solution of the differential equation.
Euler’s Theorem

Theorem 2 (L. Euler)
The function \(y = x^j e^{r_1 x} \) is a solution of a constant-coefficient linear homogeneous differential of the \(n \)th order if and only if \((r - r_1)^{j+1}\) divides the characteristic polynomial.

The Atom List

1. If \(r_1 \) is a real root, then the atom list for \(r_1 \) begins with \(e^{r_1 x} \). The revised atom list is

\[e^{r_1 x}, xe^{r_1 x}, \ldots, x^{k-1} e^{r_1 x} \]

provided \(r_1 \) is a root of multiplicity \(k \), that is, \((r - r_1)^k\) divides the characteristic polynomial, but \((r - r_1)^{k+1}\) does not.

2. If \(r_1 = \alpha + i\beta \), with \(\beta > 0 \), is a complex root along with its conjugate root \(r_2 = \alpha - i\beta \), then the atom list for this pair of roots (both \(r_1 \) and \(r_2 \) counted) begins with

\[e^{\alpha x} \cos \beta x, \quad e^{\alpha x} \sin \beta x. \]

If the roots have multiplicity \(k \), then the list of \(2k \) atoms are

\[e^{\alpha x} \cos \beta x, \quad xe^{\alpha x} \cos \beta x, \quad \ldots, \quad x^{k-1} e^{\alpha x} \cos \beta x, \]
\[e^{\alpha x} \sin \beta x, \quad xe^{\alpha x} \sin \beta x, \quad \ldots, \quad x^{k-1} e^{\alpha x} \sin \beta x. \]
Explanation of steps 1 and 2

1. Root \(r_1 \) always produces atom \(e^{r_1x} \), but if the multiplicity is \(k > 1 \), then \(e^{r_1x} \) is multiplied by \(1, x, \ldots, x^{k-1} \).

2. The expected first terms \(e^{r_1x} \) and \(e^{r_2x} \) \([e^{\alpha x + i\beta x} \text{ and } e^{\alpha x - i\beta x}] \) are not atoms, but they are linear combinations of atoms:

\[
e^{\alpha x \pm i\beta x} = e^{\alpha x} \cos \beta x \pm ie^{\alpha x} \sin \beta x.
\]

The atom list for a complex conjugate pair of roots \(r_1 = \alpha + i\beta, r_2 = \alpha - i\beta \) is obtained by multiplying the two real atoms

\[
e^{\alpha x} \cos \beta x, \quad e^{\alpha x} \sin \beta x
\]

by the powers

\[
1, x, \ldots, x^{k-1}
\]

to obtain the \(2k \) distinct real atoms in item 2 above.