Name KEY 2270-1 Midterm 3 F2007

Introduction to Linear Algebra 2270-1
Midterm Exam 3 Fall 2007
Exam Date: Wednesday, 28 November 2007

Instructions. The exam is 50 minutes. Calculators are not allowed. Books and notes are not allowed.

1. (Kernel, Similarity) Complete two.
(a) [50%] Use the identity As = EyF5--- ExA; to prove that two frames A; and Ay of a frame se-
quence have exactly the same kernel.

(b) [50%] Suppose that ker(A) = {0}. Prove that ker(A” 4) = {0}.

(¢) [50%] If you did both (a) and (b), then stop, otherwise proceed.
Suppose ker(A) and ker(B) are isomorphic. Are A and B similar?
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Please start your solutions on this page. Additional pages may be stapled to this one.
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2. (Abstract vector spaces, Linear transformations) Complete two.

Let W be the set of all upper triangular 4 x 4 matrices (lower triangle all zeros).
(a) [50%)] Define addition and scalar multiplication for W and prove that W is a vector space. You may

use isomorphisms to shorten the proof.
(b) [50%)] Let V be the subset of W all of whose diagonal elements are zero. Prove that V' is a subspace
of W.

(c) [50%] If you did both (a) and (b), then stop, otherwise proceed.
Define T'(x) = y from W to V by the natural projection, in which y equals matrix x with all diagonal
elements replaced by zero. Prove that T' is a linear transformation from W to V' and determine ker(T').
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3. (Orthogonality, Gram-Schmidt) Complete two.

1 1 1
(a) [50%)] Find the orthogonal projection of ( ) onto V' = span { ( 1 ) , ( 1 ) }
1 -1

10
(b) [50%] Find the QR-factorization of A = ( T 7 )
1 2
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(c) [50%] If you did both (a) and (b), then stop, else proceed.
Prove that the product AB of two orthogonal matrices A and B is again orthogonal.
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4. (Orthogonality and least squares) Complete all three.
(a) [20%)] For an inconsistent system Ax = b, the least squares solutions x are the exact solutions
of the normal equation. Define the normal equation and display the unique solution x = x* when

ker(A) = {0}.
(b) [20%] State the near point theorem. Then explain how the near point to x can equal x itself.

(¢) [60%] Fit co + c1z to the data points (0,2), (1,0), (2,1), (3,1) using least squares. Sketch the
solution and the data points as an answer check. This is a 2 x 2 system problem, and should take only

1-3 minutes to complete.
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5. (Miscellany) Complete two.

(a) [50%] Let 3 x 3 matrix A be invertible and assume rref(A4) = EsE;E;A. The elementary matrices
E4, E,, F3 represent combo(1,3,-5), swap(1,3), mult (2,-2), respectively. Find A?.

(b) [50%)] Prove that im(ATB”) = ker(BA)L, when matrix product BA is defined.
(c) [50%)] If you did (a) and (b), then stop, else proceed.

Prove that the span of the Gram-Schmidt vectors uy, ..., uy equals exactly the span of the independent
vectors vy, ..., v used to construct them.
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