Laplace Integral

The integral $\int_0^\infty g(t)e^{-st}dt$ is called the **Laplace integral** of the function g(t). It is defined by $\lim_{N\to\infty}\int_0^N g(t)e^{-st}dt$ and depends on variable s. The ideas will be illustrated for g(t)=1, g(t)=t and $g(t)=t^2$. Results appear in Table 1 infra.

$$\begin{split} \int_0^\infty (1)e^{-st}dt &= -(1/s)e^{-st}|_{t=0}^{t=\infty} & \text{Laplace integral of } g(t) = 1. \\ &= 1/s & \text{Assumed } s > 0. \\ \int_0^\infty (t)e^{-st}dt &= \int_0^\infty -\frac{d}{ds}(e^{-st})dt & \text{Laplace integral of } g(t) = t. \\ &= -\frac{d}{ds}\int_0^\infty (1)e^{-st}dt & \text{Use} \\ & \int \frac{d}{ds}F(t,s)dt = \frac{d}{ds}\int F(t,s)dt. \\ &= -\frac{d}{ds}(1/s) & \text{Use } L(1) = 1/s. \\ &= 1/s^2 & \text{Differentiate.} \\ \int_0^\infty (t^2)e^{-st}dt &= \int_0^\infty -\frac{d}{ds}(te^{-st})dt & \text{Laplace integral of } g(t) = t^2. \\ &= -\frac{d}{ds}\int_0^\infty (t)e^{-st}dt &= -\frac{d}{ds}(1/s^2) & \text{Use } L(t) = 1/s^2. \\ &= 2/s^3 & \text{Use } L(t) = 1/s^2. \end{split}$$

Summary

Table 1. Laplace integral $\int_0^\infty g(t)e^{-st}dt$ for g(t)=1,t and t^2 .

$$\int_0^\infty (1)e^{-st}\,dt=rac{1}{s}, \qquad \int_0^\infty (t)e^{-st}\,dt=rac{1}{s^2}, \qquad \int_0^\infty (t^2)e^{-st}\,dt=rac{2}{s^3}.$$
 In summary, $L(t^n)=rac{n!}{s^{1+n}}$

Laplace Integral

The Laplace integral or the direct Laplace transform of a function f(t) defined for $0 < t < \infty$ is the ordinary calculus integration problem

$$\int_0^\infty f(t)e^{-st}dt.$$

The Laplace integrator is $dx = e^{-st}dt$ instead of the usual dt.

A Laplace integral is succinctly denoted in science and engineering literature by the symbol

which abbreviates

$$\int_E (f(t)) dx,$$

with set $E=[0,\infty)$ and Laplace integrator $dx=e^{-st}dt$.

Some Transform Rules

$$L(f(t)+g(t))=L(f(t))+L(g(t))$$
 The integral of a sum is the sum of the integrals.

$$L(cf(t)) = cL(f(t))$$
 Constants c pass through the integral sign.

$$L(y'(t)) = sL(y(t)) - y(0)$$
 The t -derivative rule, or integration by parts.

$$L(y(t)) = L(f(t))$$
 implies $y(t) = f(t)$ Lerch's cancellation law.

Lerch's cancellation law in integral form is

(1)
$$\int_0^\infty y(t)e^{-st}dt = \int_0^\infty f(t)e^{-st}dt \quad \text{implies} \quad y(t) = f(t).$$

An illustration

Laplace's method will be applied to solve the initial value problem

$$y' = -1, \quad y(0) = 0.$$

Table 2. Laplace method details for y' = -1, y(0) = 0.

$$y'(t)e^{-st}dt=-e^{-st}dt$$
 Multiply $y'=-1$ by $e^{-st}dt$. Integrate $t=0$ to $t=\infty$. $\int_0^\infty y'(t)e^{-st}dt=-1/s$ Use Table 1. $s\int_0^\infty y(t)e^{-st}dt=-1/s^2$ Integrate by parts on the left. $\int_0^\infty y(t)e^{-st}dt=-1/s^2$ Use $y(0)=0$ and divide. $\int_0^\infty y(t)e^{-st}dt=\int_0^\infty (-t)e^{-st}dt$ Use Table 1. $y(t)=-t$ Apply Lerch's cancellation law.

Translation to L-notation

Table 3. Laplace method L-notation details for y'=-1, y(0)=0 translated from Table 2.

$$L(y'(t))=L(-1)$$
 Apply L across $y'=-1$, or multiply $y'=-1$ by $e^{-st}dt$, integrate $t=0$ to $t=\infty$. Use Table 1 forwards. $sL(y(t))-y(0)=-1/s$ Integrate by parts on the left. $L(y(t))=-1/s^2$ Use $y(0)=0$ and divide. $L(y(t))=L(-t)$ Apply Table 1 backwards. $y(t)=-t$ Invoke Lerch's cancellation law.

1 Example (Laplace method) Solve by Laplace's method the initial value problem y'=5-2t, y(0)=1 to obtain $y(t)=1+5t-t^2$.

Solution: Laplace's method is outlined in Tables 2 and 3. The L-notation of Table 3 will be used to find the solution $y(t) = 1 + 5t - t^2$.

$$L(y'(t)) = L(5-2t)$$
 Apply L across $y' = 5-2t$.
$$= 5L(1) - 2L(t)$$
 Linearity of the transform.
$$= \frac{5}{\epsilon} - \frac{2}{\epsilon^2}$$
 Use Table 1 forwards.

$$sL(y(t)) - y(0) = \frac{5}{s} - \frac{2}{s^2}$$
 Apply the t -derivative rule.

$$L(y(t))=rac{1}{\epsilon}+rac{5}{\epsilon^2}-rac{2}{\epsilon^3}$$
 Use $y(0)=1$ and divide.

$$L(y(t)) = L(1) + 5L(t) - L(t^2)$$
 Use Table 1 backwards.
$$= L(1+5t-t^2)$$
 Linearity of the transform.

$$y(t) = 1 + 5t - t^2$$
 Invoke Lerch's cancellation law.

2 Example (Laplace method) Solve by Laplace's method the initial value problem y'' = 10, y(0) = y'(0) = 0 to obtain $y(t) = 5t^2$.

Solution: The L-notation of Table 3 will be used to find the solution $y(t)=5t^2$.

$$L(y''(t)) = L(10) \qquad \text{Apply L across $y'' = 10$.}$$

$$sL(y'(t)) - y'(0) = L(10) \qquad \text{Apply the t-derivative rule to y'.}$$

$$s[sL(y(t)) - y(0)] - y'(0) = L(10) \qquad \text{Repeat the t-derivative rule, on y.}$$

$$s^2L(y(t)) = 10L(1) \qquad \qquad \text{Use $y(0) = y'(0) = 0$.}$$

$$L(y(t)) = \frac{10}{s^3} \qquad \qquad \text{Use Table 1 forwards. Then divide.}$$

$$L(y(t)) = L(5t^2) \qquad \qquad \text{Use Table 1 backwards.}$$

$$y(t) = 5t^2 \qquad \qquad \text{Invoke Lerch's cancellation law.}$$