Applied Differential Equations 2250

Exam date: Tuesday, 30 October, 2007

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (Frame sequences, the 3 properties and symbols a, b)

Determine a, b such that the system has a unique solution, infinitely many solutions, or no solution:

$$4x + 8y + 3z = 2 - a$$

 $x + 2y + az = -a$
 $3x - 3by + (3-a)z = -b$

$$\begin{pmatrix}
4 & 8 & 3 & 2-a \\
1 & 2 & a & -a \\
3 & -3b & 3-a & -b
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
4 & 8 & 3 & 2-a \\
3 & -3b & 3-a & -b
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & 0 & 3-4a & 2+3a \\
3 & -3b & 3-a & -b \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
3 & -3b & 3-a & -b \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 3-4a & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 3-4a & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2+3a \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2-b \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2-b \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & a & -a \\
0 & -3b-6 & 0 & 2-b \\
0 & 0 & 3-4a & 2+3a
\end{pmatrix}$$

,		1		
	b=-2, 3-40 +0	00 -many Sols	b = -2, 3-4a = 0	Unique so 1
-		THE RESERVE THE PROPERTY OF THE PARTY OF THE		
o-company or	b=-2, 3-49=0	No Sol	6 = -2, 3-40=0	NO 301

Use this page to start your solution. Attach extra pages as needed, then staple.

2. (vector spaces) Do all three parts.

(a) [20%] The vector space V is the set of all functions $f(x) = c_1 + c_2(1-x) + c_3(3+2x) + c_4 \sin x$. Find a subspace S of V of dimension 3 and display a basis for S. Don't justify anything.

(b) [40%] Let V be the vector space of all column vectors $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ and let S be the subset of V given S be the subspace of S.

by the equations $x_1 = 2x_3 + x_2$, $2x_2 = 5x_1$, $x_1 - x_3 = 0$, $x_1 + x_3 = 0$. Prove that S is a subspace of V. (c) [40%] Find a basis of vectors for the subspace of \mathbb{R}^4 given by the system of equations

(a) V spanned by 1,1-x, 3+2x, sin x but 3+2x redundant. $S = span \ g$ basis elements 1,1-x, sin x has dim(s) = 3. (b) Define $A = \begin{pmatrix} 1 & -1 & -2 \\ 5 & -2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. Then $S = \{ \vec{x} : A\vec{x} = \vec{0} \}$.

Apply The Kernel Treorem (Thm 2, 4.2 £8P). Then Sisce Autopice.

scalar gen sol $\begin{cases} x_1 = -2t_1 - t_2 \\ x_2 = 2t_1 \\ x_3 = t_1 \end{cases}$ Basis = $\begin{cases} \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{cases}$

3. (independence) Do only two of the three parts.

(a) [50%] Let
$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 1 \\ 3 \\ 4 \\ 5 \end{pmatrix}$. State a test that decides dependence of the

list of three vectors [20%]. Apply the test and report the result [30%].

(b) [50%] State the pivot theorem [20%]. Then extract from the list below a largest set of independent vectors [30%].

$$\mathbf{v}_{1} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \, \mathbf{v}_{2} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 4 \end{pmatrix}, \, \mathbf{v}_{3} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 7 \end{pmatrix}, \, \mathbf{v}_{4} = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 2 \end{pmatrix}, \, \mathbf{v}_{5} = \begin{pmatrix} 5 \\ -3 \\ 0 \\ 7 \end{pmatrix}, \, \mathbf{v}_{6} = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 9 \end{pmatrix}.$$

(c) [50%] [If you did (a) and (b) already, then 100% has been attained: skip this one!]

Assume that 4×2 matrix D has rank 2 and $D\mathbf{x} = \mathbf{b}$ has a solution x for some vector \mathbf{b} . Prove that

there exists unique numbers c_1 , c_2 such that $\mathbf{rref}(\mathbf{aug}(D, \mathbf{b})) = \begin{pmatrix} 0 & 1 & c_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

- Test: V, , Vz, V3 dependent (rank (aug (V, V, V2)) + 3 $A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 3 \\ 1 & 1 & 4 \end{pmatrix}$ ref (A) = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ rank = 3 independent

· The pirot columns of A are linearly independent · The non-pirot columns of A are linear combinations of The pirot columns of A.

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 & 5 & 3 \\ -1 & 0 & -1 & 2 & -3 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 4 & 7 & 2 & 7 & 9 \end{pmatrix} \quad \text{ref}(A) = \begin{pmatrix} 1 & 0 & 0 & -2 & 3 & -1 \\ 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Largest set of independent vectors = { v, v2, v3} pinots of A = 1,2,3

© Wef(D) must have 2 leading ones hence $\binom{9}{3}$, $\binom{9}{3}$ fill its columns. Constituting of $D\vec{x} = \vec{b}$ implies wef($aug(D, \vec{b})$) has The cuted form where $\vec{x} = \binom{x_1}{x_2} = \binom{c_1}{c_2}$ is The unique sol of The system $D\vec{x} = \vec{b}$.

Use this page to start your solution. Attach extra pages as needed, then staple.

- 4. (determinants and elementary matrices) Do all three parts.
 - (a) [50%] Assume given 3×3 matrices A, B. Suppose $E_5E_4B = E_3E_2E_1A^2$ and E_1 , E_2 , E_3 , E_4 , E_5 are elementary matrices representing respectively a swap, a combination, a multiply by 3, a combination and a multiply by 2. Assume det(A) = 2. Find $det(2AB^2)$.
 - (b) [30%] Let A be a 4×4 matrix such that $(I + 3A)^{-1} = I 3A$. Find the value of $\det(A 3A^2)$.
 - (c) [20%] Let B be a 3×3 matrix and assume that B is the product of elementary swap and combination matrices. Determine all possible values of det(B).

(a)
$$det(2 AB^2) = det((2I) ABB)$$

= $det(2I) det(A) det(B)^2$
= $2^3(2) det(B)^2$

$$\det E_5 \text{ Let } E_4 \text{ det } B = \det E_3 \text{ det } E_2 \text{ let } E_4 \text{ det } (A)^2
 (2) (1) \det B = (3) (1) (-1) (2)^2
 \det B = -6$$

$$dt(2AB^2) = 2^3(2)(-6)^2$$
= 576

$$= 576$$

$$C = I - 3A \text{ and } D = I + 3A \text{ are given to satisfy } CD = DC = I$$

$$\text{Then } (I - 3A) (I + 3A) = I$$

$$I - 3A + 3A - 9A^{2} = I$$

$$- 9A^{2} = 0$$

Then dut A dut
$$A=0$$
 on [dut $A=0$]

- 5. (inverses and Cramer's rule) Do all three parts.
 - (a) [20%] Determine all values of x for which A is invertible: $A = \begin{pmatrix} 1 & 2x 1 & 1 \\ 2 & 4 & 0 \\ 1 & 2 & e^{2x} \end{pmatrix}$.
 - (b) [40%] Apply the adjugate formula for the inverse to find the value of the entry in row 1, column 3 of A^{-1} , given A below. Other methods are not acceptable.

$$A = \left(\begin{array}{rrrr} 1 & 2 & 0 & 1 \\ -1 & 0 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 3 \end{array}\right)$$

(c) [40%] Solve for x_3 in $A\mathbf{u} = \mathbf{b}$ by Cramer's rule. Other methods are not acceptable.

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 0 & 4 & 0 \\ 5 & 6 & 8 & 1 \\ 3 & 0 & 2 & 0 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 2 \end{pmatrix}.$$

(a) A is invertible \rightleftharpoons det $(A) \neq 0 \rightleftharpoons$ $\begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix} + e^{2x} \begin{pmatrix} 2x-1 \\ 2 & 4 \end{pmatrix} \neq 0$

entry (1,3) = $\frac{\text{cofactor}(3,1)}{\text{dut}(A)} = \frac{(-1)^{3+1} \left| \begin{array}{c} 2 & 0 & 1 \\ 0 & -1 & 1 \\ 2 & 0 & 3 \end{array} \right|}{2 & 0 & 3} = -4$

©
$$X_3 = \frac{\Delta_3}{\Delta}$$
 $\Delta = \begin{vmatrix} 1 & 2 & 0 & 0 \\ 3 & 0 & 4 & 0 \\ 5 & 6 & 8 & 1 \\ 3 & 0 & 2 & 0 \end{vmatrix} = -12$

$$\Delta_3 = \begin{vmatrix} 12 & 1 & 0 \\ 30 & 0 & 0 \\ 56 & -1 & 1 \\ 30 & 2 & 0 \end{vmatrix} = 12$$