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Foreword

Organization

Each chapter of the text is organized into sections that represent one or two
classroom lectures of 50 minutes each. Outside work for these divisions requires
one to six hours, depending upon the depth of study.

Each section within a chapter consists of three distinct parts. The divisions
represent the lecture, examples and technical details. Generally, proofs of
theorems or long justifications of formulas are delayed until after the examples.
The lectures contain only the briefest examples, figures and illustrations.

A key to a successful course is a weekly session dedicated to review, drill, answers,
solutions, exposition and exam preparation. While group meetings are important,
individual effort is required to flesh out the details and to learn the subject in
depth. The textbook design supports targeted self-study through its examples,
exercises and odd exercise solutions.

There is a defense for this style of presentation, matched equally by a long list of
criticisms. The defense is that this style represents how material is presented in
classroom lectures, and how the topics are studied in the private life of a student.
It is unexpected to read everything in a textbook and the style addresses the issue
of what to skip and what to read in detail. The criticisms include a departure
from standard textbooks, which intermix theory and examples and proofs. Page
flipping criticism applies to the printed textbook. The PDF textbook has em-
bedded links.

Prerequisites

Beginning sections of chapters require college algebra, basic high school geometry,
coordinate geometry, elementary trigonometry, differential calculus and integral
calculus. Several variable calculus and linear algebra are assumed for certain
advanced topics. Instructors are the best judges of what to include and what to
skip, concerning advanced topics in this textbook.

viii
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Survey course

A complete survey course in differential equations for engineering and science
can be constructed from the lectures and examples, by skipping the technical
details supplied in the text. A deeper introduction to the subject is obtained by
reading the details. Such survey courses will necessarily contact more chapters
and trade the depth of a conventional course for a faster pace, easier topics, and
more variety.

Conventional Course

Differential equations courses at the undergraduate level will present some or all
of the technical details in class, as part of the lecture. Deeper study with technical
details is warranted for specialties like physics and electrical engineering. Hybrid
courses that combine the conventional course and the engineering course can be
realized.

To the Student

Expertise in background topics is expected only after review and continued use
in the course, especially by writing solutions to exercises.

Instructors are advised that an exercise list and subsequent evaluation of the
work is essential for successful classroom use of the text.

The text has nearly 3,600 exercises, supported by textbook examples and odd-
numbered solutions. Solutions are located in the PDF textbook + solution man-
ual.

To learn the subject, not only is it required to solve exercises, but to write
exercises, which is not different from writing in a foreign language.

Writing exercises requires two or more drafts and a final presentation. Engineer-
ing paper and lineless duplicator paper encourage final reports with adequate
white space between equations. Pencil and eraser save time. Pens and word
processors waste time.

Contributions to legibility, organization and presentation of hand-written exer-
cises were made at The University of Utah, by numerous creative engineering,
computer science, physics, biology and mathematics students, over the years
1990-2019. Their ideas produced the suggestions below in Table 1, which were
applied to the text examples, illustrations and exercise solutions.

ix
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Table 1. Suggestions for Hand-Written Exercises 1990-2019

1. A report is hand-written by pencil on lineless paper or engineering paper.
It starts with a problem statement followed perhaps by a final answer
summary. Supporting material appears at the end, like a tax return.

2. Mathematical notation is on the left, text on the right, often a 60% to
40% ratio. One equal sign per line, equations justified left or aligned on
equal signs. Vertical white space separates equation displays.

3. Text is left-justified in a column on the right. It contains explanations,
references by keyword or page number, statements and definitions, ref-
erences to delayed details like long calculations, graphics, answer checks.

4. Every report has an answer check. It is usual to see back of book as
the only detail. Proofs have no answer check.

5. No suggestion is a rule: invent and develop your own style.

Work, School and Family

The textbook and the solution manual were designed for students who study
in isolation, their university schedule driven by their jobs and family. In spite
of forced isolation from the classroom, working students with families seek help
from others through telephone calls, online search, internet messaging, email,
office visits to the university, study groups, supplemental and online instruction.

x



Chapter 1

Fundamentals

Contents

1.1 Exponential Modeling . . . . . . . . . . . . . . . . . 2

1.2 Exponential Application Library . . . . . . . . . . 16

1.3 Differential Equations of First Order . . . . . . . . 31

1.4 Direction Fields . . . . . . . . . . . . . . . . . . . . 40

1.5 Phase Line Diagrams . . . . . . . . . . . . . . . . . 51

1.6 Computing and Existence . . . . . . . . . . . . . . 64

Introduced here are notation, definitions and background results suitable for use
in differential equations.

Prerequisites include college algebra, coordinate geometry, differential calculus
and integral calculus. The examples and exercises include a review of some
calculus topics, especially derivatives, integrals, numerical integration, hand and
computer graphing. A significant part of the review is algebraic manipulation of
logarithms, exponentials, sines and cosines.

The chapter starts with differential equations applications that require only a
background from pre-calculus: exponential and logarithmic functions. No dif-
ferential equations background is assumed or used. Differential equations are
defined and insight is given into the notion of answer for differential equations in
science and engineering applications.

Basic topics: direction fields, phase line diagrams and bifurcation diagrams,
which require only a calculus background. Applications of these topics appear
later in the text, after more solution methods have been introduced.

Advanced topics: existence-uniqueness theory and implicit functions. Included
are practical computer algebra system methods to assist with finding solutions,
verifying equations, modeling, and related topics.
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1.1 Exponential Modeling

1.1 Exponential Modeling

Three model differential equations are studied through a variety of specific ap-
plications. All applications use the calculus exponential function y(t) = y0e

kt.

Three Examples

These applications are studied:

Growth–Decay Models
Newton Cooling
Verhulst Logistic Model

It is possible to solve a variety of differential equations without reading this
book or any other differential equations text. Given in the table below are three
exponential models and their known solutions, all of which will be derived from
principles of elementary differential calculus.

Growth-Decay
dA

dt
= kA(t), A(0) = A0

A(t) = A0e
kt

Newton Cooling
du

dt
= −h(u(t)− u1), u(0) = u0

u(t) = u1 + (u0 − u1)e
−ht

Verhulst Logistic
dP

dt
= (a− bP (t))P (t), P (0) = P0

P (t) =
aP0

bP0 + (a− bP0)e−at

These models and their solution formulas form a foundation of intuition for all
of differential equation theory. Considerable use will be made of the models and
their solution formulas.

The physical meanings of the constants k, A0, h, u1, u0, a, b, Po and the variable
names A(t), u(t), P (t) are given below, as each example is discussed.

Background

Mathematical background used in exponential modeling is limited to algebra and
basic calculus. The following facts are assembled for use in applications. Prime
notation is used: ′ = d

dt and sometimes ′ = d
dx .
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1.1 Exponential Modeling

ln ex = x, eln y = y In words, the exponential and the logarithm are
inverses. The domains are −∞ < x < ∞, 0 <
y <∞.

e0 = 1, ln(1) = 0 Special values, usually memorized.

ea+b = eaeb In words, the exponential of a sum of terms is the
product of the exponentials of the terms.

(ea)b = eab Negatives are allowed, e.g., (ea)−1 = e−a.(
eu(t)

)′
= u′(t)eu(t) The chain rule of calculus implies this formula from

the identity d
dxe

x = ex where x = u(t) and dx
dt =

u′(t).

lnAB = lnA+ lnB In words, the logarithm of a product of factors is
the sum of the logarithms of the factors.

B ln(A) = ln
(
AB
)

Negatives are allowed, e.g., − lnA = ln(1/A) when
B = −1.

(ln |u(t)|)′ = u′(t)

u(t)
The identity d

dx ln(x) = 1/x implies this general
version by the chain rule applied with x = u(t),
dx
dt = u′(t).

Applied topics using exponentials inevitably lead to equations involving loga-
rithms. Conversion of exponential equations to logarithmic equations, and the
reverse, happens to be an important subtopic of differential equations. The ex-
amples and exercises contain typical calculations.

Growth-Decay Model

Growth and decay models in science are based upon the exponential equation

y = y0e
kx, y0 and k constant.(1)

The exponential ekx increases if k > 0 and decreases if k < 0. A model based
upon the exponential is called a growth model if k > 0 and a decay model
if k < 0. Examples of growth models include population growth and compound
interest. Examples of decay models include radioactive decay, radiocarbon dating
and drug elimination. Typical growth and decay curves appear in Figure 1.

3



1.1 Exponential Modeling

20

0

20

0

Growth Decay

0 1 0 1

Figure 1. Growth and decay
curves.

Definition 1.1 (Growth-Decay Equation)
The differential equation

dy

dx
= ky(2)

is called a growth-decay differential equation.

A solution of (2) is y(x) = y0e
kx; see the verification on page 10. It is possible

to show directly that the differential equation has no other solutions, hence the
terminology the solution y = y0e

kx is appropriate; see the verification on page
11. The solution y = y0e

kx in (1) satisfies the growth-decay initial value
problem

dy

dx
= ky, y(0) = y0.(3)

The initial condition y(0) = y0 means y = y0 at x = 0. It can be written as
y(x)|x=0 = y0.

How to Solve a Growth-Decay Equation

Numerous applications to first order differential equations are based upon equa-
tions that have the general form dy

dx = ky. Whenever this form is encountered,
immediately the solution is known: y(x) = y0e

kx. The symbol y0 is a constant
known as the initial state, because ekx = 1 at x = 0 implies y(x) equals y0 at
x = 0.

Newton Cooling Model

If a fluid is held at constant temperature, then the cooling of a body immersed
in the fluid is subject to Newton’s cooling law:

The rate of temperature change of the body is proportional to the
difference between the body’s temperature and the fluid’s constant
temperature.

Translation to mathematical notation gives the differential equation

du

dt
= −h(u(t)− u1)(4)

4



1.1 Exponential Modeling

where u(t) is the temperature of the body, u1 is the constant ambient temperature
of the fluid and h > 0 is a constant of proportionality.

A typical instance is the cooling of a cup of hot chocolate in a room. Here, u1
is the wall thermometer reading and u(t) is the reading of a dial thermometer
immersed in the chocolate drink.

Theorem 1.1 (Solution of Newton’s Cooling Equation)
The change of variable y(t) = u(t) − u1 translates the cooling equation du/dt =

−h(u−u1) into the growth-decay equation
d

dt
y(t) = −hy(t). Therefore, the cooling

solution is given in terms of u0 = u(0) by the equation

u(t) = u1 + (u0 − u1)e
−ht.(5)

The result is proved on page 11. It shows that a cooling model is just a translated
growth-decay model. The solution formula (5) can be expressed in words as
follows:

The dial thermometer reading of the hot chocolate equals the wall
thermometer reading plus an exponential decay term.

Cooling problems have curious extra conditions, usually involving physical mea-
surements, for example the three equations

u(0) = 100, u(1) = 90 and u(∞) = 22.

The extra conditions implicitly determine the actual values of the three undeter-
mined parameters h, u1, u0. The logic is as follows. Equation (5) is a relation
among 5 variables. Substitution of values for t and u eliminates 2 of the 5 vari-
ables and gives an equation for u1, u0, h. The system of three equations in three
unknowns can be solved for the actual values of u1, u0, h.

Stirring Effects

Exactly how to maintain a constant ambient temperature is not addressed by
the model. One method is to stir the liquid, as in Figure 2, but the mechanical
energy of the stirrer will inevitably appear as heat in the liquid. In the simplest
case, stirring effects add a fixed constant temperature S0 to the model. For slow
stirring, S0 = 0 is assumed, which is the above model.

Figure 2. Flask Cooling with Stirring.
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1.1 Exponential Modeling

Population Modeling

The human population of the world reached seven billion in 2011. The estimate
for year 2021 is more than 7.7 billion.1

World Population Estimate
2020

7,794,798,739
Source: U.S. Census Bureau

The term population refers to humans. In literature, it may also refer to bac-
teria, insects, rodents, rabbits, wolves, trees, yeast and similar living things that
have birth rates and death rates.

Malthusian Population Model

A constant birth rate or a constant death rate is unusual in a population, but
these ideal cases have been studied. The biological reproduction law is called
Malthus’ law:

The population flux is proportional to the population itself.

This biological law can be written in calculus terms as

dP

dt
= kP (t)

where P (t) is the population count at time t. The reasoning is that population
flux is the expected change in population size for a unit change in t, or in the
limit, dP/dt. A careful derivation of such calculus laws from English language
appears in Appendix A.1.

The theory of growth-decay differential equations implies that population studies
based upon Malthus’s law employ the exponential algebraic model

P (t) = P0e
k(t−t0).

The number k is the difference of the birth and death rates, or combined birth-
death rate, t0 is the initial time and P0 is the initial population size at
time t = t0.

1Reference: https://www.worldometers.info/population/
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1.1 Exponential Modeling

Verhulst Logistic Model

The population model P ′ = kP was studied around 1840 by the Belgian demog-
rapher and mathematician Pierre-Francois Verhulst (1804–1849) in the special
case when k depends on the population size P (t). Under Verhulst’s assumptions,
k = a− bP for positive constants a and b, so that k > 0 (growth) for populations
P smaller than a/b and k < 0 (decay) when the population P exceeds a/b. The
result is called the logistic equation:

P ′ = (a− bP )P.(6)

Verhulst established the limit formula

lim
t→∞

P (t) = a/b,(7)

which has the interpretation that initial populations P (0), regardless of size, will
after a long time stabilize to size approximately a/b. The constant a/b is called
the carrying capacity of the population.

Limit formula (7) for a > 0 follows from solution formula (8) below.

Theorem 1.2 (Verhulst Logistic Solution)
The change of variable y(t) = P (t)/(a − bP (t)) transforms the logistic equation
P ′(t) = (a − bP (t))P (t) into the growth-decay equation y′(t) = ay(t). Then the
logistic equation solution is given by

P (t) =
aP (0)

bP (0) + (a− bP (0))e−at
.(8)

The derivation appears on page 11. The impact of the result is that a logistic
model transforms to a growth-decay model via a fractional change of variable.
The Verhulst logistic model reduces to the Malthus model when b = 0.
Then solution formula (8) reduces to the solution y = y0e

at of growth-decay
equation y′ = ay, where y = P, y0 = P (0). Solution formula (8) remains valid
regardless of the signs of a and b, provided the quotient is defined. Case a = b = 0
means P ′(t) = 0 and constant population P (t) = P0.

Examples

Example 1.1 (Growth-Decay)
Solve the initial value problem

dy

dx
= 2y, y(0) = 4.

Solution: This is a growth-decay equation y′ = ky, y(0) = y0 with k = 2, y0 = 4. One
way to decide on the constant k is to compute y′/y from the given differential equation.
Then y′/y = 2 implies k = 2. Therefore, the solution is y = y0e

kx = 4e2x. No method is
required to solve the equation y′ = 2y, because of the theory on page 3.
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1.1 Exponential Modeling

Example 1.2 (Newton Cooling)
Solve the initial value problem

du

dt
= −3(u(t)− 72), u(0) = 190.

Solution: This is a Newton cooling equation u′ = −h(u − u1), u(0) = u0 with h = 3,
u1 = 72, u0 = 190. Therefore, the solution is u(t) = u1 + (u0 − u1)e

−ht = 72 + 118e−3t.
No method is required to solve the equation u′ = −3(u− 72), because of the theorem on
page 5.

To eliminate memorization, use the substitution y = u − u1 to transform the problem
to the growth-decay model y′ = −hy with solution y = y0e

−ht. Then back-substitute
y = u− u1 to solve for u(t).

In this particular case, let y = u − 72 to get y′ = −3y, then y = y0e
−3t and finally

u − 72 = y0e
−3t. Value y0 equals y(0). It is determined by the condition y(t) + 72 =

u(t) = 190 at t = 0 (supplied as u(0) = 190) to give y0 = 118 and then the final answer
is u(t) = 72 + 118e−3t.

Example 1.3 (Verhulst Logistic)
Solve the initial value problem

dP

dt
= (1− 2P )P, P (0) = 500.

Solution: This is a Verhulst logistic equation P ′ = (a − bP )P , P (0) = P0 with a = 1,
b = 2, P0 = 500. Therefore, the solution is

P (t) =
500

1000− 999e−t
.

No method is required to solve the equation P ′ = (1 − 2P )P , because of the formula
supplied by Theorem 1.2.

Because of Verhulst solution formula complexity, there is no practical shortcut to obtain
the solution. The easiest route is to use the solution formula in Theorem 1.2.

Example 1.4 (Standing Room Only)
Justify the estimate 2600 for the year in which each human has only one square foot

of land to stand upon. Assume the Malthus model P (t) = 3.34e0.02(t−1965), with t
in years and P in billions.

Solution: The mean radius of the earth is 3965 miles or 20, 935, 200 feet. The surface
area formula 4πr2 gives 5, 507, 622 billion square feet. About 20% of this is land, or
1, 101, 524 billion square feet.

The estimate 2600 is obtained by solving for t years in the equation

3.34e0.02(t−1965) = 1101524.

The college algebra details:

e0.02(t−1965) =
1101524

3.34
Isolate the exponential on the left.
Solving for t.
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1.1 Exponential Modeling

ln e0.02(t−1965) = ln 329797.6 Simplify the right side and take the
logarithm of both sides.

0.02(t− 1965) = 12.706234 On the right, compute the loga-
rithm. Use ln eu = u on the left.

t = 1965 +
12.706234

0.02
Solve for t.

= 2600.3. About the year 2600.

Example 1.5 (Rodent Growth)
A population of two rodents in January reproduces to population sizes 20 and 110 in
June and October, respectively. Determine a Malthusian law for the population and
test it against the data.

Solution: However artificial this example might seem, it is almost a real experiment;
see Braun [Braun1986], Chapter 1, and the reference to rodent Microtus Arvallis Pall.

The law proposed is P = 2e2t/5, which is 40% growth, k = 2/5. For a 40% rate,
P (6) ≈ 2e12/5 = 22.046353 and P (10) ≈ 2e2(10)/5 = 109.1963. The agreement with the
data is reasonable. It remains to explain how this “40% law” was invented.

The Malthusian model P (t) = P0e
kt, with t in months, fits the three data items P (0) = 2,

P (6) = 20 and P (10) = 110 provided P0 = 2, 2e6k = 20 and 2e10k = 110. The
exponential equations are solved for k = ln(10)/6 and k = ln(55)/10, resulting in the
two growth constants k = 0.38376418 and k = 0.40073332. The average growth rate is
39.2%, or about 40%.

Example 1.6 (Flask Cooling)
A flask of water is heated to 95C and then allowed to cool in ambient room tem-
perature 21C. The water cools to 80C in three minutes. Verify the estimate of 48
minutes to reach 23C.

Solution: Basic modeling by Newton’s law of cooling gives the temperature as u(t) =
u1+(u0−u1)e

−kt where u1, u0 and k are parameters. Three conditions are given in the
English statement of the problem.

u(∞) = 21 The ambient air temperature is 21C.

u(0) = 95 The flask is heated at t = 0 to 95C.

u(3) = 80 The flask cools to 80C in three minutes.

In the details below, it will be shown that the parameter values are u1 = 21, u0−u1 = 74,
k = 0.075509216. Then u(t) = 21 + 74e−0.075509216t, t in minutes.

To find u1:

21 = u(∞) Given ambient temperature condition.

= lim
t→∞

u(t) Definition of u(∞).

= lim
t→∞

u1 + (u0 − u1)e
−kt Definition of u(t).

= u1 The exponential has limit zero.

To calculate u0 − u1 = 74 from u(0) = 95:
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1.1 Exponential Modeling

95 = u(0) Given initial temperature condition.

= u1 + (u0 − u1)e
−k(0) Definition of u(t) at t = 0.

= 21 + u0 − u1 Use e0 = 1.

Therefore, u0 − u1 = 95− 21 = 74.

Computation of k starts with the equation u(3) = 80, which reduces to 21+74e−3k = 80.
This exponential equation is solved for k as follows:

e−3k =
80− 21

74
Isolate the exponential factor on the
left side of the equation.

ln e−3k = ln
80− 21

74
Take the logarithm of both sides.

−3k = ln(59/74) Simplify the fraction. Apply ln eu = u
on the left.

k =
1

3
ln(74/59) Divide by −3, then on the right use

− lnx = ln(1/x).

The estimate u(48) ≈ 23 will be verified. The time t at which u(t) = 23 is found by
solving the equation 21+74e−kt = 23 for t. A checkpoint is −kt = ln(2/74), from which
t is isolated on the left. After substitution of k = 0.075509216, the value is t = 47.82089.

Example 1.7 (Baking a Roast)
A beef roast at room temperature 70F is put into a 350F oven. A meat thermometer
reads 100F after four minutes. Verify that the roast is done (340F) in 120 minutes.

Solution: The roast is done when the thermometer reads 340F or higher. If u(t) is the
meat thermometer reading after t minutes, then it must be verified that u(120) ≥ 340.

Even though the roast is heating instead of cooling, the beef roast temperature u(t) after
t minutes is given by the Newton cooling equation u(t) = u1 + (u0 − u1)e

−kt, where u1,
u0 and k are parameters. Three conditions appear in the statement of the problem:

u(∞) = 350 The ambient oven temperature is 350F.

u(0) = 70 The beef is 70F at t = 0.

u(4) = 100 The roast heats to 100F in four minutes.

As in the flask cooling example, page 9, the first two relations above lead to u1 = 350
and u0 − u1 = −280. The last relation determines k from the equation 350− 280e−4k =
100. Solving by the methods of the flask cooling example gives k = 1

4 ln(280/250) ≈
0.028332171. Then u(120) = 350− 280e−120k ≈ 340.65418.

Details and Proofs

Growth-Decay Equation Existence Proof. It will be verified that y = y0e
kx is a

solution of y′ = ky. It suffices to expand the left side (LHS) and right side (RHS) of the
differential equation and compare them for equality.

LHS =
dy

dx
The left side of

dy

dx
= ky is dy/dx.
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1.1 Exponential Modeling

=
d

dx

(
y0e

kx
)

Substitute y = y0e
kx.

= y0ke
kx Apply the rule (eu)′ = u′eu.

RHS = ky The right side of
dy

dx
= ky is ky.

= k(y0e
kx) Substitute y = y0e

kx.

Therefore, LHS = RHS. ■

Growth-Decay Equation Uniqueness Proof. It will be shown that y = y0e
kx is the

only solution of y′ = ky, y(0) = y0. The idea is to reduce the question to the application
of a result from calculus. This is done by a clever change of variables, which has been
traced back to Kümmer (1834).2

Assume that y is a given solution of y′ = ky, y(0) = y0. It has to be shown that
y = y0e

kx.

Define v = y(x)e−kx. This defines a change of variable from y into v. Then

v′ = (e−kxy)′ Compute v′ from v = e−kxy.

= −ke−kxy + e−kxy′ Apply the product rule (uy)′ = u′y + uy′.

= −ke−kxy + e−kx(ky) Use the differential equation y′ = ky.

= 0. The terms cancel.

In summary, v′ = 0 for all x. The calculus result to be applied is:

The only function v(x) that satisfies v′(x) = 0 on an interval is v(x) = constant.

The conclusion is v(x) = v0 for some constant v0. Then v = e−kxy gives y = v0e
kx.

Setting x = 0 implies v0 = y0 and finally y = y0e
kx. ■

Newton Cooling Solution Verification (Theorem 1.1). The substitution A(t) =
u(t)− u1 will be applied to find an equivalent growth-decay equation:

dA

dt
=

d

dt
(u(t)− u1) Definition of A = u− u1.

= u′(t)− 0 Derivative rules applied.

= −h(u(t)− u1) Cooling differential equation applied.

= −hA(t) Definition of A.

The conclusion is that A′(t) = −hA(t). Then A(t) = A0e
−ht, from the theory of growth-

decay equations. The substitution gives u(t) − u1 = A0e
−ht, which is equivalent to

equation (5), provided A0 = u0 − u1. ■

Logistic Solution Verification (Theorem 1.2). Given a > 0, b > 0 and the logistic
equation P ′ = (a− bP )P , the plan is to derive the solution formula

P (t) =
aP (0)eat

bP (0)eat + a− bP (0)
.

2The German mathematician E. E. Kümmer, in his paper in 1834, republished in 1887 in J.
für die reine und angewandte Math., considered changes of variable y = wv, where w is a given
function of x and v is the new variable that replaces y.
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Assume P (t) satisfies the logistic equation. Suppose it has been shown (see below) that
the variable u = P/(a − bP ) satisfies u′ = au. By the exponential theory, u = u0e

at,
hence

P =
au

1 + bu
Solve u = P/(a− bP ) for P in terms of u.

=
au0e

at

1 + bu0eat
Substitute u = u0e

at.

=
aeat

1/u0 + beat
Divide by u0.

=
aeat

(a− bP (0))/P (0) + beat
Use u0 = u(0) and u = P/(a− bP ).

=
aP (0)eat

bP (0)eat + a− bP (0)
. Formula verified.

The derivation using the substitution u = P/(a− bP ) requires only differential calculus.
The substitution was found by afterthought, already knowing the solution; historically,
integration methods have been applied.

The change of variables (t, P ) → (t, u) given by the equation u = P (a − bP ) is used to
justify the relation u′ = au as follows.

u′ =

(
P

a− bP

)′

It will be shown that u′ = au.

=
P ′(a− bP )− P (−bP ′)

(a− bP )2
Quotient rule applied.

=
aP ′

(a− bP )2
Simplify the numerator.

=
a(a− bP )P

(a− bP )2
Substitute P ′ = (a− bP )P .

= au Substitute u = P/(a− bP ).

This completes the motivation for the formula. To verify that it works in the differential
equation is a separate issue, which is settled in the exercises.

Exercises 1.1 �

Growth-Decay Model
Solve the given initial value problem using
the growth-decay formula; see page 3 and
Example 1.1 page 7.

1. y′ = −3y, y(0) = 20

2. y′ = 3y, y(0) = 1

3. 3A′ = A, A(0) = 1

4. 4A′ +A = 0, A(0) = 3

5. 3P ′ − P = 0, P (0) = 10

6. 4P ′ + 3P = 0, P (0) = 11

7. I ′ = 0.005I, I(t0) = I0

8. I ′ = −0.015I, I(t0) = I0

9. y′ = αy, y(t0) = 1

10. y′ = −αy, y(t0) = y0

Growth-decay Theory

11. Graph without a computer y = 10(2x)
on −3 ≤ x ≤ 3.

12. Graph without a computer y =
10(2−x) on −3 ≤ x ≤ 3.
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13. Find the doubling time for the growth
model P = 100e0.015t.

14. Find the doubling time for the growth
model P = 1000e0.0195t.

15. Find the elapsed time for the decay
model A = 1000e−0.11237t until |A(t)| <
0.00001.

16. Find the elapsed time for the decay
model A = 5000e−0.01247t until |A(t)| <
0.00005.

Newton Cooling Recipe
Solve the given cooling model. Follow Ex-
ample 1.2 on page 8.

17. u′ = −10(u− 4), u(0) = 5

18. y′ = −5(y − 2), y(0) = 10

19. u′ = 1 + u, u(0) = 100

20. y′ = −1− 2y, y(0) = 4

21. u′ = −10 + 4u, u(0) = 10

22. y′ = 10 + 3y, y(0) = 1

23. 2u′ + 3 = 6u, u(0) = 8

24. 4y′ + y = 10, y(0) = 5

25. u′ + 3(u+ 1) = 0, u(0) = −2

26. u′ + 5(u+ 2) = 0, u(0) = −1

27. α′ = −2(α− 3), α(0) = 10

28. α′ = −3(α− 4), α(0) = 12

Newton Cooling Model
The cooling model u(t) = u0 + A0e

−ht is
applied; see page 4. Methods parallel those
in the flask cooling example, page 9, and
the baking example, page 10.

29. (Ingot Cooling) A metal ingot cools in
the air at temperature 20C from 130C
to 75C in one hour. Predict the cooling
time to 23C.

30. (Rod Cooling) A plastic rod cools in
a large vat of 12-degree Celsius water
from 75C to 20C in 4 minutes. Predict
the cooling time to 15C.

31. (Murder Mystery) A body discov-
ered at 1:00 in the afternoon, March
1, 1929, had temperature 80F. Assume
outdoor temperature 50F from 9am.
Over the next hour the body’s tempera-
ture dropped to 76F. Estimate the date
and time of the murder.

32. (Time of Death) A dead body found
in a 40F river had body temperature
70F. The coroner requested that the
body be left in the river for 45 minutes,
whereupon the body’s temperature was
63F. Estimate the time of death, rela-
tive to the discovery of the body.

Verhulst Model
Solve the given Verhulst logistic equation
using formula (8). Follow Example 1.3 on
page 8.

33. P ′ = P (2− P ), P (0) = 1

34. P ′ = P (4− P ), P (0) = 5

35. y′ = y(y − 1), y(0) = 2

36. y′ = y(y − 2), y(0) = 1

37. A′ = A− 2A2, A(0) = 3

38. A′ = 2A− 5A2, A(0) = 1

39. F ′ = 2F (3− F ), F (0) = 2

40. F ′ = 3F (2− F ), F (0) = 1

Inverse Modeling
Given the model, find the differential equa-
tion and initial condition.

41. A = A0e
4t

42. A = A0e
−3t

43. P = 1000e−0.115t

44. P = 2000e−7t/5

45. u = 1 + e−3t

46. u = 10− 2e−2t

47. P =
10

10− 8e−2t
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48. P =
5

15− 14e−t

49. P =
1

5− 4e−t

50. P =
2

4− 3e−t

Populations
Use Malthusian population theory page
6 and Malthusian model P (t) = P0e

kt.
Methods appear in Examples 1.4 and 1.5
page 8.

51. (World Population) The world popu-
lation of 5, 500, 000, 000 people was in-
creasing at a rate of 250, 000 people per
day in June of 1993. Predict the date
when the population reaches 10 billion.

52. (World Population) Suppose the
world population at time t = 0 is 5.5 bil-
lion and increases at rate 250, 000 peo-
ple per day. How many years before
that was the population one billion?

53. (Population Doubling) A population
of rabbits increases by 10% per year.
In how many years does the population
double?

54. (Population Tripling) A population
of bacteria increases by 15% per day.
In how many days does the population
triple?

55. (Population Growth) Trout in a river
are increasing by 15% in 5 years. To
what population size does 500 trout
grow in 15 years?

56. (Population Growth) A region of 400
acres contains 1000 forest mushrooms
per acre. The population is decreas-
ing by 150 mushrooms per acre every
2 years. Find the population size for
the 400-acre region in 15 years.

Verhulst Equation
Write out the solution to the given differ-
ential equation and report the carrying ca-
pacity M = lim

t→∞
P (t).

57. P ′ = (1− P )P

58. P ′ = (2− P )P

59. P ′ = 0.1(3− 2P )P

60. P ′ = 0.1(4− 3P )P

61. P ′ = 0.1(3 + 2P )P

62. P ′ = 0.1(4 + 3P )P

63. P ′ = 0.2(5− 4P )P

64. P ′ = 0.2(6− 5P )P

65. P ′ = 11P − 17P 2

66. P ′ = 51P − 13P 2

Logistic Equation
The following exercises use the Verhulst lo-
gistic equation P ′ = (a − bP )P , page 6.
Some methods appear on page 11.

67. (Protozoa) Experiments on the pro-
tozoa Paramecium determined growth
rate a = 2.309 and carrying capac-
ity a/b = 375 using initial population
P (0) = 5. Establish the formula P (t) =

375

1 + 74e−2.309t
.

68. (World Population) Demographers
projected the world population in the
year 2000 as 6.5 billion, which was cor-
rected by census to 6.1 billion. Use
P (1965) = 3.358 × 109, a = 0.029 and
carrying capacity a/b = 1.0760668 ×
1010 to compute the logistic equation
projection for year 2000.

69. (Harvesting) A fish population satis-
fying P ′ = (a − bP )P is subjected to
harvesting, the new model being P ′ =
(a − bP )P − H. Assume a = 0.04,
a/b = 5000 and H = 10. Using alge-
bra, rewrite it as P ′ = a(α−P )(P − β)
in terms of the roots α, β of ay− by2 −
H = 0. Apply the change of variables
u = P − β to solve it.
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70. (Extinction) Let an endangered
species satisfy P ′ = bP 2−aP for a > 0,
b > 0. The term bP 2 represents births
due to chance encounters of males and
females, while the term aP represents
deaths. Use the change of variable
u = P/(bP − a) to solve it. Show from
the answer that initial population sizes
P (0) below a/b become extinct.

71. (Logistic Answer Check) Let P =
au/(1 + bu), u = u0e

at, u0 = P0/(a −
bP0). Verify that P (t) is a solution the
differential equation P ′ = (a − bP )P
and P (0) = P0.

72. (Logistic Equation) Let k, α, β be
positive constants, α < β. Solve w′ =

k(α−w)(β−w), w(0) = w0 by the sub-
stitution u = (α − w)/(β − w), show-
ing that w = (α − βu)/(1 − u), u =
u0e

(α−β)kt, u0 = (α − w0)/(β − w0).
This equation is a special case of the
harvesting equation P ′ = (a−bP )P+H.

Growth-Decay Uniqueness Proof

73. State precisely and give a calculus text
reference for Rolle’s Theorem, which
says that a function vanishing at x = a
and x = b must have slope zero at some
point in a < x < b.

74. Apply Rolle’s Theorem to prove that
a differentiable function v(x) with
v′(x) = 0 on a < x < b must be con-
stant.
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1.2 Exponential Application Library

The model differential equation y′ = ky, and its variants via a change of vari-
ables, appears in various applications to biology, chemistry, finance, science and
engineering. All the applications below use the exponential model y = y0e

kt.

Light Intensity Chemical Reactions
Electric Circuits Drug Elimination
Drug Dosage Continuous Interest
Radioactive Decay Radiocarbon Dating

Light Intensity

Physics defines the lumen unit to be the light flux through a solid unit angle
from a point source of 1/621 watts of yellow light.3 The lumen is designed for
measuring brightness, as perceived by the human eye. The intensity E = F

A
is the flux F per unit area A, with units Lux or Foot-candles (use A = 1m2 or
A = 1ft2, respectively). At a radial distance r from a point source, in which case
A = 4πr2, the intensity is given by the inverse square law

E =
F

4πr2
.

An exposure meter, which measures incident or reflected light intensity, con-
sists of a body, a photocell and a readout in units of Lux or Foot-candles. Light
falling on the photocell has energy, which is transferred by the photocell into
electrical current and ultimately converted to the readout scale.

In classical physics experiments, a jeweler’s bench is illuminated by a source
of 8000 lumens. The experiment verifies the inverse square law, by reading an
exposure meter at 1/2, 1 and 3/2 meters distance from the source.

As a variant on this experiment, consider a beaker of jeweler’s cleaning fluid
which is placed over the exposure meter photocell; see Figure 3. Successive
meter readings with beaker depths of 0, 5, 10, 15 centimeters show that fluid
absorption significantly affects the meter readings. Photons4 striking the fluid
convert into heat, which accounts for the rapid loss of intensity at depth in the
fluid.

3Precisely, the wavelength of the light is 550-nm. The unit is equivalent to one candela, one
of the seven basic SI units, which is the luminous intensity of one sixtieth of a square centimeter
of pure platinum held at 1770C.

4A photon is the quantum of electromagnetic radiation, of energy hν, where ν is the radiation
frequency and h is Planck’s constant.
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exposure meter
beaker

8000 lumen
source

1.0m

Figure 3. Jeweler’s bench experiment.
The exposure meter measures light intensity at the
beaker’s base.

Empirical evidence from experiments suggests that light intensity I(x) at a depth
x in the fluid changes at a rate proportional to itself, that is,

dI

dx
= −kI.(9)

If I0 is the surface intensity at zero depth (x = 0) and I(x) is the intensity at
depth x meters, then the theory of growth-decay equations applied to equation
(9) gives the solution

I(x) = I0e
−kx.(10)

Equation (10) says that the intensity I(x) at depth x is a percentage of the
surface intensity I(0) = I0, the percentage decreasing with depth x.

Electric Circuits

Classical physics analyzes the RC-circuit in Figure 4 and the LR-circuit in Figure
5. The physics background will be reviewed.

R

Q(t) C

Figure 4. An RC-Circuit, no emf.

R

i(t)

L

Figure 5. An LR-Circuit, no emf.

First, the charge Q(t) in coulombs and the current I(t) in amperes are related
by the rate formula I(t) = Q′(t). We use prime notation ′ = d

dt . Secondly, there
are some empirical laws that are used. There is Kirchhoff’s voltage law:

The algebraic sum of the voltage drops around a closed loop is zero.

Kirchhoff’s node law is not used here, because only one loop appears in the
examples.

There are the voltage drop formulas for an inductor of L henrys, a resistor of
R ohms and a capacitor of C farads:

Faraday’s law VL = LI ′
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Ohm’s law VR = RI

Coulomb’s law VC = Q/C

In Figure 4, Kirchhoff’s law implies VR + VC = 0. The voltage drop formulas
show that the charge Q(t) satisfies RQ′(t) + (1/C)Q(t) = 0. Let Q(0) = Q0.
Growth-decay theory, page 3, gives Q(t) = Q0e

−t/(RC).

In Figure 5, Kirchhoff’s law implies that VL + VR = 0. By the voltage drop
formulas, LI ′(t) + RI(t) = 0. Let I(0) = I0. Growth-decay theory gives I(t) =
I0e

−Rt/L.

In summary:

RC-Circuit Q = Q0e
−t/(RC),

RQ′ + (1/C)Q = 0, Q(0) = Q0

LR-Circuit I = I0e
−Rt/L,

LI ′ +RI = 0, I(0) = I0.

The ideas outlined here are illustrated in Examples 1.9 and 1.10, page 22.

Interest

The notion of simple interest is based upon the financial formula

A = (1 + r)tA0

where A0 is the initial amount, A is the final amount, t is the number of years
and r is the annual interest rate or rate per annum ( 5% means r = 5/100).
The compound interest formula is

A =
(
1 +

r

n

)nt
A0

where n is the number of times to compound interest per annum. Use n = 4 for
quarterly interest and n = 360 for daily interest.

The topic of continuous interest rests on the limit formula

lim
n→∞

(
1 +

r

n

)nt
= ert.(11)

Replacement of simple interest by the exponential limit leads to the continuous
interest formula

A = A0e
rt

which by the growth-decay theory arises from the initial value problem{
A′(t) = rA(t),
A(0) = A0.

Shown on page 27 are the details for taking the limit as n→∞ in the compound
interest formula. In analogy with population theory, the following statement can
be made about continuous interest.
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The amount accumulated by continuous interest increases at a rate
proportional to itself.

Applied often in interest calculations is the geometric sum formula:

1 + r + · · ·+ rn =
rn+1 − 1

r − 1
.

Cross-multiplication of identity () by r− 1 gives a useful factorization, which for
n = 2 is the college algebra identity (1 + r + r2)(r − 1) = r3 − 1.

Radioactive Decay

A constant fraction of the atoms present in a radioactive
isotope will spontaneously decay into another isotope of the
identical element or else into atoms of another element. Em-
pirical evidence gives the following decay law:

A radioactive isotope decays at a rate proportional to the amount
present.

In analogy with population models the differential equation for radioactive decay
is

dA

dt
= −kA(t),

where k > 0 is a physical constant called the decay constant, A(t) is the number
of atoms of radioactive isotope and t is measured in years.

Radiocarbon Dating

The decay constant k ≈ 0.0001245 is known for carbon-14 (14C). The model
applies to measure the date that an organism died, assuming it metabolized
atmospheric carbon-14.

The idea of radiocarbon dating is due to Willard S. Libby5 in the late 1940s.
The basis of the chemistry is that radioactive carbon-14, which has two more
electrons than stable carbon-12, gives up an electron to become stable nitrogen-
14. Replenishment of carbon-14 by cosmic rays keeps atmospheric carbon-14 at
a nearly constant ratio with ordinary carbon-12 (this was Libby’s assumption).
After death, the radioactive decay of carbon-14 depletes the isotope in the or-
ganism. The percentage of depletion from atmospheric levels of carbon-14 gives
a measurement that dates the organism.

5Libby received the Nobel Prize for Chemistry in 1960.
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Definition 1.2 (Half-Life)
The half-life of a radioactive isotope is the time T required for half of the isotope

to decay. In functional notation, it means A(T ) = A(0)/2, where A(t) = A(0)ekt is
the amount of isotope at time t.

For carbon-14, the half-life is 5568 years plus or minus 30 years, according
to Libby (some texts and references give 5730 years). The decay constant
k ≈ 0.0001245 for carbon-14 arises by solving for k = ln(2)/5568 in the equa-
tion A(5568) = 1

2A(0). Experts believe that carbon-14 dating methods tend to
underestimate the age of a fossil.

Uranium-238 undergoes decay via alpha and beta radiation into various nuclides,
the half-lives of which are shown in Table 1. The table illustrates the range of
possible half-lives for a radioactive substance.

Table 1. Uranium-238 Nuclides by Alpha or Beta Radiation.

Nuclide Half-Life

uranium-238 4,500,000,000 years
thorium-234 24.5 days
protactinium-234 1.14 minutes
uranium-234 233,000 years
thorium-230 83,000 years
radium-236 1,590 years
radon-222 3.825 days
polonium-218 3.05 minutes
lead-214 26.8 minutes
bismuth-214 19.7 minutes
polonium-214 0.00015 seconds
lead-210 22 years
bismuth-210 5 days
polonium-210 140 days
lead-206 stable

Tree Rings

Libby’s work was based upon calculations from se-
quoia tree rings. Later investigations of 4000-year
old trees showed that carbon ratios have been non-
constant over past centuries.

Libby’s method is advertised to be useful for material 200 years to 40, 000 years
old. Older material has been dated using the ratio of disintegration byproducts
of potassium-40, specifically argon-40 to calcium-40.

An excellent reference for dating methods, plus applications and historical notes
on the subject, is Chapter 1 of Braun [Braun1986].

20



1.2 Exponential Application Library

Chemical Reactions

If the molecules of a substance decompose into smaller molecules, then an empiri-
cal law of first-order reactions says that the decomposition rate is proportional
to the amount of substance present. In mathematical notation, this means

dA

dt
= −hA(t)

where A(t) is the amount of the substance present at time t and h is a physical
constant called the reaction constant.

The law of mass action is used in chemical kinetics to describe second-order
reactions. The law describes the amount X(t) of chemical C produced by the
combination of two chemicals A and B. The empirical law says that the rate of
change of X is proportional to the product of the amounts left of chemicals A
and B. which is the rate equation

X ′ = k(α−X)(β −X), X(0) = X0.(12)

Symbols k, α and β are physical constants, α < β; see Zill-Cullen [Zill-C], Chap-
ter 2. The substitution u = (α − X)/(β − X) is known to transform (12) into
u′ = k(α− β)u. See page 11 for the technique. More details are in the exercises.
The solution of mass–action model (12):

X(t) =
α− βu(t)

1− u(t)
, u(t) = u0e

(α−β)kt, u0 =
α−X0

β −X0
.(13)

Drug Elimination

Some drugs are eliminated from the bloodstream by an animal’s body in a pre-
dictable fashion. The amount D(t) in the bloodstream declines at a rate propor-
tional to the amount already present. Modeling drug elimination exactly parallels
radioactive decay, in that the translated mathematical model is

dD

dt
= −hD(t),

where h > 0 is a physical constant, called the elimination constant of the drug.

Oral drugs must move through the digestive system and into the gut before
reaching the bloodstream. The model D′(t) = −hD(t) applies only after the
drug has reached a stable concentration in the bloodstream and the body begins
to eliminate the drug.

Examples

Example 1.8 (Light Intensity in a Lake)
Light intensity in a lake is decreased by 75% at depth one meter. At what depth is
the intensity decreased by 95%?
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Solution: The answer is 2.16 meters (7 feet, 1 1
16 inches). This depth will be justified by

applying the light intensity model I(x) = I0e
−kx, where I0 is the surface light intensity.

At one meter the intensity is I(1) = I0e
−k, but also it is given as 0.25I0. The equation

e−k = 0.25 results, to determine k = ln 4 ≈ 1.3862944. To find the depth x when the
intensity has decreased by 95%, solve I(x) = 0.05I0 for x. The value I0 cancels from
this equation, leaving e−kx = 1/20. The usual logarithm methods give x ≈ 2.2 meters,
as follows:

ln e−kx = ln(1/20) Take the logarithm across e−kx = 1/20.

−kx = − ln(20) Use ln eu = u and − lnu = ln(1/u).

x =
ln(20)

k
Divide by −k.

=
ln(20)

ln(4)
Use k = ln(4).

≈ 2.16 meters. Only 5% of the surface intensity remains
at 2.16 meters.

Example 1.9 (Circuit: RC)
Solve the RC-circuit equation RQ′ + (1/C)Q = 0 when R = 2, C = 10−2 and the
voltage drop across the capacitor at t = 0 is 1.5 volts.

Solution: The charge is Q = 0.015e−50t.

To justify this equation, start with the voltage drop formula VC = Q/C, page 17. Then
1.5 = Q(0)/C implies Q(0) = 0.015. The differential equation is Q′ + 50Q = 0. The
solution from page 3 is Q = Q(0)e−50t. Then the equation for the charge in coulombs is
Q(t) = 0.015e−50t.

Example 1.10 (Circuit: LR)
Solve the LR-circuit equation LI ′ + RI = 0 when R = 2, L = 0.1 and the resistor
voltage drop at t = 0 is 1.0 volts.

Solution: The solution is I = 0.5e−20t. To justify this equation, start with the voltage
drop formula VR = RI, page 17. Then 1.0 = RI(0) implies I(0) = 0.5. The differential
equation is I ′ + 20I = 0; page 3 gives the solution I = I(0)e−20t.

Example 1.11 (Compound Interest: Auto Loan)
Compute the fixed monthly payment for a 5-year auto loan of $18, 000 at 9% per
annum, using (a) daily interest and (b) continuous interest.

Solution: The payments are (a) $373.9361 and (b) $373.9360, which differ by hundredths
of a cent; details below.

Let A0 = 18000 be the initial amount. It will be assumed that the first payment is due
after 30 days and monthly thereafter. To simplify the calculation, a day is defined to
be 1/360th of a year, regardless of the number of days in that year, and payments are
applied every 30 days. Late fees apply if the payment is not received within the grace
period, but it will be assumed here that all payments are made on time.
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Part (a). The daily interest rate is 0.09/360 applied for 1800 days (5 years). Between
payments P , daily interest is applied to the balance A(t) owed after t periods. The
balance grows between payments and then decreases on the day of the payment. The
problem is to find P so that A(1800) = 0.

Payment P is subtracted every 30 days, which changes the loan balanceB(n) after n days.
Define R = 0.09/360 (9% daily interest), B(0) = 18000, Z = (1 + R)30 = 1.007527251.
Then

B(30) = B(0)(1 +R)30 − P Balance after 1 month.

B(60) = B(30)(1 +R)30 − P Balance after 2 months.

= B(0)Z2 − PZ − P Expand using Z = (1+R)30 and B(30) =
B(0)Z − P .

B(30k) = B(0)Zk − P
(
1 + · · ·+ Zk−1

)
For k = 1, 2, 3, . . ..

= B(0)Zk − P
Zk − 1

Z − 1
Geometric sum formula page 19 with ratio
r replaced by Z.

0 = B(0)Z60 − P
Z60 − 1

Z − 1
Use B(1800) = 0, which corresponds to
k = 60.

P = B(0)(Z − 1)
Z60

Z60 − 1
Solve for P .

P = 373.9361355 By maple, given B(0) = 18000 and Z =
1.007527251.

Part (b). The details are the same except for the method of applying daily interest.
The daily interest rate remains R = 0.09/360. Equation (11) will be used in the form(
1 +

r

n

)nt
≈ ert as n → ∞. Let n = 360. Define r and t by the equations nt = 30

and r
n = R. Replace Z in Part (a): Z = (1 + R)30 ≈ ert. Then Z = enRt = e30R =

1.007528195 (pause here to confirm). The details:

B(30) = B(0)Z − P Balance after 1 month.

B(60) = B(30)Z − P Balance after 2 months.

= B(0)Z2 − PZ − P Expand using Z = (1+R)30 and B(30) =
B(0)Z − P .

B(30k) = B(0)Zk − P
(
1 + · · ·+ Zk−1

)
For k = 1, 2, 3, . . ..

= B(0)Zk − P
Zk − 1

Z − 1
Geometric sum formula page 19 with ratio
r replaced by Z.

0 = B(0)Z60 − P
Z60 − 1

Z − 1
Use B(1800) = 0, which corresponds to
k = 60.

P = B(0)(Z − 1)
Z60

Z60 − 1
Solve for P .

P = 373.9460360 By maple, given B(0) = 18000 and Z =
1.007528195.

Example 1.12 (Effective Annual Yield)
A bank advertises an effective annual yield of 5.73% for a certificate of deposit with
continuous interest rate 5.5% per annum. Justify the rate.
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Solution: The effective annual yield is the simple annual interest rate which gives
the same account balance after one year. The issue is whether one year means 365 days
or 360 days, since banks do business on a 360-day cycle.

Suppose first that one year means 365 days. The model used for a saving account is
A(t) = A0e

rt where r = 0.055 is the interest rate per annum. For one year, A(1) = A0e
r.

Then er = 1.0565406, that is, the account has increased in one year by 5.65%. The
effective annual yield is 0.0565 or 5.65%.

Suppose next that one year means 360 days. Then the bank pays 5.65% for only 360
days to produce a balance of A1 = A0e

r. The extra 5 days make 5/360 years, therefore
the bank records a balance of A1e

5r/360 which is A0e
365r/360. The rate for 365 days is

then 5.73%, by the calculation

365

360
0.0565406 = 0.057325886.

Example 1.13 (Retirement Funds)
An engineering firm offers a starting salary of 40 thousand per year, which is expected
to increase 3% per year. Retirement contributions are 11% of salary, deposited
monthly, growing at 6% continuous interest per annum. The company advertises a
million dollars in retirement funds after 40 years. Justify the claim.

Solution: Answer: 1, 108, 233.90 in the retirement account after 40 years.

After 39 years of 3% yearly salary increases the initial salary of $40, 000 increases to
40000(1.03)39 = $126, 681. In year n ≥ 1, the 11% retirement contribution is computed
from monthly salary 40000

12 (1.03)n−1. The retirement account can be viewed as a 6% con-
tinuous interest savings account with monthly deposit. The amount deposited changes
each month, which complicates the computation.

Continuous interest rates are r = 0.06 (annual) and s = 0.06/12 (monthly). Define
R = 1.03 and P0 = 40000/12. Define monthly salary P1 = 40000/12 for year 1. For
year n ≥ 1 define monthly salary Pn = P0 R

n−1, because paychecks increase by 3% each
year. Define An be the amount in the retirement account at the start of year n. The
retirement account has zero balance A1 = 0 at the start of employment. Define the
monthly retirement contribution in year n to be Rn = 0.11Pn.

During the first year, the retirement account gets 12 deposits of R1 dollars. Monthly
continuous interest at s% is applied and re-deposited into the account. The account
balance is A1e

s + R1e
s at the end of month 1, (A1e

s + R1e
s)es + R1e

s at the end of
month 2, and so on. Then:

A2 = A1 e
12s +R1

(
es + · · ·+ e12s

)
Continuous interest at monthly rate s =
0.06/12 on the retirement account balance for
months 1–12.

= A1 e
12s +R1

e12s − 1

1− e−s Geometric sum with common ratio es. The
denominator is e−s(es − 1).

= 4546.026266. Retirement balance at the start of year 2.

An+1 = Ane
12s +Rn

e12s − 1

1− e−s General recursion to be proved by induction.
The details are omitted.
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An+1 =
e12s − 1

1− e−s

n∑
k=1

R(k)(e12s)n−k Solved recursion. Details below.

The advertised retirement fund after 40 years should be the amount A41, which is ob-
tained by setting n = 40 in the last equality: A41 = 1, 108, 233.904.

A solved recursion is not required if computer programming is used in a loop to evaluate
An+1.

# Maple

s:=0.06/12;P:=n->(40000/12)*(1.03)^(n-1);R:=n->0.11*P(n);

X:=0;for j from 1 to 40 do

X:=X*exp(12*s)+R(j)*(exp(12*s)-1)/(1-exp(-s));end do;

Recursion Details.

The recursion is An+1 = AnW + RnZ where W = e12s and Z =
e12s − 1

1− e−s . The steps

used to solve the recursion:

A2 = A1W +R1Z

A3 = A2W +R2Z

= (A1W +R1Z)W +R2Z

= A1W
2 + Z(R1W +R2)

= A1W
2 + Z

∑2
k=1 RkW

2−k

A4 = A3W +R3Z

= (A1W
2 + Z(R1W +R2))W +R3Z

= A1W
3 + Z(R1W

2 +R2W +R3)

= A1W
3 + Z

∑3
k=1 RkW

3−k

Induction details are omitted.

Example 1.14 (Half-life of Radium)
A radium sample loses 1/2 percent due to disintegration in 12 years. Verify the
half-life of the sample is about 1, 660 years.

Solution: The decay model A(t) = A0e
−kt applies. The given information A(12) =

0.995A(0) reduces to the exponential equation e−12k = 0.995. Solve for k with loga-
rithms: k = ln(1000/995)/12. The half-life T satisfies A(T ) = 1

2A(0), which reduces to
e−kT = 1/2. Since k is known, the value T can be found as T = ln(2)/k ≈ 1659.3909
years.

Example 1.15 (Radium Disintegration)
The disintegration reaction

88R
226 −→ 88R

224

of radium-226 into radon has a half-life of 1700 years. Compute the decay constant
k in the decay model A′ = −kA.

Solution: The half-life equation is A(1700) = 1
2A(0). Since A(t) = A0e

−kt, the equation
reduces to e−1700k = 1/2. The latter is solved for k by logarithm methods (see page 8),
giving k = ln(2)/1700 = 0.00040773364.
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Example 1.16 (Radiocarbon Dating)
The ratio of carbon-14 to carbon-12 in a dinosaur fossil is 6.34 percent of the current
atmospheric ratio. Verify the dinosaur’s death was about 22, 160 years ago.

Solution: The method due to Willard Libby will be applied, using his assumption that
the ratio of carbon-14 to carbon-12 in living animals is equal to the atmospheric ratio.
Then carbon-14 depletion in the fossil satisfies the decay law A(t) = A0e

−kt for some
parameter values k and A0.

Assume the half-life of carbon-14 is 5568 years. Then A(5568) = 1
2A(0) (see page 20).

This equation reduces to A0e
−5568k = 1

2A0e
0 or k = ln(2)/5568. In short, k is known

but A0 is unknown. It is not necessary to determine A0 in order to do the verification.

At the time t0 in the past when the organism died, the amount A1 of carbon-14 began
to decay, reaching the value 6.34A1/100 at time t = 0 (the present). Therefore, A0 =
0.0634A1 and A(t0) = A1. Taking this last equation as the starting point, the final
calculation proceeds as follows.

A1 = A(t0) The amount of carbon-14 at death is A1, −t0
years ago.

= A0e
−kt0 Apply the decay model A = A0e

−kt at t = t0.

= 0.0634A1e
−kt0 Use A0 = 6.34A1/100.

The value A1 cancels to give the new relation 1 = 0.0634e−kt0 . The value k = ln(2)/5568
gives an exponential equation to solve for t0:

ekt0 = 0.0634 Multiply by ekt0 to isolate the exponential.

ln ekt0 = ln(0.0634) Take the logarithm of both sides.

t0 =
1

k
ln(0.0634) Apply ln eu = u and divide by k.

=
5568

ln 2
ln(0.0634) Substitute k = ln(2)/5568.

= −22157.151 years. By calculator. The fossil’s age is the negative.

Example 1.17 (Percentage of an Isotope)
A radioactive isotope disintegrates by 5% in ten years. By what percentage does it
disintegrate in one hundred years?

Solution: The answer is not 50%, as is widely reported by lay persons. The correct
answer is 40.13%. It remains to justify this non-intuitive answer.

The model for decay is A(t) = A0e
−kt. The decay constant k is known because of

the information . . . disintegrates by 5% in ten years. Translation to equations produces
A(10) = 0.95A0, which reduces to e−10k = 0.95. Solving with logarithms gives k =
0.1 ln(100/95) ≈ 0.0051293294.

After one hundred years, the isotope present is A(100), and the percentage is 100A(100)
A(0) .

The common factor A0 cancels to give the percentage 100e−100k ≈ 59.87. The reduction
is 40.13%.

To reconcile the lay person’s answer, observe that the amounts present after one, two
and three years are 0.95A0, (0.95)

2A0, (0.95)
3A0. The lay person should have guessed

100 times 1− (0.95)10, which is 40.126306. The common error is to simply multiply 5%
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by the ten periods of ten years each. By this erroneous reasoning, the isotope would
be depleted in two hundred years, whereas the decay model says that about 36% of the
isotope remains!

Example 1.18 (Chemical Reaction)
The manufacture of t-butyl alcohol from t-butyl chloride is made by the chemical
reaction

(CH3)3CCL+NaOH −→ (CH3)3COH +NaCL.

Model the production of t-butyl alcohol, when N% of the chloride remains after t0
minutes.

Solution: It will be justified that the model for alcohol production is A(t) = C0(1−e−kt)
where k = ln(100/N)/t0, C0 is the initial amount of chloride and t is in minutes.

According to the theory of first-order reactions, the model for chloride depletion is C(t) =
C0e

−kt where C0 is the initial amount of chloride and k is the reaction constant. The
alcohol production is A(t) = C0 −C(t) or A(t) = C0(1− e−kt). The reaction constant k
is found from the initial data C(t0) =

N
100C0, which results in the exponential equation

e−kt0 = N/100. Solving the exponential equation gives k = ln(100/N)/t0.

Example 1.19 (Drug Dosage)
A veterinarian applies general anesthesia to animals by injection of a drug into the
bloodstream. Predict the drug dosage to anesthetize a 25-pound animal for thirty
minutes, given:

1. The drug requires an injection of 20 milligrams per pound of body weight in order to
work.

2. The drug eliminates from the bloodstream at a rate proportional to the amount present,
with a half-life of 5 hours.

Solution: The answer is about 536 milligrams of the drug. This amount will be justified
using exponential modeling.

The drug model is D(t) = D0e
−ht, where D0 is the initial dosage and h is the elimination

constant. The half-life information D(5) = 1
2D0 determines h = ln(2)/5. Depletion of

the drug in the bloodstream means the drug levels are always decreasing, so it is enough
to require that the level at 30 minutes exceeds 20 times the body weight in pounds,
that is, D(1/2) > (20)(25). The critical value of the initial dosage D0 then occurs when
D(1/2) = 500 or D0 = 500eh/2 = 500e0.1 ln(2), which by calculator is approximately
535.88673 milligrams.

Drugs like sodium pentobarbital behave somewhat like this example, although injection
in a single dose is unusual. An intravenous drip can sustain the blood levels of the drug,
keeping the level closer to the target 500 milligrams.

Details and Proofs

Verification of Continuous Interest by Limiting. Derived here is the continuous
interest formula by limiting as n→∞ in the compound interest formula.
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(
1 +

r

n

)nt
= Bnt In the exponential rule Bx = ex lnB , the base is

B = 1 + r/n.

= ent lnB Use Bx = ex lnB with x = nt.

= e

r ln(1 + u)

u
t

Substitute u = r/n. Then u→ 0 as n→∞.

≈ ert Because ln(1+u)/u ≈ 1 as u→ 0, by L’Hospital’s
rule.

Exercises 1.2 �

Light Intensity
The following exercises apply the theory of
light intensity on page 16, using the model
I(t) = I0e

−kx with x in meters. Methods
parallel Example 1.8 on page 21.

1. The light intensity is I(x) = I0e
−1.4x

in a certain swimming pool. At what
depth x does the light intensity fall off
by 50%?

2. The light intensity in a swimming pool
falls off by 50% at a depth of 2.5 me-
ters. Find the depletion constant k in
the exponential model.

3. Plastic film is used to cover window
glass, which reduces the interior light
intensity by 10%. By what percentage
is the intensity reduced, if two layers are
used?

4. Double-thickness colored window glass
is supposed to reduce the interior light
intensity by 20%. What is the reduction
for single-thickness colored glass?

RC-Electric Circuits
In the exercises below, solve for Q(t) when
Q0 = 10 and graph Q(t) on 0 ≤ t ≤ 5.

5. R = 1, C = 0.01.

6. R = 0.05, C = 0.001.

7. R = 0.05, C = 0.01.

8. R = 5, C = 0.1.

9. R = 2, C = 0.01.

10. R = 4, C = 0.15.

11. R = 4, C = 0.02.

12. R = 50, C = 0.001.

LR-Electric Circuits
In the exercises below, solve for I(t) when
I0 = 5 and graph I(t) on 0 ≤ t ≤ 5.

13. L = 1, R = 0.5.

14. L = 0.1, R = 0.5.

15. L = 0.1, R = 0.05.

16. L = 0.01, R = 0.05.

17. L = 0.2, R = 0.01.

18. L = 0.03, R = 0.01.

19. L = 0.05, R = 0.005.

20. L = 0.04, R = 0.005.

Interest and Continuous Interest
Financial formulas which appear on page
18 are applied below, following the ideas in
Examples 1.11, 1.12 and 1.13, pages 22 and
24.

21. (Total Interest) Compute the total
daily interest and also the total contin-
uous interest for a 10-year loan of 5, 000
dollars at 5% per annum.

22. (Total Interest) Compute the total
daily interest and also the total contin-
uous interest for a 15-year loan of 7, 000
dollars at 51

4% per annum.
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23. (Monthly Payment) Find the
monthly payment for a 3-year loan
of 8, 000 dollars at 7% per annum
compounded continuously.

24. (Monthly Payment) Find the
monthly payment for a 4-year loan
of 7, 000 dollars at 6 1

3% per annum
compounded continuously.

25. (Effective Yield) Determine the effec-
tive annual yield for a certificate of de-
posit at 7 1

4% interest per annum, com-
pounded continuously.

26. (Effective Yield) Determine the effec-
tive annual yield for a certificate of de-
posit at 5 3

4% interest per annum, com-
pounded continuously.

27. (Retirement Funds) Assume a start-
ing salary of 35, 000 dollars per year,
which is expected to increase 3% per
year. Retirement contributions are
10 1

2% of salary, deposited monthly,
growing at 5 1

2% continuous interest per
annum. Find the retirement amount af-
ter 30 years.

28. (Retirement Funds) Assume a start-
ing salary of 45, 000 dollars per year,
which is expected to increase 3% per
year. Retirement contributions are 9 1

2%
of salary, deposited monthly, growing
at 6 1

4% continuous interest per annum.
Find the retirement amount after 30
years.

29. (Actual Cost) A van is purchased for
18, 000 dollars with no money down.
Monthly payments are spread over 8
years at 12 1

2% interest per annum, com-
pounded continuously. What is the ac-
tual cost of the van?

30. (Actual Cost) Furniture is purchased
for 15, 000 dollars with no money down.
Monthly payments are spread over 5
years at 11 1

8% interest per annum, com-
pounded continuously. What is the ac-
tual cost of the furniture?

Radioactive Decay
Assume the decay model A′ = −kA from

page 19. Below, A(T ) = 0.5A(0) defines
the half-life T . Methods parallel Examples
1.14– 1.17 on pages 25– 26.

31. (Half-Life) Determine the half-life of a
radium sample which decays by 5.5% in
13 years.

32. (Half-Life) Determine the half-life of a
radium sample which decays by 4.5% in
10 years.

33. (Half-Life) Assume a radioactive iso-
tope has half-life 1800 years. Determine
the percentage decayed after 150 years.

34. (Half-Life) Assume a radioactive iso-
tope has half-life 1650 years. Determine
the percentage decayed after 99 years.

35. (Disintegration Constant) Determine
the constant k in the model A′ = −kA
for radioactive material that disinte-
grates by 5.5% in 13 years.

36. (Disintegration Constant) Determine
the constant k in the model A′ = −kA
for radioactive material that disinte-
grates by 4.5% in 10 years.

37. (Radiocarbon Dating) A fossil found
near the town of Dinosaur, Utah con-
tains carbon-14 at a ratio of 6.21% to
the atmospheric value. Determine its
approximate age according to Libby’s
method.

38. (Radiocarbon Dating) A fossil found
in Colorado contains carbon-14 at a ra-
tio of 5.73% to the atmospheric value.
Determine its approximate age accord-
ing to Libby’s method.

39. (Radiocarbon Dating) In 1950, the
Lascaux Cave in France contained char-
coal with 14.52% of the carbon-14
present in living wood samples nearby.
Estimate by Libby’s method the age of
the charcoal sample.

40. (Radiocarbon Dating) At an excava-
tion in 1960, charcoal from building ma-
terial had 61% of the carbon-14 present
in living wood nearby. Estimate the age
of the building.
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41. (Percentage of an Isotope) A radioac-
tive isotope disintegrates by 5% in 12
years. By what percentage is it reduced
in 99 years?

42. (Percentage of an Isotope) A radioac-
tive isotope disintegrates by 6.5% in
1, 000 years. By what percentage is it
reduced in 5, 000 years?

Chemical Reactions
Assume below the model A′ = kA for a
first-order reaction. See page 21 and Ex-
ample 1.18, page 27.

43. (First-Order A + B −→ C) A chem-
ical reaction produces X(t) grams of
product C from 50 grams of chemical
A and 32 grams of catalyst B. The
reaction uses 1 gram of A to 4 grams
of B. Variable t is in minutes. Justify

for some constant K the model
dX

dt
=

K
(
50− 1

5X
) (

32− 4
5X
)

and calculate
limt→∞ X(t) = 40.

44. (First-Order A + B −→ C) A first or-
der reaction produces product C from
chemical A and catalyst B. Model the
production of C using a grams of A and
b grams of B, assuming initial amounts
M of A and N of B, M < N .

45. (Law of Mass-Action) Consider a
second-order chemical reaction X(t)
with k = 0.14, α = 1, β = 1.75,
X(0) = 0. Find an explicit formula for
X(t) and graph it on t = 0 to t = 2.

46. (Law of Mass-Action) Consider a
second-order chemical reaction X(t)
with k = 0.015, α = 1, β = 1.35,
X(0) = 0. Find an explicit formula for
X(t) and graph it on t = 0 to t = 10.

47. (Mass-Action Derivation) Let k, α,
β be positive constants, α < β. Solve
X ′ = k(α −X)(β −X), X(0) = X0 by
the substitution u = (α −X)/(β −X),
showing that X = (α − βu)/(1 − u),
u = u0e

(α−β)kt, u0 = (α−X0)/(β−X0).

48. (Mass-Action Derivation) Let k, α,
β be positive constants, α < β. De-
fine X = (α − βu)/(1 − u), where u =
u0e

(α−β)kt and u0 = (α−X0)/(β−X0).
Verify by calculus computation that (1)
X ′ = k(α−X)(β −X) and (2) X(0) =
X0.

Drug Dosage
Employ the drug dosage model D(t) =
D0e

−ht given on page 21. Apply the tech-
niques of Example 1.19, page 27.

49. (Injection Dosage) Bloodstream in-
jection of a drug into an animal requires
a minimum of 20 milligrams per pound
of body weight. Predict the dosage for
a 12-pound animal which will maintain
a drug level 3% higher than the mini-
mum for two hours. Assume half-life 3
hours.

50. (Injection Dosage) Bloodstream in-
jection of an antihistamine into an ani-
mal requires a minimum of 4 milligrams
per pound of body weight. Predict the
dosage for a 40-pound animal which
will maintain an antihistamine level 5%
higher than the minimum for twelve
hours. Assume half-life 3 hours.

51. (Oral Dosage) An oral drug with half-
life 2 hours is fully absorbed into the
bloodstream in 45 minutes, blood level
63% of the dose. Assume 500 mil-
ligrams in the first dose is fully absorbed
at t = 0. A second dose is taken 1 hour
later to maintain a blood level of at least
180 milligrams for 2.5 hours. Explain
why 1 hour might be reasonable.

52. (Oral Dosage) An oral drug with half-
life 2 hours is fully absorbed into the
bloodstream in 45 minutes, blood level
63% of the dose. Determine three
(small) dosage amounts, and their ad-
ministration time, which keep the blood
level above 180 milligrams but below
280 milligrams over three hours.
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1.3 Differential Equations of First Order

The nature of a solution is studied through possible representations as explicit
or implicit equations, numeric tables and graphical visualization.

First Order Differential Equation

The equation
y′(x) = f(x, y(x))(1)

is called a first order differential equation. The function f(x, y) is defined
in a region D of the xy-plane. In most physical applications f is continuous in
D or else it has simple discontinuities, such as those caused by switches.

Cited below are some striking examples of first order differential equations in
science and engineering.

dy

dx
= F (x)

The fundamental theorem of calculus, Appendix A, im-
plies that y(x) =

∫ x
x0

F (t)dt satisfies differential equation
y′ = F (x).

du

dt
= −k(u− u1) Cooling of a body with temperature u(t) in a medium of

temperature u1 obeys Newton’s law of cooling. Symbol k is
the cooling constant.

dQ

dt
= k(T 4 − T 4

0 ) Stefan’s radiation law models the heat lost by a body of
temperature T in a medium of temperature T0 due to thermal
radiation.

dy

dt
= −h

√
|y(t)| Tank draining obeys Torricelli’s law, where h is a constant

and y is the fluid depth in the tank at time t.

dP

dt
= kP Population dynamics may assume Malthus’s reproduction

law: the population changes at a rate proportional to the
present population P .

dv

dt
= F/m Free fall velocity v(t) of a mass m accelerating due to

constant gravitational force F obeys Newton’s second law
F = ma, where a is the acceleration.

dy

dx
= k(a2 − x2) Boat trajectory for a river crossing, with the fastest current

in the center, can be modelled by the distance x from the
center and the distance y(x) downstream.
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Symbolic Formula for y(x) is Unlikely

A quadratic equation ax2 + bx + c = 0 has numerical answer x = −b/(2a) ±√
b2 − 4ac

2a
. Differential equations have answers that are graphs, represented by

functions y(x). Sadly, it is generally impossible to write down a symbolic formula

for the answer y(x) to a given differential equation
dy

dx
= f(x, y(x)).

Applied Models

Science and engineering modelers are not much interested in solving a differen-
tial equation. They use differential equations to express or define a variable via a
mathematical model. Initially, during modeling stages, theoretical existence suf-
fices for the variable’s resultant function. After proper modeling, analytical and
numerical methods might be applied to actually find the function. In summary:

Differential equations are used in application modeling to define or
express a variable/function of the physical parameters.

Tables, Formulas and Graphs as Answers

An answer to a differential equation problem is given in various forms, suited
to the intended application. The most common forms are tables, equations
and graphs. Answers are related to the notion of a solution, which is a precise
mathematical term, defined below.

Definition 1.3 (Solution)
Let f(x, y) be defined for a < x < b and c < y < d. A solution y(x) to the

differential equation
dy

dx
= f(x, y) on the interval (a, b) is a function y(x) defined

for a < x < b such that

(1) The left side y′(x) of the differential equation and the right side
f(x, y(x)) are defined for each a < x < b.

(2) Substitution of y(x) in each side gives symbolically equal expressions
for each value of x in the domain a < x < b.

Often solution formulas contain physical constants represented as symbols, like R
and L in an RL-circuit equation. In such cases the definition is modified to say each
side gives symbolically equal expressions for all symbols.

Extensions. The definition can be restated for half-open intervals, closed inter-
vals and intervals in which one or both endpoints are infinite. If f(x, y) contains
discontinuous switches, then the definition of solution is relaxed, possibly exclud-
ing points of discontinuity.
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Impulse Modeling. The definition does not apply as stated to the case when
f(x, y) contains impulses (hammer hits or instantaneous injection of energy).
Laplace Theory provides an accessible introduction.

Definition 1.4 (Equilibrium Solution)
A constant solution y(x) = k to the differential equation y′ = f(x, y) is called an
equilibrium solution.

Equivalent terms. Literature may use rest solution and/or steady state
solution. The meaning: y(x) equals a number k for all values of x. Function
y satisfies y′ = 0: the motion is at rest. Steady-state behavior means after a
long time, then k is the constant limit of a time-varying solution y(x) as x→∞
(time=x). Symbol t is often used instead of x for models with time domain, in
which case the differential equation becomes y′(t) = f(t, y(t)) and ′ = d/dt.

To illustrate the notion of equilibrium solution, consider y′ = y(1 − y). This
equation has two equilibrium solutions y = 0 and y = 1. They are found by
formal substitution of y = k into y′ = y(1 − y) and then solving for k in the
formal equation 0 = k(1− k).

The equation y′ = x(1− y) has equilibrium solution y = 1. The equation x = 0
is not an equilibrium solution: it is a red herring, often reported in error. The
formal equation 0 = x(1 − k) is solved for k with symbol x allowed to assume
all possible values. Then x ̸= 0 forces k = 1. The expected report: equilibrium
solution y = 1.

Definition 1.5 (Initial Value Problem)
The initial value problem for a first order equation y′ = f(x, y) on a < x < b is
the problem of finding a solution y(x) on a < x < b which in addition satisfies an
initial condition of the form y = y0 at x = x0.

Notation. An initial condition may be given in compact notation y(x0) =
y0. Substitution notation can be used as in integration theory, e.g.,

∫ 1
0 x dx =

(x2/2)
∣∣x=1

x=0
. For instance, if y = x+ 10 is the expected solution, then y(0) = 10

is the same as (x+ 10)|x=0 = 10. In general, the notation is y(x)|x=x0
= y0.

To make sense of the initial condition, f(x, y) must have (x0, y0) in its domain of
definition, that is, a < x0 < b and c < y0 < d. Similar statements apply to more
general domains.

Uniqueness

In typical applications, just one solution is isolated by the initial condition. Hav-
ing just one solution is not obvious on physical grounds; see Example 1.20. Non-
uniqueness allows modeling an answer like y = 1 + x3 through an initial value
problem, while a numerical procedure computes a different answer like y = 1.
Uniqueness forces the modeler and the solver to find the same answer. The
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jobs of scientists and engineers include keeping computers from producing non-
sense numbers and incorrect graphs. It is possible for bad modeling, which allows
non-uniqueness, to cause bad results to come off the computer. In summary:

Numerical answers and computer graphs obtained from the differ-
ential equation y′ = f(x, y) are nonsense unless the model has a
unique solution.

Explicit and Implicit Equations

Equations that represent answers to first order differential equations are either
implicit or explicit. An equation with y isolated on the left side and right side
independent of y is called explicit. Otherwise, the equation is called implicit.
Some examples:

y = sinx+ e−x Equations treated in differential calculus are explicit
equations.

y = f(x) Equations given in abstract functional notation are ex-
plicit equations.

y = 1 + π Constant equations are explicit equations.

2y = 1 An implicit equation (y not isolated left). Can be con-
verted to explicit equation y = 1/2.

x+ y = 1 As written, y is not isolated on the left, so it is an im-
plicit equation. It can be converted to the explicit equa-
tion y = 1− x.

x2 + y2 = 1 The equation of a circle is an implicit equation.

f(x, y) = c Abstract level curve equations are assumed to be in im-
plicit form. To convert to explicit form, solve for y in
terms of x.

x+ y2 = 1 As written, y is not isolated on the left, so it is an im-
plicit equation. It converts to two explicit equations
y =
√
1− x and y = −

√
1− x.

Definition 1.6 (Explicit Equation)
An xy-equation is explicit if exactly y appears on the left, followed by an equal sign,
followed by an expression independent of y. In functional notation, the equation
must have the form y = f(x).

Any equation that is not explicit is called implicit.

Illustrations. Equations 2y = x, −y = 1 + x and xy = 1 are implicit, but they
can be converted by algebra into the explicit equations y = x/2, y = −1 − x,
y = 1/x. Any explicit equation can be re-written in infinitely many ways as a
implicit equation.
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Numeric Tables

A numeric table is a list of x, y values. Tables are finite lists. Typical numeric
tables appear in Examples 1.22 and 1.23 on page 36.

A numeric table for solution y(x) of differential equation y′ = f(x, y) can be
generated by a numerical method. Normally, the x-values are equally spaced
on some interval. A specific numerical method is applied to find each of the
y-values. The most elementary numerical methods are Euler’s method, Heun’s
method and the Runge-Kutta method.

A numeric table in current scientific literature may assume that x or y is a vector
variable. The effect is to allow numeric tables with multiple columns.

Graphics

Graphs of solutions to differential equations y′ = f(x, y) can be generated by
hand from numeric data. The most popular method for hand-graphing is the
connect-the-dots method. This method constructs a graph as straight-line
connections of the data points. An illustration is Example 1.24, page 37.

Curve library methods and computer methods for graphing equations and numer-
ical data sets are considered elsewhere; see Appendix A.2. The methods apply
especially if the curve is given by an equation, either explicit or implicit.

Examples

Example 1.20 (IVP with Two Solutions)
Display an answer check for the initial value problem (IVP) on interval x ≥ 0, showing
that it has two solutions: (1) y(x) = x2/4 and (2) constant solution y(x) = 0.

y′ =
√
|y|, y(0) = 0,

Solution: The example is important, because modern computer algebra systems allow
numeric methods to be blindly applied to examples like this one. No error messages are
emitted by such computer programs. Failures, routinely blamed on computers, can be
the result of unexpected modeling intricacies.

The example is curiously close to the tank-draining equation y′ = −h√y based upon
Torricelli’s law, page 31. Arguments that an equation physically has a unique solution
are unheard by computer programs: the programs are not smarter than the humans who
employ them.

The tank draining problem has no unique solution for y(0) = 0, because solutions must
be defined on −H < x < H, not on a half-interval like x ≥ 0. Condition y(0) = 0 means
the tank is empty at time x = 0. An empty tank could have occurred any time before
time x = 0. There is no way from data y(0) = 0 to determine when the tank emptied,
so there are infinitely many events that could lead to y(0) = 0, all of which are solutions
to the differential equation model.

The verification involves two steps:
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(a) The differential equation y′ =
√
|y| has y as a solution.

(b) The initial condition y(0) = 0 (y = 0 at x = 0) is satisfied.

Answer Check for Solution y(x) = x2/4.
In both steps (a) and (b), the verification amounts to expanding the left hand side (LHS)
and right hand side (RHS) of the equalities, then a check is made for equality of the LHS
and RHS, for all symbols. The details for y = x2/4 are as follows.

LHS = y′ The left side of y′ =
√
|y| is y′.

= (x2/4)′ The solution being tested is y = x2/4.

= x/2, and

RHS =
√
|y| The right side of y′ =

√
|y|.

=
√
|x2/4| Because y = x2/4.

= x/2 Because x ≥ 0.

Therefore, LHS = RHS, and step (a) is finished.

Answer Check for Initial Condition y(0) = 0.
To complete step (b), proceed similarly:

LHS = y(0) Initial condition y(0) = 0 left side.

= (x2/4)
∣∣
x=0

The solution being tested is y = x2/4.

= 0

= RHS The right side of y(0) = 0.

Answer Check for Solution y(x) = 0.
The details for the constant solution y(x) = 0 are similar. As a mental exercise, repeat
the steps above with x2/4 replaced by 0, to verify steps (a) and (b) for the constant
solution y(x) = 0.

Example 1.21 (Implicit and Explicit Equations)
Classify 1+ ey = x2 as implicit or explicit. If implicit, then find an explicit represen-
tation for y in terms of x.

Solution: The equation is classified as implicit, because y is not isolated on the left side.
Conversion to explicit form uses college algebra, as follows.

1 + ey = x2 Given equation. Solving for y.

ey = x2 − 1 Isolate y-terms on the left.

ln ey = ln |x2 − 1| Take the logarithm of both sides.

y = ln |x2 − 1| Simplify the left side. Identity ln eu = u applied.

Example 1.22 (Verify a Numerical Table)
Verify Table 2 using the explicit equation y = 1− x+ 2x2.

Table 2. Numerical data for an explicit equation.

x 0.0 0.1 0.2 0.3 0.4

y 1.0 0.92 0.88 0.88 0.92
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Solution: Each column is verified in an identical way. For example, column 2 is checked
by substitution of x = 0.1 into y = 1− x+ 2x2 to obtain y = 1− 0.1 + 2(0.1)2 = 0.92.

Example 1.23 (Verify an Approximation Table)
Verify Table 3 using the approximation formula y(x+0.1) ≈ y(x)+0.1(x+y(x)).

Table 3. Numerical data for an approximation formula.

x y

0.0 1.0
0.1 1.1
0.2 1.22
0.3 1.362
0.4 1.5282

Solution: The formula is applied as a recursion, which is a set of formulas which
generate from a given table pair x, y the next table pair X, Y via the relations

X = x+ 0.1, Y = y + 0.1(x+ y).

Important in the mathematical translation is the elimination of the approximation sym-
bol (≈) and the use of equal signs (=) in the final relations.

Each row is verified in an identical way. For example, row 3 is checked by substitution of
data from the previous row. Items x = 0.1 and y = 1.1 from row 2 are substituted into
X = x+0.1 and Y = y+0.1(x+y) to obtain X = 0.2 and Y = 1.22. The approximations
0.2, 1.22 are then copied to row 3 of the table.

Example 1.24 (Hand Graphing of Numeric Data)
Graph on engineering paper the piecewise-defined function y(x) using six data points
from x = 0 to x = 1/2 in steps of 0.1.

y(x) =


1.1x+ 1.10 0.0 ≤ x ≤ 0.1,
−1.6x+ 1.37 0.1 < x ≤ 0.2,
1.5x+ 0.75 0.2 < x ≤ 0.3,
0.1x+ 0.90 0.3 < x ≤ 0.4,
−0.2x+ 2.10 0.4 < x ≤ 0.5.

Solution: The xy-data points for y(x) are

(0.0, 1.10), (0.1, 1.21), (0.2, 1.05),
(0.3, 1.20), (0.4, 1.30), (0.5, 1.10).

Engineering paper divisions are set for this example at 0.1 horizontal and 0.1 vertical.
The origin will be x = 0.0, y = 1.0. The first step is to plot the points as dots. The
second step connects the dots with straight lines, just as in children’s connect-the-dot
puzzles. The graphic appears in Figure 6. The figure is correct between data points
because y(x) is piecewise linear. Generally, the connect-the-dot method makes errors
between data points.
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x

y

1.3

0.0 0.5

1.1

1.0

1.2

Figure 6. Engineering paper graphic of
numeric data.

Exercises 1.3 �

Solution Verification
Given the differential equation, initial con-
dition and proposed solution y, verify that
y is a solution. Don’t try to solve the equa-
tion!

1.
dy

dx
= y, y(0) = 2, y = 2ex

2. y′ = 2y, y(0) = 1, y = e2x

3. y′ = y2, y(0) = 1, y = (1− x)−1

4.
dy

dx
= y3, y(0) = 1,

y = (1− 2x)−1/2

5. D2y(x) = y(x), y(0) = 2,
Dy(0) = 2, y = 2ex

6. D2y(x) = −y(x), y(0) = 0,
Dy(0) = 1, y = sinx

7. y′ = sec2 x, y(0) = 0, y = tanx

8. y′ = − csc2 x, y(π/2) = 0,
y = cotx

9. y′ = e−x, y(0) = −1, y = −e−x

10. y′ = 1/x, y(1) = 1, y = lnx

Explicit and Implicit Solutions
Identify the given solution as implicit or ex-
plicit. If implicit, then solve for y in terms
of x by college algebra methods.

11. y = x+ sinx

12. y = x+ sinx

13. 2y + x2 + x+ 1 = 0

14. x− 2y + sinx+ cosx = 0

15. y = eπ

16. ey = π

17. e2y = ln(1 + x)

18. ln |1 + y2| = ex

19. tan y = 1 + x

20. sin y = (x− 1)2

Tables and Explicit Equations
For the given explicit equation, make a ta-
ble of values x = 0 to x = 1 in steps of
0.2.

21. y = x2 − 2x

22. y = x2 − 3x+ 1

23. y = sinπx

24. y = cosπx

25. y = e2x

26. y = e−x

27. y = ln(1 + x)

28. y = x ln(1 + x)

Tables and Approximate Equations
Make a table of values x = 0 to x = 1
in steps of 0.2 for the given approximate
equation. Identify precisely the recursion
formulas applied to obtain the next table
pair from the previous table pair.

29. y(x+0.2) ≈ y(x)+0.2(1−y(x)), y(0) =
1
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1.3 Differential Equations of First Order

30. y(x+0.2) ≈ y(x)+0.2(1+y(x)), y(0) =
1

31. y(x + 0.2) ≈ y(x) + 0.2(x − y(x)),
y(0) = 0

32. y(x + 0.2) ≈ y(x) + 0.2(2x + y(x)),
y(0) = 0

33. y(x+ 0.2) ≈ y(x) + 0.2(sinx+ xy(x)),
y(0) = 2

34. y(x+0.2) ≈ y(x)+0.2(sinx−x2y(x)),
y(0) = 2

35. y(x + 0.2) ≈ y(x) + 0.2(ex − 7y(x)),
y(0) = −1

36. y(x + 0.2) ≈ y(x) + 0.2(e−x − 5y(x)),
y(0) = −1

37. y(x+ 0.2) ≈ y(x) + 0.1(e−2x − 3y(x)),
y(0) = 2

38. y(x+0.2) ≈ y(x)+0.2(sin 2x− 2y(x)),
y(0) = 2

Hand Graphing
Make a graphic by hand on engineering pa-
per, using 6 data points. Cite the divisions

assigned horizontally and vertically. La-
bel the axes and the center of coordinates.
Supply one sample hand computation per
graph. Employ a computer program or cal-
culator to obtain the data points.

39. y = 5x3, x = 0 to x = 1.

40. y = 3x, x = 0 to x = 1.

41. y = 2x5, x = 0 to x = 1.

42. y = 3x7, x = 0 to x = 1/2.

43. y = 2x4, x = 0 to x = 1.

44. y = 3x6, x = 0 to x = 1.

45. y = sinx, x = 0 to x = π/4.

46. y = cosx, x = 0 to x = π/4.

47. y =
x+ 1

x+ 2
, x = 0 to x = 1.

48. y =
x− 1

x+ 1
, x = 0 to x = 1.

49. y = ln(1 + x), x = 0 to x = 1.

50. y = ln(1 + 2x), x = 0 to x = 1.
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1.4 Direction Fields

1.4 Direction Fields

Themethod of direction fields is a graphical method for displaying the general
shape and behavior of solutions to y′ = f(x, y). It persists as a fundamental topic
because it does not require solving the differential equation y′ = f(x, y) . The
uniform grid method and the isocline method are introduced, for computer and
hand construction of direction fields.

Euler’s Visualization

L. Euler (1707–1783) discovered a way to draw a graphic showing the behavior
of all solutions to a given differential equation, without solving the equation. The
graphic is built from a grid of points arranged on a graph window. Paired with
each grid point is a line segment centered on the grid point. The line segments
are non-overlapping. Euler’s idea is to replace the differential equation model
y′ = f(x, y) by a graphical model.

Definition 1.7 (Direction Field for y′ = f(x, y))
A graph window plus pairs of grid points and non-overlapping line segments is called
a direction field, provided the line segment at grid point (x0, y0) coincides with the

tangent line to the solution y(x) of the initial value problem

{
y′ = f(x, y),
y(x0) = y0.

The

line segment at grid point (x0, y0) is forced to have slope m = f(x0, y0).

y′ = f(x, y)

Graphical Model

DE model

Figure 7. Model Replacement.

A differential equation model y′ = f(x, y) is replaced by a direction field model. The
graphic can be enriched with a few edge-to-edge solution curves.

Important: We don’t have to know a formula for y(x), because y′(x0) can be
computed from its equivalent formula y′(x0) = f(x0, y0), a number that depends
only on the grid point (x0, y0) and the function f(x, y).
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1.4 Direction Fields

Solution Curves and Direction Fields

Euler’s visualization idea begins with the direction field, drawn for some graph
window, with pairs of grid points and line segments dense enough to cover most
of the white space in the graph window. The theory used in Euler’s idea consists
of a short list of facts:

1. Solutions of y′ = f(x, y) don’t cross.

2. A tangent to an edge-to-edge solution y(x) nearly matches
tangents to nearby direction field segments.

3. Direction field segments are solutions of y′ = f(x, y), to pixel
resolution.

Details 1: If solutions y1(x), y2(x) cross at x = x0, then let y0 = y1(x0) = y2(x0) and
consider the initial value problem {

y′ = f(x, y),
y(x0) = y0.

We assume solutions to all such initial value problems are unique. This implies y1(x) =
y2(x) for |x − x0| small. Hence crossings are impossible. The analysis implies that two
solutions which touch must coalesce.

Direction field segments represent solution curves, so they must be constructed not to
touch each other. Edge-to-edge solution curves cannot cross a direction field segment,
but they may coincide with a direction field segment, to pixel resolution.

Details 2: Tangent vectors for r⃗ = x⃗ı+y(x)ȷ⃗ are drawn from r⃗ ′ = ı⃗+y′(x)ȷ⃗ = ı⃗+f(x, y)ȷ⃗.
Continuity of f implies that the vector r⃗ ′ is to pixel resolution identical for all (x, y)
sufficiently close to a grid point (x0, y0). This is why an edge-to-edge solution passes
grid points with tangent vector nearly matching the tangent vector of nearby segments.

Details 3: Each segment is a tangent line y = y0+m(x−x0), constructed with slopem =
y′(x0). It approximates the curve y(x) local to the contact point (x0, y0). Graphically,
a short tangent line coalesces with the solution curve near the contact point, to pixel
resolution.

The tangent line approximation is called Euler’s approximation. Correct pronuncia-
tion is Oiler. To make the audience giggle, pronounce it Yuler.

Rules for Drawing Threaded Solutions

A direction field graphic replaces all the information supplied by the equation
y′ = f(x, y). The equation is tossed aside and not used.

Visualization of all solutions involves drawing a small number of edge-to-edge
solutions y(x) onto the direction field graph window. We will use just two ab-
breviated rules (see 1 and 2 in Table 4).
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1.4 Direction Fields

Table 4. Two Rules for Drawing Edge-to-Edge Solutions

Abbreviated Threading Rules

1. Solutions don’t cross.
2. Nearby tangents nearly match.

Figure 8. Threading a Solution Edge-to-Edge.

Shown in Figure 8 is a threaded solution curve for y′ = f(x, y) plus nearby grid points
and relevant line segments (arrows). The solution threads its way through the direction
field, matching tangents at nearby grid points. Arrows that touch a threaded curve must
coalesce with the curve (solutions don’t cross).

y

C

x

P2

P1

P0

correct

incorrect

Figure 9. Threading Rules.
Solution curve C threads from the left edge and
meets a line at point P0. The line contains two
nearby grid points P1, P2. The tangent at P0 must
nearly match direction field arrows at P1, P2.

Tangent Matching Explained.
The slopes of the tangents in Figure 9 are given by y′ = f(x, y). For points
P1 = (x1, y1), P0 = (x0, y0) and P2 = (x2, y2), the slopes are f(x1, y1), f(x0, y0),
f(x2, y2). If the points P0, P1, P2 are close, then continuity of f implies all three
slopes are nearly equal.

How to Construct a Direction Field Graphic

Window Invent the graph x-range and y-range. 1

Grid Plot a uniform grid of N grid points within the graph window.
Invent N to populate the graphical white space, N ≈ 50 for hand
work. 2
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1.4 Direction Fields

Field Draw at each grid point (x∗, y∗) a short tangent vector ϵT⃗ , where

T⃗ = i⃗+ f(x∗, y∗)⃗j. 3

Threaded
Solutions

Draw additional edge-to-edge threaded solutions into the remain-
ing white space of the graphic. 4

Construction Notes.

1 The window should include all significant equilibrium solutions, that is,
solutions y = constant of y′ = f(x, y), which plot as horizontal lines. Phys-
ically interesting initial conditions (x0, y(x0)) should be added.

2 The isocline method might also be used to select grid points. For details
on both methods, see the next subsection.

3 The arrow shaft is a replacement curve for the solution of y′ = f(x, y)
through grid point (x∗, y∗) on a small x-interval, called a lineal element.

4 Threading is educated guesswork, discussed above, in Figures 8 and 9. If
possible, choose (x0, y0) on the left window edge, then thread the solution
until it exits the window top, bottom or right.

Direction fields are used infra in phase portraits of two-dimensional systems of
differential equations.

Two Methods for Selecting Grid Points

There are two standard methods for selecting grid points, called the uniform
grid method and the isocline grid method. The methods may be combined
in some applications.

Uniform
Grid

Two positive increment parameters n andm are supplied along with
a graph window a ≤ x ≤ b, c ≤ y ≤ d. Hand work usually starts
with n = m = 11; computer software starts with n = m = 21.

The nm grid points are defined for i = 1, . . . , n and j = 1, . . . ,m
by the equations xi = a + (b − a)(i − 1)/(n − 1), yj = c + (d −
c)(j − 1)/(m− 1).

Isocline
Grid

A graph window a ≤ x ≤ b, c ≤ y ≤ d is given plus a list of
invented slopes M1, . . . ,Mp for the lineal elements.

To define the grid points, select the number n > 0 of grid points to
be drawn on each isocline. Construct n equally-spaced horizontal
lines (or vertical lines). Define grid points as intersections of the
lines with all the implicit curves f(x, y) = Mℓ, ℓ = 1, . . . , p.

Along the implicit curve f(x, y) = Mℓ, within the graph window,
mark each grid point and draw a lineal element, each element of
exactly the same slope Mℓ, for ℓ = 1, . . . , p.
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1.4 Direction Fields

The two methods are applied in Examples 1.27 and 1.28, page 45. Illustrated
for the isocline method are possibilities such as graph window clipping and fine-
tuning of the slopes to allow the grid points to fill the window.

Grid points in the isocline method are intersections of equally-spaced lines with
the implicit curves f(x, y) = Mℓ. Lineal elements sketched along this curve all
have slope Mℓ and therefore they can be drawn with reduced effort.

How to Make Lineal Elements

A lineal element is a line segment centered at a grid point. They should not
touch, because they represent, to pixel resolution, non-crossing solution curves
on a short x-interval. Choose H to be not greater than the minimum distance
between pairs of grid points. Initially, one can guess the value of H, then adjust
the value after seeing the result. Define

h =
H

2
√

1 + |f(x0, y0)|2
.

Then a lineal element of length H is defined by the midpoint (x0, y0) and the
two endpoints (x0 − h, y0 − hM) and (x0 + h, y0 + hM), where M = f(x0, y0).

This choice insures lineal elements do not touch. It is possible to erase the line
segment to the left or right of the grid point without losing much information.
Arrow heads can be added to show the tangent direction.

Examples

Example 1.25 (Window and Grid)
Choose a graph window for the differential equation y′ = y2(2 − y)(1 + y) which
includes the equilibrium solutions. Draw a 5 × 5 uniform grid on the graph window
and plot the equilibrium solutions. Do not draw the direction field nor threaded
solutions.

Solution: Let f(x, y) = y2(2−y)(1+y). Then y = k is a constant solution of y′ = f(x, y)
exactly when 0 = k2(2− k)(1 + k). The values k = −1, 0, 2 give horizontal lines y = −1,
y = 0, y = 2. These lines are called equilibrium solutions; they are constant solutions of
the differential equation. Accordingly, a graph window containing the equilibria is −3 ≤
x ≤ 3, −2 ≤ y ≤ 3. The 25 grid points are obtained by the formulas xk = −3 + 6(k/4),
k = 0, . . . , 4 and yj = −2 + 5(j/4), j = 0, . . . , 4. The plot is done by hand. A computer
plot appears in Figure 10.
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2

−3 3

y

x
−1
0

Figure 10. A graph window with uniform
grid and equilibria.
Three equilibrium solutions y = −1, y = 0, y = 2
appear plus 25 grid points on the graph window
|x| ≤ 3, −2 ≤ y ≤ 3.

Example 1.26 (Threading a Solution)
Starting at the black dots in the direction field graphic of Figure 11, thread three
solution curves.

1

0

2 Figure 11. A direction
field.
A field for the differential
equation y′ = y(2 − y)(1 − y)
is plotted on graph window
0 ≤ x ≤ 3, 0 ≤ y ≤ 3. The
black dots are at (0.25, 0.4),
(1.5, 2.25) and (1.5, 1.65).

Solution: A plot appears in Figure 12.

1

0

2

Figure 12.
Threaded solutions.
The graph window is 0 ≤ x ≤
3, 0 ≤ y ≤ 3. Threaded curves
cannot cross equilibrium solu-
tions y = 0, y = 1 and y = 2.

A threaded solution matches its tangents with nearby lineal elements of the
direction field in Figure 11; see page 41 for an explanation. Each threaded curve
represents a solution of the differential equation through the given dot on the
entire interval 0 ≤ x ≤ 3, whereas the lineal elements represent solutions through
the grid point on a very short x-interval.

Example 1.27 (Uniform Grid Method)
Make a direction field of 11 × 11 points for y′ = x + y(1 − y) on −1 ≤ x ≤ 1,
−2 ≤ y ≤ 2.
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Solution: Let f(x, y) = x + y(1 − y). The 121 grid points are the pairs (x, y) where
x = −1 to 1 in increments of 0.2 and y = −2 to 2 in increments of 0.4. The minimum
distance between grid points is H = 0.2.

We will generate the endpoints of the lineal element at x0 = −0.4, y0 = 1.6. It will be
shown that the first endpoint is (−0.34076096, 1.5194349). This point can be located
from (x0, y0) by traveling distance H/2 at slope M = −1.36.

M = f(x0, y0) The line segment slope for Euler’s rule.

= x0 + y0(1− y0) Apply f(x, y) = x+ y(1− y).

= −1.36, Use the first point x0 = −0.4, y0 = 1.6.

h =
H

2
√
1 +M2

Apply the formula h = (H/2)/
√
1 + f(x0, y0)2.

= 0.059239045, Use H = 0.2 and f(x0, y0) = M = −1.36.
X = x0 + h Compute the x-coordinate of the second point.

= −0.34076096 Use x0 = −0.4 and h = 0.059239045.

Y = y0 + hf(x0, y0) Compute the y-coordinate of the second point.

= 1.5194349 Use values y0 = 1.6, f(x0, y0) = M = −1.36, h =
0.059239045.

The second endpoint (−0.459239045, 1.6805651), at distance H/2 from the grid point,
in the opposite direction, can be found by minor changes to the above calculation. Au-
tomation of this process is necessary because 121 such calculations are required. Some
basic maple code appears below which computes the 121 pairs of points for the direction
field, then plots a replica of the field. The graphic appears in Figure 13. The code adapts
to numerical laboratories like matlab, octave and scilab, which may or may not have
a suitable direction field library, depending on the version.

−2

2

−1 1

Figure 13. Direction field for the equation
y′ = x+ y(1− y).
The uniform grid method is used on graph window
−1 ≤ x ≤ 1, −2 ≤ y ≤ 2. There are 121 grid points.

a:=-1:b:=1:c:=-2:d:=2:n:=11:m:=11:

H:=(b-a)/(n-1):K:=(d-c)/(m-1):HH:=0.15:

f:=(x,y)->x+y*(1-y): X:=t->a+H*(t-1):Y:=t->c+K*(t-1):P:=[]:

for i from 1 to n do for j from 1 to m do

x0:=X(i):y0:=Y(j):M:=evalf(f(x0,y0)):

h:=evalf((HH/2)/sqrt(1+M^2)):

Seg:=[[x0-h,y0-h*M],[x0+h,y0+h*M]]:

if (P = []) then P:=Seg: next: fi: P:=P,Seg:

od:od:

opts:=scaling=constrained,color=black,thickness=3,axes=boxed;

plot([P],opts);
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Versions of maple since V 5.1 have a DEtools package which simplifies the process of
making a direction field. In mathematica, a similar command exists.

with(DEtools): de:=diff(y(x),x)=x+y(x)*(1-y(x)): # Maple

opts:=arrows=LINE,dirgrid=[11,11];

DEplot(de,y(x),x=-1..1,y=-2..2,opts);

<< Graphics\PlotField.m # Mathematica

PlotVectorField[1,x+y (1-y),x,-1,1,y,-2,2]

Resources for computer-assisted direction fields with interactive threaded solutions in-
clude Maple, Mathematica, Matlab. Each system has a steep learning curve, the time
investment well worth the effort expended.

Example 1.28 (Isocline Method)
Make a direction field by hand using the isocline method for the differential equation
y′ = x+ y(1− y) on −1 ≤ x ≤ 1, −1 ≤ y ≤ 2.

Solution: Let f(x, y) = x + y(1 − y) and let M denote the slope of a replacement
lineal element. The isoclines are defined by f(x, y) = M . It has the standard equation
(y − 1/2)2 = x −M + 1/4, which is a parabola with center (M − 1/4, 1/2) opening to
the right. The algebra details:

x+ y(1− y) = M The equation f(x, y) = M expanded.

y2 − y = x−M Multiply by −1 and move −x to the right side.

y2 − y + 1
4 = x−M + 1

4 Apply square completion: add the square of half the co-
efficient of y to both sides.

(y − 1
2 )

2 = x−M + 1
4 Write the left side as a perfect square. It has the form

of the standard curve library equation Y 2 = X. See Ap-
pendix A.4.

The basic requirement for slope M selection is that the set of grid points obtained below
fills the white space of the graph window. Briefly, some portion of each parabola has
to intersect the graph window. By experiment, the slopes M to be used in the isocline
method will be selected as M = 1/4 + (−3) to M = 1/4 + (1) in increments of 0.2 to
identify 21 isoclines:

Isocline Equation Slope M
(y − 1/2)2 = x− (−3) 0.25 + (−3)
(y − 1/2)2 = x− (−2.8) 0.25 + (−3) + 0.2

...
...

(y − 1/2)2 = x− (1) 0.25 + (−3) + 4.0

To define the grid points, let y = −1 to 2 in increments of 0.3 to make 11 horizontal
lines. The intersections of these 11 lines with the 21 parabolas define at least 100 grid
points inside the graph window. It is possible to graph rapidly the 21 parabolas, because
they are translates of the standard parabola Y 2 = X.

The replacement lineal elements on each parabola are sketched rapidly as follows. Using
pencil and paper, graph accurately the first lineal element on the isocline curve, using
associated slope M . Rotate the paper until the lineal element is vertical. Draw addi-
tional lineal elements at the remaining grid points of the isocline curve as vertical lines.
Accuracy improves with the use of a drawing easel, T -square and triangle.
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A computer graphic is shown in Figure 14 which closely resembles a hand-made graphic.
Compare it to the uniform grid method graphic in Figure 13, page 46.

−1

2

1−1

Figure 14. Direction field for the differential
equation y′ = x+ y(1− y).
The isocline method is applied using graph window
−1 ≤ x ≤ 1, −1 ≤ y ≤ 2. Parabolas are isoclines.
Grid points are intersections of direction field lineal
elements with isoclines. Lineal elements are com-
puted along equally-spaced horizontal lines.

The maple code that produced Figure 14 is included below to show machine equivalents
of a hand computation. The ordering of the code: the lineal elements are drawn in Plot1,
then the isocline curves are drawn in Plot2. Then two graphics are superimposed. A
key detail is solving f(x, y0) = M for x = x0 to locate a grid point (x0, y0) and then
construct the lineal element. Factor H is adjusted to keep lineal elements from touching.

with(plots):

getGridSegments:=proc(c,d,n,m,H,slopes,f)

local M,Y0,j,k,h,x0,y0,Seg,P;

Y0:=unapply(c+(d-c)*(t-1)/(m-1),t): P:=[]:

for j from 1 to n do

M:=slopes[j]:h:=evalf(H*0.5/sqrt(1+M^2)):

for k from 1 to m do # loop on m horiz lines

y0:=Y0(k): x0:=solve(f(x,y0)=M,x);# (x0,y0)=GridPoint

Seg:=[[x0-h,y0-h*M],[x0+h,y0+h*M]]:# lineal element

if P=[] then P:=Seg: next: fi:

P:=P,Seg:od:od: return P; end proc:

a:=-1:b:=1:c:=-1:d:=2:m:=11:

H:=0.1:f:=(x,y)->x+y*(1-y):

opts:=color=BLACK,thickness=4,axes=none,scaling=constrained:

Window:=x=a..b,y=c..d: n:=21;

slopes:=[seq(-3+4*(t-1)/(n-1),t=1..n)];# guesswork

P:=getGridSegments(c,d,n,m,H,slopes,f);

Plot1:=plot([P],Window,opts):

eqs:=[seq(f(x,y)=slopes[j],j=1..n)]:

Plot2:=implicitplot(eqs,Window):

display([Plot1,Plot2]);

Exercises 1.4 �

Window and Grid
Find the equilibrium solutions, then deter-
mine a graph window which includes them
and construct a 5× 5 uniform grid. Follow
Example 1.25.

1. y′ = 2y

2. y′ = 3y

3. y′ = 2y + 2

4. y′ = 3y − 2

5. y′ = y(1− y)

6. y′ = 2y(3− y)

7. y′ = y(1− y)(2− y)

8. y′ = 2y(1− y)(1 + y)

9. y′ = 2(y − 1)(y + 1)2
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1.4 Direction Fields

10. y′ = 2y2(y − 1)2

11. y′ = (x+ 1)(y + 1)(y − 1)y

12. y′ = 2(x+ 1)y2(y + 1)(y − 1)2

13. y′ = (x+ 2)y(y − 3)(y + 2)

14. y′ = (x+ 1)y(y − 2)(y + 3)

Threading Solutions
Each direction field below has window 0 ≤
x ≤ 3, 0 ≤ y ≤ 3. Start each threaded
solution at a black dot and continue it left
and right across the field. Dotted horizon-
tal lines are equilibrium solutions. See Ex-
ample 1.26.

15.

1

2

0

16.

1

2

0

17.

1

2

0

18.

1

2

0

19.

1

2

0

20.

1

2

0

21.

1

2

0
.5

22.

1

2

0
.5

23.
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1

2

0

24.

1

2

0

Uniform Grid Method
Apply the uniform grid method as in Ex-
ample 1.27, page 45 to make a direction
field of 11×11 grid points for the given dif-
ferential equation on −1 ≤ x ≤ 1, −2 ≤
y ≤ 2. If using a computer program, then
use about 20× 20 grid points.

25. y′ = 2y

26. y′ = 3y

27. y′ = 1 + y

28. y′ = 2 + 3y

29. y′ = x+ y(2− y)

30. y′ = x+ y(1− 2y)

31. y′ = 1 + y(2− y)

32. y′ = 1 + 2y(2− y)

33. y′ = x− y

34. y′ = x+ y

35. y′ = y − sin(x)

36. y′ = y + sin(x)

Isocline Method
Apply the isocline method as in Example
1.28, page 47 to make a direction field of
about 11 × 11 points for the given differ-
ential equation on 0 ≤ x ≤ 1, 0 ≤ y ≤
2. Computer programs are used on these
kinds of problems to find grid points as in-
tersections of isoclines and horizontal lines.
Graphics are expected to be done by hand.
Extra isoclines can fill large white spaces.

37. y′ = x− y2

38. y′ = 2x− y2

39. y′ = 2y/(x+ 1)

40. y′ = −y2/(x+ 1)2

41. y′ = sin(x− y)

42. y′ = cos(x− y)

43. y′ = xy

44. y′ = x2y

45. y′ = xy + 2x

46. y′ = x2y + 2x2
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1.5 Phase Line Diagrams

1.5 Phase Line Diagrams

Technical publications may use special diagrams to display qualitative infor-
mation about the equilibrium points of the differential equation

y′(x) = f(y(x)).(1)

The right side of this equation is independent of x, hence there are no external
control terms that depend on x. Due to the lack of external controls, the equation
is said to be self-governing or autonomous.

Definition 1.8 (Phase Line Diagram)
A phase line diagram for the autonomous equation y′ = f(y) is a line segment with
labels sink, source or node (definitions below), one mark and label for each root y
of f(y) = 0, i.e., each equilibrium; see Figure 15.

The labels sink, source, node are borrowed from the theory of fluids and they have
the following special definitions:6

Sink y = y0 The equilibrium y = y0 attracts nearby solutions at x = ∞:
for someH > 0, |y(0)−y0| < H implies |y(x)−y0| decreases
to 0 as x→∞.

Source y = y1 The equilibrium y = y1 repels nearby solutions at x = ∞:
for some H > 0, |y(0) − y1| < H implies that |y(x) − y1|
increases as x→∞.

Node y = y2 The equilibrium y = y2 is neither a sink nor a source.

−
y2 y3

node

−++ −
y1
sinknodesource

y0

Figure 15. A phase line diagram along the y-axis.

A plus sign means f(y) > 0 for y between equilibria. A minus sign means f(y) < 0 for y

between equilibria. A sign change minus to plus is a source y0 , plus to minus is a sink

y1. No sign change, plus to plus or minus to minus is a node – y2, y3 are nodes.

Figure 15 shows that classifications source, sink, node (or spout, funnel,
node) can be decided from the signs of f(y) left and right of an equilibrium
point.

Scalar function f(y) must be one-signed on the y-interval between adjacent equi-
librium points, because f(y) = 0 means y is an equilibrium point.

A phase line diagram summarizes the contents of a direction field and all equi-
librium solutions. It is used to efficiently draw threaded curves across the graph

6It is for geometric intuition that the current text section requires monotonic behavior in the
definition of a sink. In applied literature a sink is defined by limx→∞ |y(x) − y0| = 0, an easy
transition for most, although unnecessarily abstract. See page 55 for definitions of attracting
and repelling equilibria.
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1.5 Phase Line Diagrams

window, producing a phase portrait for y′ = f(y). The drawing rules increase
in number, however for the special equation y′ = f(y) neither grid points nor a
direction field are used.

Drawing Phase Portraits

A phase line diagram is used to draw a phase portrait of threaded solutions
and equilibrium solutions by using the three rules below, justified on page 54.

Three Drawing Rules for y′ = f(y)

1. Equilibrium solutions are horizontal lines in the phase dia-
gram.

2. Threaded solutions of y′ = f(y) don’t cross. In particular,
they don’t cross equilibrium solutions.

3. A threaded non-equilibrium solution that starts at x = 0 at
a point y0 must be increasing if f(y0) > 0, and decreasing
if f(y0) < 0.

y0

y2

y1 sink

node

source

nodey3

Figure 16. A phase portrait for an autonomous equation y′ = f(y).

The graphic is drawn directly from phase line diagram Figure 15, using rules 1, 2, 3.

While not a replica of an accurately constructed computer graphic, the general look of

threaded solutions is sufficient for intuition. Labels source, sink, node are essential.

Alternate labels: spout, funnel, node.
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Table 5. Equilibria Classification by Signs of f(y)

Classification Sign of f(y) left Sign of f(y) right
Source [Spout] MINUS PLUS
Sink [Funnel] PLUS MINUS
Node PLUS PLUS
Node MINUS MINUS

Drain and Spout

In the theory of fluids, source means fluid is created and sink means fluid is
lost. A memory device for these concepts is the kitchen water spout, which is
the source, and the kitchen drain, which is the sink.

Figure 17. A source or a spout.

A water spout from a kitchen faucet or a spray-can is a source. Pencil traces in a figure

represent flow lines in the fluid.

Figure 18. A sink or a funnel.

A funnel rotated 90 degrees has the shape of a sink. A drain in the kitchen sink has

the same geometry. The lines drawn in a funnel figure can be visualized as traces of flow

lines or dust particles in the fluid, going down the drain.
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1.5 Phase Line Diagrams

Figure 19. Video replay in reverse time.

A video of a funnel or sink played backwards looks like a source or spout.

Justification of the Three Drawing Rules:
Rule 1: The curve y = constant is a horizontal line.

Rule 2: Two solutions y1(x), y2(x) that touch at x = x0, y = y0 must coalesce: both
solutions satisfy y′ = f(t), y(x0) = y0, then Picard’s theorem says y1(x) = y2(x) for
small |x−x0|. The Picard-Lindelöf theorem hypotheses are met by examples herein and
by the bulk of applied problems.

Rule 3: let y1(x) be a solution with y′1(x) = f(y1(x)) either positive or negative at
x = 0. If y′1(x1) = 0 for some x1 > 0, then let c = y1(x1) and define equilibrium solution
y2(x) = c. Then solution y1 crosses the equilibrium solution y2 at x = x1, violating rule
2.

Stability Test

The terms stable equilibrium and unstable equilibrium refer to the pre-
dictable plots of nearby solutions. The term stable means that solutions that
start near the equilibrium will stay nearby as x→∞. The term unstable means
not stable. Therefore, a sink is stable and a source is unstable.

Definition 1.9 (Stable Equilibrium)
An equilibrium y0 of y′ = f(y) is stable provided for given ϵ > 0 there exists
some H > 0 such that |y(0) − y0| < H implies solution y(x) exists for x ≥ 0 and
|y(x)− y0| < ϵ for all x ≥ 0.

The solution y = y(0)ekx of the equation y′ = ky exists for x ≥ 0. Properties of
exponentials justify that the equilibrium y = 0 is a sink for k < 0, a source for
k > 0 and just stable for k = 0.

Definition 1.10 (Attracting and Repelling Equilibria)
An equilibrium y = y0 is attracting provided limx→∞ y(x) = y0 for all initial data
y(0) with 0 < |y(0)− y0| < h and h > 0 sufficiently small. An equilibrium y = y0 is
repelling provided limx→−∞ y(x) = y0 for all initial data y(0) with 0 < |y(0)−y0| <
h and h > 0 sufficiently small.

The stability test below in Theorem 1.3 is motivated by the vector calculus
results Div(P) < 0 for a sink and Div(P) > 0 for a source, where P is the
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1.5 Phase Line Diagrams

velocity field of the fluid and Div is divergence. Justification is postponed to
page 60.

Theorem 1.3 (Stability and Instability Conditions)
Let f and f ′ be continuous. The equation y′ = f(y) has a sink at y = y0 provided
f(y0) = 0 and f ′(y0) < 0. An equilibrium y = y1 is a source provided f(y1) = 0
and f ′(y1) > 0. There is no test when f ′ is zero at an equilibrium. The no-test case
can sometimes be decided by an additional test:

(a) Equation y′ = f(y) has a sink at y = y0 provided f(y) changes sign from positive
to negative at y = y0.

(b) Equation y′ = f(y) has a source at y = y0 provided f(y) changes sign from
negative to positive at y = y0.

Phase Line Diagram for the Logistic Equation

The model logistic equation y′ = (1 − y)y is used to produce the phase line
diagram in Figure 20. The logistic equation is discussed on page 6, in connection
with the Malthusian population equation y′ = ky. The letters S and U are used
for a stable sink and an unstable source, while N is used for a node. Details are
in Example 1.30, page 58.

y = 1y = 0
− +

source sink

−
SU

Figure 20. A phase line diagram for y′ = (1− y)y.

The equilibrium y = 0 is an unstable source (a spout) and equilibrium y = 1 is a stable

sink (a funnel).

Arrowheads are used to display the repelling or attracting nature of the equi-
librium.

Direction Field Plots for y′ = f(y)

A direction field for an autonomous differential equation y′ = f(y) can be con-
structed in two steps.

Step 1. Draw grid points and line segments along the y-axis.

Step 2. Duplicate the y-axis direction field at even divisions along
the x-axis.

Duplication is justified because y′ = f(y) does not depend on x, which means
that the slope assigned to a line segment at grid points (0, y0) and (x0, y0) are
identical.

The following facts are assembled for reference:
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Fact 1. An equilibrium is a horizontal line. It is stable if all solutions starting
near the line remain nearby as x→∞.

Fact 2. Solutions don’t cross. In particular, any solution that starts above
or below an equilibrium solution must remain above or below.

Fact 3. A solution curve of y′ = f(y) rigidly moved to the left or right
will remain a solution, i.e., the translate y(x − x0) of a solution to
y′ = f(y) is also a solution.

A phase line diagram is merely a summary of the solution behavior in a direction
field. Conversely, an independently made phase line diagram can be used to
enrich the detail in a direction field.

Fact 3 will create additional threaded solutions from an initial threaded solution
by translation. Threaded solutions with turning points will have translations with
turning points marching monotonically to the left, or to the right.

Bifurcation Diagrams

The phase line diagram has a close relative called a bifurcation diagram. The
purpose of the diagram is to display qualitative information about equilibria,
across all equations y′ = f(y), obtained by varying physical parameters appearing
implicitly in f . In the simplest cases, each parameter change to f(y) produces one
phase line diagram and the two-dimensional stack of these phase line diagrams
is the bifurcation diagram (see Figure 21).

Fish Harvesting

To understand the reason for such diagrams, consider a
private lake with fish population y(t). The population is
harvested at rate k fish per year. A suitable sample logistic
model is

dy

dt
= y(4− y)− k

where the constant harvesting rate k is allowed to change. Given some relevant
values of k, a field biologist would produce corresponding phase line diagrams,
then display them by vertical stacking to obtain a two-dimensional diagram like
Figure 21.

N

y

k
U

S
Figure 21. A bifurcation diagram.
Legend: U=Unstable, S=Stable, N=node.
The fish harvesting diagram consists of stacked phase-line dia-
grams.

In Figure 21, the vertical axis represents initial values y(0) and the horizontal
axis represents the harvesting rate k. Each phase line diagram has two equilibria,
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one stable and one unstable, except the rightmost diagram, which has exactly
one equilibrium.

The bifurcation diagram shows how the number of equilibria and their classifica-
tions sink, source and node change with the harvesting rate.

Shortcut methods exist for drawing bifurcation diagrams and these methods have
led to succinct diagrams that remove the phase line diagram detail. The basic
idea is to eliminate the vertical lines in the plot, and replace the equilibria dots
by a curve, essentially obtained by connect-the-dots. In current literature,
Figure 21 is ofteb replaced by the more succinct Figure 22.

N

k

y

U

S
Figure 22. A succinct bifurcation diagram for fish har-
vesting.
The vertical axis y represents initial population and the hori-
zontal axis k is the harvesting rate.
Legend: U=Unstable, S=Stable, N=node.

Stability and Bifurcation Points

Biologists call a fish population stable when the fish reproduce at a rate that
keeps up with harvesting. Bifurcation diagrams show how to stock the lake and
harvest it in order to have a stable fish population.

A point N = (k0, y0) in a bifurcation diagram is called a bifurcation point
provided small local changes to k result in a sudden change in qualitative behav-
ior. In Figure 22, the sudden change in qualitative behavior is from one unstable
equilibrium to two equilibria, one stable and one unstable. Some facts about
Figure 22:

[1] The carrying capacityM for harvesting rate k is found from a point (k,M)
on the upper curve. Symbol M is the largest population size for a stable
fish population.

[2] The minimum stocking size m for harvesting rate k is found from a point
(k,m) on the lower curve .

[3] Extinction results for harvesting rates k > k0. Extinction means all solu-
tions limit to zero at t =∞.

[4] Extinction results for harvesting rates k and initial population y with (k, y)
in the region below the lower curve.

Some combinations are obvious, e.g., a harvest of 2 thousand per year from an
equilibrium population of about 4 thousand fish. Less obvious is a sustainable
harvest of about 4 thousand fish with an equilibrium population of about 2
thousand fish, detected from the portion of the curve near bifurcation point N .
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Examples

Example 1.29 (No Test in Sink–Source Theorem 1.3)
Find an example y′ = f(y) which has an unstable node at y = 0 and no other
equilibria.

Solution: Let f(y) = y2. The equation y′ = f(y) has an equilibrium at y = 0. In
Theorem 1.3, there is a no test condition f ′(0) = 0.

A computer algebra system can determine y = 1/(1/y(0)− x):

dsolve(diff(y(x),x)=y(x)^2,y(x)); maple

ode2(’diff(y,x) = y^2,y,x); Maxima

Solutions with y(0) < 0 limit to the equilibrium solution y = 0, but positive solutions
“blow up” before x =∞ at x = 1/y(0). The equilibrium y = 0 is an unstable node, that
is, it is not a source nor a sink.

The same conclusions are obtained from basic calculus, without solving the differential
equation. The reasoning: y′ has the sign of y2, then y′ ≥ 0 implies y(x) increases.
The equilibrium y = 0 behaves like a source when y(0) > 0. For y(0) < 0, again y(x)
increases, but in this case the equilibrium y = 0 behaves like a sink. Accordingly, y = 0
is not a source nor a sink, but a node.

Example 1.30 (Phase Line Diagram)
Verify the phase line diagram in Figure 23 for the logistic equation y′ = (1 − y)y,
using Theorem 1.3.

y = 1y = 0
− +

source sink

−
SU

Figure 23. Phase line diagram for y′ = (1− y)y.

Solution: Let f(y) = (1− y)y. To justify Figure 23, there are three steps:

1. Find the equilibria. Answer: y = 0 and y = 1.

2. Find the signs PLUS and MINUS.

3. Apply Theorem 1.3 to show y = 0 is a source and y = 1 is a sink.

The plan is to first compute the equilibrium points.

(1− y)y = 0 Solving f(y) = 0 for equilibria.

y = 0, y = 1 Roots found.

The signs + and - appearing in Figure 20 are labels that mean f is positive or negative
on the interval between adjacent equilibria.

A sign of plus or minus is determined by the sign of f(x) for x between equilibria.
To justify this statement, suppose both signs occur, f(x1) > 0 and f(x2) < 0. Then
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continuity of f implies f(x) = 0 for a point x between x1, x2, which is impossible on an
interval free of roots.

The method to determine the signs, plus or minus, then reduces to evaluation of f(x)
for an invented sample x chosen between two equilibria, for instance:

f(−1) = (y − y2)
∣∣
x=−1

= −2 The sign is MINUS. Chosen was x = −1, which is
in the interval −∞ < x < 0.

f(0.5) = (y − y2)
∣∣
x=0.5

= 0.25 The sign is PLUS. Chosen was x = 0.5, which is in
the interval 0 < x < 1.

f(2) = (y − y2)
∣∣
x=2

= −2 The sign is MINUS. Chosen was x = 2, which is in
the interval 1 < x <∞.

We will apply Theorem 1.3. The plan is to find f ′(y) and then evaluate f ′ at each
equilibrium. An alternative technique is to apply Theorem 1.3, part (a) or (b), which
is the method of choice in practise.

f ′(y) = (y − y2)′ Find f ′ from f(y) = (1− y)y.

= 1− 2y Derivative f ′(y) = df
dy found.

f ′(0) = 1 Positive means it is a source (spout), by Theorem
1.3.

f ′(1) = −1 Negative means it is a sink (funnel), by Theorem
1.3.

Sink or
Funnel

Source
or Spout

y = 0

y = 1

Figure 24. Phase portrait for y′ = (1− y)y.

Drawn from the phase line diagram of Example 1.30.

Example 1.31 (Phase Portrait)
Justify the phase portrait in Figure 24 for the logistic equation y′ = (1− y)y, using
the phase line diagram constructed in Example 1.30.

Solution:

Drawing rules. The phase line diagram contains all essential information for draw-
ing threaded curves. Threaded solutions have to be either horizontal (an equilibrium
solution), increasing or decreasing. Optional is representation of turning points.
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Translations. Because translates of solutions are also solutions and solutions are unique,
then the drawing of an increasing or decreasing threaded curve determines the shape of
all nearby threaded curves. There is no option for drawing nearby curves!

Explanation. The phase portrait is drawn by moving the phase line diagram to the
y-axis of the graph window 0 ≤ x ≤ 6, −0.5 ≤ y ≤ 2. The graph window was selected by
first including the equilibrium solutions y = 0 and y = 1, then growing the window after
an initial graph. Each equilibrium solution produces a horizontal line, i.e., lines y = 0
and y = 1. The signs copied to the y-axis from the phase line diagram tell us how to
draw a threaded curve, either increasing (PLUS) or decreasing (MINUS).

Labels. It is customary to use labels sink, source, node or the alternates spout,
funnel, node. Additional labels are Stable and Unstable. The only stable geometry
is a sink (funnel).

Example 1.32 (Bifurcation Diagram)
Verify the fish harvesting bifurcation diagram in Figure 21.

Solution: Let f(y) = y(4− y)− k, where k is a parameter that controls the harvesting
rate per annum. A phase line diagram is made for each relevant value of k, by applying
Theorem 1.3 to the equilibrium points. First, the equilibria are computed, that is, the
roots of f(y) = 0:

y2 − 4y + k = 0 Standard quadratic form of f(y) = 0.

y =
4±
√
42 − 4k

2
Apply the quadratic formula.

= 2 +
√
4− k, 2−

√
4− k Evaluate. Real roots exist only for 4− k ≥ 0.

In preparation to apply Theorem 1.3, the derivative f ′ is calculated and then evaluated
at the equilibria:

f ′(y) = (4y − y2 − k)′ Computing f ′ from f(y) = (4− y)y − k.

= 4− 2y Derivative found.

f ′(2 +
√
4− k) = −2

√
4− k Negative means a sink, by Theorem 1.3.

f ′(2−
√
4− k) = 2

√
4− k Positive means a source, by Theorem 1.3.

A typical phase line diagram then looks like Figure 15, page 51. In the ky-plane, sources
go through the curve y = 2 −

√
4− k and sinks go through the curve y = 2 +

√
4− k.

This justifies the bifurcation diagram in Figure 21, and also Figure 22, except for the
common point of the two curves at k = 4, y = 2.

At this common point, the differential equation is y′ = −(y−2)2. This equation is studied
in Example 1.29, page 58; a change of variable Y = 2− y shows that the equilibrium is
a node.

Proofs and Details

Stability Test Proof: Let f and f ′ be continuous. It will be justified that the equation
y′ = f(y) has a stable equilibrium at y = y0, provided f(y0) = 0 and f ′(y0) < 0. The
unstable case is left for the exercises.
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We show that f changes sign at y = y0 from positive to negative, as follows, hence the
hypotheses of (a) hold. Continuity of f ′ and the inequality f ′(y0) < 0 imply f ′(y) < 0
on some small interval |y − y0| ≤ H . Therefore, f(y) > 0 = f(y0) for y < y0 and
f(y) < 0 = f(y0) for y > y0. This justifies that the hypotheses of (a) apply. We
complete the proof using only these hypotheses.

Global existence. It has to be established that some constant H > 0 exists, such that
|y(0) − y0| < H implies y(x) exists for x ≥ 0 and limx→∞ y(x) = y0. To define H > 0,
assume f(y0) = 0 and the change of sign condition f(y) > 0 for y0 − H ≤ y < y0,
f(y) < 0 for y0 < y ≤ y0 +H.

Assume that y(x) exists as a solution to y′ = f(y) on 0 ≤ x ≤ h. It will be established
that |y(0) − y0| < H implies y(x) is monotonic and satisfies |y(x) − y0| ≤ Hh for
0 ≤ x ≤ h.

The constant solution y0 cannot cross any other solution, therefore a solution with y(0) >
y0 satisfies y(x) > y0 for all x. Similarly, y(0) < y0 implies y(x) < y0 for all x.

The equation y′ = f(y) dictates the sign of y′, as long as 0 < |y(x) − y0| ≤ H. Then
y(x) is either decreasing (y′ < 0) or increasing (y′ > 0) towards y0 on 0 ≤ x ≤ h, hence
|y(x) − y0| ≤ H holds as long as the monotonicity holds. Because the signs endure on
0 < x ≤ h, then |y(x)− y0| ≤ H holds on 0 ≤ x ≤ h.

Extension to 0 ≤ x <∞. Differential equations extension theory applied to y′ = f(y)
says that a solution satisfying on its domain |y(x)| ≤ |y0| + H may be extended to
x ≥ 0. This dispenses with the technical difficulty of showing that the domain of y(x) is
x ≥ 0. Unfortunately, details of proof for extension results require more mathematical
background than is assumed for this text; see Birkhoff-Rota [BirkRota], which justifies
the extension from the Picard theorem.

Limit at x = ∞. It remains to show that limx→∞ y(x) = y1 and y1 = y0. The limit
equality follows because y is monotonic. The proof concludes when y1 = y0 is established.

Already, y = y0 is the only root of f(y) = 0 in |y − y0| ≤ H. This follows from the
change of sign condition in (a). It suffices to show that f(y1) = 0, because then y1 = y0
by uniqueness.

To verify f(y1) = 0, apply the fundamental theorem of calculus with y′(x) replaced by
f(y(x)) to obtain the identity

y(n+ 1)− y(n) =

∫ n+1

n

f(y(x))dx.

The integral on the right limits as n → ∞ to the constant f(y1), by the integral mean
value theorem of calculus, because the integrand has limit f(y1) at x =∞. On the left
side, the difference y(n+ 1)− y(n) limits to y1 − y1 = 0. Therefore, 0 = f(y1).

The additional test stated in the theorem is the observation that internal to the proof
we used only the change of sign of f at y = y0, which was deduced from the sign of the
derivative f ′(y0). If f ′(y0) = 0, but the change of sign occurs, then the details of proof
still apply. ■

Exercises 1.5 �

Stability-Instability Test
Find all equilibria for the given differential
equation and then apply Theorem 1.3, page

55, to obtain a classification of each equi-
librium as a source, sink or node. Do not
draw a phase line diagram.
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1. P ′ = (2− P )P

2. P ′ = (1− P )(P − 1)

3. y′ = y(2− 3y)

4. y′ = y(1− 5y)

5. A′ = A(A− 1)(A− 2)

6. A′ = (A− 1)(A− 2)2

7. w′ =
w(1− w)

1 + w2

8. w′ =
w(2− w)

1 + w4

9. v′ =
v(1 + v)

4 + v2

10. v′ =
(1− v)(1 + v)

2 + v2

Phase Line Diagram
Draw a phase line diagram, with detail sim-
ilar to Figure 20.

11. y′ = y(2− y)

12. y′ = (y + 1)(1− y)

13. y′ = (y − 1)(y − 2)

14. y′ = (y − 2)(y + 3)

15. y′ = y(y − 2)(y − 1)

16. y′ = y(2− y)(y − 1)

17. y′ =
(y − 2)(y − 1)

1 + y2

18. y′ =
(2− y)(y − 1)

1 + y2

19. y′ =
(y − 2)2(y − 1)

1 + y2

20. y′ =
(y − 2)(y − 1)2

1 + y2

Phase Portrait
Draw a phase portrait of threaded curves,
using the phase line diagram constructed in
the previous ten exercises.

21. y′ = y(2− y)

22. y′ = (y + 1)(1− y)

23. y′ = (y − 1)(y − 2)

24. y′ = (y − 2)(y + 3)

25. y′ = y(y − 2)(y − 1)

26. y′ = y(2− y)(y − 1)

27. y′ =
(y − 2)(y − 1)

1 + y2

28. y′ =
(2− y)(y − 1)

1 + y2

29. y′ =
(y − 2)2(y − 1)

1 + y2

30. y′ =
(y − 2)(y − 1)2

1 + y2

Bifurcation Diagram
Draw a stack of phase line diagrams and
construct from it a succinct bifurcation di-
agram with abscissa k and ordinate y(0).
Don’t justify details at a bifurcation point.

31. y′ = (2− y)y − k

32. y′ = (3− y)y − k

33. y′ = (2− y)(y − 1)− k

34. y′ = (3− y)(y − 2)− k

35. y′ = y(0.5− 0.001y)− k

36. y′ = y(0.4− 0.045y)− k

Details and Proofs
Supply details for the following statements.

37. (Stability Test)

Verify (b) of Theorem 1.3, page 55, by
altering the proof given in the text for
(a).

38. (Stability Test)

Verify (b) of Theorem 1.3, page 55, by
means of the change of variable x →
−x.
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39. (Autonomous Equations)

Let y′ = f(y) have solution y(x) on
a < x < b. Then for any c, a < c < b,
the function z(x) = y(x+c) is a solution
of z′ = f(z).

40. (Autonomous Equations)

The method of isoclines can be applied
to an autonomous equation y′ = f(y)
by choosing equally spaced horizontal
lines y = ci, i = 1, . . . , k. Along each
horizontal line y = ci the slope is a con-
stant Mi = f(ci), and this determines
the set of invented slopes {Mi}ki=1 for
the method of isoclines.
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1.6 Computing and Existence

The initial value problem

y′ = f(x, y), y(x0) = y0(1)

is studied here from a computational viewpoint. Answered are some basic ques-
tions about practical and theoretical computation of solutions:

• Why can numerical methods fail in problem (1)?

• What hypotheses for (1) make it possible to use numerical
methods?

• When does (1) have a symbolic solution, that is, a solution
described by an xy-equation?

Three Key Examples

The range of unusual behavior of solutions to y′ = f(x, y), y(x0) = y0 can be
illustrated by three examples.

(A) y′ = 3(y − 1)2/3,
y(0) = 1.

The right side f(x, y) is continuous. It has two
solutions y = 1 + x3 and y = 1.

(B) y′ =
2y

x− 1
,

y(0) = 1.

The right side f(x, y) is discontinuous. It has in-
finitely many piecewise-defined solutions

y =

{
(x− 1)2 x < 1,

c(x− 1)2 x ≥ 1.

(C) y′ = 1 + y2,
y(0) = 0.

The right side f(x, y) is differentiable. It has
unique solution y = tan(x), but y(x0) = ∞ at
finite time x0 = π/2.

Numerical method failure can be caused by multiple solutions to problem
(1), e.g., examples (A) and (B), because a numerical method is going to compute
just one answer; see Example 1.33, page 69. Multiple solutions are often signaled
by discontinuity of either f or its partial derivative fy. In (A), the right side
3(y− 1)2/3 has an infinite partial at y = 1, while in (B), the right side 2y/(x− 1)
is infinite at x = 1.

Simple jump discontinuities, or switches, appear in modern applications of
differential equations. Therefore, it is important to allow f(x, y) to be discon-
tinuous, in a limited way, but multiple solutions must be avoided, e.g., example
(B). An important success story in electrical engineering is circuit theory with
periodic and piecewise-defined inputs. See Example 1.34, page 70.

Discontinuities of f or fy in problem (1) should raise questions about the ap-
plicability of numerical methods. Exactly why there is not a precise and foolproof
test to predict failure of a numerical method remains to be explained.
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Theoretical solutions exist for problem (1), if f(x, y) is continuous. See
Peano’s theorem, page 68. This solution may blow up in a finite interval, e.g.,
y = tan(x) in example (C). See Example 1.35, page 71.

No symbolic closed-form solution formula exists as a result of the basic
theory. In part, this dilemma is due to the possibility of multiple solutions, if
f is only continuous, e.g., example (A). Picard’s iteration provides assumptions
to give a symbolic solution formula. However, Picard’s formula is currently im-
practical for applied mathematics. Additional general assumptions do not seem
to help. There is in general no symbolic solution formula available for use in
applied mathematics.

Exactly one theoretical solution exists in problem (1), provided f(x, y) and
fy(x, y) are continuous; see the Picard–Lindelöf theorem, page 68. The situation
with numerical methods improves dramatically: the most popular methods work
on a computer.

Why Not “Put it on the computer?”

Typically, scientists and engineers rely upon computer algebra systems and nu-
merical laboratories, e.g., maple, mathematica and matlab.

Computerization for differential equation models constantly improves, with
the advent of computer algebra systems and ever-improving numerical methods.
Indeed, neither an advanced degree in mathematics nor a wizard’s hat is required
to query these systems for a closed-form solution formula. Many cases are checked
systematically in a few seconds.

Fail-safe mechanisms usually do not exist for applying modern software to the
initial value problem

dy

dx
= f(x, y(x)), y(x0) = y0.

For instance, the initial value problem y′ = 3(y − 1)2/3, y(0) = 1 entered into
computer algebra system maple reports the solution y = 1+x3. But the obvious
equilibrium solution y = 1 is unreported. The maple numeric solver silently
accepts the same problem and solves to obtain the solution y = 1. To experience
this, execute the maple code below.

de:=diff(y(x),x)=3*(y(x)-1)^(2/3): ic:=y(0)=1:

dsolve({de,ic},y(x)); # Symbolic sol

p:=dsolve({de,ic},y(x),numeric); p(1); # Numerical sol

There was a report improvement in maple version 10. In later versions, y(x) = 1
was reported for both. The inference for the maple user is that there is a unique
solution, but the model has multiple solutions, making both reports incorrect.
Computer algebra system Maxima has similar issues.
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Numerical instability is typically not reported by computer software. To
understand the difficulty, consider the differential equation

y′ = y − 2e−x, y(0) = 1.

The symbolic solution is y = e−x. Attempts to solve the equation numerically
will inevitably compute the nearby solutions y = cex + e−x, where c is small. As
x grows, the numerical solution grows like ex, and |y| → ∞. For example, maple
computes y(30) ≈ −72557, but e−30 ≈ 0.94 × 10−13. In reality, the solution
y = e−x cannot be computed. The maple code:

de:=diff(y(x),x)=y(x)-2*exp(-x): ic:=y(0)=1:

sol:=dsolve({de,ic},y(x),numeric): sol(30);

Mathematical model formulation seems to be an essential skill which does
not come in the colorfully decorated package from the software vendor. It is this
creative skill that separates the practicing scientist from the person on the street
who has enough money to buy a computer program.

Closed-Form Existence-Uniqueness Theory

The closed-form existence-uniqueness theory describes models

y′ = f(x, y), y(x0) = y0(2)

for which a closed-form solution is known, as an equation of some sort. The
objective of the theory for first order differential equations is to obtain existence
and uniqueness by exhibiting a solution formula. The mathematical literature
which documents these models is too vast to catalog in a textbook. We discuss
only the most popular models.

Dsolve Engine in Maple

The computer algebra system has an implementation for some specialized equa-
tions within the closed-form theory. Below are some of the equation types ex-
amined by maple for solving a differential equation using classification methods.
Not everything tried by maple is listed, e.g., Lie symmetry methods, which are
beyond the scope of this text.

Equation Type Differential Equation

Quadrature y′ = F (x)

Linear y′ + p(x)y = r(x)

Separable y′ = f(x)g(y)

Abel y′ = f0(x) + f1(x)y + f2(x)y
2 + f3(x)y

3

Bernoulli y′ + p(x)y = r(x)yn
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Clairaut y = xy′ + g(y′)

d’Alembert y = xf(y′) + g(y′)

Chini y′ = f(x)yn − g(x)y + h(x)

Homogeneous y′ = f(y/x), y′ = y/x+ g(x)f(y/x),
y′ = (y/x)F (y/xα),
y′ = F ((a1x+ a2y + a3)/(a4x+ a5y + a6))

Rational y′ = P1(x, y)/P2(x, y)

Ricatti y′ = f(x)y2 + g(x)y + h(x)

Not every equation can be solved as written — restrictions are made on the
parameters. Omitted from the above list are power series methods and dif-
ferential equations with piecewise-defined coefficients. They are part of the
closed-form theory using specialized representations of solutions.

Special Equation Preview

The program here is to catalog a short list of first order equations and their
known solution formulas. The formulas establish existence of a solution to the
given initial value problem. They preview what is possible; details and examples
appear elsewhere in the text. The issue of uniqueness is often routinely settled,
as a separate issue, by applying the Picard-Lindelöf theorem. See Theorem 1.5,
page 68, infra.

First Order Linear
y′ + p(x)y = r(x)
y(x0) = y0

Let p and r be continuous on a < x < b. Choose any
(x0, y0) with a < x0 < b. Then

y = y0e
−
∫ x
x0

p(t)dt
+
∫ x
x0

r(t)e
∫ x
t p(s)dsdt.

First Order Separable
y′ = F (x)G(y)
y(x0) = y0

Let F (x) and G(y) be continuous on a < x < b,
c < y < d. Assume G(y) ̸= 0 on c < y < d.
Choose any (x0, y0) with a < x0 < b, c < y0 < d.

Then W (Y ) =
∫ Y
y0

du/G(u) is invertible and y(x) =

W−1
(∫ x

x0
F (t)dt

)
.

First Order Analytic
y′ = a(x)y + b(x)
y(x0) = y0

Assume a and b have power series expansions in |x −
x0| < h. Then the power series y(x) =

∑∞
n=0 yn(x −

x0)
n is convergent in |x − x0| < h and the co-

efficients yn are found from the recursion n!yn =(
d
dx

)n−1
(a(x)y(x) + b(x))

∣∣∣
x=x0

.

General Existence-Uniqueness Theory

The general existence-uniqueness theory describes the features of a differ-
ential equation model which make it possible to compute both theoretical and
numerical solutions.
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Modelers who create differential equation models generally choose the differential
equation based upon the intuition gained from the closed-form theory and the
general theory. Sometimes, modelers are lucky enough to refine a model to some
known equation with closed-form solution. Other times, they are glad for just a
numerical solution to the problem. In any case, they want a model that is tested
and proven in applications.

General Existence Theory in Applications

For scientists and engineers, the results can be recorded as the following state-
ment:

In applications it is usually enough to require f(x, y) and fy(x, y) to
be continuous. Then the initial value problem y′ = f(x, y), y(x0) =
y0 is a well-tested model to which classical numerical methods apply.

The general theory results to be stated are due to Peano and to Picard-
Lindelöf. The techniques of proof require advanced calculus, perhaps graduate
real-variable theory as well.

Theorem 1.4 (Peano)
Let f(x, y) be continuous in a domain D of the xy-plane and let (x0, y0) belong to
the interior of D. Then there is a small h > 0 and a function y(x) continuously
differentiable on |x− x0| < h such that (x, y(x)) remains in D for |x− x0| < h and
y(x) is one solution (many more might exist) of the initial value problem

y′ = f(x, y), y(x0) = y0.

Definition 1.11 (Picard Iteration)
Define the constant function y0(x) = y0 and then define by iteration

yn+1(x) = y0 +

∫ x

x0

f(t, yn(t))dt.

The sequence y0(x), y1(x), . . . is called the sequence of Picard iterates for y′ =
f(x, y), y(x0) = y0. See Example 1.36 for computational details.

Theorem 1.5 (Picard-Lindelöf)
Let f(x, y) and fy(x, y) be continuous in a domain D of the xy-plane. Let (x0, y0)
belong to the interior of D. Then there is a small h > 0 and a unique function
y(x) continuously differentiable on |x−x0| < h such that (x, y(x)) remains in D for
|x− x0| < h and y(x) solves

y′ = f(x, y), y(x0) = y0.

The equation
lim
n→∞

yn(x) = y(x)

is satisfied for |x− x0| < h by the Picard iterates {yn}.
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The Picard iteration is the replacement for a closed-form solution formula
in the general theory, because the Picard-Lindelöf theorem gives the uniformly
convergent infinite series solution

y(x) = y0 +
∞∑
n=0

(yn+1(x)− yn(x)) .(3)

Well, yes, it is a solution formula, but from examples it is seen to be currently
impractical. There is as yet no known practical solution formula for the general
theory.

The condition that fy be continuous can be relaxed slightly, to include such
examples as y′ = |y|. The replacement is the following.

Definition 1.12 (Lipschitz Condition)
Let M > 0 be a constant and f a function defined in a domain D of the xy-plane. A
Lipschitz condition is the inequality |f(x, y1)−f(x, y2)| ≤M |y1−y2|, assumed to
hold for all (x, y1) and (x, y2) in D. The most common way to satisfy this condition
is to require the partial derivative fy(x, y) to be continuous (Exercises page 1087).
A key example is f(x, y) = |y|, which is non-differentiable at y = 0, but satisfies a
Lipschitz condition with M = 1.

Theorem 1.6 (Extended Picard-Lindelöf)
Let f(x, y) be continuous and satisfy a Lipschitz condition in a domain D of the
xy-plane. Let (x0, y0) belong to the interior of D. Then there is a small h > 0 and a
unique function y(x) continuously differentiable on |x− x0| < h such that (x, y(x))
remains in D for |x− x0| < h and y(x) solves

y′ = f(x, y), y(x0) = y0.

The equation
lim
n→∞

yn(x) = y(x)

is satisfied for |x− x0| < h by the Picard iterates {yn}.

Example 1.33 (Numerical Method Failure)
A project models y = 1+x3 as the solution of the problem y′ = 3(y−1)2/3, y(0) = 1.
Computer work gives the solution as y = 1. Is it bad computer work or a bad model?

Solution: It is a bad model, explanation to follow.

Solution verification. One solution of the initial value problem is given by the equi-
librium solution y = 1. Another is y = 1 + x3. Both are verified by direct substitution,
using methods similar to Example 1.20, page 35.

Bad computer work? Technically, the computer made no mistake. Production nu-
merical methods use only f(x, y) = 3(y − 1)2/3 and the initial condition y(0) = 1. They
apply a fixed algorithm to find successive values of y. The algorithm is expected to
be successful, that is, it will compute a list of data points which can be graphed by
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“connect-the-dots.” The majority of numerical methods applied to this example will
compute y = 1 for all data points.

Bad model? Yes, it is a bad model, because the model does not define the solution
y = 1+x3. The lesson here is that knowing a solution to an equation does not guarantee
a numerical laboratory will be able to compute it.

Detecting a bad model. The right side f(x, y) of the differential equation is con-
tinuous, but not continuously differentiable, therefore Picard’s theorem does not apply,
although Peano’s theorem says a solution exists. Peano’s theorem allows multiple solu-
tions, but Picard’s theorem does not. Sometimes, the only signal for non-uniqueness is
the failure of application of Picard’s theorem.

Physically significant models can have multiple solutions. A key example
is the tank draining equation of E. Torricelli (1608-1647). A simple instance is
y′ = −2

√
|y|, in which y(x) is the water height in some cylindrical tank at time

x. No water in the tank means the water height is y = 0. An initial condition
y(0) = 0 does not determine a unique solution, because the tank could have
drained at some time in the past. For instance, if the tank drained at time
x = −1, then a piecewise defined solution is y(x) = (x + 1)2 for −∞ < x < −1
and y(x) = 0 for x ≥ −1. Most numerical methods applied to y = −2

√
|y|,

y(0) = 0, compute y(x) = 0 for all x, which illustrates the inability of computer
software to detect multiple solution errors.

Example 1.34 (Switches)
The problem y′ = f(x, y), y(0) = y0 with

f(x, y) =

{
0 0 ≤ x ≤ 1,
1 1 < x <∞,

has a piecewise-defined discontinuous right side f(x, y). Solve the initial value prob-
lem for y(x).

Solution: The solution y(x) is found by dissection of the problem according to the two
intervals 0 ≤ x ≤ 1 and 1 < x <∞ into the two differential equations y′ = 0 and y′ = 1.
By the fundamental theorem of calculus, the answers are y = y0 and y = x+ y1, where
y1 is to be determined. At the common point x = 1, the two solutions should agree (we
ask y to be continuous at x = 1), therefore y0 = 1 + y1, giving the final solution

y(x) =

{
y0 on 0 ≤ x ≤ 1,
x− 1 + y0 on 1 < x <∞.

The function y(x) is continuous, but y′ is discontinuous at x = 1. The differential
equation y′ = f(x, y) and initial condition y(0) = y0 are formally satisfied.

Is there another continuous solution? No, because the method applied here assumed
that y(x) worked in the differential equation, and if it did, then it had to agree with
y = y0 on 0 ≤ x < 1 and y = x− 1 + y0 on 1 < x <∞, by the fundamental theorem of
calculus.

Technically adept readers will find a flaw in the solution presented here, because of the
treatment of the point x = 1, where y′ does not exist. The flaw vanishes if we agree to
verify the differential equation except at finitely many x-values where y′ is undefined.
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Example 1.35 (Finite Blowup)
Verify that dx/dt = 2+2x2, x(0) = 0 has the unique solution x(t) = tan(2t), which
approaches infinity in finite time t = π/4.

Solution: The function x(t) = tan(2t) works in the initial condition x(0) = 0, because
tan(0) = sin(0)/ cos(0) = 0. The well-known trigonometric identity sec2(2t) = 1 +
tan2(2t) and the differentiation identity x′(t) = 2 sec2(2t) shows that the differential
equation x′ = 2 + 2x2 is satisfied. The equation x(π/4) = ∞ is verified from tan(2t) =
sin(2t)/ cos(2t). Uniqueness follows from Picard’s theorem, because f(t, x) = 2 + 2x2

and fx(t, x) = 4x are continuous everywhere.

Example 1.36 (Picard Iterates)
Compute the Picard iterates y0, . . . , y3 for the initial value problem y′ = f(x, y),
y(0) = 1, given f(x, y) = x− y.

Solution: The answers are

y0(x) = 1,

y1(x) = 1− x+ x2/2,

y2(x) = 1− x+ x2 − x3/6,

y3(x) = 1− x+ x2 − x3/3 + x4/24.

The details for all computations are similar. A sample computation appears below.

y0 = 1 This follows from y(0) = 1.

y1 = 1 +
∫ x

0
f(t, y0(t))dt Use the formula with n = 1.

= 1 +
∫ x

0
(t− 1)dt Substitute y0(x) = 1, f(x, y) = x− y.

= 1− x+ x2/2 Evaluate the integral.

The exact answer is y = x− 1+ 2e−x. A Taylor series expansion of this function
motivates why the Picard iterates converge to y(x). See the exercises for details,
page 1085.

The maple code which does the various computations appears below. The code
involving dsolve is used to compute the exact solution and the series solution.

y0:=x->1:f:=(x,y)->x-y:

y1:=x->1+int(f(t,y0(t)),t=0..x):

y2:=x->1+int(f(t,y1(t)),t=0..x):

y3:=x->1+int(f(t,y2(t)),t=0..x):

y0(x),y1(x),y2(x),y3(x);

de:=diff(y(x),x)=f(x,y(x)): ic:=y(0)=1:

dsolve({de,ic},y(x)); dsolve({de,ic},y(x),series);

Exercises 1.6 �

Multiple Solution Example
Define f(x, y) = 3(y − 1)2/3. Consider

y′ = f(x, y), y(0) = 1.
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1. Do an answer check for y(x) = 1. Do a
second answer check for y(x) = 1 + x3.

2. Let y(x) = 1 on 0 ≤ x ≤ 1 and
y(x) = 1 + (x − 1)3 for x ≥ 1. Do an
answer check for y(x).

3. Does fy(x, y) exist for all (x, y)?

4. Verify that Picard’s theorem does not
apply to y′ = f(x, y), y(0) = 1, due to
discontinuity of fy.

5. Verify that Picard’s theorem applies to
y′ = f(x, y), y(0) = 2.

6. Let y(x) = 1 + (x + 1)3. Do an answer
check for y′ = f(x, y), y(0) = 2. Does
another solution exist?

Discontinuous Equation Example

Consider y′ =
2y

x− 1
, y(0) = 1. Define

y1(x) = (x − 1)2 and y2(x) = c(x − 1)2.
Define y(x) = y1(x) on −∞ < x < 1
and y(x) = y2(x) on 1 < x < ∞. Define
y(1) = 0.

7. Do an answer check for y1(x) on −∞ <
x < 1. Do an answer check for y2(x) on
1 < x <∞. Skip condition y(0) = 1.

8. Justify one-sided limits y(1+) =
y(1−) = 0. The functions y1 and y2
join continuously at x = 1 with com-
mon value zero and the formula for y(x)
gives one continuous formal solution for
each value of c (∞-many solutions).

9. (a) For which values of c does y′2(1) ex-
ist? (b) For which values of c is y2(x)
continuously differentiable?

10. Find all values of c such that y2(x)
is a continuously differentiable function
that satisfies the differential equation
and the initial condition.

Finite Blowup Example
Consider y′ = 1 + y2, y(0) = 0. Let
y(x) = tanx.

11. Do an answer check for y(x).

12. Find the partial derivative fy for
f(x, y) = 1 + y2. Justify that f and
fy are everywhere continuous.

13. Justify that Picard’s theorem applies,
hence y(x) is the only possible solution
to the initial value problem.

14. Justify for a = −π/2 and b = π/2 that
y(a+) = −∞, y(b−) = ∞. Hence y(x)
blows up for finite values of x.

Numerical Instability Example
Let f(x, y) = y − 2e−x.

15. Do an answer check for y(x) = e−x as
a solution of the initial value problem
y′ = f(x, y), y(0) = 1.

16. Do an answer check for y(x) = cex +
e−x as a solution of y′ = f(x, y).

Multiple Solutions
Consider the initial value problem y′ =
5(y − 2)4/5, y(0) = 2.

17. Do an answer check for y(x) = 2. Do a
second answer check for y(x) = 2 + x5.

18. Verify that the hypotheses of Picard’s
theorem fail to apply.

19. Find a formula which displays in-
finitely many solutions to y′ = f(x, y),
y(0) = 2.

20. Verify that the hypotheses of Peano’s
theorem apply.

Discontinuous Equation
Consider y′ =

y

x− 1
, y(0) = 1. Define

y(x) piecewise by y(x) = −(x − 1) on
−∞ < x < 1 and y(x) = c(x − 1) on
1 < x <∞. Leave y(1) undefined.

21. Do an answer check for y(x). The ini-
tial condition y(0) = 1 applies only to
the domain −∞ < x < 1.

22. Justify one-sided limits y(1+) =
y(1−) = 0. The piecewise definitions
of y(x) join continuously at x = 1 with
common value zero and the formula for
y(x) gives one continuous formal solu-
tion for each value of c (∞-many solu-
tions).
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23. (a) For which values of c does y′(1) ex-
ist? (b) For which values of c is y(x)
continuously differentiable?

24. Find all values of c such that y(x)
is a continuously differentiable function
that satisfies the differential equation
and the initial condition.

Picard Iteration
Find the Picard iterates y0, y1, y2, y3.

25. y′ = y + 1, y(0) = 2

26. y′ = 2y + 1, y(0) = 0

27. y′ = y2, y(0) = 1

28. y′ = y2, y(0) = 2

29. y′ = y2 + 1, y(0) = 0

30. y′ = 4y2 + 4, y(0) = 0

31. y′ = y + x, y(0) = 0

32. y′ = y + 2x, y(0) = 0

Picard Iteration and Taylor Series
Find the Taylor polynomial Pn(x) = y(0)+
y′(0)x + · · · + y(n)(0)xn/n! and compare
with the Picard iterates. Use a computer
algebra system, if possible.

33. y′ = y, y(0) = 1, n = 4,
y(x) = ex

34. y′ = 2y, y(0) = 1, n = 4,
y(x) = e2x

35. y′ = x− y, y(0) = 1, n = 4,
y(x) = −1 + x+ 2e−x

36. y′ = 2x− y, y(0) = 1, n = 4,
y(x) = −2 + 2x+ 3e−x

Numerical Instability
Use a computer algebra system or numeri-
cal laboratory. Let f(x, y) = y − 2e−x.

37. Solve y′ = f(x, y), y(0) = 1 numeri-
cally for y(30).

38. Solve y′ = f(x, y), y(0) = 1+0.0000001
numerically for y(30).

Closed–Form Existence
Solve these initial value problems using a
computer algebra system.

39. y′ = y, y(0) = 1

40. y′ = 2y, y(0) = 2

41. y′ = 2y + 1, y(0) = 1

42. y′ = 3y + 2, y(0) = 1

43. y′ = y(y − 1), y(0) = 2

44. y′ = y(1− y), y(0) = 2

45. y′ = (y − 1)(y − 2), y(0) = 3

46. y′ = (y − 2)(y − 3), y(0) = 1

47. y′ = −10(1− y), y(0) = 0

48. y′ = −10(2− 3y), y(0) = 0

Lipschitz Condition
Justify the following results.

49. The function f(x, y) = x − 10(2 − 3y)
satisfies a Lipschitz condition on the
whole plane.

50. The function f(x, y) = ax+ by+ c sat-
isfies a Lipschitz condition on the whole
plane.

51. The function f(x, y) = xy(1 − y) sat-
isfies a Lipschitz condition on D =
{(x, y) : |x| ≤ 1, |y| ≤ 1}.

52. The function f(x, y) = x2y(a − by)
satisfies a Lipschitz condition on D =
{(x, y) : x2 + y2 ≤ R2}.

53. If fy is continuous on D and the
line segment from (x, y1) to (x, y2)
is in D, then f(x, y1) − f(x, y2) =∫ y2

y1
fy(x, u)du.

54. If f and fy are continuous on a disk
D, then f is Lipschitz with M =
maxD{|fy(x, u)|}.
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Chapter 2

First Order Differential
Equations
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The subject of the chapter is the first order differential equation

y′ = f(x, y).

The study includes closed-form solution formulas for special equations and some
applications to science and engineering.

2.1 Quadrature Method

The method of quadrature refers to the technique of integrating both sides of
an equation, hoping thereby to extract a solution formula.

The term quadrature originates in ancient geometry, where it means finding
area of a plane figure, by constructing a square of equal area.1 Numerical quadra-
ture computes areas enclosed by plane curves from approximating rectangles, by

1See Katz, Victor J. (1998) A History of Mathematics: An Introduction (2nd edition) Addison
Wesley Longman, ISBN 0321016181, and Wikipedia: http://en.wikipedia.org/wiki/Quadrature.
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2.1 Quadrature Method

algorithms such as the rectangular rule and Simpson’s rule. For symbolic prob-
lems, the task is overtaken by Newton’s integral calculus. The naming convention
follows computer algebra system maple.

Fundamental Theorem of Calculus

The foundation of the study of differential equations rests with Isaac Newton’s
discovery on instantaneous velocities. Details of the calculus background required
appears in Appendix A.1, page 1005.

Theorem 2.1 (Fundamental Theorem of Calculus I)
Let G be continuous and let F be continuously differentiable on [a, b]. Then

(a) F (b)− F (a) =

∫ b

a

dF

dx
(x)dx,

(b)
d

dx

∫ x

a
G(t)dt = G(x).

Theorem 2.2 (Fundamental Theorem of Calculus II)
Let G(x) be continuous and let y(x) be continuously differentiable on [a, b]. Then
for some constant c,

(a) y(x) =

∫
dy

dx
dx+ c,

(b)
d

dx

∫
G(x)dx = G(x).

Part (a) of the fundamental theorem is used to find a candidate solution to a
differential equation.

Part (b) of the fundamental theorem is used in differential equations to do an
answer check.

The Method of Quadrature

The method is applied to differential equations y′ = f(x, y) in which f is in-
dependent of y. Then symbol y is absent from f(x, y), which implies f(x, y) is
constant or else f(x, y) depends only on the symbol x. The model differential
equation then has the form y′ = F (x) where F is a given function of the single
variable F .

(i) To solve for y(x) in
dy

dx
= F (x), integrate on variable x

across the equation, then use the Fundamental Theorem
of Calculus.

(ii) Check the answer.
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2.1 Quadrature Method

Indefinite Integral Shortcut. Integrate across the equation with indefinite
integrals, then collect all integration constants into symbol c.

Solution with Symbol c. Symbol c initially appears in the expression obtained
for y. If no initial condition was given, then the answer for y is this expression,
which contains the unresolved symbol c. Experts call this expression the general
solution.

Solution with No symbol c. If an initial condition is given in the form y = y0
at x = x0 (same as y(x0) = y0), then symbol c can be resolved. For instance,
if the answer is y = 2(x − 1) + c and the initial condition is y(−1) = 3, then
y = 2(x− 1) + c with x = −1, y = 3 becomes 3 = 2(−1− 1) + c, and then c = 7.
Experts call the xy–expression with c eliminated a particular solution.

Theorem 2.3 (Existence-Uniqueness for Quadrature Equations)
Let F (x) be continuous on a < x < b. Assume a < x0 < b and −∞ < y0 < ∞.
Then the initial value problem

y′ = F (x), y(x0) = y0(1)

has on interval a < x < b the unique solution

y(x) = y0 +

∫ x

x0

F (t)dt.(2)

Details of proof appear on page 79.

Examples

Example 2.1 (Quadrature)
Solve y′ = 3ex, y(0) = 0.

Solution:

The final answer is y = 3ex − 3. An answer check appears in the next example.

Details. The shortcut is applied.

dy
dx = 3ex Copy the differential equation.∫

dy
dxdx =

∫
3exdx Integrate across the equation on x.

y(x) + c1 =
∫
3exdx Fundamental theorem of calculus, page 75.

y(x) + c1 = 3ex + c2 Integral table.

y(x) = 3ex + c Where c = c2 − c1 is a constant.

The answer is y = 3ex + c. The symbol c is to be resolved from the initial condition
y(0) = 0, as follows.

0 = y(0) Copy the initial condition (sides reversed).

= (3ex + c)|x=0 Insert y = 3ex + c, the proposed solution.

= 3e0 + c Substitute x = 0.
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2.1 Quadrature Method

= 3 + c Use e0 = 1.

c = −1 Equation 0 = 3 + c solved for c.

Candidate solution. Back-substitute the symbol c value c = −1 into the answer
y = 3ex + c to obtain the candidate solution y = 3ex + (−3). This answer can contain
errors, in general, due to integration and arithmetic mistakes.

Example 2.2 (Answer Check)
Given y′ = 3ex, y(0) = 0 and candidate solution y(x) = 3ex − 3, display an answer
check.

Solution: There are two panels in this answer check: Panel 1: differential equation
check, Panel 2: initial condition check.

Panel 1. We check the answer y = 3ex − 3 for the differential equation y′ = 3ex.

The steps are:

LHS = y′ Left side of the differential equation.

= (3ex − 3)
′ Substitute the expression for y.

= 3ex − 0 Sum rule, constant rule and (eu)′ = u′eu.

= RHS Solution verified.

Panel 2. Let’s check the answer y = 3ex − 3 against the initial condition y(0) = 0.
Expected is an immediate mental check that e0 = 1 implies the correctness of y(0) = 0.

The steps will be shown in order to detail the algorithm for checking an initial condi-
tion. The algorithm applies when checking complex algebraic expressions. Abbreviated
versions of the algorithm are used on simple expressions.

LHS = y(0) Left side of the initial condition y(0) = 0.

= (3ex − 3)|x=0 Notation y(x0) means substitute x = x0

into the expression for y.

= 3e0 − 3 Substitute x = 0 into the expression.

= 0 Because e0 = 1.

= RHS Initial condition verified.

River Crossing

A boat crosses a river at fixed speed with power applied perpendicular to the
shoreline. Is it possible to estimate the boat’s downstream location?

The answer is yes. The problem’s variables are

x Distance from shore,

y Distance downstream,

t Time in hours,

w Width of the river,

vb Boat velocity (dx/dt),

vr River velocity (dy/dt).
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2.1 Quadrature Method

The calculus chain rule dy/dx = (dy/dt)/(dx/dt) is applied, using the symbols
vr and vb instead of dy/dt and dx/dt, to give the model equation

dy

dx
=

vr
vb
.(3)

Stream Velocity. The downstream river velocity will be approximated by vr =
kx(w − x), where k > 0 is a constant. This equation gives velocity vr = 0 at
the two shores x = 0 and x = w, while the maximum stream velocity at the
center x = w/2 is (see page 79)

vc =
kw2

4
.(4)

Special River-Crossing Model. The model equation (3) using vr = kx(w−x)
and the constant k defined by (4) give the initial value problem

dy

dx
=

4vc
vbw2

x(w − x), y(0) = 0.(5)

The solution of (5) by the method of quadrature is

y =
4vc
vbw2

(
−1

3
x3 +

1

2
wx2

)
,(6)

where w is the river’s width, vc is the river’s midstream velocity and vb is the
boat’s velocity. In particular, the boat’s downstream drift on the opposite
shore is 2

3w(vc/vb). See Technical Details page 79.

Example 2.3 (River Crossing)
A boat crosses a mile-wide river at 3 miles per hour with power applied perpendicular
to the shoreline. The river’s midstream velocity is 10 miles per hour. Find the transit
time and the downstream drift to the opposite shore.

Solution: The answers, justified below, are 20 minutes and 20/9 miles.

Transit time. This is the time it takes to reach the opposite shore. The layman answer
of 20 minutes is correct, because the boat goes 3 miles in one hour, hence 1 mile in 1/3
of an hour, perpendicular to the shoreline.

Downstream drift. This is the value y(1), where y is the solution of equation (5), with
vc = 10, vb = 3, w = 1, all distances in miles. The special model is

dy

dx
=

40

3
x(1− x), y(0) = 0.

The solution given by equation (6) is y = 40
3

(
− 1

3x
3 + 1

2x
2
)
and the downstream drift is

then y(1) = 20/9 miles. This answer is 2/3 of the layman’s answer of (1/3)(10) miles.
The explanation is that the boat is pushed downstream at a variable rate from 0 to 10
miles per hour, depending on its position x.
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Details and Proofs

Proof of Theorem 2.3:

Uniqueness. Let y(x) be any solution of (1). It will be shown that y(x) is given by the
solution formula (2).

y(x) = y(0) +
∫ x

x0
y′(t)dt Fundamental theorem of calculus, page 1008.

= y0 +
∫ x

x0
F (t)dt Use (1). This verifies equation (2).

Answer Check. Let y(x) be given by solution formula (2). It will be shown that y(x)
solves initial value problem (1).

y′(x) =
(
y0 +

∫ x

x0
F (t)dt

)′
Compute the derivative from (2).

= F (x) Apply the fundamental theorem of calculus.

The initial condition is verified in a similar manner:

y(x0) = y0 +
∫ x0

x0
F (t)dt Apply (2) with x = x0.

= y0 The integral is zero:
∫ a

a
F (x)dx = 0.

■

Technical Details for (4): The maximum of a continuously differentiable function
f(x) on 0 ≤ x ≤ w can be found by locating the critical points (i.e., where f ′(x) = 0)
and then testing also the endpoints x = 0 and x = w. The derivative f ′(x) = k(w − 2x)
is zero at x = w/2. Then f(w/2) = kw2/4. This value is the maximum of f , because
f = 0 at the endpoints.

Technical Details for (6): Let a =
4vc
vbw2

. Then

y = y(0) +
∫ x

0
y′(t)dt Method of quadrature.

= 0 + a
∫ x

0
t(w − t)dt By (5), y′ = at(w − t).

= a
(
− 1

3x
3 + 1

2wx
2
)
. Integral table.

To compute the downstream drift, evaluate y(w) = a
w3

6
or y(w) =

2w

3

vc
vb

.

Exercises 2.1 �

Quadrature
Find a candidate solution for each initial
value problem and verify the solution. See
Example 2.1 and Example 2.2, page 76.

1. y′ = 4e2x, y(0) = 0.

2. y′ = 2e4x, y(0) = 0.

3. (1 + x)y′ = x, y(0) = 0.

4. (1− x)y′ = x, y(0) = 0.

5. y′ = sin 2x, y(0) = 1.

6. y′ = cos 2x, y(0) = 1.

7. y′ = xex, y(0) = 0.

8. y′ = xe−x2

, y(0) = 0.

9. y′ = tanx, y(0) = 0.

10. y′ = 1 + tan2 x, y(0) = 0.

11. (1 + x2)y′ = 1, y(0) = 0.
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2.1 Quadrature Method

12. (1 + 4x2)y′ = 1, y(0) = 0.

13. y′ = sin3 x, y(0) = 0.

14. y′ = cos3 x, y(0) = 0.

15. (1 + x)y′ = 1, y(0) = 0.

16. (2 + x)y′ = 2, y(0) = 0.

17. (2 + x)(1 + x)y′ = 2, y(0) = 0.

18. (2 + x)(3 + x)y′ = 3, y(0) = 0.

19. y′ = sinx cos 2x, y(0) = 0.

20. y′ = (1 + cos 2x) sin 2x, y(0) = 0.

River Crossing
A boat crosses a river of width w miles at vb
miles per hour with power applied perpen-
dicular to the shoreline. The river’s mid-
stream velocity is vc miles per hour. Find
the transit time and the downstream drift
to the opposite shore. See Example 2.3,
page 78, and the details for (6).

21. w = 1, vb = 4, vc = 12

22. w = 1, vb = 5, vc = 15

23. w = 1.2, vb = 3, vc = 13

24. w = 1.2, vb = 5, vc = 9

25. w = 1.5, vb = 7, vc = 16

26. w = 2, vb = 7, vc = 10

27. w = 1.6, vb = 4.5, vc = 14.7

28. w = 1.6, vb = 5.5, vc = 17

Fundamental Theorem I
Verify the identity. Use the fundamental
theorem of calculus part (b), page 75.

29.
∫ x

0
(1 + t)3dt = 1

4

(
(1 + x)4 − 1

)
.

30.
∫ x

0
(1 + t)4dt = 1

5

(
(1 + x)5 − 1

)
.

31.
∫ x

0
te−tdt = −xe−x − e−x + 1.

32.
∫ x

0
tetdt = xex − ex + 1.

Fundamental Theorem II
Differentiate. Use the fundamental theo-
rem of calculus part (b), page 75.

33.
∫ 2x

0
t2 tan(t3)dt.

34.
∫ 3x

0
t3 tan(t2)dt.

35.
∫ sin x

0
tet+t2dt.

36.
∫ sin x

0
ln(1 + t3)dt.

Fundamental Theorem III
Integrate

∫ 1

0
f(x)dx. Use the fundamen-

tal theorem of calculus part (a), page 75.
Check answers with computer or calculator
assist. Some require a clever u-substitution
or an integral table.

37. f(x) = x(x− 1)

38. f(x) = x2(x+ 1)

39. f(x) = cos(3πx/4)

40. f(x) = sin(5πx/6)

41. f(x) =
1

1 + x2

42. f(x) =
2x

1 + x4

43. f(x) = x2ex
3

44. f(x) = x(sin(x2) + ex
2

)

45. f(x) =
1√

−1 + x2

46. f(x) =
1√

1− x2

47. f(x) =
1√

1 + x2

48. f(x) =
1√

1 + 4x2

49. f(x) =
x√

1 + x2

50. f(x) =
4x√

1− 4x2

51. f(x) =
cosx

sinx

52. f(x) =
cosx

sin3 x
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53. f(x) =
ex

1 + ex

54. f(x) =
ln |x|
x

55. f(x) = sec2 x

56. f(x) = sec2 x− tan2 x

57. f(x) = csc2 x

58. f(x) = csc2 x− cot2 x

59. f(x) = cscx cotx

60. f(x) = secx tanx

Integration by Parts
Integrate

∫ 1

0
f(x)dx by parts,

∫
udv = uv−∫

vdu. Check answers with computer or
calculator assist.

61. f(x) = xex

62. f(x) = xe−x

63. f(x) = ln |x|

64. f(x) = x ln |x|

65. f(x) = x2e2x

66. f(x) = (1 + 2x)e2x

67. f(x) = x coshx

68. f(x) = x sinhx

69. f(x) = x arctan(x)

70. f(x) = x arcsin(x)

Partial Fractions
Integrate f by partial fractions. Check an-
swers with computer or calculator assist.

71. f(x) =
x+ 4

x+ 5

72. f(x) =
x− 2

x− 4

73. f(x) =
x2 + 4

(x+ 1)(x+ 2)

74. f(x) =
x(x− 1)

(x+ 1)(x+ 2)

75. f(x) =
x+ 4

(x+ 1)(x+ 2)

76. f(x) =
x− 1

(x+ 1)(x+ 2))

77. f(x) =
x+ 4

(x+ 1)(x+ 2)(x+ 5)

78. f(x) =
x(x− 1)

(x+ 1)(x+ 2)(x+ 3)

79. f(x) =
x+ 4

(x+ 1)(x+ 2)(x− 1)

80. f(x) =
x(x− 1)

(x+ 1)(x+ 2)(x− 1)

Special Methods
Integrate f by using the suggested u-
substitution or method. Check answers
with computer or calculator assist.

81. f(x) =
x2 + 2

(x+ 1)2
, u = x+ 1.

82. f(x) =
x2 + 2

(x− 1)2
, u = x− 1.

83. f(x) =
2x

(x2 + 1)3
, u = x2 + 1.

84. f(x) =
3x2

(x3 + 1)2
, u = x3 + 1.

85. f(x) =
x3 + 1

x2 + 1
, use long division.

86. f(x) =
x4 + 2

x2 + 1
, use long division.
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2.2 Separable Equations

An equation y′ = f(x, y) is called separable provided algebraic operations,
usually multiplication, division and factorization, allow it to be written in a
separable form y′ = F (x)G(y) for some functions F and G. This class includes
the quadrature equations y′ = F (x). Separable equations and associated solution
methods were discovered by G. Leibniz in 1691 and formalized by J. Bernoulli in
1694.

Finding a Separable Form

Given differential equation y′ = f(x, y), invent values x0, y0 such that f(x0, y0) ̸=
0. Define F , G by the formulas

F (x) =
f(x, y0)

f(x0, y0)
, G(y) = f(x0, y).(1)

Because f(x0, y0) ̸= 0, then (1) makes sense.

Theorem 2.4 (Separability Test)
Let F and G be defined by equation (1). Compute F (x)G(y). Then

(a) F (x)G(y) = f(x, y) implies y′ = f(x, y) is separable.

(b) F (x)G(y) ̸= f(x, y) implies y′ = f(x, y) is not separable.

Proof: Conclusion (b) follows from separability test I, infra. Conclusion (a) follows
because two functions F (x), G(y) have been defined in equation (1) such that f(x, y) =
F (x)G(y) (definition of separable equation).

Invention and Application. Initially, let (x0, y0) be (0, 0) or (1, 1) or some
suitable pair, for which f(x0, y0) ̸= 0; then define F and G by (1). Multiply F
and G to test the equation FG = f . The algebra will discover a factorization
f = F (x)G(y) without having to know algebraic tricks like factorizing multi-
variable equations. But if FG ̸= f , then the algebra proves the equation is not
separable.

Non-Separability Tests

Test I Equation y′ = f(x, y) is not separable if

f(x, y0)f(x0, y)− f(x0, y0)f(x, y) ̸= 0(2)

for some pair of points (x0, y0), (x, y) in the domain of f .
Test II The equation y′ = f(x, y) is not separable if either fx(x, y)/f(x, y)

is non-constant in y or fy(x, y)/f(x, y) is non-constant in x.

Illustration. Consider y′ = xy + y2. Test I implies it is not separable, because
f(x, 1)f(0, y) − f(0, 1)f(x, y) = (x + 1)y2 − (xy + y2) = x(y2 − y) ̸= 0. Test II
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2.2 Separable Equations

implies it is not separable, because fx/f = 1/(x+y) is not constant as a function
of y.

Test I details. Assume f(x, y) = F (x)G(y), then equation (2) fails because
each term on the left side of (2) evaluates to F (x)G(y0)F (x0)G(y) for all choices
of (x0, y0) and (x, y) (hence contradiction 0 ̸= 0).

Test II details. Assume f(x, y) = F (x)G(y) and F , G are sufficiently differen-
tiable. Then fx(x, y)/f(x, y) = F ′(x)/F (x) is independent of y and the fraction
fy(x, y)/f(x, y) = G′(y)/G(y) is independent of x.

Separated Form Test

A separated equation y′/G(y) = F (x) is recognized by this test:

Left Side Test. The left side of the equation has factor y′ and it is
independent of symbol x.

Right Side Test. The right side of the equation is independent of
symbols y and y′.

Variables-Separable Method

Determined by the method are the following kinds of solution formulas.

Equilibrium Solutions. They are the constant solutions y = c of y′ = f(x, y).
Find them by substituting y = c in y′ = f(x, y), followed by solving for c,
then report the list of answers y = c so found.

Non-Equilibrium Solutions. For separable equation y′ = F (x)G(y), it is a
solution y with G(y) ̸= 0. It is found by dividing by G(y) and applying the
method of quadrature.

The term equilibrium is borrowed from kinematics. Alternative terms are rest
solution and stationary solution; all mean y′ = 0 in calculus terms.

Spurious Solutions. If F (x)G(y) = 0 is solved instead of G(y) = 0, then
both x and y solutions might be found. The x-solutions are ignored: they are
not equilibrium solutions. Only solutions of the form y = constant are called
equilibrium solutions.

It is important to check the solution to a separable equation, because certain
steps used to arrive at the solution may not be reversible.

For most applications, the two kinds of solutions suffice to determine all possible
solutions. In general, a separable equation may have non-unique solutions to
some initial value problem. To prevent this from happening, it can be assumed
that F , G and G′ are continuous; see the Picard-Lindelöf theorem, page 68.
If non-uniqueness does occur, then often the equilibrium and non-equilibrium
solutions can be pieced together to represent all solutions.
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Finding Equilibrium Solutions

The search for equilibria can be done without finding the separable form of y′ =
f(x, y). It is enough to solve for y in the equation f(x, y) = 0, subject to the
condition that x is arbitrary. An equilibrium solution y cannot depend upon x,
because it is constant. If y turns out to depend on x, after solving f(x, y) = 0
for y, then this is sufficient evidence that y′ = f(x, y) is not separable. Some
examples:

y′ = y sin(x− y) It is not separable. The solutions of y sin(x − y) = 0 are
y = 0 and x − y = nπ for any integer n. The solution
y = x−nπ is non-constant, therefore the equation cannot
be separable.

y′ = xy(1− y2) It is separable. The equation xy(1 − y2) = 0 has three
equilibrium solutions y = 0, y = 1, y = −1. Equilibrium
solutions must be constant solutions.

Algorithm. To find equilibrium solutions, formally substitute y = c into the
differential equation, then solve for c, and report all constant solutions y = c so
found. There can be zero solutions, or just one solution, or some finite number
of solutions, or infinitely many solutions.

Shortcut. In a given problem, a formal substitution is not used, but instead y′ is
replaced by zero (the result when y = constant). For y′ = f(x, y), the equation
f(x, y) = 0 is to be solved for y. For example, y′ = (x + 1)(y2 − 4) becomes
0 = (x + 1)(y2 − 4), equivalent to y2 − 4 = 0 or y = 2, y = −2. The spurious
solution x = −1 is ignored, because we are looking for constant solutions of the
form y = c, which in this example are y = 2 and y = −2.
The problem of finding all equilibrium solutions is known to be technically un-
solvable, that is, there is no proven algorithm for finding all the solutions of
G(y) = 0. However, there are some very good numerical methods that apply,
including Newton’s method and the bisection method. Modern computer
algebra systems make it practical to find equilibrium solutions, both symbolic
(like y = π) and numeric (like y = 3.14159), in a single effort.

Finding Non-Equilibrium Solutions

A given solution y(x) satisfying G(y(x)) ̸= 0 throughout its domain of definition
is called a non-equilibrium solution. Then division by G(y(x)) is allowed in the
differential equation y′(x) = F (x)G(y(x)). The method of quadrature applies to
the separated equation y′/G(y(x)) = F (x). Some details:∫ x

x0

y′(t)dt

G(y(t))
=
∫ x
x0

F (t)dt Integrate both sides of the separated equation
over x0 ≤ t ≤ x.∫ y(x)

y0

du

G(u)
=
∫ x
x0

F (t)dt Apply on the left the change of variables u =
y(t). Define y0 = y(x0).
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2.2 Separable Equations

y(x) = W−1
(∫ x

x0
F (t)dt

)
Define W (y) =

∫ y
y0
du/G(u). Take inverses to

isolate y(x).

The calculation produces a formula which is strictly speaking a candidate solution
y. It does not prove that the formula works in the equation: checking the solution
is required.

Theoretical Inversion

The function W−1 appearing in the last step above is generally not given by a
formula. Therefore, W−1 rarely appears explicitly in applications or examples.
It is the method that is memorized:

Prepare a separable differential equation by transforming it to sep-
arated form. Then apply the method of quadrature.

The separated form y′ = F (x)G(y) is checked by the separated form test, page
83. For example, y′ = (1 + x2)y3 has F = 1 + x2 and G = y3; quadrature is
applied to the divided equation y′/y3 = 1 + x2.

The theoretical basis for using W−1 is a calculus theorem which says that a
strictly monotone continuous function has a continuous inverse. The fundamen-
tal theorem of calculus implies that W (y) is continuous with nonzero derivative
W ′(y) = 1/G(y). Therefore, W (y) is strictly monotone. The cited calculus
theorem implies that W (y) has a continuously differentiable inverse W−1.

Explicit and Implicit Solutions

The variables-separable method gives equilibrium solutions which are already
explicit, that is:

Definition 2.1 (Explicit Solution)
A solution of y′ = f(x, y) is called explicit provided it is given by an equation

y = an expression independent of y.

To elaborate, on the left side must appear exactly the symbol y followed by an
equal sign. Symbols y and = are followed by an expression which does not contain
the symbol y. Examples of explicit equations are y = 0, y = −1, y = x + 2π,
y = sinx + x2 + 10. The definition is strict, for example y + 1 = 0 is not explicit
because it fails to have y isolated left. Yes, it can be converted into an explicit
equation y = −1.

Definition 2.2 (Implicit Solution)
A solution of y′ = f(x, y) is called implicit provided it is not explicit.
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Equations like 2y = x are not explicit (they are called implicit) because the
coefficient of y on the left is not 1. Similarly, y = x + y2 is not explicit because
the right side contains symbol y. Equation y = eπ is explicit because the right
side fails to contain symbol y (symbol x may be absent). Applications can leave

the non-equilibrium solutions in implicit form
∫ y(x)
y0

du/G(u) =
∫ x
x0

F (t)dt, with
serious effort being expended to do the indicated integrations.

In special cases, it is possible to find an explicit solution from the implicit one
by algebraic methods. The required algebraic methods might appear to be un-
motivated tricks. Computer algebra systems can make this step look like science
instead of art.

Examples

Example 2.4 (Non-separable Equation)
Explain why yy′ = x− y2 is not separable.

Solution: It is tempting to try manipulations like adding y2 to both sides of the equation,
in an attempt to obtain a separable form, but every such trick fails. The failure of such
attempts is evidence that the equation is perhaps not separable. Failure of attempts
does not prove non-separability.

Test I applies to verify that the equation is not separable. Let f(x, y) = x/y − y and
choose x0 = 0, y0 = 1. Then f(x0, y0) ̸= 0. Compute as follows:

LHS = f(x, y0)f(x0, y)− f(x0, y0)f(x, y) Identity (2) left side.

= f(x, 1)f(0, y)− f(0, 1)f(x, y) Use x0 = 0, y0 = 1.

= (x− 1)(−y)− (−1)(x/y − y) Substitute f(x, y) = x/y − y.

= −xy + x/y Simplify.

This expression fails to be zero for all (x, y) (e.g., x = 1, y = 2), therefore the equation
is not separable, by Test I.

Test II also applies to verify the equation is not separable:
fx
f

=
1/y

f
= x − y2 is

non-constant in x.

Example 2.5 (Separated Form Test Failure)
Given yy′ = 1− y2, explain why the equivalent equation yy′ + y2 = 1, obtained by
adding y2 across the equation, fails the separated form test, page 83.

Solution: The test requires the left side of yy′ + y2 = 1 to contain the factor y′. It
doesn’t, so it fails the test. Yes, yy′ + y2 = 1 does pass the other checkpoints of the test:
the left side is independent of x and the right side is independent of y and y′.

Example 2.6 (Separated Equation)
Find for (x+ 1)yy′ = x− xy2 a separated equation using the test, page 83.
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2.2 Separable Equations

Solution: The equation usually reported is
yy′

(1− y)(1 + y)
=

x

x+ 1
. It is found by

factoring and division.

The given equation is factored into (1 + x)yy′ = x(1 − y)(1 + y). To pass the test, the
objective is to move all factors containing only y to the left and all factors containing only
x to the right. This is technically accomplished using division by (x+ 1)(1− y)(1 + y).

To the result of the division is applied the test on page 83: the left side contains factor
y′ and otherwise involves the factor y/(1− y2), which depends only on y; the right side
is x/(x+1), which depends only on x. In short, the candidate separated equation passes
the test.

There is another way to approach the problem, by writing the differential equation in
standard form y′ = f(x, y) where f(x, y) = x(1 − y2)/(1 + x). Then f(1, 0) = 1/2 ̸=
0. Define F (x) = f(x, 0)/f(1, 0), G(y) = f(1, y). We verify F (x)G(y) = f(x, y). A
separated form is then y′/G(y) = F (x) or 2y′/(1− y2) = 2x/(1 + x).

Example 2.7 (Equilibria)
Given y′ = x(1− y)(1 + y), find all equilibria.

Solution: The constant solutions y = −1 and y = 1 are the equilibria, as will be
justified.

Equilibria are found by substituting y = c into the differential equation y′ = x(1−y)(1+
y), which gives the equation

x(1− c)(1 + c) = 0.

The formal college algebra solutions are x = 0, c = −1 and c = 1. However, we do
not seek these college algebra answers! Equilibria are the solutions y = c such that
x(1 − c)(1 + c) = 0 for all x. The conditional for all x causes the algebra problem to
reduce to just two equations: 0 = 0 (from x = 0) and (1 − c)(1 + c) = 0 (from x ̸= 0).
We solve for c = 1 and c = −1, then report the two equilibrium solutions y = 1 and
y = −1. Spurious algebraic solutions like x = 0 can appear, which must be removed
from equilibrium solution reports.

Example 2.8 (Non-Equilibria)
Given y′ = x2(1 + y), y(0) = y0, find all non-equilibrium solutions.

Solution: The unique solution is y = (1 + y0)e
x3/3 − 1. Details follow.

The separable form y′ = F (x)G(y) is realized for F (x) = x2 and G(y) = 1 + y. Sought
are solutions with G(y) ̸= 0, or simply 1 + y ̸= 0.

y′ = x2(1 + y) Original equation.

y′

1 + y
= x2 Divide by 1 + y. Separated form found.

∫ y′

1 + y
dx =

∫
x2dx Method of quadrature.

∫ du

1 + u
=
∫
x2dx Change variables u = y(x) on the left.

ln |1 + y(x)| = x3/3 + c Evaluate integrals. Implicit solution found.
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Applications might stop at this point and report the implicit solution. This illustration
continues, to find the explicit solution y = (1 + y0)e

x3/3 − 1.

|1 + y(x)| = ex
3/3+c By definition, lnu = w means u = ew.

1 + y(x) = kex
3/3+c Drop absolute value, k = ±1.

y(x) = kex
3/3+c − 1 Candidate solution. Constants unresolved.

The initial condition y(0) = y0 is used to resolve the constants c and k. First, |1+y0| = ec

from the first equation. Second, 1 + y0 and 1 + y(x) must have the same sign (they are
never zero), so k(1 + y0) > 0. Hence, 1 + y0 = kec, which implies the solution is

y = kecex
3/3 − 1 or y = (1 + y0)e

x3/3 − 1.

Example 2.9 (Equilibria)
Given y′ = x sin(1− y) cos(1 + y), find all equilibrium solutions.

Solution: The infinite set of equilibria are justified below to be

y = 1 + nπ, y = −1 + (2n+ 1)
π

2
, n = 0,±1,±2, . . .

A separable form y′ = F (x)G(y) is verified by defining F (x) = x and G(y) = sin(1 −
y) cos(1+y). Equilibria y = c are found by solving for c in the equation G(c) = 0, which
is

sin(1− c) cos(1 + c) = 0.

This equation is satisfied when the argument of the sine is an integer multiple of π or
when the argument of the cosine is an odd integer multiple of π/2. The solutions are
c− 1 = 0,±π,±2π, . . . and 1 + c = ±π/2,±3π/2, . . ..
Multiple solutions and maple. Equations having multiple solutions may require CAS
setup. Below, the first code fragment returns two solutions, y = 1 and y = −1 + π/2.
The second returns all solutions.

# The default returns two solutions

G:=y->sin(1-y)*cos(1+y):

solve(G(y)=0,y);

# Special setup returns all solutions

_EnvAllSolutions := true:

G:=y->sin(1-y)*cos(1+y):

solve(G(y)=0,y);

Example 2.10 (Non-Equilibria)
Given y′ = x2 sin(y), y(0) = y0, justify that all non-equilibrium solutions are given
by2

y = 2Arctan
(
tan(y0/2)e

x3/3
)
+ 2nπ.

Solution: A separable form y′ = F (x)G(y) is defined by F (x) = x2 and G(y) = sin(y).
A non-equilibrium solution will satisfy G(y) ̸= 0, or simply sin(y) ̸= 0. Define n by
y0/2 = Arctan(tan(y0/2)) + nπ, where |Arctan(u)| < π/2. Then

2While θ = arctanu gives any angle, θ = Arctan(u) gives |θ| < π/2.
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y′ = x2 sin(y) The original equation.

csc(y)y′ = x2 Separated form. Divided by sin(y) ̸= 0.∫
csc(y)y′dx =

∫
x2dx Quadrature using indefinite integrals.∫

csc(u)du =
∫
x2dx Change variables u = y(x) on the left.

ln | csc y(x)− cot y(x)| = 1
3x

3 + c Integral tables. Implicit solution found.

Trigonometric Identity. Integral tables make use of the identity tan(y/2) = csc y −
cot y, which is derived from the relations 2θ = y, 1−cos 2θ = 2 sin2 θ, sin 2θ = 2 sin θ cos θ.
Tables offer an alternate answer for the last integral above, ln | tan(y/2)|.
The solution obtained at this stage is called an implicit solution, because y has not been
isolated. It is possible to solve for y in terms of x, an explicit solution. The details:

| csc y − cot y| = ex
3/3+c By definition, lnu = w means u = ew.

csc y − cot y = kex
3/3+c Assign k = ±1 to drop absolute values.

1− cos y

sin y
= kex

3/3+c Then k has the same sign as sin(y), because 1−
cos y ≥ 0.

tan(y/2) = kex
3/3+c Use tan(y/2) = csc y − cot y.

y = 2Arctan
(
kex

3/3+c
)
+ 2nπ Candidate solution, n = 0,±1,±2, . . .

Resolving the Constants. Constants c and k are uniquely resolved for a given initial
condition y(0) = y0. Values x = 0 and y = y0 determine constant c by the equation
tan(y0/2) = kec (two equations back). The condition k sin(y0) > 0 determines k, because
sin y0 and sin y have identical signs. If n is defined by y0/2 = Arctan(tan(y0/2)) + nπ
and K = kec = tan(y0/2), then the explicit solution is

y = 2Arctan
(
Kex

3/3
)
+ 2nπ, K = tan(y0/2).

Trigonometric identities and maple. Using the identity csc y − cot y = tan(y/2),
maple finds the same relation. Complications occur without it.

_EnvAllSolutions := true:

solve(csc(y)-cot(y)=k*exp(x^3/3+c),y);

solve(tan(y/2)=k*exp(x^3/3+c),y);

Example 2.11 (Independent of x)
Solve y′ = y(1− ln y), y(0) = y0.

Solution: There is just one equilibrium solution y = e ≈ 2.718. Not included is y = 0,
because y(1− ln y) is undefined for y ≤ 0. Details appear below for the explicit solution
(which includes y = e)

y = e1− (1− ln y0)e
−x

.

An equation y′ = f(x, y) independent of x has the form y′ = F (x)G(y) where F (x) = 1.
Divide by G(y) to obtain a separated form y′/G(y) = 1. In the present case, G(y) =
y(1− ln y) is defined for y > 0. To require G(y) ̸= 0 means y > 0, y ̸= e. Non-equilibrium
solutions will satisfy y > 0 and y ̸= e.
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y′

y(1− ln y)
= 1 Separated form. Assume y > 0 and y ̸= e.

∫ y′

y(1− ln y)
dx =

∫
dx Method of quadrature.

∫ −du
u

=
∫
dx Substitute u = 1 − ln y on the left. Chain rule (ln y)′ =

y′/y applied; du = −y′dx/y.
− ln |1− ln y(x)| = x+ c Evaluate the integral using u = 1− ln y. Implicit solution

found.

The remainder of the solution contains college algebra details, to find from the implicit
solution all explicit solutions y.

|1− ln y(x)| = e−x−c Use lnu = w equivalent to u = ew.

1− ln y(x) = ke−x−c Drop absolute value, k = ±1.
ln y(x) = 1− ke−x−c Solved for ln y.

y(x) = e1− ke−x−c
Candidate solution; c and k unresolved.

To resolve the constants, start with y0 > 0 and y0 ̸= e. To determine k, use the
requirement G(y) ̸= 0 to deduce that k(1− ln y(x)) > 0. At x = 0, it means k|1− ln y0| =
1− ln y0. Then k = 1 for 0 < y0 < e and k = −1 otherwise.

Let y = y0, x = 0 to determine c through the equation |1 − ln y0| = e−c. Combining
with the value of k gives 1− ln y0 = ke−c.

Assembling the answers for k and c produces the relations

y = e1− ke−x−c
Candidate solution.

= e1− ke−ce−x
Exponential rule ea+b = eaeb.

= e1− (1− ln y0)e
−x

Explicit solution. Used ke−c = 1− ln y0.

Even though the solution has been found through legal methods, it remains to verify the
solution. See the exercises.

Exercises 2.2 �

Separated Form Test
Test the given equation by the separated
form test on page 83.

Report whether or not the equation passes
or fails, as written. In this test, algebraic
operations on the equation are disallowed.
See Examples 2.4 and 2.5, page 86.

1. y′ = 2

2. y′ = x

3. y′ + y = 2

4. y′ + 2y = x

5. yy′ = 2− x

6. 2yy′ = x+ x2

7. yy′ + sin(y′) = 2− x

8. 2yy′ + cos(y) = x

9. 2yy′ = y′ cos(y) + x

10. (2y + tan(y))y′ = x

Separated Equation
Determine the separated form y′/G(y) =
F (x) for the given separable equation. See
Example 2.6, page 86.
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11. (1 + x)y′ = 2 + y

12. (1 + y)y′ = xy

13. y′ =
x+ xy

(x+ 1)2 − 1

14. y′ = sin(x)
1 + y

(x+ 2)2 − 4

15. xy′ = y sin(y) cos(x)

16. x2y′ = y cos(y) tan(x)

17. y2(x− y)y′ =
x2 − y2

x+ y

18. xy2(x+ y)y′ =
y2 − x2

x− y

19. xy2y′ =
y − x

x− y

20. xy2y′ =
x2 − xy

x− y

Equilibrium solutions
Determine the equilibria for the given equa-
tion. See Examples 2.7 and 2.9.

21. y′ = xy(1 + y)

22. xy′ = y(1− y)

23. y′ =
1 + y

1− y

24. xy′ =
y(1− y)

1 + y

25. y′ = (1 + x) tan(y)

26. y′ = y(1 + ln y)

27. y′ = xey(1 + y)

28. xy′ = ey(1− y)

29. xy′ = ey(1− y2)(1 + y)3

30. xy′ = ey(1− y3)(1 + y3)

Non-Equilibrium Solutions
Find the non-equilibrium solutions for the
given separable equation. See Examples 2.8
and 2.10 for details.

31. y′ = (xy)1/3, y(0) = y0.

32. y′ = (xy)1/5, y(0) = y0.

33. y′ = 1 + x− y − xy, y(0) = y0.

34. y′ = 1 + x+ 2y + 2xy, y(0) = y0.

35. y′ =
(x+ 1)y3

x2(y3 − y)
, y(1) = y0 ̸= 0.

36. y′ =
(x− 1)y2

x3(y3 + y)
, y(0) = y0.

37. 2yy′ = x(1− y2)

38. 2yy′ = x(1 + y2)

39. (1 + x)y′ = 1− y

40. (1− x)y′ = 1 + y, y(0) = y0.

41. tan(x)y′ = y, y(π/2) = y0.

42. tan(x)y′ = 1 + y, y(π/2) = y0.

43.
√
xy′ = cos2(y), y(1) = y0.

44.
√
1− xy′ = sin2(y), y(0) = y0.

45.
√
x2 − 16yy′ = x, y(5) = y0.

46.
√

x2 − 1yy′ = x, y(2) = y0.

47. y′ = x2(1 + y2), y(0) = 1.

48. (1− x)y′ = x(1 + y2), y(0) = 1.

Independent of x
Solve the given equation, finding all solu-
tions. See Example 2.11.

49. y′ = sin y, y(0) = y0.

50. y′ = cos y, y(0) = y0.

51. y′ = y(1 + ln y), y(0) = y0.

52. y′ = y(2 + ln y), y(0) = y0.

53. y′ = y(y − 1)(y − 2), y(0) = y0.

54. y′ = y(y − 1)(y + 1), y(0) = y0.

55. y′ = y2 + 2y + 5, y(0) = y0.

56. y′ = y2 + 2y + 7, y(0) = y0.
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Details in the Examples
Collected here are verifications for details
in the examples.

57. (Example 2.7) The equation x(1 −
y)(1+y) = 0 was solved in the example,
but x = 0 was ignored, and only y = −1
and y = 1 were reported. Why?

58. (Example 2.8) An absolute value
equation |u| = w was replaced by u =
kw where k = ±1. Justify the replace-
ment using the definition |u| = u for
u ≥ 0, |u| = −u for u < 0.

59. (Example 2.8) Verify directly that y =

(1+ y0)e
x3/3 − 1 solves the initial value

problem y′ = x2(1 + y), y(0) = y0.

60. (Example 2.9) The relation y = 1 +

nπ, n = 0,±1,±2, . . . describes the list
. . . , 1−π, 1, 1+π, . . .. Write the list for
the relation y = −1 + (2n+ 1)π2 .

61. (Example 2.9) Solve sin(u) = 0 and
cos(v) = 0 for u and v. Supply graphs
which show why there are infinity many
solutions.

62. (Example 2.10) Explain why y0/2
does not equal Arctan(tan(y0/2)). Give
a calculator example.

63. (Example 2.10) Establish the identity
tan(y/2) = csc y − cot y.

64. (Example 2.11) Let y0 > 0. Verify

that y = e1− (1− ln y0)e
−x

solves

y′ = y(1− ln y), y(0) = y0.
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2.3 Linear Equations

Definition 2.3 (Linear Differential Equation)
An equation y′ = f(x, y) is called first-order linear or a linear equation provided
functions p(x) and r(x) can be defined to re-write the equation in the standard
form

y′ + p(x)y = r(x).(1)

In most applications, p and r are assumed to be continuous. Function p(x) is
called the coefficient of y. Function r(x) (r abbreviates right side) is called the
non-homogeneous term or the forcing term. Engineering texts call r(x) the
input and the solution y(x) the output.

In examples, a linear equation is identified by matching:

dy

dx
+

(
p(x), an expression
independent of y

)
y =

(
r(x), another expression
independent of y

)
.

Calculus Test:

An equation y′ = f(x, y) with f continuously differentiable is linear

provided
∂f(x, y)

∂y
is independent of y.

If the test is passed, then standard linear form (1) is obtained by defining r(x) =
f(x, 0) and p(x) = −∂f/∂y(x, y). A brief calculation verifies this statement.

Key Examples

L
dI

dt
+RI = E The LR-circuit equation. Symbols L, R and E are respec-

tively inductance, resistance and electromotive force, while
I(t) = current in amperes and t = time. 1

du

dt
= −h(u− u1) Newton’s cooling equation. In the roast model, the oven

temperature is u1 and the meat thermometer reading is u(t),
with t = time. 2

Notes.
1 Linear equation y′ + p(x)y = r(x) is realized with symbols y, x, p, r under-
going name changes. Define x = t, y = I, p(x) = R/L, r(x) = E/L.
2 Linear equation y′ + p(x)y = r(x) is realized by re-defining symbols y, x, p,

r. Start with the equation re-arranged algebraically to
du

dt
+ hu = hu1. Define

x = t, y = u, p(x) = h, r(x) = hu1.
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Homogeneous Equation y′ + p(x)y = 0

Homogeneous equations y′ + p(x)y = 0 occur in applications devoid of external
forces, like an LR-circuit with no battery in the circuit. Justified on page 101 is
the fundamental result for such systems. See also the proof of Theorem 2.5 (a).

The general solution of
dy

dx
+ p(x)y = 0 is the fraction

y(x) =
constant

integrating factor
=

c

W (x)

where integrating factor W (x) is defined by the equation

W (x) = e
∫
p(x)dx.

An Illustration. The LR-circuit equation
dI

dt
+ 2I = 0 is the model equation

y′ + p(x)y = 0 with p(x) = 2. Then W (x) = e
∫
2dx = e2x, with integration

constant set to zero. The general solution of y′ + 2y = 0 is given by

y =
c

W (x)
=

c

e2x
= ce−2x.

The current is I(t) = c e−2t, by the variable swap x→ t, y → I.

Definition 2.4 (Integrating Factor)
An integrating factor W (x) for equation y′ + p(x)y = r(x) is

W (x) = e
∫
p(x)dx.

Lemma 2.1 (Integrating Factor Identity)
The integrating factor W (x) satisfies the differential equation

W ′(x) = p(x)W (x).

Lemma Details. Write W = eu where u =
∫
p(x)dx. By the fundamental

theorem of calculus, u′ = p(x) = the integrand. Then the chain rule implies
W ′ = u′eu = u′W = pW .

A Shortcut. Factor W (x) is generally expressed as a simplified expression,
with integration constant set to zero and absolute value symbols removed. See
the exercises for details about this simplification. For instance, integration in
the special case p(x) = 2 formally gives

∫
p(x)dx =

∫
2dx = 2x + c1. Then the

integrating factor becomes W (x) = e
∫
2dx = e2x+c1 = e2xec1 . Fraction c/W (x)

equals c2/e
2x, where c2 = c/ec1 . The lesson is that we could have chosen c1 = 0 to

produce the same fraction. This is a shortcut, recognized as such, but it applies
in examples to save effort.

94



2.3 Linear Equations

Non-Homogeneous Equation y′ + p(x)y = r(x)

Definition 2.5 (Homogeneous and Particular Solution)
LetW (x) be an integrating factor constructed for y′+p(x)y = r(x), that is, W (x) =
eu, where u =

∫
p(x)dx is an antiderivative of p(x).

Symbol yh, called the homogeneous solution, is defined by the expression

yh(x) =
c

W (x)
.

Symbol yp, called a particular solution, is defined by the expression

yp(x) =

∫
r(x)W (x)dx

W (x)

Theorem 2.5 (Homogeneous and Particular Solutions)
(a) Expression yh(x) is a solution of the homogeneous differential equation y′ +
p(x)y = 0.

(b) Expression yp(x) is a solution of the non-homogeneous differential equation
y′ + p(x)y = r(x).

Proof:
(a) Define y = c/W . We prove y′ + py = 0. Formula y = c/W implies (yW )′ = (c)′ = 0.
The product rule and the Lemma imply (yW )′ = y′W + yW ′ = y′W + y(pW ) = (y′ +
py)W . Then (yW )′ = 0 implies y′ + py = 0. The proof is complete.

(b) We prove y′ + py = r when y is replaced by the fraction yp. Define C(x) =∫
r(x)W (x)dx, so that y = C(x)/W (x). The fundamental theorem of calculus im-

plies C ′(x) = r(x)W (x). The product rule and the Lemma imply C ′ = (yW )′ =
y′W + yW ′ = y′W + ypW = (y′ + py)W . Competition between the two equations
for C ′ gives rW = (y′ + py)W ). Cancel W to obtain r = y′ + py. ■

Historical Note. The formula for yp(x) has the historical name variation
of constants or variation of parameters. Both yh and yp have the same
form C/W , with C(x) constant for yh and C(x) equal to a function of x for yp:
variation of constant c in yh produces the expression for yp.

Experimental Viewpoint. The particular solution yp depends on the forcing
term r(x), but the homogeneous solution yh does not. Experimentalists view the
computation of yp as a single experiment in which the state yp is determined by
the forcing term r(x) and zero initial data y = 0 at x = x0. This particular
experimental solution y∗p is given by the definite integral formula

y∗p(x) =
1

W (x)

∫ x

x0

r(x)W (x)dx.(2)

Superposition. The sum of constant multiples of solutions to y′ + p(x)y = 0 is
again a solution. The next two theorems are superposition for y′+p(x)y = r(x).
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Theorem 2.6 (General Solution = Homogeneous + Particular)
Assume p(x) and r(x) are continuous on a < x < b and a < x0 < b. Let y be
a solution of y′ + p(x)y = r(x) on a < x < b. Then y can be decomposed as
y = yh + yp.

In short, a linear equation has the solution structure homogeneous plus particular.

The constant c in formula yh and the integration constant in
∫
W (x)rx)dx can

always be selected to satisfy initial condition y(x0) = y0.

Theorem 2.7 (Difference of Solutions = Homogeneous Solution)
Assume p(x) and r(x) are continuous on a < x < b and a < x0 < b. Let y1 and y2
be two solutions of y′ + p(x)y = r(x) on a < x < b. Then y = y1 − y2 is a solution
of the homogeneous differential equation

y′ + p(x)y = 0.

In short, any two solutions of the non-homogeneous equation differ by some solution
yh of the homogeneous equation.

Integrating Factor Method

The technique called the method of integrating factors uses the replacement
rule (justified on page 101)

Fraction
(YW )′

W
replaces Y ′ + p(x)Y, where W = e

∫
p(x)dx.(3)

The fraction (YW )′/W is called the integrating factor fraction.

The Integrating Factor Method

Standard
Form

Rewrite y′ = f(x, y) in the form y′ + p(x)y = r(x) where p, r
are continuous. The method applies only in case this is possible.

Find W Find a simplified formula for W = e
∫
p(x)dx. The antiderivative∫

p(x)dx can be chosen conveniently.

Prepare for
Quadrature

Obtain the new equation
(yW )′

W
= r by replacing the left side

of y′ + p(x)y = r(x) by equivalence (3).

Method of
Quadrature

Clear fractions to obtain (yW )′ = rW . Apply the method of
quadrature to get yW =

∫
r(x)W (x)dx+ C. Divide by W to

isolate the explicit solution y(x).

In identity (3), functions p, Y and Y ′ are assumed continuous with p and Y
arbitrary functions. Equation (3) is central to the method, because it collapses the
two terms y′+py into a single term (Wy)′/W ; the method of quadrature applies
to (Wy)′ = rW . The literature calls the exponential factor W an integrating
factor and equivalence (3) a factorization of Y ′ + p(x)Y .
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Simplifying an Integrating Factor

Factor W is simplified by dropping constants of integration. To illustrate, if
p(x) = 1/x, then

∫
p(x)dx = ln |x| + C. The algebra rule eA+B = eAeB implies

that W = eCeln |x| = |x|eC = (±eC)x, because |x| = (±)x. Let c1 = ±eC .
Then W = c1W1 where W1 = x. The fraction (Wy)′/W reduces to (W1y)

′/W1,
because c1 cancels. In an application, we choose the simpler expression W1. The
illustration shows that exponentials in W can sometimes be eliminated.

Variation of Constants and y′ + p(x)y = r(x)

Every solution of y′ + p(x)y = r(x) can be expressed as y = yh + yp, by choosing
constants appropriately. The classical variation of constants formula puts
initial condition zero on yp and compresses all initial data into the constant c
appearing in yh. The general solution is given by

y(x) =
y(x0)

W (x)
+

∫ x
x0

r(x)W (x)dx

W (x)
, W (x) = e

∫ x
x0

p(s)ds
(4)

Classifying Linear and Non-Linear Equations

Definition 2.6 (Non-linear Differential Equation)
An equation y′ = f(x, y) that fails to be linear is called non-linear.

Algebraic Complexity. A linear equation y′ = f(x, y) may appear to be non-
linear, e.g., y′ = (sin2(xy) + cos2(xy))y simplifies to y′ = y.

Computer Algebra System. These systems classify an equation y′ = f(x, y)
as linear provided the identity f(x, y) = f(x, 0)+fy(x, 0)y is valid. Equivalently,
f(x, y) = r(x)− p(x)y, where r(x) = f(x, 0) and p(x) = −fy(x, y).
Hand verification can use the same method. To illustrate, consider y′ = f(x, y)
with f(x, y) = (x − y)(x + y) + y(y − 2x). Compute f(x, 0) = x2, fy(x, 0) =
−2x. Because fy is independent of y, then y′ = f(x, y) is the linear equation
y′ + p(x)y = r(x) with p(x) = 2x, r(x) = x2.

Non-Linear Equation Tests. Elimination of an equation y′ = f(x, y) from
the class of linear equations can be done from necessary conditions. The equality
fy(x, y) = fy(x, 0) implies two such conditions:

1. If fy(x, y) depends on y, then y′ = f(x, y) is not linear.

2. If fyy(x, y) ̸= 0, then y′ = f(x, y) is not linear.

For instance, either condition implies y′ = 1 + y2 is not linear.
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Special Linear Equations

There are fast ways to solve certain linear differential equations that do not
employ the linear integrating factor method.

Theorem 2.8 (Solving a Homogeneous Equation)
Assume p(x) is continuous on a < x < b. Then the solution of the homogeneous
differential equation y′ + p(x)y = 0 is given by the formula

y(x) =
constant

integrating factor
.(5)

Theorem 2.9 (Solving a Constant-Coefficient Equation)
Assume p(x) and r(x) are constants p, r with p ̸= 0. Then the solution of the
constant-coefficient differential equation y′ + py = r is given by the formula

y(x) =
constant

integrating factor
+ equilibrium solution

= ce−px +
r

p
.

(6)

Proof: The homogeneous solution is a constant divided by the integrating factor, by
Theorem 2.8. An equilibrium solution can be found by formally setting y′ = 0, then
solving for y = r/p. By superposition Theorem 2.6, the solution y must be the sum of
these two solutions. The excluded case p = 0 results in a quadrature equation y′ = r
which is routinely solved by the method of quadrature.

Examples

Example 2.12 (Shortcut: Homogeneous Equation)

Solve the homogeneous equation 2y′ + x2y = 0.

Solution: By Theorem (2.8), the solution is a constant divided by the integrating factor.
First, divide by 2 to get y′ + p(x)y = 0 with p(x) = 1

2x
2. Then

∫
p(x)dx = x3/6 + c

implies W = ex
3/6 is an integrating factor. The solution is y =

c

ex3/6
.

Example 2.13 (Shortcut: Constant-Coefficient Equation)

Solve the non-homogeneous constant-coefficient equation 2y′ − 5y = −1.

Solution: The method described here only works for first order constant coefficient
differential equations. If y′ = f(x, y) is not linear or it fails to have constant coefficients,
then the method fails.

The solution has two steps:
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(1) Find the solution yh of the homogeneous equation 2y′ − 5y = 0.
The answer is a constant divided by the integrating factor, which is y =

c

e−5x/2
. First divide the equation by 2 to obtain the standard form y′ +

(−5/2)y = 0. Identify p(x) = −5/2, then
∫
p(x)dx = −5x/2 + c and finally

W = e−5x/2 is the integrating factor. The answer is yh = c/W = ce5x/2.

(2) Find an equilibrium solution yp for 2y′ − 5y = −1.
This answer is found by formally replacing y′ by zero. Then yp = 1

5 .

The answer is the sum of the answers from (1) and (2), by superposition, giving

y = yh + yp = ce5x/2 +
1

5
.

The method of this example is called the superposition method shortcut.

Example 2.14 (Integrating Factor Method)

Solve 2y′ + 6y = e−x.

Solution: The solution is y = 1
4e

−x+ ce−3x. An answer check appears in Example 2.16.
The details:

y′ + 3y = 0.5e−x Divide by 2 to get the standard form.

W = e3x Find the integrating factor W = e
∫
3dx.(

e3xy
)′

e3x
= 0.5e−x Replace the LHS of y′ + 3y = 0.5e−x by the

integrating factor quotient; see page 96.(
e3xy

)′
= 0.5e2x Clear fractions. Prepared for quadrature

e3xy = 0.5
∫
e2xdx Method of quadrature applied.

y = 0.5
(
e2x/2 + c1

)
e−3x Evaluate the integral. Divide by W = e3x.

= 1
4e

−x + ce−3x Final answer, c = 0.5c1.

Example 2.15 (Superposition)

Find a particular solution of y′ + 2y = 3ex with fewest terms.

Solution: The answer is y = ex. The first step solves the equation using the integrating
factor method, giving y = ex + ce−2x; details below. A particular solution with fewest
terms, y = ex, is found by setting c = 0.

Integrating factor method details:

y′ + 2y = 3ex The standard form.

W = e2x Find the integrating factor W = e
∫
2dx.(

e2xy
)′

e2x
= 3ex Integrating factor identity applied to y′ + 2y = 3ex.

e2xy = 3
∫
e3xdx Clear fractions and apply quadrature.

y =
(
e3x + c

)
e−2x Evaluate the integral. Isolate y.
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= ex + ce−2x Solution found.

Remarks on Integral Formula (2). Computer algebra systems will compute the
solution y∗p = ex−e3x0e−2x of equation (2). It has an extra term because of the condition
y = 0 at x = x0. The shortest particular solution ex and the integral formula solution
y∗p differ by a homogeneous solution c1e

−2x, where c1 = e3x0 . To shorten y∗p to yp = ex

requires knowing the homogeneous solution, then apply superposition y = yp + yh to
extract a particular solution.

Example 2.16 (Answer Check)
Show the answer check details for 2y′ + 6y = e−x and candidate solution y =
1
4e

−x + ce−3x.

Solution: Details:

LHS = 2y′ + 6y Left side of the equation 2y′+6y =
e−x.

= 2(− 1
4e

−x − 3ce−3x) + 6( 14e
−x + ce−3x) Substitute for y.

= e−x + 0 Simplify terms.

= RHS DE verified.

Example 2.17 (Finding yh and yp)

Find the homogeneous solution yh and a particular solution yp for the equation
2xy′ + y = 4x2 on x > 0.

Solution: The solution by the integrating factor method is y = 0.8x2 + cx−1/2; details
below. Then yh = cx−1/2 and yp = 0.8x2 give y = yh + yp.

The symbol yp stands for any particular solution. It should be free of any arbitrary
constants c.

Integral formula (2) gives a particular solution y∗p = 0.8x2−0.8x
5/2
0 x−1/2. It differs from

the shortest particular solution 0.8x2 by a homogeneous solution Kx−1/2.

Integrating factor method details:

y′ + 0.5y/x = 2x Standard form. Divided by 2x.

p(x) = 0.5/x Identify coefficient of y.
Then

∫
p(x)dx = 0.5 ln |x|+ c.

W = e0.5 ln |x|+c The integrating factor is W = e
∫
p.

W = e0.5 ln |x| Choose integration constant zero.

= |x|1/2 Used lnun = n lnu. Simplified W found.(
x1/2y

)′
x1/2

= 2x Integrating factor identity applied on the left.
Assumed x > 0.

x1/2y = 2
∫
x3/2dx Clear fractions. Apply quadrature.

y =
(
4x5/2/5 + c

)
x−1/2 Evaluate the integral. Divide to isolate y.

= 4
5x

2 + cx−1/2 Solution found.
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Example 2.18 (Classification)
Classify the equation y′ = x+ ln (xey) as linear or non-linear.

Solution: It’s linear, with standard linear form y′ + (−1)y = x+ lnx. To explain why,
the term ln (xey) on the right expands into lnx + ln ey, which in turn is lnx + y, using
logarithm rules. Because ey > 0, then ln(xey) makes sense for only x > 0. Henceforth,
assume x > 0.

Computer algebra test f(x, y) = f(x, 0)+fy(x, 0)y. Expected is LHS−RHS = 0 after
simplification. This example produced ln ey − y instead of 0, evidence that limitations
may exist.

assume(x>0):

f:=(x,y)->x+ln(x*exp(y)):

LHS:=f(x,y):

RHS:=f(x,0)+subs(y=0,diff(f(x,y),y))*y:

simplify(LHS-RHS);

If the test passes, then y′ = f(x, y) becomes y′ = f(x, 0)+ fy(x, 0)y. This example gives
y′ = x+ lnx+ y, which converts to the standard linear form y′ + (−1)y = x+ lnx.

Details and Proofs

Justification of Homogeneous Solution y =
c

W (x)
:

Because W = e
∫
p(x)dx, then W ′ = p(x)W by the Fundamental Theorem of Calculus.

Then (eu)
′
= u′eu implies:

dy

dx
+ p(x)y =

−cW ′

W 2 +
cp(x)

W
=
−cp(x)W

W 2 +
cp(x)

W
= 0

Justification of Factorization (3): It is assumed that Y (x) is a given but otherwise
arbitrary differentiable function. Equation (3) will be justified in its fraction-free form(

Y eP
)′

= (Y ′ + pY ) eP, P(x) =

∫
p(x)dx.(7)

LHS =
(
Y eP

)′
The left side of equation (7).

= Y ′eP +
(
eP
)′

Y Apply the product rule (uv)′ = u′v + uv′.

= Y ′eP + pePY Use the chain rule (eu)′ = u′eu and P′ = p.

= (Y ′ + pY ) eP The common factor is eP.

= RHS The right hand side of equation (7).

Justification of Formula (4):

Existence. Because the formula is y = yh+yp for particular values of c and the constant
of integration, then y is a solution by superposition Theorem (2.6) and existence Theorem
(2.5).
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Uniqueness. It remains to show that the solution given by (4) is the only solution.
Start by assuming Y is another, subtract them to obtain u = y − Y . Then u′ + pu = 0,
u(x0) = 0. To show y ≡ Y , it suffices to show u ≡ 0.

According to the integrating factor method, the equation u′ + pu = 0 is equivalent to
(uW )′ = 0. Integrate (uW )′ = 0 from x0 to x, giving u(x)W (x) = u(x0)W (x0). Since
u(x0) = 0 and W (x) ̸= 0, it follows that u(x) = 0 for all x. ■

About Picard’s Theorem. The Picard-Lindelöf theorem, page 68, implies existence-
uniqueness, but only on a smaller interval, and furthermore it supplies no practical
formula for the solution. Formula (4) is therefore an improvement over the results ob-
tainable from the general theory.

Exercises 2.3 �

Integrating Factor Method
Apply the integrating factor method, page
96, to solve the given linear equation. See
the examples starting on page 99 for de-
tails.

1. y′ + y = e−x

2. y′ + y = e−2x

3. 2y′ + y = e−x

4. 2y′ + y = e−2x

5. 2y′ + y = 1

6. 3y′ + 2y = 2

7. 2xy′ + y = x

8. 3xy′ + y = 3x

9. y′ + 2y = e2x

10. 2y′ + y = 2ex/2

11. y′ + 2y = e−2x

12. y′ + 4y = e−4x

13. 2y′ + y = e−x

14. 2y′ + y = e−2x

15. 4y′ + y = 1

16. 4y′ + 2y = 3

17. 2xy′ + y = 2x

18. 3xy′ + y = 4x

19. y′ + 2y = e−x

20. 2y′ + y = 2e−x

Superposition
Find a particular solution with fewest
terms. See Example 2.15, page 99.

21. 3y′ = x

22. 3y′ = 2x

23. y′ + y = 1

24. y′ + 2y = 2

25. 2y′ + y = 1

26. 3y′ + 2y = 1

27. y′ − y = ex

28. y′ − y = xex

29. xy′ + y = sinx (x > 0)

30. xy′ + y = cosx (x > 0)

31. y′ + y = x− x2

32. y′ + y = x+ x2

General Solution
Find yh and a particular solution yp. Re-
port the general solution y = yh + yp. See
Example 2.17, page 100.

33. y′ + y = 1

34. xy′ + y = 2

35. y′ + y = x

36. xy′ + y = 2x
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37. y′ − y = x+ 1

38. xy′ − y = 2x− 1

39. 2xy′ + y = 2x2 (x > 0)

40. xy′ + y = 2x2 (x > 0)

Classification
Classify as linear or non-linear. Use the test
f(x, y) = f(x, 0)+fy(x, 0)y and a computer
algebra system, when available, to check
the answer. See Example 2.18, page 101.

41. y′ = 1 + 2y2

42. y′ = 1 + 2y3

43. yy′ = (1 + x) ln ey

44. yy′ = (1 + x) (ln ey)
2

45. y′ sec2 y = 1 + tan2 y

46. y′ = cos2(xy) + sin2(xy)

47. y′(1 + y) = xy

48. y′ = y(1 + y)

49. xy′ = (x+ 1)y − xeln y

50. 2xy′ = (2x+ 1)y − xye− ln y

Shortcuts
Apply theorems for the homogeneous equa-
tion y′ + p(x)y = 0 or for constant coef-
ficient equations y′ + py = r. Solutions
should be done without paper or pencil,
then write the answer and check it.

51. y′ − 5y = −1

52. 3y′ − 5y = −1

53. 2y′ + xy = 0

54. 3y′ − x2y = 0

55. y′ = 3x4y

56. y′ = (1 + x2)y

57. πy′ − π2y = −e2

58. e2y′ + e3y = π2

59. xy′ = (1 + x2)y

60. exy′ = (1 + e2x)y

Proofs and Details

61. Prove directly without appeal to The-
orem 2.6 that the difference of two solu-
tions of y′+p(x)y = r(x) is a solution of
the homogeneous equation y′+ p(x)y =
0.

62. Prove that y∗p given by equation (2)
and yp = W−1

∫
r(x)W (x)dx given in

the integrating factor method are re-
lated by yp = y∗p + yh for some solution
yh of the homogeneous equation.

63. The equation y′ = r with r constant
can be solved by quadrature, without
pencil and paper. Find y.

64. The equation y′ = r(x) with r(x) con-
tinuous can be solved by quadrature.
Find a formula for y.
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2.4 Undetermined Coefficients

Studied here is the subject of undetermined coefficients for linear first order
differential equations y′ + p(x)y = r(x). It finds a particular solution yp without
the integration steps present in variation of parameters (reviewed in an example
and in exercises). The requirements and limitations:

1. Coefficient p(x) of y′ + p(x)y = r(x) is constant.

2. The function r(x) is a sum of constants times Euler solution
atoms (defined below).

Definition 2.7 (Euler Solution Atom)
An Euler base atom is a term having one of the forms

1, eax, cos bx, sin bx, eax cos bx or eax sin bx.

The symbols a and b are real constants, with a ̸= 0 and b > 0.

An Euler solution atom equals xn(Euler base atom). Symbol n ≥ 0 is an integer.

Examples. The terms x3, x cos 2x, sinx, e−x, x6e−πx are Euler atoms. Con-
versely, if r(x) = 4 sinx + 5xex, then split the sum into terms and drop the
coefficients 4 and 5 to identify Euler atoms sinx and xex; then r(x) is a sum of
constants times Euler solution atoms.

The Method

1. Repeatedly differentiate the Euler atoms in r(x) until no new atoms appear.
Multiply the distinct atoms so found by undetermined coefficients d1, . . . ,
dk, then add to define a trial solution y.

2. Correction rule: if solution e−px of y′ + py = 0 appears in trial solution y,
then replace in y matching Euler atoms e−px, xe−px, . . . by xe−px, x2e−px,
. . . (other Euler atoms in y are unchanged). The modified expression y is
called the corrected trial solution.

3. Substitute y into the differential equation y′+py = r(x). Match coefficients
of Euler atoms left and right to write out linear algebraic equations for the
undetermined coefficients d1, . . . , dk.

4. Solve the equations. The trial solution y with evaluated coefficients d1, . . . ,
dk becomes the particular solution yp.

Undetermined Coefficients Illustrated

Solve
y′ + 2y = xex + 2x+ 1 + 3 sinx.
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Solution:
Test Applicability. The right side r(x) = xex + 2x + 1 + 3 sinx is a sum of terms
constructed from the Euler atoms xex, x, 1, sinx. The left side is y′ + p(x)y with
p(x) = 2, a constant. Therefore, the method of undetermined coefficients applies to find
yp.

Trial Solution. The atoms of r(x) are subjected to differentiation. The distinct Euler
atoms so found are 1, x, ex, xex, cosx, sinx (split terms and drop coefficients to identify
new atoms). Because the solution e−2x of y′+2y = 0 does not appear in the list of atoms,
then the correction rule does not apply. The corrected trial solution is the expression

y = d1(1) + d2(x) + d3(e
x) + d4(xe

x) + d5(cosx) + d6(sinx).

Equations for Undetermined Coefficients. To substitute the trial solution y into
y′ + 2y requires a formula for y′:

y′ = d2 + d3e
x + d4xe

x + d4e
x − d5 sinx+ d6 cosx.

Then

r(x) = y′ + 2y

= d2 + d3e
x + d4xe

x + d4e
x − d5 sinx+ d6 cosx

+ 2d1 + 2d2x+ 2d3e
x + 2d4xe

x + 2d5 cosx+ 2d6 sinx

= (d2 + 2d1)(1) + 2d2(x) + (3d3 + d4)(e
x) + (3d4)(xe

x)

+ (2d5 + d6)(cosx) + (2d6 − d5)(sinx)

Also, r(x) ≡ 1 + 2x + xex + 3 sinx. Coefficients of atoms on the left and right must
match. For instance, constant term 1 in r(x) matches the constant term in the expansion
of y′ + 2y, giving 1 = d2 + 2d1. Writing out the matches, and swapping sides, gives the
equations

2d1 + d2 = 1,
2d2 = 2,

3d3 + d4 = 0,
3d4 = 1,

2d5 + d6 = 0,
− d5 + 2d6 = 3.

Solve. The first four equations can be solved by back-substitution to give d2 = 1, d1 = 0,
d4 = 1/3, d3 = −1/9. The last two equations are solved by elimination or Cramer’s rule
(reviewed in Chapter 3) to give d6 = 6/5, d5 = −3/5.
Report yp. The trial solution y with evaluated coefficients d1, . . . , d6 becomes

yp(x) = x− 1

9
ex +

1

3
xex − 3

5
cosx+

6

5
sinx.

Remarks. The method of matching coefficients of atoms left and right is a subject
of linear algebra, called linear independence. The method works because any finite list
of atoms is known to be linearly independent. Further details for this technical topic
appear in this text’s linear algebra chapters.
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2.4 Undetermined Coefficients

A Correction Rule Illustration

Solve the equation
y′ + 3y = 8ex + 3x2e−3x

by the method of undetermined coefficients. Verify that the general solution
y = yh + yp is given by

yh = ce−3x, yp = 2ex + x3e−3x.

Solution: The right side r(x) = 8ex + 3x2e−3x is constructed from atoms ex, x2e−3x.
Repeated differentiation of these atoms identifies the new list of atoms ex, e−3x, xe−3x,
x2e−3x. The correction rule applies because the solution e−3x of y′ + 3y = 0 appears in
the list. The atoms of the form xme−3x are multiplied by x to give the new list of atoms
ex, xe−3x, x2e−3x, x3e−3x. Readers should take note that atom ex is unaffected by the
correction rule modification. Then the corrected trial solution is

y = d1e
x + d2xe

−3x + d3x
2e−3x + d4x

3e−3x.

The trial solution expression y is substituted into y′ + 3y = 2ex + x2e−3x to give the
equation

4d1e
x + d2e

−3x + 2d3xe
−3x + 3d4x

2e−3x = 8ex + 3x2e−3x.

Coefficients of atoms on each side of the preceding equation are matched to give the
equations

4d1 = 8,
d2 = 0,

2d3 = 0,
3d4 = 3.

Then d1 = 2, d2 = d3 = 0, d4 = 1 and the particular solution is reported to be
yp = 2ex + x3e−3x.

Remarks on the Method of Undetermined Coefficients

A mystery for the novice is the construction of the trial solution. Why should it
work? Explained here is the reason behind the method of repeated differentiation
to find the Euler atoms in the trial solution.

The theory missing is that the general solution y of y′ + py = r(x) is a sum
of constants times Euler atoms (under the cited limitations). We don’t try to
prove this result, but use it to motivate the method.

The theory reduces the question of finding a trial solution to finding a sum of
constants times Euler atoms. The question is: which atoms?

Consider this example: y′ − 3y = e3x + xex. The answer for y is revealed by
finding a sum of constants times atoms such that y′ and −3y add termwise to
e3x+xex. The requirement eliminates all atoms from consideration except those
containing exponentials e3x and ex.

Initially, we have to consider infinitely many atoms e3x, xe3x, x2e3x, . . . and ex,
xex, x2ex, . . . . Such terms would also appear in y′, but adding terms of this type
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2.4 Undetermined Coefficients

to get r(x) = e3x + xex requires only the smaller list e3x, xe3x, ex, xex. We have
cut down the number of terms in y to four or less!

The algorithm presented here together with the correction rule strips down the
number of terms to a minimum. Further details of the method appear in the
chapter on scalar linear differential equations, page 430.

Examples

Example 2.19 (Variation of Parameters Method)
Solve the equation 2y′ + 6y = 4xe−3x by the method of variation of parameters,
verifying y = yh + yp is given by

yh = ce−3x, yp = x2e−3x.

Solution: Divide the equation by 2 to obtain the standard linear form

y′ + 3y = 2xe−3x.

Solution yh. The homogeneous equation y′ + 3y = 0 is solved by the shortcut formula

yh = constant
integrating factor

to give yh = ce−3x.

Solution yp. Identify p(x) = 3, r(x) = 2xe−3x from the standard form. The mechanics:
let y′ = f(x, y) ≡ 2xe−3x − 3y and define r(x) = f(x, 0), p(x) = −fy(x, y) = 3. The
variation of parameters formula is applied as follows. First, compute the integrating
factor W (x) = e

∫
p(x)dx = e3x. Then

yp(x) = (1/W (x))

∫
r(x)W (x)dx

= e−3x
∫
2xe−3xe3xdx

= x2e−3x.

It must be explained that all integration constants were set to zero, in order to obtain
the shortest possible expression for yp. Indeed, if W = e3x+c1 instead of e3x, then the
factors 1/W and W contribute constant factors 1/ec1 and ec1 , which multiply to one;
the effect is to set c1 = 0. On the other hand, an integration constant c2 added to∫
r(x)W (x)dx adds the homogeneous solution c2e

−3x to the expression for yp. Because
we seek the shortest expression which is a solution to the non-homogeneous differential
equation, the constant c2 is set to zero.

Example 2.20 (Undetermined Coefficient Method)
Solve the equation 2y′ + 6y = 4xe−x + 4xe−3x + 5 sinx by the method of undeter-
mined coefficients, verifying y = yh + yp is given by

yh = ce−3x, yp = −
1

2
e−x + xe−x + x2e−3x − 1

4
cosx+

3

4
sinx.

Solution: The method applies, because the differential equation 2y′ + 6y = 0 has
constant coefficients and the right side r(x) = 4xe−x + 4xe−3x + 5 sinx is constructed
from the list of atoms xe−x, xe−3x, sinx.

107



2.4 Undetermined Coefficients

List of Atoms. Differentiate the atoms in r(x), namely xe−x, xe−3x, sinx, to find the
new list of atoms e−x, xe−x, e−3x, xe−3x, cosx, sinx. The solution e−3x of 2y′ +6y = 0
appears in the list: the correction rule applies. Then e−3x, xe−3x are replaced by xe−3x,
x2e−3x to give the corrected list of atoms e−x, xe−x, xe−3x, x2e−3x, cosx, sinx. Please
note that only two of the six atoms were corrected.

Trial solution. The corrected trial solution is

y = d1e
−x + d2xe

−x + d3xe
−3x + d4x

2e−3x + d5 cosx+ d6 sinx.

Substitute y into 2y′ + 6y = r(x) to give

r(x) = 2y′ + 6y
= (4d1 + 2d2)e

−x + 4d2xe
−x + 2d3e

−3x + 4d4xe
−3x

+(2d6 + 6d5) cosx+ (6d6 − 2d5) sinx.

Equations. Matching atoms on the left and right of 2y′ + 6y = r(x), given r(x) =
4xe−x + 4xe−3x + 5 sinx, justifies the following equations for the undetermined coeffi-
cients; the solution is d2 = 1, d1 = −1/2, d3 = 0, d4 = 1, d6 = 3/4, d5 = −1/4.

4d1 + 2d2 = 0,
4d2 = 4,

2d3 = 0,
4d4 = 4,

6d5 + 2d6 = 0,
− 2d5 + 6d6 = 5.

Equations for variables d5, d6 were generated from trigonometric atoms. The 2×2 system
has complex eigenvalues. The best method to find coefficients d5, d6 is not Gaussian
elimination, but instead Cramer’s Rule.

Report. The trial solution upon substitution of the values for the undetermined coeffi-
cients becomes

yp = −1

2
e−x + xe−x + x2e−3x − 1

4
cosx+

3

4
sinx.

Exercises 2.4 �

Variation of Parameters I
Report the shortest particular solution
given by the formula

yp(x) =

∫
rW

W
, W = e

∫
p(x)dx

1. y′ = x+ 1

2. y′ = 2x− 1

3. y′ + y = e−x

4. y′ + y = e−2x

5. y′ − 2y = 1

6. y′ − y = 1

7. 2y′ + y = ex

8. 2y′ + y = e−x

9. xy′ = x+ 1

10. xy′ = 1− x2

Variation of Parameters II

Define W (t) = e
∫ t
x0

p(x)dx
. Compute

y∗p(x) =

∫ x
x0

r(t)W (t) dt

W (x)

11. y′ = x+ 1, y(0) = 0
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12. y′ = 2x− 1, x0 = 0

13. y′ + y = e−x, x0 = 0

14. y′ + y = e−2x, x0 = 0

15. y′ − 2y = 1, x0 = 0

16. y′ − y = 1, x0 = 0

17. 2y′ + y = ex, x0 = 0

18. 2y′ + y = e−x, x0 = 0

19. xy′ = x+ 2, x0 = 1

20. xy′ = 1− x2, x0 = 1

Euler Solution Atoms
Report the list L of distinct Euler solution
atoms found in function f(x). Then f(x) is
a sum of constants times the Euler atoms
from L.

21. x+ ex

22. 1 + 2x+ 5ex

23. x(1 + x+ 2ex)

24. x2(2 + x2) + x2e−x

25. sinx cosx+ ex sin 2x

26. cos2 x− sin2 x+ x2ex cos 2x

27. (1 + 2x+ 4x5)exe−3xex/2

28. (1 + 2x+ 4x5 + ex sin 2x)e−3x/4ex/2

29.
x+ ex

e−2x
sin 3x+ e3x cos 3x

30.
x+ ex sin 2x+ x3

e−2x
sin 5x

Initial Trial Solution
Differentiate repeatedly f(x) and report
the list M of distinct Euler solution atoms
which appear in f and all its derivatives.
Then each of f, f ′, . . . is a sum of constants
times Euler atoms in M .

31. 12 + 5x2 + 6x7

32. x6/x−4 + 10x4/x−6

33. x2 + ex

34. x3 + 5e2x

35. (1 + x+ x3)ex + cos 2x

36. (x+ ex) sinx+ (x− e−x) cos 2x

37. (x+ ex + sin 3x+ cos 2x)e−2x

38. (x2e−x + 4 cos 3x+ 5 sin 2x)e−3x

39. (1 + x2)(sinx cosx− sin 2x)e−x

40. (8− x3)(cos2 x− sin2 x)e3x

Correction Rule
Given the homogeneous solution yh and an
initial trial solution y, determine the final
trial solution according to the correction
rule.

41. yh(x) = ce2x, y = d1 + d2x+ d3e
2x

42. yh(x) = ce2x, y = d1 + d2e
2x + d3xe

2x

43. yh(x) = ce0x, y = d1 + d2x+ d3x
2

44. yh(x) = cex, y = d1 + d2x+ d3x
2

45. yh(x) = cex, y = d1 cosx + d2 sinx +
d3e

x

46. yh(x) = ce2x, y = d1e
2x cosx +

d2e
2x sinx

47. yh(x) = ce2x, y = d1e
2x + d2xe

2x +
d3x

2e2x

48. yh(x) = ce−2x, y = d1e
−2x+d2xe

−2x+
d3e

2x + d4xe
2x

49. yh(x) = cx2, y = d1 + d2x+ d3x
2

50. yh(x) = cx3, y = d1 + d2x+ d3x
2

Trial Solution
Find the form of the corrected trial so-
lution y but do not evaluate the undeter-
mined coefficients.

51. y′ = x3 + 5 + x2ex(3 + 2x+ sin 2x)

52. y′ = x2+5x+2+x3ex(2+3x+5 cos 4x)

53. y′ − y = x3 + 2x + 5 + x4ex(2 + 4x +
7 cos 2x)

54. y′ − y = x4 + 5x + 2 + x3ex(2 + 3x +
5 cos 4x)
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55. y′ − 2y = x3 + x2 + x3ex(2ex + 3x +
5 sin 4x)

56. y′−2y = x3e2x+x2ex(3+4ex+2 cos 2x)

57. y′+y = x2+5x+2+x3e−x(6x+3 sinx+
2 cosx)

58. y′ − 2y = x5 + 5x3 + 14 + x3ex(5 +
7xe−3x)

59. 2y′ + 4y = x4 + 5x5 + 2x8 + x3ex(7 +
5xex + 5 sin 11x)

60. 5y′ + y = x2 +5x+2ex/5 + x3ex/5(7 +
9x+ 2 sin(9x/2))

Undetermined Coefficients
Compute a particular solution yp according
to the method of undetermined coefficients.
Expected details include:

(1) Initial trial solution
(2) Corrected trial solution

(3) Undetermined coefficient al-
gebraic equations and solution
(4) Formula for yp, coefficients
evaluated

61. y′ + y = x+ 1

62. y′ + y = 2x− 1

63. y′ − y = ex + e−x

64. y′ − y = xex + e−x

65. y′ − 2y = 1 + x+ e2x + sinx

66. y′ − 2y = 1 + x+ xe2x + cosx

67. y′ + 2y = xe−2x + x3

68. y′ + 2y = (2 + x)e−2x + xex

69. y′ = x2 + 4 + xex(3 + cosx)

70. y′ = x2 + 5 + xex(2 + sinx)
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2.5 Linear Applications

This collection of applications for the linear equation y′ + p(x)y = r(x) includes
mixing problems, especially brine tanks in single and multiple cascade, heating
and cooling problems, radioactive isotope chains and elementary electric circuits.

The theory for brine cascades will be developed. Heating and cooling will be
developed from Newton’s cooling law. Radioactive decay theory appears on page
3. Electric LR or RC circuits appear on page 17.

Brine Mixing

Inlet

Outlet
Figure 1. A Single Brine Tank.
The tank has one inlet and one outlet. The inlet sup-
plies a brine mixture and the outlet drains the tank.

A given tank contains brine, which is a water and salt mixture. Input pipes
supply other, possibly different brine mixtures at varying rates, while output
pipes drain the tank. The problem is to determine the salt x(t) in the tank at
any time.

The basic chemical law to be applied is the mixture law

dx

dt
= input rate− output rate.

The law is applied under a simplifying assumption: the concentration of salt in
the brine is uniform throughout the fluid. Stirring is one way to meet this re-
quirement. Because of the uniformity assumption, the amount x(t) of salt in
kilograms divided by the volume V (t) of the tank in liters gives salt concentra-
tion3 x(t)/V (t) kilograms per liter.

One Input and One Output

Let the input be a(t) liters per minute with concentration C1 kilograms of salt
per liter. Let the output empty b(t) liters per minute. The tank is assumed to
contain V0 liters of brine at t = 0. The tank gains fluid at rate a(t) and loses
fluid at rate b(t), therefore V (t) = V0 +

∫ t
0 [a(r) − b(r)]dr is the volume of brine

in the tank at time t. The mixture law applies to obtain (derived on page 121)
the model linear differential equation

dx

dt
= a(t)C1 − b(t)

x(t)

V (t)
.(1)

3Concentration is defined as amount per unit volume: concentration = amount
volume

.
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This equation is solved by the linear integrating factor method, page 96.

Two-Tank Mixing

Two tanks A and B are assumed to contain A0 and B0 liters of brine at t = 0.
Let the input for the first tank A be a(t) liters per minute with concentration
C1 kilograms of salt per liter. Let tank A empty at b(t) liters per minute into a
second tank B, which itself empties at c(t) liters per minute.

Tank A

Tank B

Inlet

Outlet

Outlet

Inlet
Figure 2. Two Brine Tanks.
Tank A has one inlet, which supplies a brine
mixture. The outlet of Tank A cascades into
Tank B. The outlet of Tank B drains the two-
tank system.

Let x(t) be the number of kilograms of salt in tank A at time t. Similarly, y(t)
is the amount of salt in tank B. The objective is to find differential equations for
the unknowns x(t), y(t).

Fluid loses and gains in each tank give rise to the brine volume formulas VA(t) =
A0 +

∫ t
0 [a(r)− b(r)]dr and VB(t) = B0 +

∫ t
0 [b(r)− c(r)]dr, respectively, for tanks

A and B, at time t.

The mixture law applies to obtain the model linear differential equations

dx

dt
= a(t)C1 − b(t)

x(t)

VA(t)
,

dy

dt
= b(t)

x(t)

VA(t)
− c(t)

y(t)

VB(t)
.

The first equation is solved for an explicit solution x(t) by the linear integrating
factor method. Substitute the expression for x(t) into the second equation, then
solve for y(t) by the linear integrating factor method.

Residential Heating and Cooling

The internal temperature u(t) in a residence fluctuates with the outdoor tem-
perature, indoor heating and indoor cooling. Newton’s law of cooling for linear
convection can be written as

du

dt
= k(a(t)− u(t)) + s(t) + f(t),(2)

where the various symbols have the interpretation below.
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k The insulation constant (see Remarks on Insulation Con-
stants, 119). Typically 1/2 ≤ k < 1, with 1 = no insula-
tion, 0 = perfect insulation.

a(t) The ambient outside temperature.

s(t) Combined rate for all inside heat sources. Includes living
beings, appliances and whatever uses energy.

f(t) Inside heating or cooling rate.

Newton’s cooling model applies to convection only, and not to heat transfer by
radiation or conduction. A derivation of (2) appears on page 121. To solve
equation (2), write it in standard linear form and use the integrating factor
method on page 96.

No Sources

Assume the absence of heating inside the building, that is, s(t) = f(t) = 0. Let
the outside temperature be constant: a(t) = a0. Equation (2) simplifies to the
Newton cooling equation on page 4:

du

dt
+ ku(t) = ka0.(3)

From Theorem 1.1, page 5, the solution is

u(t) = a0 + (u(0)− a0)e
−kt.(4)

This formula represents exponential decay of the interior temperature from u(0)
to a0.

Half-Time Insulation Constant

Suppose it’s 50◦F outside and 70◦F initially inside when the electricity goes off.
How long does it take to drop to 60◦F inside? The answer is about 1–3 hours,
depending on the insulation.

The importance of 60◦F is that it is halfway between the inside and outside
temperatures of 70◦F and 50◦F. The range 1–3 hours is found from (4) by solving
u(T ) = 60 for T , in the extreme cases of poor or perfect insulation.

The more general equation u(T ) = (a0 + u(0))/2 can be solved. The answer is
T = ln(2)/k, called the half-time insulation constant for the residence. It
measures the insulation quality, larger T corresponding to better insulation. For
most residences, the half-time insulation constant ranges from 1.4 (k = 0.5) to
14 (k = 0.05) hours.
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Winter Heating

The introduction of a furnace and a thermostat set at temperature T0 (typically,
68◦F to 72◦F) changes the source term f(t) to the special form

f(t) = k1(T0 − u(t)),

according to Newton’s law of cooling, where k1 is a constant. The differential
equation (2) becomes

du

dt
= k(a(t)− u(t)) + s(t) + k1(T0 − u(t)).(5)

It is a first-order linear differential equation which can be solved by the integrating
factor method.

Summer Air Conditioning

An air conditioner used with a thermostat leads to the same differential equation
(5) and solution, because Newton’s law of cooling applies to both heating and
cooling.

Evaporative Cooling

In desert-mountain areas, where summer humidity is low, the evaporative
cooler is a popular low-cost solution to cooling. The cooling effect is due to
heat loss from the supply of outside air, caused by energy conversion during wa-
ter evaporation. Cool air is pumped into the residence much like a furnace pumps
warm air. An evaporative cooler may have no thermostat. The temperature P (t)
of the pumped air depends on the outside air temperature and humidity.

A Newton’s cooling model for the inside temperature u(t) requires a constant k1
for the evaporative cooling term f(t) = k1(P (t) − u(t)). If s(t) = 0 is assumed,
then equation (2) becomes

du

dt
= k(a(t)− u(t)) + k1(P (t)− u(t)).(6)

This is a first-order linear differential equation, solvable by the integrating factor
method.

During hot summer days the relation P (t) = 0.85a(t) could be valid, that is,
the air pumped from the cooler vent is 85% of the ambient outside temperature
a(t). Extreme temperature variations can occur in the fall and spring. In July,
the reverse is possible, e.g., 100 < a(t) < 115. Assuming P (t) = 0.85a(t), the
solution of (6) is

u(t) = u(0)e−kt−k1t + (k + 0.85k1)

∫ t

0
a(r)e(k+k1)(r−t)dr.
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Figure 3 shows the solution for a 24-hour period, using a sample profile a(t),
k = 1/4, k1 = 2 and u(0) = 69. The residence temperature u(t) is expected to
be approximately between P (t) and a(t).

a(t) =



75− 2 t 0 ≤ t ≤ 6
39 + 4 t 6 < t ≤ 9
30 + 5 t 9 < t ≤ 12
54 + 3 t 12 < t ≤ 15
129− 2 t 15 < t ≤ 21
170− 4 t 21 < t ≤ 23
147− 3 t 23 < t ≤ 24

240

99

55

a

u
P

Figure 3. A 24-hour plot of P , u and temperature profile a(t).

Examples

Example 2.21 (Pollution)
When industrial pollution in Lake Erie ceased, the level was five times that of its
inflow from Lake Huron. Assume Lake Erie has perfect mixing, constant volume V
and equal inflow/outflow rates of 0.73V per year. Estimate the time required to
reduce the pollution in half.

Solution: The answer is about 1.34 years. An overview of the solution will be given,
followed by technical details.

Overview. The brine-mixing model applies to pollution problems, giving a differential
equation model for the pollution concentration x(t),

x′(t) = 0.73V c− 0.73x(t), x(0) = 5cV,

where c is the inflow pollution concentration. The model has solution

x(t) = x(0)
(
0.2 + 0.8e−0.73t

)
.

Solving for the time T at which x(T ) = 1
2x(0) gives T = ln(8/3)/0.73 = 1.34 years.

Model details. The rate of change of x(t) equals the concentration rate in minus the
concentration rate out. The in-rate equals c times the inflow rate, or c(0.73V ). The
out-rate equals x(t) times the outflow rate, or 0.73V

V x(t). This justifies the differential
equation. The statement x(0)=“five times that of Lake Huron” means that x(0) equals
5c times the volume of Lake Erie, or 5cV .

Solution details. The differential equation can be re-written in equivalent form x′(t)+
0.73x(t) = 0.73x(0)/5. It has equilibrium solution xp = x(0)/5. The homogeneous
solution is xh = ke−0.73t, from the theory of growth-decay equations. Adding xh and xp

gives the general solution x. To solve the initial value problem, substitute t = 0 and find
k = 4x(0)/5. Substitute for k into x = x(0)/5+ke−0.73t to obtain the reported solution.

Equation for T details. The equation x(T ) = 1
2x(0) becomes x(0)(0.2+0.8e−0.73T ) =

x(0)/2, which by algebra reduces to the exponential equation e−0.73T = 3/8. Take
logarithms to isolate T = − ln(3/8)/0.73 ≈ 1.3436017.
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Example 2.22 (Brine Cascade)
Assume brine tanks A and B in Figure 4 have volumes 100 and 200 gallons, respec-
tively. Let A(t) and B(t) denote the number of pounds of salt at time t, respectively,
in tanks A and B. Pure water flows into tank A, brine flows out of tank A and into
tank B, then brine flows out of tank B. All flows are at 4 gallons per minute. Given
A(0) = 40 and B(0) = 40, find A(t) and B(t).

water

A

B Figure 4. Cascade of two brine tanks.

Solution: The solutions for the brine cascade are (details below)

A(t) = 40e−t/25, B(t) = 120e−t/50 − 80e−t/25.

Modeling. This is an instance of the two-tank mixing problem on page 112. The
volumes in the tanks do not change and the input salt concentration is C1 = 0. The
equations are

dA

dt
= −4A(t)

100
,

dB

dt
=

4A(t)

100
− 4B(t)

200
.

Solution A(t) details.

A′ = −0.04A, A(0) = 40 Initial value problem to be solved.

A = 40e−t/25 Solution found by the growth-decay model.

Solution B(t) details.

B′ = 0.04A− 0.02B, B(0) = 40 Initial value problem to be solved.

B′ + 0.02B = 1.6e−t/25 Substitute for A. Get standard form.

B′ + 0.02B = 0, B(0) = 40 Homogeneous problem to be solved.

Bh = 40e−t/50 Homogeneous solution. Growth-decay formula
applied.

Bp = e−t/50
∫ t

0
1.6e−r/25er/50dr Variation of parameters solution.

= 80e−t/50 − 80e−t/25 Evaluate integral.

B = Bh +Bp Superposition.

= 120e−t/50 − 80e−t/25 Final solution.

The solution can be checked in maple as follows.

de1:=diff(x(t),t)=-4*x(t)/100:

de2:=diff(y(t),t)=4*x(t)/100-4*y(t)/200:

ic:=x(0)=40,y(0)=40:

dsolve({de1,de2,ic},{x(t),y(t)});

Example 2.23 (Office Heating)
A worker shuts off the office heat and goes home at 5PM. It’s 72◦F inside and 60◦F
outside overnight. Estimate the office temperature at 8PM, 11PM and 6AM.
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Solution:

The temperature estimates are 62.7-65.7◦F, 60.6-62.7◦F and 60.02-60.5◦F. Details follow.

Model. The residential heating model applies, with no sources, to give u(t) = a0 +
(u(0) − a0)e

−kt. Supplied are values a0 = 60 and u(0) = 72. Unknown is constant k in
the formula

u(t) = 60 + 12e−kt.

Estimation of k. To make the estimate for k, assume the range 1/4 ≤ k ≤ 1/2, which
covers the possibilities of poor to excellent insulation.

Calculations. The estimates requested are for t = 3, t = 6 and t = 13. The formula
u(t) = 60 + 12e−kt and the range 0.25 ≤ k ≤ 0.5 gives the estimates

62.68 ≤ 60 + 12e−3k ≤ 65.67,
60.60 ≤ 60 + 12e−6k ≤ 62.68,
60.02 ≤ 60 + 12e−13k ≤ 60.47.

Example 2.24 (Spring Temperatures)
It’s spring. The outside temperatures are between 45◦F and 75◦F and the residence
has no heating or cooling. Find an approximation for the interior temperature fluc-
tuation u(t) using the estimate a(t) = 60 − 15 cos(π(t − 4)/12), k = ln(2)/2 and
u(0) = 53.

Solution: The approximation, justified below, is

u(t) ≈ −8.5e−kt + 60 + 1.5 cos
πt

12
− 12 sin

πt

12
.

Model. The residential model for no sources applies. Then

u′(t) = k(a(t)− u(t)).

Computation of u(t). Let ω = π/12 and k = ln(2)/2 ≈ 0.35 (poor insulation). The
solution is

u = u(0)e−kt +
∫ t

0
ka(r)ek(r−t)dr Variation of parameters.

= 53e−kt +
∫ t

0
15k(4− cosω(t− 4))ek(r−t)dr Insert a(t) and u(0).

≈ −8.5e−kt + 60 + 1.5 cosωt− 12 sinωt Used maple integration.

The maple code used for the integration appears below.

k:=ln(2)/2: u0:=53:

A:=r->k*(60-15*cos(Pi *(r-4)/12)):

U:=t->(u0+int(A(r)*exp(k*r),r=0..t))*exp(-k*t);

simplify(U(t));

Example 2.25 (Temperature Variation)
Justify that in the spring and fall, the interior of a residence might have temperature
variation between 19% and 89% of the outside temperature variation.
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Solution: The justification necessarily makes some assumptions, which are:

a(t) = B −A cosω(t− 4) Assume A > 0, B > 0, ω = π/12 and
extreme temperatures at 4AM and 4PM.

s(t) = 0 No inside heat sources.

f(t) = 0 No furnace or air conditioner.

0.05 ≤ k ≤ 0.5 Vary from excellent (k = 0.05) to poor
(k = 0.5) insulation.

u(0) = B The average of the outside low and high.

Model. The residential model for no sources applies. Then

u′(t) = k(a(t)− u(t)).

Formula for u. Variation of parameters gives a compact formula:

u = u(0)e−kt +
∫ t

0
ka(r)ek(r−t)dr See (4), page 97.

= Be−kt +
∫ t

0
k(B −A cosω(t− 4))ek(r−t)dr Insert a(t) and u(0).

= c0Ae
−kt +B + c1A cosωt+ c2A sinωt Evaluate. Values below.

The values of the constants in the calculation of u are

c0 = 72k2 − 6kπ
√
3, c1 =

6kπ
√
3− 72k2

144k2 + π2
, c2 =

−6kπ − 72k2
√
3

144k2 + π2
.

The trigonometric formula a cos θ+ b sin θ = r sin(θ+ϕ) where r2 = a2 + b2 and tanϕ =
a/b can be applied to the formula for u to rewrite it as

u = c0Ae−kt +B +A
√
c21 + c22 sin(ωt+ ϕ).

The outside low and high are B − A and B + A. The outside temperature variation
is their difference 2A. The exponential term contributes less than one degree after 12
hours. The inside low and high are therefore approximately B − rA and B + rA where
r =

√
c21 + c22. The inside temperature variation is their difference 2rA, which is r times

the outside variation.

It remains to show that 0.19 ≤ r ≤ 0.89. The equation for r has a simple representation:

r =
12k√

144k2 + π2
.

It has positive derivative dr/dk. Then extrema occur at the endpoints of the interval
0.05 ≤ k ≤ 0.5, giving values r = 0.19 and r = 0.89, approximately. This justifies the
estimates of 19% and 89%.

The maple code used for the integration appears below.

omega:=Pi/12:

F:=r->k*(B-A*cos(omega *(r-4))):

G:=t->(B+int(F(r)*exp(k*r),r=0..t))*exp(-k*t);

simplify(G(t));
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Remarks on Insulation Constants. The insulation constant k in the Newton cooling
model is usually between zero and one, with excellent insulation near zero and bad
insulation near one. It is also called a coupling constant, because k = 0 means the
temperature u is decoupled from the ambient temperature. The constant k depends in a
complex way on geometry and insulation, therefore it is determined empirically, and not
by a theoretical formula. Lab experiments with a thermocouple in an air-insulated vessel
filled with about 300 ml of hot water (80 to 100 C) can determine insulation constants
on the order of k = 0.0003 (units per second).

Printed on dual pane clear glass in the USA is a U-value of about 0.48. The U-value is
equal to the reciprocal of the R-value (see below). You can think of it as the insulation
constant k. The lower the U-value, the better the glass insulation quality.

For a solar water heater, k = 0.00035 is typical. This value is for an 80 gallon tank with
R-15 insulation raised to 120 F during the day. Typically, the water temperature drops
by only 3-4 F overnight.

The thermal conductivity symbol κ (Greek kappa) can be confused with the insulation
constant symbol k, and it is a tragic error to substitute one for the other.

For USA R-values printed on insulation products, thermal conductivity is defined by
the relation U = 1

0.1761101838R = κ
L , where L is the material’s thickness and U is the

international U -factor in SI units. The U -factor value is the heat lost in Watts per square
meter at a standard temperature difference of one degree Kelvin.

Example 2.26 (Radioactive Chain)
Let A, B and C be the amounts of three radioactive isotopes. Assume A decays
into B at rate a, then B decays into C at rate b. Given a ̸= b, A(0) = A0 and
B(0) = 0, find formulas for A and B.

Solution: The isotope amounts are (details below)

A(t) = A0e
−at, B(t) = aA0

e−at − e−bt

b− a
.

Modeling. The reaction model will be shown to be

A′ = −aA, A(0) = A0, B′ = aA− bB, B(0) = 0.

The derivation uses the radioactive decay law on page 19. The model for A is simple
decay A′ = −aA. Isotope B is created from A at a rate equal to the disintegration rate
of A, or aA. But B itself undergoes disintegration at rate bB. The rate of increase of B
is not aA but the difference of aA and bB, which accounts for lost material. Therefore,
B′ = aA− bB.

Solution Details for A.

A′ = −aA, A(0) = A0 Initial value problem to solve.

A = A0e
−at Use the growth-decay formula on page 3.

Solution Details for B.

B′ = aA− bB, B(0) = 0 Initial value problem to solve.

B′ + bB = aA0e
−at, B(0) = 0 Insert A = A0e

−at. Standard form.

B = e−bt
∫ t

0
aA0e

−arebrdr Variation of parameters solution page 465, which
already satisfies B(0) = 0.
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= aA0
e−at − e−bt

b− a
Evaluate the integral for b ̸= a.

Remark on radioactive chains. The sequence of radioactive decay processes creates
at each stage a new element that may itself be radioactive. The chain ends when stable
atoms are formed. For example, uranium-236 decays into thorium-232, which decays into
radium-228, and so on, until stable lead-208 is created at the end of the chain. Analyzed
here are 2 steps in such a chain.

Example 2.27 (Electric Circuits)
For the LR-circuit of Figure 5, show that Iss = E/R and Itr = I0e

−Rt/L are the
steady-state and transient currents.

R

I(t)

L

E

Figure 5. An LR-circuit with con-
stant voltage E and zero initial cur-
rent I(0) = 0.

Solution:

Model. The LR-circuit equation is derived from Kirchhoff’s laws and the voltage drop
formulas on page 17. The only new element is the added electromotive force term E(t),
which is set equal to the algebraic sum of the voltage drops, giving the model

LI ′(t) +RI(t) = E(t), I(0) = I0.

General solution. The details:

I ′ + (R/L)I = E/L Standard linear form.

Ip = E/R Set I=constant, solve for a particular solution Ip.

I ′ + (R/L)I = 0 Homogeneous equation. Solve for I = Ih.

Ih = I0e
−Rt/L Growth-decay formula, page 4.

I = Ih + Ip Superposition.

= I0e
−Rt/L + E/R General solution found.

Steady-state solution. The steady-state solution is found by striking out from the
general solution all terms that approach zero at t = ∞. Remaining after strike-out is
Iss = E/R.

Transient solution. The term transient refers to the terms in the general solution
which approaches zero at t =∞. Therefore, Itr = I0e

−Rt/L.

Example 2.28 (Time constant)
Show that the current I(t) in the LR-circuit of Figure 5 is at least 95% of the
steady-state current E/R after three time constants, i.e., after time t = 3L/R.
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Solution: Physically, the time constant L/R for the circuit is found by an experiment
in which the circuit is initialized to I = 0 at t = 0, then the current I is observed until
it reaches 63% of its steady-state value.

Time to 95% of Iss. The solution is I(t) = E(1 − e−Rt/L)/R. Solving the inequality
1− e−Rt/L ≥ 0.95 gives

0.95 ≤ 1− e−Rt/L Inequality to be solved for t.

e−Rt/L ≤ 1/20 Move terms across the inequality.

ln e−Rt/L ≤ ln(1/20) Take the logarithm across the inequality.

−Rt/L ≤ ln 1− ln 20 Apply logarithm rules.

t ≥ L ln(20)/R Isolate t on one side.

The value ln(20) = 2.9957323 leads to the rule: after three times the time constant has
elapsed, the current has reached 95% of the steady-state current.

Details and Proofs

Brine-Mixing One-tank Proof: Equation x′(t) = C1a(t) − b(t)x(t)/V (t), the brine-
mixing equation, is justified for the one-tank model by applying the mixture law dx/dt =
input rate− output rate as follows.

input rate =

(
a(t)

liters

minute

)(
C1

kilograms

liter

)
= C1a(t)

kilograms

minute
,

output rate =

(
b(t)

liters

minute

)(
x(t)

V (t)

kilograms

liter

)
=

b(t)x(t)

V (t)

kilograms

minute
.

Residential Heating and Cooling Proof: Newton’s law of cooling will be applied to
justify the residential heating and cooling equation

du

dt
= k(a(t)− u(t)) + s(t) + f(t).

Let u(t) be the indoor temperature. The heat flux is due to three heat source rates:

N(t) = k(a(t)− u(t)) The Newton cooling rate.

s(t) Combined rate for all inside heat sources.

f(t) Inside heating or cooling rate.

The expected change in u is the sum of the rates N , s and f . In the limit, u′(t) is on
the left and the sum N(t) + s(t) + f(t) is on the right. ■
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Exercises 2.5 �

Concentration
A lab assistant collects a volume of brine,
boils it until only salt crystals remain, then
uses a scale to determine the crystal mass
or weight.

Find the salt concentration of the brine
in kilograms per liter.

1. One liter of brine, crystal mass 0.2275
kg

2. Two liters, crystal mass 0.32665 kg

3. Two liters, crystal mass 15.5 grams

4. Five pints, crystals weigh 1/4 lb

5. Eighty cups, crystals weigh 5 lb

6. Five gallons, crystals weigh 200 ounces

One-Tank Mixing
Assume one inlet and one outlet. Deter-
mine the amount x(t) of salt in the tank at
time t. Use the text notation for equation
(1).

7. The inlet adds 10 liters per minute with
concentration C1 = 0.023 kilograms per
liter. The tank contains 110 liters of dis-
tilled water. The outlet drains 10 liters
per minute.

8. The inlet adds 12 liters per minute with
concentration C1 = 0.0205 kilograms
per liter. The tank contains 200 liters
of distilled water. The outlet drains 12
liters per minute.

9. The inlet adds 10 liters per minute with
concentration C1 = 0.0375 kilograms
per liter. The tank contains 200 liters of
brine in which 3 kilograms of salt is dis-
solved. The outlet drains 10 liters per
minute.

10. The inlet adds 12 liters per minute with
concentration C1 = 0.0375 kilograms
per liter. The tank contains 500 liters of
brine in which 7 kilograms of salt is dis-
solved. The outlet drains 12 liters per
minute.

11. The inlet adds 10 liters per minute with
concentration C1 = 0.1075 kilograms
per liter. The tank contains 1000 liters
of brine in which k kilograms of salt is
dissolved. The outlet drains 10 liters
per minute.

12. The inlet adds 14 liters per minute with
concentration C1 = 0.1124 kilograms
per liter. The tank contains 2000 liters
of brine in which k kilograms of salt is
dissolved. The outlet drains 14 liters
per minute.

13. The inlet adds 10 liters per minute with
concentration C1 = 0.104 kilograms per
liter. The tank contains 100 liters of
brine in which 0.25 kilograms of salt is
dissolved. The outlet drains 11 liters
per minute. Determine additionally the
time when the tank is empty.

14. The inlet adds 16 liters per minute with
concentration C1 = 0.01114 kilograms
per liter. The tank contains 1000 liters
of brine in which 4 kilograms of salt is
dissolved. The outlet drains 20 liters
per minute. Determine additionally the
time when the tank is empty.

15. The inlet adds 10 liters per minute with
concentration C1 = 0.1 kilograms per
liter. The tank contains 500 liters of
brine in which k kilograms of salt is
dissolved. The outlet drains 12 liters
per minute. Determine additionally the
time when the tank is empty.

16. The inlet adds 11 liters per minute with
concentration C1 = 0.0156 kilograms
per liter. The tank contains 700 liters
of brine in which k kilograms of salt is
dissolved. The outlet drains 12 liters
per minute. Determine additionally the
time when the tank is empty.

Two-Tank Mixing
Assume brine tanks A and B in Figure 4
have volumes 100 and 200 gallons, respec-
tively. Let x(t) and y(t) denote the number
of pounds of salt at time t, respectively, in
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tanks A and B. Distilled water flows into
tank A, then brine flows out of tank A and
into tank B, then out of tank B. All flows
are at r gallons per minute. Given rate r
and initial salt amounts x(0) and y(0), find
x(t) and y(t).

17. r = 4, x(0) = 40, y(0) = 20.

18. r = 3, x(0) = 10, y(0) = 15.

19. r = 5, x(0) = 20, y(0) = 40.

20. r = 5, x(0) = 40, y(0) = 30.

21. r = 8, x(0) = 10, y(0) = 12.

22. r = 8, x(0) = 30, y(0) = 12.

23. r = 9, x(0) = 16, y(0) = 14.

24. r = 9, x(0) = 22, y(0) = 10.

25. r = 7, x(0) = 6, y(0) = 5.

26. r = 7, x(0) = 13, y(0) = 26

Residential Heating
Assume the Newton cooling model for heat-
ing and insulation values 1/4 ≤ k ≤ 1/2.
Follow Example 2.23, page 116.

27. The office heat goes off at 7PM. It’s
74◦F inside and 58◦F outside overnight.
Estimate the office temperature at
10PM, 1AM and 6AM.

28. The office heat goes off at 6:30PM. It’s
73◦F inside and 55◦F outside overnight.
Estimate the office temperature at
9PM, 3AM and 7AM.

29. The radiator goes off at 9PM. It’s 74◦F
inside and 58◦F outside overnight. Es-
timate the room temperature at 11PM,
2AM and 6AM.

30. The radiator goes off at 10PM. It’s
72◦F inside and 55◦F outside overnight.
Estimate the room temperature at
2AM, 5AM and 7AM.

31. The office heat goes on in the morn-
ing at 6:30AM. It’s 57◦F inside and 40◦

to 55◦F outside until 11AM. Estimate
the office temperature at 8AM, 9AM
and 10AM. Assume the furnace pro-
vides a five degree temperature rise in
30 minutes with perfect insulation and
the thermostat is set for 76◦F.

32. The office heat goes on at 6AM. It’s
55◦F inside and 43◦ to 53◦F outside
until 10AM. Estimate the office tem-
perature at 7AM, 8AM and 9AM. As-
sume the furnace provides a seven de-
gree temperature rise in 45 minutes
with perfect insulation and the thermo-
stat is set for 78◦F.

33. The hot water heating goes on at 6AM.
It’s 55◦F inside and 50◦ to 60◦F outside
until 10AM. Estimate the room temper-
ature at 7:30AM. Assume the radiator
provides a four degree temperature rise
in 45 minutes with perfect insulation
and the thermostat is set for 74◦F.

34. The hot water heating goes on at
5:30AM. It’s 54◦F inside and 48◦ to
58◦F outside until 9AM. Estimate the
room temperature at 7AM. Assume the
radiator provides a five degree temper-
ature rise in 45 minutes with perfect in-
sulation and the thermostat is set for
74◦F.

35. A portable heater goes on at 7AM. It’s
45◦F inside and 40◦ to 46◦F outside un-
til 11AM. Estimate the room tempera-
ture at 9AM. Assume the heater pro-
vides a two degree temperature rise in
30 minutes with perfect insulation and
the thermostat is set for 90◦F.

36. A portable heater goes on at 8AM. It’s
40◦F inside and 40◦ to 45◦F outside un-
til 11AM. Estimate the room tempera-
ture at 10AM. Assume the heater pro-
vides a two degree temperature rise in
20 minutes with perfect insulation and
the thermostat is set for 90◦F.

Evaporative Cooling
Define outside temperature (see Figure 3)
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a(t) =



75− 2 t 0 ≤ t ≤ 6
39 + 4 t 6 < t ≤ 9
30 + 5 t 9 < t ≤ 12
54 + 3 t 12 < t ≤ 15
129− 2 t 15 < t ≤ 21
170− 4 t 21 < t ≤ 23
147− 3 t 23 < t ≤ 24

.

Given k, k1, P (t) = wa(t) and u(0) =
69, then plot u(t), P (t) and a(t) on one
graphic.

u(t) = u(0)e−kt−k1t+

(k + wk1)
∫ t

0
a(r)e(k+k1)(r−t)dr.

37. k = 1/4, k1 = 2, w = 0.85

38. k = 1/4, k1 = 1.8, w = 0.85

39. k = 3/8, k1 = 2, w = 0.85

40. k = 3/8, k1 = 2.4, w = 0.85

41. k = 1/4, k1 = 3, w = 0.80

42. k = 1/4, k1 = 4, w = 0.80

43. k = 1/2, k1 = 4, w = 0.80

44. k = 1/2, k1 = 5, w = 0.80

45. k = 3/8, k1 = 3, w = 0.80

46. k = 3/8, k1 = 4, w = 0.80

Radioactive Chain
Let A, B and C be the amounts of three ra-
dioactive isotopes. Assume A decays into
B at rate a, then B decays into C at rate
b. Given a, b, A(0) = A0 and B(0) = B0,
find formulas for A and B.

47. a = 2, b = 3, A0 = 100, B0 = 10

48. a = 2, b = 3, A0 = 100, B0 = 100

49. a = 1, b = 4, A0 = 100, B0 = 200

50. a = 1, b = 4, A0 = 300, B0 = 100

51. a = 4, b = 3, A0 = 100, B0 = 100

52. a = 4, b = 3, A0 = 100, B0 = 200

53. a = 6, b = 1, A0 = 600, B0 = 100

54. a = 6, b = 1, A0 = 500, B0 = 400

55. a = 3, b = 1, A0 = 100, B0 = 200

56. a = 3, b = 1, A0 = 400, B0 = 700

Electric Circuits
In the LR-circuit of Figure 5, assume
E(t) = A coswt and I(0) = 0. Solve for
I(t).

57. A = 100, w = 2π, R = 1, L = 2

58. A = 100, w = 4π, R = 1, L = 2

59. A = 100, w = 2π, R = 10, L = 1

60. A = 100, w = 2π, R = 10, L = 2

61. A = 5, w = 10, R = 2, L = 3

62. A = 5, w = 4, R = 3, L = 2

63. A = 15, w = 2, R = 1, L = 4

64. A = 20, w = 2, R = 1, L = 3

65. A = 25, w = 100, R = 5, L = 15

66. A = 25, w = 50, R = 5, L = 5
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2.6 Kinetics

Studied are the following topics.

Newton’s Laws Free Fall with Constant Gravity
Linear Air Resistance Nonlinear Air Resistance
Modeling Parachutes
Lunar Lander Escape Velocity

Newton’s Laws

The ideal models of a particle or point mass constrained to move along the x-
axis, or the motion of a projectile or satellite, have been studied from Newton’s
second law

F = ma.(1)

In the mks system of units, F is the force inNewtons, m is the mass in kilograms
and a is the acceleration in meters per second per second.

The closely-related Newton universal gravitation law

F = G
m1m2

R2
(2)

is used in conjunction with (1) to determine the system’s constant value g of
gravitational acceleration. The masses m1 and m2 have centroids at a distance
R. For the earth, g = 9.8 m/s2 is commonly used; see Table 1.

Other commonly used unit systems are cgs and fps. Table 1 shows some useful
equivalents.

Table 1. Units for fps and mks Systems

Unit name fps unit mks unit

Position foot (ft) meter (m)
Time seconds (s) seconds (s)
Velocity feet/sec meters/sec
Acceleration feet/sec2 meters/sec2

Force pound (lb) Newton (N)
Mass slug kilogram (kg)
g 32.088 ft/s2 9.7805 m/s2

Other units in the various systems are in daily use. Table 2 shows some equiva-
lents. An international synonym for pound is libre, with abbreviation lb. The
origin of the word pound is migration of libra pondo, meaning a pound in weight.
Dictionaries cite migrations libra pondo −→ pund for German language, which is
similar to English pound.
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Table 2. Conversions for the fps and mks Systems

inch (in) 1/12 foot 2.54 centimeters
foot (ft) 12 inches 30.48 centimeters
centimeter (cm) 1/100 meter 0.39370079 inches
kilometer (km) 1000 meters 0.62137119 miles (≈ 5/8)
mile (mi) 5280 feet 1.609344 kilometers (≈ 8/5)
pound (lb) ≈ 4.448 Newtons
Newton (N) ≈ 0.225 pounds
kilogram (kg) ≈ 0.06852 slugs
slug ≈ 14.59 kilograms

Velocity and Acceleration

The position, velocity and acceleration of a particle moving along an axis are
functions of time t. Notations vary; this text uses the following symbols, where
primes denote t-differentiation.

x = x(t) Particle position at time t.

v = x′(t) Particle velocity at time t.

a = x′′(t) Particle acceleration at time t.

x(0) Initial position.

v(0) Initial velocity. Synonym x′(0) is
also used.

Free Fall with Constant Gravity

A body falling in a constant gravitational field might ideally move in a straight
line, aligned with the gravitational vector. A typical case is the lunar lander,
which falls freely toward the surface of the moon, its progress downward con-
trolled by retrorockets. Falling bodies, e.g., an object launched up or down from
a tall building, can be modeled similarly. For such ideal cases, in which air re-
sistance and other external forces are ignored, the acceleration of the body is
assumed to be a constant g and the differential equation model is

x′′(t) = −g, x(0) = x0, x′(0) = v0.(3)

The initial position x0 and the initial velocity v0 must be specified. The value of
g in mks units is g = 9.8 m/s2. The symbol x is the distance from the ground
(x = 0); meters for mks units. The symbol t is the time in seconds. Falling body
problems normally take v0 = 0 and x0 > 0, e.g., x0 is the height of the building
from which the body was dropped. Objects ejected downwards have v0 < 0,
which decreases the descent time. Objects thrown straight up satisfy v0 > 0.
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Equation (3) can be solved by the method of quadrature to give the explicit
solution

x(t) = −g

2
t2 + x0 + v0t.(4)

See Technical Details, page 137, and the method of quadrature, page 74. Appli-
cations to free fall and the lunar lander appear in the examples, page 132.

Typical plots can be made by the following maple code.

X:=unapply(-9.8*t^2+100+(50)*t,t); #v(0)=50m/s,x(0)=100m

plot(X(t),t=0..7);

Y:=unapply(-9.8*t^2+100+(-5)*t,t); #v(0)=-5m/s,x(0)=100m

plot(Y(t),t=0..4);

Air Resistance Effects

The inclusion in a differential equation model of terms accounting for air resis-
tance has historically two distinct models. The first is linear resistance, in which
the force F due to air resistance is assumed to be proportional to the velocity v:

F ∝ v.(5)

It is known that linear resistance is appropriate only for slowly moving objects.4

The second model is nonlinear resistance, modeled originally by Sir Isaac Newton
himself as F = kv2. The literature considers a generalized nonlinear resistance
assumption

F ∝ v|v|p(6)

where 0 < p ≤ 1 depends upon the speed of the object through the air; p ≈ 0 is
a low speed and p ≈ 1 is a high speed. It will suffice for illustration purposes to
treat just the two cases F ∝ v and F ∝ v|v|.

Linear and Nonlinear Drag

For small spherical objects moving slowly through a viscous fluid, Sir George
Gabriel Stokes derived an expression for the linear drag force:

− k

m
v = Stoke’s drag force = −6π η r v

The symbols: η = fluid viscosity and r = radius of the spherical object. Refer-
ences can use viscosity symbols ρ or µ instead of Stoke’s symbol η.

Example: Falling raindrop
The radius is r = 0.1 to 0.3 mm and η = 1.789x10−5 Kg/m/sec is the dynamic
viscosity for 15 C air at sea level.

4More precisely, for Reynolds Number less than about 1000. The Reynolds Number is the
ratio of inertial forces to viscous forces within a fluid.
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Velocities v = x′(t) > Mach 1 use nonlinear drag force ±kv2. Fluid the-
ory gives k = 1

2 C ηA where C = the drag coefficient, η = dynamic fluid
viscosity, A = frontal area facing the fluid.

Example: 22 caliber high velocity long rifle bullet
Drag coefficient C = 0.35 to 0.4, air dynamic viscosity η = 1.789x10−5 Kg/m/sec,
frontal area A = 0.25419304 cm2 . Nonlinear drag occurs for close targets. The
bullet path below Mach 1 has a section of linear drag.

Linear Air Resistance

The model is determined by the sum of the forces due to air resistance and
gravity, Fair + Fgravity, which by Newton’s second law must equal F = mx′′(t),
giving the differential equation

mx′′(t) = −kx′(t)−mg.(7)

In (7), the velocity is v = x′(t) and k is a proportionality constant for the air
resistance force F ∝ v. The negative sign results from the assumed coordinates:
x measures the distance from the ground (x = 0). We expect x to decrease, hence
x′ is negative. Equation (7) written in terms of the velocity v = x′(t) becomes

v′(t) = −(k/m)v(t)− g.(8)

This equation has a solution v(t) which limits at t = ∞ to a finite terminal
velocity |v∞| = mg/k; equation (9) below is justified in Technical Details, page
137. Physically, this limit is the equilibrium solution of (8), which is the
observable steady state of the model. A quadrature applied to x′(t) = v(t) using
v(t) in equation (9) solves (7). Then

v(t) = −mg

k
+
(
v(0) +

mg

k

)
e−kt/m,

x(t) = x(0)− mg

k
t+

m

k

(
v(0) +

mg

k

)(
1− e−kt/m

)
.

(9)

Nonlinear Air Resistance

The model applies primarily to rapidly moving objects. It is obtained by the
same method as the linear model, replacing the linear resistance term kx′(t) by
the nonlinear term kx′(t)|x′(t)|. The resulting model is

mx′′(t) = −kx′(t)|x′(t)| −mg.(10)

Velocity substitution v = x′(t) gives first order equation

v′(t) = −(k/m)v(t)|v(t)| − g.(11)

The model applies in particular to parachute flight and to certain projectile
problems, like an arrow or bullet fired straight up.
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Upward Launch. Separable equation (11) in the case v(0) > 0 for a launch
upward becomes v′(t) = −(k/m)v2(t)−g. The solution for v(0) > 0 is given
below in (12); see Technical Details page 137. The equation x′(t) = v(t)
can be solved by quadrature. Then for some constants c and d

v(t) =

√
mg

k
tan

(√
kg

m
(c− t)

)
,

x(t) = d+
m

k
ln

∣∣∣∣∣cos
(√

kg

m
(c− t)

)∣∣∣∣∣ .
(12)

Downward Launch. The case v(0) < 0 for an object launched downward or
dropped will use the equation v′(t) = (k/m)v2(t)−g; see Technical Details,
page 138. Then for some constants c and d

v(t) =

√
mg

k
tanh

(√
kg

m
(c− t)

)
,

x(t) = d− m

k
ln

∣∣∣∣∣cosh
(√

kg

m
(c− t)

)∣∣∣∣∣ .
(13)

The hyperbolic functions appearing in (13) are defined by

coshu = 1
2 (e

u + e−u) Hyperbolic cosine.

sinhu = 1
2 (e

u − e−u) Hyperbolic sine.

tanhu =
eu − e−u

eu + e−u
Hyperbolic tangent. Identity
tanhu = sinhu/ coshu.

The model applies to parachute problems in particular. Equation (13) and the
limit formula lim|x|→∞ tanhx = 1 imply a terminal velocity

|v∞| =
√

mg

k
.

The value is exactly the square root of the linear model terminal velocity. The
falling body model (3) without air resistance effects allows the velocity to increase
to unrealistic speeds. For instance, the terminal velocity of a raindrop falling from
3000 meters is about 25− 35 km/h, whereas the no air resistance model predicts
about 870 km/h.
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Modeling Remarks

It can be argued from air resistance models that projectiles spend more time
falling to the ground than they spend reaching maximum height5; see Example
2.32. Simplistic models ignoring air resistance tend to over-estimate the maxi-
mum height of the projectile and the flight time; see Example 2.31. Falling bodies
are predicted by air resistance models to have a terminal velocity.

Significant effects are ignored by the models of this text. Real projectiles are
affected by spin and a flight path that is not planar. The corkscrew path
of a bullet can cause it to miss a target, while a planar model predicts it will
hit the target. The spin of a projectile can drastically alter its flight path and
flight characteristics, as is known by players of table tennis, squash, court tennis,
archery enthusiasts and gun club members.

Gravitational effects assumed constant may in fact not be constant along the
flight path. This can happen in the soft touchdown problem for a lunar lander
which activates retrorockets high above the moon’s surface.

External effects like wind or the gravitational forces of nearby celestial bodies,
ignored in simplistic models, may indeed produce significant effects. On the
freeway, is it possible to throw an ice cube out the window ahead of your vehicle?
Is it feasible to use forces from the moon to assist in the launch of an orbital
satellite?

Parachutes

In a typical parachute problem, the jumper travels in a parabolic arc to the
ground, buffeted about by up and down drafts in the atmosphere, but always
moving in the direction determined by the airplane’s flight. In short, a parachutist
does not fall to the ground. Their flight path more closely resembles the path of
a projectile and it is generally not a planar path.

Important to skydivers is an absolute limit to their speed, called the terminal
velocity. It depends upon a number of physical factors, the dominant factor
being body shape affecting area variable A of the drag force. See page . A
parachutist with excess loose clothing will dive more slowly than when equipped
with a tight lycra jump suit. When the parachute opens, the flight characteristics
are dominated by physical factors of the open parachute.

The constant k/m > 0 is called the drag factor, where m is the mass and k > 0,
appears in the resistive force equation F = kv|v|. In order for the parachute
model to give a terminal velocity of 15 miles per hour, the drag factor must
be approximately k/m = 3/2. Without the parachute, the skydiver can reach
speeds of over 45 miles per hour, which corresponds to a drag factor k/m < 1/2.

5Racquetball, badminton, Lacrosse, tennis, squash, pickleball and table tennis players know
about this effect and they use it in their game tactics and timing.
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Who falls the greatest distance after 30 seconds, a 250-pound or a 110-pound
parachutist? The answer is not always the layman’s answer, because the 110-
pound parachutist has less air resistance due to less body surface area but also
less mass, making it difficult to compare the two drag factors.

Lunar Lander

A lunar lander is falling toward the moon’s surface, in the radial direction, at
a speed of 1000 miles per hour. It is equipped with retrorockets to retard the
fall. In free space outside the gravitational effects of the moon the retrorockets
provide a retardation thrust of 9 miles per hour per second of activation, e.g., 11
seconds of retrorocket power will slow the lander down by about 100 miles per
hour.

A soft touchdown is made when the lander contacts the moon’s surface falling
at a speed of zero miles per hour. This ideal situation can be achieved by turning
on the retrorockets at the right moment.

The lander is greatly affected by the gravitational field of the moon. Ignoring
this field gives a gross overestimate for the activation time, causing the lander to
reverse its direction and never reach the surface. The layman answer of 1000/9 ≈
112 seconds to touchdown from an altitude of about 16 miles is incorrect by about
10 miles, causing the lander to crash at substantial speed into the lunar surface.

Escape velocity

Is it possible to fire a projectile from the earth’s surface and reach the moon?
The science fiction author Jules Verne, in his 1865 novel From the Earth to the
Moon, seems to believe it is possible. Modern calculations give the initial escape
velocity v0 as about 25, 000 miles per hour. There is no record of this actually
being tested, so the number 25, 000 remains a theoretical estimate.

This is a different problem than powered rocket flight. All the power must be
applied initially, and it is not allowed to apply power during flight to the moon.
Imagine instead a deep hole, in which a rocket is launched, the power being
turned off just as the rocket exits the hole. The rocket has to coast to the moon,
using just the velocity gained during launch.

Newton’s law of universal gravitation gives m1m2G/r2 as the magnitude of the
force of attraction between two point-massesm1,m2 separated by distance r. The
equation g = Gm2/R

2 gives the acceleration due to gravity at the surface of the
planet. For the earth, g = 9.8 meters per second per second and R = 6, 370, 000
meters.

A spherical projectile of mass m1 hurled straight up from the surface of a planet
moves in the radial direction. Ignoring air resistance and external gravitational
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forces, Newton’s law implies the distance y(t) traveled by the projectile satisfies

m1y
′′(t) = − m1m2G

(y(t) +R)2
, y(0) = 0, y′(0) = v0,(14)

where R is the radius of the planet, m2 is its mass and G is the experimentally
measured universal gravitation constant. Using gR2 = Gm2 and canceling m1 in
(14) gives

y′′(t) = − gR2

(y(t) +R)2
, y(0) = 0, y′(0) = v0.(15)

The projectile escapes the planet if y(t)→∞ as t→∞. The escape velocity
problem asks which minimal value of v0 causes escape.

To solve the escape velocity problem, multiply equation (15) by y′(t), then inte-
grate over [0, t] and use the initial conditions y(0) = 0, y′(0) = v0 to obtain

1

2

(
(y′(t))2 − (v0)

2
)
=

gR2

y(t) +R
−Rg.

The square term (y′(t))2 being nonnegative gives the inequality

0 ≤ (v0)
2 +

2gR2

y(t) +R
− 2Rg.

If y(t)→∞, then v20 ≥ 2Rg, which gives the escape velocity

v0 =
√
2gR.(16)

For the earth, v0 ≈ 11, 174 meters per second, which is slightly more than 25, 000
miles per hour.

Examples

Example 2.29 (Free Fall)
A ball is thrown straight up from the roof of a 100-foot building and allowed to fall to
the ground. Assume initial velocity v0 = 32 miles per hour. Estimate the maximum
height of the ball and its flight time to the ground.

Solution: The maximum height H and flight time T are given by

H = 134.41 ft, T = 4.36 sec.

Details: In fps units, v0 = 32(5280)/(3600) = 46.93 ft/sec. Using solution (4) gives for
x0 = 100 and v0 = 46.93

x(t) = −16t2 + 100 + 46.93t.

Then x(t) = H = max when x′(t) = 0, which happens at t = 46.93/32. Therefore,
H = x(46.93/32) = 134.41. The flight time T is given by the equation x(T ) = 0 (the
ground is x = 0). Solving this quadratic equation for T > 0 gives T = 4.36 seconds.
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Example 2.30 (Lunar Lander)
A lunar lander falls to the moon’s surface at v0 = −960 miles per hour. The
retrorockets in free space provide a deceleration effect on the lander of a = 18, 000
miles per hour per hour. Estimate the retrorocket activation height above the surface
which will give the lander zero touch-down velocity.

Solution: Presented here are two models, one which assumes the moon’s gravitational
field is constant and another which assumes it is variable. The results obtained for the
activation height are different: 93.3 miles for the constant field model and 80.1 miles for
the variable field model. The flight times to touchdown are estimated to be 11.7 minutes
and 10.4 minutes, respectively.

Calculations use mks units: v0 = −429.1584 meters per second and a = 2.2352 meters
per second per second.

Constant field model. Let’s assume constant gravitational acceleration G due to the
moon. Other gravitational effects are ignored.

The acceleration value G is found in mks units from the formula

G =
Gm1

R2
.

Symbols: m1 = 7.36 × 1022 kilograms and R = 1.74 × 106 meters (1740 kilometers,
1081 miles), which are the mass and radius of the moon. Newton’s universal gravitation
constant is G ≈ 6.6726× 10−11 N(m/kg)2. Then G = 1.622087990.

The lander itself has mass m. Let r(t) be the distance from the lander to the surface
of the moon. The value r(0) is the height above the moon when the retrorockets are
activated for the soft landing at time t0. Then force analysis and Newton’s second law
implies the differential equation model

mr′′(t) = ma−mG, r(t0) = 0, r′(t0) = 0, r′(0) = v0.

The objective is to find r(0). Cancel m, then integrate twice to obtain the quadrature
solution

r′(t) = (a− G)t+ v0,
r(t) = (a− G)t2/2 + v0t+ r(0).

Then r′(t0) = 0 and r(t0) = 0 give the equations

(a− G)t+ v0 = 0, r(0) = −v0t0 − (a− G)t20/2.

The symbols in mks units: a = 2.2352, v0 = −429.1584, G = 1.622087990. Solving
simultaneously provides the numerical answers

t0 = 11.66 minutes, r(0) = 150.16 kilometers = 93.3 miles.

The conversion uses 1 mile = 1.609344 kilometers.

Variable field model. The constant field model will be modified to obtain this model.
All notation developed above applies. We will replace the constant acceleration G by the
variable acceleration Gm1/(R+ r(t))2. Then the model is

mr′′(t) = ma− Gm1 m

(R+ r(t))2
, r(t0) = 0, r′(t0) = 0, r′(0) = v0.
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Multiply this equation by r′(t)/m and integrate. Then

(r′(t))2

2
= ar(t) +

Gm1

R+ r(t)
+ c, where c ≡ −Gm1

R
.

We will find r(0), the height above the moon. The equation to solve for r(0) is found by
substitution of t = 0 into the previous equation:

(r′(0))2

2
= ar(0) +

Gm1

R+ r(0)
− Gm1

R
.

After substitution of known values, the quadratic equation for x = r(0) is:

92088.46615 = 2.2352x+
2822179.310

1 + x/1740000
− 2822179.310

Solving for the positive root gives r(0) ≈ 127.23 kilometers or 79.06 miles. The analysis
does not give the flight time t0 directly, but it is approximately 10.4 minutes: see the
exercises.

Answer check. A similar analysis is done in Edwards and Penney [EP2] for the case
a = 4 meters per second per second, v0 = −450 meters per second, with result r(0) ≈
41.87 kilometers. In their example, the retrorocket thrust is nearly doubled, resulting in
a lower activation height. Substitute v0 = −450 and a = 4 in the variable field model to
obtain agreement: r(0) ≈ 41.90 kilometers. The constant field model gives r(0) ≈ 42.58
kilometers and t0 ≈ 3.15 minutes.

Example 2.31 (Flight Time and Maximum Height)
Show that the maximum height and the ascent time of a projectile are over-estimated
by a model that ignores air resistance.

Solution: Treated here is the case of a projectile launched straight up from the ground
x = 0 with velocity v0 > 0. The ascent time is denoted t1 and the maximum height M
is then M = x(t1).

No air resistance. Consider the velocity model v′ = −g, v(0) = v0. The solution is
v = −gt + v0, x = −gt2/2 + v0t. Then maximum height M occurs at v′(t1) = 0 which
gives t1 = v0/g and M = x(t1) = t1(v0 − gt1/2) = gv20/2.

Linear air resistance. Consider the model v′ = −ρv − g, v(0) = v0. This is a Newton
cooling equation in disguise, with solution given by equation (9), where ρ = k/m. Then
t1 is a function of (ρ, v0) satisfying geρt1 = v0ρ+ g, hence t1 is given by the equation

t1(ρ, v0) =
1

ρ
ln

∣∣∣∣v0ρ+ g

g

∣∣∣∣ .(17)

The limit of t1 = t1(ρ, v0) as ρ→ 0 is the ascent time v0/g of the no air resistance model.
Verified in the exercises are the following.

Lemma 2.2 (Linear Ascent Time) The ascent time t1 for linear air resistance satisfies
t1(ρ, v0) < v0/g.

The lemma implies that the rise time for linear air resistance is less than the rise time
for no air resistance.

134



2.6 Kinetics

The inequality v′ = −ρv − g < −g holds for v > 0, therefore v(t) < −gt + v0 and
x(t) < −gt2/2+ v0t = height for the no air resistance model. Thus the maximum height
x(t1) is less than the maximum height for the no air resistance model, by Lemma 2.2;
see the exercises page 1155.

Nonlinear air resistance. The example is technically done, because it has been shown
that the answers for t1 and M decrease when using the linear model. Similar results can
be stated for the nonlinear model v′ = ρv|v| − g; see the exercises page 1156.

Example 2.32 (Modeling)
Argue from nonlinear air resistance models that a projectile takes more time to fall
to the ground than it takes to reach maximum height.

Solution: The model will be the nonlinear model of the text, which historically goes
back to Isaac Newton. The linear air resistance model, appropriate for slowly moving
projectiles, is not considered in this example.

Let t1 and t2 be the ascent and fall times, so that the total flight time from the ground
to maximum height and then to the ground again is t1 + t2.

The times t1, t2 are functions of the initial velocity v0 > 0. As v0 limits to zero, both
t1 and t2 limit to zero. Inequality t2dt2/dv0 − t1dt1/dv0 > 0 is derived in Lemma 2.7
below. Integrate the inequality on variable v0, then

1
2 (t

2
2− t21) > 0, from which it follows

that t2 > t1 for v0 > 0. Meaning: the projectile takes more time to fall to the ground
(t2) than it takes to reach maximum height (t1).

Define nonlinear functions

f1(v) = −(k/m)v2 − g, f2(v) = (k/m)v2 − g

The ascent or rise is controlled with velocity v1 > 0 satisfying v′1 = f1(v1), v1(0) =

v0 > 0, v1(t1) = 0. The maximum height reached is y0 =
∫ t1
0

v1(t)dt. The descent of
fall is controlled with velocity v2(t) satisfying v′2 = f2(v2), v2(t1) = 0. The flight ends

at time T = t1 + t2, determined by 0 = y0 +
∫ T

t1
v2(t)dt.

Details of proof involve a number of technical results, some of which depend upon the
formulas f1(v) = −(k/m)v2 − g, f2(v) = (k/m)v2 − g.

Lemma 2.3 The solution v2 satisfies v2(t) = w(t− t1), where w is defined by w′ = f2(w),
w(0) = 0. The solution w does not involve variables v0, t1, t2.

Lemma 2.4 Assume f is continuously differentiable. Let v(t, v0) be the solution of v′ =
f(v), v(0) = v0. Then

dv

dv0
= e

∫ t
0
f ′(v(t,v0))dt.

The function z = dv/dv0 solves the linear problem z′ = f ′(v(t, v0))z, z(0) = 1.

Lemma 2.5
dt1
dv0

=
1

g
e−2k

∫ t1
0 v1(t,v0)dt/m.

Lemma 2.6
dt2
dv0

=
−1

v2(t1 + t2)

∫ t1

0

e−2k
∫ t
0
v1(r,v0)dr/m dt.
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Lemma 2.7

t2
dt2
dv0
− t1

dt1
dv0

> 0.

Proof of Lemma 2.7. Lemmas 2.3 to 2.6 will be applied. Define w(t) by Lemma 2.3.
Because w′ = f2(w) = (k/m)w2 − g, then f2(w) ≥ −g which implies w(t) ≥ w(0) − gt.
Using w(0) = 0 implies v2(t1 + t2) = w(t2) ≥ −gt2 and finally, using w(t) < 0 for
0 < t ≤ t2,

1

gt2
≤ −1

v2(t1 + t2)
.

Multiply this inequality by eu(t), u(t) = −2k
∫ t

0
v1(r, v0)dr/m. Integrate over t = 0 to

t = t1. Then Lemma 2.6 implies

1

gt2

∫ t1

0

eu(t)dt ≤ dt2
dv0

.

Because u(t) > u(t1), then
1

gt2

∫ t1

0

eu(t1)dt <
dt2
dv0

.

This implies by Lemma 2.5 the inequality

t1
t2

dt1
dv0

=
t1
gt2

eu(t1) <
dt2
dv0

,

or t2dt2/dv0 − t1dt1/dv0 > 0. ■

Proof of Lemma 2.3. The function z(t) = v2(t+ t1) satisfies z
′ = f2(z), z(0) = 0 (an

answer check for the reader). Function w(t) is defined to solve w′ = f2(w), w(0) = 0. By
uniqueness, z(t) ≡ w(t), or equivalently, w(t) = v2(t+ t1). Replace t by t− t1 to obtain
v2(t) = w(t− t1).

Proof of Lemma 2.4. The exponential formula for dv2/dv0 is the unique solution of
the first order initial value problem. It remains to show that the initial value problem
is satisfied. Instead of doing the answer check, we motivate how to find the initial value
problem. First, differentiate across the equation v′2 = f2(v2) with respect to variable v0 to
obtain z′ = f ′

2(v2)z where z = dv2/dv0. Secondly, differentiate the relation v2(0, v0) = v0
on variable v0 to obtain z(0) = 1. The details of the answer check focus on showing
Newton quotients converge to the given answer.

Proof of Lemma 2.5. Start with the determining equation v1(t1, v0) = 0. Differentiate
using the chain rule on variable v0 to obtain the relation

v′1(t1, v0)
dt1
dv0

+
dv1
dv0

(t1, v0) = 0.

Because f ′
1(u) = −2ku/m, then the preceding lemma implies that dv1/dv0 is the same

exponential function as in this Lemma. Also, v1(t1, v0) = 0 implies v′1(t1, v0) = f1(0) =
−g. Substitution gives the formula for dt1/dv0.

Proof of Lemma 2.6. Start with y0 =
∫ t1
0

v1(t, v0)dt and y(t) = y0 +
∫ t

t1
v2(t)dt. Then

0 = y(t2 + t1) implies that

0 = y(t1 + t2)

=
∫ t1
0

v1(t, v0)dt+
∫ t2
0

v2(t+ t1)dt

=
∫ t1
0

v1(t, v0)dt+
∫ t2
0

w(t)dt.
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Because w(t) is independent of t1, t2, v0 and v1(t1, v0) = 0, then differentiation on v0
across the preceding formula gives

0 = d
dv0

∫ t1
0

v1(t, v0)dt+ w(t2)
dt2
dv0

= v1(t1, v0)
dt1
dv0

+
∫ t1
0

dv1
dv0

(t, v0)dt+ w(t2)
dt2
dv0

= 0 +
∫ t1
0

eu(t)dt+ w(t2)
dt2
dv0

where u(t) = −2k
∫ t

0
v1(r, v0)dr/m. Use w(t2) = v2(t2 + t1) after division by w(t2) in

the last display to obtain the formula.

Details and Proofs

Proof for Equation (4). The method of quadrature is applied as follows.

x′′(t) = −g The given differential equation.∫
x′′(t)dt =

∫
−gdt Quadrature step.

x′(t) = −gt+ c1 Fundamental theorem of calculus.∫
x′(t)dt =

∫
(−gt+ c1)dt Quadrature step.

x(t) = −g t2

2 + c1t+ c2 Fundamental theorem of calculus.

Using initial conditions x(0) = x0 and x′(0) = v0 it follows that c1 = v0 and c2 = x0.
These steps verify the formula x(t) = −gt2/2 + x0 + v0t.

Technical Details for Equation (9).

v′(t) + (k/m)v(t) = −g Standard linear form.
(Qv)′

Q = −g Integrating factor Q = ekt/m.

(Qv)′ = −gQ Quadrature form.

Qv = −mgQ/k + c Method of quadrature.

v = −mg/k + c/Q Velocity equation.

v = −mg
k +

(
v(0) + mg

k

)
e−kt/m Evaluate c and use Q = ekt/m.

The equation x(t) = x(0) +
∫ t

0
v(r)dr gives the last relation in (9):

x(t) = x(0)− mg

k
t+

m

k

(
v(0) +

mg

k

)(
1− e−kt/m

)
.

Technical Details for Equation (12), v(0) > 0.

v′(t) = −(k/m)v2(t)− g The upward launch equation.

u′(t) =
√

kg
m (1 + u2(t)) Change of variables u =

√
k
mg v.

u′(t)
1+u2(t) = −

√
kg
m A separated form.

arctan(u(t)) = −
√

kg
m t+ c1 Quadrature.

u(t) = tan

(
c1 −

√
kg
m t

)
Take the tangent of both sides.
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v(t) =
√

mg
k tan

(√
kg
m (c− t)

)
Define c1 =

√
kg
m c.

x(t) =
∫
v(t)dt Quadrature method.

= d+ m
k ln

∣∣∣∣cos(√kg
m (c− t)

)∣∣∣∣ Integration constant d.

Technical Details for Equation (13), v(0) < 0.

v′(t) = (k/m)v2(t)− g Downward launch equation.

u′(t) =
√

kg
m

(
u2(t)− 1

)
Change of variables u =

√
k
mg v.

u′(t)
u2(t)−1 =

√
kg
m A separated form.

− arctanh(u) = 2t
√

kg
m + c1 Quadrature method and tables.

u = tanh

(√
kg
m (c− t)

)
Define c by

√
kg
m c = −c1.

v(t) =
√

mg
k tanh

(√
kg
m (c− t)

)
Use v =

√
mg
k u.

x(t) =
∫
v(t)dt Quadrature.

= d− m
k ln

∣∣∣∣cosh(√kg
m (c− t)

)∣∣∣∣ Integration constant d.

Exercises 2.6 �

Newton’s Laws
Review of units and conversions.

1. An object weighs 100 pounds. Find its
mass in slugs and kilograms.

2. An object has mass 50 kilograms. Find
its mass in slugs and its weight in
pounds.

3. Convert from fps to mks systems: po-
sition 1000, velocity 10, acceleration 2.

4. Derive g =
Gm

R2 , where m is the mass

of the earth and R is its radius.

Velocity and Acceleration
Find the velocity x′ and acceleration x′′.

5. x(t) = 16t2 + 100

6. x(t) = 16t2 + 10t+ 100

7. x(t) = t3 + t+ 1

8. x(t) = t(t− 1)(t− 2)

Free Fall with Constant Gravity
Solve using the model x′′(t) = −g, x(0) =
x0, x

′(0) = v0.

9. A brick falls from a tall building,
straight down. Find the distance it fell
and its speed at three seconds.

10. An iron ingot falls from a tall building,
straight down. Find the distance it fell
and its speed at four seconds.

11. A ball is thrown straight up from the
ground with initial velocity 66 feet per
second. Find its maximum height.

12. A ball is thrown straight up from the
ground with initial velocity 88 feet per
second. Find its maximum height.

13. An arrow is shot straight up from the
ground with initial velocity 23 meters
per second. Find the flight time back
to the ground.
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14. An arrow is shot straight up from the
ground with initial velocity 44 meters
per second. Find the flight time back
to the ground.

15. A car travels 140 kilometers per hour.
Brakes are applied, with deceleration 10
meters per second per second. Find the
distance the car travels before stopping.

16. A car travels 120 kilometers per hour.
Brakes are applied, with deceleration 40
feet per second per second. Find the
distance the car travels before stopping.

17. An arrow is shot straight down from a
height of 500 feet, with initial velocity
44 feet per second. Find the flight time
to the ground and its impact speed.

18. An arrow is shot straight down from
a height of 200 meters, with initial ve-
locity 13 meters per second. Find the
flight time to the ground and its impact
speed.

Linear Air Resistance
Solve using the linear air resistance model
mx′′(t) = −kx′(t) − mg. An equivalent
model is x′′ = −ρx′ − g, where ρ = k/m
is the drag factor.

19. An arrow is shot straight up from the
ground with initial velocity 23 meters
per second. Find the flight time back
to the ground. Assume ρ = 0.035.

20. An arrow is shot straight up from the
ground with initial velocity 27 meters
per second. Find the maximum height.
Assume ρ = 0.04.

21. A parcel is dropped from an aircraft
at 32, 000 feet. It has a parachute that
opens automatically after 25 seconds.
Assume drag factor ρ = 0.16 without
the parachute and ρ = 1.45 with it.
Find the descent time to the ground.

22. A first aid kit is dropped from a heli-
copter at 12, 000 feet. It has a parachute
that opens automatically after 15 sec-
onds. Assume drag factor ρ = 0.12

without the parachute and ρ = 1.55
with it. Find the impact speed with the
ground.

23. A motorboat has velocity v satisfying
1100v′(t) = 6000−110v, v(0) = 0. Find
the maximum speed of the boat.

24. A motorboat has velocity v satisfying
1000v′(t) = 4000− 90v, v(0) = 0. Find
the maximum speed of the boat.

25. A parachutist falls until his speed is 65
miles per hour. He opens the parachute.
Assume parachute drag factor ρ = 1.57.
About how many seconds must elapse
before his speed is reduced to within 1%
of terminal velocity?

26. A parachutist falls until his speed is
120 kilometers per hour. He opens the
parachute. Assume drag factor ρ =
1.51. About how many seconds must
elapse before his speed is reduced to
within 2% of terminal velocity?

27. A ball is thrown straight up with initial
velocity 35 miles per hour. Find the as-
cent time and the descent time. Assume
drag factor 0.042

28. A ball is thrown straight up with initial
velocity 60 kilometers per hour. Find
the ascent time and the descent time.
Assume drag factor 0.042

Linear Ascent and Descent Times
Find the ascent time t1 and the descent
time t2 for the linear model x′′ = −ρx′− g,
x(0) = 0, x′(0) = v0 where ρ = k/m is the
drag factor. Unit system fps. Computer
algebra system expected.

29. ρ = 0.01, v0 = 50

30. ρ = 0.015, v0 = 30

31. ρ = 0.02, v0 = 50

32. ρ = 0.018, v0 = 30

33. ρ = 0.022, v0 = 50

34. ρ = 0.025, v0 = 30

35. ρ = 1.5, v0 = 50
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36. ρ = 1.55, v0 = 30

37. ρ = 1.6, v0 = 50

38. ρ = 1.65, v0 = 30

39. ρ = 1.45, v0 = 50

40. ρ = 1.48, v0 = 30

Nonlinear Air Resistance
Assume ascent velocity v1 satisfies v′1 =
−ρv21 − g. Assume descent velocity v2 sat-
isfies v′2 = ρv22 − g. Motion from the
ground x = 0. Let t1 and t2 be the as-
cent and descent times, so that t1 + t2 is
the flight time. Let g = 9.8, v1(0) = v0,
v1(t1) = v2(t1) = 0, units mks. Define
M = maximum height and vf = impact ve-
locity. Computer algebra system expected.

41. Let ρ = 0.0012, v0 = 50. Find t1, t2.

42. Let ρ = 0.0012, v0 = 30. Find t1, t2.

43. Let ρ = 0.0015, v0 = 50. Find t1, t2.

44. Let ρ = 0.0015, v0 = 30. Find t1, t2.

45. Let ρ = 0.001, v0 = 50. Find M , vf .

46. Let ρ = 0.001, v0 = 30. Find M , vf .

47. Let ρ = 0.0014, v0 = 50. Find M , vf .

48. Let ρ = 0.0014, v0 = 30. Find M , vf .

49. Find t1, t2, M and vf for ρ = 0.00152,
v0 = 60.

50. Find t1, t2, M and vf for ρ = 0.00152,
v0 = 40.

Terminal Velocity
Find the terminal velocity for (a) a linear
air resistance a(t) = ρv(t) and (b) a non-
linear air resistance a(t) = ρv2(t). Use the
model equation v′ = a(t)− g and the given
drag factor ρ, mks units.

51. ρ = 0.15

52. ρ = 0.155

53. ρ = 0.015

54. ρ = 0.017

55. ρ = 1.5

56. ρ = 1.55

57. ρ = 2.0

58. ρ = 1.89

59. ρ = 0.001

60. ρ = 0.0015

Parachutes
A skydiver has velocity v0 and height 5, 500
feet when the parachute opens. Velocity
v(t) is given by (a) linear resistance model
v′ = −ρv − g or (b) nonlinear resistance
downward model v′ = ρv2 − g. Given the
drag factor ρ and the parachute-open ve-
locity v0, compute the elapsed time until
the parachutist slows to within 2% of ter-
minal velocity. Then find the flight time
from parachute open to the ground. Re-
port two values for (a) and two values for
(b).

61. ρ = 1.446, v0 = −116 ft/sec.

62. ρ = 1.446, v0 = −84 ft/sec.

63. ρ = 1.2, v0 = −116 ft/sec.

64. ρ = 1.2, v0 = −84 ft/sec.

65. ρ = 1.01, v0 = −120 ft/sec.

66. ρ = 1.01, v0 = −60 ft/sec.

67. ρ = 0.95, v0 = −10 ft/sec.

68. ρ = 0.95, v0 = −5 ft/sec.

69. ρ = 0.8, v0 = −66 ft/sec.

70. ρ = 0.8, v0 = −33 ft/sec.

Lunar Lander
A lunar lander falls to the moon’s surface
at v0 miles per hour. The retrorockets in
free space provide a deceleration effect on
the lander of a miles per hour per hour.
Estimate the retrorocket activation height
above the surface which will give the lander
zero touch-down velocity. Follow Example
2.30, page 133.
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71. v0 = −1000, a = 18000

72. v0 = −980, a = 18000

73. v0 = −1000, a = 20000

74. v0 = −1000, a = 19000

75. v0 = −900, a = 18000

76. v0 = −900, a = 20000

77. v0 = −1100, a = 22000

78. v0 = −1100, a = 21000

79. v0 = −800, a = 18000

80. v0 = −800, a = 21000

Escape velocity
Find the escape velocity of the given planet,
given the planet’s mass m and radius R.

81. (Planet A) m = 3.1× 1023 kilograms,
R = 2.4× 107 meters.

82. (Mercury) m = 3.18×1023 kilograms,
R = 2.43× 106 meters.

83. (Venus) m = 4.88 × 1024 kilograms,
R = 6.06× 106 meters.

84. (Mars) m = 6.42 × 1023 kilograms,
R = 3.37× 106 meters.

85. (Neptune) m = 1.03×1026 kilograms,
R = 2.21× 107 meters.

86. (Jupiter) m = 1.90 × 1027 kilograms,
R = 6.99× 107 meters.

87. (Uranus) m = 8.68 × 1025 kilograms,
R = 2.33× 107 meters.

88. (Saturn) m = 5.68 × 1026 kilograms,
R = 5.85× 107 meters.

Lunar Lander Experiments

89. (Lunar Lander) Verify that the vari-
able field model for Example 2.30 gives
a soft landing flight model in MKS units

u′′(t)=2.2352− c1
(c2 + u(t))2

,

u(0) =127254.1306,
u′(0)=−429.1584,

where c1 = 4911033599000 and c2 =
1740000.

90. (Lunar Lander: Numerical Exper-

iment) Using a computer, solve the
flight model of the previous exercise.
Determine the flight time t0 ≈ 625.6
seconds by solving u(t) = 0 for t.

Details and Proofs

91. (Linear Rise Time) Using the inequal-
ity eu > 1 + u for u > 0, show that the
ascent time t1 in equation (17) satisfies

g(1 + ρt1) < geρt1 = v0ρ+ g.

Conclude that t1 < v0/g, proving
Lemma 2.2.

92. (Linear Maximum) Verify that
Lemma 2.2 plus the inequal-
ity x(t) < −gt2/2 + v0t imply
x(t1) < gv20/2. Conclude that the
maximum for ρ > 0 is less than the
maximum for ρ = 0.

93. (Linear Rise Time) Consider the as-
cent time t1(ρ, v0) given by equation
(17). Prove that

dt1
dρ

=
ln g

v0ρ+g

ρ2
+

v0

ρ(v0ρ+ g)
.

94. (Linear Rise Time) Consider
dt1(ρ, v0)/dρ given in the previous
exercise. Let ρ = gx/v0. Show that
dt1/dρ < 0 by considering properties
of the function −(x + 1) ln(x + 1) + x.
Then prove Lemma 2.2.

95. (Compare Rise Times) The ascent
time for nonlinear model v′ = −g− ρv2

is less than the ascent time for linear
model u′ = −g − ρu. Verify for ρ = 1,
g = 32 ft/sec/sec and initial velocity 50
ft/sec.

96. (Compare Fall Times) The descent
time for nonlinear model v′ = ρv2 − g,
v(0) = 0 is greater than the descent
time for linear model u′ = −ρu − g,
u(0) = 0. Verify for ρ = 1, g = 32
ft/sec/sec and maximum heights both
100 feet.
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2.7 Logistic Equation

The 1845 work of Pierre Francois Verhulst (1804–1849), Belgian demographer
and mathematician, modified the classical growth-decay equation y′ = ky by
replacing k by a− by to obtain the logistic equation

y′ = (a− by)y.(1)

The solution of the logistic equation (1) is (details on page 11)

y(t) =
ay(0)

by(0) + (a− by(0))e−at
.(2)

The logistic equation (1) applies not only to human populations but also to pop-
ulations of fish, animals and plants, such as yeast, mushrooms or wildflowers.
The y-dependent growth rate k = a − by allows the model to have a finite lim-
iting population a/b. The constant M = a/b is called the carrying capacity
by demographers. Verhulst introduced the terminology logistic curves for the
solutions of (1).

To use the Verhulst model, a demographer must supply three population counts
at three different times; these values determine the constants a, b and y(0) in
solution (2).

Logistic Models

Below are some variants of the basic logistic model known to researchers in
medicine, biology and ecology.

Limited Environment. A container of y(t) flies has a carrying capacity of N
insects. A growth-decay model y′ = Ky with combined growth-death rate
K = k(N − y) gives the model y′ = k(N − y)y.

Spread of a Disease. The initial size of the susceptible population is N . Then
y and N −y are the number of infectives and susceptibles. Chance encoun-
ters spread the incurable disease at a rate proportional to the infectives
and the susceptibles. The model is y′ = ky(N − y). The spread of rumors
has an identical model.

Explosion–Extinction. The number y(t) of alligators in a swamp can satisfy
y′ = Ky where the growth-decay symbol K is proportional to y − N and
N is a threshold population. The logistic model y′ = k(y − N)y gives
extinction for initial populations smaller than M and a doomsday popu-
lation explosion y(t) → ∞ for initial populations greater than M . This
model ignores harvesting.
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Constant Harvesting. The number y(t) of fish in a lake can satisfy a logistic
model y′ = (a − by)y − h, provided fish are harvested at a constant rate
h > 0. This model can be written as y′ = k(M − y)(y − N) for small
harvesting rates h, where M is the carrying capacity and N is the threshold
population.

Variable Harvesting. The special logistic model y′ = (a− by)y−hy results by
harvesting at a non-constant rate proportional to the present population
y. The effect is to decrease the natural growth rate a by the constant
amount h in the standard logistic model.

Restocking. The equation y′ = (a−by)y−h sin(ωt) models a logistic population
that is periodically harvested and restocked with maximal rate h > 0. The
period is T = 2π/ω. The equation might model extinction for stocks less
than some threshold population y0, and otherwise a stable population that
oscillates about an ideal carrying capacity a/b with period T .

Example 2.33 (Limited Environment)
Find the equilibrium solutions and the carrying capacity for the logistic equation
P ′ = 0.04(2− 3P )P . Then solve the equation.

Solution: The given differential equation can be written as the separable autonomous
equation P ′ = G(P ) where G(y) = 0.04(2−3P )P . Equilibria are obtained as P = 0 and
P = 2/3, by solving the equation G(P ) = 0.04(2− 3P )P = 0. The carrying capacity is
the stable equilibrium P = 2/3; here we used the derivative G′(P ) = 0.04(2 − 6P ) and
evaluations G′(0) > 0, G′(2/3) < 0 to determine that P = 2/3 is a stable sink or funnel.

Example 2.34 (Spread of a Disease)
Find the number of infectives, the number of susceptibles and the rate of spread of
the disease at t = 4 months for logistic model y′ = 15

1000(10000− y)y, y(0) = 200.

Solution:

Answer: By month 4, about 8900 were infected, about 1100 were not infected and the
disease was spreading at a rate of about 1450 per month.

Details: Write the differential equation in the form y′ = (a − by)y with a = 15/10,
b = 15

100000 . Let M = a/b = 10000. The number of infectives after 4 months is y(4) and
the number of susceptibles is M − y(4). The rate of spread of the disease is y′(4).

Using formula (2) with a = 15/10, b = 15
100000 and y(0) = 200 gives

y(t) =
10000

1 + 49e−3t/2
.

Then the number of infectives at t = 4 is y(4) = 8916.956640. The number of susceptibles
is M − y(4) = 1083.043360. The rate of spread of the disease is y′(4) = 1448.617600.

Example 2.35 (Explosion-Extinction)
Classify the model as explosion or extinction: y′ = 2(y − 100)y, y(0) = 200.
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Solution: Let G(y) = 2(y − 100)y, then G(y) = 0 exactly for equilibria y = 100 and
y = 0, at which G′(y) = 4y − 200 satisfies G′(200) > 0, G′(0) < 0. The initial value
y(0) = 200 is above the equilibrium y = 100. Because y = 100 is a source, then y →∞,
which implies the model is explosion.

A second, direct analysis can be made from the differential equation y′ = 2(y − 100)y:
y′(0) = 2(200− 100)200 > 0 means y increases from 200, causing y →∞ and explosion.

Example 2.36 (Constant Harvesting)
Find the carrying capacity M and the threshold population N for the harvesting
equation P ′ = (3− 2P )P − 1.

Solution: Carrying Capacity M = 1, Threshold Population N = 1/2.

Let f(P ) = −2(P − 1)(P − 1/2), which is the factored form of (3− 2P )P − 1, the right
side of P ′ = (3−2P )P −1. Solve equation f(P ) = 0 for P = 1, P = 1/2, the equilibrium
solutions.

Requirements for carrying capacity M and threshold population N :

1. M and N are equilibrium solutions
2. M is a stable sink, a funnel in the phase portrait
3. If P (0) > N , then limt→∞ P (t) = M .

Stability test 1.3 on page 55 applies: if f(M) = 0 and f ′(M) < 0, then equilibrium
P = M is a stable sink (a funnel). Calculate G′(P ) = 3− 4P . Test P = 1 and P = 1/2:
P = 1 is a stable sink. Define M = 1, N = 1/2. Requirements 1 and 2 hold. To verify
limit requirement 3, write G(P ) = −2(P − 1)(P − 1/2) = −2(P −M)(P −N) and make
a phase line diagram. Then use the Three Drawing Rules page 52.

Example 2.37 (Variable Harvesting)
Re-model the variable harvesting equation P ′ = (3 − 2P )P − P as y′ = (a − by)y
and solve the equation by formula (2), page 142.

Solution: The equation is rewritten as P ′ = 2P − 2P 2 = (2− 2P )P . This has the form
of y′ = (a− by)y where a = b = 2. Then (2) implies

P (t) =
2P0

2P0 + (2− 2P0)e−2t

which simplifies to

P (t) =
P0

P0 + (1− P0)e−2t
.

Example 2.38 (Restocking)
Make a direction field graphic by computer for the restocking equation P ′ = (1 −
P )P −2 sin(2πt). Using the graphic, report (a) an estimate for the carrying capacity
C and (b) approximations for the amplitude A and period T of a periodic solution
which oscillates about P = C.
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Solution: The computer algebra system maple is used with the code below to make
Figure 6. An essential feature of the maple code is plotting of multiple solution curves.
For instance, [P(0)=1.3] in the list ics of initial conditions causes the solution to the
problem P ′ = (1− P )P − 2 sin(2πt), P (0) = 1.3 to be added to the graphic.

The resulting graphic, which contains 13 solution curves, shows that all solution curves
limit as t→∞ to what appears to be a unique periodic solution.

Using features of the maple interface, it is possible to determine by experiment estimates
for the maxima M = 1.26 and minima m = 0.64 of the apparent periodic solution. Then
(a) C = (M +m)/2 = 0.95, (b) A = (M −m)/2 = 0.31 and T = 1. The experimentally
obtained period T = 1 matches the period of the term −2 sin(2πt).
de:=diff(P(t),t)=(1-P(t))*P(t)-2*sin(2*Pi* t);

ics:=[[P(0)=1.4],[P(0)=1.3],[P(0)=1.2],[P(0)=1.1],[P(0)=0.1],

[P(0)=0.2],[P(0)=0.3],[P(0)=0.4],[P(0)=0.5],[P(0)=0.6],

[P(0)=0.7],[P(0)=0.8],[P(0)=0.9]];

opts:=stepsize=0.05,arrows=none:

DEtools[DEplot](de,P(t),t=-3..12,P=-0.1..1.5,ics,opts);

P
1.4
1.26

0.64

−0.1
0

t

12

0.95 Figure 6. Solutions of P ′ = (1 −
P )P − 2 sin(2πt).

The maximum is 1.26.
The minimum is 0.64.
Oscillation is about the line P = 0.95
with period 1.

Exercises 2.7 �

Limited Environment
Find the equilibrium solutions and the car-
rying capacity for each logistic equation.

1. P ′ = 0.01(2− 3P )P

2. P ′ = 0.2P − 3.5P 2

3. y′ = 0.01(−3− 2y)y

4. y′ = −0.3y − 4y2

5. u′ = 30u+ 4u2

6. u′ = 10u+ 3u2

7. w′ = 2(2− 5w)w

8. w′ = −2(3− 7w)w

9. Q′ = Q2 − 3(Q− 2)Q

10. Q′ = −Q2 − 2(Q− 3)Q

Spread of a Disease
In each model, find the number of infec-
tives and then the number of susceptibles
at t = 2 months. Follow Example 2.34,
page 143. A calculator is required for ap-
proximations.

11. y′ = (5/10− 3y/100000)y, y(0) = 100.

12. y′ = (13/10−3y/100000)y, y(0) = 200.

13. y′ = (1/2− 12y/100000)y, y(0) = 200.

14. y′ = (15/10−4y/100000)y, y(0) = 100.

15. P ′ = (1/5−3P/100000)P , P (0) = 500.

16. P ′ = (5/10 − 3P/100000)P , P (0) =
600.

17. 10P ′ = 2P − 5P 2/10000, P (0) = 500.

18. P ′ = 3P − 8P 2, P (0) = 10.
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Explosion–Extinction
Classify the model as explosion or extinc-
tion.

19. y′ = 2(y − 100)y, y(0) = 200

20. y′ = 2(y − 200)y, y(0) = 300

21. y′ = −100y + 250y2, y(0) = 200

22. y′ = −50y + 3y2, y(0) = 25

23. y′ = −60y + 70y2, y(0) = 30

24. y′ = −540y + 70y2, y(0) = 30

25. y′ = −16y + 12y2, y(0) = 1

26. y′ = −8y + 12y2, y(0) = 1/2

Constant Harvesting
Find the carrying capacity N and the
threshold population M .

27. P ′ = (3− 2P )P − 1

28. P ′ = (4− 3P )P − 1

29. P ′ = (5− 4P )P − 1

30. P ′ = (6− 5P )P − 1

31. P ′ = (6− 3P )P − 1

32. P ′ = (6− 4P )P − 1

33. P ′ = (8− 5P )P − 2

34. P ′ = (8− 3P )P − 2

35. P ′ = (9− 4P )P − 2

36. P ′ = (10− P )P − 2

Variable Harvesting
Re-model the variable harvesting equation
as y′ = (a− by)y and solve the equation by
logistic solution (2) on page 142.

37. P ′ = (3− 2P )P − P

38. P ′ = (4− 3P )P − P

39. P ′ = (5− 4P )P − P

40. P ′ = (6− 5P )P − P

41. P ′ = (6− 3P )P − P

42. P ′ = (6− 4P )P − P

43. P ′ = (8− 5P )P − 2P

44. P ′ = (8− 3P )P − 2P

45. P ′ = (9− 4P )P − 2P

46. P ′ = (10− P )P − 2P

Restocking
Make a direction field graphic by computer
following Example 2.38. Using the graphic,
report (a) an estimate for the carrying ca-
pacity C and (b) approximations for the
amplitude A and period T of a periodic so-
lution which oscillates about P = C.

47. P ′ = (2− P )P − sin(πt/3)

48. P ′ = (2− P )P − sin(πt/5)

49. P ′ = (2− P )P − sin(πt/7)

50. P ′ = (2− P )P − sin(πt/8)

Richard Function
Ideas of L. von Bertalanffy (1934), A.
Pütter (1920) and Verhulst were used by
F. J. Richards (1957) to define a sigmoid
function Y (t) which generalizes the logistic
function. It is suited for data-fitting mod-
els, for example forestry, tumor growth and
stock-production problems. The Richard
function is

Y (t) = A+
K −A

(1 +Qe−B(t−M))1/ν
,

where Y = weight, height, size, amount,
etc., and t = time.

51. Differentiate for α > 0, ν > 0, the spe-
cialized Richard function

Y (t) =
K

(1 +Qe−αν(t−t0))1/ν

to obtain the sigmoid differential equa-
tion

Y ′(t) = α

(
1−

(
Y

K

)ν)
Y.

The relation Y (t0) = K
(1+Q)1/ν

implies

Q = −1 +
(

K
Y (t0)

)ν
.

52. Solve the differential equation Y ′(t) =

α
(
1−

(
Y
K

)ν)
Y by means of the sub-

stitution w = (Y/K)ν , which gives a
familiar logistic equation w′ = αν(1 −
w)w.
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2.8 Science and Engineering

Applications

Assembled here are some classical applications of first order differential equations
to problems of science and engineering.

Draining a Tank, page 147.

Stefan’s Law, page 148.

Seismic Sea Waves and Earthquakes, page 149.

Gompertz Tumor Equation, page 151.

Parabolic Mirror, page 151.

Logarithmic Spiral, page 152.

Draining a Tank

Investigated here is a tank of water with orifice at the bottom emptying due to
gravity; see Figure 7. The analysis applies to tanks of any geometrical shape.

Figure 7. Draining a tank.
A tank empties from an orifice at the bottom. The fluid fills
the tank to height y above the orifice, and it drains due to
gravity.

Evangelista Torricelli (1608-1647), inventor of the barometer, investigated this
physical problem using Newton’s laws, obtaining the result in Lemma 2.8, proof
on page 157.

Lemma 2.8 (Torricelli) A droplet falling freely from height h in a gravitational field
with constant g arrives at the orifice with speed

√
2gh.

Tank Geometry. A simple but useful tank geometry can be constructed using
washers of area A(y), where y is the height above the orifice; see Figure 8.

A(y)

y

Figure 8. A tank constructed from wash-
ers.
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Then the method of cross-sections in calculus implies that the volume V (h) of
the tank at height h is given by

V (h) =

∫ h

0
A(y)dy,

dV

dh
= A(h).(1)

Torricelli’s Equation. Torricelli’s lemma applied to the tank fluid height y(t)
at time t implies, by matching drain rates at the orifice (see Technical Details
page 156), that

d

dt
(V (y(t))) = −k

√
y(t)(2)

for some proportionality constant k > 0. The chain rule gives the separable
differential equation V ′(y(t))y′(t) = −k

√
y(t), or equivalently (see page 157), in

terms of the cross-sectional area A(y) = V ′(y),

y′(t) = −k
√

y(t)

A(y(t))
.(3)

Typical of the physical literature, the requirement y(t) ≥ 0 is omitted in the
model, but assumed implicitly. The model itself exhibits non-uniqueness:
the tank can be drained hours ago or at instant t = 0 and result still in the
solution y(t) = 0, interpreted as fluid height zero.

Stefan’s Law

Heat energy can be transferred by conduction, convection or radiation. The
following illustrations suffice to distinguish the three types of heat transfer.

Conduction. A soup spoon handle gains heat from the soup by exchange of
kinetic energy at a molecular level.

Convection. A hot water radiator heats a room largely by convection currents,
which move heated air upwards and denser cold air downwards to the ra-
diator. In linear applications, Newton’s cooling law applies.

Radiation. A car seat heated by the sun gets the heat energy from electromag-
netic waves, which carry energy from the sun to the earth.

The rate at which an object emits or absorbs radiant energy is given by Ste-
fan’s radiation law

P = kT 4.

The symbol P is the power in watts (joules per second), k is a constant propor-
tional to the surface area of the object and T is the temperature of the object in
degrees Kelvin. Use K = C+273.15 to convert Celsius to Kelvin.6 The constant

6USA Fahrenheit F is Celsius C = G + G/10 + G/100, correct to 0.49 C for −40 to 120
F. Value G = (F − 32)/2 is a common guess. The idea uses 1/9 = 0.111 . . .. Example for
F = 79: Compute guess G = (79− 32)/2 = 23.5. Then C = 23.5 + 2.35 + 0.235 = 26.085. The
numbers added to G are decimal point shifts.

148



2.8 Science and Engineering Applications

k in Stefan’s law is decomposed as k = σAE . Here, σ = 5.6696×10−8K−4 Watts
per square meter (K=Kelvin), A is the surface area of the body in square meters
and E is the emissivity, which is a constant between 0 and 1 depending on
properties of the surface.

Constant room temperature. Suppose that a person with skin temperature
T Kelvin sits unclothed in a room in which the thermometer reads T0 Kelvin.
The net heat flux Pnet in joules per second (watts) is given by

Pnet = k(T 4 − T 4
0 ).(4)

If T and T0 are constant, then Q = kt(T 4−T 4
0 ) can be used to estimate the total

heat loss or gain in joules for a time period t. To illustrate, if the wall thermometer
reads 20◦ Celsius, then T0 = 20+273.15. Assume A = 1.5 square meters, E = 0.9
and skin temperature 33◦ Celsius or T = 33 + 273.15. The total heat loss in 10
minutes is Q = (10(60))(5.6696 × 10−8)(1.5)(0.9)(305.154 − 293.154) = 64282
joules. Over one hour, the total heat radiated is approximately 385, 691 joules,
which is close to the total energy provided by a 6 ounce soft drink.7

Time-varying room temperature. Suppose that a person with skin tem-
perature T degrees Kelvin sits unclothed in a room. Assume the thermometer
initially reads 15◦ Celsius and then rises to 24◦ Celsius after t1 seconds. The
function T0(t) has values T0(0) = 15 + 273.15 and T0(t1) = 24 + 273.15. In a
possible physical setting, T0(t) reflects the reaction to the heating and cooling
system, which is generally oscillatory about the thermostat setting. If the ther-
mostat is off, then it is reasonable to assume a linear model T0(t) = at+ b, with
a = (T0(t1)− T0(0))/t1, b = T0(0).

To compute the total heat radiated from the person’s skin, we use the time-
varying equation

dQ

dt
= k(T 4 − T0(t)

4).(5)

The solution to (5) with Q(0) = 0 is formally given by the quadrature formula

Q(t) = k

∫ t

0
(T 4 − T0(r)

4)dr.(6)

For the case of a linear model T0(t) = at+ b, the total number of joules radiated
from the person’s skin is found by integrating (6), giving

Q(t1) = kT 4t1 + k
b5 − (at1 + b)5

5a
.

7American soft drinks are packaged in 12-ounce cans, twice the quantity cited. One calorie is
defined to be 4.186 joules and one food Calorie is 1000 calories (a kilo-calorie) or 4186 joules. A
boxed apple juice is about 6 ounces or 0.2 liters. Juice provides about 400 thousand joules in 0.2
liters. Product labels with 96 Calories mean 96 kilo-calories; it converts to 96(1000)(4.186) =
401, 856 joules.
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Tsunami

A seismic sea wave due to an earthquake under the sea or some other natu-
ral event, called a tsunami, creates a wave on the surface of the ocean. The
wave may have a height of less than 1 meter. These waves can have a very large
wavelength, up to several hundred miles, depending upon the depth of the water
where they were formed. The period is often more than one hour with wave
velocity near 700 kilometers per hour. These waves contain a huge amount of
energy. Their height increases as they crash upon the shore, sometimes to 30
meters high or more, depending upon water depth and underwater surface fea-
tures. In the year 1737, a wave estimated to be 64 meters high hit Cape Lopatka,
Kamchatka, in northeast Russia. The largest Tsunami ever recorded occurred in
July of 1958 in Lituya Bay, Alaska, when a huge rock and ice fall caused water
to surge up to 500 meters. For additional material on earthquakes, in particu-
lar the Sumatra and Chile earthquakes and resultant Tsunamis, see Chapter 11,
Systems of Differential Equations.

Wave shape. A simplistic model for the shape y(x) of a tsunami in the open
sea is the differential equation [Zill-C, p. 81]

(y′)2 = 4y2 − 2y3.(7)

This equation gives the profile y(x) of one side of the 3D-wave, by cutting the
3D object with an xy-plane.

Equilibrium solutions. They are y = 0 and y = 2, corresponding to no wave
and a wall of water 2 units above the ocean surface. There are no solutions for
y > 2, because the two sides of (7) have in this case different signs.

Non-equilibrium solutions. They are given by

y(x) = 2− 2 tanh2(x+ c).(8)

The initial height of the wave is related to the parameter c by y(0) = 2 −
2 tanh2(c). Only initial heights 0 < y(0) < 2 are physically significant. Due
to the property limu→∞ tanh(u) = 1 of the hyperbolic tangent, the wave height
starts at y(0) and quickly decreases to zero (sea level), as is evident from Figure
9.

y(0)

0
x

y

Figure 9. A tsunami profile.

Non-uniqueness. When y(x0) = 2 for some x = x0, then also y′(x0) = 0, and
this allows non-uniqueness of the solution y. An interesting solution different
from equation (8) is the piecewise function

y(x) =

{
2− 2 tanh2(x− x0) x > x0,
2 x ≤ x0.

(9)
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This shape is an approximation to observed waves, in which the usual crest of
the wave has been flattened. See Figure 12 on page 155.

Gompertz Tumor Equation

Researchers in tumor growth have shown that for some solid tumors the volume
V (t) of dividing cells at time t approaches a limiting volume M , even though the
tumor volume may increase by 1000 fold. Gompertz is credited with an equation
which fits the growth cycle of some solid tumors; the Gompertzian relation is

V (t) = V0e
a
b (1−e−bt).(10)

The relation says that the doubling time for the total solid tumor volume in-
creases with time. In contrast to a simple exponential model, which has a fixed
doubling time and no volume limit, the limiting volume in the Gompertz model
(10) is M = V0e

a/b.

Experts suggest to verify from Gompertz’s relation (10) the formula

V ′ = ae−btV,

and then use this differential equation to argue why the tumor volume V ap-
proaches a limiting value M with a necrotic core; see Technical Details for (11),
page 157.

A different approach is to make the substitution y = V/V0 to obtain the
differential equation

y′ = (a− b ln y)y,(11)

which is almost a logistic equation, sometimes called the Gompertz equation.
For details, see page 157. In analogy with logistic theory, low volume tumors
should grow exponentially with rate a and then slow down like a population that
is approaching the carrying capacity.

The exact mechanism for the slowing of tumor growth can be debated. One
view is that the number of reproductive cells is related to available oxygen and
nutrients present only near the surface of the tumor, hence this number decreases
with time as the necrotic core grows in size.

Parabolic Mirror

Overhead projectors might use a high-intensity lamp located
near a silvered reflector to provide a nearly parallel light source
of high brightness. It is called a parabolic mirror because the
surface of revolution is formed from a parabola, a fact which
will be justified below.
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The requirement is a shape x = g(y) such that a light beam emanating from
C(0, 0) reflects at point on the curve into a second beam parallel to the x-axis;
see Figure 10. The optical law of reflection implies that the angle of incidence
equals the angle of reflection, the straight reference line being the tangent to the
curve x = g(y).

A

y

x
θ

tangent
parabolic mirror

reflected ray

B C Figure 10. A parabolic mirror.

Symmetry suggests the restriction y ≥ 0 will suffice to determine the shape. The
assumption y(0) = 1 determines the y-axis scale.

The mirror shape x = g(y) is shown in Technical Details page 157 to satisfy

dx

dy
=

x+
√
x2 + y2

y
, x(1) = 0.(12)

This equation is equivalent for y > 0 to the separable equation du/dy =
√
u2 + 1,

u(1) = 0; see Technical Details page 157. Solving the separable equation (see page
157) gives the parabola

2x+ 1 = y2.(13)

Logarithmic Spiral

The polar curve
r = r0e

kθ(14)

is called a logarithmic spiral. In equation (14), symbols r, θ are polar variables
and r0, k are constants. It will be shown that a logarithmic spiral has the
following geometric characterization.

A logarithmic spiral cuts each radial line from the origin at a constant
angle.

The background required is the polar coordinate calculus formula

tan(α− θ) = r
dθ

dr
(15)

where α is the angle between the x-axis and the tangent line at (r, θ); see Techni-
cal Details page 158. The angle α can also be defined from the calculus formula
tanα = dy/dx.

The angle ϕ which a polar curve cuts a radial line is ϕ = α − θ. By equation
(15), the polar curve must satisfy the polar differential equation

r
dθ

dr
=

1

k

152



2.8 Science and Engineering Applications

for constant k = 1/ tanϕ. This differential equation is separable with separated
form

kdθ =
dr

r
.

Solving gives kθ = ln r + c or equivalently r = r0e
kθ, for c = − ln r0. Hence

equation (14) holds. All steps are reversible, therefore a logarithmic spiral is
characterized by the geometrical description given above.

Examples

Example 2.39 (Conical Tank)
A conical tank with xy-projection given in Figure 11 is realized by rotation about the
y-axis. An orifice at x = y = 0 is created at time t = 0. Find an approximation for
the drain time and the time to empty the tank to half-volume, given 10% drains in
20 seconds.

x

y

(0, 0)

(1/
√
3, 1)

tank
surface Figure 11. Conical tank xy-projection.

The tank is obtained by rotation of the shaded triangle about the
y-axis. The cone has height 1.

Solution: The answers are approximately 238 seconds and 104 seconds. The incorrect
drain time estimate of ten times the given 20 seconds is wrong by 19 percent. Doubling
the half-volume time to find the drain time is equally invalid (both 200 and 208 are
incorrect).

Tank cross-section A(y). From Figure 11, the line segment along the tank surface has
equation y =

√
3x; the equation was found from the two points (0, 0) and (1/

√
3, 1) using

the point-slope form of a line. A washer then has area A(y) = πx2 or A(y) = πy2/3.

Tank half-volume Vh. The half-volume is given by

Vh =
1

2
V (1) Full volume is V (1).

=
1

2

∫ 1

0

A(y)dy Apply V (h) =
∫ h

0
A(y)dy.

=
π

18
Evaluate integral, A(y) = πy2/3.

Torricelli’s equation. The differential equation (3) becomes

y′(t) = − 3k

π
√

y3(t)
, y(0) = 1,(16)

with k to be determined. The solution by separation of variables is

y(t) =

(
1− 15k

2π
t

)2/5

.(17)

The details:
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y3/2y′ = −3k

π
Separated form.

2

5
y5/2 = −3kt

π
+ C Integrate both sides.

y5/2 = −15kt

2π
+ 1 Isolate y, then use y(0) = 1.

y =

(
1− 15kt

2π

)2/5

Take roots.

Determination of k. Let V0 = V (1)/10 be the volume drained after t0 = 20 seconds.
Then t0, V0 and k satisfy

V0 = V (1)− V (y(t0)) Volume from height y(t0) to y(0).

=
π

9

(
1− y3(t0)

)
=

π

9

(
1−

(
1− 15k

2π
t0

)6/5
)

Substitute (17).

k =
2π

15t0

(
1−

(
1− 9V0

π

)5/6
)

Solve for k.

=
2π

15t0

(
1− 0.95/6

)
Drain times. The volume is Vh = π/18 at time t1 given by π/18 = V (t1) or in detail
π/18 = πy3(t1)/9. This requirement simplifies to y3(t1) = 1/2. Then(

1− 15kt1
2π

)6/5

=
1

2
Insert the formula for y(t).

1− 15kt1
2π

=
1

25/6
Take the 5/6 power of both sides.

t1 =
2π

15k

(
1− 2−5/6

)
Solve for t1.

= t0
1− 2−5/6

1− 0.95/6
Insert the formula for k.

≈ 104.4 Half-tank drain time in seconds.

The drain time t2 for the full tank is not twice this answer but t2 ≈ 2.28t1 or 237.9
seconds. The result is justified by solving for t2 in the equation y(t2) = 0, which gives

t2 =
2π

15k
=

t1
1− 2−5/6

=
t0

1− 0.95/6
.

Example 2.40 (Stefan’s Law)
An inmate sits unclothed in a room with skin temperature 33◦ Celsius. The Celsius
room temperature is given by C(r) = 14 + 11r/20 for r in minutes. Assume in
Stefan’s law k = σAE = 6.349952 × 10−8. Find the number of joules lost through
the skin in the first 20 minutes.
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Solution: The theory implies that the answer is Q(t1) where t1 = (20)(60) is in seconds
and Q′ = kT 4 − kT 4

0 . Equation r = t/60 converts seconds t to minutes r. Let T =
33 + 273.15 and T0(t) = C(t/60) + 273.15. Then

Q(t1) = k

∫ t1

0

(T 4 − (T0(t))
4)dt ≈ 110, 0095 joules.

Example 2.41 (Tsunami)
Find a piecewise solution, which represents a Tsunami wave profile, similar to equa-
tion (9), on page 150. Graph the solution on |x− x0| ≤ 2.

(y′)2 = 8y2 − 4y3, x0 = 1.

Solution: Equilibrium solutions y = 0 and y = 2 are found from the equation 8y2−4y3 =
0, which has factored form 4y2(2− y) = 0.

Non-equilibrium solutions with y′ ≥ 0 and 0 < y < 2 satisfy the first order differential
equation

y′ = 2y
√

2− y.

Consulting a computer algebra system gives the solution

y(x) = 2− 2 tanh2(
√
2(x− x0)).

Treating −y′ = 2y
√
2− y similarly results in exactly the same solution.

Hand solution. Start with the substitution u =
√
2− y. Then u2 = 2− y and 2uu′ =

−y′ = −2yu = −2(2 − u2)u, giving the separable equation u′ = u2 − 2. Reformulate it
as u′ = (u− a)(u+ a) where a =

√
2. Normal partial fraction methods apply to find an

implicit solution involving the inverse hyperbolic tangent. Some integral tables tabulate
the integral involved, therefore partial fractions can be technically avoided. Solving for u
in the implicit equation gives the hyperbolic tangent solution u =

√
2 tanh(

√
2(x− x0)).

Then y = 2 − u2 produces the answer reported above. The piecewise solution, which
represents an ocean Tsunami wave, is given by

y(x) =

{
2 x ≤ 1, back-wave

2− 2 tanh2(
√
2(x− 1)) 1 < x <∞. wave front

The figure can be made by hand. A computer algebra graphic appears in Figure 12, with
maple code as indicated.

2
y

x

3−1
0.02

Figure 12. Tsunami wave profile.
The back-wave is at height 2. The front wave
has height given by the hyperbolic tangent term,
which approaches zero as x → ∞. The maple
code:
g:=x->2-2*tanh(sqrt(2)*(x-1))^2;

f:=x->piecewise(x<1,2,g(x));

plot(f,-1..3);
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Example 2.42 (Gompertz Equation)
First, solve the Gompertz tumor equation, and then make (a) a phase line diagram
and (b) a direction field.

y′ = (8− 2 ln y)y.

Solution: The only equilibrium solution computed from G(y) ≡ (8 − 2 ln y)y = 0 is
y = e4 ≈ 54.598, because y = 0 is not in the domain of the right side of the differential
equation.

Non-equilibrium solutions require integration of 1/G(y). Evaluation using a computer
algebra system gives the implicit solution

−1

2
ln(8− 2 ln(y)) = x+ c.

Solving this equation for y in terms of x results in the explicit solution

y(x) = c1e
− 1

2 e
−2x

, c1 = e4−
1
2 e

−2c

.

The maple code for these two independent tasks appears below.

p:=int(1/((8-2*ln(y))*y),y);

solve(p=x+c,y);

The phase line diagram in Figure 13 requires the equilibrium y = e4 and formulas
G(y) = (8 − 2 ln y)y, G′(y) = 8 − 2 ln y − 2. Then G′(e4) = −2 implies G changes sign
from positive to negative at y = e4, making y = e4 a stable sink or funnel.

y = e4

sink

Figure 13. Gompertz phase line diagram.
The unique equilibrium at y = e4 is a stable sink.

A computer-generated direction field appears in Figure 14, using the following maple

code. Visible is the funnel structure at the equilibrium point.

de:=diff(y(x),x)=y(x)*(8-2*ln(y(x)));

with(DEtools):

DEplot(de,y(x),x=0..4,y=1..70);

Figure 14. A Gompertz direc-
tion field.

Details and Proofs

Technical Details for (2): The derivation of d
dt (V (y(t))) = −k

√
y(t) uses Torricelli’s

speed formula |v| =
√

2gy(t). The volume change in the tank for an orifice of cross-
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sectional area a is −av. Therefore, dV (y(t))/dt = −a
√
2gy(t). Succinctly, dV (y(t))/dt =

−k
√
y(t). This completes the verification.

Technical Details for (3): The equation y′(t) = −k
√
y(t)

A(y(t))
is equivalent to equation

A(y(t)) y′(t) = −k
√

y(t). Equation dV (y(t))/dt = V ′(y(t))y′(t) obtained by the chain
rule, definition A(y) = V ′(y), and equation (2) give result (3).

Technical Details for (2.8): To be verified is the Torricelli orifice equation |v| =√
2gh for the speed |v| of a droplet falling from height h. Let’s view the droplet as

a point mass m located at the droplet’s centroid. The distance x(t) from the droplet
to the orifice satisfies a falling body model mx′′(t) = −mg. The model has solution
x(t) = −gt2/2 + x(0), because x′(0) = 0. The droplet arrives at the orifice in time
t given by x(t) = 0. Because x(0) = h, then t =

√
2h/g. The velocity v at this

time is v = x′(t) = −gt = −
√
2gh. A technically precise derivation can be done using

kinetic and potential energy relations; some researchers prefer energy method derivations
for Torricelli’s law. Formulas for the orifice speed depend upon the shape and size of
the orifice. For common drilled holes, the speed is a constant multiple c

√
2gh, where

0 < c < 1.

Technical Details for (11): Assume V = V0e
µ(t) and µ(t) = a(1 − e−bt)/b. Then

µ′ = ae−bt and

V ′ = V0µ
′(t)eµ(t) Calculus rule (eu)′ = u′eu.

= µ′(t)V Use V = V0e
µ(t).

= ae−btV Use µ′ = ae−bt.

The equation V ′ = ae−btV is a growth equation y′ = ky where k decreases with time,
causing the doubling time to increase. One biological explanation for the increase in
the mean generation time of the tumor cells is aging of the reproducing cells, causing a
slower dividing time. The correctness of this explanation is debatable.

Let y = V/V0. Then

y′

y
=

V ′

V
The factor 1/V0 cancels.

= ae−bt Differential equation V ′ = ae−btV applied.

= a− bµ(t) Use µ(t) = a(1− e−bt)/b.

= a− b ln(V/V0) Take logs across V/V0 = eµ(t) to find µ(t).

= a− b ln y Use y = V/V0.

Hence y′ = (a − b ln y)y. When V ≈ V0, then y ≈ 1 and the growth rate a − b ln y is
approximately a. Hence the model behaves like the exponential growth model y′ = ay
when the tumor is small. The tumor grows subject to a− b ln y > 0, which produces the
volume restraint ln y = a/b or Vmax = V0e

a/b.

Technical Details for (12): Polar coordinates r, θ will be used. The geometry in the
parabolic mirror Figure 10 shows that triangle ABC is isosceles with angles α, α and
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π − 2α. Therefore, θ = 2α is the angle made by segment CA with the x-axis (C is the
origin (0, 0)).

y = r sin θ Polar coordinates.

= 2r sinα cosα Use θ = 2α and sin 2x = 2 sinx cosx.

= 2r tanα cos2 α Identity tanx = sinx/ cosx applied.

= 2r
dy

dx
cos2 α Use calculus relation tanα = dy/dx.

= r
dy

dx
(1 + cos 2α) Identity 2 cos2 x− 1 = cos 2x applied.

=
dy

dx
(r + x) Use x = r cos θ and 2α = θ.

For y > 0, equation (12) can be solved as follows.

dx

dy
=

x

y
+
√
(x/y)2 + 1 Divide by y on the right side of (12).

y
du

dy
=
√
u2 + 1 Substitute u = x/y (u cancels).

∫ du√
u2 + 1

=
∫ dy

y
Integrate the separated form.

sinh−1 u = ln y Integral tables. The integration constant is
zero because u(1) = 0.

x

y
= sinh(ln y) Let u = x/y and apply sinh to both sides.

=
1

2

(
eln y − e− ln y

)
Definition sinhu = (eu − eu)/2.

=
1

2
(y − 1/y) Identity eln y = y.

Clearing fractions in the last equality gives 2x+1 = y2, a parabola of the form X = Y 2.

Technical Details for (15): Given polar coordinates r, θ and tanα = dy/dx, it will
be shown that r dθ/dr = tan(α− θ). Details require the formulas

x = r cos θ,
dx

dr
= cos θ − r

dθ

dr
sin θ,

y = r sin θ,
dy

dr
= sin θ + r

dθ

dr
cos θ.

(18)

Then

tanα =
dy

dx
Definition of derivative.

=
dy/dr

dx/dr
Chain rule.

=
sin θ + r dθ

dr cos θ

cos θ − r dθ
dr sin θ

Apply equation (18).

=
tan θ + r dθ

dr

1− r dθ
dr tan θ

Divide by cos θ.
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Let X = rdθ/dr and cross-multiply to eliminate fractions. Then the preceding relation
implies (1−X tan θ) tanα = tan θ +X and finally

r
dθ

dr
= X Definition of X.

=
tanα− tan θ

1 + tanα tan θ
Solve for X in (1−X tan θ) tanα = tan θ +X.

= tan(α− θ) Apply identity tan(a− b) =
tan a− tan b

1 + tan a tan b
.

Physicists and engineers often justify formula (15) referring to Figure 15. Such diagrams
are indeed the initial intuition required to guess formulas like (15).

θ

C
x

tangenty

A

ϕ

Figure 15. Polar differential triangle.
Angle ϕ is the signed angle between the radial vec-
tor and the tangent line.

Exercises 2.8 �

Tank Draining

1. A cylindrical tank 6 feet high with 6-
foot diameter is filled with gasoline. In
15 seconds, 5 gallons drain out. Find
the drain times for the next 20 gallons
and the half-volume.

2. A cylindrical tank 4 feet high with 5-
foot diameter is filled with gasoline.
The half-volume drain time is 11 min-
utes. Find the drain time for the full
volume.

3. A conical tank is filled with water. The
tank geometry is a solid of revolution
formed from y = 2x, 0 ≤ x ≤ 5. The
units are in feet. Find the drain time for
the tank, given the first 5 gallons drain
out in 12 seconds.

4. A conical tank is filled with oil. The
tank geometry is a solid of revolution
formed from y = 3x, 0 ≤ x ≤ 5.
The units are in meters. Find the half-
volume drain time for the tank, given
the first 5 liters drain out in 10 seconds.

5. A spherical tank of diameter 12 feet is
filled with water. Find the drain time

for the tank, given the first 5 gallons
drain out in 20 seconds.

6. A spherical tank of diameter 9 feet
is filled with solvent. Find the half-
volume drain time for the tank, given
the first gallon drains out in 3 seconds.

7. A hemispherical tank of diameter 16
feet is filled with water. Find the drain
time for the tank, given the first 5 gal-
lons drain out in 25 seconds.

8. A hemispherical tank of diameter 10
feet is filled with solvent. Find the half-
volume drain time for the tank, given
the first gallon drains out in 4 seconds.

9. A parabolic tank is filled with water.
The tank geometry is a solid of revolu-
tion formed from y = 2x2, 0 ≤ x ≤ 2.
The units are in feet. Find the drain
time for the tank, given the first 5 gal-
lons drain out in 12 seconds.

10. A parabolic tank is filled with oil. The
tank geometry is a solid of revolution
formed from y = 3x2, 0 ≤ x ≤ 2.
The units are in meters. Find the half-
volume drain time for the tank, given
the first 4 liters drain out in 16 seconds.
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Torricelli’s Law and Uniqueness
It it known that Torricelli’s law gives
a differential equation for which Picard’s
existence-uniqueness theorem is inapplica-
ble for initial data y(0) = 0.

11. Explain why Torricelli’s equation y′ =
k
√
y plus initial condition y(0) = 0 fails

to satisfy the hypotheses in Picard’s
theorem. Cite all failed hypotheses.

12. Consider a typical Torricelli’s law
equation y′ = k

√
y with initial condi-

tion y(0) = 0. Argue physically that
the depth y(t) of the tank for t < 0
can be zero for an arbitrary duration of
time t near t = 0, even though y(t) is
not zero for all t.

13. Display infinitely many solutions y(t)
on −5 ≤ t ≤ 5 of Torricelli’s equation
y′ = k

√
y such that y(t) is not identi-

cally zero but y(t) = 0 for 0 ≤ t ≤ 1.

14. Does Torricelli’s equation y′ = k
√
y

plus initial condition y(0) = 0 have a
solution y(t) defined for t ≥ 0? Is it
unique? Apply Picard’s theorem and
Peano’s theorem, if possible.

Clepsydra: Water Clock Design
A surface of revolution is used to make a
container of height h feet for a water clock.
An increasing curve y = f(x) on 0 ≤ x ≤ 1
is revolved around the y-axis to make the
container shape, e.g., y = x makes a con-
ical tank. Water drains by gravity out of
diameter d orifice at (0, 0). The tank wa-
ter level must fall at a constant rate of r
inches per hour, important for marking a
time scale on the tank. Find d and f(x),
given h and r.

15. h = 5 feet, r = 4 inches/hour.
Answers: f(x) = 5x4, d =
0.05460241726 ≈ 3/64 inch.

16. h = 4, r = 4

17. h = 3, r = 6

18. h = 4, r = 3

19. h = 3, r = 2

20. h = 4, r = 1

Stefan’s Law
An unclothed prison inmate is handcuffed
to a chair. The inmate’s skin tempera-
ture is 33◦ Celsius. Find the number of
Joules of heat lost by the inmate’s skin
after t0 minutes, given skin area A in
square meters, Kelvin room temperature
T0(r) = C(r/60)+273.15 and Celsius room
temperature C(t). Variables: t minutes,
r seconds. Use equation dQ

dt = k(T 4 −
T0(t)

4) page 149. Assume emissivity σ =
5.6696×10−8K−4 Watts per square meter,
K=degrees Kelvin.

21. E = 0.9, A = 1.5, t0 = 10, C(t) =
24 + 7t/t0

22. E = 0.9, A = 1.7, t0 = 12, C(t) =
21 + 10t/12

23. E = 0.9, A = 1.4, t0 = 10, C(t) =
15 + 15t/t0

24. E = 0.9, A = 1.5, t0 = 12, C(t) =
15 + 14t/t0

On the next two exercises, use a com-
puter algebra system (CAS). Same
assumptions as Exercise 21.

25. E = 0.8, A = 1.4, t0 = 15, C(t) =
15 + 15 sinπ(t− t0)/12

26. E = 0.8, A = 1.4, t0 = 20, C(t) =
15 + 14 sinπ(t− t0)/12

Tsunami Wave Shape
Plot the piecewise solution

y(x) = 2−
{

2 tanh2(x− x0) x>x0,
0 x≤x0.

(19)

See Figure 12 page 155.

27. x0 = 2, |x− x0| ≤ 2

28. x0 = 3, |x− x0| ≤ 4.

Tsunami Wavefront
Find non-equilibrium solutions for the
given differential equation.
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29. (y′)2 = 12y2 − 10y3.

30. (y′)2 = 13y2 − 12y3.

31. (y′)2 = 8y2 − 2y3.

32. (y′)2 = 7y2 − 4y3.

Gompertz Tumor Equation
Solve the Gompertz tumor equation y′ =
(a− b ln y)y.

33. a = 1, b = 1

34. a = 1, b = 2

35. a = −1, b = 1

36. a = −1, b = 2

37. a = 4, b = 1

38. a = 5, b = 1
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2.9 Exact Equations and Level Curves

A level curve or a conservation law is an equation of the form

U(x, y) = c.

Hikers like to think of U as the altitude at position (x, y) on the map and U(x, y) =
c as the curve which represents the easiest walking path, that is, altitude does
not change along that route. The altitude is conserved along the route, hence
the terminology conservation law.

Other examples of level curves are isobars and isotherms. An isobar is a planar
curve where the atmospheric pressure is constant. An isotherm is a planar curve
along which the temperature is constant.

Definition 2.8 (Potential)
The function U(x, y) in a conservation law is called a potential. The dynamical
equation is the first order differential equation

Mdx+Ndy = 0, M = Ux(x, y), N = Uy(x, y).(1)

The dynamics or changes in x and y are described by (1). To solve Mdx+Ndy = 0
means this: find a conservation law U(x, y) = c so that (1) holds. Formally, (1) is
found by implicit differentiation of U(x, y) = c; see Technical Details, page 165.

The Potential Problem and Exactness

The potential problem assumes given a dynamical equation Mdx +Ndy = 0
and seeks to find a potential U(x, y) from the set of equations

Ux = M(x, y),
Uy = N(x, y).

(2)

If some potential U(x, y) satisfies equation (2), then Mdx +Ndy = 0 is said to
be exact. It is a consequence of the mixed partial equality Uxy = Uyx that the
existence of a solution U implies My = Nx. Surprisingly, this condition is also
sufficient.

Theorem 2.10 (Exactness)
Let M(x, y), N(x, y) and their first partials be continuous in a rectangle D. Assume
My(x, y) = Nx(x, y) in D and (x0, y0) is a point of D. Then the equation Mdx+
Ndy = 0 is exact with potential U given by the formula

U(x, y) =

∫ x

x0

M(t, y)dt+

∫ y

y0

N(x0, s)ds.(3)

The proof is on page 165.
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The Method of Potentials

Formula (3) has technical problems because it requires two integrations. The
integrands have a parameter: they are parametric integrals. Integration effort
can be reduced by using the method of potentials for Mdx+Ndy = 0, which
applies equation (3) with x0 = y0 = 0 in order to simplify integrations.

Test My = Nx Compute the partials My and Nx, then test the
equality My = Nx. Proceed if equality holds.

Trial Potential Let U =
∫ x
0 M(x, y)dx +

∫ y
0 N(0, y)dy. Evaluate

both integrals.

Test U(x, y) Compute Ux and Uy, then test both Ux = M and
Uy = N . This step finds integration errors.

Examples

Example 2.43 (Exactness Test)
Test Mdx +Ndy = 0 for the existence of a potential U , given M = 2xy + y3 + y
and N = x2 + 3xy2 + x,

Solution: Theorem 2.10 implies that Mdx +Ndy = 0 has a potential U exactly when
My = Nx. It suffices to compute the partials and show they are equal.

My = ∂y(2xy + y3 + y) Nx = ∂x(x
2 + 3xy2 + x)

= 2x+ 3y2 + 1, = 2x+ 3y2 + 1.

Example 2.44 (Conservation Law Test)
Test whether U = x2y + xy3 + xy is a potential for Mdx + Ndy = 0, given
M = 2xy + y3 + y, N = x2 + 3xy2 + x.

Solution: By definition, it suffices to test the equalities Ux = M and Uy = N .

Ux = ∂x(x
2y + xy3 + xy) Uy = ∂y(x

2y + xy3 + xy)

= 2xy + y3 + y = x2 + 3xy2 + x

= M , = N .

Example 2.45 (Method of Potentials)

Solve y′ = − 2xy + y3 + y

x2 + 3xy2 + x
.

Solution: The implicit solution x2y + xy3 + xy = c will be justified.

The equation has the formMdx+Ndy = 0 whereM = 2xy+y3+y andN = x2+3xy2+x.
It is exact, by Theorem 2.10, because the partialsMy = 2x+3y2+1 and Nx = 2x+3y2+1
are equal.

The method of potentials applies to find the potential U = x2y + xy3 + xy as follows.
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U =
∫ x

0
M(x, y)dx+

∫ y

0
N(0, y)dy Formula for U , Theorem 2.10.

=
∫ x

0

(
2xy + y3 + y

)
dx+

∫ y

0
(0)dy Insert M and N .

= x2y + xy3 + xy Evaluate integral.

Observe that N(x, y) simplifies to zero at x = 0, which reduces the actual work in half.
Any choice other than x0 = 0 in Theorem 2.10 increases the labor.

To test the solution, compute the partials of U , then compare them to M and N ; see
Example 2.44.

Example 2.46 (Exact Equation)

Solve
x+ y

(1− x)2
dx+

x

1− x
dy = 0.

Solution: The implicit solution
xy + x

1− x
+ ln |x− 1| = c will be justified.

Assume given the exactness of the equation Mdx+Ndy = 0, where M = (x+y)/(1−x)2
and N = x/(1− x). Apply Theorem 2.10:

U =
∫ x

0
M(x, y)dx+

∫ y

0
N(0, y)dy Method of potentials.

=
∫ x

0

x+ y

(1− x)2
dx+

∫ y

0
(0)dy Substitute for M , N .

=
∫ x

0

(
y + 1

(x− 1)2
+

1

x− 1

)
dx Partial fractions.

=
xy + x

1− x
+ ln |x− 1| Evaluate integral.

Additional examples, including the context for the preceding example, appear in
the next section.

Remarks on the Method of Potentials

Indefinite integrals
∫
M(x, y)dx and

∫
N(0, y)dy can be used, provided the two

integration answers are zero at x = 0 and y = 0, respectively. Swapping the roles
of x and y gives U =

∫ y
0 N(x, y)dy+

∫ x
0 M(x, 0)dx, a form which may have easier

integrations.

Can the test My = Nx be skipped? True, it is enough to verify that the potential
works (the last step). If the last step fails, then the first step must be done to
resolve the error.

The equation ydx + 2xdy = 0 fails My = Nx and the trial potential U = xy
fails Ux = M , Uy = N . In the equivalent form x−1dx+ 2y−1dy = 0, the method
of potentials does not apply directly, because (0, 0) is outside the domain of
continuity. Nevertheless, the trial potential U = lnx + 2 ln y passes the test
Ux = M , Uy = N . Such pleasant accidents account for the popularity of the
method of potentials.

It is prudent in applications of Theorem 2.10 to test x0 = y0 = 0 in M and N , to
detect a discontinuity. If detected, then another vertex x0, y0 of the unit square,
e.g., x0 = y0 = 1, might suffice.
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Details and Proofs

Justification of equation (1) uses the calculus chain rule

d

dt
U(x(t), y(t)) = Ux(x(t), y(t))x

′(t) + Uy(x(t), y(t))y
′(t)

and differential notation dx = x′(t)dt, dy = y′(t)dt. To justify (1), let (x(t), y(t))
be some parameterization of the level curve, then differentiate on t across the
equation U(x(t), y(t)) = c and apply the chain rule.

Proof of Theorem 2.10

Background result. The proof assumes the following identity:

∂

∂y

∫ x

x0

M(t, y)dt =

∫ x

x0

My(t, y)dt.

The identity is obtained by forming the Newton quotient (G(y + h) − G(y))/h for the
derivative ofG(y) =

∫ x

x0
M(t, y)dt and then taking the limit as h approaches zero. Techni-

cally, the limit must be taken inside an integral sign, which for success requires continuity
of the partial My.

Details. It has to be shown that the implicit relation U(x, y) = c with U defined by
(3) is a solution of the exact equation Mdx +Ndy = 0, that is, the relations Ux = M ,
Uy = N hold. The partials are calculated from the background result as follows.

Ux = ∂x
∫ x

x0
M(t, y)dt Use (3), in which the second integral does not de-

pend on x.

= M(x, y), Fundamental theorem of calculus.

Uy = ∂y
∫ x

x0
M(t, y)dt

+ ∂y
∫ y

y0
N(x0, s)ds

Use (3).

=
∫ x

x0
My(t, y)dt+N(x0, y) Apply the background result and the fundamental

theorem.

=
∫ x

x0
Nx(t, y)dt+N(x0, y) Substitute My = Nx.

= N(x, y) Fundamental theorem of calculus.

■

Power Series Proof of Theorem 2.10 It will be assumed that M and N have power
series expansions about x = y = 0. Let U1 =

∫
M(x, y)dx and U2 =

∫
N(x, y)dy with

U1(0, y) = U2(x, 0) = 0. The series forms of U1 and U2 will be

U1 =
∑∞

i=1

∑∞
j=1 cijx

iyj +
∑∞

i=1 aix
i,

U2 =
∑∞

i=1

∑∞
j=1 dijx

iyj +
∑∞

j=1 bjy
j .

The identities ∂y∂xU1 = My = Nx = ∂x∂yU2 imply that cij = dij , using term-by-term
differentiation. The trial potential is U = U1 +

∑∞
j=1 bjy

j or U = U2 +
∑∞

i=1 aix
i. From

these relations it follows that Ux = M and Uy = N . Therefore, Mdx+Ndy = 0 is exact
with potential U .
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Exercises 2.9 �

Exactness Test
Test the equality My = Nx for the given
equation, as written, and report exact when
true. Do not try to solve the differential
equation. See Example 2.43, page 163.

1. (y − x)dx+ (y + x)dy = 0

2. (y + x)dx+ (x− y)dy = 0

3. (y +
√
xy)dx+ (−y)dy = 0

4. (y +
√
xy)dx+ xydy = 0

5. (x2 + 3y2)dx+ 6xydy = 0

6. (y2 + 3x2)dx+ 2xydy = 0

7. (y3 + x3)dx+ 3xy2dy = 0

8. (y3 + x3)dx+ 2xy2dy = 0

9. 2xydx+ (x2 − y2)dy = 0

10. 2xydx+ (x2 + y2)dy = 0

Conservation Law Test
Test conservation law U(x, y) = c for a so-
lution to Mdx + Ndy = 0. See Example
2.44, page 163.

11. 2xydx+ (x2 + 3y2)dy = 0,
x2y + y3 = c

12. 2xydx+ (x2 − 3y2)dy = 0,
x2y − y3 = c

13. (3x2 + 3y2)dx+ 6xydy = 0,
x3 + 3xy2 = c

14. (x2 + 3y2)dx+ 6xydy = 0,
x3 + 3xy2 = c

15. (y − 2x)dx+ (2y + x)dy = 0,
xy − x2 + y2 = c

16. (y + 2x)dx+ (−2y + x)dy = 0,
xy + x2 − y2 = c

Exactness Theorem
Find an implicit solution U(x, y) = c. See
Examples 2.45-2.46, page 163.

17. (y − 4x)dx+ (4y + x)dy = 0

18. (y + 4x)dx+ (4y + x)dy = 0

19. (ey + ex)dx+ (xey)dy = 0

20. (e2y + ex)dx+ (2xe2y)dy = 0

21. (1 + yexy)dx+ (2y + xexy)dy = 0

22. (1 + ye−xy)dx+ (xe−xy − 4y)dy = 0

23. (2x+ arctan y)dx+
x

1 + y2
dy = 0

24. (2x+ arctan y)dx+
x+ 2y

1 + y2
dy = 0

25.
2x5 + 3y3

x4y
dx− 2y3 + x5

x3y2
dy = 0

26.
2x4 + y2

x3y
dx− 2x4 + y2

2x2y2
dy = 0

27. Mdx+Ndy = 0, M = ex sin y + tan y,
N = ex cos y + x sec2 y

28. Mdx+Ndy = 0, M = ex cos y+tan y,
N = −ex sin y + x sec2 y

29.
(
x2 + ln y

)
dx+

(
y3 + x/y

)
dy = 0

30.
(
x3 + ln y

)
dx+

(
y3 + x/y

)
dy = 0
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2.10 Special equations

Homogeneous-A Equation

A first order equation of the form y′ = F (y/x) is called a homogeneous class
A equation. The substitution u = y/x changes it into an equivalent first order
separable equation xu′+u = F (u). Solutions of y′ = F (y/x) and xu′+u = F (u)
are related by the equation y = xu.

Homogeneous-C Equation

Let R(x, y) be a rational function constructed from two affine functions:

R(x, y) =
a1x+ b1y + c1
a2x+ b2y + c2

.

A first order equation of the form y′ = G(R(x, y)) is called a homogeneous
class C equation . If the system

a1a+ b1b = c1, a2a+ b2b = c2

has a solution (a, b), then the change of variables x = X − a, y = Y − b effec-
tively eliminates the terms c1 and c2. Accordingly, the equation y′ = G(R(x, y))
converts into a homogeneous class A equation

Y ′ = G

(
a1 + b1Y/X

a2 + b2Y/X

)
.

This equation type was solved in the previous paragraph. Justification follows
from y′ = Y ′ and R(X − a, Y − b) = (a1X + b1Y )/(a2X + b2Y ).

Bernoulli’s Equation

The equation y′+p(x)y = q(x)yn is called the Bernoulli differential equation.
If n = 1 or n = 0, then this is a linear equation. Otherwise, the substitution u =
y/yn changes it into the linear first order equation u′+(1−n)p(x)u = (1−n)q(x).

Integrating Factors and Exact Equations

An equation Mdx + Ndy = 0 is said to have an integrating factor Q(x, y) if
multiplication across the equation byQ produces an exact equationMdx+Ndy =
0. The definition implies M = QM, N = QN and My = Nx. The search for Q is
only interesting when My ̸= Nx.

A systematic approach to finding Q includes a list of trial integrating factors,
which are known to work for special equations:
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Q = xayb Require xy (My −Nx) = ayN− bxM. This integrating factor
can introduce extraneous solutions x = 0 or y = 0.

Q = eax+by Require My −Nx = aN− bM.

Q = e
∫
µ(x)dx Require µ = (My −Nx) /N to be independent of y.

Q = e
∫
ν(y)dy Require ν = (Nx −My) /M to be independent of x.

Examples

Example 2.47 (Homogeneous-A)
Solve yy′ = 2x+ y2/x

Solution: The implicit solution will be shown to be

y2 = cx2 + 4x2 lnx.

The equation yy′ = 2x+ y2/x is not separable, linear nor exact. Division by y gives the
homogeneous-A form y′ = 2/u+ u where u = y/x. Then

xu′ + u = 2/u+ u Form xu′ + u = F (u).

xu′ = 2/u Separable form.

u2 = c+ 4 lnx Implicit solution u.

y2 = x2u2 Change of variables y = xu.

= cx2 + 4x2 lnx Substitute u2 = c+ 4 lnx.

Check the implicit solution against yy′ = 2x+ y2/x as follows.

LHS = yy′ Left side of yy′ = 2x+ y2/x.

= 1
2 (y

2)′ Calculus identity.

= 1
2 (cx

2 + 4x2 lnx)′ Substitute.

= cx+ 4x lnx+ 2x Differentiate.

= 2x+ y2/x Use y2 = cx2 + 4x2 lnx.

= RHS. Equality verified.

Example 2.48 (Homogeneous-C)

Solve y′ =
x+ y + 3

x− y + 5
.

Solution: The implicit solution will be shown to be

2 ln(x+ 4) + ln

((
y − 1

x+ 4

)2

+ 1

)
− 2 arctan

(
y − 1

x+ 4

)
= c.

The equation would be of type homogeneous-A, if not for the constants 3 and 5 in the
fraction (x+y+3)/(x−y+5). The method applies a translation of coordinates x = X−a,
y = Y − b as below.
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x+ y + 3 = X + Y,
x− y + 5 = X − Y

Require the translation to remove the con-
stant terms.

3 = a+ b,
5 = a− b

SubstituteX = x+a, Y = y+b and simplify.

a = 4, b = −1 Unique solution of the system.

dY

dX
=

X + Y

X − Y
Translated type homogeneous-A equation.

X
du

dX
+ u =

1 + u

1− u
Use u = Y/X to eliminate Y .

1− u

1 + u2

du

dX
=

1

X
Separated form.

The separated form is integrated as
∫
du/(1+u2)−

∫
udu/(1+u2) =

∫
dX/X. Evaluation

gives the implicit solution

arctan(u)− 1

2
ln
(
u2 + 1

)
= C + lnX.

Changing variables x = X − 4, y = Y + 1 and consolidating constants produces the
announced solution.

To check the solution by maple assist, use the following code, which tests U(x, y) = c
against y′ = f(x, y). The test succeeds if odetest returns zero.

# Maple

U:=(x,y)->2*ln(x+4)+ln(((y-1)/(x+4))^2+1)-2*arctan((y-1)/(x+4));

f:=(x,y)->(x+y+3)/(x-y+5); DE:=diff(y(x),x)=f(x,y(x));

odetest(U(x,y(x))=c,DE);

Example 2.49 (Bernoulli Substitution)
Solve y′ + 2y = y2.

Solution: It will be shown that the solution is y =
1

1 + Cex
.

The equation can be solved by other methods, notably separation of variables. Bernoulli’s
substitution u = y/yn will be applied to find the equivalent first order linear differential
equation, as follows.

u′ = (y/y2)′ Bernoulli’s substitution, n = 2.

= −y−2y′ Chain rule.

= −1 + y−1 Use y′ + 2y = y2.

= −1 + u Use u = y/y2.

This linear equation u′ = −1 + u has equilibrium solution up = 1 and homogeneous
solution uh = Cex. Therefore, u = uh + up gives y = u−1 = 1/(1 + Cex).

Example 2.50 (Integrating factor Q = xayb)
Solve (3y + 4xy2)dx+ (4x+ 5x2y)dy = 0.
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Solution: The implicit solution x3y4 + x4y5 = c will be justified.

The equation is not exact as written. To explain why, let M = 3y + 4xy2 and N =
4x+ 5x2y. Then My = 8xy + 3, Nx = 10xy + 4 which implies My ̸= Nx (not exact).

The factor Q = xayb will be an integrating factor for the equation provided a and b are
chosen to satisfy xy (My −Nx) = ayN−bxM. This requirement becomes xy (−2xy − 1) =
ay(4x + 5x2y) − bx(3y + 4xy2). Comparing terms across the equation gives the 2 × 2
system of equations

4a − 3b = −1,
5a − 4b = −2.

The unique solution by Cramer’s determinant rule is

a =

∣∣∣∣ −1 −3
−2 −4

∣∣∣∣∣∣∣∣ 4 −3
5 −4

∣∣∣∣ = 2, b =

∣∣∣∣ 4 −1
5 −2

∣∣∣∣∣∣∣∣ 4 −3
5 −4

∣∣∣∣ = 3.

Then Q = x2y3 is the required integrating factor. After multiplication by Q, the original
equation becomes the exact equation

(3x2y4 + 4x3y5)dx+ (4x3y3 + 5x4y4)dy = 0.

The method of potentials applied to M = 3x2y4 + 4x3y5 and N = 4x3y3 + 5x4y4 finds
the potential U as follows.

U =
∫ x

0
M(x, y)dx+

∫ y

0
N(0, y)dy Method of potentials formula.

=
∫ x

0
(3x2y4 + 4x3y5)dx+

∫ y

0
(0)dy Insert M and N .

= x3y4 + x4y5 Evaluate integral.

Example 2.51 (Integrating factor Q = eax+by)
Solve (ex + ey) dx+ (ex + 2ey) dy = 0.

Solution: The implicit solution 2e3x+3y + 3e2x+4y = c will be justified. A constant 5/6
appears in the integrations below, mysteriously absent in the solution, because 5/6 has
been absorbed into the constant c.

Let M = ex + ey and N = ex + 2ey. Then My = ey and Nx = ex (not exact). The
condition for Q = eax+by to be an integrating factor is My − Nx = aN − bM, which
becomes the requirement

ey − ex = a (ex + 2ey)− b (ex + ey) .

The equations are satisfied provided (a, b) is a solution of the 2× 2 system of equations

a − b = −1,
2a − b = 1.

The unique solution is a = 2, b = 3, by elimination. The original equation multiplied
by the integrating factor Q = e2x+3y is the exact equation Mdx + Ndy = 0, where
M = e3x+3y + e2x+4y and N = e3x+3y + 2e2x+4y. The method of potentials applies to
find the potential U , as follows.
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U =
∫ x

0
M(x, y)dx+

∫ y

0
N(0, y)dy Method of potentials.

=
∫ x

0

(
e3x+3y + e2x+4y

)
dx+

∫ y

0

(
e3y + 2e4y

)
dy Insert M and N .

= 1
3e

3x+3y + 1
2e

2x+4y − 5
6 Evaluate integral.

Example 2.52 (Integrating factor Q = Q(x))
Solve (x+ y)dx+ (x− x2)dy = 0.

Solution: The implicit solution
xy + x

1− x
+ ln |x− 1| = c will be justified.

Let M = x+ y, N = x− x2. Then My = 1 and Nx = 1− 2x (not exact). Then

µ =
My −Nx

N
Hope µ depends on x alone.

= 2/(1− x) Substitute M, N; success.

Q = e
∫
µ(x)dx Integrating factor.

= e−2 ln |1−x| Substitute for µ and integrate.

= (1− x)−2 Simplified factor found.

Multiplication of Mdx+Ndy = 0 by Q gives the corresponding exact equation

x+ y

(1− x)2
dx+

x

1− x
dy = 0.

The method of potentials applied to M = (x + y)/(1 − x)2, N = x/(1 − x) finds the
implicit solution as follows.

U =
∫ x

0
M(x, y)dx+

∫ y

0
N(0, y)dy Method of potentials.

=
∫ x

0

x+ y

(1− x)2
dx+

∫ y

0
(0)dy Substitute for M , N .

=
∫ x

0

(
y + 1

(x− 1)2
+

1

x− 1

)
dx Partial fractions.

=
xy + x

1− x
+ ln |x− 1| Evaluate integral.

Example 2.53 (Integrating factor Q = Q(y))
Solve (y − y2)dx+ (x+ y)dy = 0.

Solution: Interchange the roles of x and y, then apply the previous example, to obtain

the implicit solution
xy + y

1− y
+ ln |y − 1| = c.

This example happens to fit the case when the integrating factor is a function of y alone.
The details parallel the previous example.

171



2.10 Special equations

Details and Proofs

The exactness condition My = Nx for M = QM and N = QN becomes in the
case Q = xayb the relation

bxayb−1M+ xaybMy = axa−1ybN+ xaybNx

from which rearrangement gives xy (My −Nx) = ayN − bxM. The case Q =
eax+by is similar.

Consider Q = e
∫
µ(x)dx. Then Q′ = µQ. The exactness condition My = Nx for

M = QM and N = QN becomes QMy = µQN+QNx and finally

µ =
My −Nx

N
.

The similar case Q = e
∫
ν(y)dy is obtained from the preceding case, by swapping

the roles of x, y.

Exercises 2.10 �

Homogeneous-A Equations
Find f such that the equation can be writ-
ten in the form y′ = f(y/x). Solve for y
using a computer algebra system.

1. xy′ = y2/x

2. x2y′ = x2 + y2

3. yy′ =
xy2

x2 + y2

4. yy′ = 2xy2

x2+y2

5. y′ =
1

x+ y

6. y′ = y/x+ x/y

7. y′ = (1 + y/x)2

8. y′ = 2y/x+ x/y

9. y′ = 3y/x+ x/y

10. y′ = 4y/x+ x/y

Homogeneous-C Equations
Given y′ = f(x, y), decompose f(x, y) =
G(R(x, y)) where R(x, y) = a1x+b1y+c1

a2x+b2y+c2
,

then convert to Homogeneous-A. Investi-
gate solving y′ = f(x, y) by computer.

11. y′ = − (y+1)x
y2+2 y+1+x2

12. y′ = 2
(1 + y)x

x2 + y2 + 2 y + 1

13. y′ =
(1 + x) y

x2 + 4 y2 + 2x+ 1

14. y′ =
1 + x

y + 1 + x

15. y′ =
1 + y

x+ y + 1

16. x(y + 1)y′ = x2 + y2 + 2y + 1

17. y′ =
x2 − y2 − 2 y − 1

(1 + y)x

18. y′ =
(y + 2x)

2

x2

19. y′ =
x2 + xy + y2 + 5x+ 4 y + 7

(x+ 2) (3 + y + x)

20. y′ = −x2 − xy − y2 + 5x− 5 y + 5

(3 + x) (4 + y + x)

Bernoulli’s Equation
Identify the exponent n in Bernoulli’s equa-
tion y′+p(x)y = q(x)yn and solve for y(x).
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21. y−2y′ = 1 + x

22. yy′ = 1 + x

23. y−2y′ + y−1 = 1 + x

24. yy′ + y2 = 1 + x

25. y′ + y = y1/3

26. y′ + y = y1/5

27. y′ − y = y−1/2

28. y′ − y = y−1/3

29. yy′ + y2 = ex

30. y′ + y = e2xy2

Integrating Factor xayb

Report an implicit solution for the given
equation Mdx + Ndy = 0, using an inte-
grating factor Q = xayb. Follow Example
2.50, page 169. Computer assist expected.

31. M = 3xy − 6y2, N = 4x2 − 15xy

32. M = 3xy − 10y2, N = 4x2 − 25xy

33. M = 2 y − 12xy2, N = 4x− 20x2y

34. M = 2 y − 21xy2, N = 4x− 35x2y

35. M = 3 y − 32xy2, N = 4x− 40x2y

36. M = 3 y − 20xy2, N = 4x− 25x2y

37. M = 12 y − 30x2y2,
N = 12x− 25x3y

38. M = 12 y + 90x2y2,
N = 12x+ 75x3y

39. M = 15 y + 90xy2,
N = 12x+ 75x2y

40. M = 35 y + 30xy2,
N = 28x+ 25x2y.

Integrating Factor eax+by

Report an implicit solution U(x, y) = c for
the given equation Mdx + Ndy = 0 using
an integrating factor Q = eax+by. Follow
Example 2.51, page 170.

41. M = ex + 2e2y, N = ex + 5e2y

42. M = 3ex + 2ey, N = 4ex + 5ey

43. M = 12 ex + 2, N = 20 ex + 5

44. M = 12 ex + 2 e−y, N = 24 ex + 5 e−y

45. M = 12 ey + 2 e−x, N = 24 ey + 5 e−x

46. M = 12 e−2 y + 2 e−x, N = 12 e−2 y +
5 e−x

47. M = 16 ey + 2 e−2 x+3 y, N = 12 ey +
5 e−2 x+3 y

48. M = 16 e−y + 2 e−2 x−3 y, N =
−12 e−y − 5 e−2 x−3 y

49. M = −16− 2 e2 x+y, N = 12+ 4 e2 x+y

50. M = −16 e−3 y − 2 e2 x, N = 8 e−3 y +
5 e2 x

Integrating Factor Q(x)
Report an implicit solution U(x, y) = c
for the given equation, using an integrat-
ing factor Q = Q(x). Follow Example 2.52,
page 171.

51. (x+ 2y)dx+ (x− x2)dy = 0

52. (x+ 3y)dx+ (x− x2)dy = 0

53. (2x+ y)dx+ (x− x2)dy = 0

54. (2x+ y)dx+ (x+ x2)dy = 0

55. (2x+ y)dx+ (−x− x2)dy = 0

56. (x+ y)dx+ (−x− x2)dy = 0

57. (x+ y)dx+ (−x− 2x2)dy = 0

58. (x+ y)dx+ (x+ 5x2)dy = 0

59. (x+ y)dx+ (3x)dy = 0

60. (x+ y)dx+ (7x)dy = 0

Integrating Factor Q(y)

61. (y − y2)dx+ (x+ y)dy = 0

62. (y − y2)dx+ (2x+ y)dy = 0

63. (y − y2)dx+ (2x+ 3y)dy = 0

64. (y + y2)dx+ (2x+ 3y)dy = 0

65. (y + y2)dx+ (x+ 3y)dy = 0

66. (y + 5y2)dx+ (x+ 3y)dy = 0

67. (y + 3y2)dx+ (x+ 3y)dy = 0

68. (2y + 5y2)dx+ (7x+ 11y)dy = 0

69. (2y + 5y2)dx+ (x+ 7y)dy = 0

70. (3y + 5y3)dx+ (7x+ 9y)dy = 0
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Chapter 3

Linear Algebraic Equations No
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This introduction to linear algebraic equations requires only a college algebra
background. Vector and matrix notation is not used. The subject of linear
algebra, using vectors, matrices and related tools, appears later in the text; see
Chapter 5.

The topics studied are linear equations, general solution, reduced echelon system,
basis, nullity, rank and nullspace. Introduced here are the three possibilities, a
toolkit sequence, which uses the three rules swap, combination and multi-
ply, and finally the method of elimination, in literature called Gauss-Jordan
elimination or Gaussian elimination

3.1 Systems of Linear Equations

Background from college algebra includes systems of linear algebraic equations
like {

3x + 2y = 1,
x − y = 2.

(1)

A solution (x, y) of non-homogeneous system (1) is a pair of values that
simultaneously satisfy both equations. This example has unique solution x = 1,
y = −1.
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3.1 Systems of Linear Equations

The homogeneous system corresponding to (1) is an auxiliary system invented
by replacing the right sides of the equations by zero and symbols x, y by new
symbols u, v: {

3u + 2v = 0,
u − v = 0.

(2)

A short pause and computation verifies that system (2) has unique solution u = 0,
v = 0.

It is unexpected, and also not true, that the original system (solution x = 1, y =
−1) has any solutions in common with the invented homogeneous system (solu-
tion u = 0, v = 0). Theory provides superposition to relate the solutions of the
two systems.

Unique solutions have emphasis in college algebra courses. In this chapter we
study in depth the cases for no solution and infinitely many solutions. These
two cases are illustrated by the examples

No Solution Infinitely Many Solutions{
x − y = 0,

0 = 1.
(3)

{
x − y = 0,

0 = 0.
(4)

Equations (3) cannot have a solution because of the signal equation 0 = 1, a
false equation. Equations (4) have one solution (x, y) for each point on the 45◦

line x− y = 0, therefore system (4) has infinitely many solutions.

The Three Possibilities

Solutions of general linear systems with m equations in n unknowns may be
classified into exactly three possibilities:

1. No solution.
2. Infinitely many solutions.
3. A unique solution.

General Linear Systems

Given numbers a11, . . . , amn, b1, . . . , bm, a nonhomogeneous system of m
linear equations in n unknowns x1, x2, . . . , xn is the system

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
am1x1 + am2x2 + · · ·+ amnxn = bm.

(5)
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Constants a11, . . . , amn are called the coefficients of system (5). Constants b1,
. . . , bm are collectively referenced as the right hand side, right side or RHS.

The associated homogeneous system corresponding to system (5) is invented
by replacing the right side by zero:

a11x1 + a12x2 + · · ·+ a1nxn = 0,
a21x1 + a22x2 + · · ·+ a2nxn = 0,

...
am1x1 + am2x2 + · · ·+ amnxn = 0.

(6)

Convention dictates using the same variable list x1, . . . , xn. This abuse of nota-
tion impacts casual readers: see example systems (1) and (2).

An assignment of possible values x1, . . . , xn which simultaneously satisfy all
equations in (5) is called a solution of system (5). Solving system (5) refers
to the process of finding all possible solutions of (5). The system (5) is called
consistent if it has a solution and otherwise it is called inconsistent.

The Toolkit of Three Rules

Two systems (5) are said to be equivalent provided they have exactly the same
solutions. For the purpose of solving systems, there is a toolkit of three reversible
operations on equations which can be applied to obtain equivalent systems. These
rules neither create nor destroy solutions of the original system:

Table 1. The Three Rules

Swap Two equations can be interchanged without
changing the solution set.

Multiply An equation can be multiplied by m ̸= 0 without
changing the solution set.

Combination A multiple of one equation can be added to a
different equation without changing the solution
set.

The last two rules replace an existing equation by a new one. A swap repeated
reverses the swap operation. A multiply is reversed by multiplication by 1/m,
whereas the combination rule is reversed by subtracting the equation–multiple
previously added. In short, the three operations are reversible.

Theorem 3.1 (Equivalent Systems)
A second system of linear equations, obtained from the first system of linear equations
by a finite number of toolkit operations, has exactly the same solutions as the first
system.

Exposition. Writing a set of equations and its equivalent system under toolkit
rules demands that all equations be copied, not just the affected equation(s).
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Generally, each displayed system changes just one equation, the single exception
being a swap of two equations. Within an equation, variables appear left-to-right
in variable list order. Equations that contain no variables, typically 0 = 0, are
displayed last.

Documenting the three rules. In blackboard and hand-written work, the
acronyms swap, mult and combo, replace the longer terms swap, multiply and
combination. They are placed next to the first changed equation. In cases where
precision is required, additional information is supplied, namely the source and
target equation numbers s, t and the multiplier m ̸= 0 or c. Details:

Table 2. Documenting Toolkit Operations with swap, mult, combo.

swap(s,t) Swap equations s and t.
mult(t,m) Multiply target equation t by multiplier m ̸= 0.
combo(s,t,c) Multiply source equation s by multiplier c and add to

target equation t.

The acronyms in Table 2 match usage in the computer algebra system maple, for
package linalg and functions swaprow, mulrow and addrow.

Inverses of the Three Rules. Each toolkit operation swap, mult, combo has
an inverse, which is documented in the following table. The facts can be used to
back up several steps, unearthing a previous step to which a sequence of toolkit
operations were performed.

Table 3. Inverses of Toolkit Operations swap, mult, combo.

Operation Inverse

swap(s,t) swap(s,t)

mult(t,m) mult(t,1/m)

combo(s,t,c) combo(s,t,-c)

To illustrate, suppose swap(1,3), combo(1,2,-3) and mult(2,4) are used to
obtain the current linear equations. Then the linear system three steps back
can be obtained from the current system by applying the inverse steps in reverse
order: mult(2,1/4), combo(1,2,3), swap(1,3).

Solving Equations with Geometry

In the plane (n = 2) and in 3-space (n = 3), equations (5) have a geometric in-
terpretation that can provide valuable intuition about possible solutions. College
algebra courses might have omitted the case of no solutions or infinitely many
solutions, discussing only the case of a single unique solution. In contrast, all
cases are considered here.
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Plane Geometry

A straight line may be represented as an equation Ax + By = C. Solving the
system

a11x + a12y = b1
a21x + a22y = b2

(7)

is the geometrical equivalent of finding all possible (x, y)-intersections of the lines
represented in system (7). The distinct geometrical possibilities appear in Figures
1, 2 and 3.

x

y

Figure 1. Parallel lines, no solution.

−x+ y = 1,
−x+ y = 0.

x

y

Figure 2. Identical lines, infinitely many solu-
tions.

−x+ y = 1,
−2x+ 2y = 2.

y

x
P

Figure 3. Non-parallel distinct lines, one solu-
tion at the unique intersection point P .

−x+ y = 2,
x+ y = 0.

Space Geometry

A plane in xyz-space is given by an equation Ax + By + Cz = D. The vector
A⃗ı + Bȷ⃗ + Ck⃗ is normal to the plane. An equivalent equation is A(x − x0) +
B(y−y0)+C(z−z0) = 0, where (x0, y0, z0) is a given point in the plane. Solving
system

a11x + a12y + a13z = b1
a21x + a22y + a23z = b2
a31x + a32y + a33z = b3

(8)

is the geometric equivalent of finding all possible (x, y, z)-intersections of the
planes represented by system (8). Illustrated in Figures 4–11 are some interesting
geometrical possibilities.
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I

II

III

Figure 4. Three Parallel Shelves. Planes I, II,
III are parallel. There is no intersection point.

I : z = 2, II : z = 1, III : z = 0.

I = II

III

Figure 5. Two Parallel Shelves. Planes I, II are
equal and parallel to plane III. There is no intersec-
tion point.

I : 2z = 2, II : z = 1, III : z = 0.

I

II

III
Figure 6. Book shelf. Two planes I, II are distinct
and parallel. There is no intersection point.

I : z = 2, II : z = 1, III : y = 0.

III

III

Figure 7. Pup tent. Two non-parallel planes I, II
meet in a line which never meets plane III. There are
no intersection points.

I : y + z = 0, II : y − z = 0, III : z = −1.

I = II = III Figure 8. Three Identical Shelves. Planes I, II,
III are equal. There are infinitely many intersection
points.

I : z = 1, II : 2z = 2, III : 3z = 3.
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III

I = II

L

Figure 9. Open book. Equal planes I, II meet an-
other plane III in a line L. There are infinitely many
intersection points.

I : y + z = 0, II : 2y + 2z = 0, III : z = 0.

L

III

II
I Figure 10. Saw Tooth. Two non-parallel planes

I, II meet in a line L which lies in a third plane III.
There are infinitely many intersection points.

I : −y + z = 0, II : y + z = 0, III : z = 0.

P

III
I

II

L

Figure 11. Knife Cuts an Open Book. Two
non-parallel planes I, II meet in a line L not parallel
to plane III. There is a unique point P of intersection
of all three planes.

I : y + z = 0, II : z = 0, III : x = 0.

Examples and Methods

Example 3.1 (Toolkit)

Given system

∣∣∣∣∣∣
x + 4z = 1
x + y + 4z = 3

z = 2

∣∣∣∣∣∣, find the system that results from opera-

tion swap(1,2) followed by operation combo(2,1,-1).

Solution: The steps are as follows, with the equivalent system equal to the last display.∣∣∣∣∣∣
x + 4z = 1
x + y + 4z = 3

z = 2

∣∣∣∣∣∣
Original system.

∣∣∣∣∣∣
x + y + 4z = 3
x + 4z = 1

z = 2

∣∣∣∣∣∣ swap(1,2)

∣∣∣∣∣∣
y = 2

x + 4z = 1
z = 2

∣∣∣∣∣∣
combo(2,1,-1)

Calculations for combo(2,1,-1) can be done on scratch paper. Experts do the arithmetic
column-by-column, using no scratch paper. Here’s the details for the scratch paper
arithmetic:

1x + 0y + 4z = 1 Equation 2
1x + 1y + 4z = 3 Equation 1
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−1x + 0y − 4z = −1 Equation 2 times -1
1x + 1y + 4z = 3 Equation 1

Add on the columns, replacing the second equation.

−1x + 0y − 4z = −1 Equation 2 times -1
0x + 1y + 0z = 2 Equation 1 + (-1)(Equation 2)

The last equation replaces equation 1 and the label combo(2,1,-1) is written next to
the replacement. All of the scratch work is discarded.

Example 3.2 (Inverse Toolkit)

Let system

∣∣∣∣∣∣
x − 3z = −1

2y + 6z = 4
z = 3

∣∣∣∣∣∣ be produced by toolkit operations, first

mult(2,2) and then combo(2,1,-1). Find the original system.

Solution: We begin by writing the given toolkit operation inverses, in reverse order, as
combo(2,1,1) and mult(2,1/2). The operations, in this order, are performed on the
given system, to find the original system two steps back, in the last display.∣∣∣∣∣∣

x − 3z = −1
2y + 6z = 4

z = 3

∣∣∣∣∣∣
Given system.

∣∣∣∣∣∣
x + 2y + 3z = 3

2y + 6z = 4
z = 3

∣∣∣∣∣∣
combo(2,1,1)

One step back.

∣∣∣∣∣∣
x + 2y + 3z = 3

y + 3z = 2
z = 3

∣∣∣∣∣∣
mult(2,1/2)

Two steps back.

Example 3.3 (Planar System)
Classify the system geometrically as one of the three types displayed in Figures 1, 2,
3. Then solve for x and y. ∣∣∣∣ x + 2y = 1,

3x + 6y = 3.

∣∣∣∣(9)

Solution: The second equation, divided by 3, gives the first equation. In short, the two
equations are proportional. The lines are geometrically equal lines, as in Figure 2. The
two equations are equivalent to the system∣∣∣∣ x + 2y = 1,

0 = 0.

∣∣∣∣
To solve the system means to find all points (x, y) simultaneously common to both lines,
which are all points (x, y) on x+ 2y = 1.

A parametric representation of this line is possible, obtained by setting y = t and then
solving for x = 1 − 2t, −∞ < t < ∞. We report the solution as a parametric solution,
but the first solution is also valid.

x = 1− 2t,
y = t.
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Example 3.4 (No Solution)
Classify the system geometrically as the type displayed in Figure 1. Explain why
there is no solution. ∣∣∣∣ x + 2y = 1,

3x + 6y = 6.

∣∣∣∣(10)

Solution: The second equation, divided by 3, gives x + 2y = 2, a line parallel to the
first line x+2y = 1. The lines are geometrically parallel lines, as in Figure 1. The two
equations are equivalent to the system∣∣∣∣ x + 2y = 1,

x + 2y = 2.

∣∣∣∣
To solve the system means to find all points (x, y) simultaneously common to both lines,
which are all points (x, y) on x + 2y = 1 and also on x + 2y = 2. If such a point (x, y)
exists, then 1 = x + 2y = 2 or 1 = 2, a contradictory signal equation. Because 1 = 2
is false, then no common point (x, y) exists and we report no solution.

Some readers will want to continue and write equations for x and y, a solution to the
problem. We emphasize that this is not possible, because there is no solution at all.

The presence of a signal equation, which is a false equation used primarily to detect
no solution, will appear always in the solution process for a system of equations that
has no solution. Generally, this signal equation, if present, will be distilled to the single
equation “0 = 1.” For instance, 0 = 2 can be distilled to 0 = 1 by dividing equation
0 = 2 by 2.

,

Exercises 3.1 �

Toolkit
Compute the equivalent system of equa-
tions. Definitions of combo, swap and mult

on page 177.

1. Given

∣∣∣∣∣∣
x + 2z = 1
x + y + 2z = 4

z = 0

∣∣∣∣∣∣, find

the system that results from
combo(2,1,-1).

2. Given

∣∣∣∣∣∣
x + 2z = 1
x + y + 2z = 4

z = 0

∣∣∣∣∣∣, find the

system that results from swap(1,2) fol-
lowed by combo(2,1,-1).

3. Given

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣, find

the system that results from
combo(1,2,-1).

4. Given

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣, find the

system that results from swap(1,2) fol-
lowed by combo(1,2,-1).

5. Given

∣∣∣∣∣∣
y + z = 2

3y + 3z = 6
y = 0

∣∣∣∣∣∣, find the

system that results from swap(2,3),
combo(2,1,-1).

6. Given

∣∣∣∣∣∣
y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣, find

the system that results from
mult(2,1/3), combo(1,2,-1),
swap(2,3), swap(1,2).

Inverse Toolkit
Compute the equivalent system of equa-
tions.

182



3.1 Systems of Linear Equations

7. If

∣∣∣∣∣∣
− y = −3

x + y + 2z = 4
z = 0

∣∣∣∣∣∣ resulted

from combo(2,1,-1), then find the
original system.

8. If

∣∣∣∣∣∣
y = 3

x + 2z = 1
z = 0

∣∣∣∣∣∣ resulted from

swap(1,2) followed by combo(2,1,-1),
then find the original system.

9. If

∣∣∣∣∣∣
x + 3z = 1

y − 3z = 4
z = 1

∣∣∣∣∣∣ resulted from

combo(1,2,-1), then find the original
system.

10. If

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣ resulted from

swap(1,2) followed by combo(2,1,2),
then find the original system.

11. If

∣∣∣∣∣∣
y + z = 2

3y + 3z = 6
y = 0

∣∣∣∣∣∣ resulted

from mult(2,-1), swap(2,3),
combo(2,1,-1), then find the original
system.

12. If

∣∣∣∣∣∣
2y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣ resulted

from mult(2,1/3), combo(1,2,-1),
swap(2,3), swap(1,2), then find the
original system.

Planar System
Solve the xy–system and interpret the so-
lution geometrically as

(a) parallel lines

(b) equal lines

(c) intersecting lines.

13.

∣∣∣∣ x + y = 1,
y = 1

∣∣∣∣
14.

∣∣∣∣ x + y = −1
x = 3

∣∣∣∣
15.

∣∣∣∣ x + y = 1
x + 2y = 2

∣∣∣∣

16.

∣∣∣∣ x + y = 1
x + 2y = 3

∣∣∣∣
17.

∣∣∣∣ x + y = 1
2x + 2y = 2

∣∣∣∣
18.

∣∣∣∣ 2x + y = 1
6x + 3y = 3

∣∣∣∣
19.

∣∣∣∣ x − y = 1
−x − y = −1

∣∣∣∣
20.

∣∣∣∣ 2x − y = 1
x − 0.5y = 0.5

∣∣∣∣
21.

∣∣∣∣ x + y = 1
x + y = 2

∣∣∣∣
22.

∣∣∣∣ x − y = 1
x − y = 0

∣∣∣∣
System in Space
For each xyz–system:

(a) If no solution, then report three
identical shelves, pup tent, two
parallel shelves or book shelf.

(b) If infinitely many solutions, then re-
port one shelf, open book or saw
tooth.

(c) If a unique intersection point, then
report the values of x, y and z.

23.

∣∣∣∣∣∣
x − y + z = 2
x = 1

y = 0

∣∣∣∣∣∣
24.

∣∣∣∣∣∣
x + y − 2z = 3
x = 2

z = 1

∣∣∣∣∣∣
25.

∣∣∣∣∣∣
x − y = 2
x − y = 1
x − y = 0

∣∣∣∣∣∣
26.

∣∣∣∣∣∣
x + y = 3
x + y = 2
x + y = 1

∣∣∣∣∣∣
27.

∣∣∣∣∣∣
x + y + z = 3
x + y + z = 2
x + y + z = 1

∣∣∣∣∣∣
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28.

∣∣∣∣∣∣
x + y + 2z = 2
x + y + 2z = 1
x + y + 2z = 0

∣∣∣∣∣∣
29.

∣∣∣∣∣∣
x − y + z = 2
2x − 2y + 2z = 4

y = 0

∣∣∣∣∣∣
30.

∣∣∣∣∣∣
x + y − 2z = 3
3x + 3y − 6z = 6

z = 1

∣∣∣∣∣∣
31.

∣∣∣∣∣∣
x − y + z = 2

0 = 0
0 = 0

∣∣∣∣∣∣
32.

∣∣∣∣∣∣
x + y − 2z = 3

0 = 0
1 = 1

∣∣∣∣∣∣

33.

∣∣∣∣∣∣
x + y = 2
x − y = 2

y = −1

∣∣∣∣∣∣

34.

∣∣∣∣∣∣
x − 2z = 4
x + 2z = 0

z = 2

∣∣∣∣∣∣

35.

∣∣∣∣∣∣
y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣

36.

∣∣∣∣∣∣
x + 2z = 1
4x + 8z = 4

z = 0

∣∣∣∣∣∣
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,

3.2 Filmstrips and Toolkit Sequences

Expert on Video. A linear algebra expert solves a system of equations with
paper and pencil. A video records all the paper details, starting with the original
system of equations and ending with the solution. Each application of one of
the toolkit operations swap, combo or mult causes the system of equations to be
re-written.

Filmstrip. The documentary video is edited into an ordered sequence of images,
a filmstrip which eliminates all arithmetic details. The cropped images are the
selected frames which record the result of each computation: only major toolkit
steps appear (see Table 4).

Table 4. A Toolkit Sequence.

Each image is a cropped frame from a filmstrip, obtained by editing a video documentary

of an expert solving the linear system.

Frame 1 Frame 2 Frame 3

Original
System

{
x− y= 2,

3y=−3.

Apply mult(2,1/3)

{
x− y= 2,

y=−1.

Apply
combo(2,1,1)

{
x = 1,
y=−1.

Definition 3.1 (Toolkit Sequence)
Assume a video has been made of a person solving a linear system. A sequence of
selected filmstrip images, presented in solution order, is called a Toolkit Sequence.
The images are presumed cropped and devoid of arithmetic detail, but each toolkit
step is documented.

The cropped images of major toolkit steps make a filmstrip which
represents the minimum set of solution steps to be written on paper.

Lead Variables

A variable chosen from the variable list x, y is called a lead variable provided
it appears just once in the entire system of equations, and in addition, its ap-
pearance reading left-to-right is first, with coefficient one. The same definition
applies to arbitrary variable lists x1, x2, . . . , xn.
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3.2 Filmstrips and Toolkit Sequences

Illustration. Symbol x is a lead variable in all three frames of the toolkit
sequence in Table 4. But symbol y fails to be a lead variable in frames 1 and 2.
In the final frame, both x and y are lead variables.

A free variable is a non-lead variable, detectable only from a frame in which
every non-zero equation has a lead variable.

A consistent system in which every variable is a lead variable must have a unique
solution. The system must look like the final frame of the sequence in Table 4.
More precisely, the variables appear in variable list order to the left of the equal
sign, each variable appearing just once, with numbers to the right of the equal
sign.

Unique Solution

To solve a system with a unique solution, we apply the toolkit operations of
swap, multiply and combination (acronyms swap, mult, combo), one operation
per frame, until the last frame displays the unique solution.

Because all variables will be lead variables in the last frame, we seek to create a
new lead variable in each frame. Sometimes, this is not possible, even if it is the
general objective. Exceptions are swap and multiply operations, which are often
used to prepare for creation of a lead variable. Listed in Table 5 are the rules
and conventions that we use to create toolkit sequences.

Table 5. Conventions and Rules for Creating Toolkit Sequences.

Order of Variables. Variables in equations appear in variable list order to the
left of the equal sign.

Order of Equations. Equations are listed in variable list order inherited from
their lead variables. Equations without lead variables appear next. Equa-
tions without variables appear last. Multiple swap operations convert any
system to this convention.

New Lead Variable. Select a new lead variable as the first variable, in variable
list order, which appears among the equations without a lead variable.

An illustration:

y + 4z = 2,
x + y = 3,
x + 2y + 3z = 4.

Frame 1. Original system.

x + 2y + 3z = 4,
x + y = 3,

y + 4z = 2.

Frame 2.

swap(1,3)
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x + 2y + 3z = 4,
− y − 3z = −1,

y + 4z = 2.

Frame 3.
combo(1,2,-1)

x + 2y + 3z = 4,
− y − 3z = −1,

z = 1.

Frame 4.

combo(2,3,1)

x + 2y + 3z = 4,
y + 3z = 1,

z = 1.

Frame 5.
mult(2,-1)

x − 3z = 2,
y + 3z = 1,

z = 1.

Frame 6.
combo(2,1,-2)

x − 3z = 2,
y = −2,

z = 1.

Frame 7.
combo(3,2,-3)

x = 5,
y = −2,

z = 1.

Frame 8. combo(3,1,3)
Last Frame.
Unique solution.

No Solution

A special case occurs in a toolkit sequence, when a nonzero equation occurs hav-
ing no variables. Called a signal equation, its occurrence signals no solution,
because the equation is false. Normally, we halt the toolkit sequence at the point
of first discovery, and then declare no solution. An illustration:

y + 3z = 2,
x + y = 3,
x + 2y + 3z = 4.

Frame 1. Original system.

x + 2y + 3z = 4,
x + y = 3,

y + 3z = 2.

Frame 2.

swap(1,3)

x + 2y + 3z = 4,
− y − 3z = −1,

y + 3z = 2.

Frame 3.
combo(1,2,-1)

x + 2y + 3z = 4,
− y − 3z = −1,

0 = 1.

Frame 4.
Signal Equation 0 = 1.
combo(2,3,1)
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The signal equation 0 = 1 is a false equation, therefore the last frame has no
solution. Because the toolkit neither creates nor destroys solutions, then the
original system in the first frame has no solution.

Readers who want to go on and write an answer for the system must be warned
that no such possibility exists. Values cannot be assigned to any variables in
the case of no solution. This can be perplexing, especially in a final frame like

x = 4,
z = −1,
0 = 1.

While it is true that x and z were assigned values, the final signal equation
0 = 1 is false, meaning any answer is impossible. There is no possibility to write
equations for all variables. There is no solution. It is a tragic error to claim
x = 4, z = −1 is a solution.

Infinitely Many Solutions

A system of equations having infinitely many solutions is solved from a toolkit
sequence construction that parallels the unique solution case. The same quest
for lead variables is made, hoping in the final frame to have just the variable list
on the left and numbers on the right.

The stopping criterion which identifies the final frame, in either the case of a
unique solution or infinitely many solutions, is exactly the same:

Last Frame Test. A frame is the last frame when every nonzero
equation has a lead variable. Remaining equations have the form
0 = 0.

Any variables that are not lead variables, in the final frame, are called free
variables, because their values are completely undetermined. Any missing
variable must be a free variable.

y + 3z = 1,
x + y = 3,
x + 2y + 3z = 4.

Frame 1. Original system.

x + 2y + 3z = 4,
x + y = 3,

y + 3z = 1.

Frame 2.

swap(1,3)

x + 2y + 3z = 4,
− y − 3z = −1,

y + 3z = 1.

Frame 3.
combo(1,2,-1)
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x + 2y + 3z = 4,
− y − 3z = −1,

0 = 0.

Frame 4.

combo(2,3,1)

x + 2y + 3z = 4,
y + 3z = 1,

0 = 0.

Frame 5.
mult(2,-1)

x − 3z = 2,
y + 3z = 1,

0 = 0.

Frame 6. combo(2,1,-2)
Last Frame.
Lead=x, y, Free=z.

Last Frame to General Solution

Once the last frame of the toolkit sequence is obtained, then the general solution
can be written by a fixed and easy-to-learn algorithm.

Last Frame Algorithm

This process applies only to the last frame in the case of infinitely
many solutions.

(1) Assign invented symbols t1, t2, . . . to the free variables.
(2) Isolate each lead variable.
(3) Back-substitute the free variable invented symbols.

To illustrate, assume the last frame of the toolkit sequence is

x − 3z = 2,
y + 3z = 1,

0 = 0,

Last Frame.
Lead variables x, y.

then the general solution is written as follows.

z = t1 The free variable z is assigned symbol t1.

x = 2 + 3z,
y = 1− 3z

The lead variables are x, y. Isolate them left.

x = 2 + 3t1,
y = 1− 3t1,
z = t1.

Back-substitute. Solution found.

In the last frame, variables appear left of the equal sign in variable list order.
Only invented symbols1 appear right of the equal sign. The expression is called
a standard general solution. The meaning:

1Computer algebra system maple uses invented symbols t1, t2, t3, . . . and we follow the
convention.
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Nothing Skipped Each solution of the system of equations can be obtained
by specializing the invented symbols t1, t2, . . . to particular
numbers.

It Works The general solution expression satisfies the system of
equations for all possible values of the symbols t1, t2, . . . .

General Solution and the Last Frame Algorithm

An additional illustration will be given for the last frame algorithm. Assume
variable list order x, y, z, w, u, v for the last frame

x + z + u+ v = 1,
y − u+ v = 2,

w + 2u− v = 0.

(1)

Every nonzero equation above has a lead variable. The lead variables in (1)
are the boxed symbols x, y, w. The free variables are z, u, v.

Assign invented symbols t1, t2, t3 to the free variables and back-substitute in (1)
to obtain a standard general solution

x = 1− t1 − t2 − t3,
y = 2 + t2 − t3,
w = −2t2 + t3,
z = t1,
u = t2,
v = t3.

or



x = 1− t1 − t2 − t3,
y = 2 + t2 − t3,
z = t1,
w = −2t2 + t3,
u = t2,
v = t3.

It is demanded by convention that general solutions be displayed in variable list
order. This is why the above display bothers to re-write the equations in the new
order on the right.

,

Exercises 3.2 �

Lead and free variables
For each system assume variable list x1,
. . . , x5. List the lead and free variables.

1.

∣∣∣∣∣∣
x2+3x3 =0

x4 =0
0=0

∣∣∣∣∣∣
2.

∣∣∣∣∣∣
x2 = 0

x3 + 3x5 = 0
x4 + 2x5 = 0

∣∣∣∣∣∣
3.

∣∣∣∣∣∣
x1 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣

4.

∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣

5.

∣∣∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

0= 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣

6.

∣∣∣∣∣∣
x1 + x2 = 0

x3 = 0
0= 0

∣∣∣∣∣∣
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7.

∣∣∣∣∣∣
x1 + x2 + 3x3 + 5x4 = 0

x5 = 0
0= 0

∣∣∣∣∣∣
8.

∣∣∣∣∣∣
x1 + 2x2 + 3x4 + 4x5 = 0

x3 + x4 + x5 = 0
0= 0

∣∣∣∣∣∣
9.

∣∣∣∣∣∣∣∣
x3 + 2x4 = 0

x5 = 0
0= 0
0 = 0

∣∣∣∣∣∣∣∣
10.

∣∣∣∣∣∣∣∣
x4 + x5 = 0

0= 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣
11.

∣∣∣∣∣∣∣∣
x2 + 5x4 = 0

x3 + 2x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣
12.

∣∣∣∣∣∣∣∣
x1 + 3x3 = 0

x2 + x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣
Elementary Operations
Consider the 3× 3 system

x + 2y + 3z = 2,
−2x + 3y + 4z = 0,
−3x + 5y + 7z = 3.

Define symbols combo, swap and mult
as in the textbook. Write the 3× 3 system
which results from each of the following op-
erations.

13. combo(1,3,-1)

14. combo(2,3,-5)

15. combo(3,2,4)

16. combo(2,1,4)

17. combo(1,2,-1)

18. combo(1,2,-e2)

19. mult(1,5)

20. mult(1,-3)

21. mult(2,5)

22. mult(2,-2)

23. mult(3,4)

24. mult(3,5)

25. mult(2,-π)

26. mult(2,π)

27. mult(1,e2)

28. mult(1,-e−2)

29. swap(1,3)

30. swap(1,2)

31. swap(2,3)

32. swap(2,1)

33. swap(3,2)

34. swap(3,1)

Unique Solution
Create a toolkit sequence for each system,
whose final frame displays the unique so-
lution of the system of equations. Assume
variable list order x1, x2, x3, x4, x5 and the
number of variables is the number of equa-
tions.

35.

∣∣∣∣x1+3x2= 0
x2=−1

∣∣∣∣
36.

∣∣∣∣x1+2x2= 0
x2=−2

∣∣∣∣
37.

∣∣∣∣x1+3x2=2
x1− x2=1

∣∣∣∣
38.

∣∣∣∣x1+ x2=−1
x1+2x2=−2

∣∣∣∣
39.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
4x3 = 4

∣∣∣∣∣∣
40.

∣∣∣∣∣∣
x1 = 1

3x1 + x2 = 0
2x1 + 2x2 + 3x3 = 3

∣∣∣∣∣∣
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41.

∣∣∣∣∣∣
x1 + x2 + 3x3 = 1

x2 = 2
3x3 = 0

∣∣∣∣∣∣
42.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 = 3
3x3 = 0

∣∣∣∣∣∣
43.

∣∣∣∣∣∣∣∣
x1 = 2
x1 + 2x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
44.

∣∣∣∣∣∣∣∣
x1 = 3
x1 − 2x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 2

∣∣∣∣∣∣∣∣
45.

∣∣∣∣∣∣∣∣
x1 + x2 = 2
x1 + 2x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
46.

∣∣∣∣∣∣∣∣
x1 − 2x2 = 3
x1 − x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 1

∣∣∣∣∣∣∣∣

47.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 1
3x1 + x3 + 2x5 = 1

∣∣∣∣∣∣∣∣∣∣

48.

∣∣∣∣∣∣∣∣∣∣
x1 = 2
x1 − x2 = 0
2x1 + 2x2 + x3 = 1
3x1 + 6x2 + x3 + 3x4 = 1
3x1 + x3 + 3x5 = 1

∣∣∣∣∣∣∣∣∣∣

49.

∣∣∣∣∣∣∣∣∣∣
x1− x2+ x3− x4+ x5= 0

2x2− x3+ x4− x5= 0
3x3− x4+ x5= 0

4x4− x5= 0
5x5=20

∣∣∣∣∣∣∣∣∣∣

50.

∣∣∣∣∣∣∣∣∣∣
x1 − x2 = 3
x1 − 2x2 = 0
2x1 + 2x2 + x3 = 1
3x1 + 6x2 + x3 + 3x4 = 1
3x1 + x3 + x5 = 3

∣∣∣∣∣∣∣∣∣∣

No Solution
Develop a toolkit sequence for each system,
whose final frame contains a signal equa-
tion (e.g., 0 = 1), thereby showing that the
system has no solution.

51.

∣∣∣∣x1+3x2=0
x1+3x2=1

∣∣∣∣
52.

∣∣∣∣ x1+2x2=1
2x1+4x2=2

∣∣∣∣
53.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
x2 + 4x3 = 4

∣∣∣∣∣∣
54.

∣∣∣∣∣∣
x1 = 0

3x1 + x2 + 3x3 = 1
2x1 + 2x2 + 6x3 = 0

∣∣∣∣∣∣
55.

∣∣∣∣∣∣
x1 + x2 + 3x3 = 1

x2 = 2
x1 + 2x2 + 3x3 = 2

∣∣∣∣∣∣
56.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 2x3 = 3
x1 + 5x3 = 5

∣∣∣∣∣∣
57.

∣∣∣∣∣∣∣∣
x1 = 2
x1 + 2x2 = 2
x1 + 2x2 + x3 + 2x4 = 0
x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
58.

∣∣∣∣∣∣∣∣
x1 = 3
x1 − 2x2 = 1

2x1 + 2x2 + x3 + 4x4 = 0
3x1 + 6x2 + x3 + 4x4 = 2

∣∣∣∣∣∣∣∣

59.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1

2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 − x5 = 1
− 6x2 − x3 + 4x4 + x5 = 0

∣∣∣∣∣∣∣∣∣∣

60.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1

3x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 − x5 = 1
− 6x2 − x3 − 4x4 + x5 = 2

∣∣∣∣∣∣∣∣∣∣
Infinitely Many Solutions
Display a toolkit sequence for each system,
whose final frame has this property: each
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nonzero equation has a lead variable. Then
apply the last frame algorithm to write
out the standard general solution of the sys-
tem. Assume in each system variable list x1

to x5.

61.

∣∣∣∣∣∣
x1+x2+3x3 =0

x2 +x4 =0
0=0

∣∣∣∣∣∣
62.

∣∣∣∣∣∣
x1 + x3 = 0
x1 + x2 + x3 + 3x5 = 0

x4 + 2x5 = 0

∣∣∣∣∣∣
63.

∣∣∣∣∣∣
x2 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣
64.

∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣
65.

∣∣∣∣ x1 + 2x2 + 3x3 = 0
x3 + x4 0 = 0

∣∣∣∣
66.

∣∣∣∣∣∣
x1 + x2 = 0

x2 + x3 = 0
x3 0 = 1

∣∣∣∣∣∣
67.

∣∣∣∣ x1 + x2 + 3x3 + 5x4 + 2x5 = 0
x5 = 0

∣∣∣∣
68.

∣∣∣∣ x1 + 2x2 + x3 + 3x4 + 4x5 = 0
x3 + x4 + x5 = 0

∣∣∣∣
69.

∣∣∣∣∣∣
x3 + 2x4 + x5 = 0
2x3 + 2x4 + 2x5 = 0

x5 = 0

∣∣∣∣∣∣
70.

∣∣∣∣∣∣∣∣
x4 + x5 = 0

0= 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣
71.

∣∣∣∣∣∣∣∣
x2 + x3 + 5x4 = 0

x3 + 2x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣

72.

∣∣∣∣∣∣∣∣
x1 + 3x3 = 0
x1 + x2 + x4 = 0

x5 = 0
0= 0

∣∣∣∣∣∣∣∣
Inverses of Elementary Operations
Given the final frame of a toolkit sequence
is ∣∣∣∣∣∣

3x + 2y + 4z = 2
x + 3y + 2z = −1
2x + y + 5z = 0

∣∣∣∣∣∣
and the given operations, find the original
system in the first frame.

73. combo(1,2,-1), combo(2,3,-3),
mult(1,-2), swap(2,3).

74. combo(1,2,-1), combo(2,3,3),
mult(1,2), swap(3,2).

75. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3).

76. combo(1,2,-1), combo(2,3,4),
mult(1,3), swap(3,2).

77. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3),
swap(2,3).

78. swap(2,3), combo(1,2,-1),
combo(2,3,4), mult(1,3),
swap(3,2).

79. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3),
mult(2,3).

80. combo(1,2,-1), combo(2,3,4),
mult(1,3), swap(3,2),
combo(2,3,-3).
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Consider the nonhomogeneous system

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
am1x1 + am2x2 + · · ·+ amnxn = bm.

(1)

The general solution of system (1) is an expression which represents all possible
solutions of the system.

The example above for infinitely many solutions contained an unmotivated algo-
rithm which expressed the general solution in terms of invented symbols t1, t2,
. . . , which in mathematical literature are called parameters. We outline here
some topics from calculus which form the assumed background for this subject.

Equations for Points, Lines and Planes

Background from analytic geometry appears in Table 6. In this table, t1 and t2
are parameters, which means they are allowed to take on any value between
−∞ and +∞. The algebraic equations describing the geometric objects are called
parametric equations.

Table 6. Parametric Equations with Geometrical Significance.

x = d1,
y = d2,
z = d3.

Point. The equations have no parameters and
describe a single point.

x = d1 + a1t1,
y = d2 + a2t1,
z = d3 + a3t1.

Line. The equations with parameter t1 describe
a straight line through (d1, d2, d3) with tangent
vector a1⃗ı+ a2ȷ⃗+ a3k⃗.

x = d1 + a1t1 + b1t2,
y = d2 + a2t1 + b2t2,
z = d3 + a3t1 + b3t2.

Plane. The equations with parameters t1, t2 de-
scribe a plane containing (d1, d2, d3). The cross
product (a1⃗ı + a2ȷ⃗ + a3k⃗) × (b1⃗ı + b2ȷ⃗ + b3k⃗) is
normal to the plane.

To illustrate, the parametric equations x = 2−6t1, y = −1− t1, z = 8t1 describe
the unique line of intersection of the three planes (details in Example 3.5)

x + 2y + z = 0,
2x − 4y + z = 8,
3x − 2y + 2z = 8.

(2)
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General Solutions

Definition 3.2 (Parametric Equations)
Equations of the form

x1 = d1 + c11t1 + · · ·+ c1ktk,
x2 = d2 + c21t1 + · · ·+ c2ktk,

...
xn = dn + cn1t1 + · · ·+ cnktk

(3)

are called parametric equations for the variables x1, . . . , xn.

The numbers d1, . . . , dn, c11, . . . , cnk are known constants and the symbols t1, . . . , tk
are parameters, which are treated as variables that may be assigned any value from
−∞ to ∞.

Three cases appear often in examples and exercises, illustrated here for variables
x1, x2, x3:

No parameters

x1 = d1
x2 = d2
x3 = d3

One parameter

x1 = d1 + a1t1
x2 = d2 + a2t1
x3 = d3 + a3t1

Two parameters

x1 = d1 + a1t1 + b1t2
x2 = d2 + a2t1 + b2t2
x3 = d3 + a3t1 + b3t2

Definition 3.3 (General Solution)
A general solution of a linear algebraic system of equations (1) is a set of parametric
equations (3) plus two additional requirements:

Equations (3) satisfy (1) for all real values of t1, . . . , tk.(4)

Any solution of (1) can be obtained from (3) by specializing values
of the parameters t1, t2, . . . tk.

(5)

A general solution is sometimes called a parametric solution. Requirement (4)
means that the solution works. Requirement (5) means that no solution was
skipped.

Definition 3.4 (Standard General Solution)
Parametric equations (3) are called standard if they satisfy for distinct subscripts j1,
i2, . . . , jk the equations

xj1 = t1, xj2 = t2, . . . , xjk = tk.(6)

The relations mean that the full set of parameter symbols t1, t2, . . . , tk were assigned
to k distinct variable names (the free variables) selected from x1, . . . , xn.

A standard general solution of system (1) is a special set of parametric equations
(3) satisfying (4), (5) and additionally (6). Toolkit sequences always produce a
standard general solution.
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Theorem 3.2 (Standard General Solution)
A standard general solution has the fewest possible parameters and it represents each
solution of the linear system by a unique set of parameter values.

The theorem supplies the theoretical basis for the method of toolkit sequences,
which formally appears as an algorithm on page 197. The proof of Theorem 3.2
is delayed until page 220. It is unusual if this proof is a subject of a class lecture,
due to its length; it is recommended reading for the mathematically inclined,
after understanding the examples.

Reduced Echelon System

Consider a toolkit sequence. The last frame, from which we write the general
solution, is called a reduced echelon system.

Definition 3.5 (Reduced Echelon System)
A linear system in which each nonzero equation has a lead variable is called a
reduced echelon system. Implicitly assumed are the following definitions and rules.

• A lead variable is a variable which appears with coefficient one in the
very first location, left to right, in exactly one equation.

• A variable not used as a lead variable is called a free variable. Variables
that do not appear at all are free variables.

• The nonzero equations are listed in variable list order, inherited from their
lead variables. Equations without variables are listed last.

• All variables in an equation are required to appear in variable list order.
Therefore, within an equation, all free variables are to the right of the lead
variable.

Detecting a Reduced Echelon System

A given system can be rapidly inspected to detect if it can be transformed into a
reduced echelon system. We assume that within each equation, variables appear
in variable list order.

A nonhomogeneous linear system is recognized as a reduced echelon
system when the first variable listed in each equation has coefficient
one and that symbol appears nowhere else in the system of equa-
tions.2

Such a system can be re-written, by swapping equations and enforcing the rules
above, so that the resulting system is a reduced echelon system.

2Children are better at such classifications than adults. A favorite puzzle among kids is a
drawing which contains disguised figures, like a bird, a fire hydrant and Godzilla. Routinely,
children find all the disguised figures.
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Rank and Nullity

A reduced echelon system splits the variable names x1, . . . , xn into the lead
variables and the free variables. Because the entire variable list is exhausted
by these two sets, then

lead variables+ free variables = total variables.

Definition 3.6 (Rank and Nullity)
The number of lead variables in a reduced echelon system is called the rank of
the system. The number of free variables in a reduced echelon system is called the
nullity of the system.

Determining rank and nullity

First, display a toolkit sequence which starts with that system and ends in a reduced
echelon system. Then the rank and nullity of the system are those determined by
the final frame.

Theorem 3.3 (Rank and Nullity)
The following equation holds:

rank+ nullity = number of variables.

Computers and Reduced Echelon Form

Computer algebra systems and computer numerical laboratories compute from a
given linear system (5) a new equivalent system of identical size, which is called
the reduced row-echelon form, abbreviated rref.

The computed rref will pass the last frame test, provided there is no signal
equation, hence the rref is generally a reduced echelon system. This fact is the
basis of answer checks with computer assist.

Computer assist requiresmatrix input of the data, a topic which is delayed until
a later chapter. Popular commercial programs used to perform the computer
assist are maple, mathematica and matlab.

Elimination

The elimination algorithm applies at each algebraic step one of the three toolkit
rules defined in Table 1: swap, multiply and combination.

The objective of each algebraic step is to increase the number of lead vari-
ables. Equivalently, each algebraic step tries to eliminate one repetition of
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a variable name, which justifies calling the process the method of elimina-
tion. The process of elimination stops when a signal equation (typically 0 = 1)
is found. Otherwise, elimination stops when no more lead variables can be found,
and then the last system of equations is a reduced echelon system. A detailed
explanation of the process has been given above in the discussion of toolkit se-
quences.

Reversibility of the algebraic steps means that no solutions are created nor de-
stroyed during the algebra: the original system and all intermediate systems have
exactly the same solutions.

The final reduced echelon system has either a unique solution or infinitely many
solutions, in both cases we report the general solution. In the infinitely many
solution case, the last frame algorithm on page 189 is used to write out a
general solution.

Theorem 3.4 (Elimination)
Every linear system (5) has either no solution or else it has exactly the same solutions
as an equivalent reduced echelon system, obtained by repeated use of toolkit rules
swap, multiply and combination, page 176).

An Elimination Algorithm

An equation is said to be processed if it has a lead variable. Otherwise, the
equation is said to be unprocessed.

The acronym rref abbreviates the phrase reduced row echelon form. This abbre-
viation appears in matrix literature, so we use it instead of creating an acronym
for reduced echelon form (the word row is missing).

1. If an equation “0 = 0” appears, then move it to the end. If a signal equation
“0 = c” appears (c ̸= 0 required), then the system is inconsistent. In this
case, the algorithm halts and we report no solution.

2. Identify the first symbol xr, in variable list order x1, . . . , xn, which appears
in some unprocessed equation. Apply the multiply rule to insure xr has
leading coefficient one. Apply the combination rule to eliminate variable xr
from all other equations. Then xr is a lead variable: the number of lead
variables has been increased by one.

3. Apply the swap rule repeatedly to move this equation past all processed equa-
tions, but before the unprocessed equations. Mark the equation as processed,
e.g., replace xr by boxed symbol xr .

4. Repeat steps 1–3, until all equations have been processed once. Then lead
variables xi1 , . . . , xim have been defined and the last system is a reduced
echelon system.
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Uniqueness, Lead Variables and RREF

Elimination performed on a given system by two different persons will result in
the same reduced echelon system. The answer is unique, because attention has
been paid to the natural order x1, . . . , xn of the variable list. Uniqueness results
from critical step 2, also called the rref step:

Always select a lead variable as the next possible variable name in
the original list order x1, . . . , xn, taken from all possible unprocessed
equations.

This step insures that the final system is a reduced echelon system. Acronym
rref abbreviates reduced row echelon form, where row refers to an encoding of
one linear algebraic equation.

The wording next possible must be used, because once a variable name is used
for a lead variable it may not be used again. The next variable following the last–
used lead variable, from the list x1, . . . , xn, might not appear in any unprocessed
equation, in which case it is a free variable. The next variable name in the
original list order is then tried as a lead variable.

Numerical Optimization

It is common for references to divide the effort for obtaining an rref into two
stages, for which the second stage is back-substitution. This division of effort
is motivated by numerical efficiency considerations, largely historical. The reader
is advised to adopt the numerical point of view in hand calculations, as soon as
possible. It changes the details of a toolkit sequence to the rref : most readers
find the changes equally advantageous. The reason for the algorithm in the text
is motivational: to become an expert, you have to first know what you are trying
to accomplish. Exactly how to implement the toolkit to arrive at the rref will
vary for each person. The recommendation can be phrased as follows:

Don’t bother to eliminate a lead variable from equations already
assigned a lead variable. Go on to select the next lead variable and
remove that variable from subsequent equations. Final elimination
of lead variables from previous equations is saved for the end, then
done in reverse variable list order (called back-substitution).

Avoiding Fractions

Integer arithmetic should be used, when possible, to speed up hand computation
in elimination. To avoid fractions, the rref step 2 may be modified to read with
leading coefficient nonzero. The final division to obtain leading coefficient one is
then delayed until the last possible moment.
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Examples and Methods

Example 3.5 (Line of Intersection)
Show that the parametric equations x = 2− 6t, y = −1− t, z = 8t represent a line
through (2,−1, 0) with tangent −6⃗ı− ȷ⃗ which is the line of intersection of the three
planes

x + 2y + z = 0,
2x − 4y + z = 8,
3x − 2y + 2z = 8.

(7)

Solution: Using t = 0 in the parametric solution shows that (2,−1, 0) is on the line. The

tangent to the parametric curve is x′(t)⃗ı+y′(t)ȷ⃗+z′(t)k⃗, which computes to −6⃗ı− ȷ⃗. The
details for showing the parametric solution satisfies the three equations simultaneously:

LHS = x+ 2y + z First equation left side.

= (2− 6t) + 2(−1− t) + 8t Substitute parametric solution.

= 0 Matches the RHS in (7).

LHS = 2x− 4y + z Second equation left side.

= 2(2− 6t)− 4(−1− t) + 8t Substitute.

= 8 Matches (7).

LHS = 3x− 2y + 2z Third equation left side.

= 3(2− 6t)− 2(−1− t) + 16t Substitute.

= 8 Matches (7).

Example 3.6 (Geometry of Solutions)
Solve the system and interpret the solution geometrically.

x + 2z = 3,
y + z = 1.

Solution: We begin by displaying the general solution, which is a line:

x = 3− 2t1,
y = 1− t1,
z = t1, −∞ < t1 <∞.

In standard xyz-coordinates, this line passes through (3, 1, 0) with tangent direction

−2⃗ı− ȷ⃗+ k⃗.

Details. To justify this solution, we observe that the first frame equals the last frame,
which is a reduced echelon system in variable list order x, y, z. The standard general
solution will be obtained from the last frame algorithm.

x + 2z = 3,
y + z = 1.

Frame 1 equals the last frame, a reduced echelon system
The lead variables are x, y and the free variable is z.

x = 3 − 2z,
y = 1 − z,
z = t1.

Assign to z invented symbol t1. Solve for lead variables
x and y in terms of the free variable z.
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x = 3 − 2t1,
y = 1 − t1,
z = t1.

Back-substitute for free variable z. This is the standard
general solution. It is geometrically a line, by Table 6.

Example 3.7 (Symbolic Answer Check)
Perform an answer check on

x + 2z = 3,
y + z = 1,

for the general solution

x = 3− 2t1,
y = 1− t1,
z = t1, −∞ < t1 <∞.

Solution: The displayed answer can be checked manually by substituting the symbolic
general solution into the equations x+ 2z = 3, y + z = 1, as follows:

x+ 2z = (3− 2t1) + 2(t1)
= 3,

y + z = (1− t1) + (t1)
= 1.

Therefore, the two equations are satisfied for all values of the symbol t1.

Errors and Skipped Solutions. An algebraic error could lead to a claimed solution
x = 3, y = 1, z = 0, which also passes the answer check. While it is true that x = 3,
y = 1, z = 0 is a solution, it is not the general solution. Infinitely many solutions were
skipped in the answer check.

General Solution and Free Variables. The number of lead variables is called the
rank. The number of free variables is called the nullity. The basic relation is rank
+ nullity = number of variables. Computer algebra systems can compute the rank
independently, as a double-check against hand computation. This check is useful for
discovering skipped solution errors. The rank is unaffected by the ordering of variables.

Example 3.8 (Elimination)
Solve the system.

w + 2x − y + z = 1,
w + 3x − y + 2z = 0,

x + z = −1.

Solution: The answer using the natural variable list order w, x, y, z is the standard
general solution

w = 3 + t1 + t2,
x = −1− t2,
y = t1,
z = t2, −∞ < t1, t2 <∞.
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Details. Elimination will be applied to obtain a toolkit sequence whose last frame
justifies the reported solution. The details amount to applying the three rules swap,
multiply and combination for equivalent equations on page 176 to obtain a last frame
which is a reduced echelon system. The standard general solution from the last frame
algorithm matches the one reported above.

Let’s mark processed equations with a box enclosing the lead variable (w is marked w ).

w + 2x − y + z = 1
w + 3x − y + 2z = 0

x + z = −1

1

w + 2x − y + z = 1
0 + x + 0 + z = −1

x + z = −1

2

w + 2x − y + z = 1
x + z = −1

0 = 0

3

w + 0 − y − z = 3
x + z = −1

0 = 0

4

1 Original system. Identify the variable order as w, x, y, z.

2 Choose w as a lead variable. Eliminate w from equation 2 by using combo(1,2,-1).

3 The w-equation is processed. Let x be the next lead variable. Eliminate x from
equation 3 using combo(2,3,-1).

4 Eliminate x from equation 1 using combo(2,1,-2). Mark the x-equation as pro-
cessed. Reduced echelon system found.

The four frames make the toolkit sequence which takes the original system into a
reduced echelon system. Basic exposition rules apply:

1. Variables in an equation appear in variable list order.

2. Equations inherit variable list order from the lead variables.

The last frame of the sequence, which must be a reduced echelon system, is used to write
out the general solution, using the last frame algorithm.

w = 3 + y + z
x = −1 − z
y = t1
z = t2

Solve for the lead variables w , x . Assign
invented symbols t1, t2 to the free variables
y, z.

w = 3 + t1 + t2
x = −1 − t2
y = t1
z = t2

Back-substitute free variables into the lead
variable equations to get a standard general
solution.
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Answer check. The check will be performed according to the outline on page 218. The
justification for this forward reference is to illustrate how to check answers without using
the invented symbols t1, t2, . . . in the details.

Step 1. The nonhomogeneous trial solution w = 3, x = −1, y = z = 0 is obtained
by setting t1 = t2 = 0. It is required to satisfy the nonhomogeneous system

w + 2x − y + z = 1,
w + 3x − y + 2z = 0,

x + z = −1.
Step 2. The partial derivatives ∂t1 , ∂t2 are applied to the parametric solution to obtain

two homogeneous trial solutions w = 1, x = 0, y = 1, z = 0 and w = 1,
x = −1, y = 0, z = 1, which are required to satisfy the homogeneous system

w + 2x − y + z = 0,
w + 3x − y + 2z = 0,

x + z = 0.

Each trial solution from Step 1 and Step 2 is checked by direct substitution. The
method uses superposition in order to eliminate the invented symbols from the answer
check.

Example 3.9 (No solution)
Verify by applying elimination that the system has no solution.

w + 2x − y + z = 0,
w + 3x − y + 2z = 0,

x + z = 1.

Solution: Elimination (page 198) will be applied, using the toolkit rules swap,multiply
and combination (page 176).

w + 2x − y + z = 0
w + 3x − y + 2z = 0

x + z = 1

1

w + 2x − y + z = 0
0 + x + 0 + z = 0

x + z = 1

2

w + 2x − y + z = 0
x + z = 0

0 = 1

3

1 Original system. Select variable order w, x, y, z. Identify lead variable w.

2 Eliminate w from other equations using combo(1,2,-1). Mark the w-equation
processed with w .
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3 Identify lead variable x. Then eliminate x from the third equation using operation
combo(2,3,-1). Signal equation found.

The appearance of the signal equation “0 = 1” means no solution. The logic: if the
original system has a solution, then so does the present equivalent system, hence 0 = 1,
a contradiction. Elimination halts, because of the inconsistent system containing the
false equation “0 = 1.”

Example 3.10 (Reduced Echelon form)
Find an equivalent system in reduced echelon form.

x1 + 2x2 − x3 + x4 = 1,
x1 + 3x2 − x3 + 2x4 = 0,

x2 + x4 = −1.

Solution: The answer using the natural variable list order x1, x2, x2, x4 is the non-
homogeneous system in reduced echelon form (briefly, rref form)

x1 − x3 − x4 = 3
x2 + x4 = −1

0 = 0

The lead variables are x1, x2 and the free variables are x3, x4. The standard general
solution of this system is

x1 = 3 + t1 + t2,
x2 = −1− t2,
x3 = t1,
x4 = t2, −∞ < t1, t2 <∞.

The details are the same as Example 3.8, with w = x1, x = x2, y = x3, z = x4.
The toolkit sequence has three frames and the last frame is used to display the general
solution.

Answer check in maple. The output from the maple code below duplicates the reduced
echelon system reported above and the general solution.

with(LinearAlgebra):

eq1:=x[1]+2*x[2]-x[3]+x[4]=1:eq2:=x[1]+3*x[2]-x[3]+2*x[4]=0:

eq3:=x[2]+x[4]=-1:eqs:=[eq1,eq2,eq3]:var:=[x[1],x[2],x[3],x[4]]:

A:=GenerateMatrix(eqs,var,augmented);

F:=ReducedRowEchelonForm(A);

GenerateEquations(F,var);

F,LinearSolve(F,free=t); # general solution answer check

A,LinearSolve(A,free=t); # general solution answer check

,
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Exercises 3.3 �

Classification
Classify the parametric equations as a
point, line or plane, then compute as appro-
priate the tangent to the line or the normal
to the plane.

1. x = 0, y = 1, z = −2

2. x = 1, y = −1, z = 2

3. x = t1, y = 1 + t1, z = 0

4. x = 0, y = 0, z = 1 + t1

5. x = 1 + t1, y = 0, z = t2

6. x = t2 + t1, y = t2, z = t1

7. x = 1, y = 1 + t1, z = 1 + t2

8. x = t2 + t1, y = t1 − t2, z = 0

9. x = t2, y = 1 + t1, z = t1 + t2

10. x = 3t2 + t1, y = t1 − t2, z = 2t1

Reduced Echelon System
Solve the xyz–system and interpret the so-
lution geometrically.

11.

∣∣∣∣ y + z = 1
x + 2z = 2

∣∣∣∣
12.

∣∣∣∣ x + z = 1
y + 2z = 4

∣∣∣∣
13.

∣∣∣∣ y + z = 1
x + 3z = 2

∣∣∣∣
14.

∣∣∣∣ x + z = 1
y + z = 5

∣∣∣∣
15.

∣∣∣∣ x + z = 1
2x + 2z = 2

∣∣∣∣
16.

∣∣∣∣ x + y = 1
3x + 3y = 3

∣∣∣∣
17.

∣∣ x + y + z = 1.
∣∣

18.
∣∣ x + 2y + 4z = 0.

∣∣

19.

∣∣∣∣ x + y = 2
z = 1

∣∣∣∣
20.

∣∣∣∣ x + 4z = 0
y = 1

∣∣∣∣
Homogeneous System
Solve the xyz–system using elimination
with variable list order x, y, z.

21.

∣∣∣∣ y + z = 0
2x + 2z = 0

∣∣∣∣
22.

∣∣∣∣ x + z = 0
2y + 2z = 0

∣∣∣∣
23.

∣∣∣∣ x + z = 0
2z = 0

∣∣∣∣
24.

∣∣∣∣ y + z = 0
y + 3z = 0

∣∣∣∣
25.

∣∣∣∣ x + 2y + 3z = 0
0 = 0

∣∣∣∣
26.

∣∣∣∣ x + 2y = 0
0 = 0

∣∣∣∣
27.

∣∣∣∣∣∣
y + z = 0

2x + 2z = 0
x + z = 0

∣∣∣∣∣∣
28.

∣∣∣∣∣∣
2x + y + z = 0
x + 2z = 0
x + y − z = 0

∣∣∣∣∣∣
29.

∣∣∣∣∣∣
x + y + z = 0
2x + 2z = 0
x + z = 0

∣∣∣∣∣∣
30.

∣∣∣∣∣∣
x + y + z = 0
2x + 2z = 0
3x + y + 3z = 0

∣∣∣∣∣∣
Nonhomogeneous 3× 3 System
Solve the xyz-system using elimination and
variable list order x, y, z.

31.

∣∣∣∣ y = 1
2z = 2

∣∣∣∣
32.

∣∣∣∣ x = 1
2z = 2

∣∣∣∣
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33.

∣∣∣∣∣∣
y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
34.

∣∣∣∣∣∣
2x + y + z = 1
x + 2z = 2
x + y − z = −1

∣∣∣∣∣∣
35.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
36.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
3x + y + 3z = 3

∣∣∣∣∣∣
37.

∣∣∣∣∣∣
2x + y + z = 3
2x + 2z = 2
4x + y + 3z = 5

∣∣∣∣∣∣
38.

∣∣∣∣∣∣
2x + y + z = 2
6x y + 5z = 2
4x + y + 3z = 2

∣∣∣∣∣∣
39.

∣∣∣∣∣∣
6x + 2y + 6z = 10
6x y + 6z = 11
4x + y + 4z = 7

∣∣∣∣∣∣
40.

∣∣∣∣∣∣
6x + 2y + 4z = 6
6x y + 5z = 9
4x + y + 3z = 5

∣∣∣∣∣∣
Nonhomogeneous 3× 4 System
Solve the yzuv-system using elimination
with variable list order y, z, u, v.

41.

∣∣∣∣∣∣
y + z + 4u + 8v = 10

2z − u + v = 10
2y − u + 5v = 10

∣∣∣∣∣∣

42.

∣∣∣∣∣∣
y + z + 4u + 8v = 10

2z − 2u + 2v = 0
y + 3z + 2u + 5v = 5

∣∣∣∣∣∣
43.

∣∣∣∣∣∣
y + z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 1

∣∣∣∣∣∣
44.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 1

∣∣∣∣∣∣
45.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
46.

∣∣∣∣∣∣
y + z + 4u + 9v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
47.

∣∣∣∣∣∣
y + z + 4u + 9v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
48.

∣∣∣∣∣∣
y + z + 4u + 9v = 10

2z − 2u + 4v = 4
y + 4z + 2u + 7v = 8

∣∣∣∣∣∣
49.

∣∣∣∣∣∣
y + z + 4u + 9v = 2

2z − 2u + 4v = 4
y + 3z + 5u + 13v = 0

∣∣∣∣∣∣
50.

∣∣∣∣∣∣
y + z + 4u + 3v = 2

2z − 2u + 4v = 4
y + 3z + 5u + 7v = 0

∣∣∣∣∣∣
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,

3.4 Basis, Dimension, Nullity and Rank

Studied here are the basic concepts of rank, nullity, basis and dimension for a
system of linear algebraic equations.

Definition 3.7 (Rank and Nullity)
The rank of a system of linear algebraic equations is the number of lead variables
appearing in its reduced echelon form. The nullity of a system of linear algebraic
equations is the number of free variables.

rank = number of lead variables

nullity = number of free variables

rank + nullity = number of variables

Definition 3.8 (Basis and Dimension)
Consider a homogeneous system of linear algebraic equations. A list of k solutions
of the system is called a basis provided

1. The general solution of the system can be constructed from the list
of k solutions.

2. The list size k cannot be decreased.

The dimension of the system of linear algebraic equations is the unique number k
satisfying 1 and 2. The dimension equals the minimum number of invented symbols
used in any general solution, which also equals the nullity.

A basis is an alternate representation of the general solution
which has no invented symbols.

Basis Illustration

Consider the homogeneous system

x+ 2y + 3z = 0,
0 = 0,
0 = 0.
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It is a reduced echelon system with standard general solution

x = −2t1 − 3t2,
y = t1,
z = t2.

The formal partial derivatives ∂t1 , ∂t2 of the general solution are solutions of the
homogeneous system, because they correspond exactly to setting t1 = 1, t2 = 0
and t1 = 0, t2 = 1, respectively:

x = −2, y = 1, z = 0, (partial on t1)
x = −3, y = 0, z = 1. (partial on t2)

A basis for the homogeneous system is the list of two solutions displayed above.
Calculus courses might write the two solutions as space vectors: −2⃗ı + ȷ⃗ and
−3⃗ı+ k⃗. See page 210 for more details.

A general solution of the homogeneous system can be re-constructed from this
basis by multiplying the first solution by invented symbol t1 and the second
solution by invented symbol t2, then add to obtain

x = −2t1 − 3t2,
y = t1,
z = t2.

This display is the original standard general solution, reconstructed from the list
of solutions in the basis.

Non-uniqueness of a Basis

A given homogeneous linear system has a number of different standard general
solutions, obtained, for example, by re-ordering the variable list. Therefore, a
basis is not unique. Language like the basis is tragically incorrect.

To illustrate non-uniqueness, consider the homogeneous 3×3 system of equations

x+ y + z = 0,
0 = 0,
0 = 0.

(1)

Equations (1) have two standard general solutions

x = −t1 − t2, y = t1, z = t2
and
x = t3, y = −t3 − t4, z = t4,

corresponding to two different orderings of the variable list x, y, z. Then two
different bases for the system are given by the partial derivative relations

∂t1 , ∂t2 :

{
x = −1, y = 1, z = 0, Basis 1,
x = −1, y = 0, z = 1,

(2)
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∂t3 , ∂t4 :

{
x = 1, y = −1, z = 0, Basis 2,
x = 0, y = −1, z = 1.

(3)

In general, there are infinitely many bases possible for a given linear homogeneous
system.

Nullspace

Definition 3.9 (Nullspace)
Consider a system of linear homogeneous algebraic equations. The term nullspace
refers to the set of all solutions to the system. The origin of the word nullspace is
explained below.

Prefix null refers to the right side of the homogeneous system, which is zero,
or null, for each equation. The main reason for introducing the term
nullspace is to consider simultaneously all possible general solutions of the
linear system, without regard to their representation in terms of invented
symbols or the algorithm used to find the formulas.

Suffix space used in the term nullspace has meaning taken from the phrases
storage space and parking space — it has no intended geometrical
meaning whatsoever.

How to Find the Nullspace

A classical method for describing the nullspace is to form a toolkit sequence
for the homogeneous system which ends with a reduced echelon system. The
last frame algorithm applies to write the general solution in terms of invented
symbols t1, t2, . . . . The meaning is that assignment of values to the symbols
t1, t2, . . . lists all possible solutions of the system. The general solution formula
obtained by this method is one possible set of scalar equations that completely
describes all solutions of the homogeneous equation, hence it describes completely
the nullspace.

Basis for the Nullspace

A basis for the nullspace is found partial derivatives ∂t1 , ∂t2 , . . . taken on the
last frame algorithm general solution, giving k solutions. The general solution is
reconstructed from these basis elements by multiplying them by the symbols t1,
t2, . . . and adding.

Common practise, an abuse of language, reports the answer for the prob-
lem find the nullspace as equations for variables x1, . . . , xn in terms of
invented symbols. No such answer is a set: the equations are not the
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nullspace: they are an algebraic representation of the set of solutions
to the homogeneous equation.

Geometers think of nullspace as an object like the plane or space.

Algebraists think of nullspace as a set consisting of value lists x1, . . . , xn that
satisfy the homogeneous equation. There are no equal signs, no equations,
no invented symbols. And no solutions are skipped!

Is there more than one answer for the nullspace? Technically no. By def-
inition, the nullspace is a set of elements and it might be a geometric
object.

An Illustration

Consider the system
x+ y + 2z = 0,

0 = 0,
0 = 0.

(4)

The nullspace is the set of all solutions of x+ y+2z = 0. Geometrically, it is the
plane x+ y + 2z = 0 through x = y = z = 0 with normal vector ı⃗+ ȷ⃗+ 2k⃗. The
nullspace has one possible algebraic representation given by the general solution
formula

x = −t1 − 2t2,
y = t1,
z = t2.

There are infinitely many representations possible, e.g., replace t1 by mt1 where
m is any nonzero integer.

The nullspace can be described geometrically as the plane generated by the basis

x = −1, y = 1, z = 0,
x = −2, y = 0, z = 1.

The basis elements are identified with points (−1, 1, 0) and (−2, 0, 1). Physics as-
sociates two free vectors with tail at (0, 0, 0) and heads at (−1, 1, 0) and (−2, 0, 1),
. Calculus courses represent the two basis elements as vectors a⃗ = −⃗ı + ȷ⃗,
b⃗ = −2⃗ı + k⃗, which are two vectors in the plane x + y + 2z = 0. Their cross
product a⃗ × b⃗ is normal to the plane, a multiple of normal vector ı⃗+ ȷ⃗+ 2k⃗ to
the plane x+ y + 2z = 0.

The Three Possibilities Revisited

We intend to justify the table below, which summarizes the three possibilities for
a linear system, in terms of free variables, rank and nullity.
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Table 7. Three Possibilities for an m× n Linear Algebraic System.

No solution Signal equation
∞-many solutions One+ free variables nullity ≥ 1 or rank < n
Unique solution Zero free variables nullity = 0 or rank = n

No Solution

There is no solution to a system of equations exactly when a signal equation
0 = 1 occurs during the application of swap, multiply and combination rules. We
report the system inconsistent and announce no solution.

Infinitely Many Solutions

The situation of infinitely many solutions occurs when there is no signal equa-
tion and at least one free variable to which an invented symbol, say t1, is
assigned. Since this symbol takes the values −∞ < t1 <∞, there are an infinity
of solutions. The conditions rank less than n and nullity positive are the
same.

Unique Solution

There is a unique solution to a consistent system of equations exactly when zero
free variables are present. This is identical to requiring that the number n of
variables equal the number of lead variables, or rank = n.

Existence of Infinitely Many Solutions

Homogeneous systems are always consistent3, therefore if the number of variables
exceeds the number of equations, then the equation lead+free = variable count
implies there is always one free variable. This proves the following basic result
of linear algebra.

Theorem 3.5 (Infinitely Many Solutions)
A system of m × n linear homogeneous equations (6) with fewer equations than
unknowns (m < n) has at least one free variable, hence an infinite number of
solutions. Therefore, such a system always has the zero solution and also a nonzero
solution.

Non-homogeneous systems can be similarly analyzed by considering conditions
under which there will be at least one free variable.

3All variables set to zero is always a solution of a homogeneous system.
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Theorem 3.6 (Missing Variable and Infinitely Many Solutions)
A consistent system of m×n linear equations with one unknown missing has at least
one free variable, hence an infinite number of solutions.

Theorem 3.7 (Rank, Nullity and Infinitely Many Solutions)
A consistent system of m× n linear equations with nonzero nullity or rank less than
n has at least one free variable, hence an infinite number of solutions.

Examples and Methods

Example 3.11 (Rank and Nullity)
Determine using an abbreviated sequence of toolkit operations the rank and nullity
of the homogeneous system

x1 + 4x3 + 8x4 = 0
− x3 + x4 = 0

2x1 − x3 + 5x4 = 0

Solution: The answer is three (3) lead variables and one (1) free variable, making
rank=3 and nullity=1.

The missing variable x2 implies that there is at least one free variable. The abbreviated
steps are

x1 + 4x3 + 8x4 = 0
− x3 + x4 = 0
− 9x3 − 11x4 = 0

combo(1,3,-2)

x1 + 4x3 + 8x4 = 0
− x3 + x4 = 0

− 20x4 = 0
combo(2,3,-9)

The triangular form implies that x1, x3, x4 are lead variables and x2 is a free variable.

Example 3.12 (Nullspace Basis or Kernel Basis)
Determine a nullspace basis by solving for the general solution of the homogeneous
system

x1 + x2 + 4x3 + 9x4 = 0
2x2 − x3 + 4x4 = 0

Solution:

x1 + x2 + 4x3 + 9x4 = 0
2x2 − x3 + 4x4 = 0

Original system.

x1 + x2 + 4x3 + 9x4 = 0

x2 − 1
2x3 + 2x4 = 0

mult(2,1/2)
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x1 + 9
2x3 + 7x4 = 0

x2 − 1
2x3 + 2x4 = 0

combo(2,1,-1)

The lead variables are x1, x2 and the free variables are x3 = t1, x4 = t2 in terms of
invented symbols t1, t2. Back-substitution implies the scalar general solution

x1 = − 9
2 t1 − 7t2,

x2 = 1
2 t1 − 2t2,

x3 = t1,
x4 = t2.

(5)

A suitable basis for the nullspace, also called the kernel, is found by substitution of
t1 = 1, t2 = 0 and then t1 = 0, t2 = 1, to obtain the two vectors

Basis solution 1 Basis solution 2

x1 = − 9
2 ,

x2 = 1
2 ,

x3 = 1,

x4 = 0.

x1 = −7,
x2 = −2,
x3 = 0,

x4 = 1.

These two solutions are identical to the two solutions obtained by taking partial deriva-
tives ∂t1 and ∂t2 on the scalar general solution displayed in equation (5).

Some references suggest to make the two basis answers fraction-free by choosing t1, t2
appropriately. In the present case, this amounts to multiplying the answers by 2. The
result is a different basis.

Either answer is sufficient, because a basis is not unique: the only requirement is re-
construction of the general solution from the basis.

Example 3.13 (Three Possibilities with Symbol k)
Determine all values of the symbol k such that the system below has one of the
Three Possibilities (1) No solution, (2) Infinitely many solutions or (3) A unique
solution. Display all solutions found.

x + ky = 2,
(2− k)x + y = 3.

Solution: The Three Possibilities are detected by (1) A signal equation “0 = 1,” (2)
One or more free variables, (3) Zero free variables.

The solution of this problem involves construction of perhaps three toolkit sequences,
the last frame of each resulting in one of the three possibilities (1), (2), (3).

x + ky = 2,
(2− k)x + y = 3.

Frame 1.

Original system.

x + ky = 2,
[1 + k(k − 2)]y = 2(k − 2) + 3.

Frame 2.

combo(1,2,k-2)
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x + ky = 2,
(k − 1)2y = 2k − 1.

Frame 3.

Simplify.

The three expected toolkit sequences share these initial frames. At this point, we identify
the values of k that split off into the three possibilities.

There will be a signal equation if the second equation of Frame 3 has no variables, but the
resulting equation is not “0 = 0.” This happens exactly for k = 1. The resulting signal
equation is “0 = 1.” We conclude that one of the three toolkit sequences terminates
with the no solution case. This toolkit sequence corresponds to k = 1.

Otherwise, k ̸= 1. For these values of k, there are zero free variables, which implies a
unique solution. A by-product of the analysis is that the infinitely many solutions case
never occurs!

The conclusion: The initially expected three toolkit sequences reduce to two toolkit
sequences. One sequence gives no solution and the other sequence gives a unique solution.

The three answers:

(1) No solution occurs only for k = 1.

(2) Infinitely many solutions occurs for no value of k.

(3) A unique solution occurs for k ̸= 1.

x = 2− k(2k − 1)

(k − 1)2
,

y =
(2k − 1)

(k − 1)2
.

Example 3.14 (Symbols and the Three Possibilities)
Determine all values of the symbols a, b such that the system below has (1) No
solution, (2) Infinitely many solutions or (3) A unique solution. Display all solutions
found.

x + ay + bz = 2,
y + z = 3,
by + z = 3b.

Solution: The plan is to make three toolkit sequences, using swap, multiply and com-
bination rules. Each sequence has last frame which is one of the three possibilities, the
detection facilitated by (1) A signal equation “0 = 1,” (2) At least one free variable, (3)
Zero free variables. The initial three frames of each of the expected toolkit sequences is
constructed as follows.

x + ay + bz = 2,
y + z = 3,
by + z = 3b.

Frame 1
Original system.

x + ay + bz = 2,
y + z = 3,
0 + (1− b)z = 0.

Frame 2.

combo(2,3,-b)
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x + 0 + (b− a)z = 2− 3a,
y + z = 3,
0 + (1− b)z = 0.

Frame 3. combo(2,1,-a)
Triangular form.
Lead variables determined.

The three toolkit sequences expected will share these initial frames. Frame 3 shows
that there are either 2 lead variables or 3 lead variables, accordingly as the coefficient
of z in the third equation is nonzero or zero. There will never be a signal equation.
Consequently, the three expected toolkit sequences reduce to just two. We complete
these two sequences to give the answer:

(1) There are no values of a, b that result in no solution.

(2) If 1 − b = 0, then there are two lead variables and hence an infinite
number of solutions, given by the general solution x = 2− 3a− (b− a)t1,

y = 3− t1,
z = t1.

(3) If 1 − b ̸= 0, then there are three lead variables and there is a unique
solution, given by  x = 2− 3a,

y = 3,
z = 0.

,

Exercises 3.4 �

Rank and Nullity
Compute an abbreviated sequence of
combo, swap, mult steps which finds the
value of the rank and nullity.

1.

∣∣∣∣ x1 + x2 + 4x3 + 8x4 = 0
2x2 − x3 + x4 = 0

∣∣∣∣
2.

∣∣∣∣ x1 + x2 + 8x4 = 0
2x2 + x4 = 0

∣∣∣∣
3.

∣∣∣∣ x1 + 2x2 + 4x3 + 9x4 = 0
x1 + 8x2 + 2x3 + 7x4 = 0

∣∣∣∣
4.

∣∣∣∣ x1 + x2 + 4x3 + 11x4 = 0
2x2 − 2x3 + 4x4 = 0

∣∣∣∣
Nullspace
Solve using variable order y, z, u, v. Re-
port the values of the nullity and rank in
the equation nullity+rank=4.

5.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣

6.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 2v = 0
y + 3z + 2u + 5v = 0

∣∣∣∣∣∣
7.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
8.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
9.

∣∣∣∣ y + 3z + 4u + 8v = 0
2z − 2u + 4v = 0

∣∣∣∣
10.

∣∣∣∣ y + z + 4u + 9v = 0
2z − 2u + 4v = 0

∣∣∣∣
11.

∣∣∣∣ y + z + 4u + 9v = 0
3y + 4z + 2u + 5v = 0

∣∣∣∣
12.

∣∣∣∣ y + 2z + 4u + 9v = 0
y + 8z + 2u + 7v = 0

∣∣∣∣
13.

∣∣∣∣ y + z + 4u + 11v = 0
2z − 2u + 4v = 0

∣∣∣∣
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14.

∣∣∣∣ y + z + 5u + 11v = 0
2z − 2u + 6v = 0

∣∣∣∣
Dimension of the nullspace
In the homogeneous systems, assume vari-
able order x, y, z, u, v.

(a) Display an equivalent set of equa-
tions in reduced echelon form.

(b) Solve for the general solution and
check the answer.

(c) Report the dimension of the
nullspace.

15.

∣∣∣∣∣∣
x + y + z + 4u + 8v = 0
−x + 2z − 2u + 2v = 0

y − z + 6u + 6v = 0

∣∣∣∣∣∣
16.

∣∣∣∣∣∣
x + y + z + 4u + 8v = 0

− 2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
17.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

x + 2z − 2u + 4v = 0
2x + y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
18.

∣∣∣∣∣∣
x + y + 3z + 4u + 8v = 0

2x + 2z − 2u + 4v = 0
x − y + 3z + 2u + 12v = 0

∣∣∣∣∣∣
19.

∣∣∣∣∣∣
y + 3z + 4u + 20v = 0
+ 2z − 2u + 10v = 0

− y + 3z + 2u + 30v = 0

∣∣∣∣∣∣
20.

∣∣∣∣∣∣
y + 4u + 20v = 0
− 2u + 10v = 0

− y + 2u + 30v = 0

∣∣∣∣∣∣
21.

∣∣∣∣∣∣
x + y + z + 4u = 0

− 2z − u = 0
2y − u+ = 0

∣∣∣∣∣∣
22.

∣∣∣∣∣∣
+ z + 12u + 8v = 0

x + 2z − 6u + 4v = 0
2x + 3z + 6u + 6v = 0

∣∣∣∣∣∣
23.

∣∣∣∣∣∣
y + z + 4u = 0

2z − 2u = 0
y − z + 6u = 0

∣∣∣∣∣∣
24.

∣∣∣∣∣∣
x + z + 8v = 0
− 2z + v = 0

5v = 0

∣∣∣∣∣∣

Three possibilities with symbols
Assume variables x, y, z. Determine the
values of the constants (a, b, c, k, etc) such
that the system has (1) No solution, (2) A
unique solution or (3) Infinitely many solu-
tions.

25.

∣∣∣∣ x + ky = 0
x + 2ky = 0

∣∣∣∣
26.

∣∣∣∣ kx + ky = 0
x + 2ky = 0

∣∣∣∣
27.

∣∣∣∣ ax + by = 0
x + 2by = 0

∣∣∣∣
28.

∣∣∣∣ bx + ay = 0
x + 2y = 0

∣∣∣∣
29.

∣∣∣∣ bx + ay = c
x + 2y = b− c

∣∣∣∣
30.

∣∣∣∣ bx + ay = 2c
x + 2y = c+ a

∣∣∣∣
31.

∣∣∣∣∣∣
bx + ay + z = 0
2bx + ay + 2z = 0
x + 2y + 2z = c

∣∣∣∣∣∣
32.

∣∣∣∣∣∣
bx + ay + z = 0
3bx + 2ay + 2z = 2c,
x + 2y + 2z = c

∣∣∣∣∣∣
33.

∣∣∣∣∣∣
3x + ay + z = b
2bx + ay + 2z = 0
x + 2y + 2z = c

∣∣∣∣∣∣
34.

∣∣∣∣∣∣
x + ay + z = 2b

3bx + 2ay + 2z = 2c
x + 2y + 2z = c

∣∣∣∣∣∣
Three Possibilities
Answer the following questions by using
equivalents for the three possibilities in
terms of lead and free variables, signal
equations, rank and nullity.

35. Does there exist a homogeneous 3 × 2
system with a unique solution? Give an
example or else prove that no such sys-
tem exists.
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36. Does there exist a homogeneous 2 × 3
system with a unique solution? Either
give an example or else prove that no
such system exists.

37. In a homogeneous 10× 10 system, two
equations are identical. Prove that the
system has a nonzero solution.

38. In a homogeneous 5 × 5 system, each
equation has a leading variable. Prove
that the system has only the zero solu-
tion.

39. Suppose given two homogeneous sys-
tems A and B, with A having a unique
solution and B having infinitely many
solutions. Explain why B cannot be
obtained from A by a sequence of swap,
multiply and combination operations on
the equations.

40. A 2 × 3 system cannot have a unique
solution. Cite a theorem or explain why.

41. If a 3×3 homogeneous system contains
no variables, then what is the general
solution?

42. If a 3×3 non-homogeneous solution has
a unique solution, then what is the nul-
lity of the homogeneous system?

43. A 7×7 homogeneous system is missing
two variables. What is the maximum
rank of the system? Give examples for
all possible ranks.

44. Suppose an n × n system of equations
(homogeneous or non-homogeneous)
has two solutions. Prove that it has in-
finitely many solutions.

45. What is the nullity and rank of an n×n
system of homogeneous equations if the
system has a unique solution?

46. What is the nullity and rank of an n×n
system of non-homogeneous equations if
the system has a unique solution?

47. Prove or else disprove by counter-
example: A 4× 3 nonhomogeneous sys-
tem cannot have a unique solution.

48. Prove or disprove (by example): A
4 × 3 homogeneous system always has
infinitely many solutions.
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,

3.5 Answer Check, Proofs and Details

Answer Check Algorithm

A given general solution (3) can be tested for validity manually as in Example 3.6,
page 200. It is possible to devise a symbol-free answer check. The technique
checks a general solution (3) by testing constant trial solutions in systems (5)
and (6).

Step 1. Set all invented symbols t1, . . . , tk to zero in general solution (3)
to obtain the nonhomogeneous trial solution x1 = d1, x2 = d2, . . . ,
xn = dn. Test it by direct substitution into the nonhomogeneous
system (5).

Step 2. Apply partial derivatives ∂t1 , ∂t2 , . . . , ∂tk to the general solution (3),
obtaining k homogeneous trial solutions. Verify that the trial solutions
satisfy the homogeneous system (6), by direct substitution.

The trial solutions in step 2 are obtained from the general solution (3) by setting
one symbol equal to 1 and the others zero, followed by subtracting the nonhomo-
geneous trial solution of step 1. The partial derivative idea computes the same
set of trial solutions, and it is easier to remember.

Theorem 3.8 (Answer Check)
The answer check algorithm described in steps 1–2 verifies a solution (3) for all
values of the symbols. Please observe that this answer check cannot test for skipped
solutions.

Proof of Theorem 3.8. To simplify notation and quickly communicate the ideas, a
proof will be given for a 2 × 2 system. A proof for the m × n case can be constructed
by the reader, using the same ideas. Consider the nonhomogeneous and homogeneous
systems

ax1 + by1 = b1,
cx1 + dy1 = b2,

(1)

ax2 + by2 = 0,
cx2 + dy2 = 0.

(2)

Assume (x1, y1) is a solution of (1) and (x2, y2) is a solution of (2). Add corresponding
equations in (1) and (2). Then collecting terms gives

a(x1 + x2) + b(y1 + y2) = b1,
c(x1 + x2) + d(y1 + y2) = b2.

(3)

This proves that (x1+x2, y1+y2) is a solution of the nonhomogeneous system. Similarly,
a scalar multiple (kx2, ky2) of a solution (x2, y2) of system (2) is also a solution of (2)
and the sum of two solutions of (2) is again a solution of (2).
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Given each solution in step 2 satisfies (2), then multiplying the first solution by t1
and the second solution by t2 and adding gives a solution (x3, y3) of (2). After adding
(x3, y3) to the solution (x1, y1) of step 1, a solution of (1) is obtained, proving that the
full parametric solution containing the symbols t1, t2 is a solution of (1). The proof for
the 2× 2 case is complete.

Failure of Answer Checks

An answer check only tests the given formulas against the equations. If too few
parameters are present, then the answer check can be algebraically correct but
the general solution check fails, because not all solutions can be obtained by
specialization of the parameter values.

For example, x = 1−t1, y = t1, z = 0 is a one-parameter solution for x+y+z = 1,
as verified by an answer check. But the general solution x = 1− t1 − t2, y = t1,
z = t2 has two parameters t1, t2. Generally, an answer check decides if the
formula supplied works in the equation. It does not decide if the given formula
represents all solutions. This trouble, in which an error leads to a smaller value
for the nullity of the system, is due largely to human error and not machine error.

Linear algebra workbenches have another kind of flaw: they may compute the
nullity for a system incorrectly as an integer larger than the correct nullity. A
parametric solution with nullity k might be obtained, checked to work in the
original equations, then cross-checked by computing the nullity k independently.
However, the computed nullity k could be greater than the actual nullity of the
system. Here is a simple example, where ϵ is a very small positive number:

x + y = 0,
ϵy = ϵ.

(4)

On a limited precision machine, system (4) has internal machine representation4

x + y = 0,
0 = 0.

(5)

Representation (5) occurs because the coefficient ϵ is smaller than the smallest
positive floating point number of the machine, hence it becomes zero during
translation. System (4) has nullity zero and system (5) has nullity one. The
parametric solution for system (5) is x = −t1, y = t1, with basis selected by
setting t1 = 1. The basis passes the answer check on system (4), because ϵ times
1 evaluates to ϵ. A second check for the nullity of system (5) gives 1, which
supports the correctness of the parametric solution, but unfortunately there are
not infinitely many solutions: for system (4) the correct answer is the unique
solution x = −1, y = 1.

4For example, if the machine allows only 2-digit exponents (1099 is the maximum), then
ϵ = 10−101 translates to zero.
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Computer algebra systems (CAS) are supposed to avoid this kind of error, be-
cause they do not translate input into floating point representations. All input
is supposed to remain in symbolic or in string form. In short, they don’t change
ϵ to zero. Because of this standard, CAS are safer systems in which to do linear
algebra computations, albeit slower in execution.

The trouble reported here is not entirely one of input translation. An innocuous
combo(1,2,-1) can cause an equation like ϵy = ϵ in the middle of a toolkit
sequence. If floating point hardware is being used, and not symbolic computation,
then the equation can translate to 0 = 0, causing a false free variable appearance.

Minimal Parametric Solutions

Proof of Theorem 3.2: The proof of Theorem 3.2, page 196, will follow from the
lemma and theorem below.

Lemma 3.1 (Unique Representation) If a set of parametric equations (3) satisfies (4),
(5) and (6), then each solution of linear system (5) is given by (3) for exactly one set of
parameter values.

Proof: Let a solution of system (5) be given by (3) for two sets of parameters t1, . . . , tk
and t1, . . . , tk. By (6), tj = xij = tj for 1 ≤ j ≤ k, therefore the parameter values are
the same.

Definition 3.10 (Minimal Parametric Solution)
Given system (5) has a parametric solution x1, . . . , xn satisfying (3), (4), (5), then among
all such parametric solutions there is one which uses the fewest possible parameters. A
parametric solution with fewest parameters is called minimal. Parametric solutions with
more parameters are called redundant.

To illustrate, the plane x + y + z = 1 has a minimal standard parametric solution
x = 1 − t1 − t2, y = t1, z = t2. A redundant parametric solution of x + y + z = 1 is
x = 1− t1 − t2 − 2t3, y = t1 + t3, z = t2 + t3, using three parameters t1, t2, t3.

Theorem 3.9 (Minimal Parametric Solutions)
Let linear system (5) have a parametric solution satisfying (3), (4), (5). Then (3) has the
fewest possible parameters if and only if each solution of linear system (5) is given by (3) for
exactly one set of parameter values.

Proof: Suppose first that a general solution (3) is given with the least number k of
parameters, but contrary to the theorem, there are two ways to represent some solution,
with corresponding parameters r1, . . . , rk and also s1, . . . , sk. Subtract the two sets of
parametric equations, thus eliminating the symbols x1, . . . , xn, to obtain:

c11(r1 − s1) + · · ·+ c1k(rk − sk) = 0,
...

cn1(r1 − s1) + · · ·+ cnk(rk − sk) = 0.
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Relabel the variables and constants so that r1 − s1 ̸= 0, possible since the two sets of
parameters are supposed to be different. Divide the preceding equations by r1 − s1 and
solve for the constants c11, . . . , cn1. This results in equations

c11 = c12w2 + · · ·+ c1kwk,
...

cn1 = cn2w2 + · · ·+ cnkwk,

where wj = − rj−sj
r1−s1

, 2 ≤ j ≤ k. Insert these relations into (3), effectively eliminating
the symbols c11, . . . , cn1, to obtain

x1 = d1 + c12(t2 + w2t1) + · · ·+ c1k(tk + wkt1),
x2 = d2 + c22(t2 + w2t1) + · · ·+ c2k(tk + wkt1),

...
xn = dn + cn2(t2 + w2t1) + · · ·+ cnk(tk + wkt1).

Let t1 = 0. The remaining parameters t2, . . . , tk are fewer parameters that describe all
solutions of the system, a contradiction to the definition of k. This completes the proof
of the first half of the theorem.

To prove the second half of the theorem, assume that a parametric solution (3) is given
which represents all possible solutions of the system and in addition each solution is
represented by exactly one set of parameter values. It will be established that the
number k in (3) is the least possible parameter count.

Suppose not. Then there is a second parametric solution

x1 = e1 + b11v1 + · · ·+ b1ℓvℓ,
...

xn = en + bn1v1 + · · ·+ bnℓvℓ,

(6)

where ℓ < k and v1, . . . , vℓ are the parameters. It is assumed that (6) represents all
solutions of the linear system.

We shall prove that the solutions for zero parameters in (3) and (6) can be taken to be
the same, that is, another parametric solution is given by

x1 = d1 + b11s1 + · · ·+ b1ℓsℓ,
...

xn = dn + bn1s1 + · · ·+ bnℓsℓ.

(7)

The idea of the proof is to substitute x1 = d1, . . . , xn = dn into (6) for parameters r1,
. . . , rn. Then solve for e1, . . . , en and replace back into (6) to obtain

x1 = d1 + b11(v1 − r1) + · · ·+ b1ℓ(vℓ − rℓ),
...

xn = dn + bn1(v1 − r1) + · · ·+ bnℓ(vℓ − rℓ).

Replacing parameters sj = vj − rj gives (7).

From (3) it is known that x1 = d1 + c11, . . . , xn = dn + cn1 is a solution. By (7), there
are constants r1, . . . , rℓ such that (we cancel d1, . . . , dn from both sides)

c11 = b11r1 + · · ·+ b1ℓrℓ,
...

cn1 = bn1r1 + · · ·+ bnℓrℓ.
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If r1 through rℓ are all zero, then the solution just referenced equals d1, . . . , dn, hence
(3) has a solution that can be represented with parameters all zero or with t1 = 1 and
all other parameters zero, a contradiction. Therefore, some ri ̸= 0 and we can assume
by renumbering that r1 ̸= 0. Return now to the last system of equations and divide by
r1 in order to solve for the constants b11, . . . , bn1. Substitute the answers back into (7)
in order to obtain parametric equations

x1 = d1 + c11w1 + b12w2 + · · ·+ b1ℓwℓ,
...

xn = dn + cn1w1 + bn2w2 + · · ·+ bnℓwℓ,

where w1 = s1, wj = sj − rj/r1. Given s1, . . . , sℓ are parameters, then so are w1, . . . ,
wℓ.

This process can be repeated for the solution x1 = d1 + c12, . . . , xn = dn + cn2. We
assert that for some index j, 2 ≤ j ≤ ℓ, constants bij , . . . , bnj in the previous display
can be isolated, and the process of replacing symbols b by c continued. If not, then
w2 = · · · = wℓ = 0. Then solution x1, . . . , xn has two distinct representations in (3),
first with t2 = 1 and all other tj = 0, then with t1 = w1 and all other tj = 0. A
contradiction results, which proves the assertion. After ℓ repetitions of this replacement
process, we find a parametric solution

x1 = d1 + c11u1 + c12u2 + · · ·+ c1ℓuℓ,
...

xn = dn + cn1u1 + cn2u2 + · · ·+ cnℓuℓ,

in some set of parameters u1, . . . , uℓ.

However, ℓ < k, so at least the solution x1 = d1+c1k, . . . , xn = dn+cnk remains unused
by the process. Insert this solution into the previous display, valid for some parameters
u1, . . . , uℓ. The relation says that the solution x1 = d1, . . . , xn = dn in (3) has two
distinct sets of parameters, namely t1 = u1, . . . , tℓ = uℓ, tk = −1, all others zero, and
also all parameters zero, a contradiction. ■

,

Exercises 3.5 �

Parametric solutions

1. Is there a 2 × 3 homogeneous system
with general solution having 2 parame-
ters t1, t2?

2. Is there a 3 × 3 homogeneous system
with general solution having 3 parame-
ters t1, t2, t3?

3. Give an example of a 4 × 3 homoge-
neous system with general solution hav-
ing zero parameters, that is, x = y =
z = 0 is the only solution.

4. Give an example of a 4×3 homogeneous
system with general solution having ex-
actly one parameter t1.

5. Give an example of a 4×3 homogeneous
system with general solution having ex-
actly two parameters t1, t2.

6. Give an example of a 4×3 homogeneous
system with general solution having ex-
actly three parameters t1, t2, t3.

7. Consider an n×n homogeneous system
with parametric solution having param-
eters t1 to tk. What are the possible
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values of k?

8. Consider an n×m homogeneous system
with parametric solution having param-
eters t1 to tk. What are the possible
values of k?

Answer Checks
Assume variable list x, y, z and parameter
t1. (a) Display the answer check details.
(b) Find the rank. (c) Report whether the
given solution is a general solution.

9.

∣∣∣∣ y = 1
2z = 2

∣∣∣∣
x = t1, y = 1, z = 1.

10.

∣∣∣∣ x = 1
2z = 2

∣∣∣∣
x = 1, y = t1, z = 1.

11.

∣∣∣∣∣∣
y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
x = 0, y = 0, z = 1.

12.

∣∣∣∣∣∣
2x + y + z = 1
x + 2z = 2
x + y − z = −1

∣∣∣∣∣∣
x = 2, y = −3, z = 0.

13.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
x = 1− t1, y = 0, z = t1.

14.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
3x + y + 3z = 3

∣∣∣∣∣∣
x = 1− t1, y = 0, z = t1.

Failure of Answer Checks
Find the unique solution for ϵ > 0. Discuss
how a machine might translate the system
to obtain infinitely many solutions.

15. x+ ϵy = 1, x− ϵy = 1

16. x+ y = 1, x+ (1 + ϵ)y = 1 + ϵ

17. x+ ϵy = 10ϵ, x− ϵy = 10ϵ

18. x+ y = 1 + ϵ, x+ (1 + ϵ)y = 1 + 11ϵ

Minimal Parametric Solutions
For each given system, determine if the ex-
pression is a minimal general solution.

19.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
y = −3t1, z = −t1,
u = −t1, v = t1.

20.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 2v = 0
y − z + 6u + 6v = 0

∣∣∣∣∣∣
y = −5t1 − 7t2, z = t1 − t2,
u = t1, v = t2.

21.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
y = −5t1 + 5t2, z = t1 − t2,
u = t1 − t2, v = 0.

22.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 12v = 0

∣∣∣∣∣∣
y = 5t1 + 4t2, z = −3t1 − 6t2,
u = −t1 − 2t2, v = t1 + 2t2.
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Chapter 4

Numerical Methods with
Applications

Contents

4.1 Solving y′ = F (x) Numerically . . . . . . . . . . . . 225

4.2 Solving y′ = f(x, y) Numerically . . . . . . . . . . . 238

4.3 Error in Numerical Methods . . . . . . . . . . . . . 247

4.4 Computing π, ln 2 and e . . . . . . . . . . . . . . . . 254

4.5 Earth to the Moon . . . . . . . . . . . . . . . . . . 260
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4.8 Comets . . . . . . . . . . . . . . . . . . . . . . . . . . 277

4.9 Fish Farming . . . . . . . . . . . . . . . . . . . . . . 284

4.1 Solving y′ = F (x) Numerically

Studied here is the creation of numerical tables and graphics for the solution of
the initial value problem

y′ = F (x), y(x0) = y0.(1)

To illustrate, consider the initial value problem

y′ = 3x2 − 1, y(0) = 2.

Quadrature gives the explicit symbolic solution

y(x) = x3 − x+ 2.

In Figure 1, evaluation of y(x) from x = 0 to x = 1 in increments of 0.1 gives the
xy-table, whose entries represent the dots for the connect-the-dots graphic.
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x

yx y
0.0 2.000
0.1 1.901
0.2 1.808
0.3 1.727
0.4 1.664
0.5 1.625

x y
0.6 1.616
0.7 1.643
0.8 1.712
0.9 1.829
1.0 2.000

Figure 1. A table of xy-values for y = x3 − x+ 2.

The graphic represents table rows as dots, which are joined to make the connect-the-dots

graphic.

The interesting case is when quadrature in (1) encounters an integral
∫ x
x0

F (t)dt
that cannot be evaluated to provide an explicit symbolic equation for y(x). Nev-
ertheless, y(x) can be computed numerically.

Applied here are numerical integration rules from calculus: rectangular, trape-
zoidal and Simpson; see page 232 for a review of the three rules. The ideas lead
to the numerical methods of Euler, Heun and Runge-Kutta, which appear later
in this chapter.

How to Make an xy-Table

Given y′ = F (x), y(x0) = y0, a table of xy-values is created as follows. The
x-values are equally spaced a distance h > 0 apart. Each x, y pair in the table
represents a dot in the connect-the-dots graphic of the explicit solution

y(x) = y0 +

∫ x

x0

F (t)dt.

First table entry. The initial condition y(x0) = y0 identifies two constants x0,
y0 to be used for the first table pair X, Y . For example, y(0) = 2 identifies first
table pair X = 0, Y = 2.

Second table entry. The second table pair X, Y is computed from the first
table pair x0, y0 and a recurrence. The X-value is given by X = x0 + h,
while the Y -value is given by the numerical integration method being used, in
accordance with Table 1. The table is justified on page 235. See Example 4.1
page 228 for a rectangular rule example.

Table 1. Three Numerical Integration Methods.

Rectangular Rule Y = y0 + hF (x0)

Trapezoidal Rule Y = y0 +
h

2
(F (x0) + F (x0 + h))

Simpson’s Rule Y = y0 +
h

6
(F (x0) + 4F (x0 + h/2) + F (x0 + h)))
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Third and higher table entries. They are computed by letting x0, y0 be the
current table entry, then the next table entry X, Y is found exactly as outlined
above for the second table entry.

It is expected, and normal, to compute the table entries using computer assist.
In simple cases, a calculator will suffice. If F is complicated or Simpson’s rule is
used, then a computer algebra system or a numerical laboratory is recommended.
See Example 4.2, page 229.

How to Make a Connect-The-Dots Graphic

To illustrate, consider the xy-pairs below, which are to represent the dots in the
connect-the-dots graphic.

(0.0, 2.000), (0.1, 1.901), (0.2, 1.808), (0.3, 1.727), (0.4, 1.664),

(0.5, 1.625), (0.6, 1.616), (0.7, 1.643), (0.8, 1.712), (0.9, 1.829),

(1.0, 2.000).

Hand drawing. The method, unchanged from high school mathematics courses,
is to plot the points as dots on an xy-coordinate system, then connect the dots
with line segments. See Figure 2.

x

y

Figure 2. A Connect-the-Dots Graphic.
A computer-generated graphic simulating a hand-drawn
graphic. The graphics engine draws straight lines between
dots.

Computer Algebra System Graphic

Computer algebra system maple. It has a primitive syntax especially made
for connect-the-dots graphics. Below, Dots is a list of xy-pairs.

Dots:=[0.0, 2.000], [0.1, 1.901], [0.2, 1.808],

[0.3, 1.727], [0.4, 1.664], [0.5, 1.625],

[0.6, 1.616], [0.7, 1.643], [0.8, 1.712],

[0.9, 1.829], [1.0, 2.000]:

plot([Dots]);

The plotting of points only can be accomplished by adding options into the plot
command: type=point and symbol=circle will suffice.

Computer algebra system xmaxima. The plot primitive can be invoked with
x-array and y-array, or else pairs as above:
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4.1 Solving y′ = F (x) Numerically

Dots:[[0.0, 2.000], [0.1, 1.901], [0.2, 1.808],

[0.3, 1.727],[0.4, 1.664],[0.5, 1.625],

[0.6, 1.616], [0.7, 1.643],[0.8, 1.712],

[0.9, 1.829], [1.0,2.000]];

plot2d([discrete,Dots]);

Numerical Laboratory Graphic

Computer programs matlab, octave and scilab provide primitive plotting fa-
cilities, as follows.

X=[0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1]

Y=[2.000, 1.901, 1.808, 1.727, 1.664, 1.625,

1.616, 1.643, 1.712, 1.829, 2.000]

plot(X,Y)

Example 4.1 (Rectangular Rule)
Consider y′ = 3x2 − 2x, y(0) = 0. Apply the rectangular rule to make an xy-table
for y(x) from x = 0 to x = 2 in steps of h = 0.2. Graph the approximate solution
and the exact solution y(x) = x3 − x2 for 0 ≤ x ≤ 2.

Solution: The exact solution y = x3 − x2 is verified directly, by differentiation. It was
obtained by quadrature applied to y′ = 3x2 − 2x, y(0) = 0.

The first table entry is 0, 0. It is decoded from y(x0) = y0 as entry x0, y0, applied to the
present initial condition y(0) = 0. The first table row 0, 0 is used to obtain the second
table row X = 0.2, Y = 0 as follows.

x0 = 0, y0 = 0 The current table entry, row 1.

X = x0 + h The next table entry, row 2.

= 0.2, Use x0 = 0, h = 0.2.

Y = y0 + hF (x0) Rectangular rule, F (x) = 3x2 − 2x.

= 0 + 0.2(0). Use y0 = 0, h = 0.2, x0 = 0.

Row 3 starts with x0 = 0.2, y0 = 0 from row 2 to produce X = 0.4, Y = 0+0.2F (0.2) =
−0.056. The remaining 8 rows of the table are completed by calculator, following the
same pattern:

Table 2. Rectangular Rule Solution and Exact Values for y′ = 3x2 − 2x,
y(0) = 0 on 0 ≤ x ≤ 2, step size h = 0.2.

x y-rect y-exact
0.0 0.000 0.000
0.2 0.000 −0.032
0.4 −0.056 −0.096
0.6 −0.120 −0.144
0.8 −0.144 −0.128
1.0 −0.080 0.000

x y-rect y-exact
1.2 0.120 0.288
1.4 0.504 0.784
1.6 1.120 1.536
1.8 2.016 2.592
2.0 3.240 4.000

228



4.1 Solving y′ = F (x) Numerically

The xy-values from the table are used to obtain the comparison plot in Figure 3.

y Exact

x

Approximate
Figure 3. Comparison Plot.
Rectangular rule numerical solution and the ex-
act solution for y = x3 − x2 for y′ = 3x2 − 2x,
y(0) = 0.

Example 4.2 (Trapezoidal Rule)
Consider y′ = cosx+2x, y(0) = 0. Apply both the rectangular and trapezoidal rules
to make an xy-table for y(x) from x = 0 to x = π in steps of h = π/10. Compare
the two approximations in a graphic for 0 ≤ x ≤ π.

Solution: The exact solution y = sinx+ x2 is verified by differentiation. It will be seen
that the trapezoidal solution is graphically nearly identical to the exact solution.

The table will have 11 rows. The three columns are x, y-rectangular and y-trapezoidal.
The first table entry 0, 0, 0 is used to obtain the second table entry 0.1π, 0.31415927,
0.40516728 as follows.

Rectangular rule second entry.

Y = y0 + hF (x0) Rectangular rule.

= 0 + h(cos 0 + 2(0)) Use F (x) = cosx+ 2x, x0 = y0 = 0.

= 0.31415927. Use h = 0.1π = 0.31415927.

Trapezoidal rule second entry.

Y = y0 + 0.5h(F (x0) + F (x0 + h)) Trapezoidal rule.

= 0 + 0.05π(cos 0 + cosh+ 2h) Use x0 = y0 = 0, F (x) = cosx+ 2x.

= 0.40516728. Use h = 0.1π.

The remaining 9 rows of the table are completed by calculator, following the pattern
above for the second table entry. The result:

Table 3. Rectangular and Trapezoidal Solutions for y′ = cosx + 2x, y(0) = 0
on 0 ≤ x ≤ π, step size h = 0.1π.

x y-rect y-trap
0.000000 0.000000 0.000000
0.314159 0.314159 0.405167
0.628319 0.810335 0.977727
0.942478 1.459279 1.690617
1.256637 2.236113 2.522358
1.570796 3.122762 3.459163

x y-rect y-trap
1.884956 4.109723 4.496279
2.199115 5.196995 5.638458
2.513274 6.394081 6.899490
2.827433 7.719058 8.300851
3.141593 9.196803 9.869604

y

x

Figure 4. Comparison Plot.
Rectangular (solid) and trapezoidal (dotted) numerical
solutions for y′ = cosx + 2x, y(0) = 0 for h = 0.1π on
0 ≤ x ≤ π.
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4.1 Solving y′ = F (x) Numerically

Computer algebra system. The maple implementation for Example 4.2 ap-
pears below. The code produces lists Dots1 and Dots2 which contain Rectangular
(left panel) and Trapezoidal (right panel) approximations.

# Rectangular algorithm

# Group 1, initialize.

F:=x->evalf(cos(x) + 2*x):

x0:=0:y0:=0:h:=0.1*Pi:

Dots1:=[x0,y0]:

# Group 2, loop count = 10

for i from 1 to 10 do

Y:=y0+h*F(x0):

x0:=x0+h:y0:=evalf(Y):

Dots1:=Dots1,[x0,y0];

end do;

# Group 3, plot.

plot([Dots1]);

# Trapezoidal algorithm

# Group 1, initialize.

F:=x->evalf(cos(x) + 2*x):

x0:=0:y0:=0:h:=0.1*Pi:

Dots2:=[x0,y0]:

# Group 2, repeat 10 times

for i from 1 to 10 do

Y:=y0+h*(F(x0)+F(x0+h))/2:

x0:=x0+h:y0:=evalf(Y):

Dots2:=Dots2,[x0,y0];

end do;

# Group 3, plot.

plot([Dots2]);

Example 4.3 (Simpson’s Rule)
Consider y′ = e−x2

, y(0) = 0. Apply both the rectangular and Simpson rules to make
an xy-table for y(x) from x = 0 to x = 1 in steps of h = 0.1. In the table, include

values for the exact solution y(x) =
√
π
2 erf(x). Compare the two approximations in

a graphic for 0.8 ≤ x ≤ 1.0.

Solution: The error function erf(x) = 2√
π

∫ x

0
e−t2dt is a library function available

in maple, mathematica, matlab and other computing platforms. It is known that the
integral cannot be expressed in terms of elementary functions.

The xy-table. There will be 11 rows, for x = 0 to x = 1 in steps of h = 0.1. There are
four columns: x, y-rectangular, y-Simpson, y-exact.

It will be shown how to obtain the first and second rows by calculator methods, for the
two algorithms rectangular and Simpson.

Rectangular rule table row 1.
Initial condition y(x0) = y0 gives row 1 table pair x0, y0. For initial condition y(0) = 0,
the pattern decodes into row 1 table pair x0 = 0, y0 = 0.

Rectangular rule table row 2. Label the second table pair (X,Y ).

X = x0 + h Equal divisions.

Y = y0 + hF (x0) Rectangular rule.

= 0 + h(e0) Use F (x) = e−x2

, x0 = y0 = 0.

= 0.1. Use h = 0.1 and e0 = 1.

Simpson rule table row 1.
Identical for all rules, therefore table row 1 is x0 = 0, y0 = 0, copied from the rectangular
rule above.

Simpson rule row 2. Row 2 table pair is labeled (X,Y ).

X = x0 + h Equal divisions.
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4.1 Solving y′ = F (x) Numerically

Y = y0 +
h
6 (F (x0) + 4F (x0 + h/2) + F (x0 + h)) Simpson rule.

= 0 + 0.1
6 (e0 + 4e.5 + e.1) Use F (x) = e−x2

, x0 = y0 = 0,
h = 0.1.

= 0.09966770540. Calculator.

Exact solution table row 2.
The numerical work requires the tabulated function erf(x). The maple details:

x0:=0:y0:=0:h:=0.1: Given.
c:=sqrt(Pi)/2 Conversion factor.

Exact:=x->y0+c*erf(x): Exact solution y = y0 +
∫ x

0
e−t2dt.

Y3:=Exact(x0+h); Calculate exact answer.
# Y3 := .09966766428

Table 4. Rectangular and Simpson Rule.
Numerical solutions for y′ = e−x2

, y(0) = 0 on 0 ≤ x ≤ π, step size h = 0.1.

x y-rect y-Simp y-exact
0.0 0.00000000 0.00000000 0.00000000
0.1 0.10000000 0.09966771 0.09966766
0.2 0.19900498 0.19736511 0.19736503
0.3 0.29508393 0.29123799 0.29123788
0.4 0.38647705 0.37965297 0.37965284
0.5 0.47169142 0.46128114 0.46128101
0.6 0.54957150 0.53515366 0.53515353
0.7 0.61933914 0.60068579 0.60068567
0.8 0.68060178 0.65766996 0.65766986
0.9 0.73333102 0.70624159 0.70624152
1.0 0.77781682 0.74682418 0.74682413

Rect

0.64

0.8

10.8

x

y

Simp
Figure 5. Comparison Plot.

Rectangular (dotted) and Simpson (solid)

numerical solutions for y′ = e−x2

, y(0) =
0 for h = 0.1 on 0.8 ≤ x ≤ 1.0.

Computer algebra system. The maple implementation for Example 4.3 appears
below. The code produces two lists Dots1 and Dots2 which contain Rectangular (left
panel) and Simpson (right panel) approximations.
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4.1 Solving y′ = F (x) Numerically

# Rectangular algorithm

# Group 1, initialize.

F:=x->evalf(exp(-x*x)):

x0:=0:y0:=0:h:=0.1:

Dots1:=[x0,y0]:

# Group 2, repeat 10 times

for i from 1 to 10 do

Y:=evalf(y0+h*F(x0)):

x0:=x0+h:y0:=Y:

Dots1:=Dots1,[x0,y0];

end do;

# Group 3, plot.

plot([Dots1]);

# Simpson algorithm

# Group 1, initialize.

F:=x->evalf(exp(-x*x)):

x0:=0:y0:=0:h:=0.1:

Dots2:=[x0,y0]:

# Group 2, loop count = 10

for i from 1 to 10 do

Y:=evalf(y0+h*(F(x0)+

4*F(x0+h/2)+F(x0+h))/6):

x0:=x0+h:y0:=Y:

Dots2:=Dots2,[x0,y0];

end do;

# Group 3, plot.

plot([Dots2]);

Review of Numerical Integration

Reproduced here are calculus topics: the rectangular rule, the trapezoidal
rule and Simpson’s rule, which are tools for the numerical approximation of
an integral

∫ b
a F (x)dx. The approximations are valid for b − a small. Larger

intervals must be subdivided, then the rule applies to the small subdivisions.

Rectangular Rule

The approximation uses Euler’s idea of replacing the integrand
by a constant. The value of the integral is approximately the
area of a rectangle of width b− a and height F (a).

F

x
a b

y

∫ b

a
F (x)dx ≈ (b− a)F (a).(2)

Trapezoidal Rule

The rule replaces the integrand F (x) by a linear function L(x)
which connects the planar points (a, F (a)), (b, F (b)). The value
of the integral is approximately the area under the curve L,
which is the area of a trapezoid.

F

x
a b

y

L

∫ b

a
F (x)dx ≈ b− a

2
(F (a) + F (b)) .(3)
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Simpson’s Rule

The rule replaces the integrand F (x) by a quadratic polyno-
mial Q(x) which connects the planar points (a, F (a)), ((a +
b)/2, F ((a + b)/2)), (b, F (b)). The value of the integral is ap-
proximately the area under the quadratic curve Q.

F

x

y

a b

Q

∫ b

a
F (x)dx ≈ b− a

6

(
F (a) + 4F

(
a+ b

2

)
+ F (b)

)
.(4)

Simpson’s Polynomial Rule

If Q(x) is constant, or a linear, quadratic or cubic polynomial, then∫ b

a
Q(x)dx =

b− a

6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
.(5)

Integrals of linear, quadratic and cubic polynomials can be evaluated exactly
using Simpson’s polynomial rule (5). See Example 4.4, page 233 and the proof
on page 234.

Remarks on Simpson’s Rule

The right side of (4) is exactly the integral ofQ(x), which is evaluated by equation
(5). The appearance of F instead of Q on the right in equation (4) is due to the
relations Q(a) = F (a), Q((a + b)/2) = F ((a + b)/2), Q(b) = F (b), which arise
from the requirement that Q connect three points along curve F .

The quadratic interpolation polynomial Q(x) is determined uniquely from the
three data points; see Quadratic Interpolant, page 234, for a formula for Q and
a derivation. It is interesting that Simpson’s rule depends only upon uniqueness
and not upon an actual formula for Q!

Example 4.4 (Polynomial Quadrature)
Apply Simpson’s polynomial rule (5) to verify

∫ 2
1 (x

3 − 16x2 + 4)dx = −355/12.

Solution: The application proceeds as follows:

I =
∫ 2

1
Q(x)dx Evaluate integral I usingQ(x) = x3−16x2+4.

=
2− 1

6
(Q(1) + 4Q(3/2) +Q(2)) Apply Simpson’s polynomial rule (5).

=
1

6
(−11 + 4(−229/8)− 52) Use Q(x) = x3 − 16x2 + 4.

= −355

12
. Equality verified.
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Simpson’s Polynomial Rule Proof. Let Q(x) be a linear, quadratic or cubic polyno-
mial. It will be verified that∫ b

a

Q(x)dx =
b− a

6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
.(6)

If the formula holds for polynomial Q and c is a constant, then the formula also holds
for the polynomial cQ. Similarly, if the formula holds for polynomials Q1 and Q2, then
it also holds for Q1 + Q2. Consequently, it suffices to show that the formula is true
for the special polynomials 1, x, x2 and x3, because then it holds for all combinations
Q(x) = c0 + c1x+ c2x

2 + c3x
3.

Only the special case Q(x) = x3 will be treated here. The other cases are left to the
exercises. The details:

RHS =
b− a

6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
Evaluate the right side of equation
(6).

=
b− a

6

(
a3 +

1

2
(a+ b)3 + b3

)
Substitute Q(x) = x3.

=
b− a

6

(
3

2

)(
a3 + a2b+ ab2 + b3

)
Expand (a+ b)3. Simplify.

=
1

4

(
b4 − a4

)
, Multiply and simplify.

LHS =
∫ b

a
Q(x)dx Evaluate the left hand side (LHS) of

equation (6).

=
∫ b

a
x3dx Substitute Q(x) = x3.

=
1

4

(
b4 − a4

)
Evaluate.

= RHS. Compare with the RHS.

■

Quadratic Interpolant Q

Given a < b and the three data points (a, Y0), ((a+b)/2, Y1)), (b, Y2)), then there
is a unique quadratic curve Q(X) which connects the points, given by

Q(X) = Y0 + (4Y1 − Y2 − 3Y0)
X − a

b− a

+ (2Y2 + 2Y0 − 4Y1)
(X − a)2

(b− a)2
.

(7)

Proof: The term quadratic is meant loosely: it can be a constant or linear function as
well.

Uniqueness of the interpolant Q is established by subtracting two candidates to obtain a
polynomial P of degree at most two which vanishes at three distinct points. By Rolle’s
theorem, P ′ vanishes at two distinct points and hence P ′′ vanishes at one point. Writing

234



4.1 Solving y′ = F (x) Numerically

P (X) = c0 + c1X + c2X
2 shows c2 = 0 and then c1 = c0 = 0, or briefly, P ≡ 0. Hence

the two candidates are identical.

It remains to verify the given formula (7). The details are presented as two lemmas.1

The first lemma contains the essential ideas. The second simply translates the variables.

Lemma 4.1 Given y1 and y2, define A = y2 − y1, B = 2y1 − y2. Then the quadratic
y = x(Ax+B) fits the data items (0, 0), (1, y1), (2, 2y2).

Lemma 4.2 Given Y0, Y1 and Y2, define y1 = Y1 − Y0, y2 = 1
2 (Y2 − Y0), A = y2 − y1,

B = 2y1 − y2 and x = 2(X − a)/(b− a). Then quadratic Y (X) = Y0 + x(Ax+B) fits the
data items (a, Y0), ((a+ b)/2, Y1), (b, Y2).

To verify the first lemma, the formula y = x(Ax+ B) is tested to go through the given
data points (0, 0), (1, y1) and (2, 2y2). For example, the last pair is tested by the steps

y(2) = 2(2A+B) Apply y = x(Ax+B) with x = 2.

= 4y2 − 4y1 + 4y1 − 2y2 Use A = y2 − y1 and B = 2y1 − y2.

= 2y2. Therefore, the quadratic fits data item (2, 2y2).

The other two data items are tested similarly, details omitted here.

To verify the second lemma, observe that it is just a change of variables in the first
lemma, Y = Y0 + y. The data fit is checked as follows:

Y (b) = Y0 + y(2) Apply formulas Y (X) = Y0+y(x), y(x) = x(Ax+B)
with X = b and x = 2.

= Y0 + 2y2 Apply data fit y(2) = 2y2.

= Y2. The quadratic fits the data item (b, Y2).

The other two items are checked similarly, details omitted here. This completes the
proof of the two lemmas. The formula for Q is obtained from the second lemma as
Q = Y0 + Bx + Ax2 with substitutions for A, B and x performed to obtain the given
equation for Q in terms of Y0, Y1, Y2, a, b and X. ■

Justification of Table 1: The method of quadrature applied to y′ = F (x), y(x0) = y0
gives an explicit solution y(x) involving the integral of F . Specialize this solution formula
to x = x0 + h where h > 0. Then

y(x0 + h) = y0 +

∫ x0+h

x0

F (t)dt.

All three methods in Table 1 are derived by replacement of the integral above by the
corresponding approximation taken from the rectangular, trapezoidal or Simpson method
on page 232. For example, the trapezoidal method gives∫ x0+h

x0

F (t)dt ≈ h

2
(F (x0) + F (x0 + h)) ,

whereupon replacement into the formula for y gives the entry in Table 1 as

Y ≈ y(x0 + h) ≈ y0 +
h

2
(F (x0) + F (x0 + h)) .

This completes the justification of Table 1.

1What’s a lemma? It’s a helper theorem, used to dissect long proofs into short pieces.
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Exercises 4.1 �

Connect-the-Dots
Make a numerical table of 6 rows and a
connect-the-dots graphic for exercises 1-10.

1. y = 2x+ 5, x = 0 to x = 1

2. y = 3x+ 5, x = 0 to x = 2

3. y = 2x2 + 5, x = 0 to x = 1

4. y = 3x2 + 5, x = 0 to x = 2

5. y = sinx, x = 0 to x = π/2

6. y = sin 2x, x = 0 to x = π/4

7. y = x ln |1 + x|, x = 0 to x = 2

8. y = x ln |1 + 2x|, x = 0 to x = 1

9. y = xex, x = 0 to x = 1

10. y = x2ex, x = 0 to x = 1/2

Rectangular Rule
Apply the rectangular rule to make an xy-
table for y(x) with 11 rows, h = 0.1. Graph
the approximate solution and the exact so-
lution. Follow example 4.1.

11. y′ = 2x, y(0) = 5.

12. y′ = 3x2, y(0) = 5.

13. y′ = 3x2 + 2x, y(0) = 4.

14. y′ = 3x2 + 4x3, y(0) = 4.

15. y′ = sinx, y(0) = 1.

16. y′ = 2 sin 2x, y(0) = 1.

17. y′ = ln(1 + x), y(0) = 1. Exact
(1 + x) ln |1 + x|+ 1− x.

18. y′ = 2 ln(1 + 2x), y(0) = 1. Exact
(1 + 2x) ln |1 + 2x|+ 1− 2x.

19. y′ = xex, y(0) = 1. Exact xex−ex+2.

20. y′ = 2x2e2x, y(0) = 4. Exact 2x2ex −
4xex + 4 ex.

Trapezoidal Rule
Apply the trapezoidal rule to make an xy-
table for y(x) with 6 rows and step size
h = 0.2. Graph the approximate solution
and the exact solution. Follow example 4.2.

21. y′ = 2x, y(0) = 1.

22. y′ = 3x2, y(0) = 1.

23. y′ = 3x2 + 2x, y(0) = 2.

24. y′ = 3x2 + 4x3, y(0) = 2.

25. y′ = sinx, y(0) = 4.

26. y′ = 2 sin 2x, y(0) = 4.

27. y′ = ln(1 + x), y(0) = 1. Exact
(1 + x) ln |1 + x|+ 1− x.

28. y′ = 2 ln(1 + 2x), y(0) = 1. Exact
(1 + 2x) ln |1 + 2x|+ 1− 2x.

29. y′ = xex, y(0) = 1. Exact xex−ex+2.

30. y′ = 2x2e2x, y(0) = 4. Exact 2x2ex −
4xex + 4 ex.

Simpson Rule
Apply Simpson’s rule to make an xy-table
for y(x) with 6 rows and step size h = 0.2.
Graph the approximate solution and the
exact solution. Follow example 4.3.

31. y′ = 2x, y(0) = 2.

32. y′ = 3x2, y(0) = 2.

33. y′ = 3x2 + 2x, y(0) = 3.

34. y′ = 3x2 + 4x3, y(0) = 3.

35. y′ = sinx, y(0) = 5.

36. y′ = 2 sin 2x, y(0) = 5.

37. y′ = ln(1 + x), y(0) = 1. Exact
(1 + x) ln |1 + x|+ 1− x.

38. y′ = 2 ln(1 + 2x), y(0) = 1. Exact
(1 + 2x) ln |1 + 2x|+ 1− 2x.

39. y′ = xex, y(0) = 1. Exact xex−ex+2.

40. y′ = 2x2e2x, y(0) = 4. Exact 2x2ex −
4xex + 4 ex.
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Simpson’s Rule
The following exercises use formulas and
techniques found in the proof on page 234
and in Example 4.4, page 233.

41. Verify with Simpson’s rule (5) for cubic

polynomials the equality
∫ 2

1
(x3+16x2+

4)dx = 541/12.

42. Verify with Simpson’s rule (5) for cu-

bic polynomials the equality
∫ 2

1
(x3+x+

14)dx = 77/4.

43. Let f(x) satisfy f(0) = 1, f(1/2) =
6/5, f(1) = 3/4. Apply Simpson’s
rule with one division to verify that∫ 1

0
f(x)dx ≈ 131/120.

44. Let f(x) satisfy f(0) = −1, f(1/2) =
1, f(1) = 2. Apply Simpson’s rule with

one division to verify that
∫ 1

0
f(x)dx ≈

5/6.

45. Verify Simpson’s equality (5), assum-
ing Q(x) = 1 and Q(x) = x.

46. Verify Simpson’s equality (5), assum-
ing Q(x) = x2. Use college algebra
identity u3−v3 = (u−v)(u2+uv+v2).

Quadratic Interpolation
The following exercises use formulas and
techniques from the proof on page 234.

47. Verify directly that the quadratic poly-
nomial y = x(7 − 4x) goes through the
points (0, 0), (1, 3), (2,−2).

48. Verify directly that the quadratic poly-
nomial y = x(8 − 5x) goes through the
points (0, 0), (1, 3), (2,−4).

49. Compute the quadratic interpolation
polynomial Q(x) which goes through
the points (0, 1), (0.5, 1.2), (1, 0.75).

50. Compute the quadratic interpolation
polynomial Q(x) which goes through
the points (0,−1), (0.5, 1), (1, 2).

51. Verify the remaining cases in Lemma
4.1, page 235.

52. Verify the remaining cases in Lemma
4.2, page 235.
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4.2 Solving y′ = f(x, y) Numerically

4.2 Solving y′ = f (x, y) Numerically

The numerical solution of the initial value problem

y′(x) = f(x, y(x)), y(x0) = y0(1)

is studied here by three basic methods. In each case, the current table entry x0,
y0 plus step size h is used to find the next table entry X, Y . Define X = x0 + h
and let Y be defined below, according to the algorithm selected (Euler, Heun,
RK4)2. The motivation for the three methods appears on page 244.

Euler’s Method

Y = y0 + hf(x0, y0).(2)

Heun’s Method

y1 = y0 + hf(x0, y0),

Y = y0 +
h

2
(f(x0, y0) + f(x0 + h, y1)) .

(3)

Runge-Kutta RK4 Method

k1 = hf(x0, y0),
k2 = hf(x0 + h/2, y0 + k1/2),
k3 = hf(x0 + h/2, y0 + k2/2),
k4 = hf(x0 + h, y0 + k3),

Y = y0 +
k1 + 2k2 + 2k3 + k4

6
.

(4)

The last quantity Y contains an average of six terms, where two appear in du-
plicate: (k1 + k2 + k2 + k3 + k3 + k4)/6. A similar average appears in Simpson’s
rule.

Relationship to Calculus Methods

If the differential equation (1) is specialized to the equation y′(x) = F (x), y(x0) =
y0, to agree with the previous section, then f(x, y) = F (x) is independent of y and
the three methods of Euler, Heun and RK4 reduce to the rectangular, trapezoidal
and Simpson rules.

2Euler is pronounced oiler. Heun rhymes with coin. Runge rhymes with run key.
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4.2 Solving y′ = f(x, y) Numerically

To justify the reduction in the case of Heun’s method, start with the assumption
f(x, y) = F (x) and observe that by independence of y, variable y1 is never used.
Compute as follows:

Y = y0 +
h
2 (f(x0, y0) + f(x0 + h, y1)) Apply equation (3).

= y0 +
h
2 (F (x0) + F (x0 + h)). Use f(x, y) = F (x).

The right side of the last equation is exactly the trapezoidal rule.

Examples and Methods

Example 4.5 (Euler’s Method)
Solve y′ = −y + 1 − x, y(0) = 3 by Euler’s method for x = 0 to x = 1 in steps of
h = 0.1. Produce a table of values which compares approximate and exact solutions.
Graph both the exact solution y = 2− x+ e−x and the approximate solution.

Solution: Exact solution. The homogeneous solution is yh = ce−x. A particular
solution yp = 2 − x is found by the method of undetermined coefficients or the linear
integrating factor method. The general solution yh + yp is then y(x) = ce−x + 2 − x.
Initial condition y(0) = 3 gives c = 1 and then y = 2− x+ e−x.

Approximate Solution. The table of xy-values starts because of y(0) = 3 with the
two values X = 0, Y = 3. Throughout, f(x, y) = −y + 1 − x = RHS of the differential
equation. The X-values will be X = 0 to X = 1 in increments of h = 1/10, making 11
rows total. The Y -values are computed from

Y = y0 + hf(x0, y0) Euler’s method.

= y0 + h(−y0 + 1− x0) Use f(x, y) = −y + 1− x.

= 0.9y0 + 0.1(1− x0) Use h = 0.1.

The pair x0, y0 represents the two entries in the current row of the table. The next table
pair X, Y is given by X = x0+h, Y = 0.9y0+0.1(1−x0). It is normal in a computation
to do the second pair by hand, then use computing machinery to reproduce the hand
result and finish the computation of the remaining table rows. Here’s the second pair:

X = x0 + h Definition of X-values.

= 0.1, Substitute x0 = 0 and h = 0.1.

Y = 0.9y0 + 0.1(1− x0), The simplified recurrence.

= 0.9(3) + 0.1(1− 0) Substitute for row 1, x0 = 0, y0 = 3.

= 2.8. Second row found: X = 0.1, Y = 2.8.

By the same process, the third row is X = 0.2, Y = 2.61. This gives the xy-table below,
in which the exact values from y = 2− x+ e−x are also tabulated.
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4.2 Solving y′ = f(x, y) Numerically

Table 5. Euler’s Method Applied with h = 0.1 on 0 ≤ x ≤ 1 to the Problem
y′ = −y + 1− x, y(0) = 3.

x y-Euler y-Exact
0.0 3.00000 3.0000000
0.1 2.80000 2.8048374
0.2 2.61000 2.6187308
0.3 2.42900 2.4408182
0.4 2.25610 2.2703200
0.5 2.09049 2.1065307

x y-Euler y-Exact
0.6 1.93144 1.9488116
0.7 1.77830 1.7965853
0.8 1.63047 1.6493290
0.9 1.48742 1.5065697
1.0 1.34868 1.3678794

See page 241 for maple code which automates Euler’s method. The approximate solution
graphed in Figure 6 is nearly identical to the exact solution y = 2− x+ e−x. The maple
plot code for Figure 6:

L:=[0.0,3.00000],[0.1,2.80000],[0.2,2.61000],[0.3,2.42900],

[0.4,2.25610],[0.5,2.09049],[0.6,1.93144],[0.7,1.77830],

[0.8,1.63047],[0.9,1.48742],[1.0,1.34868]:

plot({[L],2-x+exp(-x)},x=0..1);

10
1.3

3.0

10
1.3

3.0

1.4
10.8

1.7

Figure 6. Numerical
Solution of y′ = −y+1−x,
y(0) = 3
The Euler approximate so-
lution on [0, 1] is the black
curve on the left. The exact
solution y = 2 − x + e−x

is the upper red curve on
the right. The approximate
solution is the lower green
curve on the right.

Example 4.6 (Euler and Heun Methods)
Solve y′ = −y + 1 − x, y(0) = 3 by both Euler’s method and Heun’s method for
x = 0 to x = 1 in steps of h = 0.1. Produce a table of values which compares
approximate and exact solutions.

Solution: Table of xy-values. The Euler method was applied in Example 4.5. Heun’s
method will be documented here. The first pair is 0, 3. The second pair X, Y will be
computed by hand calculation below. Throughout, f(x, y) = −y + 1 − x = RHS of the
differential equation.

X = x0 + h Definition of X-values.

= 0.1, Substitute x0 = 0 and h = 0.1.

Y1 = y0 + hf(x0, y0) First Heun formula.

= y0 + 0.1(−y0 + 1− x0) Use f(x, y) = −y + 1− x.

= 2.8, Row 1 gives x0, y0. Same as the
Euler method value.

Y = y0 + h(f(x0, y0) + f(x0 + h, Y1))/2, Second Heun formula.

= 3 + 0.05(−3 + 1− 0− 2.8 + 1− 0.1) Use x0 = 0, y0 = 3, Y1 = 2.8.
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4.2 Solving y′ = f(x, y) Numerically

= 2.805.

Therefore, the second row is X = 0.1, Y = 2.805. By the same process, the third row is
X = 0.2, Y = 2.619025. This gives the xy-table below, in which the Euler approximate
values and the exact values from y = 2 − x + e−x are also tabulated, taken from the
preceding example.

Table 6. Euler and Heun methods Applied with h = 0.1 on 0 ≤ x ≤ 1 to the
Problem y′ = −y + 1− x, y(0) = 3.

x y-Euler y-Heun y-Exact
0.0 3.00000 3.00000 3.0000000
0.1 2.80000 2.80500 2.8048374
0.2 2.61000 2.61903 2.6187308
0.3 2.42900 2.44122 2.4408182
0.4 2.25610 2.27080 2.2703200
0.5 2.09049 2.10708 2.1065307
0.6 1.93144 1.94940 1.9488116
0.7 1.77830 1.79721 1.7965853
0.8 1.63047 1.64998 1.6493290
0.9 1.48742 1.50723 1.5065697
1.0 1.34868 1.36854 1.3678794

Computer algebra system. The implementation for maple appears below. Part of
the interface is execution of a group, which is used here to divide the algorithm into
three distinct parts. The code produces a list L which contains Euler (left panel) or
Heun (right panel) approximations.

# Euler algorithm

# Group 1, initialize.

f:=(x,y)->-y+1-x:

x0:=0:y0:=3:h:=.1:L:=[x0,y0]:

# Group 2, loop count = 10

for i from 1 to 10 do

Y:=y0+h*f(x0,y0):

x0:=x0+h:y0:=Y:L:=L,[x0,y0];

end do;

# Group 3, plot.

plot([L]);

# Heun algorithm

# Group 1, initialize.

f:=(x,y)->-y+1-x:

x0:=0:y0:=3:h:=.1:L:=[x0,y0]

# Group 2, loop count = 10

for i from 1 to 10 do

Y:=y0+h*f(x0,y0):

Y:=y0+h*(f(x0,y0)+f(x0+h,Y))/2:

x0:=x0+h:y0:=Y:L:=L,[x0,y0];

end do;

# Group 3, plot.

plot([L]);

Numerical laboratory. The implementation of the Heun method for matlab, octave
and scilab will be described. The code is written into files f.m and heun.m, which must
reside in a default directory. Then [X,Y]=heun(0,3,1,10) produces the xy-table. The
graphic is made with plot(X,Y).

File f.m: function yp = f(x,y)

yp= -y+1-x;
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4.2 Solving y′ = f(x, y) Numerically

File heun.m: function [X,Y] = heun(x0,y0,x1,n)

h=(x1-x0)/n;X=x0;Y=y0;

for i=1:n;

y1= y0+h*f(x0,y0);

y0= y0+h*(f(x0,y0)+f(x0+h,y1))/2;

x0=x0+h;

X=[X;x0];Y=[Y;y0];

end

Example 4.7 (Euler, Heun and RK4 Methods)
Solve the initial value problem y′ = −y+1−x, y(0) = 3 by Euler’s method, Heun’s
method and the RK4 method for x = 0 to x = 1 in steps of h = 0.1. Produce a
table of values which compares approximate and exact solutions.

Solution: Table of xy-values. The Euler and Heun methods were applied in Examples
4.5, 4.6. The Runge-Kutta method (RK4) will be illustrated here. The first pair is 0, 3.
The second pair X, Y will be computed by hand calculator.

X = x0 + h Definition of X-values.

= 0.1, Substitute x0 = 0 and h = 0.1.

k1 = hf(x0, y0) First RK4 formula.

= 0.1(−y0 + 1− x0) Use f(x, y) = −y + 1− x.

= −0.2, Row 1 supplies x0 = 0, y0 = 3.

k2 = hf(x0 + h/2, y0 + k1/2) Second RK4 formula.

= 0.1f(0.05, 2.9)

= −0.195,
k3 = hf(x0 + h/2, y0 + k2/2) Third RK4 formula.

= 0.1f(0.05, 2.9025)

= −0.19525,
k4 = hf(x0 + h, y0 + k3) Fourth RK4 formula.

= 0.1f(0.1, 2.80475)

= −0.190475,
Y = y0 +

1
6 (k1 + 2k2 + 2k2 + k4), Last RK4 formula.

= 3 + 1
6 (−1.170975) Use x0 = 0, y0 = 3, Y1 = 2.8.

= 2.8048375.

Therefore, the second row is X = 0.1, Y = 2.8048375. Continuing, the third row is
X = 0.2, Y = 2.6187309. The Euler and Heun steps were done in the previous example
and recorded in Table 6. We have computed by hand calculator the first three rows of
the computer-generated xy-table below, in which exact values y = 2− x+ e−x are also
tabulated.
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4.2 Solving y′ = f(x, y) Numerically

Table 7. Euler, Heun and RK4 methods Applied with h = 0.1 on 0 ≤ x ≤ 1
to the Problem y′ = −y + 1− x, y(0) = 3.

x y-Euler y-Heun y-RK4 y-Exact
0.0 3.00000 3.00000 3.0000000 3.0000000
0.1 2.80000 2.80500 2.8048375 2.8048374
0.2 2.61000 2.61903 2.6187309 2.6187308
0.3 2.42900 2.44122 2.4408184 2.4408182
0.4 2.25610 2.27080 2.2703203 2.2703200
0.5 2.09049 2.10708 2.1065309 2.1065307
0.6 1.93144 1.94940 1.9488119 1.9488116
0.7 1.77830 1.79721 1.7965856 1.7965853
0.8 1.63047 1.64998 1.6493293 1.6493290
0.9 1.48742 1.50723 1.5065700 1.5065697
1.0 1.34868 1.36854 1.3678798 1.3678794

Computer algebra system. The implementation of RK4 for maple appears below, as
a modification of the code for Example 4.6.

# Group 2, loop count = 10

for i from 1 to 10 do

k1:=h*f(x0,y0):

k2:=h*f(x0+h/2,y0+k1/2):

k3:=h*f(x0+h/2,y0+k2/2):

k4:=h*f(x0+h,y0+k3):

Y:=y0+(k1+2*k2+2*k3+k4)/6:

x0:=x0+h:y0:=Y:L:=L,[x0,y0];

end do;

In the special case f(x, y) = F (x) (independent of y), the computer code reduces to a

poor implementation of Simpson’s Rule for
∫ a+h

a
F (x)dx. The wasted effort is calculation

of k3, because k2, k3 are the same for f(x, y) = F (x).

Numerical laboratory. The implementation of RK4 for matlab, octave and scilab

appears below, to be added to the code for Example 4.6. The code is written into
file rk4.m, which must reside in a default directory. The xy-table is produced by
[X,Y]=rk4(0,3,1,10).

function [X,Y] = rk4(x0,y0,x1,n)

h=(x1-x0)/n;X=x0;Y=y0;

for i=1:n;

k1=h*f(x0,y0);

k2=h*f(x0+h/2,y0+k1/2);

k3=h*f(x0+h/2,y0+k2/2);

k4=h*f(x0+h,y0+k3);

y0=y0+(k1+2*k2+2*k3+k4)/6;

x0=x0+h;

X=[X;x0];Y=[Y;y0];

end
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Motivation for the Three Methods

The entry point to the study is the equivalent integral equation

y(x) = y0 +

∫ x

x0

f(t, y(t))dt.(5)

The ideas can be explained by replacement of the integral in (5) by the rect-
angular, trapezoidal or Simpson rule. Unknown values of y that appear are
subsequently replaced by suitable approximations.

These approximations, originating with L. Euler, are known as predictors and
correctors. They are defined as follows from the integral formula

y(b) = y(a) +

∫ b

a
f(x, y(x))dx,(6)

by assuming the integrand is a constant C.

Predictor Y = y(a) + (b− a)f(a, Y ∗). Given an estimate or an exact value Y ∗

for y(a), then variable Y predicts y(b). The approximation assumes the
integrand in (6) constantly C = f(a, Y ∗).

Corrector Y = y(a) + (b− a)f(b, Y ∗∗). Given an estimate or an exact value
Y ∗∗ for y(b), then variable Y corrects y(b). The approximation assumes
the integrand in (6) constantly C = f(b, Y ∗∗).

Euler’s method. Replace in (5) x = x0 + h and apply the rectangular rule to
the integral. The resulting approximation is known as Euler’s method:

y(x0 + h) ≈ Y = y0 + hf(x0, y0).(7)

Heun’s method. Replace in (5) x = x0 + h and apply the trapezoidal rule to
the integral, to get

y(x0 + h) ≈ y0 +
h

2
(f(x0, y(x0) + f(x0 + h, y(x0 + h))) .

The troublesome expressions are y(x0) and y(x0+h). The first is y0. The second
can be estimated by the predictor y0+hf(x0, y0). The resulting approximation
is known as Heun’s method or the Modified Euler method:

Y1 = y0 + hf(x0, y0),

y(x0 + h) ≈ Y = y0 +
h

2
(f(x0, y0) + f(x0 + h, Y1)) .

(8)

RK4 method. Replace in (5) x = x0 + h and apply Simpson’s rule to the
integral. This gives y(x0+h) ≈ y0+S where the Simpson estimate S is given by

S =
h

6
(f(x0, y(x0) + 4f(M,y(M)) + f(x0 + h, y(x0 + h)))(9)

and M = x0 + h/2 is the midpoint of [x0, x0 + h]. The troublesome expressions
in S are y(x0), y(M) and y(x0 + h). The work of Runge and Kutta shows that
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• Expression y(x0) is replaced by y0.

• Expression y(M) can be replaced by either Y1 or Y2, where Y1 = y0 +
0.5hf(x0, y0) is a predictor and Y2 = y0 + 0.5hf(M,Y1) is a corrector.

• Expression y(x0 + h) can be replaced by Y3 = y0 + hf(M,Y2). This re-
placement arises from the predictor y(x0 + h) ≈ y(M) + 0.5hf(M,y(M))
by using corrector y(M) ≈ y0+0.5hf(M,y(M)) and then replacing y(M)
by Y2.

The formulas of Runge-Kutta result by using the above replacements for y(x0),
y(M) and y(x0 + h), with the caveat that f(M,y(M)) gets replaced by the
average of f(M,Y1) and f(M,Y2). In detail,

6S = hf(x0, y(x0) + 4hf(M,y(M)) + hf(x0 + h, y(x0 + h))

≈ hf(x0, y0) + 4h
f(M,Y1) + f(M,Y2)

2
+ hf(x0 + h, Y3)

= k1 + 2k2 + 2k3 + k4

where the RK4 quantities k1, k2, k3, k4 are defined by (4), page 238. The resulting
approximation is known as the RK4 method. Justification uses multivariable
Taylor remainder formulas. See Burden-Faires [BurFair] p 229 its references.

Exercises 4.2 �

Euler’s Method
Apply Euler’s method to make an xy-table
for y(x) with 11 rows and step size h = 0.1.
Graph the approximate solution and the
exact solution. Follow Example 4.5.

1. y′ = 2 + y, y(0) = 5. Exact y(x) =
−2 + 7ex.

2. y′ = 3 + y, y(0) = 5. Exact y(x) =
−3 + 8ex.

3. y′ = e−x + y, y(0) = 4. Exact y(x) =
− 1

2e
−x + 9

2e
x.

4. y′ = 3e−2x + y, y(0) = 4. Exact
y(x) = −e−2x + 5ex.

5. y′ = y sinx, y(0) = 1. Exact y(x) =
e1−cos x.

6. y′ = 2y sin 2x, y(0) = 1. Exact y(x) =
e1−cos 2x.

7. y′ = y/(1 + x), y(0) = 1. Exact
y(x) = 1 + x.

8. y′ = y(x)/(1 + 2x), y(0) = 1. Exact
y(x) =

√
1 + 2x.

9. y′ = yxex, y(0) = 1. Exact y(x) =
eu(x), u(x) = 1 + (x− 1)ex.

10. y′ = 2y(x2 + x)e2x, y(0) = 1. Exact
y(x) = eu(x), u(x) = x2e2x.

Heun’s Method
Apply Heun’s method to make an xy-table
for y(x) with 6 rows and step size h = 0.2.
Graph the approximate solution and the
exact solution. Follow Example 4.6.

11. y′ = 2 + y, y(0) = 5. Exact y(x) =
−2 + 7ex.

12. y′ = 3 + y, y(0) = 5. Exact y(x) =
−3 + 8ex.

13. y′ = e−x + y, y(0) = 4. Exact y(x) =
− 1

2e
−x + 9

2e
x.

14. y′ = 3e−2x + y, y(0) = 4. Exact
y(x) = −e−2x + 5ex.
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15. y′ = y sinx, y(0) = 1. Exact y(x) =
e1−cos x.

16. y′ = 2y sin 2x, y(0) = 1. Exact y(x) =
e1−cos 2x.

17. y′ = y/(1 + x), y(0) = 1. Exact
y(x) = 1 + x.

18. y′ = y(x)/(1 + 2x), y(0) = 1. Exact
y(x) =

√
1 + 2x.

19. y′ = yxex, y(0) = 1. Exact y(x) =
eu(x), u(x) = 1 + (x− 1)ex.

20. y′ = 2y(x2 + x)e2x, y(0) = 1. Exact
y(x) = eu(x), u(x) = x2e2x.

RK4 Method
Apply the Runge-Kutta method (RK4) to
make an xy-table for y(x) with 6 rows and
step size h = 0.2. Graph the approximate
solution and the exact solution. Follow Ex-
ample 4.7.

21. y′ = 2 + y, y(0) = 5. Exact y(x) =
−2 + 7ex.

22. y′ = 3 + y, y(0) = 5. Exact y(x) =
−3 + 8ex.

23. y′ = e−x + y, y(0) = 4. Exact y(x) =
− 1

2e
−x + 9

2e
x.

24. y′ = 3e−2x + y, y(0) = 4. Exact
y(x) = −e−2x + 5ex.

25. y′ = y sinx, y(0) = 1. Exact y(x) =
e1−cos x.

26. y′ = 2y sin 2x, y(0) = 1. Exact y(x) =
e1−cos 2x.

27. y′ = y/(1 + x), y(0) = 1. Exact
y(x) = 1 + x.

28. y′ = y(x)/(1 + 2x), y(0) = 1. Exact
y(x) =

√
1 + 2x.

29. y′ = yxex, y(0) = 1. Exact y(x) =
eu(x), u(x) = 1 + (x− 1)ex.

30. y′ = 2y(x2 + x)e2x, y(0) = 1. Exact
y(x) = eu(x), u(x) = x2e2x.

Euler and RK4 Methods
Apply the Euler method and the Runge-
Kutta method (RK4) to make a table with
6 rows and step size h = 0.1. The table
columns are x, y1, y2, y where y1 is the Eu-
ler approximation, y2 is the RK4 approxi-
mation and y is the exact solution. Graph
y1, y2, y.

31. y′ = 1
2 (y − 2)2, y(0) = 3. Exact

y(x) =
2x− 6

x− 2
.

32. y′ = 1
2 (y − 3)2, y(0) = 4. Exact

y(x) =
3x− 8

x− 2
.

33. y′ = x3/y2, y(2) = 3. Exact y(x) =
1
2

3
√
6x4 + 120.

34. y′ = x5/y2, y(2) = 3. Exact y(x) =
1
2

3
√
4x6 − 40.

35. y′ = 2x(1 + y2), y(0) = 1. Exact
y(x) = tan(x2 + π/4).

36. y′ = 3y2/3, y(0) = 1. Exact y(x) =
(x+ 1)3.

37. y′ = 1 + y2, y(0) = 0. Exact y(x) =
tanx.

38. y′ = 1 + y2, y(0) = 1. Exact y(x) =
tan(x+ π/4).
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4.3 Error in Numerical Methods

Numerical Errors

Studied here are cumulative error, local error, roundoff error and truncation
error. The Landau order notation is introduced.

Cumulative Error

This error measurement is commonly used in displays like Table 8, in which
approximate and exact solution columns already appear. In such applications,
the cumulative error is the difference of the approximate and exact columns.
The exact solution refers to y(x) defined by y′ = f(x, y), y(x0) = y0 (x0 = 0,
y0 = 3 from line 1 of Table 8). The approximate solution refers to the y-values
computed by the algorithm (column 2 in Table 8). A precise definition of the
cumulative error E is given in terms of the exact solution y(x): given table
entry X, Y , then E = |y(X)− Y |.

Table 8. Cumulative Error.

A third column, cumulative error, is added to an existing xy-table of approximate and

exact solutions. The cumulative error is computed by the formula E = |y2 − y1|, where
y1 is the approximation and y2 is the exact value.

x y-Approx y-Exact Error
0.0 3.00000 3.0000000 0.0000000
0.1 2.80000 2.8048374 0.0048374
0.2 2.61000 2.6187308 0.0087308
0.3 2.42900 2.4408182 0.0118182

Local Error

This error is made by one algorithm step in going from table entry x1, y1 to the
next table entry x2, y2. It can be precisely defined in terms of the solution u(x)
to u′ = f(x, u), u(x1) = y1 by the formula

Eloc = |u(x2)− y2|.

Noteworthy is that u(x) ̸= y(x). To explain, the exact solution y(x) solves
y′ = f(x, y), y(x0) = y0 where x0, y0 is the first table entry, while u(x) solves
u′ = f(x, u) for a different set of initial conditions. In particular, an xy-table
of approximate and exact solution values, like Table 8, does not contain enough
information to determine the local error!

To illustrate the ideas, consider y′ = 2y, y(0) = 1 with exact solution y = e2x.
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Using Euler’s method with step size h = 0.1 gives the table

x y-approx y-exact

0 1 1

0.1 1.2 1.2214028

0.2 1.44 1.4918247

To find the local error for line 2 to line 3 requires solving u′ = 2u, u(0.1) = 1.2,
and then evaluating E = |u(0.2) − 1.4918247|. We find that u(x) = 1.2e2(x−0.1)

and then E = |1.2e0.2 − 1.4918247| = 0.026141390.

Roundoff Error

Also called rounding error, the roundoff error is the difference between the cal-
culated approximation of a number to finitely many digits and its exact value
in terms of infinitely many digits. The technical error is made by computers
due to the representation of floating point numbers, which limits the number of
significant digits in any computation. Integer arithmetic will normally generate
no errors, unless integer overflow occurs, i.e., x + y or xy can result in an
integer larger than the machine can represent. Floating point arithmetic usu-
ally generates errors because of results that must be rounded to give a machine
representation. To illustrate, 8-digit precision requires a = 1.00000005 be rep-
resented as â = 1.0000001 and b = 1.00000004 be represented as b̂ = 1. Then
2a + 2b = 4.00000018, which rounds to 4.0000002, while 2â + 2b̂ = 4.0000001.
The roundoff error in this example is 0.0000001.

For numerical methods, this translates into fewer roundoff errors for h = 0.1
than for h = 0.001, because the number of arithmetic operations increases 1000-
fold for h = 0.001. The payoff in increased accuracy expected for a change
in step size from h = 0.1 to h = 0.001 may be less than theoretically possible,
because the roundoff errors accumulate to cancel the effects of decreased step size.
Positive and negative roundoff errors tend to cancel, leading to situations where a
thousand-fold step size change causes only a thirty-fold change in roundoff error.

Truncation Error

It is typical in numerical mathematics to use formulas like π = 3.14159 or
e = 2.718. These formulas truncate the actual decimal expansion, causing
an error. Truncation is the term used for reducing the number of digits to
the right of the decimal point, by discarding all digits past a certain point, e.g.,
0.123456789 truncated to 5 digits is 0.12345. Common truncation errors are
caused by dropping higher order terms in a Taylor series, or by approximating a
nonlinear term by its linearization. In general, a truncation error is made when-
ever a formula is replaced by an approximate formula, in which case the formula
is wrong even if computed exactly.
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Landau Symbol

German mathematician Edmund Landau introduced a convenient notation to
represent truncation errors. If f and g are defined near h = 0, then f = O(g)
means that |f(h)| ≤ K|g(h)| as h → 0, for some constant K. The Landau
notation f = O(g) is vocalized as f equals big owe of g. The symbol O(hn)
therefore stands for terms of order hn. Taylor series expansions can then be
referenced succinctly, e.g., sinh = h + O(h3), eh = 1 + h + O(h2), and so on.
Some simple rules for the Landau symbol:

O(hn) +O(hm) = O(hmin(n,m)), O(hn)O(hm) = O(hn+m).

Finite Blowup of Solutions

The solution y = (1 − x)−1 for y′ = y2, y(0) = 1 exists on 0 ≤ x < 1, but
it becomes infinite at x = 1. The finite value x = 1 causes blowup of the y-
value. This event is called finite blowup. Attempts to solve y′ = y2, y(0) = 1
numerically will fail near x = 1, and these errors will propagate past x = 1, if the
numerical problem is allowed to be solved over an interval larger than 0 ≤ x < 1.

Unfortunately, finite blowup cannot be detected in advance from smoothness of
f(x, y) or the fact that the problem is applied. For example, logistic population
models y′ = y(a − by) typically have solutions with finite blowup, because the
solution y is a fraction which can have a zero denominator at some instant x
. On the positive side, there are three common conditions which guarantee no
finite blowup:

• A linear equation y′ + p(x)y = q(x) does not exhibit finite blowup on the
domain of continuity of p(x) and q(x).

• An equation y′ = f(x, y) does not exhibit finite blowup if f is continuous
and max |fy(x, y)| <∞.

• An equation y′ = f(x, y) does not exhibit finite blowup if f is continuous
and f satisfies a Lipschitz condition |f(x, y1) − f(x, y2)| ≤ M |y1 − y2| for
some constant M > 0 and all x, y1, y2.

Numerical Instability

The equation y′ = y + 1 − x has solution y = x + cex. Attempts to solve for
y(0) = 1 will meet with failure, because errors will cause the numerical solution
to lock onto some solution with c ̸= 0 and small, which causes the numerical
solution to grow like ex. In this case, the instability was caused by the problem
itself.

Numerical instability can result even though the solution is physically stable.
An example is y′ = −50(y − sinx) + cosx, y(0) = 0. The general solution is
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y = ce−50x + sinx and y(0) = 0 gives c = 0. The negative exponential term
is transient and sinx is the unique periodic steady-state solution. The solution
is insensitive to minor changes in the initial condition. For popular numerical
methods, the value at x = 1 seems to depend greatly on the step size, as is shown
by Table 9.

Table 9. Cumulative Error at x = 1

Euler, Heun and RK4 Methods applied to y′ = −50(y − sinx) + cosx, y(0) = 0, for

various step sizes.

h = 0.1 h = 0.05 h = 0.02 h = 0.01
Euler 40701.23 0.183e7 0.00008 0.00004
Heun 0.328e12 0.430e14 0.005 0.00004
RK4 0.318e20 0.219e18 0.00004 0.000001

The sensitivity to step size is due to the algorithm and not to instability of the
problem.

Stiff Problems

The differential equation y′ = −50(y − sinx) + cosx, which has solution y =
ce−50x + sinx, is called stiff, a technical term defined precisely in advanced
numerical analysis references, e.g., Burden-Faires [BurFair] and Cheney-Kincaid
[Cheney-K]. Characteristically, it means that the equation has a solution y(x)
containing a transient term y1(x) with derivative y′1(x) tending slowly to zero.
For instance, if y(x) has a term like y1(x) = ce−50x, then the derivative y′1(x) is
approximately 50 times larger ( y′1/y1 ≈ −50). Applications with transient terms
of Landau order e−at are stiff when a is large. Stiff problems occupy an active
branch of research in applied numerical analysis. Researchers call a problem stiff
provided certain numerical methods for it are unstable (e.g., inaccurate) unless
the step size is taken to be extremely small.

Cumulative Error Estimates

It is possible to give theoretical but not practical estimates for the cumulative
error in the case of Euler’s method, Heun’s method and the RK4 method. Applied
literature and computer documentation often contain references to these facts,
typically in the following succinct form.

• Euler’s method has order 1.

• Heun’s method has order 2.

• The Runge-Kutta method (RK4) has order 4.
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The exact meaning of these statements is given below in the theorems. The phrase
Order n in this context refers to Edmund Landau’s order notation O(hn). In
particular, order 2 means O(h2).

In practical terms, the statements measure the quality and accuracy of the al-
gorithms themselves, and hence establish an expectation of performance from
each algorithm. They do not mean that step size h = 0.001 gives three digits of
accuracy in the computed answer! The meaning is that repeated halving of the
step size will result in three digits of accuracy, eventually. Most persons half the
step size until the first three digits repeat, then they take this to be the optimal
step size for three-digit accuracy. The theorems don’t say that this practice is
correct, only that for some step size it is correct.

Theorem 4.1 (Euler’s Method Error)
Let the initial value problem y′ = f(x, y), y(x0) = y0 have a solution y(x) in the
region x0 ≤ x ≤ x0+H, |y−y0| ≤ K and assume that f , fx and fy are continuous.
Then the cumulative error E(x0 + nh) at step n, nh ≤ H, made by Euler’s method
using step size h satisfies E(x0+nh) ≤ Ch. The constant C depends only on x0, y0,
H, K, f , fx and fy. See Cheney–Kinkaid [Cheney-K] and Burden–Faires [BurFair].

Theorem 4.2 (Heun Method Error)
Let the initial value problem y′ = f(x, y), y(x0) = y0 have a solution in the region
x0 ≤ x ≤ x0+H, |y−y0| ≤ K. Assume f is continuous with continuous partials to
order 3. Then the cumulative error E(x0+nh) at step n, nh ≤ H, made by Heun’s
method using step size h, satisfies E(x0 + nh) ≤ Ch2. The constant C depends
only on x0, y0, H, K, f and the partials of f to order 3.

Theorem 4.3 (RK4 Method Error)
Let the initial value problem y′ = f(x, y), y(x0) = y0 have a solution y(x) in the
region x0 ≤ x ≤ x0 + H, |y − y0| ≤ K. Assume f is continuous with continuous
partials to order 5. Then the cumulative error E(x0+nh) at step n, nh ≤ H, made
by the RK4 method using step size h, satisfies E(x0 + nh) ≤ Ch4. The constant C
depends only on x0, y0, H, K, f , and the partials of f to order 5.

The last two results are implied by local truncation error estimates for Taylor’s
method of order n (section 5.3 in Burden-Faires [BurFair]).

Exercises 4.3 �

Cumulative Error
Make a table of 6 lines which has four
columns x, y1, y, E. Symbols y1 and y are
the approximate and exact solutions while
E = |y − y1| is the cumulative error. Find
y1 using Euler’s method in steps h = 0.1.

1. y′ = 2 + y, y(0) = 5. Exact solution

y(x) = −2 + 7ex.

2. y′ = 3 + y, y(0) = 5. Exact solution
y(x) = −3 + 8ex.

3. y′ = e−x + y, y(0) = 4. Exact solution
y(x) = − 1

2e
−x + 9

2e
x.

4. y′ = 3e−2x+y, y(0) = 4. Exact solution
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y(x) = −e−2x + 5ex.

Local Error
Make a table of 4 lines which has four
columns x, y1, y, E. Symbols y1 and y are
the approximate and exact solutions while
E is the local error. Find y1 using Euler’s
method in steps h = 0.1. The general so-
lution in each exercise is the solution for
y(0) = c.

5. y′ = 2 + y, y(0) = 5. General solution
y(x) = −2 + (2 + c)ex.

6. y′ = 3 + y, y(0) = 5. General solution
y(x) = −3 + (3 + c)ex.

7. y′ = 2e−x + y, y(0) = 4. General solu-
tion y(x) = −e−x + (1 + c)ex.

8. y′ = 3e−2x + y, y(0) = 4. General solu-
tion y(x) = −e−2x + (1 + c)ex.

Roundoff Error
Compute the roundoff error for y = 5a+4b.

9. Assume 3-digit precision. Let a =
0.0001 and b = 0.0003.

10. Assume 3-digit precision. Let a =
0.0002 and b = 0.0001.

11. Assume 5-digit precision. Let a =
0.000007 and b = 0.000003.

12. Assume 5-digit precision. Let a =
0.000005 and b = 0.000001.

Truncation Error
Find the truncation error.

13. Truncate x = 1.123456789 to 3 digits
right of the decimal point.

14. Truncate x = 1.123456789 to 4 digits
right of the decimal point.

15. Truncate x = 1.017171717 to 7 digits
right of the decimal point.

16. Truncate x = 1.03939393939 to 9 dig-
its right of the decimal point.

Guessing the Step Size
Do a numerical experiment using the given
method to estimate the number of steps
needed to generate a numerical solution
with 2-digit accuracy on 0 ≤ x ≤ 1. The
number reported, if increased, should not
change the 2-digit accuracy.

17. y′ = 2 + y, y(0) = 5. Exact solution
y(x) = −2 + 7ex. Euler’s method.

18. y′ = 3 + y, y(0) = 5. Exact solution
y(x) = −3 + 8ex. Euler’s method

19. y′ = e−x + y, y(0) = 4. Exact solution
y(x) = − 1

2e
−x + 9

2e
x. Euler’s method

20. y′ = 3e−2x + y, y(0) = 4. Exact so-
lution y(x) = −e−2x + 5ex. Euler’s
method.

21. y′ = y/(1 + x), y(0) = 1. Exact solu-
tion y(x) = 1 + x. Euler’s method.

22. y′ = y(x)/(1+2x), y(0) = 1. Exact so-
lution y(x) =

√
1 + 2x. Euler’s method.

23. y′ = 2 + y, y(0) = 5. Exact solution
y(x) = −2 + 7ex. Heun’s method.

24. y′ = 3 + y, y(0) = 5. Exact solution
y(x) = −3 + 8ex. Heun’s method

25. y′ = e−x + y, y(0) = 4. Exact solution
y(x) = − 1

2e
−x + 9

2e
x. Heun’s method

26. y′ = 3e−2x + y, y(0) = 4. Exact so-
lution y(x) = −e−2x + 5ex. Heun’s
method.

27. y′ = y/(1 + x), y(0) = 1. Exact solu-
tion y(x) = 1 + x. Heun’s method.

28. y′ = y(x)/(1+2x), y(0) = 1. Exact so-
lution y(x) =

√
1 + 2x. Heun’s method.

29. y′ = 2 + y, y(0) = 5. Exact solution
y(x) = −2 + 7ex. RK4 method.

30. y′ = 3 + y, y(0) = 5. Exact solution
y(x) = −3 + 8ex. RK4 method

31. y′ = e−x + y, y(0) = 4. Exact solution
y(x) = − 1

2e
−x + 9

2e
x. RK4 method
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32. y′ = 3e−2x + y, y(0) = 4. Exact solu-
tion y(x) = −e−2x+5ex. RK4 method.

33. y′ = y/(1 + x), y(0) = 1. Exact solu-

tion y(x) = 1 + x. RK4 method.

34. y′ = y(x)/(1 + 2x), y(0) = 1. Exact
solution y(x) =

√
1 + 2x. RK4 method.
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4.4 Computing π, ln 2 and e

The approximations π ≈ 3.1415927, ln 2 ≈ 0.69314718, e ≈ 2.7182818 can be
obtained by numerical methods applied to the following initial value problems:

y′ =
4

1 + x2
, y(0) = 0, π = y(1),(1)

y′ =
1

1 + x
, y(0) = 0, ln 2 = y(1),(2)

y′ = y, y(0) = 1, e = y(1).(3)

Equations (1)–(3) define the constants π, ln 2 and e through the corresponding
initial value problems.

The third problem (3) requires a numerical method like RK4, while the other
two can be solved using Simpson’s quadrature rule. It is a fact that RK4 reduces
to Simpson’s rule for y′ = F (x), therefore, for simplicity, RK4 can be used for
all three problems, ignoring speed issues. It will be seen that the choice of the
DE-solver algorithm (e.g., RK4) affects computational accuracy.

Computing π =
∫ 1

0 4(1 + x2)−1dx

The easiest method is Simpson’s rule. It can be implemented in virtually every
computing environment. The code below works in popular matlab-compatible
numerical laboratories. It modifies easily to other computing platforms, such as
maple and mathematica. To obtain the answer for π = 3.1415926535897932385
correct to 12 digits, execute the code on the right in Table 10, below the definition
of f .

Table 10. Numerical Integration of
∫ 1

0
4(1 + x2)−1dx.

Simpson’s rule is applied, using matlab-compatible code. About 50 subdivisions are

required.

function ans = simp(x0,x1,n,f)

h=(x1-x0)/n; ans=0;

for i=1:n;

ans1=f(x0)+4*f(x0+h/2)+f(x0+h);

ans=ans+(h/6)*ans1;

x0=x0+h;

end

function y = f(x)

y = 4/(1+x*x);

ans=simp(0,1,50,f)

It is convenient in some laboratories to display answers with printf or fprintf,
in order to show 12 digits. For example, scilab prints 3.1415927 by default, but
3.141592653589800 using printf.

The results checked in maple give π ≈ 3.1415926535897932385, accurate to 20
digits, regardless of the actual maple numerical integration algorithm chosen
(three were possible). The checks are invoked by evalf(X,20) where X is replaced
by int(4/(1+x*x),x=0..1).
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The results for an approximation to π using numerical solvers for differential
equations varied considerably from one algorithm to another, although all were
accurate to 5 rounded digits. A summary for odepack routines appears in Table
11, obtained from the scilab interface. A selection of routines supported by
maple appear in Table 12. Default settings were used with no special attempt to
increase accuracy.

The Gear routines refer to those in the 1971 textbook by C. F. Gear [Gear].
The Livermore stiff solver lsode can be found in Hindmarsh [ODEP]. The
Runge-Kutta routine of order 7-8 called dverk78 appears in the 1991 reference
of Enright [Enright]. The multistep routines of Adams-Moulton and Adams-
Bashforth are described in standard numerical analysis texts, such as Cheney–
Kinkaid [Cheney-K]. Taylor series methods are described in the 1972 publica-
tion Mathematical Software [Rice1972]. The Fehlberg variant of RK4 is given in
Forsythe, Malcolm and Moler [FMM].

Table 11. Differential Equation Numeric Solver Results

Package odepack applied to y′ = 4/(1 + x2), y(0) = 0.

Exact value of π 3.1415926535897932385 20 digits
Runge-Kutta 4 3.1415926535910 10 digits
Adams-Moulton lsode 3.1415932355842 6 digits
Stiff Solver lsode 3.1415931587318 5 digits
Runge-Kutta-Fehlberg 45 3.1416249508084 4 digits

Table 12. Differential Equation Numeric Solver Results

Some maple-supported routines, applied to the problem y′ = 4/(1 + x2), y(0) = 0.

Exact value of π 3.1415926535897932385 20 digits
Classical RK4 3.141592653589790 15 digits
Gear 3.141592653688446 11 digits
Dverk78 3.141592653607044 11 digits
Taylor Series 3.141592654 10 digits
Runge-Kutta-Fehlberg 45 3.141592674191119 8 digits
Multistep Gear 3.141591703761340 7 digits
Lsode stiff solver 3.141591733742521 6 digits

Computing ln 2 =
∫ 1

0 dx/(1 + x)

Like the problem of computing π, the formula for ln 2 arises from the method of
quadrature applied to y′ = 1/(1+x), y(0) = 0. The solution is y(x) =

∫ x
0 dt/(1+

t). Application of Simpson’s rule with 150 points gives ln 2 ≈ 0.693147180563800,
which agrees with the exact value ln 2 = 0.69314718055994530942 through 12
digits.

More robust numerical integration algorithms produce the exact answer for ln 2,
within the limitations of machine representation of numbers.
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Differential equation methods, as in the case of computing π, have results accu-
rate to at least 5 digits, as is shown in Tables 13 and 14. Lower order methods
such as classical Euler will produce results accurate to three digits or less.

Table 13. Differential Equation Numeric Solver

Results for odepack routines, applied to the problem y′ = 1/(1 + x), y(0) = 0.

Exact value of ln 2 0.69314718055994530942 20 digits
Adams-Moulton lsode 0.69314720834637 7 digits
Stiff Solver lsode 0.69314702723982 6 digits
Runge-Kutta 4 0.69314718056011 11 digits
Runge-Kutta-Fehlberg 45 0.69314973055488 5 digits

Table 14. Differential Equation Numeric Solver

Results for maple-supported routines, applied to the problem y′ = 1/(1 + x), y(0) = 0.

Exact value of ln 2 0.69314718055994530942 20 digits
Classical Euler 0.6943987430550621 2 digits
Classical Heun 0.6931487430550620 5 digits
Classical RK4 0.6931471805611659 11 digits
Gear 0.6931471805646605 11 digits
Gear Poly-extr 0.6931471805664855 11 digits
Dverk78 0.6931471805696615 11 digits
Adams-Bashforth 0.6931471793736268 8 digits
Adams-Bashforth-Moulton 0.6931471806484283 10 digits
Taylor Series 0.6931471806 10 digits
Runge-Kutta-Fehlberg 45 0.6931481489496502 5 digits
Lsode stiff solver 0.6931470754312113 7 digits
Rosenbrock stiff solver 0.6931473787603164 6 digits

Computing e from y′ = y, y(0) = 1

The initial attack on the problem uses classical RK4 with f(x, y) = y. After 300
steps, classical RK4 finds the correct answer for e to 12 digits: e ≈ 2.71828182846.
In Table 15, the details appear for how to accomplish the calculation using
matlab-compatible code. Corresponding maple code appears in Table 16 and
in Table 17. Additional code for octave and scilab appear in Tables 18 and 19.
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Table 15. Numerical Solution of y′ = y, y(0) = 1.

Classical RK4 with 300 subdivisions using matlab-compatible code.

function [x,y]=rk4(x0,y0,x1,n,f)

x=x0;y=y0;h=(x1-x0)/n;

for i=1:n;

k1=h*f(x,y);

k2=h*f(x+h/2,y+k1/2);

k3=h*f(x+h/2,y+k2/2);

k4=h*f(x+h,y+k3);

y=y+(k1+2*k2+2*k3+k4)/6;

x=x+h;

end

function yp = ff(x,y)

yp= y;

[x,y]=rk4(0,1,1,300,ff)

Table 16. Numerical Solution of y′ = y, y(0) = 1

using maple internal classical RK4 code.

de:=diff(y(x),x)=y(x):

ic:=y(0)=1:

Y:=dsolve({de,ic},y(x),
type=numeric,method=classical[rk4]):

Y(1);

Table 17. Numerical Solution of y′ = y, y(0) = 1

using classical RK4 with 300 subdivisions using maple-compatible code.

rk4 := proc(x0,y0,x1,n,f)

local x,y,k1,k2,k3,k4,h,i:

x=x0: y=y0: h=(x1-x0)/n:

for i from 1 to n do

k1:=h*f(x,y):k2:=h*f(x+h/2,y+k1/2):

k3:=h*f(x+h/2,y+k2/2):k4:=h*f(x+h,y+k3):

y:=evalf(y+(k1+2*k2+2*k3+k4)/6,Digits+4):

x:=x+h:

od:

RETURN(y):

end:

f:=(x,y)->y;

rk4(0,1,1,300,f);

A matlab m-file "rk4.m" is loaded into scilab-4.0 by getf("rk4.m") . Most

scilab code is loaded by using default file extension .sci , e.g., rk4scilab.sci

is a scilab file name. This code must obey scilab rules. An example appears
below in Table 18.
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Table 18. Numerical Solution of y′ = y, y(0) = 1

using classical RK4 with 300 subdivisions with scilab-4.0 code.

function

[x,y]=rk4sci(x0,y0,x1,n,f)

x=x0,y=y0,h=(x1-x0)/n

for i=1:n

k1=h*f(x,y)

k2=h*f(x+h/2,y+k1/2)

k3=h*f(x+h/2,y+k2/2)

k4=h*f(x+h,y+k3)

y=y+(k1+2*k2+2*k3+k4)/6

x=x+h

end

endfunction

function yp = ff(x,y)

yp= y

endfunction

[x,y]=rk4sci(0,1,1,300,ff)

The popularity of octave as a free alternative to matlab has kept it alive for
a number of years. Writing code for octave is similar to matlab and scilab,
however readers are advised to look at sample code supplied with octave before
trying complicated projects. In Table 19 can be seen some essential agreements
and differences between the languages. Versions of scilab after 4.0 have a matlab
to scilab code translator.

Table 19. Numerical Solution of y′ = y, y(0) = 1

using classical RK4 with 300 subdivisions with octave-2.1.

function

[x,y]=rk4oct(x0,y0,x1,n,f)

x=x0;y=y0;h=(x1-x0)/n;

for i=1:n

k1=h*feval(f,x,y);

k2=h*feval(f,x+h/2,y+k1/2);

k3=h*feval(f,x+h/2,y+k2/2);

k4=h*feval(f,x+h,y+k3);

y=y+(k1+2*k2+2*k3+k4)/6;

x=x+h;

endfor

endfunction

function yp = ff(x,y)

yp= y;

end

[x,y]=rk4oct(0,1,1,300,’ff’)

Exercises 4.4 �

Computing π
Compute π = y(1) from the initial value
problem y′ = 4/(1 + x2), y(0) = 0, us-
ing the given method. Number 3.14159
with 3-digit precision is the rounded num-
ber 3.142.

1. Use the Rectangular integration rule.
Determine the number of steps for 3-
digit precision.

2. Use the Rectangular integration rule.
Determine the number of steps for 4-
digit precision.

3. Use the Trapezoidal integration rule.
Determine the number of steps for 3-
digit precision.

4. Use the Trapezoidal integration rule.
Determine the number of steps for 4-
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digit precision.

5. Use Simpson’s rule. Determine the
number of steps for 5-digit precision.

6. Use Simpson’s rule. Determine the
number of steps for 6-digit precision.

7. Use a computer algebra system library
routine for RK4. Report the step size
used and the number of steps for 5-digit
precision.

8. Use a numerical workbench library rou-
tine for RK4. Report the step size used
and the number of steps for 5-digit pre-
cision.

Computing ln(2)
Compute ln(2) = y(1) from the initial value
problem y′ = 1/(1+x), y(0) = 0, using the
given method.

9. Use the Rectangular integration rule.
Determine the number of steps for 3-
digit precision.

10. Use the Rectangular integration rule.
Determine the number of steps for 4-
digit precision.

11. Use the Trapezoidal integration rule.
Determine the number of steps for 5-
digit precision.

12. Use the Trapezoidal integration rule.
Determine the number of steps for 6-
digit precision.

13. Use Simpson’s rule. Determine the
number of steps for 5-digit precision.

14. Use Simpson’s rule. Determine the
number of steps for 6-digit precision.

15. Use a computer algebra system library
routine for RK4. Report the step size
used and the number of steps for 5-digit
precision.

16. Use a numerical workbench library
routine for RK4. Report the step size
used and the number of steps for 5-digit
precision.

Computing e
Compute e = y(1) from the initial value
problem y′ = y, y(0) = 1, using the given
computer library routines. Report the ap-
proximate number of digits of precision at-
tained with a computer algebra system or
numerical workbench.

17. Improved Euler method, also known as
Heun’s method.

18. RK4 method.

19. RKF45 method.

20. Adams-Moulton method.

Stiff Differential Equation
The flame propagation equation y′ =
y2(1 − y) is known to be stiff for small
initial conditions y(0) > 0. Use classi-
cal rk4, then Runge-Kutta-Fehlberg rkf45
and finally a stiff solver to compute and
plot the solution y(t) in each case. Expect
rk4 to fail, no matter the step size. Both
rkf45 and a stiff solver will produce about
the same plot, but at different speeds.
Reference: matlab author Cleve Moler,
blogs.mathworks.com 2014.

21. y(0) = 0.01

22. y(0) = 0.005

23. y(0) = 0.001

24. y(0) = 0.0001
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4.5 Earth to the Moon

4.5 Earth to the Moon

A projectile launched from the surface of the earth is attracted both by the earth
and the moon. The altitude r(t) of the projectile above the earth is known to
satisfy the initial value problem (see Technical Details page 264)

r′′(t) = − Gm1

(R1 + r(t))2
+

Gm2

(R2 −R1 − r(t))2
,

r(0) = 0, r′(0) = v0.

(1)

The unknown initial velocity v0 of the projectile is given in meters per second.
The constants in (1) are defined as follows.

G = 6.6726× 10−11 N-m2/kg2 Universal gravitation constant,
m1 = 5.975× 1024 kilograms Mass of the earth,
m2 = 7.36× 1022 kilograms Mass of the moon,
R1 = 6, 378, 000 meters Radius of the earth,
R2 = 384, 400, 000 meters Distance from the earth’s center to

the moon’s center.

The Jules Verne Problem

In his 1865 novel From the Earth to the Moon, Jules Verne asked what initial
velocity must be given to the projectile in order to reach the moon. The question
in terms of equation (1) becomes:

What minimal value of v0 causes the projectile to have zero net
acceleration at some point between the earth and the moon?

The projectile only has to travel a distance R equal to the surface-to-surface
distance between the earth and the moon. The altitude r(t) of the projectile
must satisfy 0 ≤ r ≤ R. Given v0 for which the net acceleration is zero, r′′(t) = 0
in (1), then the projectile has reached a critical altitude r∗, where gravitational
effects of the moon take over and the projectile will fall to the surface of the
moon.

Let r′′(t) = 0 in (1) and substitute r∗ for r(t) in the resulting equation. Then3

− Gm1

(R1 + r∗)2
+

Gm2

(R2 −R1 − r∗)2
= 0,

r∗ =
R2

1 +
√

m2/m1

−R1 ≈ 339, 620, 820 meters.
(2)

Using energy methods (see Technical details, page 264), it is possible to calculate
exactly the minimal earth-to-moon velocity v∗0 required for the projectile to just
reach critical altitude r∗:

v∗0 ≈ 11067.31016 meters per second.(3)
3Multiple values have been reported for the mass of the moon. Using m2 = 7.34767309×1022

gives r∗ ≈ 339, 649, 780 meters.
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A Numerical Experiment

The value v∗0 ≈ 11067.31016 in (3) will be verified experimentally. As part of this
experiment, the flight time is estimated.

Such a numerical experiment must adjust the initial velocity v0 in initial value
problem (1) so that r(t) increases from 0 to R. Graphical analysis of a solution
r(t) for low velocities v0 gives insight into the problem; see Figure 7.

The choice of numerical software solver makes for significant differences in this
problem. Initial work used the Livermore Laboratory numerical stiff solver for
ordinary differential equations (acronym lsode).

Computer algebra system maple has algorithms lsode or rosenbrock. The
dsolve options are method=lsode or stiff=true. Other stiff solvers of equal
quality can be used for nearly identical results. Experiments are necessary to
determine the required accuracy.

r

t

0

51427

206

Figure 7. Jules Verne Problem.
The solution r(t) of (1) for v0 = 1000. The
projectile rises to a maximum height of about
51, 427 meters, then it falls back to earth. The
trip time is 206 seconds.

The numerical experiment solves (1) using rosenbrock, then the solution is
graphed to see if the projectile falls back to earth (as in Figure 7) or if it reaches
an altitude near r∗ and then falls to the moon. The first experiment might use
velocity v0 = 1000 and trip time T = 210 (see Figure 7). In this experiment the
projectile falls back to earth. The projectile travels to the moon when the r-axis
of the graphic has maximum greater than r∗ ≈ 339, 620, 820 meters. The logic is
that r(t) > r∗ causes the gravitation effects of the moon to be strong enough to
force the projectile to fall to the moon.

In Table 20, find the maple initialization code group 1. In Table 21, group 2 is
executed a number of times, to refine estimates for the initial velocity v0 and the
trip time T . The graphics produced resemble Figure 7 or Figure 8. A successful
trip to the moon is represented in Figure 8, which uses v0 = 11068 meters per
second and T = 527000 seconds.

0 T
t

r

r∗
R

T = 527000
v0 = 11068

Figure 8. Experimental trip to
the moon.
The initial velocity is v0 = 24, 764 miles
per hour and the trip time is 147 hours.
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Table 20. Initialization Code in maple for the Trip to the Moon Numerical

Experiment.

Group 1 defines seven constants G, m1, m2, R1, R2, R3, R and computes values r∗ ≈
339, 620, 820 and v∗0 ≈ 11067.31016.

# Group 1: Constants, rstar and v0star

G:=6.6726e-11: m1:=5.975e24: m2:=7.36e22:

R1:=6.378e6: R2:=3.844e8: R3:=1.74e6:

R:=R2-R1-R3:

ans:=[solve(-G*m1/(r+R1)^2 + G*m2/(R2-R1-r)^2=0,r)]:

rstar:=ans[1];

FF:=r->G*m1/(R1+r)+G*m2/(R2-R1-r):

v0star:=sqrt(2*(FF(0)-FF(rstar)));# v0star=11067.31016

Two utility functions are used: report(), makePlot().

# Trip to the Moon Numerical Experiment

report:=proc() local s,hit;global R,rstar,v0,T;

printf("v0=%a, T=%.2f\n",v0,T);

printf("Moon at distance R=%.2f (blue)\n",R);

printf("Acceleration=0 at r=rstar (green)\n");

end proc:

makePlot:=proc() local opt;global T,Y,R,rstar,v0;

opt:=legend=["r(t)","R","rstar"],color=[red,blue,green],

title=sprintf("v0=%f",v0);

plot([Y(t),R,rstar],t=0..T,opt);

end proc:

Table 21. Iteration Code in maple for the Trip to the Moon Numerical

Experiment.

Group 2 plots two graphics for given v0 and T . A successful trip to the moon uses velocity

v0 > v∗0 ≈ 11067.31016. Curve Y (t) should cross r∗ ≈ 339, 620, 820 and Y (T ) ≥ R must

hold.

# Group 2: Iteration code

v0:=11068; # v0>v0star. Projectile falls to the moon.

T:=527000: # Guess the trip time T

de:=diff(r(t),t,t)=-G*m1/(r(t)+R1)^2+G*m2/(R2-R1-r(t))^2:

ic:=r(0)=0,D(r)(0)=v0:

NS:=numeric,stiff=true,output=listprocedure:

p:=dsolve([de,ic],r(t),NS); Y:=eval(r(t),p):

makePlot();report();

# Plot done. Change v0, T and re-execute group 2.
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4.5 Earth to the Moon

Two typical experiments appear below for v0 = 11000 (falls to earth) and v0 =
11068 (falls to the moon). They have a report like this:

v0=11068, T=527000.00

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)

r(401326.1134)=rstar=339620820.00
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4.5 Earth to the Moon

Exact trip time. The time T for a trip with velocity v0 = 11068 can be
computed if an approximate value for the trip time is known.

# Group 2 extra code for trip time T

v0:=11068;

fsolve(Y(t)=R,t=526000); # T = 5.274409891*10^5

Details for (1) and (3)

Technical details for (1): To derive (1), it suffices to write down a competition
between the Newton’s second law force relation mr′′(t) and the sum of two forces due to
gravitational attraction for the earth and the moon. Here, m stands for the mass of the
projectile.

Gravitational force for the earth. This force, by Newton’s universal gravitation law,
has magnitude

F1 =
Gm1m

R2
3

where m1 is the mass of the earth, G is the universal gravitation constant and R3 is the
distance from the projectile to the center of the earth: R3 = R1 + r(t).

Gravitational force for the moon. Similarly, this force has magnitude

F2 =
Gm2m

R2
4

where m2 is the mass of the moon and R4 is the distance from the projectile to the
center of the moon: R4 = R2 −R1 − r(t).

Competition between forces. The force equation is

mr′′(t) = −F1 + F2

due to the directions of the force vectors. Simplifying the relations and cancelling m
gives equation (1). ■

Technical details for (3): To justify the value for v0, multiply equation (1) by r′ and
integrate the new equation from t = 0 to t = t0 to get

1

2
(r′(t0))

2 = F (r(t0))− F (0) +
1

2
v20 , where

F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

(4)
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The expression F (r) is minimized when F ′(r) = 0 or else at r = 0 or r = R. The
right side of (1) is F ′(r), hence F (r) has unique critical point r = r∗. Compute F (0) =
62522859.35, F (r∗) = 1280168.523 and F (R) = 3864318.458. Then the minimum of
F (r) is at r = r∗ and F (r∗) ≤ F (r(t0)).

The left side of the first equality in (4) is nonnegative, therefore also the right side
is nonnegative, giving 1

2 v
2
0 ≥ F (0) − F (r(t0)). If the projectile ever reaches altitude

r∗, then r(t0) = r∗ is allowed and v0 ≥
√

2F (0)− 2F (r∗) ≈ 11067.31016. Restated,
v0 < 11067.31016 implies the projectile never reaches altitude r∗, hence it falls back to
earth. On the other hand, if v0 > 11067.31016, then by (4) and F (r∗) ≤ F (r) it follows
that r′(t) > 0 and therefore the projectile cannot return to earth. That is, r(t) = 0 for
some t > 0 can’t happen.

In summary, the least launch velocity v∗0 which allows r(t) = r∗ for some t > 0 is given
by the formulas

v∗0 =
√
2F (0)− 2F (r∗), F (r) =

Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

This completes the proof of equation (3). ■

Exercises 4.5 �

Critical Altitude r∗

The symbol r∗ is the altitude r(t) at which
gravitational effects of the moon take over,
causing the projectile to fall to the moon.

1. Justify from the differential equation
that r′′(t) = 0 at r∗ = r(t) implies the
first relation in (2):

Gm2

(R2 − R1 − r∗)2
−

Gm1

(R1 + r∗)2
= 0.

2. Solve symbolically the relation of the
previous exercise for r∗, to obtain the
second equation of (2):

r∗ =
R2

1 +
√
m2/m1

−R1.

3. Use the previous exercise and values for
the constants R1, R2, m1, m2 to obtain
the approximation

r∗ = 339, 649, 780 meters.

4. Determine the effect on r∗ for a one
percent error in measurement m2. Re-
place m2 by 0.99m2 and 1.01m2 in the
formula for r∗ and report the two esti-
mated critical altitudes.

Escape Velocity v∗0
The symbol v∗0 is the velocity r′(0) such
that limt→∞ r(t) = ∞, but smaller launch
velocities will cause the projectile to fall
back to the earth. Throughout, define

F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

5. Let v0 = r′(0), r∗ = r(t0). Derive the
formula

1

2
(r′(t0))

2 = F (r∗)− F (0) +
1

2
v20

which appears in the proof details.

6. Verify using the previous exercise that
r′(t0) = 0 implies

v∗0 =
√
2(F (0)− F (r∗)).

7. Verify by hand calculation that v∗0 ≈
11067.31016 meters per second.

8. Argue by mathematical proof that F (r)
is not minimized at the endpoints of the
interval 0 ≤ r ≤ R.

Numerical Experiments
Assume values given in the text for phys-
ical constants. Perform the given exper-
iment with numerical software on initial
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value problem (1), page 260. The cases
when v0 > v∗0 escape the earth, while the
others fall back to earth.

9. RKF45 solver, v0 = 11068, T = 515000.
Plot the solution on 0 ≤ t ≤ T .

10. Stiff solver, v0 = 11068, T = 515000.
Plot the solution on 0 ≤ t ≤ T .

11. RKF45 solver, v0 = 11067.2, T =
800000. Plot the solution on 0 ≤ t ≤ T .

12. Stiff solver, v0 = 11067.2, T = 800000.
Plot the solution on 0 ≤ t ≤ T .

13. RKF45 solver, v0 = 11067, T =
1000000. Plot the solution on 0 ≤ t ≤
T .

14. Stiff solver, v0 = 11067, T = 1000000.
Plot the solution on 0 ≤ t ≤ T .

15. RKF45 solver, v0 = 11066, T =
800000. Plot the solution on 0 ≤ t ≤ T .

16. Stiff solver, v0 = 11066, T = 800000.
Plot the solution on 0 ≤ t ≤ T .

17. RKF45 solver, v0 = 11065. Find a
suitable value T which shows that the
projectile falls back to earth, then plot
the solution on 0 ≤ t ≤ T .

18. Stiff solver, v0 = 11065. Find a suit-
able value T which shows that the pro-
jectile falls back to earth, then plot the
solution on 0 ≤ t ≤ T .

19. RKF45 solver, v0 = 11070. Find a
suitable value T which shows that the
projectile falls to the moon, then plot
the solution on 0 ≤ t ≤ T .

20. Stiff solver, v0 = 11070. Find a suit-
able value T which shows that the pro-
jectile falls to the moon, then plot the
solution on 0 ≤ t ≤ T .
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4.6 Skydiving

A skydiver of 160 pounds jumps from a hovercraft at 15, 000 feet. The fall is
mostly vertical from zero initial velocity, but there are significant effects from
air resistance until the parachute opens at 5, 000 feet. The resistance effects are
determined by the skydiver’s clothing and body shape.

Velocity Model

Assume the skydiver’s air resistance is modeled in terms of velocity v by a force
equation

F (v) = av + bv2 + cv3.

The constants a, b, c are given by the formulas

a = 0.009, b = 0.0008, c = 0.0001.

In particular, the force F (v) is positive for v positive. According to Newton’s
second law, the velocity v(t) of the skydiver satisfies mv′(t) = mg − F (v). We
assume mg = 160 pounds and g ≈ 32 feet per second per second. The Velocity
model is

v′(t) = 32− 32

160

(
0.009v(t) + 0.0008v2(t) + 0.0001v3(t)

)
, v(0) = 0.

Distance Model

The distance x(t) traveled by the skydiver, measured from the hovercraft, is given
by the Distance model

x′(t) = v(t), x(0) = 0.

The velocity is expected to be positive throughout the flight. Because the
parachute opens at 5000 feet, at which time the velocity model must be replaced
the open parachute model (not discussed here), the distance x(t) increases with
time from 0 feet to its limiting value of 10000 feet. Values of x(t) from 10000 to
15000 feet make sense only for the open parachute model.

Terminal Velocity

The terminal velocity is an equilibrium solution v(t) = v∞ of the velocity
model, therefore constant v∞ satisfies

32− 32

160

(
0.009v∞ + 0.0008v2∞ + 0.0001v3∞

)
= 0.

267



4.6 Skydiving

A numerical solver is applied to find the value v∞ = 114.1 feet per second, which
is about 77.8 miles per hour. For the solver, we define f(v) = 32 − F (v) and
solve f(v) = 0 for v. Some maple details:

f:=v->32 - (32/160)*(0.009*v+0.0008*v^2+0.0001*v^3);

fsolve(f(v)=0,v); # 114.1032777 ft/sec

60*60*fsolve(f(v)=0,v)/5280; # 77.79768934 mi/hr

A Numerical Experiment

The Runge-Kutta method will be applied to produce a table which contains the
elapsed time t, the skydiver velocity v(t) and the distance traveled x(t), up until
the distance reaches nearly 10000 feet, whereupon the parachute opens.

The objective here is to illustrate practical methods of table production in a
computer algebra system or numerical laboratory. It is efficient in these compu-
tational systems to phrase the problem as a system of two differential equations
with two initial conditions.

System Conversion. The velocity substitution v(t) = x′(t) used in the velocity
model gives us two differential equations in the unknowns x(t), v(t):

x′(t) = v(t), v′(t) = g − 1

m
F (v(t)).

Define f(v) = g − (1/m)F (v). The path we follow is to execute the maple code
below, which produces the table that follows using the default Runge-Kutta-
Fehlberg algorithm.

eq:=32 - (32/160)*(0.009*v+0.0008*v^2+0.0001*v^3:

f:=unapply(eq,v);

de1:=diff(x(t),t)=v(t); de2:=diff(v(t),t)=f(v(t));

ic:=x(0)=0,v(0)=0;opts:=numeric,output=listprocedure:

p:=dsolve({de1,de2,ic},[x(t),v(t)],opts);

X:=eval(x(t),p); V:=eval(v(t),p);

fmt:="%10.2f %10.2f %10.2f\n";

seq(printf(fmt,5*t,X(5*t),V(5*t)),t=0..18);

t x(t) v(t) t x(t) v(t)

5.00 331.26 106.84 50.00 5456.76 114.10
10.00 892.79 113.97 55.00 6027.28 114.10
15.00 1463.15 114.10 60.00 6597.80 114.10
20.00 2033.67 114.10 65.00 7168.31 114.10
25.00 2604.18 114.10 70.00 7738.83 114.10
30.00 3174.70 114.10 75.00 8309.35 114.10
35.00 3745.21 114.10 80.00 8879.86 114.10
40.00 4315.73 114.10 85.00 9450.38 114.10
45.00 4886.25 114.10 90.00 10020.90 114.10
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The table says that the flight time to parachute open at 10,000 feet is about 90
seconds and the terminal velocity 114.10 feet/sec is reached in about 15 seconds.

More accurate values for the flight time 89.82 to 10,000 feet and time 14.47 to
terminal velocity can be determined as follows.

fsolve(X(t)=10000,t,80..95);

fsolve(V(t)=114.10,t,2..20);

Alternate Method. Another way produce the table is to solve the velocity
model numerically, then determine x(t) =

∫ t
0 v(r)dr by numerical integration.

Due to accuracy considerations, a variant of Simpson’s rule is used, called the
Newton-cotes rule. The maple implementation of this idea follows.

The first method of conversion into two differential equations is preferred, even
though the alternate method reproduces the table using only the textbook ma-
terial presented in this chapter.

f:=unapply(32-(32/160)*(0.009*v+0.0008*v^2+0.0001*v^3),v);

de:=diff(v(t),t)=f(v(t)); ic:=v(0)=0;

q:=dsolve({de,ic},v(t),numeric,output=listprocedure);

V:=eval(v(t),q);

X:=u->evalf(Int(V,0..u,continuous,_NCrule));

fmt:="%10.2f %10.2f %10.2f\n";

seq(printf(fmt,5*t,X(5*t),V(5*t)),t=0..18);

Ejected Baggage

Much of what has been done here applies as well to an ejected parcel, instead
of a skydiver. What changes is the force equation F (v), which depends upon
the parcel exterior and shape. The distance model remains the same, but the
restraint 0 ≤ x ≤ 10000 no longer applies, since no parachute opens. We expect
the parcel to reach terminal velocity in 5 to 10 seconds and hit the ground at
that speed.

Variable Mass

The mass of a skydiver can be time-varying. For instance, the skydiver lets water
leak from a reservoir. This kind of problem assumes mass m(t), position x(t) and
velocity v(t) for the diver. Then Newton’s second law gives a position-velocity
model

x′(t) = v(t),

(m(t)v(t))′ = G(t, x(t), v(t)).

269



4.6 Skydiving

The problem is similar to rocket propulsion, in which expended fuel decreases the
in-flight mass of the rocket. Simplifying assumptions make it possible to present
formulas for m(t) and G(t, x, v), which can be used by the differential equation
solver.

Exercises 4.6 �

Terminal Velocity
Assume force F (v) = av + bv2 + cv3 and
g = 32, m = 160/g. Using computer as-
sist, find the terminal velocity v∞ from the
velocity model v′ = g − 1

mF (v), v(0) = 0.

1. a = 0, b = 0 and c = 0.0002.

2. a = 0, b = 0 and c = 0.00015.

3. a = 0, b = 0.0007 and c = 0.00009.

4. a = 0, b = 0.0007 and c = 0.000095.

5. a = 0.009, b = 0.0008 and c = 0.00015.

6. a = 0.009, b = 0.00075 and c = 0.00015.

7. a = 0.009, b = 0.0007 and c = 0.00009.

8. a = 0.009, b = 0.00077 and c = 0.00009.

9. a = 0.009, b = 0.0007 and c = 0.

10. a = 0.009, b = 0.00077 and c = 0.

Numerical Experiment
Let F (v) = av + bv2 + cv3 and g = 32.
Consider the skydiver problem mv′(t) =
mg − F (v) and constants m, a, b, c sup-
plied below. Using computer assist, apply
a numerical method to produce a table for
the elapsed time t, the velocity v(t) and
the distance x(t). The table must end at
x(t) ≈ 10000 feet, which determines the
flight time.

11. m = 160/g, a = 0, b = 0 and c =
0.0002.

12. m = 160/g, a = 0, b = 0 and c =
0.00015.

13. m = 130/g, a = 0, b = 0.0007 and
c = 0.00009.

14. m = 130/g, a = 0, b = 0.0007 and
c = 0.000095.

15. m = 180/g, a = 0.009, b = 0.0008 and
c = 0.00015.

16. m = 180/g, a = 0.009, b = 0.00075
and c = 0.00015.

17. m = 170/g, a = 0.009, b = 0.0007 and
c = 0.00009.

18. m = 170/g, a = 0.009, b = 0.00077
and c = 0.00009.

19. m = 200/g, a = 0.009, b = 0.0007 and
c = 0.

20. m = 200/g, a = 0.009, b = 0.00077
and c = 0.

Flight Time
Let F (v) = av + bv2 + cv3 and g = 32.
Consider the skydiver problem mv′(t) =
mg − F (v) with constants m, a, b, c sup-
plied below. Using computer assist, apply
a numerical method to find accurate values
for the flight time to 10,000 feet and the
time required to reach terminal velocity.

21. mg = 160, a = 0.0095, b = 0.0007 and
c = 0.000092.

22. mg = 160, a = 0.0097, b = 0.00075
and c = 0.000095.

23. mg = 240, a = 0.0092, b = 0.0007 and
c = 0.

24. mg = 240, a = 0.0095, b = 0.00075
and c = 0.

Ejected Baggage
Baggage of 45 pounds is dropped from a
hovercraft at 15, 000 feet. Assume air resis-
tance force F (v) = av + bv2 + cv3, g = 32
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and mg = 45. Using computer assist, find
accurate values for the flight time to the
ground and the terminal velocity. Estimate
the time required to reach 99.95% of termi-
nal velocity.

25. a = 0.0095, b = 0.0007, c = 0.00009

26. a = 0.0097, b = 0.00075, c = 0.00009

27. a = 0.0099, b = 0.0007, c = 0.00009

28. a = 0.0099, b = 0.00075, c = 0.00009
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4.7 Lunar Lander

A lunar lander goes through free fall to the surface of the moon, its descent
controlled by retrorockets that provide a constant deceleration to counter the
effect of the moon’s gravitational field.

The retrorocket control is supposed to produce a soft touchdown, which means
that the velocity v(t) of the lander is zero when the lander touches the moon’s
surface. To be determined:

H = height above the moon’s surface for retrorocket activation,

T = flight time from retrorocket activation to soft touchdown.

Investigated here are two models for the lunar lander problem. In both cases, it
is assumed that the lander has mass m and falls in the direction of the moon’s
gravity vector. The initial speed of the lander is assumed to be v0. The retro-
rockets supply a constant thrust deceleration g1. Either the fps or mks unit
system will be used. Expended fuel ejected from the lander during thrust will be
ignored, keeping the lander mass constantly m.

The distance x(t) traveled by the lander t time units after retrorocket activation
is given by

x(t) =

∫ t

0
v(r)dr, 0 ≤ t ≤ T.

Therefore, H and T are related by the formulas

v(T ) = 0, x(T ) = H.

Constant Gravitational Field

Let g0 denote the constant acceleration due to the moon’s gravitational field.
Assume given initial velocity v0 and the retrorocket thrust deceleration g1. Define
A = g1−g0, the effective thrust. Set the origin of coordinates at the center of mass
of the lunar lander. Let vector ı⃗ have tail at the origin and direction towards the
center of the moon. The force on the lander is mv′(t)⃗ı by Newton’s second law.
The forces mg0⃗ı and −mg1⃗ı add to −mA⃗ı. Force competition mv′(t)⃗ı = −mA⃗ı
gives the velocity model

mv′(t) = −mA, v(0) = v0.

This quadrature-type equation is solved routinely to give

v(t) = −At+ v0, x(t) = −At2

2
+ v0t.

The equation v(T ) = 0 gives T = v0/A and H = x(T ) = v20/(2A).
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Numerical illustration. Let v0 = 1200 miles per hour and A = 30000 miles
per hour per hour. We compute values T = 1/25 hours = 2.4 minutes and
H = x(T ) = 24 miles. A maple answer check appears below.

v0:=1200; A:=30000;

X:=t->-A*t^2/2+v0*t;

T:=(v0/A): (T*60.0).’min’,X(T).’miles’; # 2.4 min,24 miles

A1:=A*2.54*12*5280/100/3600/3600; # mks units 3.725333334

v1:=v0*12*2.54*5280/100/3600; # mks units 536.448

evalf(convert(X(T),units,miles,meters)); # 38624.256

The constant field model predicts that the retrorockets should be turned on 24
miles above the moon’s surface with soft landing descent time of 2.4 minutes. It
turns out that a different model predicts that 24 miles is too high, but only by a
small amount. We investigate now this alternative model, based upon replacing
the constant gravitational field by a variable field.

Variable Gravitational Field

The system of units will be the mks system. Assume the lunar lander is located
at position P above the moon’s surface. Define symbols:

m = mass of the lander in kilograms,

M = 7.35× 1022 kilograms is the mass of the moon,

R = 1.74× 106 meters is the mean radius of the moon,

G = 6.6726× 10−11 is the universal gravitation constant, in mks units,

H = height in meters of position P above the moon’s surface,

v0 = lander velocity at P in meters per second,

g0 = GM/R2 = constant acceleration due to the moon’s gravity in meters per
second per second,

g1 = constant retrorocket thrust deceleration in meters per second per second,

A = g1 − g0 = effective retrorocket thrust deceleration in meters per second per
second, constant field model,

t = time in seconds,

x(t) = distance in meters from the lander to position P ,

v(t) = x′(t) = velocity of the lander in meters per second.

273
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The project is to find the height H above the moon’s surface and the descent
time T for a soft landing, using fixed retrorockets at time t = 0.

The origin of coordinates will be P and ı⃗ is directed from the lander to the moon.
Then x(t)⃗ı is the lander position at time t. The initial conditions are x(0) = 0,
v(0) = v0. Let g0(t) denote the variable acceleration of the lander due to the
moon’s gravitational field. Newton’s universal gravitation law applied to point
masses representing the lander and the moon gives the expression

Force = mg0(t)⃗ı =
GmM

(R+H − x(t))2
ı⃗.

The force on the lander is mx′′(t)⃗ı by Newton’s second law. The force is also
mg0(t)⃗ı−mg1⃗ı. Force competition gives the second order distance model

mx′′(t) = −mg1 +
mMG

(R+H − x(t))2
, x(0) = 0, x′(0) = v0.

The technique from the Jules Verne problem applies: multiply the differential
equation by x′(t) and integrate from t = 0 to the soft landing time t = T . The
result:

(x′(t))2

2

∣∣∣∣t=T

t=0

= −g1(x(T )− x(0)) +
GM

R+H − x(t)

∣∣∣∣t=T

t=0

.

Using the relations x(0) = 0, x′(0) = v0, x′(T ) = 0 and x(T ) = H gives a
simplified implicit equation for H:

−v20
2

= −g1H +
GM

R
− GM

R+H
.

Numerical illustration. Use v0 = 536.448, g1 = 5.3452174 to mimic the
constant field example of initial velocity 1200 miles per hour and effective retro-
rocket thrust 30000 miles per hour per hour. A soft landing is possible from
height H = 23.7775 miles with a descent time of T = 2.385 minutes. These
results compare well with the constant field model, which had results of H = 24
miles and T = 2.4 minutes. Some maple details follow.

M:=7.35* 10^(22);R:=1.74* 10^6;G:=6.6726* 10^(-11);

v0_CFM:=1200: A_CFM:=30000: # Constant field model values

cf:=1*5280*12*2.54/100/3600: # miles/hour to meters/second

v0:=v0_CFM*cf; g0:=G*M/R^2: g1:=A_CFM*cf/3600+g0;

eq:= -(v0^2/2) + g1*H + G*M/(R+H) - G*M/R=0:

HH:=[solve(eq,H)][1]; # HH := 38266 meters

de:=diff(x(t),t,t) = -g1 + M*G/(R+HH-x(t))^2;

ic:= x(0)=0, D(x)(0)=v0;

p:=dsolve({de,ic},x(t),numeric):

X:=t->evalf(rhs(p(t)[2])):

V:=t-> evalf(rhs(p(t)[3])):
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4.7 Lunar Lander

plot(V,0..300);# V=0 at approx 140 sec

TT1:=fsolve(’V(t)’=0,t=140): TT:=TT1/60:

TT1.’seconds’, TT.’minutes’;

X(TT1).’meters’, ((X(TT1)*100/2.54)/12/5280).’miles’;

# 2.385 min, 23.78 miles

0
0 300

40000

Figure 9. A maple plot used to
determine the descent time T =
2.385 minutes.

Modeling

The field of the earth has been ignored in both models, which is largely justi-
fied because the universal gravitation law term for the lander and the earth is
essentially zero for lander locations near the moon.

The field for the lander and the moon is not constant, and therefore it can be
argued that conditions exist when assuming it is constant will produce invalid
and obviously incorrect results.

Are there cases when the answers for the two models differ greatly? Yes, but the
height H of retrorocket activation has to be large. This question is re-visited in
the exercises.

Control problems. The descent problem for a lunar lander is a control problem
in which the controller is the retrorocket plus the duration of time in which it is
active. All we have done here is to decide that the descent should be controlled by
retrorockets well in advance of 24 miles above the moon’s surface. The methods
used here can be applied to gain insight into the bang-bang control problem
of turning on the retrorockets for n intervals of time of durations ∆t1, . . . , ∆tn
to make an almost soft landing.

Primitive numerical methods. The predictions made here using the computer
algebra system maple can be replaced by primitive RK4 methods and graphing.
No practising scientist or engineer would do only that, however, because they
want to be confident of the calculations and the results. The best idea is to use
a black box of numerical and graphical methods which have little chance of
failure, e.g., a computer algebra system or a numerical laboratory.
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Exercises 4.7 �

Lunar Lander Constant Field
Find the retrorocket activation time T and
the activation height x(T ). Assume the
constant gravitational field model. Units
are miles/hour and miles/hour per hour.

1. v0 = 1210, A = 30020.

2. v0 = 1200, A = 30100.

3. v0 = 1300, A = 32000.

4. v0 = 1350, A = 32000.

5. v0 = 1500, A = 45000.

6. v0 = 1550, A = 45000.

7. v0 = 1600, A = 53000.

8. v0 = 1650, A = 53000.

9. v0 = 1400, A = 40000.

10. v0 = 1450, A = 40000.

Lunar Lander Variable Field
Find the retrorocket activation time T and
the activation height x(T ). Assume the
variable gravitational field model and mks
units.

11. v0 = 540.92, g1 = 5.277.

12. v0 = 536.45, g1 = 5.288.

13. v0 = 581.15, g1 = 5.517.

14. v0 = 603.504, g1 = 5.5115.

15. v0 = 625.86, g1 = 5.59.

16. v0 = 603.504, g1 = 5.59.

17. v0 = 581.15, g1 = 5.59.

18. v0 = 670.56, g1 = 6.59.

19. v0 = 670.56, g1 = 6.83.

20. v0 = 715.26, g1 = 7.83.

Distinguishing Models
The constant field model (1) page 272 and
the variable field model (2) page 273 are
verified here to be distinct, by example.
Find the retrorocket activation times T1, T2

and the activation heights x1(T1), x2(T2)
for the two models (1), (2). Relations
A = g1 − g0 and g0 = GM/R2 apply to
compute g1 for the variable field model.

21. v0 = 1200 mph, A = 10000 mph/h.
Answer: 72, 66.91 miles.

22. v0 = 1200 mph, A = 12000 mph/h.
Answer: 60, 56.9 miles.

23. v0 = 1300 mph, A = 10000 mph/h.
Answer: 84.5, 74.23 miles.

24. v0 = 1300 mph, A = 12000 mph/h.
Answer: 76.82, 71.55 miles.
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4.8 Comets

Planet Mercury

Its elliptical orbit has major semi-axis a = 0.3871 AU (astronomical units) and
eccentricity e = 0.2056. The ellipse can be described by the equations

x(t) = a cos(E(t)),

y(t) = a
√
1− e2 sin(E(t)),

where t is the mean anomaly (0 ≤ t ≤ 2π) and E(t) is the eccentric anomaly
determined from Kepler’s equation E = t+ e sin(E).

The path of mercury is an ellipse, yes. Like the earth, the path is essentially
circular, due to eccentricity near zero.

Halley’s Comet

The Kepler theory for mercury applies to Halley’s comet, which has a highly
elliptical orbit of eccentricity e = 0.967. The major semi-axis is a = 17.8 as-
tronomical units (AU), the minor semi-axis is b = a

√
1− e2 = 4.535019431 AU,

with period about 76 earth-years.

Our project is to determine E(t) numerically for Halley’s comet and plot an
animation of the elliptical path of the comet.

History

Kepler’s laws of planetary motion were published in 1609 and 1618. The laws
are named after Johannes Kepler (1571-1630), a German mathematician and
astronomer, who formulated the laws after years of calculation based upon excel-
lent observational data of the Danish astronomer Tycho Brahe (1546-1601). The
three laws:

I. The orbit of each planet is an ellipse with the sun at one focus.

II. The line joining the sun to a planet sweeps out equal areas in
equal time.

III. The square of the planet’s period of revolution is proportional
to the cube of the major semi-axis of its elliptical orbit.

These laws apply not only to planets, but to satellites and comets. A proof of
Kepler’s first two laws, assuming Newton’s laws and a vector analysis background,
can be found in this text, page 546, infra.
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The elliptical orbit can be written as

x(M) = a cos(E(M)),
y(M) = b sin(E(M)),

where a and b are the semi-axis lengths of the ellipse. Astronomers call function
E the planet’s eccentric anomaly and M the planet’s mean anomaly.

The minor semi-axis of the ellipse is given by

b = a
√

1− e2,

where e is the eccentricity of the elliptical orbit. The mean anomaly satisfies
M = 2πt/T , where t=time and T is the period of the planet.

It is known that the first two laws of Kepler imply Kepler’s equation

E = M + e sin(E).

Kepler’s Initial Value Problem

The equation E = M + e sinE, called Kepler’s equation, is the unique implicit
solution of the separable differential equation

dE

dM
=

1

1− e cos(E)
,

E(0) = 0.
(1)

The initial value problem (1) defines the eccentric anomaly E(M). We are able to
compute values of E by suitable first order numerical methods, especially RK4.

It is routine to compute dE/dM by implicit differentiation of Kepler’s equa-
tion. The idea works on many implicit equations: find an initial value problem
replacement by implicit differentiation.

Eccentric Anomaly and Elliptical Orbit

The solution for comet Halley uses maple in a direct manner, basing the solution
on Kepler’s equation. Details:

# Kepler’s equation E = M + e sin(E)

e:=0.967:EE := unapply(RootOf(_Z-M-e*sin(_Z)),M);

Ex:=cos(EE(M)):Ey:=sqrt(1-e^2)*sin(EE(M)):

plot(EE(M),M=0..2*Pi);

plot([Ex,Ey,M=0..2*Pi]);
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2π

2π

0

M

E

Figure 10. Eccentric anomaly plot for Halley’s comet.

Figure 11. Elliptic trace plot of Halley’s comet.

Comet Halley’s Positions each Year

The elliptic trace plot can be modified to display a circle for each comet position
from year 0 to year 75; see Figure 12. Implemented here is an approach to
evaluation of the eccentric anomaly E(M) by numerical differential equation
methods. This method is orders of magnitude faster than the RootOf method of
the previous illustration.

The lack of circles near the focus on the right is explained by the increased speed
of the comet near the sun, which is at this focus.

# Comet positions each year

e:=0.967:de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;

p:=dsolve({de,ic},numeric,output=listprocedure);

EE := eval(y(x),p):

Ex:=unapply(cos(EE(M)),M):

Ey:=unapply(sqrt(1-e^2)*sin(EE(M)),M):

snapshots:=seq([Ex(2*n*Pi/56),Ey(2*n*Pi/56)],n=0..56):

opts:=scaling=constrained,axes=boxed,style=point,

symbolsize=20,symbol=circle,thickness=3:

plot([snapshots],opts);
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Figure 12. Halley’s comet positions each earth-year. On the axes, one unit

equals 17.8 AU.

Halley’s Comet Animation

Computer algebra system maple will be used to produce a simple animation of
Halley’s comet as it traverses its 76-year orbit around the sun. The plan is to solve
Kepler’s initial value problem in order to find the value of the eccentric anomaly
E(M), then divide the orbit into 76 frames and display each in succession to
obtain the animation. Defining E by Kepler’s equation E = M + e sinE is too
slow for most computer equipment, therefore differential equations are used.

While each comet position in Figure 13 represents an equal block of time, about
one earth-year, the amount of path traveled varies. This is because the speed
along the path is not constant, the comet traveling fastest near the sun. The
most detail is shown for an animation at 2 frames per second. The orbit graph
uses one unit equal to about 17.8 astronomical units, to simplify the display.

Figure 13. A simple Halley’s comet animation.

# Simple Halley’s comet animation

e:=0.967:de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;

p:=dsolve({de,ic},numeric,output=listprocedure);

EE := eval(y(x),p):

xt:=cos(EE(M)):yt:=sqrt(1-e^2)*sin(EE(M)):
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opts:=view=[-1..1,-0.28..0.28],frames=56,axes=none,

scaling=constrained,axes=boxed,style=point,

symbolsize=20,symbol=circle,thickness=3:

plots[animatecurve]([xt,yt,M=0..2*Pi],opts);

Animation Video

A video of the comet moving along the ellipse will be produced. The comet
position for t = 2.4516 earth-years (M ≈ 2πt/76) is shown in Figure 14. During
the animation, the comet travels at varying speeds along the ellipse.

# Video animation of Halley’s comet

e:=0.967:de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;

p:=dsolve({de,ic},numeric,output=listprocedure);

EE := eval(y(x),p):

comet:=unapply([cos(EE(M)),sqrt(1-e^2)*sin(EE(M))],M):

options1:=view=[-1..1,-0.28..0.28]:

options2:=scaling=constrained,axes=none,thickness=3:

options3:=style=point,symbolsize=40,symbol=solidcircle:

opts1:=options1,options2,color=blue:

opts:=options1,options2,options3:

COMET:=[[comet(2*Pi*t/(76))],opts]:

ellipse:=plot([cos(x),sqrt(1-e^2)*sin(x),x=0..2*Pi],opts1):

with(plots):

F:=animate( plot,COMET,t=0..4,frames=32,background=ellipse):

G:=animate( plot,COMET,t=5..75,frames=71,background=ellipse):

H:=animate( plot,COMET,t=75..76,frames=16,background=ellipse):

display([F,G,H],insequence=true);

Figure 14. Halley’s comet animation video. The frame shown is for t = 3.0968

earth-years, mean anomaly M = 2.4516 (M ≈ 2πt/76).
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Exercises 4.8 �

Eccentric Anomaly for the Planets
Make a plot of the eccentric anomaly E(M)
on 0 ≤M ≤ 2π.

1. Mercury, e = 0.2056

2. Venus, e = 0.0068

3. Earth, e = 0.0167

4. Mars, e = 0.0934

5. Jupiter, e = 0.0483

6. Saturn, e = 0.0560

7. Uranus, e = 0.0461

8. Neptune, e = 0.0097

Elliptic Path of the Planets
Make a plot of the elliptic path of each
planet, using constrained scaling with the
given major semi-axis A (in astronomical
units AU). The equations:

x(M) = A cos(E(M)),

y(M) = A
√
1− e2 sin(E(M))

9. Mercury, e = 0.2056, A = 0.39

10. Venus, e = 0.0068, A = 0.72

11. Earth, e = 0.0167, A = 1

12. Mars, e = 0.0934, A = 1.52

13. Jupiter, e = 0.0483, A = 5.20

14. Saturn, e = 0.0560, A = 9.54

15. Uranus, e = 0.0461, A = 19.18

16. Neptune e = 0.0097, A = 30.06

Planet Positions
Make a plot with at least 8 planet posi-
tions displayed. Use constrained scaling
with major semi-axis A in the plot. Display
the given major semi-axis A and period T
in the legend.

17. Mercury, e = 0.2056, A = 0.39 AU,
T = 0.24 earth-years

18. Venus, e = 0.0068, A = 0.72 AU,
T = 0.62 earth-years

19. Earth, e = 0.0167, A = 1 AU, T = 1
earth-years

20. Mars, e = 0.0934, A = 1.52 AU, T =
1.88 earth-years

21. Jupiter, e = 0.0483, A = 5.20 AU,
T = 11.86 earth-years

22. Saturn, e = 0.0560, A = 9.54 AU,
T = 29.46 earth-years

23. Uranus, e = 0.0461, A = 19.18 AU,
T = 84.01 earth-years

24. Neptune e = 0.0097, A = 30.06 AU,
T = 164.8 earth-years

Comet Positions
Make a plot with at least 8 comet posi-
tions displayed. Use constrained scaling
with major-semiaxis 1 in the plot. Display
the given eccentricity e and period T in the
legend.

25. Churyumov-Gerasimenko orbits the
sun every 6.57 earth-years. Discovered
in 1969. Eccentricity e = 0.632.

26. Comet Wirtanen was the original tar-
get of the Rosetta space mission. This
comet was discovered in 1948. The
comet orbits the sun once every 5.46
earth-years. Eccentricity e = 0.652.

27. Comet Wild 2 was discovered in 1978.
The comet orbits the sun once ev-
ery 6.39 earth-years. Eccentricity e =
0.540.

28. Comet Biela was discovered in 1772.
It orbits the sun every 6.62 earth-years.
Eccentricity e = 0.756.

29. Comet Encke was discovered in 1786.
It orbits the sun each 3.31 earth-years.
Eccentricity e = 0.846.

282



4.8 Comets

30. Comet Giacobini-Zinner, discovered in
1900, orbits the sun each 6.59 earth-
years. Eccentricity e = 0.708.

31. Comet Schwassmann-Wachmann, dis-
covered in 1930, orbits the sun ev-
ery 5.36 earth-years. Eccentricity e =
0.694.

32. Comet Swift-Tuttle was discovered in
1862. It orbits the sun each 120 earth-
years. Eccentricity e = 0.960.

Comet Animations
Make an animation plot of comet posi-
tions. Use constrained scaling with major-
semiaxis 1 in the plot. Display the given
period T and eccentricity e in the legend.

33. Comet Churyumov-Gerasimenko
T = 6.57, e = 0.632.

34. Comet Wirtanen
T = 5.46, e = 0.652.

35. Comet Wild 2
T = 6.39, e = 0.540.

36. Comet Biela
T = 6.62, e = 0.756.

37. Comet Encke
T = 3.31, e = 0.846.

38. Comet Giacobini-Zinner
T = 6.59, e = 0.708.

39. Comet Schwassmann-Wachmann
T = 5.36, e = 0.694.

40. Comet Swift-Tuttle
T = 120, e = 0.960.
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4.9 Fish Farming

Discussed are logistic models for population dynamics in fish farms. The models
are suitable for Pangasius and Tilapia populations. The focus will be on species
tilapia.

Pangasius. In America, both USA-produced and imported fresh-water catfish
can be sold with the labels Swai, Basa or the subgenus label Pangasius, which
is the predominant generic label in Europe, with more than 20 varieties. Basa
and Swai are different catfish, with different texture and flavor. USA production
of farmed catfish increased after 2002, when Vietnam Basa imports were stopped
by labeling laws and tariffs. USA channel catfish (four barbels) are harvested
after 18 months, at 10 pounds weight. Pangasius varieties are harvested after
4–6 months, at about 2 pounds or less, to produce fillets of 3–12 ounces.

Figure 15. Pangasius, a fresh water catfish with two barbels.

Tilapia. This fresh-water fish originated in Africa 2500 years ago. The popular
varieties sold in the USA are marketed under the label Tilapia (both dark and
light flesh). They are produced in the USA at fish farms in Arizona, California
and Florida. Imported Tilapia at 600-900 grams market weight (30% fillets)
make up the bulk of USA-consumed Tilapia.

Figure 16. Tilapia.
A fresh water fish from the river Nile.
Tilapia are farmed around the world in
temperate climates.
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Population Dynamics of Fisheries

Fisheries can be wild or farmed. One example is a fish hatchery using concrete
tanks. Tilapia freshwater farms can use earthen ponds, canvas tanks, concrete
tanks, river cages, pens and old mining quarries.

Tilapia Farming

Detailed life history data for Tilapia is as follows:

• Age at sexual maturity: 5–6 months

• Size at sexual maturity: 28–350 grams

• Stocking ratio for spawning: 7–10 broods/year using 2–5 females per male

• Spawning success: 20–30% spawns per week

• Eggs per female fish: 1–4 eggs per gram of fish

• Survival of egg to fry: 70–90% (fry less than 5 grams)

• Survival of fry to fingerling: 60–90% (fingerling 5–30 grams)

• Survival of fingerling to market: 70–98% (market is 30 to 680 grams)

Tilapia fry might be produced from an initial stock of 1000 female ND-2 and
250 male ND-1. Hatched ND-21 fry will be all male, which have higher market
weight. Egg production per female averages from 300 to 500 fry per month,
with about 10% lost before reaching 5 gram weight. The marketed Tilapia are
about 900 grams in Central America plants (Belize, El Salvador). In Arizona,
California and Florida plants, Tilapia market weights vary from 600 to 800 grams,
or 1.5–1.75 pounds.

In commercial secondary tanks, fingerlings grow in water temperatures 76–84
degrees Fahrenheit with a death rate of about 0.05%. One fingerling grows to
market size on less than 3 pounds of food.

Logistic Harvesting on a Time Interval

The Logistic equation for a constant harvesting rate h ≥ 0 is

dx

dt
= kx(t)(M − x(t))− h.

The Logistic equation for a non-constant harvesting rate h(t) ≥ 0 is

dx

dt
= kx(t)(M − x(t))− h(t).
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A simplified situation is constant harvesting h(t) = c > 0 on a given time interval
a ≤ t ≤ b, but zero otherwise.

In a more sophisticated setting, h(t) is a positive constant ci on given time
interval ai ≤ t ≤ bi, i = 1, . . . , n, but zero otherwise. Harvesting can also depend
on the population size, which replaces h(t) by h(t)x(t) in the differential equation.
Modelling need not be for an individual tank or pond, but the aggregate of all
tanks, ponds and cages of an enterprise, viewed from the prospect of so many
fish grown to market weight.

Logistic Periodic Harvesting

The periodic harvest Logistic equation is

dx

dt
= kx(t)(M − x(t))− h(t)

where h(t) ≥ 0 is the rate of harvest, usually a positive constant ci on a given time
interval ai ≤ t ≤ bi, i = 1, . . . , n, but zero otherwise. The equation h(t+T ) = h(t)
might hold for some value of T , in which case h(t) is a classical periodic function.

Tank harvests can be periodic, in order to reduce the density of fish per volume
of water, or to remove fingerlings. Harvested fish can be assumed to be live,
and sent either to slaughter or else to another tank, to grow bigger. This model
fits Tilapia fry production in ponds, for which it is typical that ND-2 females
produce more and more eggs as they mature (then c1 < c2 < c3 < · · ·). The time
intervals for Tilapia are about a month apart.

Malaysian Tilapia Example

Described here is the 2012 work of M. F. Laham, et al, [Laham], in which a logistic
model is used to study harvesting strategies for tilapia fish farming. This work
is elementary, in the sense that it treats an ideal example, with no intentional
application to management of a Tilapia farm. It illustrates general expectations
for fish production, based on gross estimates of a pond scenario.

The data was obtained from the Department of Fisheries of Malaysia and from
the Malaysian fish owner of selected ponds situated at Gombak, Selangor. The
fisheries department claims (2008) that a fish pond can sustain 5 tilapia fish for
every square meter of surface area.4 The selected pond has an area of 15.61
Hectors, which is equivalent to 156100 square meters, 38 acres or 25000 square
feet. The pond carrying capacity is M = 780500 fish. According to a Malaysian
study in 1999 (see [Laham]), Tilapia mature in 6 months and at least 80 percent
will survive to maturity.

4Normal stocking is 1.6 fish per square meter, from which reproduction allows fish population
growth to carrying capacity (a theoretical number).
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The Logistic Growth Model, in the absence of harvesting, can be written in the
form

dx

dt
= rx(t)(1− x(t)/M), r = 0.8, M = 780500.

In terms of the alternate model P ′ = kP (M − P ), the constant k equals rM =
624400. The 2012 work [Laham] focuses on harvesting strategies, considering the
constant harvesting model

dx

dt
= rx(t)(1− x(t)/M)−H0(1)

and the periodic harvesting model

dy

dt
= ry(t)(1− y(t)/M)−H(t), H(t) =

{
H0 0 ≤ t ≤ 6,
0 6 < t ≤ 12.

(2)

The constant H0 = 156100 is explained below.The discontinuous harvesting func-
tion H(t) is extended to be 12-month periodic: H(t+ 12) = H(t).

Constant Harvesting. The parameters in the model are r = 0.8, an estimate of
the fraction of fish that will survive to market age, and the pond carrying capacity
M = 780500. The periodic harvesting valueH0 = 156100 arises from the constant
harvesting model, by maximizing population size at the equilibrium point for the
constant harvesting model. Briefly, the value H0 is found by requiring dx

dt = 0 in
the constant harvesting model, replacing x(t) by constant P . This implies

rP

(
1− P

M

)
−H0 = 0.(3)

The mysterious value H0 is the one that makes the discriminant zero in the
quadratic formula for P . Then H0 = rM

4 = 156100 and P = 389482. This bi-
furcation point separates the global behavior of the constant harvesting model
as in Table 22. We use the notation P1, P2 for the two real equilibrium roots of
the quadratic equation (3), assuming H0 < 156100 and P1 < P2.

Table 22. Constant Harvesting Model

Harvest Constant Initial Population Behavior

H0 = 156100 x(0) ≥ 389482 x(t)→ 389482,
H0 = 156100 x(0) < 389482 x(t)→ 0, extinction,
H0 > 156100 any x(0) x(t)→ 0, extinction,
H0 < 156100 x(0) < P1 x(t)→ 0, extinction,
H0 < 156100 P1 < x(0) < P2 x(t)→ P2, sustainable,
H0 < 156100 x(0) ≥ P2 x(t)→ P2, sustainable.

Periodic Harvesting. The model is an initial value problem (2) with initial
population y(0) equal to the number of Tilapia present, where t = 0 is an artificial
time representing the current time after some months of growth. The plan is to
harvest H0 fish in the first 6 months.
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Direct inspection of the two models shows that x(t) = y(t) for the first six months,
regardless of the choice of H0. Because the constant harvesting model shows that
harvesting rates larger than 156100 lead to extinction, then it is clear that the
harvesting rate can be H0 = 156100.

The harvesting constant H0 can be larger than 156100, because the population of
fish is allowed to recover for six months after the harvest. AssumingH0 > 156100,
then the solution y(t) decreases for 6 months to value y(6), which if positive,
allows recovery of the population in the following 6 non-harvest months. There
is a catch: the population could fail to grow to harvest size in the following 6
months, causing a reduced production in subsequent years.

To understand the problem more clearly, we present an example where H0 >
156100 and the harvest is sustainable for 3 years, then another example where
H0 > 156100 and the harvest fails in the second year.

Example 4.8 (Sustainable Harvest H0 > 156100)
Choose H0 = 190000 and y(0) = 390250 = M/2. Computer assist gives 6-month
population size decreasing to y(6) = 16028.6. Then for 6 < t < 12 the popula-
tion increases to y(12) = 560497.2, enough for a second harvest. The population
continues to rise and fall, y(18) = 320546.6, y(24) = 771390.7, y(30) = 391554.0,
y(36) = 774167.6, a sustainable harvest for the first three years.

Figure 17. Sustainable harvest for 3 years, H0 = 190000, y(0) = M/2.

Abcissa t in months. Ordinate y(t) is population size.

Example 4.9 (Unsustainable Harvest H0 > 156100)
Choose H0 = 190500 and y(0) = 390250 = M/2. Computer assist gives 6-month
population size decreasing to y(6) = 5263.1. Then for 6 < t < 12 the population
increases to y(12) = 352814, enough for a second harvest. At t = 16.95 the
population y(t) decreases to zero (extinction), meaning the harvest fails in the second
year.

The same example with y(0) = (M/2)(1.02) = 398055 (2 percent larger) happens
to be sustainable for three years. Sustainable harvest is sensitive to both harvesting
constant and initial population.

288



4.9 Fish Farming

Figure 18. Unsustainable harvest, failure in year two.

H0 = 190500, y(0) = M/2. Abcissa t in months. Ordinate y(t) is population size.

Logistic Systems

The Lotka-Volterra equations, also known as the predator-prey equations, are a
pair of first order nonlinear differential equations frequently used to describe the
dynamics of biological systems in which two species interact, one a predator and
one its prey (e.g., foxes and rabbits). They evolve in time according to the pair
of equations:

dx

dt
= x(α− βy),

dy

dt
= −y(γ − δx)

where:
x is the number of prey,
y is the number of some predator,
t is time,
dy
dt and dx

dt are population growth rates,
Parameter α is a growth rate for the prey while parameter γ is a
death rate for the predator.
Parameters β and δ describe species interaction, with −βxy decreas-
ing prey population and δxy increasing predator population.

A. J. Lotka (1910, 1920) used the predator-prey model to study autocatalytic
chemical reactions and organic systems such as plants and grazing animals. In
1926, V. Volterra made a statistical analysis of fish catches in the Adriatic Sea,
publishing at age 22 the same equations, an independent effort.

Walleye on Lake Erie

The one-dimensional theory of the logistic equation can be applied to fish popu-
lations in which there is a predator fish and a prey fish. This problem was studied
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by A. L. Jensen in 1988. Using the Canadian model of P. A. Larkin 1966, Jensen
invented a mathematical model for walleye populations in the western basin of
Lake Erie. The examples for Prey are Rainbow Smelt (Osmerus mordax) in
Lake Superior and Yellow Perch (Perca flavescens) from Minnesota lakes. The
predator is Walleye (Sander vitreus).

Figure 19. Yellow Perch.

The prey, from Shagawa Lake in Northeast Minnesota.

Figure 20. Walleye.

The predator, also called Yellow Pike, or Pickerel.

The basis for the simulation model is the Lotka-Volterra predator-prey model.
The following assumptions were made.

• A decrease in abundance results in an increase in food concentration.

• An increase in food concentration results in an increase in growth and size.

• An increase in growth and size results in a decrease in mortality because
mortality is a function of size.

The relation between prey abundance N1 and predator abundance N2 is given
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by the equations

dN1

dt
= rlN1(1−N1/K1)− b1N1N2,

dN2

dt
= r2N2(1−N2/K2)− b2N1N2.

If b1 = b2 = 0, then there is no interaction of predator and prey, and the two
populations N1, N2 grow and decay independently of one another. The carrying
capacities are K1,K2, respectively, because each population N satisfies a logistic
equation

dN

dt
= rN(1−N/K).

The literature below has further details. Solution methods for systems like (20)
are largely numeric. Qualitative methods involving equilibrium points and phase
diagrams have an important role in the analysis.

Jensen, A. L.: Simulation of the potential for life history components to regulate
Walleye population size, Ecological Modelling 45(1), pp 27-41, 1989.

Larkin, P.A., 1966: Exploitation in a type of predator-prey relationship. J. Fish.
Res. Board Can., 23, pp 349-356, 1966.

Maple Code for Figures 17 and 18

The following sample maple code plots the solution on 0 < t < 24 months with
data H0 = 190000, P0 = 390250.

de:=diff(P(t),t)=r*(1-P(t)/M)*P(t)-H(t);

r:=0.8:M:=780500:H0:=190000:P0:=M/2:

H:=t->H0*piecewise(t<6,1,t<12,0,t<18,1,0);

DEtools[DEplot](de,P(t),t=0..24,P=0..M,[[P(0)=P0]]);

Exercises 4.9 �

Constant Logistic Harvesting
The model

x′(t) = kx(t)(M − x(t))− h

can be converted to the logistic model

y′(t) = (a− by(t))y(t)

by a change of variables. Find the change
of variables y = x+c for the following pairs
of equations.

1. x′ = −3x2 + 8x− 5,
y′ = (2− 3y)y

2. x′ = −2x2 + 11x− 14,
y′ = (3− 2y)y

3. x′ = −5x2 − 19x− 18,
y′ = (1− 5y)y

4. x′ = −x2 + 3x+ 4,
y′ = (5− y)y

Periodic Logistic Harvesting
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The periodic harvesting model

x′(t) = 0.8x(t)

(
1− x(t)

780500

)
−H(t)

is considered with H defined by

H(t) =


0 0 < t < 5,

H0 5 < t < 6,
0 6 < t < 17,

H0 17 < t < 18,
0 18 < t < 24.

This project makes as computer graph of
the solution on 0 < t < 24 for various val-
ues of H0 and x(0). See Figures 17 and 18
and the corresponding examples.

5. H0 = 156100, P (0) = 300000

6. H0 = 156100, P (0) = 800000

7. H0 = 800100, P (0) = 90000

8. H0 = 800100, P (0) = 100000

von Bertalanffy Equation
Karl Ludwig von Bertalanffy (1901-1972)
derived in 1938 the equation

dL

dt
=rB(L∞−L(t))

from simple physiological arguments. It is
a widely used growth curve, especially im-
portant in fisheries studies. The symbols:

t time,
L(t) length,
rB growth rate,
L∞ expected length for zero

growth.

9. Solve dL
dt = 2(10−L), L(0) = 0. The an-

swer is the length in inches of a fish over
time, with final adult size 10 inches.

10. Solve von Bertalanffy’s equation to ob-
tain the algebraic model

L(t) = L∞

(
1− e−rB(t−t0)

)
.

11. Assume von Bertalanffy’s model. Sup-
pose field data L(0) = 0, L(1) = 5,
L(2) = 7. Display details using Exer-
cise 10 to arrive for t0 = 0 at values
L∞ = 25/3 and rB = ln(5/2).

12. Assume von Bertalanffy’s model with
field data L(0) = 0, L(1) = 10, L(2) =
13. Find the expected length L∞ of the
fish.
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Linear Algebra
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Linear algebra topics specific to linear algebraic equations were presented
earlier in this text as an extension of college algebra topics, without the aid of
vector-matrix notation.

The project before us introduces specialized vector-matrix notation in order
to extend methods for solving linear algebraic equations. Enrichment includes a
full study of rank, nullity, basis and independence from a vector-matrix viewpoint.

Engineering science views linear algebra as an essential language interface
between an application and a computer algebra system or a computer numerical
laboratory. Without the language interface provided by vectors and matrices,
computer assist would be impossibly tedious.

Linear algebra with computer assist is advantageous in the study of mechanical
systems and electrical networks, in which the notation and methods of linear
algebra play an important and essential role.
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5.1 Vectors and Matrices

The advent of computer algebra systems and computer numerical laboratories
has precipitated a common need among engineers and scientists to learn the
language of vectors and matrices, which is used heavily for theoretical analysis
and computation in applications.

Fixed Vector Model

A fixed vector X⃗ is a one-dimensional array called a column vector or a row
vector, denoted correspondingly by

X⃗ =


x1
x2
...
xn

 or X⃗ =
(
x1, x2, . . . , xn

)
.(1)

The entries or components x1, . . . , xn are numbers and n is correspondingly
called the column dimension or the row dimension of the vector in (1). The
set of all n-vectors (1) is denoted Rn.

Practical matters. A fixed vector is a package of application data items.
The term vector means data item package and the collection of all data item
packages is the data set. Data items are usually numbers. A fixed vector imparts
an implicit ordering to the package. To illustrate, a fixed vector might have n = 6
components x, y, z, px, py, pz, where the first three are space position and the last
three are momenta, with respective associated units meters and kilogram-meters
per second.

Vector addition and vector scalar multiplication are defined by componen-
twise operations:

x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn

 , k


x1
x2
...
xn

 =


kx1
kx2
...

kxn

 .

The Mailbox Analogy

Fixed vectors can be visualized as in Table 1. Fixed vector entries x1, . . . , xn
are numbers written individually onto papers 1, 2, . . . , n deposited into mailboxes
with names 1, 2, . . . , n.
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Table 1. The Mailbox Analogy. Box i has contents xi.

x1
x2
...
xn

mailbox 1
mailbox 2

...
mailbox n

Free Vector Model

In the model, rigid motions from geometry are applied to directed line segments.
A line segment PQ is represented as an arrow with head at Q and tail at P .
Two such arrows are considered equivalent if they can be rigidly translated
to the same arrow whose tail is at the origin. The arrows are called free vectors.

They are denoted by the symbol
−→
PQ, or sometimes A⃗ =

−→
PQ, which assigns label

A⃗ to the arrow with tail at P and head at Q.

The parallelogram rule defines free vector addition, as in Figure 1. To define
free vector scalar multiplication kA⃗, we change the location of the head of
vector A⃗; see Figure 2. If 0 < k < 1, then the head shrinks to a location along
the segment between the head and tail. If k > 1, then the head moves in the
direction of the arrowhead. If k < 0, then the head is reflected along the line and
then moved.

A⃗

B⃗

C⃗ = A⃗+ B⃗

Figure 1. Free vector addition. The diago-
nal of the parallelogram formed by free vectors A⃗,
B⃗ is the sum vector C⃗ = A⃗+ B⃗.

A⃗

kA⃗
Figure 2. Free vector scalar multiplica-
tion. To form kA⃗, the head of free vector A⃗ is
moved to a new location along the line formed by
the head and tail.

Physics Vector Model

This model is also called the ı⃗, ȷ⃗, k⃗ vector model and the orthogonal triad
model. The model arises from the free vector model by inventing symbols ı⃗, ȷ⃗,
k⃗ for a mutually orthogonal triad of free vectors. Usually, these three vectors
represent free vectors of unit length along the coordinate axes, although use in
the literature is not restricted to this specialized setting; see Figure 3.
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k⃗

ı⃗

ȷ⃗

Figure 3. Fundamental triad. The free vectors ı⃗, ȷ⃗, k⃗
are 90◦ apart and of unit length.

The advantage of the model is that any free vector can be represented as a⃗ı +
bȷ⃗ + ck⃗ for some constants a, b, c, which gives an immediate connection to the
free vector with head at (a, b, c) and tail at (0, 0, 0), as well as to the fixed vector
whose components are a, b, c.

Vector addition and scalar multiplication are defined componentwise: if A⃗ =
a1⃗ı+ a2ȷ⃗+ a3k⃗, B⃗ = b1⃗ı+ b2ȷ⃗+ b3k⃗ and c is a constant, then

A⃗+ B⃗ = (a1 + b1)⃗ı+ (a2 + b2)ȷ⃗+ (a3 + b3)k⃗,

cA⃗ = (ca1)⃗ı+ (ca2)ȷ⃗+ (ca3)k⃗.

Formally, computations involving the physics model amount to fixed vector
computations and the so-called equalities between free vectors and fixed vectors:

ı⃗ =

 1
0
0

, ȷ⃗ =

 0
1
0

, k⃗ =

 0
0
1

.

Gibbs Vector Model

The model assigns physical properties to vectors, thus avoiding the pitfalls of free
vectors and fixed vectors. Gibbs defines a vector as a linear motion that takes
a point A into a point B. Visualize this idea as a workman who carries material
from A to B: the material is loaded at A, transported along a straight line to B,
and then deposited at B. Arrow diagrams arise from this idea by representing a
motion from A to B as an arrow with tail at A and head at B.

Vector addition is defined as composition of motions: material is loaded at A
and transported to B, then loaded at B and transported to C. Gibbs’ idea in
the plane is the parallelogram law; see Figure 4.

Vector scalar multiplication is defined so that 1 times a motion is itself, 0 times a
motion is no motion and −1 times a motion loads at B and transports to A (the
reverse motion). If k > 0, then k times a motion from A to B causes the load to
be deposited at C instead of B, where k is the ratio of the lengths of segments
AC and AB. If k < 0, then the definition is applied to the reverse motion from
B to A using instead of k the constant |k|. Briefly, the load to be deposited along
the direction to B is dropped earlier if 0 < |k| < 1 and later if |k| > 1.
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B

A

C

composite
motion

Figure 4. Planar composition of motions.
The motion A to C is the composition of two
motions or the sum of vectors AB and BC.

Comparison of Vector Models

In free vector diagrams it is possible to use free, physics and Gibbs vector models
almost interchangeably. In the Gibbs model, the negative of a vector and the zero
vector are natural objects, whereas in the other models they can be problematic.
To understand the theoretical difficulties, try to answer these questions:

1. What is the zero vector?
2. What is the meaning of the negative of a vector?

Some working rules which connect the free, physics and Gibbs models to the
fixed model are the following.

Conversion A fixed vector X⃗ with components a, b, c is realized as a
free vector by drawing an arrow from (0, 0, 0) to (a, b, c).

Addition To add two free vectors, Z⃗ = X⃗ + Y⃗ , place the tail of Y⃗
at the head of X⃗, then draw vector Z⃗ to form a triangle,
from the tail of X⃗ to the head of Y⃗ .

Subtraction To subtract two free vectors, Z⃗ = Y⃗ − X⃗, place the tails
of X⃗ and Y⃗ together, then draw Z⃗ between the heads of
X⃗ and Y⃗ , with the heads of Z⃗ and Y⃗ together.

Head Minus Tail A free vector X⃗ converts to a fixed vector whose com-
ponents are the componentwise differences between the
point at the head and the point at the tail. This state-
ment is called the head minus tail rule.

Vector Spaces and the Toolkit

Consider any vector model: fixed, free, physics or Gibbs. Let V denote the data
set of one of these models. The data set consists of packages of data items, called
vectors.1 Assume a particular dimension, n for fixed, 2 or 3 for the others. Let
k, k1, k2 be constants. Let X⃗, Y⃗ , Z⃗ represent three vectors in V . The following
toolkit of eight (8) vector properties can be verified from the definitions.

1If you think vectors are arrows, then re-tool your thoughts. Think of vectors as data item
packages. A technical word, vector can also mean a graph, a matrix for a digital photo, a
sequence, a signal, an impulse, or a differential equation solution .
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Closure The operations X⃗ + Y⃗ and kX⃗ are defined and result in a new
data item package [a vector] which is also in V .

Addition X⃗ + Y⃗ = Y⃗ + X⃗ commutative
X⃗ + (Y⃗ + Z⃗) = (Y⃗ + X⃗) + Z⃗ associative
Vector 0⃗ is defined and 0⃗ + X⃗ = X⃗ zero
Vector −X⃗ is defined and X⃗ + (−X⃗) = 0⃗ negative

Scalar
multiply

k(X⃗ + Y⃗ ) = kX⃗ + kY⃗ distributive I
(k1 + k2)X⃗ = k1X⃗ + k2X⃗ distributive II
k1(k2X⃗) = (k1k2)X⃗ distributive III
1X⃗ = X⃗ identity

Definition 5.1 (Vector Space)
A data set V equipped with + and · operations satisfying the closure law and the
eight toolkit properties is called an abstract vector space.

What’s a space? There is no intended geometrical implication in this term. The
usage of space originates from phrases like parking space and storage space.
An abstract vector space is a data set for an application, organized as packages of
data items, together with + and · operations, which satisfy the eight toolkit
manipulation rules. The packaging of individual data items is structured, or
organized, by some scheme, which amounts to a storage space, hence the term
space.

What does abstract mean? The technical details of the packaging and the
organization of the data set are invisible to the toolkit rules. The toolkit acts
on the formal packages, which are called vectors. Briefly, the toolkit is used
abstractly, devoid of any details of the storage scheme. Bursting data packages
into data items is generally counterproductive for algebraic manipulations. Resist
the temptation to burst vectors.

A variety of data sets. The following key examples are a basis for initial
intuition about vector spaces.

Coordinate space Rn is the set of all fixed n-vectors. Sets Rn are struc-
tured packaging systems which organize data sets from calculations, geo-
metrical problems and physical vector diagrams.

Function spaces are structured packages of graphs, such as solutions to
differential equations.

Infinite sequence spaces are suited to organize the coefficients of nu-
merical approximation sequences. Additional applications are coefficients
of Fourier series and Taylor series.

AMatrix space is a structured system which can organize two-dimensional
data sets. Examples are the array of pixels for a digital photograph and
robotic mechanical component manipulators represented by 3× 3 or 4× 4
matrices.
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Subspaces and Data Analysis

Subspaces address the issue of how to do efficient data analysis on a smaller subset
S of a data set V . We assume the larger data set V is equipped with + and ·
and has the 8-property toolkit: it is an abstract vector space by assumption.

Slot racer on a track. To illustrate the idea, consider a problem in planar
kinematics and a laboratory data recorder that approximates the x, y, z loca-
tion of an object in 3-dimensional space. The recorder puts the data set of the
kinematics problem into fixed 3-vectors. After the recording, the data analysis
begins.

From the beginning, the kinematics problem is planar, and we should have done
the data recording using 2-vectors. However, the plane of action may not be
nicely aligned with the axes set up by the data recorder, and this spin on the
experiment causes the 3-dimensional recording.

The kinematics problem and its algebraic structure are exactly planar, but the
geometry for the recorder data may be opaque. For instance, the experiment’s
acquisition plane might be given approximately by a homogeneous restriction
equation like

x+ 2y − 1000z = 0.

The restriction equation is preserved by operations + and · (details post-
poned). Then data analysis on the smaller planar data set can proceed to use the
toolkit at will, knowing that all calculations will be in the plane, hence physically
relevant to the original kinematics problem.

Physical data in reality contains errors, preventing the data from exactly satis-
fying an ideal restriction equation like x + 2y − 1000z = 0. Methods like least
squares can construct the idealized equations. The physical data is then con-
verted by projection, making a new data set S that exactly satisfies the restriction
equation x + 2y − 1000z = 0. It is this modified set S, the working data set of
the application, that we call a subspace.

Applied scientists view subspaces as working sets, which are actively con-
structed and rarely discovered without mathematical effort. The construction
is guided by the subspace criterion, Theorem 5.1, page 300.

Definition 5.2 (Subspace)
A subset S of an abstract vector space V is called a subspace if it is a nonempty
vector space under the operations of addition and scalar multiplication inherited from
V .

In applications, a subspace S of V is a smaller data set, recorded using the
same data packages as V . The smaller set S contains at least the zero vector 0⃗ .
Required is that the algebraic operations of addition and scalar multiplication
acting on S give answers back in S. Then the entire 8-property toolkit is available
for calculations in the smaller data set S.
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Theorem 5.1 (Subspace Criterion)
Assume abstract vector space V is equipped with addition (+) and scalar multipli-
cation (·). A subset S is a subspace of V provided these checkpoints hold:

Vector 0⃗ is in S (S is nonvoid).

For each pair v⃗ 1, v⃗ 2 in S, the vector v⃗ 1 + v⃗ 2 is in S.

For each v⃗ in S and constant c, the combination cv⃗ belongs to S.

Actual use of the subspace criterion is rare, because most applications define a
subspace S by a restriction on elements of V , normally realized as a set of linear
homogeneous equations. Such systems can be re-written as a matrix equation
Au⃗ = 0⃗ . To illustrate, x+y+z = 0 is re-written as a matrix equation as follows: 1 1 1

0 0 0
0 0 0

 x
y
z

 =

 0
0
0

 .

Theorem 5.2 (Subspaces of Rn: The Kernel Theorem)
Let V be one of the vector spaces Rn and let A be an m × n matrix. Define the
data set

S = {v⃗ : v⃗ in V and Av⃗ = 0⃗}.

Then S is a subspace of V , that is, operations of addition and scalar multiplication
applied to data in S give data back in S and the 8-property toolkit applies to S-data.2

Proof on page 314.

When does Theorem 5.2 apply? Briefly, the kernel theorem hypothesis re-
quires V to be a space of fixed vectors and S a subset defined by homogeneous
restriction equations. A vector space of functions, used as data sets in differential
equations, does not satisfy the hypothesis of Theorem 5.2, because V is not one
of the spaces Rn. This is why a subspace check for a function space uses the
basic subspace criterion, and not Theorem 5.2.

Theorem 5.3 (Subspaces of Rn: Restriction Equations)
Let V be one of the vector spaces Rn and let data set S be defined by a system of
restriction equations. If the restriction equations are homogeneous linear algebraic
equations, then S is a subspace of V .

How to apply Theorem 5.2 and Theorem 5.3. We illustrate with V the
vector space R4 of all fixed 4-vectors with components x1, x2, x3, x4. Let S be
the subset of V defined by the restriction equation x4 = 0.

By Theorem 5.3, S is a subspace of V , with no further details required.

2This key theorem is named the kernel theorem, because solutions x⃗ of Ax⃗ = 0⃗ define the
kernel of A. It is also named the Nullspace Theorem.
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To apply Theorem 5.2, the restriction equations have to be re-written as a ho-
mogeneous matrix equation Ax⃗ = 0⃗ :

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0




x1
x2
x3
x4

 =


0
0
0
0

 .

Then Theorem 5.2 applies to conclude that S is a subspace of V .

When is S not a subspace? The following test enumerates three common
conditions for which S fails to pass the subspace test. It is justified from the
subspace criterion.

Theorem 5.4 (Test S not a Subspace)
Let V be an abstract vector space and assume S is a subset of V . Then S is not a
subspace of V provided one of the following holds.

(1) The vector 0 is not in S.

(2) Some x⃗ and −x⃗ are not both in S.

(3) Vector x⃗ + y⃗ is not in S for some x⃗ and y⃗ in S.

Linear Combinations and Closure

Definition 5.3 (Linear Combination)
A linear combination of vectors v⃗ 1,. . . ,v⃗ k is defined to be a sum

x⃗ = c1v⃗ 1 + · · ·+ ckv⃗ k,

where c1,. . . ,ck are constants.

The closure property for a subspace S can be stated as linear combinations of
vectors in S are again in S. Therefore, according to the subspace criterion, S is
a subspace of V provided 0⃗ is in S and S is closed under the operations + and ·
inherited from the larger data set V .

Definition 5.4 (Span)
Let vectors v⃗ 1, . . . , v⃗ k be given in a vector space V . The subset S of V consisting
of all linear combinations v⃗ = c1v⃗ 1 + · · · + ckv⃗ k is called the span of the vectors
v⃗ 1, . . . , v⃗ k and written

S = span(v⃗ 1, . . . , v⃗ k).

Important: The symbols c1, . . . , cn exhaust all possible choices of scalars: expect the
span to contain infinitely many data packages (called abstract vectors) from data
set V .

Theorem 5.5 (Span of Vectors is a Subspace)
Let V be an abstract vector space. A subset S = span(v⃗ 1, . . . , v⃗ k) is a subspace
of V . Proof on page 314.
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The Parking Lot Analogy

A useful visualization for vector space and subspace is a parking lot with valet
parking. The large lot represents the storage space of the larger data set
associated with a vector space V . The parking lot rules, such as display your
ticket, park between the lines, correspond to the toolkit of 8 vector space rules.
The valet parking lot S, which is a smaller roped-off area within the larger lot V ,
is also storage space, subject to the same rules as the larger lot. The smaller data
set S corresponds to a subspace of V . Just as additional restrictions apply to the
valet lot, a subspace S is generally defined by equations, relations or restrictions
on the data items of V .

Valet lot

Hotel Parking Lot

Figure 5. Parking lot analogy. An ab-
stract vector space V and one of its subspaces
S can be visualized through the analogy of a
parking lot (V ) containing a valet lot (S).

Vector Algebra

Definition 5.5 (Norm of a Fixed Vector)
The norm or length of a fixed vector X⃗ with components x1, . . . , xn is given by
the formula

|X⃗| =
√
x21 + · · ·+ x2n.

This measurement can be used to quantify the numerical error between two data
sets stored in vectors X⃗ and Y⃗ :

norm-error = |X⃗ − Y⃗ |.

Definition 5.6 (Dot Product or Scalar Product)
The dot product X⃗ · Y⃗ of two fixed vectors X⃗ and Y⃗ is defined by x1

...
xn

 ·
 y1

...
yn

 = x1y1 + · · ·+ xnyn.

Definition 5.7 (Angle Between Vectors)
Assume |X⃗| > 0 and |Y⃗ | > 0. Define the angle θ, 0 ≤ θ ≤ π, between vectors X⃗

and Y⃗ by:

cos θ =
X⃗ · Y⃗
|X⃗||Y⃗ |

.

Calculus vector geometry for n = 3 derives formula |X⃗||Y⃗ | cos θ = X⃗ · Y⃗ , which
produces the above equation by solving for cos θ, motivation for the definition.
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Y⃗

X⃗

θ
Figure 6. Angle θ between two vectors
X⃗ , Y⃗ .

Definition 5.8 (Orthogonal Vectors)
Two n-vectors X⃗, Y⃗ are said to be orthogonal provided X⃗ · Y⃗ = 0.

If both vectors are nonzero, then cos(θ) =
X⃗ · Y⃗
|X⃗||Y⃗ |

= 0, which implies the angle

between the vectors is θ = 90◦.

Definition 5.9 (Shadow Projection)
The shadow projection of vector X⃗ onto the direction of vector Y⃗ is the number d
defined by

d =
X⃗ · Y⃗
|Y⃗ |

.

The triangle determined by X⃗ and (d/|Y⃗ |)Y⃗ is a right triangle.

d

X⃗

Y⃗ Figure 7. Shadow projection d
Distance d is the length of the shadow formed by
vector X⃗ onto the direction of vector Y⃗ .

Definition 5.10 (Vector Projection)
The vector projection of X⃗ onto the line L through the origin in the direction of

Y⃗ is defined by

projY⃗ (X⃗) = d
Y⃗

|Y⃗ |
=

X⃗ · Y⃗
Y⃗ · Y⃗

Y⃗ .

Definition 5.11 (Vector Reflection)
The vector reflection of vector X⃗ in the line L through the origin having the

direction of vector Y⃗ is defined to be the vector

reflY⃗ (X⃗) = 2projY⃗ (X⃗)− X⃗ = 2
X⃗ · Y⃗
Y⃗ · Y⃗

Y⃗ − X⃗.

It is the formal analog of the complex conjugate map a+ ib→ a− ib with the x-axis
replaced by line L.
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Matrices are Vector Packages

A matrix A is a package of so many fixed vectors, considered together, and
written as a 2-dimensional array

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn

 .

The packaging can be in terms of column vectors or row vectors:
a11
a21
· · ·
an1

 · · ·


a1m
a2m
· · ·
anm

 or


(a11, a12, . . . , a1n)
(a21, a22, . . . , a2n)

...
(am1, am2, . . . , amn)

.

Definition 5.12 (Equality of Matrices)
Two matrices A and B are said to be equal provided they have identical row and
column dimensions and corresponding entries are equal. Equivalently, A and B are
equal if they have identical columns, or identical rows.

Mailbox analogy. A matrix A can be visualized as a rectangular collection of
so many mailboxes labeled (i, j) with contents aij , where the row index is i and
the column index is j; see Table 2.

Table 2. The Mailbox Analogy for Matrices.

A matrix A is visualized as a block of mailboxes, each located by row index i and column

index j. The box at (i, j) contains data aij .

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...

am1 am2 · · · amn

Computer Storage

Computer programs might store matrices as a long single array. Array contents
are fetched by computing the index into the long array followed by retrieval of
the numeric content aij . From this computer viewpoint, vectors and matrices are
the same objects.
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For instance, a 2 × 2 matrix A =

(
a b
c d

)
can be stored by stacking its rows

into a column vector, the mathematical equivalent being the one-to-one and onto
mapping (

a b
c d

)
←→


a
b
c
d

 .

This mapping uniquely associates the 2× 2 matrix A with a vector in R4. Sim-
ilarly, a matrix of size m × n is associated with a column vector in Rk, where
k = mn.

Matrix Addition and Scalar Multiplication

Addition of two matrices is defined by applying fixed vector addition on corre-
sponding columns. Similarly, an organization by rows leads to a second definition
of matrix addition, which is exactly the same:

a11 · · · a1n
a21 · · · a2n

...
am1· · · amn

+


b11 · · · b1n
b21 · · · b2n

...
bm1· · · bmn

 =


a11 + b11 · · · a1n + b1n
a21 + b21 · · · a2n + b2n

...
am1 + bm1· · · amn + bmn

 .

Scalar multiplication of matrices is defined by applying scalar multiplication to
the columns or rows:

k


a11 · · · a1n
a21 · · · a2n

...
am1 · · · amn

 =


ka11 · · · ka1n
ka21 · · · ka2n

...
kam1 · · · kamn

 .

Both operations on matrices are motivated by considering a matrix to be a long
single array or fixed vector, to which the standard fixed vector definitions are
applied. The operation of addition is properly defined exactly when the two
matrices have the same row and column dimensions.

Digital Photographs

A digital camera stores image sensor data as a matrix A of numbers corresponding
to the color and intensity of tiny sensor sites called pixels or dots. The pixel
position in the print is given by row and column location in the matrix A.

A visualization of the image sensor is a checkerboard. Each square is stacked with
a certain number of checkers, the count proportional to the number of electrons
knocked loose by light falling on the photodiode site.
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Figure 8. Checkerboard visualization.
Illustrated is a stack of checkers, representing one photodiode site on an image sensor
inside a digital camera. There are 5 red, 2 green and 3 blue checkers stacked on one
square, representing electron counts.

In 24-bit color, a pixel could be represented in matrix A by a coded integer
a = r + (28)g + (216)b. Symbols r, g, b are integers between 0 and 255 which
represent the intensity of colors red, green and blue, respectively. For example,
r = g = b = 0 is the color black while r = g = b = 255 is the color white.

A matrix of size m × n is visualized as a checkerboard with mn squares, each
square stacked with red, green and blue checkers. Higher resolution image sensors
store image data in huge matrices with richer color information, for instance 32-
bit and 128-bit color.3

Visualization of Matrix Addition and Scalar Multiply

Matrix addition can be visualized through matrices representing color sepa-
rations.4 When three monochrome transparencies of colors red, green and blue
(RGB) are projected simultaneously by a projector, the colors add to make a
full color screen projection. The three transparencies can be associated with ma-
trices R, G, B which contain pixel data for the monochrome images. Then the
projected image is associated with the matrix sum R+G+B.

Matrix scalar multiplication has a similar visualization. The pixel informa-
tion in a monochrome image (red, green or blue) is coded for intensity. The
associated matrix A of pixel data when multiplied by a scalar k gives a new ma-

3A beginner’s digital camera manufactured in the early days of digital photography made
low resolution color photos using 24-bit color. The photo is constructed from 240 rows of dots
with 320 dots per row. The associated storage matrix A is of size 240×320. The identical small
format was used for video clips.

The storage format BMP stores data as bytes, in groups of three b, g, r, starting at the lower
left corner of the photo. Therefore, 240× 320 photos have 230, 400 data bytes. Storage format
JPEG has replaced the early formats on phones.

4James Clerk Maxwell is credited with the idea of color separation.
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trix kA of pixel data with the intensity of each pixel adjusted by factor k. The
photographic effect is to adjust the range of intensities. In the checkerboard vi-
sualization of an image sensor, Figure 8 page 305, factor k increases or decreases
the checker stack height at each square.

Color Separation Illustration

Consider the coded matrix

X⃗ =

(
514 3

131843 197125

)
.

We will determine the monochromatic pixel data R, G, B in the equation X =
R+ 28G+ 216B.

First we decode the scalar equation x = r + 28g + 216b by these algebraic steps,
which use the modulus function mod(x,m), defined to be the remainder after
division of x by m. We assume r, g, b are integers between 0 and 255.

y = mod(x, 216) The remainder should be y = r + 28g.

r = mod(y, 28) Because y = r + 28g, the remainder equals r.

g = (y − r)/28 Divide y − r = 28g by 28 to obtain g.

b = (x− y)/216 Because x− y = x− r − 28g has remainder b.

r + 28g + 216b Answer check. This should equal x.

Computer algebra systems can provide an answer for matrices R, G, B by dupli-
cating the scalar steps. Below is a maple implementation that gives the answers

R =

(
2 3
3 5

)
, G =

(
2 0
3 2

)
, B =

(
0 0
2 3

)
.

with(LinearAlgebra:-Modular):

X:=Matrix([[514,3],[131843,197125]]);

Y:=Mod(2^16,X,integer); # y=mod(x,65536)

R:=Mod(2^8,Y,integer); # r=mod(y,256)

G:=(Y-R)/2^8; # g=(y-r)/256

B:=(X-Y)/2^16; # b=(x-y)/65536

X-(R+G*2^8+B*2^16); # answer check

The result can be visualized through a checkerboard of 4 squares. The second
square has 5 red, 2 green and 3 blue checkers stacked, representing the color
x = (5) + 28(2) + 216(3) - see Figure 8 page 305.
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Matrix Multiply

College algebra texts cite the definition of matrix multiplication as the product
AB equals a matrix C given by the relations

cij = ai1b1j + · · ·+ ainbnj , 1 ≤ i ≤ m, 1 ≤ j ≤ k.

Below, we motivate the definition of matrix multiplication from an applied point
of view, based upon familiarity with the dot product.

Matrix multiplication as a dot product extension. To illustrate the basic
idea by example, let

A =

 −1 2 1
3 0 −3
4 −2 5

 , X⃗ =

 2
1
3

 .

The product equation AX⃗ is displayed as the dotless juxtaposition −1 2 1
3 0 −3
4 −2 5

 2
1
3

 ,

which represents an unevaluated request to gang the dot product operation onto
the rows of the matrix on the left:

(−1 2 1) ·

2
1
3

 = 3, (3 0 − 3) ·

2
1
3

 = −3, (4 − 2 5) ·

2
1
3

 = 21.

The evaluated request produces a column vector containing the dot product an-
swers, called the product of a matrix and a vector (no mention of dot
product), written as −1 2 1

3 0 −3
4 −2 5

 2
1
3

 =

 3
−3
21

 .

The general scheme which gangs the dot product operation onto the matrix rows
can be written as

· · · row 1 · · ·
· · · row 2 · · ·

· · ·
... · · ·

· · · row m · · ·

 X⃗ =


(row 1) · X⃗
(row 2) · X⃗

...

(row m) · X⃗

 .

The product is properly defined only in case the number of matrix columns equals
the number of entries in X⃗, so that the dot products on the right are defined.
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Matrix multiply as a linear combination of columns. The identity(
a b
c d

)(
x1
x2

)
= x1

(
a
c

)
+ x2

(
b
d

)
implies that Ax⃗ is a linear combination of the columns of A, where A is the 2×2
matrix on the left.

This result holds in general, a relation used so often that it deserves a formal
statement.

Theorem 5.6 (Matrix Multiply as a Linear Combination of Columns)
Let matrix A have vector columns v⃗ 1,. . . ,v⃗n and let vector X⃗ have scalar compo-
nents x1, . . . , xn. Then the definition of matrix multiply implies

AX⃗ = x1v⃗ 1 + x2v⃗ 2 + · · ·+ xnv⃗n.

General matrix product AB. The evaluation of matrix products AY⃗1, AY⃗2,
. . . , AY⃗k is a list of k column vectors which can be packaged into a matrix C.
Let B be the matrix which packages the columns Y⃗1, . . . , Y⃗k. Define C = AB by
the dot product definition

cij = row(A, i) · col(B, j).

This definition makes sense provided the column dimension of A matches the row
dimension of B. It is consistent with the earlier definition from college algebra
and the definition of AY⃗ , therefore it may be taken as the basic definition for a
matrix product.

How to multiply matrices on paper. More arithmetic errors are made when
computing dot products written in the form

(
−7 3 5

)
·

 −13
−5

 = −9,

because alignment of corresponding entries must be done mentally. It is visually
easier when the entries are aligned.

On paper, work can be arranged for a matrix times a vector as below, so that
the entries align. The boldface transcription above the columns is temporary,
erased after the dot product step.

−1 3 −5 −7 3 5
−5 −2 3
1 −3 −7

 ·
 −13
−5

 =

 −9
−16
25


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Visualization of Matrix Multiply

Discussed here is a key example of how to interpret 2 × 2 matrix multiply as a
geometric operation.

Let’s begin by inspecting a 2 × 2 system y⃗ = Ax⃗ for its geometric meaning.
Consider the system∣∣∣∣ y1 = ax1 + bx2

y2 = cx1 + dx2

∣∣∣∣ or y⃗ =

(
a b
c d

)
x⃗(2)

Geometric rotation and scaling of planar figures have equations of this form.
Adopt below definitions of A, B:

Rotation by angle θ Scale by factor k

A =

(
cos θ sin θ
− sin θ cos θ

)
B =

(
k 0
0 k

)(3)

The geometric effect of mapping points x⃗ on an ellipse by the equation y⃗ = Ax⃗
is to rotate the ellipse. If we choose θ = π/2, then it is a rotation by 90 degrees.
The mapping z⃗ = By⃗ re-scales the axes by factor k. If we choose k = 2, then the
geometric result is to double the dimensions of the rotated ellipse. The resulting
geometric transformation of x⃗ into z⃗ has algebraic realization

z⃗ = By⃗ = BAx⃗ ,

which means the composite transformation of rotation followed by scaling is
represented by system (2), with coefficient matrix(

a b
c d

)
= BA =

(
2 0
0 2

)(
cosπ/2 sinπ/2
− sinπ/2 cosπ/2

)
=

(
0 2
−2 0

)
.

y⃗ = Ax⃗ z⃗ = By⃗
Figure 9. An ellipse
is mapped into a ro-
tated and re-scaled
ellipse.
The rotation is y⃗ = Ax⃗ ,
which is followed by
re-scaling z⃗ = By⃗ .
The composite geomet-
ric transformation is
z⃗ = BAx⃗ , which maps
the ellipse into a rotated
and re-scaled ellipse.
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Special Matrices

The zero matrix, denoted 0, is the m× n matrix all of whose entries are zero.
The identity matrix, denoted I, is the n× n matrix with ones on the diagonal
and zeros elsewhere: aij = 1 for i = j and aij = 0 for i ̸= j.

0 =


0 0 · · · 0
0 0 · · · 0

...
0 0 · · · 0

 , I =


1 0 · · · 0
0 1 · · · 0

...
0 0 · · · 1

 .

The identity I is a package of column vectors called the standard unit vectors
of size n. Literature may write the columns of I as e⃗1, . . . , e⃗n or as col(I, 1),
. . . , col(I, n).

The negative of a matrix A is (−1)A, which multiplies each entry of A by the
factor (−1):

−A =


−a11 · · · −a1n
−a21 · · · −a2n

...
−am1· · · −amn

 .

Square Matrices

An n×n matrix A is said to be square. The entries akk, k = 1, . . . , n of a square
matrix make up its diagonal. A square matrix A is lower triangular if aij = 0
for i > j, and upper triangular if aij = 0 for i < j; it is triangular if it is
either upper or lower triangular. Therefore, an upper triangular matrix has all
zeros below the diagonal and a lower triangular matrix has all zeros above the
diagonal. A square matrix A is a diagonal matrix if aij = 0 for i ̸= j, that
is, the off-diagonal elements are zero. A square matrix A is a scalar matrix if
A = cI for some constant c.

upper

triangular
=


a11 a12 · · · a1n
0 a22 · · · a2n

...
0 0 · · · ann

,
lower

triangular
=


a11 0 · · · 0
a21 a22 · · · 0

...
an1 an2 · · · ann

,

diagonal =


a11 0 · · · 0
0 a22 · · · 0

...
0 0 · · · ann

, scalar =


c 0 · · · 0
0 c · · · 0

...
0 0 · · · c

.
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Matrix Algebra

A matrix can be viewed as a single long array, or fixed vector, therefore the vector
space toolkit page 297 for fixed vectors applies to matrices.

Let A, B, C be matrices of the same row and column dimensions and let k1, k2,
k be constants. Then

Closure The operations A + B and kA are defined and result in a new
matrix of the same dimensions.

Addition
rules

A+B = B +A commutative
A+ (B + C) = (A+B) + C associative
Matrix 0 is defined and 0+A = A zero
Matrix −A is defined and A+ (−A) = 0 negative

Scalar
multiply
rules

k(A+B) = kA+ kB distributive I
(k1 + k2)A = k1A+ k2B distributive II
k1(k2A) = (k1k2)A distributive III
1A = A identity

These rules collectively establish that the set of all m×n matrices is an abstract
vector space (page 298).

The operation of matrix multiplication gives rise to some new matrix rules, which
are in common use, but do not qualify as vector space rules. The rules are
proved by expansion of each side of the equation. Techniques are sketched in the
exercises, which carry out the steps of each proof.

Associative A(BC) = (AB)C, provided productsBC and AB are defined.

Distributive A(B + C) = AB + AC, provided products AB and AC are
defined.

Right Identity AI = A, provided AI is defined.

Left Identity IA = A, provided IA is defined.

Transpose. Swapping rows and columns of a matrix A results in a new matrix B
whose entries are given by bij = aji. The matrix B is denoted AT (pronounced
“A-transpose”). The transpose has the following properties. Exercises outline
the proofs.

(AT )T = A Identity

(A+B)T = AT +BT Sum

(AB)T = BTAT Product

(kA)T = kAT Scalar

312



5.1 Vectors and Matrices

Inverse Matrix

Definition 5.13 (Inverse Matrix)
A square matrix B is said to be an inverse of a square matrix A provided AB =
BA = I. The symbol I is the identity matrix of matching dimension.

To illustrate, B =

(
2 −1
−1 1

)
is an inverse of A =

(
1 1
1 2

)
because

(
1 1
1 2

)(
2 −1
−1 1

)
=

(
1 0
0 1

)
,

(
2 −1
−1 1

)(
1 1
1 2

)
=

(
1 0
0 1

)
The zero matrix does not have an inverse. To justify, let A = 0 and assume
square matrix B is a inverse of A. Then relation 0B = B0 = I holds. The
zero matrix times any matrix is the zero matrix, which leads to the contradiction
0 = I.

A given matrix A may not have an inverse.

Definition 5.14 (Inverse Notation A−1)
If matrix A has an inverse B, then notation A−1 is used for B:

AA−1 = A−1A = I

Theorem 5.7 (Inverses)
Let A, B, C denote square matrices. Then

(a) A matrix has at most one inverse, that is, if AB = BA = I and AC = CA = I,
then B = C.

(b) If A has an inverse, then so does A−1 and (A−1)−1 = A.

(c) If A has an inverse, then (A−1)T = (AT )−1.

(d) If A and B have inverses , then (AB)−1 = B−1A−1.

Proofs on page 315.

Left to be discussed is how to find the inverse A−1. For a 2× 2 matrix, there is
an easily justified formula.

Theorem 5.8 (Inverse of a 2× 2)

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

The formula is commonly committed to memory, because of repeated use. In
words, the theorem says:
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Swap the diagonal entries, change signs on the off-diagonal entries,
then divide by the determinant ad− bc.

There is a generalization of this formula to n × n matrices, which is equiva-
lent to the formulas in Cramer’s rule. It will be derived during the study of
determinants; the statement is paraphrased as follows:

A−1 =
adjugate matrix of A

determinant of A
.

A general and efficient method for computing inverses, based upon rref methods,
will be presented in the next section. The method can be implemented on hand
calculators, computer algebra systems and computer numerical laboratories.

Definition 5.15 (Symmetric Matrix)
A matrix A is said to be symmetric if AT = A, which implies that the row and
column dimensions of A are the same and aij = aji.

If A is symmetric and invertible, then its inverse is symmetric. If B is any matrix,
not necessarily square, then A = BTB is symmetric. Proofs are in the exercises.

Proofs and Details

Proof of the Kernel Theorem 5.2: Zero is in S because A0⃗ = 0⃗ for any matrix A. To
verify the subspace criterion, we verify that, for x⃗ and y⃗ in S, the vector z⃗ = c1x⃗ + c2y⃗
also belongs to S. The details:

Az⃗ = A(c1x⃗ + c2y⃗ )

= A(c1x⃗ ) +A(c2y⃗ )

= c1Ax⃗ + c2Ay⃗

= c10⃗ + c20⃗ Because Ax⃗ = Ay⃗ = 0⃗ , due to x⃗ , y⃗ in S.

= 0⃗ Therefore, Az⃗ = 0⃗ , and z⃗ is in S.

■

Proof of the Span Theorem 5.5: Details will be supplied for k = 3, because the text
of the proof can be easily edited to give the details for general k. The vector space V
is an abstract vector space, and we do not assume that the vectors are fixed vectors. It
is impossible, therefore, to burst the vectors into components! Let v⃗ 1, v⃗ 2, v⃗ 3 be given
vectors in V and let

S = span(v⃗ 1, v⃗ 2, v⃗ 3) = {v⃗ : v⃗ = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3}.

The subspace criterion will be applied to prove that S is a subspace of V .

(1) We show 0⃗ is in S. Choose c1 = c2 = c3 = 0, then v⃗ = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3 = 0⃗ .
Therefore, 0⃗ is in S.
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(2) Assume v⃗ = a1v⃗ 1 + a2v⃗ 2 + a3v⃗ 3 and w⃗ = b1v⃗ 1 + b2v⃗ 2 + b3v⃗ 3 are in S. We show
that v⃗ + w⃗ is in S, by adding the equations:

v⃗ + w⃗ = a1v⃗ 1 + a2v⃗ 2 + a3v⃗ 3 + b1v⃗ 1 + b2v⃗ 2 + b3v⃗ 3

= (a1 + b1)v⃗ 1 + (a2 + b2)v⃗ 2 + (a3 + b3)v⃗ 3

= c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3

where the constants are defined by c1 = a1 + b1, c2 = a2 + b2, c3 = a3 + b3. Then v⃗ + w⃗
is in S.

(3) Assume v⃗ = a1v⃗ 1 + a2v⃗ 2 + a3v⃗ 3 and c is a constant. We show cv⃗ is in S. Multiply
the equation for v⃗ by c to obtain

cv⃗ = ca1v⃗ 1 + ca2v⃗ 2 + ca3v⃗ 3

= c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3

where the constants are defined by c1 = ca1, c2 = ca2, c3 = ca3. Then cv⃗ is in S. ■

Proof of the Inverse Theorem 5.7:

(a) If AB = BA = I and AC = CA = I, then B = BI = BAC = IC = C.
(b) Let B = A−1. Given AB = BA = I, then by definition A is an inverse of B, but
by (a) it is the only one, so (A−1)−1 = B−1 = A.
(c) Let B = A−1. We show BT = (AT )−1 or equivalently C = BT satisfies ATC =
CAT = I. Start with AB = BA = I, take the transpose to get BTAT = ATBT = I.
Substitute C = BT , then CAT = ATC = I, which was to be proved.
(d) The formula is proved by showing that C = B−1A−1 satisfies (AB)C = C(AB) = I.
The left side is (AB)C = ABB−1A−1 = I and the right side C(AB) = B−1A−1AB = I,
proving LHS = RHS.

Exercises 5.1 �

Fixed vectors
Perform the indicated operation(s).

1.

(
1
−1

)
+

(
−2
1

)

2.

(
2
−2

)
−
(

1
−3

)

3.

 1
−1
2

+

 −21
−1



4.

 2
−2
9

−
 1
−3
7


5. 2

(
1
−1

)
+ 3

(
−2
1

)

6. 3

(
2
−2

)
− 2

(
1
−3

)

7. 5

 1
−1
2

+ 3

 −21
−1



8. 3

 2
−2
9

− 5

 1
−3
7



9.

 1
−1
2

+

 −21
−1

−
 1

2
−3



10.

 2
−2
4

−
 1
−3
5

−
 1

3
−2


Parallelogram Rule
Determine the resultant vector in two ways:
(a) the parallelogram rule, and (b) fixed
vector addition.

11.

(
2
−2

)
+

(
1
−3

)
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12. (2⃗ı− 2ȷ⃗) + (⃗ı− 3ȷ⃗)

13.

 2
2
0

+

 3
3
0


14. (2⃗ı− 2ȷ⃗+ 3k⃗) + (⃗ı− 3ȷ⃗− k⃗)

Toolkit
Let V be the data set of all fixed 2-vectors,
V = R2. Define addition and scalar mul-
tiplication componentwise. Verify the fol-
lowing toolkit rules by direct computation.

15. (Commutative)

X⃗ + Y⃗ = Y⃗ + X⃗

16. (Associative)

X⃗ + (Y⃗ + Z⃗) = (Y⃗ + X⃗) + Z⃗

17. (Zero)

Vector 0⃗ is defined and 0⃗ + X⃗ = X⃗

18. (Negative)

Vector −X⃗ is defined and
X⃗ + (−X⃗) = 0⃗

19. (Distributive I)

k(X⃗ + Y⃗ ) = kX⃗ + kY⃗

20. (Distributive II)

(k1 + k2)X⃗ = k1X⃗ + k2X⃗

21. (Distributive III)

k1(k2X⃗) = (k1k2)X⃗

22. (Identity)

1X⃗ = X⃗

Subspaces
Verify that the given restriction equation
defines a subspace S of V = R3. Use The-
orem 5.2, page 300.

23. z = 0

24. y = 0

25. x+ z = 0

26. 2x+ y + z = 0

27. x = 2y + 3z

28. x = 0, z = x

29. z = 0, x+ y = 0

30. x = 3z − y, 2x = z

31. x+ y + z = 0, x+ y = 0

32. x+ y − z = 0, x− z = y

Test S Not a Subspace
Test the following restriction equations for
V = R3 and show that the corresponding
subset S is not a subspace of V . Use The-
orem 5.4 page 301.

33. x = 1

34. x+ z = 1

35. xz = 2

36. xz + y = 1

37. xz + y = 0

38. xyz = 0

39. z ≥ 0

40. x ≥ 0 and y ≥ 0

41. Octant I

42. The interior of the unit sphere

Dot Product
Find the dot product of a⃗ and b⃗ .

43. a⃗ =

(
1
−1

)
and b⃗ =

(
0
−2

)
.

44. a⃗ =

(
1
2

)
and b⃗ =

(
1
−2

)
.

45. a⃗ =

 1
−1
0

 and b⃗ =

 0
−2
1

.

46. a⃗ =

 1
2
1

 and b⃗ =

 1
−2
0

.

47. a⃗ and b⃗ are inR169, a⃗ has all 169 com-
ponents 1 and b⃗ has all components −1,
except four, which all equal 5.
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48. a⃗ and b⃗ are inR200, a⃗ has all 200 com-
ponents −1 and b⃗ has all components
−1 except three, which are zero.

Length of a Vector
Find the length of the vector v⃗ .

49. v⃗ =

(
1
−1

)
.

50. v⃗ =

(
2
−1

)
.

51. v⃗ =

 1
−1
2

.

52. v⃗ =

 2
0
2

.

Shadow Projection
Find the shadow projection d = a⃗ · b⃗/|b⃗ |.

53. a⃗ =

(
1
−1

)
and b⃗ =

(
0
−2

)
.

54. a⃗ =

(
1
2

)
and b⃗ =

(
1
−2

)
.

55. a⃗ =

 1
−1
0

 and b⃗ =

 0
−2
1

.

56. a⃗ =

 1
2
1

 and b⃗ =

 1
−2
0

.

Projections and Reflections
Let L denote a line through the origin with
unit direction u⃗ .

The projection of vector x⃗ onto L is
P (x⃗ ) = du⃗ , where d = x⃗ · u⃗ is the shadow
projection.

The reflection of vector x⃗ across L is
R(x⃗ ) = 2du⃗ − x⃗ (a generalized complex
conjugate).

57. Let u⃗ be the direction of the x-axis
in the plane. Establish that P (x⃗ ) and
R(x⃗ ) are sides of a right triangle and P
duplicates the complex conjugate oper-
ation z → z. Include a figure.

58. Let u⃗ be any direction in the plane.
Establish that P (x⃗ ) and R(x⃗ ) are sides
of a right triangle. Draw a suitable fig-
ure, which includes x⃗ .

59. Let u⃗ be the direction of 2⃗ı+ ȷ⃗. Define
x⃗ = 4⃗ı+3ȷ⃗. Compute the vectors P (x⃗ )
and R(x⃗ ).

60. Let u⃗ be the direction of ı⃗+2ȷ⃗. Define
x⃗ = 3⃗ı+5ȷ⃗. Compute the vectors P (x⃗ )
and R(x⃗ ).

Angle
Find the angle θ between the given vectors.

61. a⃗ =

(
1
−1

)
and b⃗ =

(
0
−2

)
.

62. a⃗ =

(
1
2

)
and b⃗ =

(
1
−2

)
.

63. a⃗ =

 1
−1
0

 and b⃗ =

 0
−2
1

.

64. a⃗ =

 1
2
1

 and b⃗ =

 1
−2
0

.

65. a⃗ =


1
−1
0
0

 and b⃗ =


0
−2
1
1

.

66. a⃗ =


1
2
1
0

 and b⃗ =


1
−2
0
0

.

67. a⃗ =

 1
−1
2

 and b⃗ =

 2
−2
1

.

68. a⃗ =

 2
2
1

 and b⃗ =

 1
−2
2

.

Matrix Multiply
Find the given matrix product or else ex-
plain why it does not exist.

69.

(
1 1
1 −1

)(
1
−2

)
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70.

(
1 −1
1 0

)(
1
−2

)

71.

(
1 1
1 2

)(
1
−1

)

72.

(
1 2
3 1

)(
2
−1

)

73.

 1 1 1
1 −1 1
1 0 0

 1
−2
0



74.

 1 0 1
1 −1 0
1 1 0

 1
2
0



75.

 1 1 1
1 0 2
1 2 0

 1
3
1



76.

 1 2 1
1 −2 0
1 1 −1

 1
2
1



77.

 1 1 1
1 −1 1
1 0 0

 1 0 0
0 −1 0
0 0 1



78.

 1 1 1
1 −1 1
1 0 0

 1 1 0
0 −1 0
0 0 1


79.

(
1 1
−1 1

)(
1 0
1 2

)

80.

(
1 1
−1 1

) 1 1 1
1 0 2
1 2 0



81.

 1 1
1 0
1 2

( 1 1
−1 1

)

82.

(
1 1 1
1 0 1

) 1 1 1
1 0 2
1 2 0


Matrix Classification
Classify as square, non-square, upper tri-
angular, lower triangular, scalar, diagonal,
symmetric, non-symmetric. Cite as many
terms as apply.

83.

(
1 0
0 2

)

84.

(
1 3
0 2

)

85.

(
1 3
4 2

)

86.

(
1 3
3 2

)

87.

 1 3 4
5 0 0
0 0 0



88.

 1 0 4
0 2 0
0 0 3



89.

 1 3 4
3 2 0
4 0 3



90.

 2 0 0
0 2 0
0 0 2


91.

(
i 0
0 2i

)

92.

(
i 3
3 2i

)
Digital Photographs
Assume integer 24-bit color encoding x =
r+(256)g+(65536)b, which means r units
red, g units green and b units blue. Given
matrix X = R + 256G + 65536B, find the
red, green and blue color separation matri-
ces R, G, B. Computer assist expected.

93. X =

(
514 3

131843 197125

)

94. X =

(
514 3

131331 66049

)

95. X =

(
513 7

131333 66057

)

96. X =

(
257 7

131101 66057

)
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97. X =

(
257 17

131101 265

)

98. X =

(
65537 269
65829 261

)

99. X =

(
65538 65803
65833 7

)

100. X =

(
259 65805
299 5

)
Matrix Properties
Verify the result.

101. Let C be an m× n matrix. Let X⃗ be
column i of the n×n identity I. Define
Y⃗ = CX⃗. Verify that Y⃗ is column i of
C.

102. Let A and C be an m × n matrices
such that AC = 0. Verify that each
column Y⃗ of C satisfies AY⃗ = 0⃗.

103. Let A be a 2 × 3 matrix and let Y⃗1,
Y⃗2, Y⃗3 be column vectors packaged into
a 3× 3 matrix C. Assume each column
vector Y⃗i satisfies the equation AY⃗i = 0⃗,
1 ≤ i ≤ 3. Show that AC = 0.

104. Let A be an m×n matrix and let Y⃗1,
. . . , Y⃗n be column vectors packaged into
an n×nmatrix C. Assume each column
vector Y⃗i satisfies the equation AY⃗i = 0⃗,
1 ≤ i ≤ n. Show that AC = 0.

Triangular Matrices
Verify the result.

105. The product of two upper triangular
2× 2 matrices is upper triangular.

106. The product of two upper triangular
n× n matrices is upper triangular.

107. The product of two triangular 2 × 2
matrices is not necessarily triangular.

108. The product of two lower triangular
n× n matrices is upper triangular.

109. The product of two lower triangular
2× 2 matrices is lower triangular.

110. The only 3 × 3 matrices which are
both upper and lower triangular are the
3× 3 diagonal matrices.

Matrix Multiply Properties
Verify the result.

111. The associative law A(BC) = (AB)C
holds for matrix multiplication.
Sketch: Expand L = A(BC) entry Lij

according to matrix multiply rules. Ex-

pand R = (AB)C entry Rij the same way.

Show Lij = Rij .

112. The distributive law A(B + C) =
AB +AC holds for matrices.
Sketch: Expand L = A(B+C) entry Lij

according to matrix multiply rules. Ex-

pand R = AB + AC entry Rij the same

way. Show Lij =
∑n

k=1 aik(bkj + ckj)

and Rij =
∑n

k=1 aikbkj + aikckj . Then

Lij = Rij .

113. For any matrix A the transpose for-
mula (AT )T = A holds.
Sketch: Expand L = (AT )T entry Lij

according to matrix transpose rules. Then

Lij = aij .

114. For matrices A, B the transpose for-
mula (A+B)T = AT +BT holds.
Sketch: Expand L = (A+B)T entry Lij

according to matrix transpose rules. Re-

peat for entry Rij of R = AT +BT . Show

Lij = Rij .

115. For matrices A, B the transpose for-
mula (AB)T = BTAT holds.
Sketch: Expand L = (AB)T entry Lij ac-

cording to matrix multiply and transpose

rules. Repeat for entry Rij of R = BTAT .

Show Lij = Rij .

116. For a matrix A and constant k, the
transpose formula (kA)T = kAT holds.

Invertible Matrices
Verify the result.

117. There are infinitely many 2 × 2 ma-
trices A, B such that AB = 0

118. The zero matrix is not invertible.
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119. The matrix A =

(
1 2
0 0

)
is not in-

vertible.

120. The matrix A =

(
1 2
0 1

)
is invert-

ible.

121. The matrices A =

(
a b
c d

)
and

B =

(
d −b
−c a

)
satisfy

AB = BA = (ad− bc)I.

122. If AB = 0, then one of A or B is not
invertible.

Symmetric Matrices
Verify the result.

123. The product of two symmetric n× n
matrices A, B such that AB = BA is
symmetric.

124. The product of two symmetric 2 × 2
matrices may not be symmetric.

125. If A is symmetric, then so is A−1.
Sketch: Let B = A−1. Compute BT us-

ing transpose rules.

126. If B is anm×nmatrix and A = BTB,
then A is n× n symmetric.
Sketch: Compute AT using transpose

rules.
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5.2 Matrix Equations

Linear Algebraic Equations

An m× n system of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
am1x1 + am2x2 + · · ·+ amnxn = bm,

(1)

can be written as a matrix multiply equation AX⃗ = b⃗. Let A be the matrix of
coefficients aij , let X⃗ be the column vector of variable names x1, . . . , xn and let

b⃗ be the column vector with components b1, . . . , bn. Assume equations (1) hold.
Then:

AX⃗ =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn




x1
x2
...
xn



=


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn



=


b1
b2
...
bn

 by equation (1)

Therefore, equations (1) imply AX⃗ = b⃗. Conversely, assume matrix equation
AX⃗ = b⃗. Reversible steps above give the last vector equality. Vector equality
page 304 implies system (1) is satisfied.

A system of linear equations can be represented by its variable list x1, x2, . . . ,
xn and its augmented matrix.

Definition 5.16 (Augmented Matrix)
The augmented matrix of A and b⃗ for system Ax⃗ = b⃗ is

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
am1 am2 · · · amn bn

 or symbol ⟨A | b⃗⟩(2)
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Vertical Line Notation. The present text uses a vertical line in a matrix
display to mean it is an augmented matrix. While symbol ⟨A | b⃗⟩ has a vertical
bar, the matrix itself has no vertical line as in display (2). Given a matrix C, it
certainly has no vertical line. It may be a coefficient matrix in some system Cx⃗ =
d⃗ , or C could be an augmented matrix for some system Ax⃗ = b⃗ . Computers do
not display nor store the vertical line appearing in equation (2). References may
not use a vertical line.

Convert Augmented Matrix to Linear Algebraic Equations. Given an
augmented n × (n + 1) matrix C and a variable list x1, . . . , xn, the conversion
back to a linear system of algebraic equations is made by expanding CY⃗ = 0,
where Y⃗ has components x1, . . . , xn, −1. Hand work might contain an exposition
like this:

x1 x2 · · · xn
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
am1 am2 · · · amn bn

(3)

In (3), a dot product is applied to the first n elements of each row, using the
variable list written above the columns. The symbolic answer is set equal to the
rightmost column’s entry, in order to recover the equations. An example:

x1 x2 x3 1 5 −2 7
2 0 −1 10
3 2 4 12

 −→


x1 + 5x2 − 2x3 = 7
2x1 + 0x2 − x3 = 10
3x1 + 2x2 + 4x3 = 12

Homogeneous System Augmented Matrix. It is usual in homogeneous
systems Ax⃗ = 0⃗ to omit the column of zeros and deal directly with A instead
of ⟨A | 0⃗⟩. The convention is justified by arguing that the rightmost column of
zeros is unchanged by swap, multiply and combination rules which are defined
below. A negative is remembering to insert the column of zeros when using a
computation. An example:

x1 + 5x2 − 2x3 = 0
2x1 + 0x2 − x3 = 0
3x1 + 2x2 + 4x3 = 0

Use

1 5 −2
2 0 −1
3 2 4

 instead of

1 5 −2 0
2 0 −1 0
3 2 4 0


Elementary Row Operations

The three operations on equations which produce equivalent systems can be
translated directly to row operations on the augmented matrix for the system.
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The rules produce equivalent systems, that is, the three rules neither create
nor destroy solutions.

Swap Two rows can be interchanged.

Multiply A row can be multiplied by multiplier m ̸= 0.

Combination A multiple of one row can be added to a different row.

Documentation of Row Operations

Throughout the display below, symbol s stands for source, symbol t for target,
symbol m for multiplier and symbol c for constant.

Swap swap(s,t) ≡ swap rows s and t.

Multiply mult(t,m) ≡ multiply row t by m̸= 0.

Combination combo(s,t,c) ≡ add c times row s to row t ̸= s.

The standard for documentation is to write the notation next to the target row,
which is the row to be changed. For swap operations, the notation is written
next to the first row that was swapped, and optionally next to both rows. The
notation was developed from early maple notation for the corresponding opera-
tions swaprow, mulrow and addrow, appearing in the maple package linalg. For
instance, addrow(A,1,3,-5) selects matrix A as the target of the combination
rule, which is documented in written work as combo(1,3,-5). In written work on
paper, symbol A is omitted, because A is the matrix appearing on the previous
line of the sequence of steps.

Maple Remarks. Versions of maple use packages to perform toolkit operations.
A short conversion table appears below.

On paper Maple with(linalg) Maple with(LinearAlgebra)

swap(s,t) swaprow(A,s,t) RowOperation(A,[t,s])

mult(t,c) mulrow(A,t,c) RowOperation(A,t,c)

combo(s,t,c) addrow(A,s,t,c) RowOperation(A,[t,s],c)

Conversion between packages can be controlled by the following function defi-
nitions, which causes the maple code to be the same regardless of which linear
algebra package is used.5

Maple linalg

combo:=(a,s,t,c)->addrow(a,s,t,c);

swap:=(a,s,t)->swaprow(a,s,t);

mult:=(a,t,c)->mulrow(a,t,c);
5The acronym ASTC is used for the signs of the trigonometric functions in quadrants I

through IV. The argument lists for combo, swap, mult use the same order, ASTC, memorized
in trigonometry as All Students Take Calculus.
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Maple LinearAlgebra

combo:=(a,s,t,c)->RowOperation(a,[t,s],c);

swap:=(a,s,t)->RowOperation(a,[t,s]);

mult:=(a,t,c)->RowOperation(a,t,c);

macro(matrix=Matrix);

RREF Test

A linear algebraic equation example of RREF :

x1 +2x2 +3x4 +4x5 +5x7 = 6
x3 +7x4 +8x5 +9x7 = 10

x6 +11x7 = 12
x8 = 13

(4)

The corresponding vector-matrix augmented matrix, no vertical line:



1 2 0 3 4 0 5 0 6
0 0 1 7 8 0 9 0 10
0 0 0 0 0 1 11 0 12
0 0 0 0 0 0 0 1 13
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(5)

Definition 5.17 (Reduced Row-echelon Form or RREF)
The reduced row-echelon form of a matrix, or rref, is defined by:

1. Zero rows appear last. Each nonzero row has first element 1, called a leading
one. The column in which the leading one appears, called a pivot column,
has all other entries zero.

2. The pivot columns appear as consecutive initial columns of the identity matrix
I. Trailing columns of I might be absent.

Matrix (5) is a typical rref which satisfies the preceding properties. The initial
4 columns of the 7 × 7 identity matrix I appear in natural order in matrix (5);
the trailing 3 columns of I are absent.

If the rref of the augmented matrix has a leading one in the last column, then
the corresponding system of equations then has an equation “0 = 1” displayed,
which signals an inconsistent system. Important: the rref always exists, even
if the corresponding linear algebraic equations are inconsistent.
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Elimination Method

The elimination algorithm for equations page 197 has an implementation for
matrices. A row is marked processed if either (1) the row is all zeros, or else
(2) the row contains a leading one and all other entries in that column are zero.
Otherwise, the row is called unprocessed.

1. Move each unprocessed row of zeros to the last row using swap and mark
it processed.

2. Identify an unprocessed nonzero row having the least number of leading
zeros. Apply the swap rule to make this row the very first unprocessed row.
Apply the multiply rule to insure a leading one. Apply the combination
rule to change to zero all other entries in that column. The number of
leading ones (lead variables) has been increased by one and the current
column is a column of the identity matrix. Mark the row as processed, e.g.,
box the leading one: 1 .

3. Repeat steps 1–2, until all rows have been processed. Then all leading ones
have been defined and the resulting matrix is in reduced row-echelon form.

Computer algebra systems and computer numerical laboratories automate com-
putation of the reduced row-echelon form of a matrix A.

Literature calls the algorithm Gauss-Jordan elimination. Two examples:

rref(0) = 0 In step 2, all rows of the zero matrix 0 are zero. No changes
are made to the zero matrix.

rref(I) = I In step 2, each row has a leading one. No changes are made
to the identity matrix I.

Visual RREF Test. The habit to mark pivots with a box leads to a visual test
for a RREF. An illustration:

1 0 0 0 1
2

0 1 0 0 1
2

0 0 1 0 1
2

0 0 0 0 0


Each boxed leading one 1 appears
in a column of the identity matrix.
The boxes trail downward, ordered
by columns 1, 2, 3 of the identity.
There is no 4th pivot, therefore trail-
ing identity column 4 is not used.

Toolkit Sequence

A sequence of swap, multiply and combination steps applied to a system of
equations is called a toolkit sequence. The viewpoint is that a camera is
pointed over the shoulder of an expert who writes the mathematics, and after
the completion of each toolkit step, a photo is taken. The ordered sequence
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of cropped photo frames is a filmstrip or a sequence of frames. The First
Frame displays the original system and the Last Frame displays the reduced
row echelon system.

The terminology applies to systems Ax⃗ = b⃗ represented by an augmented matrix
C = ⟨A | b⃗⟩. The First Frame is C and the Last Frame is rref(C).

Documentation of toolkit sequence steps will use this textbook’s notation, page
323:

swap(s,t), mult(t,m), combo(s,t,c),

each written next to the target row t. During the sequence, consecutive initial
columns of the identity, called pivot columns, are created as steps toward the
rref . The remaining consecutive columns of the identity might not appear. An
illustration:

Frame 1:


1 2 −1 0 1
1 4 −1 0 2
0 1 1 0 1
0 0 0 0 0

 Original augmented matrix.

Frame 2:


1 2 −1 0 1
0 2 0 0 1
0 1 1 0 1
0 0 0 0 0

 combo(1,2,-1)

Pivot column 1 completed.

Frame 3:


1 2 −1 0 1
0 1 1 0 1
0 2 0 0 1
0 0 0 0 0

 swap(2,3)

Frame 4:


1 2 −1 0 1
0 1 1 0 1
0 0 −2 0 −1
0 0 0 0 0

 combo(2,3,-2)

Frame 5:


1 0 −3 0 −1
0 1 1 0 1
0 0 −2 0 −1
0 0 0 0 0


Pivot column 2 completed by
operation combo(2,1,-2).
Back-substitution postpones
this step.

Frame 6:


1 0 −3 0 −1
0 1 1 0 1
0 0 1 0 1/2
0 0 0 0 0

 All leading ones found.

mult(3,-1/2)

Frame 7:


1 0 −3 0 −1
0 1 0 0 1/2
0 0 1 0 1/2
0 0 0 0 0

 combo(3,2,-1)

Zero other column 3 entries.
Next, finish pivot column 3.
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Last Frame:


1 0 0 0 1/2
0 1 0 0 1/2
0 0 1 0 1/2
0 0 0 0 0


combo(3,1,3)

rref found. Column 4 of the
identity does not appear!
There is no 4th pivot column.

Avoiding fractions. A matrix A with only integer entries can often be put
into reduced row-echelon form without introducing fractions. The multiply rule
introduces fractions, so its use should be limited. It is advised that leading
ones be introduced only when convenient, otherwise make the leading coefficient
nonzero and positive. Divisions at the end of the computation will produce the
rref .

Clever use of the combination rule can sometimes create a leading one without
introducing fractions. Consider the two rows

25 0 1 0 5
7 0 2 0 2

The second row multiplied by −4 and added to the first row effectively replaces
the 25 by −3, whereupon adding the first row twice to the second gives a leading
one in the second row. The resulting rows are fraction-free.

−3 0 −7 0 −3
1 0 −12 0 −4

Rank and Nullity. What does it mean, if the first column of a rref is the zero
vector? It means that the corresponding variable x1 is a free variable. In fact,
every column that does not contain a leading one corresponds to a free variable
in the standard general solution of the system of equations. Symmetrically, each
leading one identifies a pivot column and corresponds to a leading variable.

The number of leading ones is the rank of the matrix, denoted rank(A). The
rank cannot exceed the row dimension nor the column dimension. The column
count less the number of leading ones is the nullity of the matrix, denoted
nullity(A). It equals the number of free variables.

Regardless of how matrix B arises, augmented or not, we have the relation

variable count = rank(B) + nullity(B).

If B = ⟨A | b⃗⟩ for AX⃗ = b⃗, then the variable count n comes from X⃗ and the
column count of B is one more, or n + 1. Replacing the variable count by the
column count can therefore lead to fundamental errors.

Back-substitution and efficiency. The algorithm implemented in the pre-
ceding toolkit sequence is easy to learn, because the actual work is organized by
creating pivot columns, via swap, combination and multiply. The created pivot
columns are initial columns of the identity. You are advised to learn the algo-
rithm in this form, but please change the algorithm as you become more efficient
at doing the steps. See the examples for illustrations.
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Back Substitution. Computer implementations and also hand computation
can be made more efficient by changing steps 2 and 3, then adding step 4, as
outlined below.

1. Move each unprocessed row of zeros to the last row using swap and mark
it processed.

2a. Identify an unprocessed nonzero row having the least number of leading
zeros. Apply the swap rule to make this row the very first unprocessed row.
Apply the multiply rule to insure a leading one. Apply the combination
rule to change to zero all other entries in that column which are below the
leading one.

3a. Repeat steps 1–2a, until all rows have been processed. The matrix has all
leading ones identified, a triangular shape, but it is not generally a RREF.

4. Back-Substitution. Identify the last row with a leading one. Apply the
combination rule to change to zero all other entries in that column which
are above the leading one. Repeat until all rows have been processed. The
resulting matrix is a RREF.

Literature refers to step 4 as back-substitution, a process which is exactly
the original elimination algorithm applied to the system created by step 3a with
reversed variable list.

Inverse Matrix. An efficient method to find the inverse B of a square matrix
A, should it happen to exist, is to form the augmented matrix C = ⟨A | I⟩ and
then read off B as the package of the last n columns of rref(C). This method is
based upon the equivalence

rref(⟨A | I⟩) = ⟨I |B⟩ if and only if AB = I.

The next theorem aids not only in establishing this equivalence but also in the
practical matter of testing a candidate solution for the inverse matrix.

Theorem 5.9 (Inverse Test for Matrices)
If A and B are square matrices such that AB = I, then also BA = I. Therefore,
only one of the equalities AB = I or BA = I is required to check an inverse. Proof
on page 338.

Theorem 5.10 (Matrix Inverse and the rref)
Let A and B denote square matrices. Then

(a) If rref
(
⟨A | I⟩

)
= ⟨I |B⟩, then AB = BA = I and B is the inverse of A.

(b) If AB = BA = I, then rref
(
⟨A | I⟩

)
= ⟨I |B⟩.
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(c) If rref
(
⟨A | I⟩

)
= ⟨C |B⟩, then C = rref(A). If C ̸= I, then A is not

invertible. If C = I, then B is the inverse of A.

(d) Identity rref(A) = I holds if and only if A has an inverse.

Proof on page 338.

Matrix Inverse: Find A−1

The method will be illustrated for the matrix

A =

 1 0 1
0 1 −1
0 1 1

 .

Define the first frame of the sequence to be C1 = ⟨A | I⟩, then compute the
toolkit sequence to rref(C1) as follows.

C1 =

 1 0 1 1 0 0
0 1 −1 0 1 0
0 1 1 0 0 1

 First Frame

C2 =

 1 0 1 1 0 0
0 1 −1 0 1 0
0 0 2 0 −1 1

 combo(3,2,-1)

C3 =

 1 0 1 1 0 0
0 1 −1 0 1 0
0 0 1 0 −1/2 1/2


mult(3,1/2)

C4 =

 1 0 1 1 0 0
0 1 0 0 1/2 1/2
0 0 1 0 −1/2 1/2

 combo(3,2,1)

C5 =

 1 0 0 1 1/2 −1/2
0 1 0 0 1/2 1/2
0 0 1 0 −1/2 1/2

 combo(3,1,-1)

Last Frame

The theory implies that the inverse of A is the matrix in the right half of the last
frame:

A−1 =

 1 1/2 −1/2
0 1/2 1/2
0 −1/2 1/2


Answer Check. Let B equal the matrix of the last display, claimed to be A−1.
The Inverse Test, Theorem 5.9 page 328, says that only one of AB = I or
BA = I needs to be checked. Details:
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AB =

 1 0 1
0 1 −1
0 1 1

 1 1/2 −1/2
0 1/2 1/2
0 −1/2 1/2


=

 1 1/2− 1/2 −1/2 + 1/2
0 1/2 + 1/2 1/2− 1/2
0 1/2− 1/2 1/2 + 1/2


=

 1 0 0
0 1 0
0 0 1


Elementary Matrices

Elementary matrices express toolkit operations of swap, combi-
nation and multiply as matrix multiply equations.

Typically, toolkit operations produce a finite sequence of k linear algebraic equa-
tions, the first is the original system and the last is the reduced row echelon form
of the system. We are going to re-write a typical toolkit sequence as matrix mul-
tiply equations. Each step is obtained from the previous by left-multiplication
by a square matrix E:

AX⃗ = b⃗ Original system

E1AX⃗ = E1⃗b After one toolkit step

E2E1AX⃗ = E2E1⃗b After two toolkit steps

E3E2E1AX⃗ = E3E2E1⃗b After three toolkit steps

(6)

Definition 5.18 (Elementary Matrix)
An elementary matrix E is created from the identity matrix by applying a single
toolkit operation, that is, exactly one of the operations combination, multiply or
swap.

Elementary Combination Matrix. Create square matrix E by applying the oper-
ation combo(s,t,c) to the identity matrix. The result equals the identity matrix
except for the zero in row t and column s which is replaced by c.

I =

 1 0 0
0 1 0
0 0 1

 Identity matrix.

E =

 1 0 0
0 1 0
0 c 1

 Elementary combination matrix,
combo(2,3,c).
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Elementary Multiply Matrix.
Create square matrix E by applying mult(t,m) to the identity matrix. The result
equals the identity matrix except the one in row t is replaced by m.

I =

 1 0 0
0 1 0
0 0 1

 Identity matrix.

E =

 1 0 0
0 1 0
0 0 m

 Elementary multiply matrix,
mult(3,m).

Elementary Swap Matrix. Create square matrix E by applying swap(s,t) to the
identity matrix.

I =

 1 0 0
0 1 0
0 0 1

 Identity matrix.

E =

 0 0 1
0 1 0
1 0 0

 Elementary swap matrix,
swap(1,3).

If square matrix E represents a combination, multiply or swap rule, then the definition
of matrix multiply applied to matrix EB gives the same matrix as obtained by apply-
ing the toolkit rule directly to matrix B. The statement is justified by experiment.
See the exercises and Theorem 5.11.

Elementary 3× 3 matrices (C=Combination, M=Multiply, S=Swap) can be dis-
played in computer algebra system maple as follows.

On Paper Maple with(linalg) Maple with(LinearAlgebra) 1 0 0
0 1 0
0 0 1

 B:=diag(1,1,1); B:=IdentityMatrix(3);

combo(2,3,c) C:=addrow(B,2,3,c); C:=RowOperation(B,[3,2],c);

mult(3,m) M:=mulrow(B,3,m); M:=RowOperation(B,3,m);

swap(1,3) S:=swaprow(B,1,3); S:=RowOperation(B,[3,1]);

A helpful project is to write out several examples of elementary 5 matrices by
hand or machine. Such experiments lead to the following observations and the-
orems, proofs delayed to page 339.

Constructing an Elementary Matrix E

Combination Change a zero in the identity matrix to symbol c.

Multiply Change a one in the identity matrix to symbol m ̸= 0.

Swap Interchange two rows of the identity matrix.
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Constructing E−1 from an Elementary Matrix E

Combination Change multiplier c in E to −c.
Multiply Change diagonal multiplier m ̸= 0 in E to 1/m.

Swap The inverse of E is E itself.

Theorem 5.11 (Matrix Multiply by an Elementary Matrix)
Let B1 be a given matrix of row dimension n. Select a toolkit operation combination,
multiply or swap, then apply it to matrix B1 to obtain matrix B2. Apply the identical
toolkit operation to the n× n identity I to obtain elementary matrix E. Then

B2 = EB1.

Theorem 5.12 (Toolkit Sequence Identity)
If C and D are any two frames in a sequence, then corresponding toolkit operations
are represented by square elementary matrices E1, E2, . . . , Ek and the two frames
C,D satisfy the matrix multiply equation

D = Ek · · ·E2E1C.

Theorem 5.13 (The rref and Elementary Matrices)
Let A be a given matrix of row dimension n. Then there exist n × n elementary
matrices E1, E2, . . . , Ek representing certain toolkit operations such that

rref(A) = Ek · · ·E2E1A.

Illustration

Consider the following 6-frame toolkit sequence.

A1 =

 1 2 3
2 4 0
3 6 3

 Frame 1, original matrix.

A2 =

 1 2 3
0 0 −6
3 6 3

 Frame 2, combo(1,2,-2).

A3 =

 1 2 3
0 0 1
3 6 3

 Frame 3, mult(2,-1/6).

A4 =

 1 2 3
0 0 1
0 0 −6

 Frame 4, combo(1,3,-3).
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A5 =

 1 2 3
0 0 1
0 0 0

 Frame 5, combo(2,3,-6).

A6 =

 1 2 0
0 0 1
0 0 0

 Frame 6, combo(2,1,-3). Found rref .

The corresponding 3× 3 elementary matrices are

E1 =

 1 0 0
−2 1 0
0 0 1

 Frame 2, combo(1,2,-2) applied to I.

E2 =

 1 0 0
0 −1/6 0
0 0 1

 Frame 3, mult(2,-1/6) applied to I.

E3 =

 1 0 0
0 1 0
−3 0 1

 Frame 4, combo(1,3,-3) applied to I.

E4 =

 1 0 0
0 1 0
0 −6 1

 Frame 5, combo(2,3,-6) applied to I.

E5 =

 1 −3 0
0 1 0
0 0 1

 Frame 6, combo(2,1,-3) applied to I.

Because each frame of the sequence has the succinct form EB, where E is an
elementary matrix and B is the previous frame, the complete toolkit sequence
can be written as follows.

A2 = E1A1 Frame 2, E1 equals combo(1,2,-2) on I.

A3 = E2A2 Frame 3, E2 equals mult(2,-1/6) on I.

A4 = E3A3 Frame 4, E3 equals combo(1,3,-3) on I.

A5 = E4A4 Frame 5, E4 equals combo(2,3,-6) on I.

A6 = E5A5 Frame 6, E5 equals combo(2,1,-3) on I.

A6 = E5E4E3E2E1A1 Summary, frames 1-6. This relation is rref(A1) =
E5E4E3E2E1A1, which is the result claimed in The-
orem 5.13.

The summary is the equation

rref(A1) =

1−3 0
0 1 0
0 0 1

1 0 0
0 1 0
0−6 1

 1 0 0
0 1 0
−3 0 1

1 0 0
0−1

6 0
0 0 1

 1 0 0
−2 1 0
0 0 1

A1
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The inverse relationship A1 = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 rref(A1) is formed by the

rules for constructing E−1 from elementary matrix E, page 331, the result being

A1 =

1 0 0
2 1 0
0 0 1

1 0 0
0−6 0
0 0 1

1 0 0
0 1 0
3 0 1

1 0 0
0 1 0
0 6 1

1 3 0
0 1 0
0 0 1

 rref(A1)

Examples and Methods

Example 5.1 (Identify a Reduced Row–Echelon Form)
Identify the matrices in reduced row–echelon form using the RREF Test page 324.

A =

0 1 3 0
0 0 0 1
0 0 0 0
0 0 0 0

 B =

1 1 3 0
0 0 0 1
0 0 0 0
0 0 0 0



C =

2 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 D =

0 1 3 0
0 0 0 1
1 0 0 0
0 0 0 0


Solution:

Matrix A. There are two nonzero rows, each with a leading one. The pivot columns are
2, 4 and they are consecutive columns of the 4× 4 identity matrix. Yes, it is a RREF.

Matrix B. Same as A but with pivot columns 1, 4. Yes, it is a RREF. Column 2 is
not a pivot column. The example shows that a scan for columns of the identity is not
enough.

Matrix C. Immediately not a RREF, because the leading nonzero entry in row 1 is not
a one.

Matrix D. Not a RREF. Swapping row 3 twice to bring it to row 1 will make it a RREF.
This example has pivots in columns 1, 4 but the pivot columns fail to be columns 1, 2
of the identity (they are columns 3, 2).

Visual RREF Test. More experience is needed to use the visual test for RREF, but
the effort is rewarded. Details are very brief. The ability to use the visual test is learned
by working examples that use the basic RREF test.

Leading ones are boxed:

A =


0 1 3 0

0 0 0 1
0 0 0 0
0 0 0 0

 B =


1 1 3 0

0 0 0 1
0 0 0 0
0 0 0 0



C =


2 1 1 0

0 0 0 1
0 0 0 0
0 0 0 0

 D =


0 1 3 0

0 0 0 1

1 0 0 0
0 0 0 0


Matrices A,B pass the visual test. Matrices C,D fail the test. Visually, we look for a
boxed one starting on row 1. Boxes occupy consecutive rows, marching down and right,
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to make a triangular diagram. Columns with boxed ones are expected to be consecutive
initial columns of identity matrix I.

Example 5.2 (Reduced Row–Echelon Form)
Find the reduced row–echelon form of the coefficient matrix A using the elimination
method, page 325. Then solve the system.

x1 + 2x2 − x3 + x4 = 0,
x1 + 3x2 − x3 + 2x4 = 0,

x2 + x4 = 0.

Solution: The coefficient matrix A and its rref are given by (details below)

A =

 1 2 −1 1
1 3 −1 2
0 1 0 1

 , rref(A) =

 1 0 −1 −1
0 1 0 1
0 0 0 0

 .

Using variable list x1, x2, x2, x4, the equivalent reduced echelon system is

x1 − x3 − x4 = 0,
x2 + x4 = 0,

0 = 0.

which has lead variables x1, x2 and free variables x3, x4.

The last frame algorithm applies to write the standard general solution. This algorithm
assigns invented symbols t1, t2 to the free variables, then back-substitution is applied to
the lead variables. The solution to the system is

x1 = t1 + t2,
x2 = −t2,
x3 = t1,
x4 = t2, −∞ < t1, t2 <∞.

Details of the Elimination Method. 1∗ 2 −1 1
1 3 −1 2
0 1 0 1

 The coefficient matrix A. Leading one identi-
fied and marked as 1∗. 1 2 −1 1

0 1∗ 0 1
0 1 0 1

 Apply the combination rule to zero the other
entries in column 1. Mark the row processed.
Identify the next leading one, marked 1∗. 1 0 −1 −1

0 1 0 1
0 0 0 0

 Apply the combination rule to zero the other
entries in column 2. Mark the row processed.
The matrix passes the Visual RREF Test.

Example 5.3 (Back-Substitution)
Display a toolkit sequence which uses numerical efficiency ideas of back substitution,
page 328, in order to find the RREF of the matrix

A =

 1 2 −1 1
1 3 −1 2
0 1 0 1

 ,
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Solution: The answer for the reduced row-echelon form of matrix A is

rref(A) =

 1 0 −1 0
0 1 0 0
0 0 0 1

 .

Back-substitution details appear below.

Meaning of the computation. Finding a RREF is part of solving the homogeneous
system AX⃗ = 0⃗. The Last Frame Algorithm is used to write the general solution. The

algorithm requires a toolkit sequence applied to the augmented matrix ⟨A | 0⃗⟩, ending
in the Last Frame, which is the RREF with an added column of zeros. 1 2 −1 1

1 3 −1 2
0 1 0 2

 The given matrix A. Identify row 1 for the first pivot.

 1 2 −1 1
0 1 0 1
0 1 0 2

 combo(1,2,-1) applied to introduce zeros below the
leading one in row 1. 1 2 −1 1

0 1 0 1
0 0 0 1

 combo(2,3,-1) applied to introduce zeros below the
leading one in row 2. The RREF has not yet been found.
The matrix is triangular. 1 0 −1 −1

0 1 0 1
0 0 0 1

 Begin back-substitution: combo(2,1,-2) applied to in-
troduce zeros above the leading one in row 2. 1 0 −1 0

0 1 0 0
0 0 0 1

 Continue back-substitution: combo(3,2,-1) and
combo(3,1,1) applied to introduce zeros above the
leading one in row 3. 1 0 −1 0

0 1 0 0

0 0 0 1

 RREF Visual Test passed.
This matrix is the answer.

Example 5.4 (Answer Check a Matrix Inverse)
Display the answer check details for the given matrix A and its proposed inverse B.

A =


1 2 −1 1
0 1 0 1
0 0 0 1
0 1 1 1

 , B =


1 −3 1 1
0 1 −1 0
0 −1 0 1
0 0 1 0

 .

Solution:

Details. We apply the Inverse Test, Theorem 5.9, which requires one matrix multiply:

AB =


1 2 −1 1
0 1 0 1
0 0 0 1
0 1 1 1




1 −3 1 1
0 1 −1 0
0 −1 0 1
0 0 1 0

 Expect AB = I.

=


1 −3 + 2 + 1 1− 2 + 1 1− 1
0 1 −1 + 1 0
0 0 1 0
0 1− 1 −1 + 1 1

 Multiply.
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=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 Simplify. Then AB = I. Because
of Theorem 5.9, we don’t check
BA = I.

Example 5.5 (Find the Inverse of a Matrix)
Compute the inverse matrix of

A =


1 2 −1 1
0 1 0 1
0 0 0 1
0 1 1 1

 .

Solution: The answer:

A−1 =


1 −3 1 1
0 1 −1 0
0 −1 0 1
0 0 1 0

 .

Details. Form the augmented matrix C = ⟨A | I⟩ and compute its reduced row-echelon
form by toolkit steps.

1 2 −1 1 1 0 0 0
0 1 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 1 1 1 0 0 0 1

 Augment I onto A.


1 2 −1 1 1 0 0 0
0 1 0 1 0 1 0 0
0 1 1 1 0 0 0 1
0 0 0 1 0 0 1 0

 swap(3,4).


1 2 −1 1 1 0 0 0
0 1 0 1 0 1 0 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 combo(2,3,-1). Triangular matrix.


1 2 −1 1 1 0 0 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 Back-substitution: combo(4,2,-1).


1 2 −1 0 1 0 −1 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 combo(4,1,-1).


1 0 −1 0 1 −2 1 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 combo(2,1,-2).
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
1 0 0 0 1 −3 1 1
0 1 0 0 0 1 −1 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 combo(3,1,1). Identity left, inverse right.

Details and Proofs

Proof of Theorem 5.9:

Assume AB = I. Let C = BA − I. We intend to show C = 0, then BA = C + I = I,
as claimed.

Compute AC = ABA−A = AI−A = 0. It follows that the columns y⃗ of C are solutions
of the homogeneous equation Ay⃗ = 0⃗. To complete the proof, we show that the only
solution of Ay⃗ = 0⃗ is y⃗ = 0⃗, because then C has all zero columns, which means C is the
zero matrix.

First, Bu⃗ = 0⃗ implies u⃗ = Iu⃗ = ABu⃗ = A0⃗ = 0⃗, hence B has an inverse, and then
Bx⃗ = y⃗ has a unique solution x⃗ = B−1y⃗.

Suppose Ay⃗ = 0⃗. Write y⃗ = Bx⃗. Then x⃗ = Ix⃗ = ABx⃗ = Ay⃗ = 0⃗. This implies
y⃗ = Bx⃗ = B0⃗ = 0⃗. ■

Proof of Theorem 5.10:

Details for (a). Let C = ⟨A | I⟩ and assume rref(C) = ⟨I |B⟩. Solving the n × 2n

system CX⃗ = 0⃗ is equivalent to solving the system AY⃗ +IZ⃗ = 0⃗ with n-vector unknowns
Y⃗ and Z⃗. This system has exactly the same solutions as IY⃗ +BZ⃗ = 0⃗, by the equation

rref(C) = ⟨I |B⟩. The latter is a reduced echelon system with lead variables equal to

the components of Y⃗ and free variables equal to the components of Z⃗. Multiplying by A
gives AY⃗ +ABZ⃗ = 0⃗, hence −Z⃗ +ABZ⃗ = 0⃗, or equivalently ABZ⃗ = Z⃗ for every vector
Z⃗ (because its components are free variables). Letting Z⃗ be a column of I shows that
AB = I. Then AB = BA = I by Theorem 5.9, and B is the inverse of A.

Details for (b). Assume AB = I. We prove the identity rref(⟨A | I⟩) = ⟨I |B⟩.
Let the system AY⃗ + IZ⃗ = 0⃗ have a solution Y⃗ , Z⃗. Multiply by B to obtain BAY⃗ +
BZ⃗ = 0⃗. Use BA = I to give Y⃗ + BZ⃗ = 0⃗. The latter system therefore has Y⃗ ,
Z⃗ as a solution. Conversely, a solution Y⃗ , Z⃗ of Y⃗ + BZ⃗ = 0⃗ is a solution of the
system AY⃗ + IZ⃗ = 0⃗, because of multiplication by A. Therefore, AY⃗ + IZ⃗ = 0⃗ and
Y⃗ + BZ⃗ = 0⃗ are equivalent systems. The latter is in reduced row-echelon form, and

therefore rref(⟨A | I⟩) = ⟨I |B⟩.
Details for (c). Toolkit steps that compute rref(⟨A | I⟩) must also compute rref(A).
This fact is learned first by working examples. Elementary matrix formulas can make

the proof more transparent: see the Miscellany exercises. Conclusion: rref(⟨A | I⟩) =
⟨C |B⟩ implies C = rref(A).

Let’s prove C ̸= I implies A is not invertible. Suppose not, then C ̸= I and A is

invertible. Then (b) implies ⟨C |B⟩ = rref(⟨A | I⟩) = ⟨I |B⟩. Comparing columns,
this equation implies C = I, a contradiction.

To prove C = I implies B is the inverse of A, apply (a).
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Details for (d). Assume A is invertible. We are to prove rref(A) = I. Part (b) says

F = ⟨A | I⟩ satisfies rref(F ) = ⟨I |B⟩ where B is the inverse of A. Part (c) says

rref(F ) = ⟨ rref(A) | b⃗⟩. Comparing matrix columns gives rref(A) = I.

Converse: assume rref(A) = I, to prove A invertible. Let F = ⟨A | I⟩, then rref(F ) =

⟨C |B⟩ for some C,B. Part (c) says C = rref(A) = I. Part (a) says B is the inverse of
A. This proves A is invertible and completes (d).

Proof of Theorem 5.11: It is possible to organize the proof into three cases, by con-
sidering the three possible toolkit operations. We don’t do the tedious details. Instead,
we refer to the Elementary Matrix Multiply exercises page 1327, for suitable experiments
that provide the intuition needed to develop formal proof details.

Proof of Theorem 5.12: The idea of the proof begins with writing Frame 1 as C1 =
E1C, using Theorem 5.11. Repeat to write Frame 2 as C2 = E2C1 = E2E1C. By
induction, Frame k is Ck = EkCk−1 = Ek · · ·E2E1C. But Frame k is matrix D in the
sequence. ■

Proof of Theorem 5.13: The reduced row-echelon matrix D = rref(A) paired with
C = A imply by Theorem 5.12 that rref(A) = D = Ek · · ·E2E1C = Ek · · ·E2E1A. ■

Exercises 5.2 �

Identify RREF
Mark the matrices which pass the RREF
Test, page 324. Explain the failures.

1.

 0 1 2 0 1
0 0 0 1 0
0 0 0 0 0



2.

 0 1 0 0 0
0 0 1 0 3
0 0 0 1 2



3.

 1 0 0 0
0 0 1 0
0 1 0 1



4.

 1 1 4 1
0 0 1 0
0 0 0 0


Lead and Free Variables
For each matrix A, assume a homogeneous
system AX⃗ = 0⃗ with variable list x1, . . . ,
xn. List the lead and free variables. Then
report the rank and nullity of matrix A.

5.

 0 1 3 0 0
0 0 0 1 0
0 0 0 0 0



6.

 0 1 0 0 0
0 0 1 0 3
0 0 0 1 2



7.

 0 1 3 0
0 0 0 1
0 0 0 0



8.

 1 2 3 0
0 0 0 1
0 0 0 0



9.


1 2 3
0 0 0
0 0 0
0 0 0



10.

 1 1 0
0 0 1
0 0 0



11.

 1 1 3 5 0
0 0 0 0 1
0 0 0 0 0



12.

 1 2 0 3 4
0 0 1 1 1
0 0 0 0 0


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13.


0 0 1 2 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0



14.


0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



15.


0 1 0 5 0
0 0 1 2 0
0 0 0 0 1
0 0 0 0 0



16.


1 0 3 0 0
0 1 0 1 0
0 0 0 0 1
0 0 0 0 0


Elementary Matrices
Write the 3 × 3 elementary matrix E and
its inverse E−1 for each of the following op-
erations, defined on page 323.

17. combo(1,3,-1)

18. combo(2,3,-5)

19. combo(3,2,4)

20. combo(2,1,4)

21. combo(1,2,-1)

22. combo(1,2,-e2)

23. mult(1,5)

24. mult(1,-3)

25. mult(2,5)

26. mult(2,-2)

27. mult(3,4)

28. mult(3,5)

29. mult(2,-π)

30. mult(1,e2)

31. swap(1,3)

32. swap(1,2)

33. swap(2,3)

34. swap(2,1)

35. swap(3,2)

36. swap(3,1)

Elementary Matrix Multiply
For each given matrix B1, perform the
toolkit operation (combo, swap, mult) to
obtain the result B2. Then compute the el-
ementary matrix E for the identical toolkit
operation. Finally, verify the matrix mul-
tiply equation B2 = EB1.

37.

(
1 1
0 3

)
, mult(2,1/3).

38.

 1 1 2
0 1 3
0 0 0

, mult(1,3).

39.

 1 1 2
0 1 1
0 0 1

, combo(3,2,-1).

40.

(
1 3
0 1

)
, combo(2,1,-3).

41.

 1 1 2
0 1 3
0 0 1

, swap(2,3).

42.

(
1 3
0 1

)
, swap(1,2).

Inverse Row Operations
Given the final frame B of a sequence start-
ing with matrix A, and the given opera-
tions, find matrix A. Do not use matrix
multiply.

43. B =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,-3),
mult(1,-2), swap(2,3).

44. B =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,3),
mult(1,2), swap(3,2).
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45. B =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3).

46. B =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,4),
mult(1,3), swap(3,2).

Elementary Matrix Products
Given the first frame B1 of a sequence and
elementary matrix operations E1, E2, E3,
find matrices F = E3E2E1 and B4 = FB1.

Hint: Compute ⟨B4|F⟩ from toolkit oper-

ations on ⟨B1|I⟩.

47. B1 =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,-3),
mult(1,-2).

48. B1 =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,3),
swap(3,2).

49. B1 =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), mult(1,4),
swap(1,3).

50. B1 =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,4),
mult(1,3).

Miscellany

51. Justify with English sentences why all
possible 2× 2 matrices in reduced row-
echelon form must look like(

0 0
0 0

)
,

(
1 ∗
0 0

)
,(

0 1
0 0

)
,

(
1 0
0 1

)
,

where ∗ denotes an arbitrary number.

52. Display all possible 3 × 3 matrices in
reduced row-echelon form. Besides the
zero matrix and the identity matrix,
please report five other forms, most con-
taining symbol ∗ representing an arbi-
trary number.

53. Determine all possible 4 × 4 matrices
in reduced row-echelon form.

54. Display a 6× 6 matrix in reduced row-
echelon form with rank 4 and only en-
tries of zero and one.

55. Display a 5× 5 matrix in reduced row-
echelon form with nullity 2 having en-
tries of zero, one and two, but no other
entries.

56. Display the rank and nullity of any
n× n elementary matrix.

57. Let F = ⟨C|D⟩ and let E be a square
matrix with row dimension matching F .
Display the details for the equality

EF = ⟨EC|ED⟩.

58. Let F = ⟨C|D⟩ and let E1, E2 be n×n
matrices with n equal to the row dimen-
sion of F . Display the details for the
equality

E2E1F = ⟨E2E1C|E2E1D⟩.

59. Assume matrix A is invertible. Display

details explaining why rref(⟨A|I⟩)
equals the matrix ⟨R|E⟩, where matrix
R = rref(A) and matrix E = Ek · · ·E1.
Symbols Ei are elementary matrices in
toolkit steps taking matrix A into re-
duced row-echelon form. Suggestion:
Use the preceding exercises.

60. Assume E1, E2 are elementary matri-
ces in toolkit steps taking A into re-
duced row-echelon form. Prove that
A−1 = E2E1. In words, A−1 is found
by doing the same toolkit steps to the
identity matrix.
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61. Assume matrix A is invertible and
E1, . . . , Ek are elementary matrices in
toolkit steps taking A into reduced
row-echelon form. Prove that A−1 =
Ek · · ·E1.

62. Assume A,B are 2 × 2 matri-
ces. Assume A is invertible and

rref(⟨A|B⟩) = ⟨I|D⟩. Explain why
the first column x⃗ of D is the unique
solution of Ax⃗ = b⃗, where b⃗ is the first
column of B.

63. Assume A,B are n × n matrices with
A invertible. Explain how to solve the
matrix equation AX = B for matrix X
using the augmented matrix of A,B.
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5.3 Determinants and Cramer’s Rule

Unique Solution of a 2× 2 System

The 2× 2 system
ax + by = e,
cx + dy = f,

(1)

has a unique solution provided ∆ = ad−bc is nonzero, in which case the solution
is given by

x =
de− bf

ad− bc
, y =

af − ce

ad− bc
.(2)

This result, called Cramer’s Rule for 2 × 2 systems, is first learned in college
algebra as a part of determinant theory.

Determinants of Order 2

College algebra introduces matrix notation and determinant notation:

A =

(
a b
c d

)
, |A| or det(A) =

∣∣∣∣ a b
c d

∣∣∣∣ .
Evaluation of a 2× 2 determinant is by Sarrus’ Rule:

b

d

bc

ad

= ad −bc
c

a

Figure 10. Sarrus’ 2× 2 rule.
A diagram for |A| = (ad)− (bc).

The boldface product ad is the product of the main diagonal entries and the
other product bc is from the anti-diagonal.

Cramer’s 2× 2 rule in determinant notation is

x =

∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ , y =

∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .(3)

Unique Solution of an n× n System

Cramer’s rule can be generalized to an n×n system of equations in matrix form
Ax⃗ = b⃗ or in scalar form

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
... · · ·

...
...

an1x1 + an2x2 + · · · + annxn = bn.

(4)
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Determinants will be defined shortly; intuition from the 2 × 2 case and Sarrus’
rule should suffice for the moment.

System (4) has a unique solution provided the determinant of coefficients
∆ = det(A) is nonzero, in which case the solution is given by

x1 =
∆1

∆
, x2 =

∆2

∆
, . . . , xn =

∆n

∆
.(5)

The determinant ∆j equals det(Bj) where matrix Bj is matrix A modified to

have column j equal to b⃗ = (b1, . . . , bn). Vector b⃗ is the right side of system (4).
The result is called Cramer’s Rule for n× n systems.

Determinant Notation for Cramer’s Rule

The determinant of coefficients for system Ax⃗ = b⃗ is denoted by

∆ =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ .(6)

The other n determinants in Cramer’s rule (5) are given by

∆1 =

∣∣∣∣∣∣∣∣∣
b1 a12 · · · a1n
b2 a22 · · · a2n
...

... · · ·
...

bn an2 · · · ann

∣∣∣∣∣∣∣∣∣ , . . . ,∆n =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · b1
a21 a22 · · · b2
...

... · · ·
...

an1 an2 · · · bn

∣∣∣∣∣∣∣∣∣ .(7)

Determinant Notation Conflicts. The literature is filled with various no-
tations for matrices, vectors and determinants. The expected notation uses
vertical bars only for determinants and absolute values, e.g., |A| makes sense
for a matrix A or a constant A. For clarity, the notation det(A) may be preferred.

Value of a Determinant. Notation |A| for det(A) implies that a determinant
is a number, computed by |A| = a11a22 − a12a21 when n = 2. For n ≥ 3, |A|
is computed by similar but increasingly complicated formulas; see Sarrus’ Rule
page 345 and Four Determinant Properties infra.

It is false that |A| = A for a 1 × 1 matrix, because |A| is a number and A is a
matrix. The symbol |c| for a constant c (not a matrix) is evaluated by algebra
rules: |c| = c for c ≥ 0 and otherwise |c| = −c. Overloading of symbols causes
equations like |A| = −1 for 1×1 matrix A = (−1), whereas |−1| = 1 for constant
−1.
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Sarrus’ Rule for 3× 3 Matrices

College algebra supplies the following formula for the determinant of a 3 × 3
matrix A:

det(A) =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= a11a22a33 + a21a32a13 + a31a12a23

−a11a32a23 − a21a12a33 − a31a22a13.

(8)

The number det(A) can be computed by an algorithm similar to the one for 2×2
matrices, as in Figure 11. Important: no further generalizations are possible.
There is no Sarrus’ rule for 4× 4 or larger matrices!

a21 a22 a23

a13a12a11

a31 a32 a33

a23a22a21

a11 a12 a13

d

e

f

a

b

c

Figure 11. Sarrus’ 3× 3 rule.
The down arrow sum a + b + c and the up arrow sum
d+ e+ f are subtracted:

det(A) = (a+ b+ c)− (d+ e+ f).

College Algebra Definition of Determinant

The impractical definition is the formula

det(A) =
∑
σ∈Sn

(−1)parity(σ) a1σ1 · · · anσn .(9)

In formula (9), aij denotes the element in row i and column j of the matrix
A. The symbol σ = (σ1, . . . , σn) stands for a rearrangement of the subscripts
1, 2, . . . , n and Sn is the set of all possible rearrangements. The nonnegative
integer parity(σ) is determined by counting the minimum number of pairwise
interchanges required to assemble the list of integers σ1, . . . , σn into natural
order 1, . . . , n.

Formula (9) reproduces the definition for 3×3 matrices given in equation (8). We
will have no computational use for (9). For computing the value of a determinant,
see four properties and cofactor expansion, infra.

Four Determinant Properties

The definition of determinant (9) implies the following four properties:
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Triangular The value of det(A) for either an upper triangular or a lower
triangular matrix A is the product of the diagonal elements:
det(A) = a11a22 · · · ann.

Combination The value of det(A) is unchanged by adding a multiple of a
row to a different row.

Multiply If one row of A is multiplied by constant c ̸= 0 to create
matrix B, then det(B) = cdet(A).

Swap If B results from A by swapping two rows, then det(A) =
(−1) det(B).

It is known that these four rules suffice to compute the value of any n × n
determinant. The proof of the four properties is delayed until page 360.

Elementary Matrices and the Four Rules

The rules can be stated in terms of elementary matrices as follows.

Triangular The value of det(A) for either an upper triangular or a lower
triangular matrix A is the product of the diagonal elements:
det(A) = a11a22 · · · ann. This is a one-arrow Sarrus’ rule
valid for dimension n.

Combination If E is an elementary matrix for a combination rule, then
det(EA) = det(A).

Multiply If E is an elementary matrix for a multiply rule with multi-
plier m ̸= 0, then det(EA) = mdet(A).

Swap If E is an elementary matrix for a swap rule, then det(EA) =
(−1) det(A).

Since det(E) = 1 for a combination rule, det(E) = −1 for a swap rule and
det(E) = c for a multiply rule with multiplier c ̸= 0, it follows that for any
elementary matrix E there is the determinant multiplication rule det(EA) =
det(E) det(A).

Theorem 5.14 (Four Rules Compressed)
The Four rules to compute the value of any determinant can be written as two rules.

Triangular Rule The value of |A| for a triangular matrix A is
the product of the diagonal elements

Determinant Product Rule Let E be an elementary matrix, then
det(EA) = det(E) det(A).
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Additional Determinant Rules

The following rules make for efficient evaluation of certain special determinants.
The results are stated for rows, but they also hold for columns, because of The-
orem 5.15.

Zero row If one row of A is zero, then det(A) = 0.

Duplicate rows If two rows of A are identical, then det(A) = 0.

Dependent rows If a row of A is a linear combination of the other rows, then
det(A) = 0.

RREF ̸= I If rref(A) ̸= I, then det(A) = 0.

Common factor The relation det(A) = cdet(B) holds, provided A and B
differ only in one row, say row j, for which row(A, j) =
c row(B, j).

Row linearity The relation det(A) = det(B) + det(C) holds, provided
A, B and C differ only in one row, say row j, for which
row(A, j) = row(B, j) + row(C, j).

The proofs of these properties are delayed until page 360.

Determinant of a Transpose

A consequence of (9) is the relation |A| =
∣∣AT

∣∣ where AT means the transpose
of A, obtained by swapping rows and columns.

Theorem 5.15 (Determinant of the Transpose)
The relation

det
(
AT
)
= det(A) or

∣∣AT
∣∣ = |A|

implies that all determinant theory results for rows also apply to columns.

Cofactor Expansion

The special subject of cofactor expansions is used to justify Cramer’s rule and
to provide an alternative method for computation of determinants. There is no
claim that cofactor expansion is efficient, only that it is possible, and different
than Sarrus’ rule or the use of the four properties.

Background from College Algebra

The cofactor expansion theory is most easily understood from the college algebra
topic in dimension 3. Cofactor row expansion computes |A| by one of three
possible formulas, recorded below. The pattern:

|A| = Σ(row element× checkerboard sign× cross-out determinant).
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|A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
|A| = a11(+1)

∣∣∣∣ a22 a23a32 a33

∣∣∣∣+ a12(−1)
∣∣∣∣ a21 a23a31 a33

∣∣∣∣+ a13(+1)

∣∣∣∣ a21 a22a31 a32

∣∣∣∣
|A| = a21(−1)

∣∣∣∣ a12 a13a32 a33

∣∣∣∣+ a22(+1)

∣∣∣∣ a11 a13a31 a33

∣∣∣∣+ a23(−1)
∣∣∣∣ a11 a12a31 a32

∣∣∣∣
|A| = a31(+1)

∣∣∣∣ a12 a13a22 a23

∣∣∣∣+ a32(−1)
∣∣∣∣ a11 a13a21 a23

∣∣∣∣+ a33(+1)

∣∣∣∣ a11 a12a21 a22

∣∣∣∣
The formulas expand a 3× 3 determinant in terms of 2× 2 determinants, along
a row of A. The attached signs ±1 are called the checkerboard signs, to be
defined shortly. The 2×2 cross-out determinants are officially called minors
of the 3× 3 determinant |A|. The checkerboard sign multiplied against a minor
is called a cofactor.

These formulas are generally used when a row has one or two zeros, making it
unnecessary to evaluate one or two of the 2 × 2 determinants in the expansion.
To illustrate, row 1 expansion gives∣∣∣∣∣∣

3 0 0
2 1 7
5 4 8

∣∣∣∣∣∣ = 3(+1)

∣∣∣∣ 1 7
4 8

∣∣∣∣+ 0(−1)
∣∣∣∣ 2 7
5 8

∣∣∣∣+ 0(+1)

∣∣∣∣ 2 1
5 4

∣∣∣∣ = −60.
A clever time–saving choice is always a row which has the most zeros, although
success does not depend upon cleverness. What has been said for rows also
applies to columns, due to the transpose formula |A| = |AT |.

Minors and Cofactors

The (n−1)×(n−1) determinant obtained from det(A) by crossing-out row i and
column j is called the (i, j)–minor ofA and denotedminor(A, i, j) (Mij is common
in literature). The (i, j)–cofactor of |A| is cof(A, i, j) = (−1)i+j minor(A, i, j).
Multiplicative factor (−1)i+j is called the checkerboard sign, because its value
can be determined by counting plus, minus, plus, etc., from location (1, 1) to
location (i, j) in any checkerboard fashion.

To illustrate how to create the smaller cross-out determinant, denoted by the
symbol minor(A, i, j), consider this example:

minor

 3 0 0
2 1 7
5 4 8

 , 2, 3

 =

∣∣∣∣∣∣
3 0 0
2 1 7
5 4 8

∣∣∣∣∣∣ =
∣∣∣∣ 3 0
5 4

∣∣∣∣
cross-out row=2 and column=3, red strikeouts removed
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Expansion of Determinants by Cofactors

The formulas are

det(A) =
n∑

j=1

akj cof(A, k, j), det(A) =
n∑

i=1

aiℓ cof(A, i, ℓ),(10)

where 1 ≤ k ≤ n, 1 ≤ ℓ ≤ n. The first expansion in (10) is called a cofactor row
expansion and the second is called a cofactor column expansion. The value
cof(A, i, j) is the cofactor of element aij in det(A), that is, the checkerboard sign
times the minor of aij . The proof of expansion (10) is delayed until page 361.

The Adjugate Matrix

The adjugate of an n × n matrix A, denoted adj(A), is the transpose of the
matrix of cofactors:

adj(A) =


cof(A, 1, 1) cof(A, 1, 2) · · · cof(A, 1, n)
cof(A, 2, 1) cof(A, 2, 2) · · · cof(A, 2, n)

...
... · · ·

...
cof(A,n, 1) cof(A,n, 2) · · · cof(A,n, n)


T

.

A cofactor cof(A, i, j) is the checkerboard sign (−1)i+j times the corresponding
cross-out determinant minor(A, i, j). In the 2× 2 case,

adj

(
a b
c d

)
=

(
d −b
−c a

) In words: swap the diagonal ele-
ments and change the sign of the
off–diagonal elements.

The Inverse Matrix

The adjugate appears in the inverse matrix formula for a 2× 2 matrix:(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

This formula is verified by direct matrix multiplication:(
a b
c d

) (
d −b
−c a

)
= (ad− bc)

(
1 0
0 1

)
.

The n× n matrix identity A · adj(A) = det(A) I implies

A−1 =
1

det(A)


cof(A, 1, 1) cof(A, 1, 2) · · · cof(A, 1, n)
cof(A, 2, 1) cof(A, 2, 2) · · · cof(A, 2, n)

...
... · · ·

...
cof(A,n, 1) cof(A,n, 2) · · · cof(A,n, n)


T
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Theorem 5.16 (Fundamental Adjugate Identity)

A · adj(A) = adj(A) ·A = det(A) I

The proof is delayed until page 362.

Determinants of Elementary Matrices

An elementary matrix E is the result of applying a combination, multiply or swap
rule to the identity matrix. This definition implies that an elementary matrix is
the identity matrix with a minor change applied, to wit:

Combination Change an off-diagonal zero of I to c.

Multiply Change a diagonal one of I to multiplier m ̸= 0.

Swap Swap two rows of I.

Theorem 5.17 (Determinants and Elementary Matrices)
Let E be an n× n elementary matrix. Then

Combination det(E) = 1

Multiply det(E) = m for multiplier m.

Swap det(E) = −1
Product det(EX) = det(E) det(X) for all n× n matrices X.

Theorem 5.18 (Determinants and Invertible Matrices)
Let A be a given invertible matrix. Then

det(A) =
(−1)s

m1m2 · · ·mr

where s is the number of swap rules applied and m1, m2, . . . , mr are the nonzero
multipliers used in multiply rules when A is reduced to rref(A).

Determinant Product Rule

The determinant rules of combination, multiply and swap imply that det(EX) =
det(E) det(X) for elementary matrices E and square matrices X. We show that
a more general relationship holds.

Theorem 5.19 (Product Rule for Determinants)
Let A and B be given n× n matrices. Then

det(AB) = det(A) det(B).
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Proof:

Used in the proof is the equivalence of invertibility of a square matrix C with det(C) ̸= 0
and rref(C) = I.

Assume one of A or B has zero determinant. Then det(A) det(B) = 0. If det(B) = 0,
then Bx⃗ = 0⃗ has infinitely many solutions, in particular a nonzero solution x⃗ . Multiply
Bx⃗ = 0⃗ by A, then ABx⃗ = 0⃗ which implies AB is not invertible. Then the identity
det(AB) = det(A) det(B) holds, because both sides are zero. If det(B) ̸= 0 but det(A) =
0, then there is a nonzero y⃗ with Ay⃗ = 0⃗ . Because B has an inverse, then x⃗ = B−1y⃗ is
defined and nonzero. Then ABx⃗ = Ay⃗ = 0⃗ , with x⃗ ̸= 0⃗ , which implies rref(AB) ̸= I
and |AB| = 0. Therefore, both sides of det(AB) = det(A) det(B) are zero and the
identity holds.

Assume A, B are invertible. Then C = AB is invertible. In particular, rref(A−1) =
rref(B−1) = I. Write I = rref(A−1) = E1E2 · · ·EkA

−1 and I = rref(B−1) =
F1F2 · · ·FmB−1 for elementary matrices Ei, Fj . Then

AB = E1E2 · · ·EkF1F2 · · ·Fm.(11)

The theorem follows from repeated application of identity det(EX) = det(E) det(X) to
relation (11), because

det(A) = det(E1) · · · det(Ek), det(B) = det(F1) · · · det(Fm).

Cramer’s Rule and the Determinant Product For-
mula

The equation Ax⃗ = b⃗ in the 3 × 3 case is used routinely to produce the three
matrix multiply equations a11 a12 a13

a21 a22 a23
a31 a32 a33

 x1 0 0
x2 1 0
x3 0 1

 =

 b1 a12 a13
b2 a22 a23
b3 a32 a33

 ,

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 x1 0
0 x2 0
0 x3 1

 =

 a11 b1 a13
a21 b2 a23
a31 b3 a33

 ,

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 0 x1
0 1 x2
0 0 x3

 =

 a11 a12 b1
a21 a22 b2
a31 a32 b3

 .

The determinant of the second matrix on the left in the first equation evaluates
to x1. Similarly, in the other equations, the determinant of the second matrix
evaluates to x2, x3, respectively. Therefore, the determinant product the-
orem applied to these three equations, followed by dividing by det(A), derives
Cramer’s Rule:

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
|A|

, x2 =

∣∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣
|A|

, x3 =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣
|A|

.
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Examples

Example 5.6 (Four Properties)
Apply the four properties of a determinant to justify the formula∣∣∣∣∣∣

12 6 0
11 5 1
10 2 2

∣∣∣∣∣∣ = 24.

Solution: The details:∣∣∣∣∣∣
12 6 0
11 5 1
10 2 2

∣∣∣∣∣∣ Given.

=

∣∣∣∣∣∣
12 6 0
−1 −1 1
−2 −4 2

∣∣∣∣∣∣ Combination rule twice:
combo(1,2,-1), combo(1,3,-1).

= 6

∣∣∣∣∣∣
2 1 0
−1 −1 1
−2 −4 2

∣∣∣∣∣∣ Multiply rule: factor out 6 from row 1.

= 6

∣∣∣∣∣∣
0 −1 2
−1 −1 1
0 −3 2

∣∣∣∣∣∣ Combination rule twice:
combo(1,3,1), combo(2,1,2).

= 6(−1)

∣∣∣∣∣∣
−1 −1 1
0 −1 2
0 −3 2

∣∣∣∣∣∣ Swap rule: swap(1,2).

= 6(−1)2
∣∣∣∣∣∣
1 1 −1
0 −1 2
0 −3 2

∣∣∣∣∣∣ Multiply rule: factor out (−1) from row 1.

= 6

∣∣∣∣∣∣
1 1 −1
0 −1 2
0 0 −4

∣∣∣∣∣∣ Combination rule: combo(2,3,-3).

= 6(1)(−1)(−4) Triangular rule.

= 24 Formula verified.

Example 5.7 (Determinant of an Elementary Matrix)
Compute the determinants of the following elementary matrices.

∣∣∣∣ 0 1
1 0

∣∣∣∣ ,
∣∣∣∣∣∣
1 0 c
0 1 0
0 0 1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 10 0
0 0 0 1

∣∣∣∣∣∣∣∣ .
Solution: The matrices correspond to toolkit operations:

swap(1,2), combo(3,1,c), mult(3,10).
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Therefore, the determinant values are −1, 1, 10, by Theorem 5.17.

Example 5.8 (Additional Determinant Rules)
Compute the determinants by applying the additional determinant rules, page 347.

∣∣∣∣ 0 0
1 0

∣∣∣∣ ,
∣∣∣∣∣∣
1 0 10
0 1 0
1 1 10

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣
1 3 2 1
0 1 0 0
0 0 1 0
2 6 4 2

∣∣∣∣∣∣∣∣ .
Solution: Answer: 0, 0, 0. A row of zeros implies determinant zero, for the 2× 2. Row
3 equal to the sum of rows 1 and 2 implies determinant zero, for the 3× 3. Row 4 equals
twice row 1 implies determinant zero, for the 4× 4.

Example 5.9 (Adjugate and Inverse)
Compute the adjugate matrix adj(A) and the inverse matrix B =

adj(A)
|A| , given

A =


1 3 2 1
0 1 0 0
0 0 1 0
1 1 0 0

 .

Solution: The adjugate matrix is the transpose of the matrix of cofactors. A com-
mon mistake is to compute instead the transpose matrix, a tragic over-simplification,
considering the effort required: the matrix of cofactors requires the evaluation of 16
determinants of size 3× 3.

For example, the effort for one 3× 3 cofactor (=(checkerboard sign)(3× 3 minor deter-
minant)) is about 30 seconds:

cof(A, 1, 2) = (−1)1+2 minor(A, 1, 2) = −

∣∣∣∣∣∣
0 0 0
0 1 0
2 4 2

∣∣∣∣∣∣ = 0.

Reported here is the answer for the adjugate matrix, an effort on paper of about 8
minutes.

adj(A) = transpose of


0 0 0 −1
1 −1 0 2
0 0 −1 2
−1 0 0 1


=


0 1 0 −1
0 −1 0 0
0 0 −1 0
−1 2 2 1


The determinant of A is already known, because of the formula A adj(A) = |A|I. For
instance, the (1, 1)-position in matrix |A|I has value |A|, which from the left side of
A adj(A) = |A|I equals the dot product of row 1 of A and column 1 of adj(A). Then
|A| = −1.
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The inverse matrix B is the adjugate matrix adj(A) divided by the determinant |A| = −1:

B =
adj(A)

|A|
=


0 −1 0 1
0 1 0 0
0 0 1 0
1 −2 −2 −1

 .

Answer Check. The inverse answer can be checked by matrix multiply, using the
equation A adj(A) = |A|I, or the equation AB = I. For example,

AB =


1 3 2 1
0 1 0 0
0 0 1 0
1 1 0 0




0 −1 0 1
0 1 0 0
0 0 1 0
1 −2 −2 −1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Alternate solution without determinants. Define C = ⟨A|I⟩ and compute with

toolkit steps rref(C) = ⟨I|B⟩. Toolkit steps can evaluate |A|, and B is the inverse of
A. Report adj(A) = |A|B.

Example 5.10 (Cofactor Expansion Method)
Justify by cofactor expansion the identity∣∣∣∣∣∣∣∣

10 5 0 0
11 5 a 0
10 2 b 0
15 8 4 2

∣∣∣∣∣∣∣∣ = 10(6a− b).

Solution: The plan is to choose the row or column with most zeros, then expand by
cofactors. The greatest advantage is column 4, effectively reducing the determinant to
3 × 3. The resulting 3 × 3 is treated by a hybrid method in the next example. Here,
we will expand it by cofactors, again choosing a column or row with most zeros. The
details:∣∣∣∣∣∣∣∣

10 5 0 0
11 5 a 0
10 2 b 0
15 8 4 2

∣∣∣∣∣∣∣∣ Given 4× 4 determinant with symbols a, b.

= 2(−1)4+4

∣∣∣∣∣∣
10 5 0
11 5 a
10 2 b

∣∣∣∣∣∣ Cofactor expansion on column 4. Three zero terms

are not written. See 1 below.

=

2

(
a(−1)2+3

∣∣∣∣ 10 5
10 2

∣∣∣∣)+

2

(
b(−1)3+3

∣∣∣∣ 10 5
11 5

∣∣∣∣) Expand by cofactors on column 3. The zero term is

not written. See 2 below.

=
2
(
a(−1)2+3(−30)

)
+

2
(
b(−1)3+3(−5)

) Expand 2× 2 determinants by Sarrus’ rule.

= 60a− 10b Final answer with symbols a, b.
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1 The factor 2 is from element 4, 4. The factor (−1)4+4 is the checkerboard sign of
element 4, 4. The 3×3 determinant is the minor obtained by cross-out of row 4, column
4.

2 For example, 2

(
a(−1)2+3

∣∣∣∣ 10 5
10 2

∣∣∣∣) is decoded as follows. Factor 2 is from the

4× 4 cofactor expansion. Inside the parentheses, factor a is from the 3× 3 determinant
element in row 2, column 3. Factor (−1)2+3 is the checkerboard sign of that row and

column. Factor

∣∣∣∣ 10 5
10 2

∣∣∣∣ is the minor determinant obtained by cross–out of row 2 and

column 3.

Example 5.11 (Hybrid Method)
Justify by cofactor expansion and the four properties the identity∣∣∣∣∣∣

10 5 0
11 5 a
10 2 b

∣∣∣∣∣∣ = 5(6a− b).

Solution: The details:∣∣∣∣∣∣
10 5 0
11 5 a
10 2 b

∣∣∣∣∣∣ Given.

=

∣∣∣∣∣∣
10 5 0
1 0 a
0 −3 b

∣∣∣∣∣∣ Combination: subtract row 1 from the other rows.

=

∣∣∣∣∣∣
0 5 −10a
1 0 a
0 −3 b

∣∣∣∣∣∣ Combination: add −10 times row 2 to row 1.

= (1)(−1)
∣∣∣∣ 5 −10a
−3 b

∣∣∣∣ Cofactor expansion on column 1.

= (1)(−1)(5b− 30a) Sarrus’ rule for n = 2.

= 5(6a− b). Formula verified.

Example 5.12 (Determinant Product Rule)
Let A,B be 4× 4 matrices. Let E1, E2, E3 be elementary matrices of the same size
corresponding to toolkit operations

combo(1,3,-2), mult(3,-5), swap(2,4).

Find |A|, given |B| = 3 and the equation

A3B2 = E3E2E1B.

Solution: The idea is to use the determinant product rule |CD| = |C||D| repeatedly,
on the given equation, to obtain the scalar equation

|A|3|B|2 = |E3||E2||E1||B|.
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Determinant values for elementary matrices are completely determined by the given
toolkit operation: |E1| = 1, |E2| = −5, |E3| = −1. Then the scalar equation above
reduces, because of |B| = 3, to the algebraic equation

|A|3(3)2 = (−1)(−5)(1)(3).

Solving for symbol |A| gives the answer |A| = 3
√

15/9 = 1.1856.

Example 5.13 (Cramer’s Rule)
Solve by Cramer’s rule the system of equations

2x1 + 3x2 + x3 − x4 = 1,
x1 + x2 − x4 = −1,

3x2 + x3 + x4 = 3,
x1 + x3 − x4 = 0,

verifying x1 = 1, x2 = 0, x3 = 1, x4 = 2.

Solution: Form the four determinants ∆1, . . . , ∆4 from the determinant of coefficients
∆ as follows:

∆ =

∣∣∣∣∣∣∣∣
2 3 1 −1
1 1 0 −1
0 3 1 1
1 0 1 −1

∣∣∣∣∣∣∣∣ ,

∆1 =

∣∣∣∣∣∣∣∣
1 3 1 −1
−1 1 0 −1
3 3 1 1
0 0 1 −1

∣∣∣∣∣∣∣∣ , ∆2 =

∣∣∣∣∣∣∣∣
2 1 1 −1
1 −1 0 −1
0 3 1 1
1 0 1 −1

∣∣∣∣∣∣∣∣ ,

∆3 =

∣∣∣∣∣∣∣∣
2 3 1 −1
1 1 −1 −1
0 3 3 1
1 0 0 −1

∣∣∣∣∣∣∣∣ , ∆4 =

∣∣∣∣∣∣∣∣
2 3 1 1
1 1 0 −1
0 3 1 3
1 0 1 0

∣∣∣∣∣∣∣∣ .
Five repetitions of the methods used in the previous examples give the answers ∆ = −2,
∆1 = −2, ∆2 = 0, ∆3 = −2, ∆4 = −4, therefore Cramer’s rule implies the solution
xi = ∆i/∆, 1 ≤ i ≤ 4. Then x1 = 1, x2 = 0, x3 = 1, x4 = 2.

Answer Check. The details of the computation above can be checked in computer
algebra system maple as follows.

A:=Matrix([[2, 3, 1, -1], [1, 1, 0, -1],

[0, 3, 1, 1], [1, 0, 1, -1]]);

B1:=Matrix([[ 1, 3, 1, -1], [-1, 1, 0, -1],

[ 3, 3, 1, 1], [ 0, 0, 1, -1]]);

Delta:= linalg[det](A); Delta1:=linalg[det](B1);

x[1]:=Delta1/Delta;
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The Cayley-Hamilton Theorem

Presented here is an adjoint formula F−1 = adj(F )/det(F ) derivation for the
celebrated Cayley-Hamilton formula

(−A)n + pn−1(−A)n−1 + · · ·+ p0I = 0.

The n× n matrix A is given and I is the identity matrix. The coefficients pk in
(14) are determined by the characteristic polynomial of matrix A, which is
defined by the determinant expansion formula

|A− λI| = (−λ)n + pn−1(−λ)n−1 + · · ·+ p0(−λ)0.(12)

The characteristic equation of A is |A− λI| = 0, explicitly

(−λ)n + pn−1(−λ)n−1 + · · ·+ p0(−λ)0 = 0.(13)

Theorem 5.20 (Cayley-Hamilton)
A square matrix A satisfies its own characteristic equation. In detail, given charac-
teristic equation (−λ)n + pn−1(−λ)n−1 + · · ·+ p0(−λ)0 = 0, then replace λ on the
left by A and zero on the right side by the zero matrix 0 to obtain

(−A)n + pn−1(−A)n−1 + · · ·+ p0I = 0.(14)

Proof of (14): Define x = −λ, F = A + xI and G = adj(F ). A cofactor of det(F ) is
a polynomial in x of degree at most n− 1. Therefore, there are n× n constant matrices
C0, . . . , Cn−1 such that

adj(F ) = xn−1Cn−1 + · · ·+ xC1 + C0.

The adjugate identity det(F )I = adj(F )F is valid for any square matrix F , even if
det(F ) is zero. Relation (13) implies det(F ) = xn + pn−1x

n−1 + · · · + p0. Expand the
matrix product adj(F )F in powers of x as follows:

adj(F )F =

n−1∑
j=0

xjCj

 (A+ xI)

= C0A+

n−1∑
i=1

xi(CiA+ Ci−1) + xnCn−1.

Match coefficients of powers of x on each side of det(F )I = adj(F )F to give the relations

p0I = C0A,
p1I = C1A+ C0,
p2I = C2A+ C1,

...
I = Cn−1.

(15)

To complete the proof of the Cayley-Hamilton identity (14), multiply the equations in
(15) by I, (−A), (−A)2, (−A)3, . . . , (−A)n, respectively. Then add all the equations.
The left side matches the left side of (14). The right side is a telescoping sum which
adds to the zero matrix. ■
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An Applied Definition of Determinant

To be developed here is another way to look at formula (9), which emphasizes
the column and row structure of a determinant. The definition, which agrees
with (9), leads to a short proof of the four properties, which are used to find the
value of any determinant.

Permutation Matrices

A matrix P obtained from the identity matrix I by swapping rows is called a
permutation matrix. There are n! permutation matrices. To illustrate, the
3× 3 permutation matrices are 1 0 0

0 1 0
0 0 1

 ,

 1 0 0
0 0 1
0 1 0

 ,

 0 1 0
1 0 0
0 0 1

 ,

 0 1 0
0 0 1
1 0 0

 ,

 0 0 1
1 0 0
0 1 0

 ,

 0 0 1
0 1 0
1 0 0

 .

Define for a permutation matrix P the determinant by

det(P ) = (−1)k

where k is the least number of row swaps required to convert P to the identity.
The number k satisfies r = k+2m, where r is any count of row swaps that changes
P to the identity, and m is some integer. Therefore, det(P ) = (−1)k = (−1)r.
In the illustration, the corresponding determinants are 1, −1, −1, 1, 1, −1, as
computed from det(P ) = (−1)r, where r row swaps change P into I.

It can be verified that det(P ) agrees with the value reported by formula (9).
Each σ in (9) corresponds to a permutation matrix P with rows arranged in the
order specified by σ. The summation in (9) for A = P has exactly one nonzero
term.

Sampled Product

Let A be an n × n matrix and P an n × n permutation matrix. The matrix P
has ones in exactly n locations. Sampled product A.P multiplies entries from
the matrix A, selected by the location of the ones in P .

Definition 5.19 (Sampled Product A.P )
Let A⃗1, . . . , A⃗n be the rows of A and let P⃗1, . . . , P⃗n be the rows of P . Let the
rows of P be rows σ1,. . . ,σn of identity matrix I. Define via the normal dot product
(·) the sampled product

A.P = (A1 · P1)(A2 · P2) · · · (An · Pn)
= a1σ1 · · · anσn .

(16)

Equation (16) implies that A.P is a linear function of the rows of A. Replace
rows by columns and repeat definition (16) to show A.P is a linear function of
the columns of A with value aσ11 · · · aσnn.
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Sampled-Product Determinant Formula

An alternative definition of determinant is

det(A) =
∑

P det(P )A.P ,(17)

where the summation extends over all possible permutation matrices P . The
definition emphasizes the explicit linear dependence of the determinant upon the
rows of A (or the columns of A). A tedious but otherwise routine justification
shows that the college algebra definition of determinant (9) and the sampled
product definition of determinant (17) give the same value.

Three Properties that Define a Determinant

Write the determinant det(A) in terms of the rows A1, . . . , An of the matrix A
as follows:

D1(A1, . . . , An) =
∑
P

det(P )A.P.

Already known is that D1(A1, . . . , An) is a function D that satisfies the following
three properties:

Linearity D is linear in each argument A1, . . . , An.

Swap D changes sign if two arguments are swapped. Equivalently, D = 0
if two arguments are equal.

Identity D = 1 when A = I.

The equivalence reported in swap is obtained by expansion, e.g., for n = 2,
A1 = A2 implies D(A1, A2) = −D(A1, A2) and hence D = 0. Similarly, D(A1 +
A2, A1+A2) = 0 implies by linearity that D(A1, A2) = −D(A2, A1), which is the
swap property for n = 2.

It is less obvious that the three properties uniquely define the determinant:

Theorem 5.21 (Uniqueness)
If D(A1, . . . , An) satisfies the properties of linearity, swap and identity, then
D(A1, . . . , An) = det(A).

Proof: The rows of the identity matrix I are denoted E1, . . . , En, so that for 1 ≤ j ≤ n
we may write the expansion

Aj = aj1E1 + aj2E2 + · · ·+ ajnEn.(18)

We illustrate the proof for the case n = 2:

D(A1, A2) = D(a11E1 + a12E2, A2) By (18).

= a11D(E1, A2) + a12D(E2, A2) By linearity.

= a11a22D(E1, E2) + a11a21D(E1, E1) Repeat for A2.

+ a12a21D(E2, E1) + a12a22D(E2, E2)
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The swap and identity properties give D(E1, E1) = D(E2, E2) = 0 and 1 = D(E1, E2) =
−D(E2, E1). Therefore, D(A1, A2) = a11a22− a12a21 and this implies that D(A1, A2) =
det(A).

The proof for general n depends upon the identity

D(Eσ1
, . . . , Eσn

) = (−1)parity(σ)D(E1, . . . , En)

= (−1)parity(σ)

where σ = (σ1, . . . , σn) is a rearrangement of the integers 1, . . . , n. This identity is
implied by the swap and identity properties. Then, as in the case n = 2, linearity
implies that

D(A1, . . . , An) =
∑

σ a1σ1
· · · anσn

D(Eσ1
, . . . , Eσn

)

=
∑

σ(−1)parity(σ) a1σ1
· · · anσn

= det(A).

Proofs and Details

Verification of the Four Properties:

The details will use the sampled product A.P defined on page 358 and the sampled
product determinant formula (17) page 359. This is done only for clarity of proof,
because it is possible to use the clumsier college algebra definition of determinant (9)
page 345.

Triangular. If A is n× n triangular, then in (17) appears only one nonzero term, due
to zero factors in the product A.P . The term that appears corresponds to P=identity,
therefore A.P is the product of the diagonal elements of A. Since det(P ) = det(I) = 1,
the result follows. A similar proof can be constructed from college algebra determinant
definition (9), using intuition from Sarrus’ rule.

Swap. Let elementary swap matrix Q be obtained from I by swapping rows i and
j. Let B = QA, then B equals matrix A with rows i and j swapped. To be shown:
det(A) = −det(B). By definition, B.P = QA.P . With effort, it is possible to show
that QA.P = P.QA = PQ.A = A.PQ and det(PQ) = −det(P ). Matrices PQ over all
possible P duplicates the list of all permutation matrices. Then definition (17) implies
the result.

Combination. Let matrix B be obtained from matrix A by adding to row j the row
vector k times row i (i ̸= j). Then row(B, j) = row(A, j) + k row(A, i) and B.P =
(B1 ·P ) · · · (Bn ·P ) = A.P + k C.P , where C is the matrix obtained from A by replacing
row(A, j) with row(A, i).

Matrix C has equal rows row(C, i) = row(C, j) = row(A, i). By the swap rule applied
to rows i and j, |C| = −|C|, or |C| = 0. Add on P across B.P = A.P + k C.P to obtain
|B| = |A|+ k|C|. Then |B| = |A|.
Multiply. Let matrices A and B have the same rows, except row(B, i) = c row(A, i) for
some index i. Then B.P = cA.P . Add on P across this equation to obtain |B| = c|A|.

Verification of the Additional Rules:

Zero row. Apply the common factor rule with c = 2, possible since the row has all zero
entries. Then |A| = 2|A|, which implies |A| = 0.
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Duplicate rows. The swap rule applies to the two duplicate rows to give |A| = −|A|,
which implies |A| = 0.

Dependent rows. The determinant is unchanged by adding a linear combination of
rows of A to a different row, the result a matrix B. Then |A| = |B|. Select the combi-
nation to create a row of zeros in B. Then |B| = 0 from zero row, implying |A| = 0.

RREF ̸= I. Each step in a toolkit sequence to the RREF gives |A| = |EB| = |E||B|
where E is an elementary matrix and B is one frame closer to rref(A). At some point
B = rref(A), then B ̸= I means B has a row of zeros. Therefore, |B| = 0, which implies
|A| = |E||B| = 0.

Common factor and row linearity. The sampled product A.P is a linear function of
each row, therefore the same is true of |A| by the sampled product determinant formula
(17) page 359.

Derivation of cofactor expansion (10): The column expansion formula is derived
from the row expansion formula applied to the transpose. We consider only the derivation
of the row expansion formula (10) for k = 1, because the case for general k is the same
except for notation. The plan is to establish equality of the two sides of (10) for k = 1,
which in terms of minor(A, 1, j) = (−1)1+j cof(A, 1, j) is the equality

det(A) =

n∑
j=1

a1j(−1)1+j minor(A, 1, j).(19)

The details require expansion of minor(A, 1, j) in (19) via the definition of determinant

det(A) =
∑

σ(−1)parity(σ)a1σ1
· · · anσn

. A typical term on the right in (19) after expan-
sion looks like

a1j (−1)1+j(−1)parity(α)a2α2 · · · anαn .

Here, α is a rearrangement of the set of n− 1 elements consisting of 1, . . . , j − 1, j + 1,
. . . , n. Define σ = (j, α2, . . . , αn), which is a rearrangement of symbols 1, . . . , n. After
parity(α) interchanges, α is changed into (1, . . . , j − 1, j + 1, . . . , n) and therefore these
same interchanges transform σ into (j, 1, . . . , j − 1, j + 1, . . . , n). An additional j − 1
interchanges will transform σ into natural order (1, . . . , n). This establishes, because of
(−1)j−1 = (−1)j+1, the identity

(−1)parity(σ) = (−1)j−1+parity(α)

= (−1)j+1+parity(α).

Collecting formulas gives

(−1)parity(σ)a1σ1 · · · anσn = a1j (−1)1+j(−1)parity(α)a2α2 · · · anαn .

Adding across this formula over all α and j gives a sum on the right which matches the
right side of (19). Some additional thought reveals that the terms on the left add exactly
to det(A), hence (19) is proved.

Derivation of Cramer’s Rule: The cofactor column expansion theory implies that the
Cramer’s rule solution of Ax⃗ = b⃗ is given by

xj =
∆j

∆
=

1

∆

n∑
k=1

bk cof(A, k, j).(20)
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We will verify that Ax⃗ = b⃗. Let E1, . . . , En be the rows of the identity matrix. The
question reduces to showing that EpAx⃗ = bp. The details will use the fact

n∑
j=1

apj cof(A, k, j) =

{
det(A) for k = p,
0 for k ̸= p,

(21)

Equation (21) follows by cofactor row expansion, because the sum on the left is det(B)
where B is matrix A with row k replaced by row p. If B has two equal rows, then
det(B) = 0; otherwise, B = A and det(B) = det(A).

EpAx⃗ =

n∑
j=1

apjxj

=
1

∆

n∑
j=1

apj

n∑
k=1

bk cof(A, k, j) Apply formula (20).

=
1

∆

n∑
k=1

bk

 n∑
j=1

apj cof(A, k, j)

 Switch order of summation.

= bp Apply (21).

Derivation of A · adj(A) = det(A)I: The proof uses formula (21). Consider column

k of adj(A), denoted X⃗, multiplied against matrix A, which gives

AX⃗ =


∑n

j=1 a1j cof(A, k, j)∑n
j=1 a2j cof(A, k, j)

...∑n
j=1 anj cof(A, k, j)

 .

By formula (21),
n∑

j=1

aij cof(A, k, j) =

{
det(A) i = k,
0 i ̸= k.

Therefore, AX⃗ is det(A) times column k of the identity I. ■
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Exercises 5.3 �

Determinant Notation
Write formulae for x and y as quotients of
2 × 2 determinants. Do not evaluate the
determinants!

1.

(
1 −1
2 6

)(
x
y

)
=

(
−10

3

)

2.

(
1 2
3 6

)(
x
y

)
=

(
10
−6

)

3.

(
0 −1
2 5

)(
x
y

)
=

(
−1
10

)

4.

(
0 −3
3 10

)(
x
y

)
=

(
−1
2

)

Sarrus’ 2× 2 rule
Evaluate det(A).

5. A =

(
2 1
1 2

)

6. A =

(
−2 1
1 −2

)

7. A =

(
2 −1
3 2

)

8. A =

(
5a 1
−1 2a

)

Sarrus’ rule 3× 3
Evaluate det(A).

9. A =

0 0 1
0 1 0
1 1 0



10. A =

0 0 1
0 1 0
1 0 0



11. A =

0 0 1
1 2 1
1 1 1



12. A =

0 0 −1
1 2 −1
1 1 −1



Inverse of a 2× 2 Matrix
Define matrix A and its adjugate C:

A =

(
a b
c d

)
, C =

(
d −b
−c a

)
.

13. Verify AC = |A|
(
1 0
0 1

)
.

14. Display the details of the argument
that |A| ≠ 0 implies A−1 exists and

A−1 =
C

|A|
.

15. Show that A−1 exists implies |A| ≠ 0.
Suggestion: Assume not, then AB =
BA = I for some matrix B and also
|A| = 0. Find a contradiction using
AC = |A|I from Exercise 13.

16. Calculate the inverse of

(
1 2
−2 3

)
us-

ing the formula developed in these ex-
ercises.

Unique Solution of a 2× 2 System
Solve AX⃗ = b⃗ for X⃗ using Cramer’s rule
for 2× 2 systems.

17. A =

(
0 1
1 2

)
, b⃗ =

(
−1
1

)

18. A =

(
0 1
1 2

)
, b⃗ =

(
5
−5

)

19. A =

(
2 0
1 2

)
, b⃗ =

(
−4
4

)

20. A =

(
2 1
0 2

)
, b⃗ =

(
−10
10

)
Definition of Determinant

21. Let A be 3× 3 with zero first row. Use
the college algebra definition of deter-
minant to show that det(A) = 0.

22. Let A be 3 × 3 with equal first and
second row. Use the college algebra
definition of determinant to show that
det(A) = 0.
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23. Let A =

(
a b
c d

)
. Use the college al-

gebra definition of determinant to verify
that |A| = ad− bc.

24. Let A =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
. Use the col-

lege algebra definition of determinant to
verify that the determinant of A equals

a11a22a33 + a21a32a13
+a31a12a23 − a11a32a23
−a21a12a33 − a31a22a13

Four Properties
Evaluate det(A) using the four properties
for determinants, page 345.

25. A =

0 0 1
1 2 1
1 1 1



26. A =

0 0 1
3 2 1
1 1 1



27. A =

1 0 0
1 2 1
1 1 1



28. A =

2 4 2
1 2 1
1 1 1



29. A =


0 0 1 0
1 2 1 0
1 1 1 1
2 1 1 2



30. A =


1 2 1 0
0 1 2 1
0 0 1 2
0 0 0 1



31. A =


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2



32. A =


4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4



Elementary Matrices and the Four
Rules
Find det(A).

33. A is 3× 3 and obtained from the iden-
tity matrix I by three row swaps.

34. A is 7×7, obtained from I by swapping
rows 1 and 2, then rows 4 and 1, then
rows 1 and 3.

35. A is obtained from the matrix1 0 0
1 2 1
1 1 1

 by swapping rows 1 and 3,

then two row combinations.

36. A is obtained from the matrix1 0 0
1 2 1
1 1 1

 by two row combinations,

then multiply row 2 by −5.

More Determinant Rules
Cite the determinant rule that verifies
det(A) = 0. Never expand det(A)! See
page 347.

37. A =

−1 5 1
2 −4 −4
1 1 −3


38. A =

0 0 0
2 −4 −4
1 1 −3


39. A =

4 −8 −8
2 −4 −4
1 1 −3


40. A =

−1 5 0
2 −4 0
1 1 0


41. A =

−1 5 3
2 −4 0
1 1 3


42. A =

−1 5 4
2 −4 −2
1 1 2


Cofactor Expansion and College Alge-
bra
Evaluate the determinant with an efficient
cofactor expansion.
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43.

∣∣∣∣∣∣
2 5 1
2 0 −4
1 0 0

∣∣∣∣∣∣
44.

∣∣∣∣∣∣
2 5 1
2 0 −4
1 0 1

∣∣∣∣∣∣
45.

∣∣∣∣∣∣∣∣
2 5 0 0
2 1 4 0
1 1 1 1
1 0 0 0

∣∣∣∣∣∣∣∣
46.

∣∣∣∣∣∣∣∣
0 2 0 1
2 3 2 0
1 1 1 0
1 2 1 1

∣∣∣∣∣∣∣∣

47.

∣∣∣∣∣∣∣∣∣∣
2 5 1 −1 1
0 −1 −4 1 −1
1 2 3 0 0
1 0 3 0 0
1 2 0 0 1

∣∣∣∣∣∣∣∣∣∣

48.

∣∣∣∣∣∣∣∣∣∣
2 0 1 −1 1
0 −1 −4 1 −1
1 2 3 0 0
1 0 3 0 0
1 2 0 1 1

∣∣∣∣∣∣∣∣∣∣
Minors and Cofactors
Write out and then evaluate the minor and
cofactor of each element cited for the ma-

trix A =

 2 5 y
x −1 −4
1 2 z


49. Row 1 and column 3.

50. Row 2 and column 1.

51. Row 3 and column 2.

52. Row 3 and column 1.

Cofactor Expansion
Use cofactors to evaluate the determinant.

53.

∣∣∣∣∣∣
2 7 1
−1 0 −4
1 0 3

∣∣∣∣∣∣
54.

∣∣∣∣∣∣
2 7 7
−1 1 0
1 2 0

∣∣∣∣∣∣

55.

∣∣∣∣∣∣∣∣
0 2 7 7
0 −1 1 0
3 1 2 0
0 −1 1 0

∣∣∣∣∣∣∣∣
56.

∣∣∣∣∣∣∣∣
0 2 7 7
0 −1 y 0
x 1 2 0
0 −1 1 0

∣∣∣∣∣∣∣∣

57.

∣∣∣∣∣∣∣∣∣∣
0 2 7 7 3
0 −1 0 0 1
x 1 2 0 −1
0 −1 1 0 0
0 −1 1 0 1

∣∣∣∣∣∣∣∣∣∣

58.

∣∣∣∣∣∣∣∣∣∣
0 2 7 7 3
0 −1 2 0 1
x 1 2 0 −1
0 −1 1 0 0
0 −1 1 0 1

∣∣∣∣∣∣∣∣∣∣
Adjugate and Inverse Matrix
Find the adjugate of A and the inverse B
of A. Check the answers via the formulas
A adj(A) = det(A)I and AB = I.

59. A =

(
2 7
−1 0

)

60. A =

(
1 0
−1 2

)

61. A =

5 1 1
0 0 2
1 0 3



62. A =

5 1 2
2 0 0
1 0 3



63. A =


1 0 1 0
0 1 0 0
0 1 0 1
1 0 2 2



64. A =


1 0 1 0
0 1 0 0
0 1 0 1
1 1 2 1


Transpose and Inverse
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65. Verify that A = 1√
2

(
1 1
−1 1

)
satis-

fies AT = A−1.

66. Find all 2× 2 matrices A =

(
a b
c d

)
such that det(A) = 1 and AT = A−1.

67. Find all 3×3 diagonal matrices A such
that AT = A−1.

68. Find all 3×3 upper triangular matrices
A such that AT = A−1.

69. Find all n×n diagonal matrices A such
that AT = A−1.

70. Determine the n× n triangular matri-
ces A such that det(A) = 1 and AT =
adj(A).

Elementary Matrices
Find the determinant of A from the given
equation.

71. Let A = 5E2E1 be 3×3, where E1 mul-
tiplies row 3 of the identity by −7 and
E2 swaps rows 3 and 1 of the identity.
Hint: A = (5I)E2E1.

72. Let A = 2E2E1 be 5×5, where E1 mul-
tiplies row 3 of the identity by −2 and
E2 swaps rows 3 and 5 of the identity.

73. Let A = E2E1B be 4 × 4, where E1

multiplies row 2 of the identity by 3 and
E2 is a combination. Find |A| in terms
of |B|.

74. Let A = 3E2E1B be 3 × 3, where E1

multiplies row 2 of the identity by 3 and
E2 is a combination. Find |A| in terms
of |B|.

75. Let A = 4E2E1B be 3 × 3, where E1

multiplies row 1 of the identity by 2, E2

is a combination and |B| = −1.

76. Let A = 2E3E2E1B
3 be 3 × 3, where

E1 multiplies row 2 of the identity by
−1, E2 and E3 are swaps and |B| = −2.

Determinants and the Toolkit
Display the toolkit steps for rref(A). Us-
ing only the steps, report:

• The determinant of the elementary
matrix E for each step.

• The determinant of A.

77. A =

2 3 1
0 0 2
1 0 4



78. A =

2 3 1
0 3 0
1 0 2



79. A =


2 3 1 0
0 3 0 0
0 3 0 2
1 0 2 1



80. A =


2 3 1 2
0 3 0 0
2 6 1 2
1 0 2 1


Determinant Product Rule
Apply the product rule det(AB) =
det(A) det(B).

81. Let det(A) = 5 and det(B) = −2.
Find det(A2B3).

82. Let det(A) = 4 and A(B − 2A) = 0.
Find det(B).

83. Let A = E1E2E3 where E1, E2 are el-
ementary swap matrices and E3 is an
elementary combination matrix. Find
det(A).

84. Assume det(AB+A) = 0 and det(A) ̸=
0. Show that det(B + I) = 0.

Cramer’s 2× 2 Rule
Assume (

a b
c d

)(
x
y

)
=

(
e
f

)
.

85. Derive the formula(
a b
c d

)(
x 0
y 1

)
=

(
e b
f d

)
.

86. Derive the formula(
a b
c d

)(
1 x
0 y

)
=

(
a e
c f

)
.
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87. Use the determinant product rule to
derive the Cramer’s Rule formula

x =

∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .
88. Derive, using the determinant product

rule, the Cramer’s Rule formula

y =

∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .

Cramer’s 3× 3 Rule
Let A be the coefficient matrix in the equa-
tion (

a11 a12 a13
a21 a22 a23
a31 a32 a33

)x1

x2

x3

 =

b1
b2
b3

 .

89. Derive the formula

A

(
x1 0 0
x2 1 0
x3 0 1

)
=

(
b1 a12 a13
b2 a22 a23
b3 a32 a33

)

90. Derive the formula

A

(
1 0 x1
0 1 x2
0 0 x3

)
=

(
a11 a12 b1
a21 a22 b2
a31 a32 b3

)

91. Derive, using the determinant product
rule, the Cramer’s Rule formula

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
.

92. Use the determinant product rule to
derive the Cramer’s Rule formula

x3 =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
.

Cayley-Hamilton Theorem

93. Let A =

(
1 −1
2 3

)
. Expand |A − rI| to

compute the characteristic polynomial
of A. Answer: r2 − 4r + 5.

94. Let A =

(
1 −1
2 3

)
. Apply the Cayley-

Hamiltion theorem to justify the equa-
tion

A2 − 4A+ 5

(
1 0
0 1

)
=

(
0 0
0 0

)
.

95. Let A =

(
a b
c d

)
. Expand |A − rI| by

Sarrus’ Rule to obtain r2 − (a + b)r +
(ad− bc).

96. The result of the previous exercise is of-
ten written as (−r)2 + trace(A)(−r) +
|A| where trace(A) = a + d = sum of
the diagonal elements. Display the de-
tails.

97. Let λ2−2λ+1 = 0 be the characteristic
equation of a matrix A. Find a formula
for A2 in terms of A and I.

98. Let A be an n × n triangular matrix
with all diagonal entries zero. Prove
that An = 0.

99. Find all 2 × 2 matrices A such that

A2 =

(
0 0
0 0

)
, discovered from values of

trace(A) and |A|.

100. Find four 2× 2 matrices A such that

A2 =

(
1 0
0 1

)
.

Applied Definition of Determinant
Miscellany for permutation matrices and
the sampled product page 358

A.P=(A1 · P1)(A2 · P2) · · · (An · Pn)
=a1σ1

· · · anσn
.

101. Compute the sampled product of5 3 1
0 5 7
1 9 4

 and

1 0 0
0 0 1
0 1 0

 .
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102. Compute the sampled product of5 3 3
0 2 7
1 9 0

 and

0 0 1
0 1 0
1 0 0

 .

103. Determine the permutation matrices
P required to evaluate det(A) when A
is 2× 2.

104. Determine the permutation matrices
P required to evaluate det(A) when A
is 4× 4.

Three Properties
Reference: Page 359, three properties that
define a determinant

105. Assume n = 3. Prove that the three
properties imply D = 0 when two rows
are identical.

106. Assume n = 3. Prove that the three
properties imply D = 0 when a row is
zero.
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5.4 Vector Spaces, Independence, Basis

The technical topics of independence, dependence and span apply to the study
of Euclidean spaces R2, R3, . . . , Rn and also to the continuous function space
C(E), the space of differentiable functions C1(E) and its generalization Cn(E),
and to general abstract vector spaces.

Basis and General Solution: Algebraic Equations

The term basis was introduced on page 207 for systems of linear algebraic equa-
tions. To review, a basis is obtained from the vector general solution x⃗ of matrix
equation Ax⃗ = 0⃗ by computing the partial derivatives ∂t1 , ∂t2 , . . . of x⃗, where
t1, t2, . . . is the list of invented symbols assigned to the free variables identified
in rref(A). The partial derivatives are Strang’s special solutions6 to the ho-
mogeneous equation Ax⃗ = 0⃗. Solution v⃗i is also found by letting ti = 1 with all
other invented symbols zero, 1 ≤ i ≤ k. Knowing the special solutions enables
reconstruction of the general solution: multiply by constants and add.

The general solution of Ax⃗ = 0⃗ is the sum of constants times
Strang’s special solutions (they are a basis).

Deeper properties have been isolated for the list of Strang’s special solutions, the
partial derivatives ∂t1 x⃗, ∂t2 x⃗, . . . . The most important properties are span and
independence.

Span, Independence and Basis

Definition 5.20 (Span of a Set of Vectors)
A list of vectors v⃗1, . . . , v⃗k is said to span an abstract vector space V (page 301),
written

V = span(v⃗1, v⃗2, . . . , v⃗k),

provided V consists of exactly the set of all linear combinations

v⃗ = c1v⃗1 + · · ·+ ckv⃗k,

for all choices of constants c1, . . . , ck.

The notion originates with the general solution v⃗ of a homogeneous matrix system
Av⃗ = 0⃗, where the invented symbols t1, . . . , tk are the constants c1, . . . , ck and
the vector partial derivative list ∂t1 v⃗, . . . , ∂tk v⃗ is the list of vectors v⃗1, . . . , v⃗k.

6The nomenclature is due to Gilbert Strang [Strang], with Strang’s special solutions an
appropriate reference.
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Definition 5.21 (Independence of Vectors)
Vectors v⃗1, . . . , v⃗k in an abstract vector space V are said to be Independent or
Linearly independent provided each linear combination v⃗ = c1v⃗1 + · · · + ckv⃗k is
represented by a unique set of constants c1, . . . , ck. The unique constants are called
the weights of vector v⃗ relative to v⃗1, . . . , v⃗k.

See pages 377 and 382 for independence tests.

Unique representation of linear combinations has an algebraic equivalent:

Linear Independence of Vectors v⃗1, . . . , v⃗k

If two linear combinations are equal,

a1v⃗1 + · · ·+ akv⃗k = b1v⃗1 + · · ·+ bkv⃗k,

then the coefficients match

a1 = b1, a2 = b2, . . . , ak = bk.

Definition 5.22 (Basis)
A basis of an abstract vector space V is defined to be a list of independent vectors
v⃗1, . . . , v⃗k which spans V . A basis is tested by two checkpoints:

1. The list of vectors v⃗1, v⃗2, . . . , v⃗k is independent.
2. The vectors span V , written V = span(v⃗1, . . . , v⃗k).

A basis expresses the general solution of a linear problem with the fewest
possible terms.

Theorem 5.22 (Independence of Strang’s Special Solutions)
Assume matrix equation Ax⃗ = 0⃗ with scalar general solution x1, x2, . . . , xn using
invented symbols t1, t2, . . . , tk. Define k special solutions by partial differentiation:

v⃗1 = ∂t1 x⃗, v⃗2 = ∂t2 x⃗, . . . , v⃗k = ∂tk x⃗

Then:

1. Each solution x⃗ of Ax⃗ = 0⃗ is a linear combination of v⃗1, . . . , v⃗k.

2. The vectors v⃗1, . . . , v⃗k are independent.

Briefly: Strang’s special solutions are independent and they form a basis for the set
of solutions to Ax⃗ = 0⃗. See also the Kernel Theorem 5.2 page 300.

Proof on page 393
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Vector Space Rn

The vector space Rn of n-element fixed column vectors (or row vectors) is from
the view of applications a storage system for organization of numerical data sets
that is equipped with an algebraic toolkit. The scheme induces a data structure
onto the numerical data set. In particular, whether needed or not, there are
pre-defined operations of addition (+) and scalar multiplication (·) which apply
to fixed vectors. The two operations on fixed vectors satisfy the closure law and
in addition obey the eight algebraic vector space properties. The vector space
V = Rn is viewed as a data set consisting of data item packages.

Algebraic Toolkit

The toolkit for an abstract vector space V is the following set of eight algebraic
properties. Set V is a data set. Elements of V are data packages called vectors,
denoted X⃗ and Y⃗ in the toolkit.

Closure The operations X⃗ + Y⃗ and kX⃗ are defined and result in a new
vector which is also in the set V .

Addition X⃗ + Y⃗ = Y⃗ + X⃗ commutative
X⃗ + (Y⃗ + Z⃗) = (X⃗ + Y⃗ ) + Z⃗ associative
Vector 0⃗ is defined and 0⃗ + X⃗ = X⃗ zero
Vector −X⃗ is defined and X⃗ + (−X⃗) = 0⃗ negative

Scalar
multiply

k(X⃗ + Y⃗ ) = kX⃗ + kY⃗ distributive I
(k1 + k2)X⃗ = k1X⃗ + k2X⃗ distributive II
k1(k2X⃗) = (k1k2)X⃗ distributive III
1X⃗ = X⃗ identity

The 8 Properties

.+

Toolkit

Operations

Set
Data

Figure 12. A Data Storage System.
A vector space is a data set of data item pack-
ages plus a storage system which organizes the
data. A toolkit is provided consisting of op-
erations + and · plus 8 algebraic vector space
properties.

Fixed Vectors and the Toolkit

Scalar multiplication of fixed vectors is commonly used for re-scaling, espe-
cially to unit systems fps, cgs and mks. For instance, a numerical data set of
lengths recorded in meters (mks) is re-scaled to centimeters (cgs) using scale
factor k = 100.

Addition and subtraction of fixed vectors is used in a variety of calculations,
which includes averages, difference quotients and calculus operations like inte-
gration.
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Planar Plot Vector Toolkit Example

The data set for a plot problem consists of plot points in R2 which are the
dots for the connect-the-dots graphic. Assume the function y(x) to be plotted
comes from differential equation y′ = f(x, y). Euler’s numerical method applies
to compute the sequence of dots in the graphic. In this algorithm, the next dot
is represented as v⃗2 = v⃗1 + E⃗(v⃗1) where symbol v⃗1 is the previous dot. Symbol
E⃗(v⃗1) is the Euler increment. Definitions:

v⃗1 =

(
x0
y0

)
, E⃗(v⃗1) = h

(
1

f(x0, y0)

)
,

v⃗2 = v⃗1 + E⃗(v⃗1) =

(
x0 + h

y0 + hf(x0, y0)

)
.

Step size h = 0.05 is a common instance. The Euler increment E⃗(v⃗1) is defined
as scalar multiplication by h against an R2-vector which contains an evaluation
of f at the previous dot v⃗1.

Summary. The dots for the graphic of y(x) form a data set in the vector space
R2. The dots are obtained by algorithm rules, which are easily expressed by
vector addition (+) and scalar multiplication (·). The 8 properties of the toolkit
were used in a limited way.

Digital Photographs

A digital photo has many pixels arranged in a two dimensional array. Structure
can be assigned to the photo by storing the pixel digital color data in a matrix A
of size n×m. Each entry of A is an integer which encodes the color information
at a specific pixel location.

The set V of all n × m matrices is a vector space under the usual rules for
matrix addition and scalar multiplication. Initially, V is just a storage system
for photos. However, the algebraic toolkit for V (page 371) is a convenient way
to express operations on photos. An illustration: reconstruction of a photo from
RGB (Red, Green, Blue) separation photos.

Let A = (aij) be an n×m matrix of color data for a photo. One way to encode
each entry of A is to define aij = rij + gijx + bijx

2 where x is some convenient
base. The integers rij , gij , bij represent the amount of red, green and blue
present in the pixel with data aij . Then A = R + Gx + Bx2 where R = [rij ],
G = [gij ], B = [bij ] are n×m matrices that represent the color separation photos.
Construction of matrices R, G, B can be done from A by decoding integer aij
into respective matrix entries. It is done with modular arithmetic. Matrices R,
xG and x2B correspond to three monochromatic photos, which can be realized as
color transparencies. The transparencies placed on a standard overhead projector
will reconstruct the original photograph.

Printing machinery from many years ago employed separation negatives and mul-
tiple printing runs in primary ink colors to make book photos. The advent of
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digital printers and simpler inexpensive technologies has made the separation pro-
cess nearly obsolete. To document the historical events, we quote Sam Wang7:

I encountered many difficulties when I first began making gum prints: it was not
clear which paper to use; my exposing light (a sun lamp) was highly inadequate;
plus a myriad of other problems. I was also using panchromatic film, making
in–camera separations, holding RGB filters in front of the camera lens for three
exposures onto 3 separate pieces of black and white film. I also made color
separation negatives from color transparencies by enlarging in the darkroom.
Both of these methods were not only tedious but often produced negatives
very difficult to print — densities and contrasts that were hard to control and
working in the dark with panchromatic film was definitely not fun. The fact that
I got a few halfway decent prints is something of a small miracle, and represents
hundreds of hours of frustrating work! Digital negatives by comparison greatly
simplify the process. Nowadays (2004) I use color images from digital cameras
as well as scans from slides, and the negatives print much more predictably.

Function Spaces

The default storage system used for applications involving ordinary or partial
differential equations is a function space. The data item packages for differential
equations are their solutions, which are functions, or in an applied context, a
graphic defined on a certain graph window. They are not column vectors of
numbers.

Functions and Column Vectors

An alternative view, adopted by researchers in numerical solutions of differential
equations, is that a solution is a table of numbers, consisting of pairs of x and y
values.

It is possible to think of the function as being a fixed vector. The viewpoint is
that a function is a graph and a graph is determined by so many dots, which
are practically obtained by sampling the function y(x) at a reasonably dense
set of x-values. The approximation is

y ≈


y(x1)
y(x2)

...
y(xn)


where x1, . . . , xn are the samples and y(x1), . . . , y(xn) are the sampled values
of function y.

The trouble with the approximation is that two different functions may need
different sampling rates to properly represent their graphic. The result is that

7Sam Wang lectured on photography and art with computer at Clemson University in South
Carolina. Reference: A Gallery of Tri-Color Prints, by Sam Wang
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the two functions might need data storage of different dimensions, e.g., f needs
its sampled values in R200 and g needs its sampled values in R400. The absence of
a universal fixed vector storage system for sampled functions explains the appeal
of a system like the set of all functions.

Infinitely Long Column Vectors

Is there a way around the lack of a universal numerical data storage system
for sampled functions? Is it possible to develop a theory of column vectors with
infinitely many components? It may help you to think of any function f as an
infinitely long column vector, with one entry f(x) for each possible sample x,
e.g.,

f⃗ =


...

f(x)
...

 level x

It is not clear how to order or address the entries of such a column vector: at
algebraic stages it hinders. Can computers store infinitely long column vectors?
The safest path through the algebra is to deal exactly with functions and function
notation. Still, there is something attractive about the change from sampled
approximations to a single column vector with infinite extent:

f⃗ ≈


f(x1)
f(x2)

...
f(xn)

→


...
f(x)
...

 level x

The thinking behind the level x annotation is that x stands for one of the infinite
possibilities for an invented sample. Alternatively, with a rich set of invented
samples x1, . . . , xn, value f(x) equals approximately f(xj), where x is closest to
some sample xj .

The Vector Space V of all Functions on a Set E

The rules for function addition and scalar multiplication come from college alge-
bra and pre-calculus backgrounds:

(f + g)(x) = f(x) + g(x), (cf)(x) = c · f(x).

These rules can be motivated and remembered by the notation of infinitely long
column vectors, where level x is an arbitrary sample:

c1f⃗ + c2g⃗ = c1


...

f(x)
...

+ c2


...

g(x)
...

 =


...

c1f(x) + c2g(x)
...


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The rules define addition and scalar multiplication of functions. The closure
law for a vector space holds. Routine tedious justifications show that V , under
the above rules for addition and scalar multiplication, has the required 8-property
toolkit to make it a vector space:

Closure The operations f + g and kf are defined and result in a new
function which is also in the set V of all functions on the set E.

Addition f + g = g + f commutative
f + (g + h) = (f + g) + h associative
The zero function 0 is defined and 0 + f = f zero
The function −f is defined and f + (−f) = 0 negative

Scalar
multiply

k(f + g) = kf + kg distributive I
(k1 + k2)f = k1f + k2f distributive II
k1(k2f) = (k1k2)f distributive III
1f = f identity

Important subspaces of the vector space V of all functions appear in applied lit-
erature as the storage systems for solutions to differential equations and solutions
of related models.

Vector Space C(E)

Let E = {x : a < x < b} be an open interval on the real line, a, b possibly
infinite. The set C(E) is defined to be the subset S of the set V of all functions on
E obtained by restricting the function to be continuous. Because sums and scalar
multiples of continuous functions are continuous, then S = C(E) is a subspace
of V and a vector space in its own right. The definition applies to any nonvoid
subset E of R1.

Vector Space C1(E)

The set C1(E) is the subset of the vector space C(E) of all continuous func-
tions on open interval E obtained by restricting the function to be continuously
differentiable. Because sums and scalar multiples of continuously differentiable
functions are continuously differentiable, then C1(E) is a subspace of C(E) and
a vector space in its own right.

Vector Space Ck(E)

The set Ck(E) is the subset of the vector space C(E) of all continuous functions
on open interval E obtained by restricting the function to be k times continu-
ously differentiable. Because sums and scalar multiples of k times continuously
differentiable functions are k times continuously differentiable, then Ck(E) is a
subspace of C(E) and a vector space in its own right.
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Solution Space of a Differential Equation

The differential equation y′′− y = 0 has general solution y = c1e
x+ c2e

−x, which
means that the set S of all solutions of the differential equation consists of all
possible linear combinations of the two functions ex and e−x. Briefly,

S = span
(
ex, e−x

)
.

The functions ex, e−x are in C2(E) for any interval E on the x-axis. Therefore,
S is a subspace of C2(E) and a vector space in its own right.

More generally, every homogeneous linear differential equation, of any order, has
a solution set S which is a vector space in its own right.

Invented Vector Spaces

The number of different vector spaces used as data storage systems in scientific
literature is finite, but growing with new discoveries. There is really no limit to
the number of different vector spaces possible, because creative individuals are
able to invent new ones.

Here is an example of how creation begets new vector spaces. Consider the
problem y′ = 2y+ f(x) and the task of storing data for the plotting of an initial
value problem with initial condition y(x0) = y0. The data set V suitable for
plotting consists of column vectors

v⃗ =

 x0
y0
f

 .

A plot command takes such a data item, computes the solution

y(x) = y0e
2x + e2x

∫ x

0
e−2tf(t)dt

and then plots it in a window of fixed size with center at (x0, y0). The column
vectors are not numerical vectors in R3, but some hybrid of vectors in R2 and
the space of continuous functions C(E) where E is the real line.

It is relatively easy to come up with definitions of vector addition and scalar
multiplication on V . The closure law holds and the eight vector space properties
can be routinely verified. Therefore, V is an abstract vector space, unlike any
found in this text. To reiterate:

An abstract vector space is a set V and two operations of + and
· such that the closure law holds and the eight algebraic vector
space properties are satisfied.

The paycheck for having recognized a vector space setting in an application is
clarity of exposition and economy of effort in details. Algebraic details in R2

often transfer unchanged to an abstract vector space setting, line for line, to
obtain the details in the more abstract setting.
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Independence and Dependence

Independence is defined in Definition 5.21 page 370:

Vectors v⃗1, . . . , v⃗k are called independent provided each linear combination
v⃗ = c1v⃗1 + · · ·+ ckv⃗k is represented by a unique set of constants c1, . . . , ck.

Independence means unique representation of linear combinations of v⃗1,
. . . , v⃗k, which is the statement

a1v⃗1 + · · ·+ akv⃗k = b1v⃗1 + · · ·+ bkv⃗k

implies the coefficients match: 
a1 = b1
a2 = b2

...
ak = bk

The subject of independence applies to coordinate spacesRn, function spaces and
in particular solution spaces of differential equations, digital photos, sequences
of Fourier coefficients or Taylor coefficients, and general abstract vector spaces.
Introduced here are definitions for low dimensions, the geometrical meaning of
independence, geometric tests for independence and basic algebraic tests for in-
dependence.

The motivation for the study of independence is the theory of general solutions,
which are expressions representing all possible solutions of a linear problem. In-
dependence is a central issue for discovery of the shortest possible expression for
a general solution.

Definition 5.23 (Dependence)
Vectors v⃗1, . . . , v⃗k are called dependent provided they are not independent. This
means that some linear combination v⃗ = a1v⃗1 + · · ·+ akv⃗k can be represented in a
second way as v⃗ = b1v⃗1 + · · ·+ bkv⃗k where for at least one index j, aj ̸= bj .

Publications and proofs routinely use a brief abstract definition of independence
which is a consequence of Theorem 5.23 below. See Definition 5.24 page 381
for the abstract definition normally used in mathematical proofs and technical
publications.

Theorem 5.23 (Unique Representation of the Zero Vector)
Vectors v⃗1, . . . , v⃗k are independent in vector space V if and only if the system of
equations

c1v⃗1 + · · ·+ ckv⃗k = 0⃗

has unique solution c1 = · · · = ck = 0. Proof on page 394.

377



5.4 Vector Spaces, Independence, Basis

Theorem 5.24 (Subsets of Independent Sets)
Any nonvoid subset of an independent set is also independent.

Subsets of dependent sets can be either independent or dependent.

Proof on page 394.

Independence of 1, x2, x4 is decided by Theorem 5.24, because it is known that
powers 1, x, x2, x3, x4 form an independent set.

Independence Test: Abstract Vector Space

Theorem 5.23 provides a simple independence / dependence test.8

Form the system of equations

c1v⃗1 + · · ·+ ckv⃗k = 0⃗.

Solve for the constants c1, . . . , ck.

Independence is proved if c1, . . . , ck are all zero.

Dependence is proved if a nonzero solution c1, . . . , ck exists. This
means cj ̸= 0 for at least one index j.

Example 5.14 (Independence of Fixed Vectors in R2)

Test R2 vectors v⃗1 =

(
−1
1

)
, v⃗2 =

(
2
1

)
for independence.

Details:

The two column vectors are tested for independence by forming the system of equations
c1v⃗1 + c2v⃗2 = 0⃗ and solving for the weights c1, c2. Then:

c1

(
−1
1

)
+ c2

(
2
1

)
=

(
0
0

)
.

Write the vector equation as a homogeneous system Ac⃗ = 0⃗:(
−1 2
1 1

)(
c1
c2

)
=

(
0
0

)
The system has rref(A) = I, details omitted. Then c1 = c2 = 0, which verifies indepen-
dence of the two vectors.

Theorem 5.29 page 382 provides a shorter independence test for two vectors: v⃗1 ̸=
(constant)v⃗2.

8The test is used in publications and mathematical proofs, often without citing the definition
of independence. See Definition 5.24 page 381.
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Example 5.15 (Independence of Fixed Vectors in R3)

Test R3 vectors v⃗1 =

 −11
0

, v⃗2 =

 2
1
0

 for independence.

Details: The two column vectors are tested for independence by forming the system of
equations c1v⃗1 + c2v⃗2 = 0⃗ and solving for the weights c1, c2:

c1

 −11
0

+ c2

 2
1
0

 =

 0
0
0

 .

Write the vector equation as a homogeneous system Ac⃗ = 0⃗: −1 2
1 1
0 0

( c1
c2

)
=

 0
0
0


The 3× 2 coefficient matrix A has reduced row echelon form

rref(A) =

 1 0
0 1
0 0


The original homogeneous system is then equivalent to c1 = 0, c2 = 0. This proves the
two vectors are independent by the independence test page 378.

See the Rank Test page 383 and the Determinant Test page 383 for additional
column vector independence tests. Determinants are defined only for square
matrices, therefore it is an error to use the Determinant Test on non-square
Example 5.15. Determinant shortcuts for non-square problems exist [EP], but
they are not discussed here.

Geometric Independence and Dependence for Two Vectors

Two vectors v⃗1, v⃗2 in R2 or R3 are defined to be geometrically independent
provided neither is the zero vector and one is not a scalar multiple of the other.
Graphically, this means v⃗1 and v⃗2 form the edges of a non-degenerate parallel-
ogram: Figure 13. Free vector arguments use the parallelogram rule for adding
and subtracting vectors: Figure 14.

Two vectors in R2 or R3 are geometrically independent if and only if they
form the edges of a parallelogram of positive area.

v⃗ 2

v⃗ 1

Figure 13. Geometric Independence.
Two nonzero nonparallel vectors v⃗1, v⃗2 form the edges
of a parallelogram. A vector v⃗ = c1v⃗1 + c2v⃗2 lies interior
to the parallelogram if and only if the scaling constants
satisfy 0 < c1 < 1, 0 < c2 < 1.
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b⃗

a⃗

P

a⃗ + b⃗

b⃗ −
a⃗ Figure 14. Parallelogram Rule.

Given nonzero vectors a⃗, b⃗. Red sum vector a⃗ + b⃗
has head at vertex P and tail at the joined tails of
a⃗, b⃗. Green difference vector b⃗− a⃗ connects the head
of a⃗ to the head of b⃗, according to the head minus
tail rule on page 297.

Geometric Dependence of Two Vectors

Vectors v⃗1, v⃗2 inR2 orR3 are defined to be geometrically dependent provided
they are not geometrically independent. This means the two vectors do not
form a parallelogram of positive area: one of v⃗1, v⃗2 is the zero vector or else v⃗1
and v⃗2 lie along the same line.

Two vectors in R2 or R3 are geometrically dependent if and only if one is
the zero vector or else they are parallel vectors.

Geometric Independence for Three Fixed Vectors

Three vectors in R3 are said to be geometrically independent provided none
of them are the zero vector and they form the edges of a non-degenerate paral-
lelepiped of positive volume. Such vectors are called a triad. In the special case
of all pairs orthogonal (the vectors are 90◦ apart) they are called an orthogonal
triad.

v⃗ 2

v⃗ 1

v⃗ 3

Figure 15. Geometric independence of three vectors.
Vectors v⃗1, v⃗2, v⃗3 form the edges of a non-degenerate paral-
lelepiped. A vector v⃗ = c1v⃗1 + c2v⃗2 + c3v⃗3 is located interior to
the parallelepiped provided 0 < c1, c2, c3 < 1.

Three vectors in R3 are geometrically independent if and only they form
the edges of a parallelepiped of positive volume.

Geometric Dependence of Three Fixed Vectors

Given vectors v⃗1, v⃗2, v⃗3, they are dependent if and only if they are not inde-
pendent. The three subcases that occur can be analyzed geometrically using
Theorem 5.24 page 378:

A nonvoid subset of an independent set is independent.

1. There is a dependent subset of one vector. This vector is the zero vector.
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2. There is a dependent subset of two nonzero vectors. Then two of them lie
along the same line.

2. There is a dependent subset of three nonzero vectors. Then one of them is
in the plane of the other two, because the three cannot form a parallelepiped
of positive volume.

Three vectors in R3 are geometrically dependent if and only if one of
them is in the span of the other two. The span is geometrically a point, line
or plane.

Theorem 5.25 (Geometric Independence ≡ Algebraic Independence)
The definitions of geometric independence and algebraic independence are equivalent.
Proof on page 395.

Independence in an Abstract Vector Space

Linear algebra literature uses a purely algebraic definition of independence, which
is equivalent to the independence test page 378. The definition and its conse-
quences are recorded here for reference.

Definition 5.24 (Independence in an Abstract Vector Space)
Let v⃗1, . . . , v⃗k be a finite set of vectors in an abstract vector space V . The set is
called independent if and only if the vector equation

c1v⃗1 + · · ·+ ckv⃗k = 0⃗

has unique solution c1 = · · · = ck = 0.

The set of vectors is called dependent if and only if the set is not independent. This
means that the equation in unknowns c1, . . . , ck has a solution with at least one
constant cj nonzero.

Theorem 5.26 (Unique Representation)
Let v⃗1, . . . , v⃗k be independent vectors in an abstract vector space V . If scalars a1,
. . . , ak and b1, . . . , bk satisfy the relation

a1v⃗1 + · · ·+ akv⃗k = b1v⃗1 + · · ·+ bkv⃗k

then the coefficients must match:
a1 = b1,
a2 = b2,
...
ak = bk.
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Proof on page 395.
The result is often used to derive scalar equations from vector equations, e.g., the
Method of Undetermined Coefficients in differential equations, page 560.

Theorem 5.27 (Zero Vector and Dependent Sets)
An independent set in an abstract vector space V cannot contain the zero vector.
Equivalently, a set containing the zero vector is dependent. Proof on page 395

Theorem 5.28 (Linear Combination and Independence)
Let v⃗1, . . . , v⃗k be given vectors in abstract vector space V . Then:

1. Assume v⃗1, . . . , v⃗k is an independent set. Suppose v⃗ from V is not a linear
combination of v⃗1, . . . , v⃗k. Then v⃗1, . . . , v⃗k, v⃗ is an independent set.

2. If vector v⃗ is a linear combination of v⃗1, . . . , v⃗k, then v⃗1, . . . , v⃗k, v⃗ is a dependent
set.

Proof on page 395

Theorem 5.29 (Independence of Two Vectors)
Two vectors in an abstract vector space V are independent if and only if neither is
the zero vector and one is not a constant multiple of the other. Proof on page 396.

Independence and Dependence Tests for Fixed Vec-
tors

Recorded here are a number of useful algebraic tests to determine independence
or dependence of a finite list of fixed vectors.

Rank Test

In the vector space Rn, the key to detection of independence is zero free vari-
ables, or nullity zero, or equivalently, maximal rank. The test is justified from
the formula nullity(A) + rank(A) = k, where k is the column dimension of A.

Theorem 5.30 (Rank-Nullity Test for Three Vectors)
Let v⃗1, v⃗2, v⃗3 be 3 column vectors in Rn and let their n× 3 augmented matrix be

A = ⟨v⃗1|v⃗2|v⃗3⟩.

The vectors v⃗1, v⃗2, v⃗3 are independent if rank(A) = 3 and dependent if rank(A) <
3. The conditions are equivalent to nullity(A) = 0 and nullity(A) > 0, respec-
tively. Proof on page 396.
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Theorem 5.31 (Rank-Nullity Test)
Let v⃗1, . . . , v⃗k be k column vectors in Rn and let A be their n×k augmented matrix.
The vectors are independent if rank(A) = k and dependent if rank(A) < k. The
conditions are equivalent to nullity(A) = 0 and nullity(A) > 0, respectively. Proof
on page 396.

Determinant Test

In the unusual case when system Ac⃗ = 0⃗ arising in the independence test is
square (A is n × n), then det(A) = 0 detects dependence, and det(A) ̸= 0
detects independence. The reasoning applies formula A−1 = adj(A)/ det(A),
valid exactly when det(A) ̸= 0.

Theorem 5.32 (Determinant Test)
Let v⃗1, . . . , v⃗n be n column vectors in Rn and let A be the n × n augmented
matrix of these vectors. The vectors are independent if det(A) ̸= 0 and dependent
if det(A) = 0. Proof on page 396.

Orthogonal Vector Test

In some applications the vectors being tested are known to satisfy orthogonality
conditions. The dot product conditions for three vectors:

v⃗1 · v⃗1 > 0, v⃗2 · v⃗2 > 0, v⃗3 · v⃗3 > 0,
v⃗1 · v⃗2 = 0, v⃗2 · v⃗3 = 0, v⃗3 · v⃗1 = 0.

(1)

The conditions mean that the vectors are nonzero and pairwise 90◦ apart. The
set of vectors is said to be pairwise orthogonal, or briefly, orthogonal. The
orthogonality conditions for a list of k vectors are written

v⃗i · v⃗i > 0, v⃗i · v⃗j = 0, 1 ≤ i, j ≤ k, i ̸= j.(2)

Theorem 5.33 (Orthogonal Vector Test)
A set of nonzero pairwise orthogonal vectors v⃗1, . . . , v⃗k is linearly independent. Proof
on page 397.

Independence Tests for Functions

It is not obvious how to solve for c1, . . . , ck in the algebraic independence test page
378, when the vectors v⃗1, . . . , v⃗k are not fixed vectors. If V is a set of functions,
then the methods from linear algebraic equations do not directly apply. This
algebraic problem causes development of special tools just for functions, called
the sampling test and Wronskian test. Neither test is an equivalence. Such
tests only apply to conclude independence. No results here are equipped to test
dependence of a list of functions.

383



5.4 Vector Spaces, Independence, Basis

Sampling Test for Functions

Let f1, f2, f3 be three functions defined on a domain D. Let V be the vector
space of all functions f⃗ on D with the usual scalar multiplication and addition
rules learned in college algebra.9 Addressed here is the question of how to test
independence and dependence of f⃗1, f⃗2, f⃗3 in V . The vector relation

c1f⃗1 + c2f⃗2 + c3f⃗3 = 0⃗

means
c1f1(x) + c2f2(x) + c3f3(x) = 0, x in D.

An idea how to solve for c1, c2, c3 arises by sampling, which means 3 relations
are obtained by inventing 3 values for x, say x1, x2, x3. The equations arising
are

c1f1(x1) + c2f2(x1) + c3f3(x1) = 0,
c1f1(x2) + c2f2(x2) + c3f3(x2) = 0,
c1f1(x3) + c2f2(x3) + c3f3(x3) = 0.

This system of 3 equations in 3 unknowns can be written in matrix form Ac⃗ = 0⃗,
where the coefficient matrix A and vector c⃗ of unknowns c1, c2, c3 are defined by

A =

 f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)
f1(x3) f2(x3) f3(x3)

 , c⃗ =

 c1
c2
c3

 .

The matrix A is called the sampling matrix for f1, f2, f3 with samples x1,
x2, x3. Important: you must invent the values for the samples.

The system Ac⃗ = 0⃗ has unique solution c⃗ = 0⃗, proving f⃗1, f⃗2, f⃗3 independent,
provided det(A) ̸= 0.

Definition 5.25 (Sampling Matrix)
Let functions f1, . . . , fk be given. Let k samples x1, . . . , xk be given. The Sampling
Matrix A is defined by:

A =


f1(x1) f2(x1) · · · fk(x1)
f1(x2) f2(x2) · · · fk(x2)

...
... · · ·

...
f1(xk) f2(xk) · · · fk(xk)

 .

Theorem 5.34 (Sampling Test for Functions)
The functions f1, . . . , fk are linearly independent on an x-set D provided there is
a sampling matrix A constructed from invented samples x1, . . . , xk in D such that
det(A) ̸= 0.

The converse is false. An independent list of functions may have det(A) = 0 for a
given sampling matrix. Proof on page 397.

9Symbol f⃗ is the vector package for function f . Symbol f(x) is a number, a function value.

Symbol f is a graph, equivalently the domain D plus equation y = f(x). Vector f⃗ is the package
of equation y = f(x) and the domain.
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Wronskian Test for Functions

The test will be explained first for two functions f1, f2. Independence of f1, f2,
as in the sampling test, is decided by solving for constants c1, c2 in the equation

c1f1(x) + c2f2(x) = 0, for all x.

J. M. Wronski10 suggested to solve for the constants by differentiation of this
equation, obtaining a pair of equations

c1f1(x) + c2f2(x) = 0,
c1f

′
1(x) + c2f

′
2(x) = 0, for all x.

This is a system of equations Ac⃗ = 0⃗ with coefficient matrix A and variable list
vector c⃗ given by

A =

(
f1(x) f2(x)
f ′
1(x) f ′

2(x)

)
, c⃗ =

(
c1
c2

)
.

TheWronskian Test is simply det(A) ̸= 0 implies c⃗ = 0⃗, similar to the sampling
test: ∣∣∣∣ f1(x) f2(x)

f ′
1(x) f ′

2(x)

∣∣∣∣ ̸= 0 for some x implies f1, f2 independent.

Interesting about Wronski’s idea is that it requires the invention of just one
sample x such that the determinant is non-vanishing, in order to establish inde-
pendence of the two functions.

Definition 5.26 (Wronskian Matrix)
Given functions f1, . . . , fn each differentiable n− 1 times on an interval a < x < b,
the Wronskian determinant is defined by the relation

W (f1, . . . , fn)(x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
... · · ·

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣ .

Theorem 5.35 (Wronskian Test)
Let functions f1, . . . , fn be differentiable n−1 times on interval a < x < b. Assume
the Wronskian determinant W (f1, . . . , fn)(x0) is nonzero for some x0 in (a, b). Then
f1, . . . , fn are independent functions in the vector space V of all functions on (a, b).

The converse is false. Independent functions may have Wronskian determinant iden-
tically zero on (a, b).

Proof on page 397.

10J. M. Wronski (1776-1853). Born Józef Maria Hoëné in Poland, he resided his final 40 years
in France using the name Wronski.
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Euler Solution Atom Test

The test originates in linear differential equations. It applies in a variety of
situations outside that scope, providing basic intuition about independence of
functions.

Definition 5.27 (Euler Solution Atom)
The infinite set of Euler solution atoms is a set of functions on −∞ < x < ∞
indexed by three variables a, b, n:

Index set: real a, real b > 0, integer n = 0, 1, 2, . . .
Distinct functions: xneax, xneax cos(bx), xneax sin(bx)

A base atom is one of eax, eax cos(bx), eax sin(bx). An Euler solution atom is a
base atom times xn, index set as above.

Theorem 5.36 (Independence of Euler Solution Atoms)
A finite list of distinct Euler solution atoms is independent on any interval E in
−∞ < x <∞.

Outline of the proof on page 398. See also Example 5.22, page 391.

Application: Vandermonde Determinant

Choosing the functions in the sampling test to be 1, x, x2 with invented samples
x1, x2, x3 gives the sampling matrix

V (x1, x2, x3) =

 1 x1 x21
1 x2 x22
1 x3 x23

 .

The sampling matrix is called a Vandermonde matrix. Using the polynomial
basis f1(x) = 1, f2(x) = x, . . . , fk(x) = xk−1 and invented samples x1, . . . , xk
gives the k × k Vandermonde matrix

V (x1, . . . , xk) =


1 x1 · · · xk−1

1

1 x2 · · · xk−1
2

...
... · · ·

...

1 xk · · · xk−1
k

 .
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The most often used Vandermonde determinant identities are∣∣∣∣ 1 a
1 b

∣∣∣∣ = b− a,∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣ = (c− b)(c− a)(b− a),

∣∣∣∣∣∣∣∣
1 a a2 a3

1 b b2 b3

1 c c2 c3

1 d d2 d3

∣∣∣∣∣∣∣∣ = (d− c)(d− b)(d− a)(c− b)(c− a)(b− a).

Theorem 5.37 (Vandermonde Determinant Identity)
The Vandermonde matrix has a nonzero determinant for distinct samples:

det(V (x1, . . . , xk)) =
∏
i<j

(xj − xi).

Proof on page 398.

Examples

Example 5.16 (Vector General Solution)
Find the vector general solution u⃗ of Au⃗ = 0⃗ , given matrix

A =

 1 2 0
2 5 0
0 0 0

 .

Solution: The solution divides into two distinct sections: 1 and 2 .

1 : Find the scalar general solution of the system Ax⃗ = 0⃗.

The toolkit: combination, swap and multiply. Then we use the last frame algorithm.

The usual shortcut applies to compute rref(A). We skip the augmented matrix ⟨A|⃗0⟩,
knowing that the last column of zeros is unchanged by the toolkit. The details:(

1 2 0
2 5 0
0 0 0

)
First frame.(

1 2 0
0 1 0
0 0 0

)
combo(1,2,-2).(

1 0 0
0 1 0
0 0 0

)
combo(2,1,-2). Last frame, this is rref(A).∣∣∣∣∣∣

x1 = 0,
x2 = 0,
0 = 0.

∣∣∣∣∣∣ Translate to scalar equations.
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∣∣∣∣∣∣
x1 = 0,
x2 = 0,
x3 = t1.

∣∣∣∣∣∣ Scalar general solution, obtained from the last frame algorithm:
x1, x2=lead, x3=free.

2 : Find the vector general solution of the system Ax⃗ = 0⃗.

The plan is to use the answer from 1 and partial differentiation to display the vector
general solution x⃗.∣∣∣∣∣∣

x1 = 0,
x2 = 0,
x3 = t1.

∣∣∣∣∣∣ Scalar general solution, from 1 .

∂t1 x⃗ =

0
0
1

 Strang’s special solution is the partial derivative on symbol t1.
Only one, because of only one invented symbol.

x⃗ = t1

0
0
1

 The vector general solution. It is the sum of terms, an invented
symbol times the corresponding special solution (partial on that
symbol). See also Example 5.19.

Example 5.17 (Independence)
Assume v⃗1, v⃗2 are independent vectors in abstract vector space V . Display the details
which verify the independence of the vectors v⃗1 + 3v⃗2, v⃗1 − 2v⃗2.

Solution: The algebraic independence test page 378 will be applied. Form the equation

c1 (v⃗1 + 3v⃗2) + c2 (v⃗1 − 2v⃗2) = 0⃗

and somehow solve for c1, c2. The plan is to re-write this equation in terms of v⃗1, v⃗2,
then use the algebraic independence page 378 on vectors v⃗1, v⃗2 to obtain scalar equations
for c1, c2. The equation re-arrangement:

(c1 + c2) v⃗1 + (3c1 − 2c2) v⃗2 = 0⃗.

The independence test applied to a relation av⃗1 + bv⃗2 = 0⃗ implies scalar equations
a = 0, b = 0. The re-arranged equation has a = c1 + c2, b = 3c1 − 2c2. Therefore,
independence strips away the vectors from the re-arranged equation, leaving a system of
scalar equations in symbols c1, c2:

c1 + c2 = 0, The equation a = 0,
3c1 − 2c2 = = 0, The equation b = 0.

These equations have only the zero solution c1 = c2 = 0, because the coefficient ma-

trix

(
1 1
3 −2

)
is invertible (nonzero determinant). The vectors v⃗1 + 3v⃗2, v⃗1 − 2v⃗2 are

independent by the independence test page 378.

Example 5.18 (Span)
Let v⃗1, v⃗2 be two vectors in an abstract vector space V . Define two subspaces

S1 = span(v⃗1, v⃗2), S2 = span(v⃗1 + 3v⃗2, v⃗1 − 2v⃗2).
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(a) Display the technical details which show that the two subspaces are equal: S1 =
S2.

(b) Use the result of (a) to prove that independence of v⃗1, v⃗2 implies independence
of v⃗1 + 3v⃗2, v⃗1 − 2v⃗2.

Solution:

Details for (a). Sets S1, S2 are known to be subspaces of V by the span theorem
page 301. To show S1 = S2, we will show each set is a subset of the other, that is,
S2 ⊂ S1 and S1 ⊂ S2.

Show S2 ⊂ S1. By definition of span page 301, both vectors v⃗1 + 3v⃗2, v⃗1 − 2v⃗2 belong
to the set S1. Therefore, the span of these two vectors is also in subspace S1, hence
S2 ⊂ S1.

Show S1 ⊂ S2. Write v⃗1 as a linear combination of v⃗1 + 3v⃗2, v⃗1 − 2v⃗2 in 1 , 2 steps
below. This will prove v⃗1 belongs to S2.

1 5v⃗1 = 2(v⃗1 + 3v⃗2) + 3(v⃗1 − 2v⃗2). Eliminate v⃗2 with a combination.

2 v⃗1 = 2
5 (v⃗1 + 3v⃗2) +

3
5 (v⃗1 − 2v⃗2). Divide by 5.

Similarly, v⃗2 belongs to S2. Therefore, the span of v⃗1, v⃗2 belongs to S2, or S1 ⊂ S2, as
claimed.

Details for (b). Independence of v⃗1, v⃗2 implies dim(S1) = 2. Therefore, dim(S2) = 2.
If v⃗1 + 3v⃗2, v⃗1 − 2v⃗2 fail to be independent, then they are dependent and span S2. Then
dim(S2) ≤ 1, a contradiction to dim(S2) = 2. This proves that v⃗1 + 3v⃗2, v⃗1 − 2v⃗2 are
independent.

Example 5.19 (Independence, Span and Basis)

A 5× 5 linear system Ax⃗ = 0⃗ has scalar general solution

x1 = t1 + 2t2,
x2 = t1,
x3 = t2,
x4 = 4t2 + t3,
x5 = t3.

Find a basis for the solution space.

Solution: The answer is the set of Strang’s special solutions obtained by taking
partial derivatives on the symbols t1, t2, t3. Details below.

X⃗1 =


1
1
0
0
0

 , X⃗2 =


2
0
1
4
0

 , X⃗3 =


0
0
0
1
1

 .

Span. The vector general solution is expressed as the sum x⃗ = t1X⃗1 + t2X⃗2 + t3X⃗3,
which implies that the solution space is span(X⃗1, X⃗2, X⃗3).
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Independence follows from Theorem 5.22, proof on page 393. Let’s repeat the proof
for the three special solutions X⃗1, X⃗2, X⃗3, using the independence test in Theorem 5.23,
which is the basis for Definition 5.24, page 381. Form the equation c1X⃗1+c2X⃗2+c3X⃗3 = 0⃗
and solve for c1, c2, c3. The left side of the equation is a vector solution x⃗ with invented
symbols replaced by t1 = c1, t2 = c2, t3 = c3. The equation says that x⃗ = 0⃗, which in
scalar form means x1 = x2 = x3 = x4 = x5 = 0. The scalar general solution has lead
variables x1, x4 and free variables x2, x3, x5. The free variable equations are:

x2 = t1,
x3 = t2,
x5 = t3.

Because x2 = x3 = x5 = 0, then t1 = t2 = t3 = 0, which implies c1 = c2 = c3 = 0. This
proves independence of X⃗1, X⃗2, X⃗3.

Special Solution Details. Take the partial derivative of the scalar general solution on
symbol t1 to create special solution X⃗1. The others are found the same way, by partial
derivatives on t2, t3. For symbol t1:

X⃗1 = ∂t1 x⃗ =


∂t1x1

∂t1x2

∂t1x3

∂t1x4

∂t1x5

 =


∂t1(t1 + 2t2)

∂t1(t1)
∂t1(t2)

∂t1(4t2 + t3)
∂t1(t3)

 =


1
1
0
0
0

 .

Example 5.20 (Rank Test and Determinant Test)
Apply both the rank test and the determinant test to decide independence or depen-
dence of the vectors

v⃗1 =


1
1
0
0

 , v⃗2 =


1
1
0
1

 , v⃗3 =


0
0
0
1

 , v⃗4 =


1
1
0
2

 .

Solution: Answer: The vectors are dependent.

Details for the Rank Test. Form the augmented matrix A of the four vectors and then
compute the rank of A. If the rank is 4, then the rank test implies they are independent,
otherwise dependent.

A = ⟨v⃗1|v⃗2|v⃗3|v⃗4⟩

=


1 1 0 1
1 1 0 1
0 0 0 0
0 1 1 2

 .

How to determine that the rank is not 4? Use rank of A equals the rank of AT . Equiv-
alently, the row rank equals the column rank. Then a row of zeros implies a dependent
set of rows, which implies the row rank is not 4 (the rank is actually 2). Also, columns
one and two of A are identical, they are dependent columns, therefore the column rank
is not 4.
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Details for the Determinant Test. The test uses the square matrix A defined above.
The question of independence reduces to testing |A| nonzero. If nonzero, then the
columns of A are independent, which implies the four given vectors are independent.
Otherwise, |A| = 0, which implies the columns of A are dependent, so the given four
vectors are dependent.

All depends upon A being square: there is no determinant theory for non-square matrices.

Immediately|A| = 0, because A has a row of zeros. Alternatively, |A| = 0 because A has
duplicate columns. Then the columns of A are dependent, which means dependence of
the given four vectors.

Example 5.21 (Sampling Test and Wronskian Test)
Let V = C(−∞,∞) and define vectors v⃗1 = x2, v⃗2 = x7/3, v⃗3 = x5.11 Apply the
sampling test and the Wronskian test to establish independence of the three vectors
in V .

Solution: The vectors are not fixed vectors (column vectors in some Rn), therefore the
rank test and determinant test cannot apply. The Euler solution atom test does not
apply: the functions are not atoms.

Sampling Test Details. A bad sample choice is x = 0, because it will produce a row
of zeros, hence a zero determinant, leading to no test. Choose samples x = 1, 2, 3 for
lack of insight, and then see if it works. The sample matrix:

A =

 1 1 1

4 ( 3
√
2)7 32

9 ( 3
√
3)7 243

 .

Because |A| ≈ 132 is nonzero, then the given vectors are independent by the sampling
test.

Wronskian Test Details. Choose the sample x after finding the Wronskian matrix
W (x) for all x. Start with row vector

(
x2, x7/3, x5

)
and differentiate twice to compute

the rows of the Wronskian matrix:

W (x) =

 x2 x7/3 x5

2x 7
3x

4/3 5x4

2 28
9 x1/3 20x3

 .

The sample x = 0 won’t work, because |W (0)| has a row of zeros. Choose x = 1, then

W (1) =

 1 1 1
2 7

3 5
2 28

9 20

 .

The determinant |W (1)| = 8/3 is nonzero, which implies the three functions are inde-
pendent by the Wronskian test.

Example 5.22 (Solution Space of a Differential Equation)
A fifth order linear differential equation has general solution

y(x) = c1 + c2x+ c3e
x + c4e

−x + c5e
2x.

Write the solution space S in vector space C5(−∞,∞) as the span of basis vectors.

11Equation v⃗1 = x2 is an abuse of notation which defines vector package v⃗1 in V with domain
(−∞,∞) and equation y = x2. It is used without apology.
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Solution: The answer is

S = span
(
1, x, ex, e−x, e2x

)
.

Details. A general solution is an expression for all solutions (no solutions skipped)
in terms of arbitrary constants, in this case, the constants c1 to c5. We think of the
constants as the invented symbols t1, t2, . . . in a matrix equation general solution. Then
the expected basis vectors should be the partial derivatives on the symbols:

∂c1y(x) = 1,
∂c2y(x) = x,
∂c3y(x) = ex,
∂c4y(x) = e−x,
∂c5y(x) = e2x.

The five vectors so obtained already span the space S. All that remains is to prove they
are independent. The easiest method to apply in this case is the Wronskian test.

Independence Details. Let W (x) be the Wronskian of the five solutions above. Then
row one is the list 1, x, ex, e−x, e2x and the other four rows are successive derivatives of
the first row.

W (x) =

∣∣∣∣∣∣∣∣∣∣
1 x ex e−x e2x

0 1 ex −e−x 2e2x

0 0 ex e−x 4e2x

0 0 ex −e−x 8e2x

0 0 ex e−x 16e2x

∣∣∣∣∣∣∣∣∣∣
.

The cofactor rule applied twice in succession to column 1 gives

W (x) =

∣∣∣∣∣∣
ex e−x 4e2x

ex −e−x 8e2x

ex e−x 16e2x

∣∣∣∣∣∣ .
Choose sample x = 0 to simplify the work:

W (0) =

∣∣∣∣∣∣
1 1 4
1 −1 8
1 1 16

∣∣∣∣∣∣ = −24.
Then the determinant |W (0)| = −24 is nonzero, which implies independence of the
functions in row one of W (x), by the Wronskian test.

A Faster Independence Test. Generally, the Wronskian test is not used. Instead, ap-
ply the Euler solution atom test Theorem 5.36 page 386, which establishes independence
without proof details.12

The details of the Euler solution atom test are brief: (1) The list 1, x, ex, e−x, e2x is a finite
set of distinct Euler solution atoms. (2) The test concludes that the set 1, x, ex, e−x, e2x

is independent.

Example 5.23 (Extracting a Basis from a List)
Let V be the vector space of all polynomials. Define subspace

S = span(x+ 1, 2x− 1, 3x+ 4, x2).

Find a basis for S selected from the list x+ 1, 2x− 1, 3x+ 4, x2.

12The proof of the Euler solution atom test, only outlined but not proved in this textbook,
involves determinant evaluations similar to this example. An essential result used in the proof
is subsets of independent sets are independent.
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Solution: One possible answer: x+ 1, 2x− 1, x2.

The vectors x + 1, 2x − 1 are independent, because one is not a scalar multiple of the
other (they are lines with slopes 1, 2); see Theorem 5.29.

The list x+1, 2x−1, 3x+4 of three vectors is dependent. In detail, using Theorem 5.28,
we first will show span(x+ 1, 2x− 1) = span(1, x), using these two stages:

1 3x = (x+ 1) + (2x− 1)

2 −3 = −2(x+ 1) + (2x− 1)

Divide 1 by 3 and 2 by −3 to show span(x + 1, 2x − 1) = span(1, x). Then 3x + 4
is in span(1, x) = span(x+ 1, 2x− 1). Therefore, the list x+ 1, 2x− 1, 3x+ 4 of three
vectors is dependent. Skip 3x + 4 and go on to add x2 to the list. Vector x2 is not in
span(x+1, 2x−1) = span(1, x), because Euler solution atoms 1, x, x2 are independent,
Theorem 5.36 page 386. The final independent set is x+1, 2x− 1, x2, and this is a basis
for S. Important: a basis is not unique, for instance 1, x, x2 is also a basis for S. To
extract a basis from the list means the expected answer is the list x+1, 2x−1, 3x+4, x2

with dependent vectors removed. Many correct answers are possible.

Details and Proofs

Proof of Theorem 5.22, Independence of Special Solutions:

1. To prove: each solution x⃗ is a linear combination of v⃗1, . . . , v⃗k. The general solution
of Ax⃗ = 0⃗ is written in scalar form by the last frame algorithm page 189, using invented
symbols t1, . . . , tk. Special solution v⃗i = ∂ti x⃗ (1 ≤ i ≤ k) can also be defined as the
vector obtained from the scalar general solution with ti = 1 and all other t1, . . . , tk set
to zero. The vector general solution is a re-write of the scalar equations in vector form

x⃗ = t1v⃗1 + · · ·+ tkv⃗k(3)

Therefore, each solution is a linear combination of the special solutions.

2. To prove: the vectors v⃗1, . . . , v⃗k are independent. Suppose a given solution x⃗ can be
written in two ways as a linear combination of the special solutions:

x⃗ = a1v⃗1 + · · ·+ akv⃗k, x⃗ = b1v⃗1 + · · ·+ bkv⃗k

Subtract the two equations and collect on v⃗1, . . . , v⃗k:

(a1 − b1)v⃗1 + · · ·+ (ak − bk)v⃗k = 0⃗

Define ci = ai − bi, 1 ≤ i ≤ k, then rewrite the preceding equation as

c1v⃗1 + · · ·+ ckv⃗k = 0⃗

The left side of this equation is a solution of Ax⃗ = 0⃗ in the form (3) produced by the last
frame algorithm. Values c1, . . . , ck are values assigned to the invented symbols t1, . . . , tk.
Because this solution equals 0⃗, then the corresponding scalar solution x1, . . . , xn of Ax⃗ =
0⃗ is zero: xi = 0 for 1 ≤ i ≤ n. Variables xi are divided into free variables and lead
variables. The free variables in the last frame algorithm are set equal to t1, . . . , tk. The
lead variables are determined in terms of the free variables. Because all xi = 0, then
all the free variables are zero: t1 = · · · = tk = 0, equivalently c1 = · · · = ck = 0.
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Equation ci = ai − bi and ci = 0 implies ai = bi for 1 ≤ i ≤ k. This proves that
a given solution cannot be represented in two different ways: vectors v⃗1, . . . , v⃗k are
independent. ■

Proof of Theorem 5.23, Unique Representation of the Zero Vector: The proof
will be given for the characteristic case k = 3, because details for general k can be written
from this proof, by minor editing of the text.

Assume vectors v⃗1, v⃗2, v⃗3 are independent and c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗. Then a1v⃗1 +
x2v⃗2 + a3v⃗3 = b1v⃗1 + b2v⃗2 + b3v⃗3 where we define a1 = c1, a2 = c2, a3 = c3 and
b1 = b2 = b3 = 0. By independence, the coefficients match. By the definition of the
symbols, this implies the equations c1 = a1 = b1 = 0, c2 = a2 = b2 = 0, c3 = a3 = b3 = 0.
Then c1 = c2 = c3 = 0.

Conversely, assume c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗ implies c1 = c2 = c3 = 0. If

a1v⃗1 + a2v⃗2 + a3v⃗3 = b1v⃗1 + b2v⃗2 + b3v⃗3,

then subtract the right side from the left to obtain

(a1 − b1)v⃗1 + (a2 − b2)v⃗2 + (a3 − b3)v⃗3 = 0⃗.

This equation is equivalent to

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗

where the symbols c1, c2, c3 are defined by c1 = a1 − b1, c2 = a2 − b2, c3 = a3 − b3.
The theorem’s condition implies that c1 = c2 = c3 = 0, which in turn implies a1 = b1,
a2 = b2, a3 = b3. ■

Proof of Theorem 5.24, Subsets of Independent Sets are Independent: The
idea will be communicated for a set of three independent vectors v⃗1, v⃗2, v⃗3. Let the subset
to be tested consist of the two vectors v⃗1, v⃗2. To be applied: the algebraic independence
test page 378. Form the vector equation

c1v⃗1 + c2v⃗2 = 0⃗

and solve for the constants c1, c2. If c1 = c2 = 0 is the only solution, then v⃗1, v⃗2 is a an
independent set.

Define c3 = 0. Because c3v⃗3 = 0⃗, the term c3v⃗3 can be added into the previous vector
equation to obtain the new vector equation

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗.

Independence of the three vectors implies c1 = c2 = c3 = 0, which in turn implies
c1 = c2 = 0, completing the proof that v⃗1, v⃗2 are independent.

The proof for an arbitrary independent set v⃗1, . . . , v⃗k is similar. By renumbering, we can
assume the subset to be tested for independence is v⃗1, . . . , v⃗m for some index m ≤ k.
The proof amounts to adapting the proof for k = 3 and m = 2, given above. The details
are omitted.

Because a single nonzero vector is an independent subset of any list of vectors, then a
subset of a dependent set can be independent. If the subset of the dependent set is the
whole set, then the subset is dependent. In conclusion, subsets of dependent sets can be
either independent or dependent.
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Proof of Theorem 5.25: The ideas below for R2 can be applied to supply details for
R3, the n = 3 case omitted.

Assume vectors v⃗1, v⃗2 are geometrically independent: they are nonzero and nonparallel.
To apply the independence test page 378, let’s solve for c1, c2 in the equation

c1v⃗1 + c2v⃗2 = 0⃗.

Suppose c1 ̸= 0. Divide by c1 to obtain v⃗1 = −(c2/c1)v⃗2. This equality says v⃗1, v⃗2 are
parallel, so we conclude c1 = 0. Replace c1 = 0, then 0v⃗1 + c2v⃗2 = 0⃗, which implies
c2v⃗2 = 0⃗. Because v⃗2 ̸= 0⃗, then c2 = 0. This proves weights c1 = c2 = 0. By the
independence test page 378, vectors v⃗1, v⃗2 are algebraically independent.

Assume vectors v⃗1, v⃗2 are algebraically independent. To show they are geometrically
independent requires: (1) they are nonzero, (2) they are not parallel. If (1) fails, then
one of the vectors is zero, say v⃗1. The independence test page 378 detects dependence,
because c1v⃗1 + c2v⃗2 = 0⃗ holds with c1 = 1, c2 = 0 (not both weights are zero). Similarly
if v⃗2 is zero. If (1) holds but (2) fails, then the vectors are nonzero and parallel, meaning
v⃗1 = cv⃗2 for some scalar c. Let c1 = 1, c2 = −c in the independence test page 378 to
conclude dependence instead of independence. Therefore, (1) and (2) hold, meaning the
vectors are geometrically independent. ■

Proof of Theorem 5.26, Unique Representation Abstract Space:
Assume independence of v⃗1, . . . , v⃗k. Suppose there are two equal linear combinations

a1v⃗1 + · · ·+ akv⃗k = b1v⃗1 + · · ·+ bkv⃗k

Subtract:
(a1 − b1)v⃗1 + · · ·+ (ak − bk)v⃗k = 0⃗

Definition 5.24 page 381 says all the weights are zero: aj − bj = 0 for 1 ≤ j ≤ k.
Therefore, the coefficients must match: aj = bj for 1 ≤ j ≤ k. ■

Proof of Theorem 5.27, Zero Vector Abstract Space: Let v⃗1, . . . , v⃗k be an
independent set in abstract vector space V . Suppose 0⃗ is in the set. Assume v⃗1 = 0⃗ by
renumbering the list. Then:

c1v⃗1 + · · ·+ ckv⃗k = 0⃗

holds with c1 = 1 and all other weights zero. Applying the independence test page 378
proves the set is dependent. ■

Proof of Theorem 5.28, Linear Combination and Independence:
1. Let v⃗1, . . . , v⃗k be a set of independent vectors in abstract vector space V . Assume v⃗
is not a linear combination of v⃗1, . . . , v⃗k. Independence test page 378 will be applied to
set v⃗1, . . . , v⃗k, v⃗. Form the equation

c1v⃗1 + · · ·+ ckv⃗k + ck+1v⃗ = 0⃗

and solve for the coefficients. If ck+1 ̸= 0, then divide by it and solve for vector v⃗ as a
linear combination of v⃗1, . . . , v⃗k, a contradiction. Therefore, ck+1 = 0. Term ck+1v⃗ is
the zero vector, therefore the equation becomes

c1v⃗1 + · · ·+ ckv⃗k = 0⃗

Independence implies c1 = · · · = ck = 0. Then all weights are zero, proving independence
of v⃗1, . . . , v⃗k, v⃗ by the test page 378.
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2. Suppose vector v⃗ is a linear combination of v⃗1, . . . , v⃗k. Then for some constants
c1, . . . , ck:

v⃗ = c1v⃗1 + · · ·+ ckv⃗k

Define ck+1 = −1. Then
c1v⃗1 + · · ·+ ckv⃗k + ck+1v⃗ = 0⃗

holds for weights c1, . . . , ck+1 not all zero. Apply the independence test page 378 to
prove the set is dependent. ■

Proof of Theorem 5.29, Independence Two Vectors Abstract Space: Let v⃗1, v⃗2
be two vectors in abstract vector space V .

If they are independent, then Theorem 5.27 implies neither can be the zero vector. If
a vector is be a multiple of the other, then c1v⃗1 + c2v⃗2 = 0⃗ holds with either c1 = 1 or
c2 = 1 (not both weights zero). Applying the independence test page 378 proves the set
is dependent, a contradiction. Conclude that neither is a constant multiple of the other.

Assume neither is the zero vector and one is not a constant multiple of the other. Let’s
apply the independence test page 378. Form the system of equations

c1v⃗1 + c2v⃗2 = 0⃗

and solve for c1, c2. If c1 = 0, then c2v⃗2 = 0⃗, which implies c2 = 0 because v⃗2 ̸= 0⃗. Then
c1 = c2 = 0 and independence is proved by the test on page 378. Otherwise, c1 ̸= 0 and
division results in

v⃗1 = −c2
c1

v⃗2

which implies one vector is a constant multiple of the other, a contradiction. Conclusion:
c1 = c2 = 0 and the two vectors are proved independent by the independence test page
378. ■

Proofs of Theorems 5.30, 5.31, Rank-Nullity Test: The proof will be given for
k = 3, because a small change in the text of this proof is a proof for general k.

Suppose rank(A) = 3. Then there are 3 leading ones in rref(A) and zero free variables.
Therefore, Ac⃗ = 0⃗ has unique solution c⃗ = 0⃗.

To be applied: the algebraic independence test page 378. Form the vector equation

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗

and solve for the constants c1, c2, c3. The vector equation says that a linear combination
of the columns of matrix A is the zero vector, or equivalently, Ac⃗ = 0⃗ where c⃗ has
components c1, c2, c3. Therefore, rank(A) = 3 implies c⃗ = 0⃗, or equivalently, c1 = c2 =
c3 = 0. This proves that the 3 vectors are linearly independent by the test page 378.

If rank(A) < 3, then there exists at least one free variable. Then the equation Ac⃗ = 0⃗
has at least one nonzero solution c⃗. This proves that the vectors are dependent by the
test page 378. ■

Proof of Theorem 5.32, Determinant Test: The proof details will be done for
n = 3, because minor edits to this text will give the details for general n.

The algebraic independence test page 378 for vectors v⃗1, v⃗2, v⃗3 in R3 requires solving
the system of linear algebraic equations

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗
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for constants c1, c2, c3. The left side of the equation is a linear combination of the

columns of the augmented matrix A = ⟨v⃗1|v⃗2|v⃗3⟩, and therefore the system can be

represented as the matrix equation Ac⃗ = 0⃗. If det(A) ̸= 0, then A−1 exists. Multiply
the equation Ac⃗ = 0⃗ by the inverse matrix to give

Ac⃗ = 0⃗

A−1Ac⃗ = A−10⃗

Ic⃗ = A−10⃗

c⃗ = 0⃗.

Then c⃗ = 0⃗, or equivalently, c1 = c2 = c3 = 0. The vectors v⃗1, v⃗2, v⃗3 are proved
independent by the independence test page 378.

Conversely, if the vectors are independent and A = ⟨v⃗1|v⃗2|v⃗3⟩ is the augmented matrix

of these vectors, then the system Ac⃗ = 0⃗ has unique solution c⃗ = 0⃗ by the independence
test page 378. The unique solution case for a homogeneous system Ac⃗ = 0⃗ means
no free variables or rref(A) = I. Then A has a inverse. Because A−1 exists, then
det(A) ̸= 0. ■

Proof of Theorem 5.33, Orthogonal Vector Test: The proof will be given for
k = 3, because the details are easily supplied for k vectors, by editing the text in the
proof. To be applied: the algebraic independence test page 378. Form the system of
equations

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗

and solve for the constants c1, c2, c3. Constant c1 is isolated by taking the dot product
of the above equation with vector v⃗1, to obtain the scalar equation

c1v⃗1 · v⃗1 + c2v⃗1 · v⃗2 + c3v⃗1 · v⃗3 = v⃗1 · 0⃗.

The orthogonality relations v⃗1 · v⃗2 = 0, v⃗2 · v⃗3 = 0, v⃗3 · v⃗1 = 0 reduce the scalar equation
to

c1v⃗1 · v⃗1 + c2(0) + c3(0) = 0.

Because v⃗1 · v⃗1 > 0, then c1 = 0. Symmetrically, vector v⃗2 replacing v⃗1, the scalar
equation becomes

c1(0) + c2v⃗2 · v⃗2 + c3(0) = 0.

Again, c2 = 0. The argument for c3 = 0 is similar. The conclusion: c1 = c2 = c3 = 0.
The three vectors are proved independent. ■

Proof of Theorem 5.34, Sampling Test: Let A be the sampling matrix of Definition
5.25. Let vector c⃗ have components c1, . . . , ck. The algebraic independence test page 378
will be applied. Form the vector equation

c1v⃗1 + · · ·+ ckv⃗k = 0⃗,

to be solved for c1, . . . , ck. Substitute samples x1, . . . , xk into the vector equation and
re-write as Ac⃗ = 0⃗. Because det(A) ̸= 0, then equation Ac⃗ = 0⃗ has unique solution c⃗ = 0⃗.
Then all the weights are zero, proving that vectors v⃗1, . . . , v⃗k are independent. ■

Proof of Theorem 5.35, Wronskian Test: To be applied: the algebraic independence
test page 378. Form the equation

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0, for all x,
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and solve for the constants c1, . . . , cn. The functions are proved independent provided all
the constants are zero. The idea of the proof, attributed to Wronski, is to differentiate the
above equation n−1 times, then substitute x = x0 to obtain a homogeneous n×n system
Ac⃗ = 0⃗ for the components c1, . . . , cn of the vector c⃗. Because |A| = W (f1, . . . , fn)(x0) ̸=
0, the inverse matrix A−1 = adj(A)/|A| exists. Multiply Ac⃗ = 0⃗ on the left by A−1 to
obtain c⃗ = 0⃗, completing the proof.

Proof of Theorem 5.36, Euler Solution Atom Test: An outline of the proof will
be given, the excuse being that the details are long and uninteresting.13 Unpleasantness
includes complex numbers, real and imaginary parts of functions and the use of several
support theorems.

1 The powers 1, x, . . . , xk are independent: Wronskian test Theorem 5.35.

2 Exponential ex is independent of the powers 1, x, . . . , xk. An easy argument uses
Maclaurin series for the exponential. The same is true for eax with a ̸= 0. Value a can
be complex.

3 A list of distinct exponentials eaix, i = 1, . . . , k with nonzero exponents is linearly
independent. Details use the Wronskian test Theorem 5.35, Vandermonde matrices and
determinants Theorem 5.37. Values ai are allowed complex.

4 Powers 1, x, . . . , xk times eax (a ̸= 0) are independent. The result uses the algebraic

independence test page 378 and 1 . Symbol a is allowed complex.

5 Powers 1, x, . . . , xp times a list of distinct complex exponentials eaix, i = 1, . . . , q
makes a list of pq distinct functions. This list of functions is independent. The details
use the algebraic independence test page 378, double mathematical induction on p, q and
1 – 4 .

6 Restrict the values ai in 5 to be of the form A + iB with B > 0. The real and

imaginary parts of the list of functions in 5 makes a set of 2pq distinct functions, all of
which are Euler solution atoms. The set is independent.

The proof concludes by arguing that any finite set of distinct Euler solution atoms is a
subset of an independent set described in 6 . Because subsets of independent sets are
independent, Theorem 5.24, the proof ends. ■

Proof of Theorem 5.37, Vandermonde Determinant Identity: Let’s prove the
identity for the case k = 3, which simplifies notation. Assume distinct samples x1, x2,
x3. To be proved:

det(V (x1, x2, x3)) = (x3 − x2)(x3 − x1)(x2 − x1).

The proof uses a recursion:

det(V (x1, x2, x3)) = det(V (x2, x3))(x3 − x1)(x2 − x1).

Expansion of det(V (x2, x3)) =

∣∣∣∣ 1 x2

1 x3

∣∣∣∣ = x3 − x2 by Sarrus’ Rule gives the claimed

n = 3 identity:
det(V (x1, x2, x3)) = (x3 − x2)(x3 − x1)(x2 − x1).

Recursion proof. Define matrix A = V (x, x2, x3) (x1 replaced by x). Cofactor expan-
sion along row one of det(A) gives a quadratic in variable x:

det(A) = (1) cof(A, 1, 1) + (x) cof(A, 1, 2) + (x2) cof(A, 1, 3).

13Writing details for this is not preferred to eating shattered glass.
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Because a determinant with duplicate rows has zero value, then quadratic equation
det(A) = 0 has roots x = x2 and x = x3. The factor and root theorems of college
algebra apply: for some constant c,

det(A) = c(x3 − x)(x2 − x).

Constant c is the coefficient of x2 in det(A), therefore

c = cof(A, 1, 3) = (−1)1+3 minor(A, 1, 3) = det(V (x2, x3).

Then
det(A) = det(V (x2, x3))(x3 − x)(x2 − x).

Upon substitution of x = x1, this equation becomes the claimed recursion

det(V (x1, x2, x3)) = det(V (x2, x3))(x3 − x1)(x2 − x1).

Mathematical Induction. The k × k case first proves by cofactor expansion the
recursion

det(V (x1, x2, . . . , xk)) = det(V (x2, . . . , xk)

k∏
j=2

(xj − x1).(4)

Identity (4) provides the induction step used to prove Theorem 5.37 by induction. To
understand the derivation of identity (4), which also requires mathematical induction,
experiment with special case k = 4:

det(V (x1, x2, x3, x4)) = det(V (x2, x3, x4))

4∏
j=2

(xj − x1).
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Exercises 5.4 �

Scalar and Vector General Solution
Given the scalar general solution of Ax⃗ = 0⃗,
find the vector general solution

x⃗ = t1u⃗1 + t2u⃗2 + · · ·

where symbols t1, t2, . . . denote arbitrary
constants and u⃗1, u⃗2, . . . are fixed vectors.

1. x1 = 2t1, x2 = t1 − t2, x3 = t2

2. x1 = t1+3t2, x2 = t1, x3 = 4t2, x4 = t2

3. x1 = t1, x2 = t2, x3 = 2t1 + 3t2

4. x1 = 2t1 + 3t2 + t3, x2 = t1, x3 = t2,
x4 = t3

Vector General Solution
Find the vector general solution x⃗ of Ax⃗ =
0⃗.

5. A =

(
1 2
2 4

)

6. A =

(
1 −1
−1 1

)

7. A =

 1 2 0
2 4 0
0 0 0



8. A =

 1 1 −1
1 1 0
0 0 1



9. A =


1 1 −1 0
1 1 0 0
0 0 1 0
2 2 −1 0



10. A =


1 1 0 0
2 2 0 0
0 0 1 1
0 0 2 2


Dimension

11. Give four examples in R3 of S =
span(v⃗1, v⃗2, v⃗3) (3 vectors required)
which have respectively dimensions
0, 1, 2, 3.

12. Give an example in R3 of 2-
dimensional subspaces S1, S2 with
only the zero vector in common.

13. Let S = span(v⃗1, v⃗2) in abstract vec-
tor space V . Explain why dim(S) ≤ 2.

14. Let S = span(v⃗1, . . . , v⃗k) in abstract
vector space V . Explain why dim(S) ≤
k.

15. Let S be a subspace of R3 with
basis v⃗1, v⃗2. Define v⃗3 to be the
cross product of v⃗1, v⃗2. What is
dim(span(v⃗2, v⃗3))?

16. Let S1, S2 be subspaces ofR4 such that
dim(S1) = dim(S2) = 2. Assume S1, S2

have only the zero vector in common.
Prove or give a counter-example: the
span of the union of S1, S2 equals R4.

Independence in Abstract Spaces

17. Assume linear combinations of vectors
v⃗1, v⃗2 are uniquely determined, that
is, a1v⃗1 + a2v⃗2 = b1v⃗1 + b2v⃗2 implies
a1 = b1, a2 = b2. Prove this result: If
c1v⃗1 + c2v⃗2 = 0⃗, then c1 = c2 = 0.

18. Assume the zero linear combination of
vectors v⃗1, v⃗2 is uniquely determined,
that is, c1v⃗1+c2v⃗2 = 0⃗ implies c1 = c2 =
0. Prove this result: If a1v⃗1 + a2v⃗2 =
b1v⃗1 + b2v⃗2, then a1 = b1, a2 = b2.

19. Prove that two nonzero vectors v⃗1, v⃗2
in an abstract vector space V are inde-
pendent if and only if each of v⃗1, v⃗2 is
not a constant multiple of the other.

20. Let v⃗1 be a vector in an abstract vector
space V . Prove that the one-element set
v⃗1 is independent if and only if v⃗1 is not
the zero vector.

21. Let V be an abstract vector space and
assume v⃗1, v⃗2 are independent vectors
in V . Define u⃗1 = v⃗1+v⃗2, u⃗2 = v⃗1+2v⃗2.
Prove that u⃗1, u⃗2 are independent in V .
Advice: Fixed vectors not assumed!

Bursting the vector packages is impossible,

there are no components.
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22. Let V be an abstract vector space and
assume v⃗1, v⃗2, v⃗3 are independent vec-
tors in V . Define u⃗1 = v⃗1 + v⃗2, u⃗2 =
v⃗1 + 4v⃗2, u⃗3 = v⃗3 − v⃗1. Prove that u⃗1,
u⃗2, u⃗3 are independent in V .

23. Let S be a finite set of independent
vectors in an abstract vector space V .
Prove that none of the vectors can be
the zero vector.

24. Let S be a finite set of independent
vectors in an abstract vector space V .
Prove that no vector in the list can be a
linear combination of the other vectors.

The Spaces Rn

25. (Scalar Multiply) Let x⃗ =

x1

x2

x3

 have

components measured in centimeters.
Report constants c1, c2, c3 for re-scaled
data c1x⃗, c2x⃗, c3x⃗ in units of kilometers,
meters and millimeters.

26. (Matrix Multiply) Let u⃗ =(
x1, x2, x3, p1, p2, p3

)T
have position

x-units in kilometers and momentum
p-units in kilogram-centimeters per
millisecond. Determine a matrix M
such that the vector y⃗ = Mu⃗ has SI
units of meters and kilogram-meters
per second.

27. Let v⃗1, v⃗2 be two independent vec-
tors in Rn. Assume c1v⃗1 + c2v⃗2 lies
strictly interior to the parallelogram de-
termined by v⃗1, v⃗2. Give geometric de-
tails explaining why 0 < c1 < 1 and
0 < c2 < 1.

28. Prove the 4 scalar multiply toolkit
properties for fixed vectors in R3.

29. Define

0⃗ =

0
0
0

 ,−v⃗ =

−v1−v2
−v3

 .

Prove the 4 addition toolkit properties
for fixed vectors in R3.

30. Use the 8 property toolkit in R3 to
prove that zero times a vector is the zero
vector.

31. Let A be an invertible 3×3 matrix. Let
v⃗1, v⃗2, v⃗3 be a basis for R3. Prove that
Av⃗1, Av⃗2, Av⃗3 is a basis for R3.

32. Let A be an invertible 3 × 3 matrix.
Let v⃗1, v⃗2, v⃗3 be dependent inR3. Prove
that Av⃗1, Av⃗2, Av⃗3 is a dependent set in
R3.

Digital Photographs
Let V be the vector space of all 2 × 3 ma-
trices. A matrix in V is a 6-pixel digital
photo, a sub-section of a larger photo.

Let B1 =

(
1 0 0
0 0 0

)
, . . . , B6 =

(
0 0 0
0 0 1

)
.

Each Bj lights up one pixel in the 2 × 3
sub-photo.

33. Prove that B1, . . . , B6 are independent
and span V : they are a basis for V .

34. Let A = 2

(
1 0 0
0 0 0

)
+ 4

(
0 0 0
0 1 0

)
. As-

sume a black and white image and 0
means black. Describe photo A, from
the checkerboard analogy.

Digital RGB Photos
Define red, green and blue monochrome
matrices R,G,B by(

2 0 0
0 1 1
5 8 1

)
,

(
3 0 0
0 4 0
0 1 0

)
,

(
5 0 0
0 3 0
1 0 5

)
.

35. Define base x = 16. Compute A =
R+ xG+ x2B.

36. Define base x = 32. Compute A =
R+ xG+ x2B.

Polynomial Spaces
Let V be the vector space of all cubic or less
polynomials p(x) = c0 + c1x+ c2x

2 + c3x
3.

37. Find a subspace S of V , dim(S) = 2,
which contains the vector 1 + x.

38. Let S be the subset of V spanned by
x, x2 and x3. Prove that S is a sub-
space of V which does not contain the
polynomial 1 + x.
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39. Define set S by the conditions p(0) =
0, p(1) = 0. Find a basis for S.

40. Define set S by the condition p(0) =∫ 1

0
p(x)dx. Find a basis for S.

The Space C(E)
Define f⃗ to be the vector package with do-
main E = {x : −2 ≤ x ≤ 2} and equation
y = |x|. Similarly, g⃗ is defined by equation
y = x.

41. Show independence of f⃗ , g⃗.

42. Find the dimension of span(f⃗ , g⃗).

43. Let h(x) = 0 on −1 ≤ x ≤ 0, h(x) =

−x on 0 ≤ x ≤ 1. Show that h⃗ is in
C(E).

44. Let h(x) = −1 on −2 ≤ x ≤ 0,
h(x) = 1 on 0 ≤ x ≤ 2. Show that

h⃗ is not in C(E).

45. Let h(x) = 0 on −2 ≤ x ≤ 0, h(x) =

−x on 0 ≤ x ≤ 2. Show that h⃗ is in
span(f⃗ , g⃗).

46. Let h(x) = tan(πx/2) on −2 < x < 2,

h(2) = h(−2) = 0. Explain why h⃗ is
not in C(E)

The Space C1(E)
Define f⃗ to be the vector package with do-
main E = {x : −1 ≤ x ≤ 1} and equation
y = x|x|. Similarly, g⃗ is defined by equation
y = x2.

47. Verify that f⃗ is in C1(E), but its
derivative is not.

48. Show that f⃗ , g⃗ are independent in
C1(E).

The Space Ck(E)

49. Compute the first three derivatives of
y(x) = e−x2

at x = 0.

50. Justify that y(x) = e−x2

belongs to
Ck(0, 1) for all k ≥ 1.

51. Prove that the span of a finite list of
distinct Euler solution atoms (page 386)
is a subspace of Ck(E) for any interval
E.

52. Prove that y(x) = |x| is in Ck(0, 1) but
not in C1(−1, 1).

Solution Space
A differential equations solver finds general
solution y = c1 + c2x + c3e

x + c4e
−x. Use

vector space V = C4(E) where E is the
whole real line.

53. Write the solution set S as the span of
four vectors in V .

54. Find a basis for the solution space S
of the differential equation. Verify in-
dependence using the sampling test or
Wronskian test.

55. Find a differential equation y′′+a1y
′+

a0y = 0 which has solution y = c1+c2x.

56. Find a differential equation y′′′′ +
a3y

′′′+a2y
′′+a1y

′+a0y = 0 which has
solution y = c1 + c2x+ c3e

x + c4e
−x.

Algebraic Independence Test for Two
Vectors
Solve for c1, c2 in the independence test for
two vectors, showing all details.

57. v⃗1 =

(
1
2

)
, v⃗2 =

(
1
−1

)

58. v⃗1 =

 1
−1
0

 , v⃗2 =

1
1
0


Dependence of two vectors
Solve for c1, c2 not both zero in the inde-
pendence test for two vectors, showing all
details for dependency of the two vectors.

59. v⃗1 =

(
1
2

)
, v⃗2 =

(
2
4

)

60. v⃗1 =

 1
−1
0

 , v⃗2 =

−22
0


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Independence Test for Three Vectors
Solve for the constants c1, c2, c3 in the rela-
tion c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗. Report depen-
dent of independent vectors. If dependent,
then display a dependency relation.

61.

 1
−1
0

,

−12
0

,

0
2
0



62.

 1
−1
0

,

−12
0

,

0
1
1


Independence in an Abstract Vector
Space
In vector space V , report independence or
a dependency relation for the given vectors.

63. Space V = C(−∞,∞), v⃗1 = 1 + x,
v⃗2 = 2 + x, v⃗3 = 3 + x2.

64. Space V = C(−∞,∞), v⃗1 = x3/5,
v⃗2 = x2, v⃗3 = 2x2 + 3x3/5

65. Space V is all 3× 3 matrices. Let

v⃗1 =

(
1 1 0
0 1 1
0 0 1

)
, v⃗2 =

(
0 1 0
0 0 1
0 1 1

)
, v⃗3 =(

2 5 0
0 2 5
0 3 5

)
.

66. Space V is all 2× 2 matrices. Let

v⃗1 =

(
1 1
0 1

)
, v⃗2 =

(
−1 1
1 1

)
,

v⃗3 =

(
0 2
1 2

)
.

Rank Test
Compute the rank of the augmented matrix
to determine independence or dependence
of the given vectors.

67.


1
−1
0
0

,


−1
2
0
0

,


0
2
0
0



68.


0
1
−1
0

,


0
−1
2
0

,


0
0
1
1



Determinant Test
Evaluate the determinant of the augmented
matrix to determine independence or de-
pendence of the given vectors.

69.

−13
0

,

2
1
0

,

3
5
0



70.

 0
1
−1

,

 0
−1
2

,

1
0
0


Sampling Test for Functions
Invent samples to verify independence.

71. cosh(x), sinh(x)

72. x7/3, x sin(x)

73. 1, x, sin(x)

74. 1, cos2(x), sin(x)

Sampling Test and Dependence
For three functions f1, f2, f3 to be depen-
dent, constants c1, c2, c3 must be found
such that

c1f1(x) + c2f2(x) + c3f3(x) = 0.

The trick is that c1, c2, c3 are not all zero
and the relation holds for all x. The sam-
pling test method can discover the con-
stants, but it is unable to prove depen-
dence!

75. Functions 1, x, 1+x are dependent. In-
sert x = 1, 2,−1 and solve for c1, c2, c3,
to discover a dependency relation.

76. Functions 1, cos2(x), sin2(x) are depen-
dent. Cleverly choose 3 values of x, in-
sert them, then solve for c1, c2, c3, to
discover a dependency relation.

Vandermonde Determinant

77. Let V =

(
1 x1
1 x2

)
. Verify by direct com-

putation the formula

|V | = x2 − x1.
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78. Let V =

(
1 x1 x

2
1

1 x2 x
2
2

1 x3 x
2
3

)
. Verify by direct

computation the formula

|V | = (x3 − x2)(x3 − x1)(x2 − x1).

Wronskian Test for Functions
Apply the Wronskian Test to verify inde-
pendence.

79. cos(x), sin(x).

80. cos(x), sin(x), sin(2x).

81. x, x5/3.

82. cosh(x), sinh(x).

Wronskian Test: Theory

83. The functions x2 and x|x| are continu-
ously differentiable and have zero Wron-
skian. Verify that they fail to be de-
pendent on −1 < x < 1.

84. The Wronskian Test can verify the in-
dependence of the powers 1, x, . . . , xk.
Show the determinant details.

Extracting a Basis
Given a list of vectors in space V = R4,
extract a largest independent subset.

85.


1
−1
0
0

,


−1
2
0
0

,


0
2
0
0

,


0
−1
1
0

,


−1
1
1
0



86.


0
−1
1
0

,


0
1
1
0

,


0
2
3
0

,


1
−1
0
1

,


1
0
1
1


Extracting a Basis
Given a list of vectors in space V =
C(−∞,∞), extract a largest independent
subset.

87. x, x cos2(x), x sin2(x), ex, x+ ex

88. 1, 2 + x, x
1+x2 ,

x2

1+x2

Euler Solution Atom
Identify the Euler solution atoms in the
given list. Strictly apply the definition: ex

is an atom but 2ex is not.

89. 1, 2 + x, e2.15x, ex
2

, x
1+x2

90. 2, x3, ex/π, e2x+1, ln |1 + x|

Euler Solution Atom Test
Establish independence of set S1.
Suggestion: First establish an identity
span(S1) = span(S2), where S2 is an in-
vented list of distinct atoms. The Test im-
plies S2 is independent. Extract a largest
independent subset of S1, using indepen-
dence of S2.

91. Set S1 is the list 2, 1 + x2, 4 +
5ex, πe2x+π, 10x cos(x).

92. Set S1 is the list 1 + x2, 1 −
x2, 2 cos(3x), cos(3x) + sin(3x).
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5.5 Basis, Dimension and Rank

The topics of basis, dimension and rank apply to the study of Euclidean spaces,
continuous function spaces, spaces of differentiable functions and general abstract
vector spaces.

Definition 5.28 (Basis)
A basis for a vector space V is defined to be an independent set of vectors such that
each vector in V is a linear combination of finitely many vectors in the basis. The
independent vectors are said to span V , with notation

V = span(the set of basis vectors).

If the set of independent vectors is finite, then V is called finite dimensional. An
important example isRn. Otherwise, V is said to be infinite dimensional. A Fourier
series example: the space V spanned by sin(nx) on −π ≤ x ≤ π, n = 1, 2, 3, . . . is
infinite dimensional.

Theorem 5.38 (Size of a Basis)
If vector space V has two bases v⃗1, . . . , v⃗p and u⃗1, . . . , u⃗q, then p = q. Proof on
page 422.

Definition 5.29 (Dimension)
The dimension of a finite-dimensional vector space V is defined to be the number
of vectors in a basis.
Because of Theorem 5.38, the term dimension is well-defined.

Theorem 5.39 (Basis of a Finite-Dimensional Vector Space)
Let V be an n-dimensional vector space and L = {v⃗1, . . . , v⃗p} a list of vectors in V ,
not assumed linearly independent. Then:

1. If p = n and L is an independent set, then L is a basis for V .

2. If p = n and span(L) = V , then L is a basis for V .

3. Always V has a basis containing a given independent subset of L.

4. If span(L) = V , then L contains a basis for V .

Proof on page 422.

Euclidean Spaces

The space Rn has a standard basis consisting of the columns of the n × n
identity matrix: 

1
0
0
...
0

 ,


0
1
0
...
0

 , · · · ,


0
0
0
...
1

 .
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5.5 Basis, Dimension and Rank

The determinant test implies they are independent. They span Rn due to the
formula 

c1
c2
c3
...

cn

 = c1


1
0
0
...
0

+ c2


0
1
0
...
0

+ · · · + cn


0
0
0
...
1

 .

Definition 5.29 implies the columns of the identity matrix form a basis of Rn of
dimension n.

Theorem 5.40 (Basis and Dimension in Rn)
Any basis of Rn has exactly n independent vectors. Further, any list of n + 1 or
more vectors in Rn is dependent.
Proof on page 423.

Polynomial Spaces

The vector space of all polynomials p(x) = p0 + p1x + p2x
2 has dimension 3,

justified by producing a basis 1, x, x2. Formally, the basis elements are obtained
from the expression p(x) by partial differentiation on the symbols p0, p1, p2.

Illustration. The subspace S = span(1− x, 1+ x, x) is the set of combinations
c1(1− x) + c2(1 + x) + c3x. Partial differentiation on symbols c1, c2, c3 produces
the list of vectors 1−x, 1+x, x. While they span S, they fail to be independent.
Extract a largest independent subset from this list to find a basis for S, for
example 1− x, 1+ x. Basis size 2 verifies that S has dimension 2: see Theorem
5.38 and Definition 5.29.

Differential Equations

The equation y′′ + y = 0 has general solution y = c1 cosx + c2 sinx. Therefore,
the formal partial derivatives ∂c1 , ∂c2 applied to the general solution y give a
basis cosx, sinx. The solution space of y′′ + y = 0 has dimension 2.

Similarly, y′′′ = 0 has a solution basis 1, x, x2 and therefore its solution space
has dimension 3. Generally, an nth order linear homogeneous scalar differential
equation has solution space V of dimension n, and an n× n linear homogeneous
system d

dx y⃗ = Ay⃗ has solution space V of dimension n. There is a general
procedure for finding a basis for a differential equation:

Let a linear differential equation have general solution expressed in
terms of arbitrary constants c1, c2, . . . , then a basis is found by
taking the partial derivatives ∂c1 , ∂c2 , . . . .
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Largest Subset of Independent Fixed Vectors

Let vectors v⃗1, . . . , v⃗k be given in Rn. Then the subset

S = span(v⃗1, . . . , v⃗k)

of Rn consisting of all linear combinations v⃗ = c1v⃗1 + · · ·+ ckv⃗k is a subspace of
Rn by Theorem 5.5. The subset S is identical to the set of all linear combinations
of the columns of the augmented matrix A of v⃗1, . . . , v⃗k.

Because matrix multiply is a linear combination of columns, that is,

A

 c1
...
cn

 = c1v⃗1 + · · · + ckv⃗k,

then S is also equals the image of the matrix, S = Image(A).

Definition 5.30 (Image of a Matrix)

Image(A) = {Ac⃗ : vector c⃗ arbitrary}.

Discussed here are efficient methods for finding a basis for any subspace S given
as the span of a finite list L of vectors: S = span(L). The methods apply in
particular when the list L consists of the columns of a matrix. Equivalently, the
methods find a largest subset of independent vectors L1 from the vectors
in set L. This largest subset L1 is independent and spans S, which makes it a
basis for S.

Iterative Method for a Largest Independent Subset

A largest independent subset of vectors v⃗1, . . . , v⃗k in an abstract vector space V
is identified as v⃗i1 , . . . , v⃗ip for some distinct subscripts i1 < · · · < ip. Described
here is how to find such subscripts. A set containing only the zero vector is
dependent, therefore let’s assume at least one nonzero vector is listed. Let i1 be
the first subscript such that v⃗i1 ̸= 0⃗. Define i2 to be the first subscript greater
than i1 such that v⃗i2 is not a scalar multiple of v⃗i1 . The process terminates if
there is no such i2 > i1. Otherwise, proceed in a similar way to define i3, i4, . . .,
ip. At each stage q we let S = {v⃗i1 , . . . , v⃗iq} and select another vector v⃗iq+1 from
v⃗1, . . . , v⃗k which is not in span(S). Then

dim(span(S)) < dim(span(S ∪ {v⃗iq+1})).

Why does it work? Because each vector added which increases the dimension
cannot be a linear combination of the preceding vectors, in short, the list of
vectors at each stage is independent. See Example 5.24.
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Pivot Theorem Method

Definition 5.31 (Pivot Column of Matrix A)
A column j of A is called a pivot column provided rref(A) has a leading one in
column j. The leading ones in rref(A) belong to consecutive initial columns of the
identity matrix I; the matching columns in A are the pivot columns of A.

Theorem 5.41 (Pivot Theorem: Independent Columns of A)

1. The pivot columns of a matrix A are linearly independent.

2. A non-pivot column is a linear combination of the pivot columns.

Proof on page 423.

Example 5.24 (Largest Independent Subset)
Find a largest independent subset from the five vectors

v⃗1 =


0
0
0
0

 , v⃗2 =


1
1
0
0

 , v⃗3 =


1
1
0
1

 , v⃗4 =


0
0
0
1

 , v⃗5 =


1
1
0
2

 .

Solution:

The Iterative Method applies. A visual inspection shows that we should skip the
zero vector v⃗1 and add v⃗2, v⃗3 to the proposed largest independent set. Here, we use
the fact that two nonzero vectors are independent if one is not a scalar multiple of
the other. Because v⃗4 = v⃗2 + v⃗3, we also skip v⃗4. Formally, this dependence relation

can be computed from toolkit steps on augmented matrix B = ⟨v⃗2|v⃗3|v⃗4⟩. Similarly,
v⃗5 = 2v⃗4 + v⃗2, causing a skip of v⃗5. A largest independent subset is v⃗2, v⃗3.

The Pivot Theorem applies. This method has a computer implementation. Form the
augmented matrix A of the five vectors and then compute rref(A).

A =


0 1 0 0 −2

0 0 1 0 3

0 0 0 1 −1

0 0 0 0 0

 , rref(A) =


0 1 0 0 −2

0 0 1 0 3

0 0 0 1 −1

0 0 0 0 0

 .

Then columns 2, 3 of matrix A are the pivot columns of A. We report v⃗2, v⃗3 as a largest
independent subset, namely the pivot columns of A. Beware: The wrong answer is
column 2, 3 of rref(A), because rref(A) columns are not in the original list of vectors!
Example 5.24 is complete.

The Pivot Theorem can be restated as a method, called the pivot method, for
finding a largest independent subset.
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Theorem 5.42 (Pivot Method)
Let A be the augmented matrix of fixed vectors v⃗1, . . . , v⃗k. Let the leading ones in
rref(A) occur in columns i1, . . . , ip. Then a largest independent subset of the k
vectors v⃗1, . . . , v⃗k is the set of pivot columns of A, that is, the vectors

v⃗i1 , v⃗i2 , . . . , v⃗ip .

Proof on page 424.

Rank and Nullity

Definition 5.32 (Rank of a Matrix)
The rank of an m × n matrix A, symbol rank(A), equals the number of leading
ones in rref(A). Alternatively, the rank is the number of pivot columns of A.

Definition 5.33 (Nullity of a Matrix)
The nullity of an m × n matrix A is the number of free variables in the system

rref(A)u⃗ = 0⃗, or equivalently, the number of columns of A less the rank of A. The
nullity equals the number of non-pivot columns of A in the Pivot Theorem.

The variable count in u⃗ equals the column dimension of A, which leads to the
main result for rank and nullity.

Theorem 5.43 (Rank-Nullity Theorem)

rank(A) + nullity(A) = column dimension of A.

Proof on page 424.

In terms of homogeneous system Au⃗ = 0⃗, the rank of A is the number of leading
variables and the nullity of A is the number of free variables, reliably computed
from the system rref(A)x⃗ = 0⃗.

Theorem 5.44 (Basis for Ax = 0)
Assume

k = nullity(A) = dim
{
x⃗ : Ax⃗ = 0⃗

}
> 0.

Then the solution set of Ax⃗ = 0⃗ can be expressed as

x⃗ = t1X⃗1 + · · ·+ tkX⃗k(1)

where X⃗1, . . . , X⃗k are special linearly independent solutions of Ax⃗ = 0⃗ and t1, . . . ,
tk are arbitrary scalars (free variable invented symbols).

Proof on page 424.

Theorem 5.45 (Row Rank Equals Column Rank)
The number of independent rows of a matrix A equals the number of independent
columns of A. Equivalently, rank(A) = rank(AT ).

Proof on page 424.

409



5.5 Basis, Dimension and Rank

Nullspace, Column Space and Row Space

Definition 5.34 (Kernel and Nullspace)
The kernel or nullspace of an m× n matrix A is the vector space of all solutions x⃗

to the homogeneous system Ax⃗ = 0⃗. In symbols,

kernel(A) = nullspace(A) = {x⃗ : Ax⃗ = 0⃗}.

Definition 5.35 (Column Space)
The column space of m × n matrix A is the vector space consisting of all vectors
y⃗ = Ax⃗, where x⃗ is arbitrary in Rn.

In literature, the column space is also called the image of A, or the range of
A, or the span of the columns of A. Because Ax⃗ can be written as a linear
combination of the columns v⃗1, . . . , v⃗n of A, the column space is the set of all
linear combinations

y⃗ = x1v⃗1 + · · ·+ xnv⃗n.

In symbols,
colspace(A) = {y⃗ : y⃗ = Ax⃗ for some x⃗}

= Image(A)
= Range(A)
= span(v⃗1, . . . , v⃗n).

Definition 5.36 (Row Space)
The row space of m×n matrix A is the vector space consisting of vectors w⃗ = AT y⃗,
where y⃗ is arbitrary in Rm. Technically, the row space of A is the column space of
AT . This vector space is viewed as the set of all linear combinations of rows of A.
In symbols,

rowspace(A) = colspace
(
AT
)

= {w⃗ : w⃗ = AT y⃗ for some y⃗}
= Image

(
AT
)

= Range
(
AT
)
.

The row space of A and the null space of A live in Rn, but the column space of
A lives in Rm, a different dimension. The correct bases are obtained as follows.
If an alternative basis for rowspace(A) is suitable (rows of A not reported),
then bases for rowspace(A), colspace(A), nullspace(A) can all be found by
calculating just rref(A).

Null Space. Compute rref(A). Write out the general solution x⃗ to Ax⃗ = 0⃗,
where the free variables are assigned invented symbols t1, . . . , tk. Report
the basis for nullspace(A) as the list of partial derivatives ∂t1 x⃗, . . . , ∂tk x⃗,
which are special solutions of Ax⃗ = 0⃗.
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Column Space. Compute rref(A). Identify the lead variable columns i1, . . . ,
ik. Report the basis for colspace(A) as the list of columns i1, . . . , ik of A.
These are the pivot columns of A.

Row Space. Compute rref
(
AT
)
. Identify the lead variable columns i1, . . . , ik.

Report the basis for rowspace(A) as the list of rows i1, . . . , ik of A.

Alternatively, compute rref(A), then rowspace(A) has a basis consisting
of the list of nonzero rows of rref(A). The two bases obtained by these
methods are different, but equivalent.

Due to the identity nullity(A)+ rank(A) = n, where n is the column dimension
of A, the following results hold. Notation: dim(V ) is the dimension of vector
space V , which equals the number of elements in a basis for V . Subspaces
nullspace(A) = kernel(A) and colspace(A) = Image(A) have dual naming
conventions in the literature.

Theorem 5.46 (Dimension Identities)
(a) dim(nullspace(A)) = dim(kernel(A)) = nullity(A)

(b) dim(colspace(A)) = dim(Image(A)) = rank(A)

(c) dim(rowspace(A)) = dim(Image
(
AT
)
= rank(A)

(d) dim(kernel(A)) + dim(Image(A)) = column dimension of A

(e) dim(kernel(A)) + dim(kernel
(
AT )

)
= column dimension of A

Proof on page 425.

Equivalent Bases

Assume v⃗1, . . . , v⃗k are independent vectors in an abstract vector space V and let
S = span(v⃗1, . . . , v⃗n). Let u⃗1, . . . , u⃗ℓ be another set of independent vectors in
V .

Studied here is the question of whether or not u⃗1, . . . , u⃗ℓ is a basis for S. First of
all, all the vectors u⃗1, . . . , u⃗ℓ have to be in S, otherwise this set cannot possibly
span S. Secondly, to be a basis, the vectors u⃗1, . . . , u⃗ℓ must be independent. Two
bases for S must have the same number of elements, by Theorem 5.38. Therefore,
k = ℓ is necessary for a possible second basis of S. These remarks establish:

Theorem 5.47 (Equivalent Bases of a Subspace S)
Let v⃗1, . . . , v⃗k be independent vectors in an abstract vector space V . Let S be the
subspace of V consisting of all linear combinations of v⃗1, . . . , v⃗k.

A set of vectors u⃗1, . . . , u⃗ℓ in V is an equivalent basis for S if and only

(1) Each of u⃗1, . . . , u⃗ℓ is a linear combination of v⃗1, . . . , v⃗k.
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(2) The set u⃗1, . . . , u⃗ℓ is independent.

(3) The sets are the same size, k = ℓ.

Proof on page 425.

Equivalent Basis Test in Rn

Assume given two sets of fixed vectors v⃗1, . . . , v⃗k and u⃗1, . . . , u⃗ℓ, in the same
space Rn. A test is developed for equivalence of bases, in a form suited for use
in computer algebra systems and numerical laboratories.

Theorem 5.48 (Equivalence Test for Bases in Rn)
Define augmented matrices

B = ⟨v⃗1| · · · |v⃗k⟩, C = ⟨u⃗1| · · · |u⃗ℓ⟩, W = ⟨B|C⟩.
The relation

k = ℓ = rank(B) = rank(C) = rank(W )

implies

1. v⃗1, . . . , v⃗k is an independent set.

2. u⃗1, . . . , u⃗ℓ is an independent set.

3. span{v⃗1, . . . , v⃗k} = span{u⃗1, . . . , u⃗ℓ}

In particular, colspace(B) = colspace(C) and each set of vectors is an equivalent
basis for this vector space.

Proof on page 426.

Examples

Example 5.25 (Basis and Dimension)
Let S be the solution space in V = R4 of the system of equations

x1 + 2x2 = 0,
2x1 + 5x2 = 0,

x4 = 0,
0 = 0.

(2)

Find a basis for S, then report the dimension of S.

Solution: The solution divides into two distinct sections: 1 and 2 .

1 : Find the scalar general solution of system (2).

The toolkit: matrix combination, swap and multiply on the coefficient matrix. The last
frame algorithm finds the general solution. The details:
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1 2 0 0
2 5 0 0
0 0 0 1
0 0 0 0

 First frame.

1 2 0 0
0 1 0 0
0 0 0 1
0 0 0 0

 combo(1,2,-2).

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

 combo(2,1,-2). Last frame, this is the rref .

∣∣∣∣∣∣∣∣
x1 = 0,
x2 = 0,
x4 = 0,
0 = 0.

∣∣∣∣∣∣∣∣ Translate to scalar equations.

∣∣∣∣∣∣∣∣
x1 = 0,
x2 = 0,
x3 = t1,
x4 = 0.

∣∣∣∣∣∣∣∣ Scalar general solution, obtained from the last frame algorithm:
x1, x2, x4=lead, x3=free.

2 : Find the vector general solution of the system (2).

The plan is to use the answer from 1 and partial differentiation to display the vector
general solution x⃗.

∂t1 x⃗ =


0
0
1
0

 The special solution is the partial on symbol t1. Only one, because
there is only one invented symbol.

x⃗ = t1


0
0
1
0

 The vector general solution.

Therefore, solution space S = span(X⃗1), where X⃗1 is the special solution obtained
above. Because the spanning set is independent with one element, then dim(S) = 1.

Example 5.26 (Euclidean Spaces)
Let A be an m × n matrix with columns v⃗1, . . . , v⃗n and let b⃗ be a vector in Rm.
Write a mathematical proof for each of the following facts.

1 . If the equation Ax⃗ = b⃗ has a solution x⃗, then b⃗ belongs to the span of
the columns of A.

2 . If b⃗ belongs to the span of the columns of A, then the equation Ax⃗ = b⃗
has a solution x⃗.

3 . If Ax⃗ = b⃗ has a solution x⃗, then b⃗, v⃗1, . . . , v⃗n is a dependent set.
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Solution:
1 : Let equation Ax⃗ = b⃗ have a solution x⃗. Write the equation backwards, then express
the matrix product as a linear combination of the columns of A:

b⃗ = Ax⃗ = x1v⃗1 + · · ·+ xnv⃗n.

This proves b⃗ is a linear combination of the columns of A.

1 : Let b⃗ be a linear combination of the columns of A. We show Ax⃗ = b⃗ has a solution
x⃗. By hypothesis, there are constants x1, . . . , xn such that

b⃗ = x1v⃗1 + · · ·+ xnv⃗n.

Let x⃗ =

x1

...
xn

. Because Ax⃗ can be written as a linear combination of the columns of

A, then Ax⃗ = x1v⃗1 + · · ·+ xnv⃗n = b⃗, which proves that Ax⃗ = b⃗ has a solution x⃗.

3 : Assume Ax⃗ = b⃗ has a solution x⃗. Write the equation backwards, then express the
matrix product as a linear combination of the columns of A:

b⃗ = Ax⃗ = x1v⃗1 + · · ·+ xnv⃗n.

Define c0 = −1, c1 = x1, . . . , cn = xn. Then

c0⃗b+ c1v⃗1 + · · ·+ cnv⃗n = 0⃗.

The definition of dependence implies that vectors b⃗, v⃗1, . . . , v⃗n are dependent.

The details for 1 , 2 , 3 are complete.

Example 5.27 (Sequence Spaces)
Let V be the vector space of all real sequences {xn}∞n=1 with componentwise addition
and scalar multiplication. Let S be the subset of V defined by the equation x1 = 0.
Show that S is an infinite-dimensional subspace of V .

Solution: The space V is the abstraction of addition and scalar multiplication of Taylor
series

f(t) =

∞∑
n=1

xnt
n−1.

The subspace S corresponds to all Taylor series which satisfy f(0) = 0. We assume it is
known, or easily verified, that the larger set V is a vector space.

The subspace criterion applies to prove that S is a subspace of V . The omitted details
are constructed from a similar set of details for the R3 subspace defined by the linear
algebraic restriction equation x1 = 0.

The remainder of the proof establishes dim(S) =∞. These details produce a list L with
span(L) ⊂ S. It is false that S = span(L), even though span(L) is a subspace by the
span theorem. Further details are delayed to after dim(S) =∞ is established.

A standard method to find a basis L for S computes the partial derivatives on the
symbols used to define S. The symbols are x2, x3, . . .. We abuse notation and think of
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the sequences as column vectors with infinitely many components:

{xn}∞n=1 −→


x1

x2

x3

...

 .

Then S is the subset of all infinitely long column vectors with x1 = 0. Take partial
derivatives on x2, x3, . . . to obtain the candidate basis vectors:

0
1
0
0
...

 ,


0
0
1
0
...

 ,


0
0
0
1
...

 , · · ·

The list is infinite. Any finite subset of this list is independent. The intuition:

c1


0
1
0
0
...

+ c2


0
0
1
0
...

+ c3


0
0
0
1
...

 =


0
0
0
0
...


implies 

0
c1
c2
c3
...

 =


0
0
0
0
...


and therefore c1 = c2 = c3 = 0.

The list L of infinite sequences is correspondingly

0, 1, 0, 0, 0, . . .
0, 0, 1, 0, 0, . . .
0, 0, 0, 1, 0, . . .

...

and there are infinitely many.

The details are finished by the method of contradiction. Suppose a true hypothesis and
false conclusion. Then S has finite dimension n. Let Z be the span of a list L1 of
n + 1 vectors from the above list. A proof can be constructed, based upon the above
ideas, for independence of L1, and then dim(Z) = n+ 1. Because Z a subset of S, then
dim(Z) ≤ dim(S) = n, a contradiction to dim(Z) = n + 1. Therefore, S cannot have
finite dimension.

Conclusion: S is an infinite dimensional subspace of V .

Complaints. The preceding details do not prove Z is an independent set. The notation
with infinitely many components is certainly not standard notation, therefore the reader
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is advised not to use it to present proof details. But it is excellent for intuition, and that
is why you see it presented here, instead of more abstract details.

Is L a basis of S? The answer is NO.
Subspace W = span(L) is contained in subspace S. Then L is a basis for W . But L
is not a basis for S. For example, the Taylor series for f(t) = et − 1 corresponds to a
sequence in S with xk > 0 for k > 1, and this sequence cannot be written as a finite
linear combination of vectors selected from L.

Example 5.28 (Polynomial Spaces)
Let V be the vector space of all polynomials p(x). Find a basis and hence the
dimension of the subspace S defined by these conditions:

1. Polynomial p(x) has degree no larger than two.

2. The equation p(0) =
∫ 1
0 xp(x)dx is satisfied.

Solution: The answer is a list of independent polynomials in S: 2
3 + x, 1

2 + x2. Then
dim(S) = 2 = number of basis elements.

Details. Start by inventing symbols for the coefficients of p(x), for example p(x) =
a1 + a2x + a3x

2 because of requirement 1. Insert the p(x) expression into requirement
2, in order to find a relation for the three symbols a1, a2, a3.

p(0) =
∫ 1

0
xp(x)dx Requirement 2.

a1 =
∫ 1

0
(a1x+ a2x

2 + a3x
3)dx Insert for p(x) the expression a1 + a2x + a3x

2.
Then evaluate p(0) = a1.

a1 =
a1
2

+
a2
3

+
a3
4

Evaluate integral.

Rearrangement of the last equation gives the linear equation a1 −
2

3
a2 −

1

2
a3 = 0 in

unknowns a1, a2, a3. This linear system is in reduced echelon form. It has general
solution

a1 = 2
3 t1 +

1
2 t2,

a2 = t1,
a3 = t2,

(3)

with basis of solutions

v⃗1 =

 2
3

1
0

 , v⃗2 =

 1
2

0
1

 .

Translation to the corresponding polynomials, via the correspondencea1
a2
a3

 −→ p(x) = a1 + a2x+ a3x
2

gives the two polynomials

p1(x) =
2

3
+ x, p2(x) =

1

2
+ x2.

Why are these polynomials a basis for S?

416



5.5 Basis, Dimension and Rank

A sophisticated answer is that the correspondence used to find the two polynomials is a
one-to-one linear map from W = span(v⃗1, v⃗2) onto S, mapping v⃗1 → p1 and v⃗2 → p2.

A computational method will justify independence and span for the polynomials p1, p2.
Start with p(x) = a1+a2x+a3x

2 in S. Equation a1 = 2
3a2+

1
2a3 holds because p belongs

to S. Define t1 = a2, t2 = a3 (idea from equation (3)). Then all three equations in (3)
are satisfied. Expand:

t1p1 + t2p2 = a2

(
2

3
+ x

)
+ a3

(
1

2
+ x2

)
=

2a2
3

+
a3
2

+ a2x+ a3x
2

= a1 + a2x+ a3x
2.

This computation proves that each polynomial in S is also in span(p1, p2), written as
S ⊂ span(p1, p2). Because p1, p2 are already in S, then span(p1, p2) ⊂ S. Then S =
span(p1, p2), proving list p1, p2 spans S. The two polynomials p1, p2 are independent,
because one is not a scalar multiple of the other. Then p1, p2 is independent and spans,
which proves that p1, p2 is a basis for S and dim(S) = 2.

Example 5.29 (Differential Equations)
A given homogeneous 5th order linear differential equation has general solution
y(x) = c1 + c2x + c3x

2 + c4 cosx + c5 sinx. Find a basis for the solution space
S, a subspace of vector space V = C5(−∞,∞).

Solution: The answer is a list of 5 independent solutions in S: 1, x, x2, cosx, sinx.

Details. The general solution expression implies S is the span of the reported list. We
explain how to find the list. In the case of linear algebraic equations, we would take
partial derivatives on the invented symbols to determine the list of special solutions,
which is the basis. Here, we imagine c1 to c5 to be the invented symbols and take
partial derivatives to determine a list of special vectors which span S. Let y abbreviate
y(x) = c1 + c2x+ c3x

2 + c4 cosx+ c5 sinx.

∂c1y = 1, ∂c2y = x, ∂c3y = x2, ∂c4y = cosx, ∂c5y = sinx.

The five answers are Euler solution atoms (defined on page 386). They are independent
by Theorem 5.36, page 386. The general solution expression implies are solutions and
they span S. They are a basis for S, dimension five.

Alternative Independence Test. The Wronskian test applies with sample x = 0.
The Wronskian matrix is formed by rows which are successive derivatives of the list in
row 1:

W (x) =


1 x x2 cosx sinx
0 1 2x − sinx cosx
0 0 2 − cosx − sinx
0 0 0 sinx − cosx
0 0 0 cosx sinx

 .

The determinant of W (x) for sample x = 0 is |W (0)| = 2. The Wronskian test page 385
implies the list in row 1 of W (x) is independent.
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Example 5.30 (Largest Independent Subset)
Let V = C(−∞,∞) and consider this list of vectors in V :

1, x+ x2, 2 + x, 1 + x2, ex, x+ ex.

Find a largest independent subset of this list.

Solution: One answer of the many possible answers is the list

1, x+ x2, 2 + x, ex.

Details. Start with the nonzero vectors 1, x+ x2. They are not scalar multiples of each
other, hence they are independent. The initial independent subset is 1, x + x2. Vector
1 + x cannot be expressed as a combination of 1 and x+ x2, because such a relation

2 + x = c1(1) + c2(x+ x2)

requires both c1 and c2 nonzero, in which case we reach the impossibility that a linear
polynomial equals a quadratic polynomial. The vector is added to the list to extend the
initial independent subset to 1, x + x2, 2 + x. The different growth rate at x = ∞ of
exponential term ex explains why the independent subset is extended to 1, x+x2, 2+x, ex.

Why is x+ ex eliminated from the list? First, assemble two facts:

1. Vector x belongs to span(1, x+ x2, 2 + x).

2. Vectors x and ex belong to span(1, x+ x2, 2 + x, ex).

Then x + ex is in the span of the preceding vectors in the independent subset 1, x +
x2, 1 + x, ex. The final independent subset has been found.

Remark on the method. The pivot theorem does not directly apply to this example,
because the vector space V is not a space Rn of fixed vectors. The pivot theorem can
be used by reducing the original problem to an equivalent problem in some Rn. This
method is explored later, keyword isomorphism.

Example 5.31 (Pivot Theorem Method)
Extract a largest independent subset from the columns of the matrix

A =


0 1 2 0 1
0 1 1 0 0
0 2 1 0 −1
0 0 1 0 1
0 0 1 0 1

 .

Solution: The answer is columns 2,3.

Details. The quickest solution is to observe that column 5 equals column 3 minus
column 2, but columns 2,3 are nonzero and not scalar multiples of one another, therefore
they are independent. Zero columns do not add to an independent subset of columns,
therefore a largest independent subset of columns is obtained from columns 2,3.

A solution with computer implementation computes the pivot columns ofA to be columns
2,3, and then we report a largest independent set of columns of A to be the pivot columns
2, 3.
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The pivot columns of A are computed from the rref(A), which is found on paper using
the toolkit combo, swap, multiply. It is a one-step process with computer assist: enter
the matrix A and then write a command line for rref(A). The answer:

rref(A) =


0 1 0 0 −1
0 0 1 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Then the pivot columns are columns 2, 3 of matrix A. This is a largest independent
subset of the columns of A.
Sample Code, Computer Algebra System maple:

A:=Matrix([[0,1,2,0,1],[0,1,1,0,0],[0,2,1,0,-1],

[0,0,1,0,1],[0,0,1,0,1]]);

LinearAlgebra[ReducedRowEchelonForm](A);

Example 5.32 (Nullspace, Row Space, Column Space)
Compute the nullspace, column space and row space of the matrix

A =


0 1 0 1
1 1 1 0
0 0 0 0
1 1 1 0

 .

Solution: The answers appear below.

Details. The first computation is rref(A), which provides one answer for each of the
three subspaces. The steps:0 1 0 1

1 1 1 0
0 0 0 0
1 1 1 0

 Given matrix A.

1 1 1 0
0 1 0 1
0 0 0 0
1 1 1 0

 swap(1,2)

1 1 1 0
0 1 0 1
0 0 0 0
0 0 0 0

 combo(1,4,-1)

1 0 1 −1
0 1 0 1
0 0 0 0
0 0 0 0

 Begin back-substitution: combo(2,1,-1). Found rref(A).

The last frame algorithm is applied to find the general solution of Ax⃗ = 0⃗, using the
scalar form of the last frame:

x1 + x3 − x4 = 0,
x2 + x4 = 0,

0 = 0,
0 = 0.
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The lead variables are x1, x2 and the free variables x3, x4. Using invented symbols t1, t2
gives the general solution

x1 = −t1 + t2,
x2 = −t2,
x3 = t1,
x4 = t2.

Nullspace. The partial derivatives on the invented symbols, the special solutions, form
a basis for the nullspace of A:

nullspace(A) = kernel(A) = span



−1
0
1
0

 ,


1
−1
0
1


 .

Column Space. The column space of A is the span of the pivot columns of A, which
according to the computed rref are columns 1, 2 of A. Then

colspace(A) = span(pivot columns of A) = span



0
1
0
1

 ,


1
1
0
1


 .

Row space. One answer is the set of nonzero rows of rref(A). This gives the first
answer

rowspace(A) = span




1
0
1
−1

 ,


1
0
1
0


 .

A second answer is the set of pivot columns of AT , columns 1,2 of AT , found from

AT =

0 1 0 1
1 1 0 1
0 1 0 1
1 0 0 0

 , rref(AT ) =

1 0 0 0
0 1 0 1
0 0 0 0
0 0 0 0

 .

Then the second answer for the row space is

rowspace(A) = span



0
1
0
1

 ,


1
1
1
0


 .

Example 5.33 (Fundamental Subspaces)
Compute the nullspace and column space for both A and AT , given

A =


0 1 0 1
1 1 1 0
0 0 0 0
1 1 1 0

 .

The 4 computed subspaces are known as Gilbert Strang’s Four Fundamental Sub-
spaces.
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Solution: Let N1 = nullspace(A) = span(Strang’s special solutions for A) and C1 =
colspace(A) = span(pivot columns of A). Both N1 and C1 were computed in the pre-
vious example:

N1 = span



−1
0
1
0

 ,


1
−1
0
1


 , C1 = span



0
1
0
1

 ,


1
1
0
1


 .

Define
N2 = nullspace(AT )

= span(Strang’s special solutions of AT ),
C2 = colspace(AT )

= span(pivot columns of AT ).

The computation of C2 was completed in the previous example, which also computed

AT =

0 1 0 1
1 1 0 1
0 1 0 1
1 0 0 0

 , rref(AT ) =

1 0 0 0
0 1 0 1
0 0 0 0
0 0 0 0

 .

Then the general solution for AT x⃗ = 0⃗ is

x1 = 0, x2 = −t2, x3 = t1, x4 = t2, Strang’s special solutions =


0
0
1
0

 ,


0
−1
0
1

 .

The newly found answer for N2 plus the transcribed answer for C2, taken from the
previous example, give the equations

N2 = span



0
0
1
0

 ,


0
−1
0
1


 , C2 = span



0
1
0
1

 ,


0
1
0
0


 .

Example 5.34 (Equivalent Bases)
Let

v⃗1 =

0
1
3
2

 , v⃗2 =

 1
0
−1

2

 , u⃗1 =

1
3
4

 , u⃗2 =

3
1
0

 .

Verify that {v⃗1, v⃗2} and {u⃗1, u⃗2} are equivalent bases for a subspace S.

Solution:

Define B =

0 1
1 0
3
2 −

1
2

, C =

1 3
3 1
4 0

, W =

0 1 1 3
1 0 3 1
3
2 −

1
2 4 0

. Compute the rank of each

matrix to be 2. Apply the theorem.

Maple Illustration.
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v1:=<0,1,3/2>;v2:=<1,0,-1/2>; # Basis v1,v2

u1:=<1,3,4>;u2:=<3,1,0>;

B:=<v1|v2>; C:=<u1|u2>; W:=<B|C>;

# Test: ranks of B, C, W must equal 2

linalg[rank](B),linalg[rank](C),linalg[rank](W);

Example 5.35 (Equivalent Bases: False Test)
Does rref(B) = rref(C) imply that each column of C is a linear combination of
the columns of B? The answer is no. Supply a counter-example.

Solution: Define B =

 1 0
0 1
1 1

, C =

 1 1
0 1
1 0

.

Then rref(B) = rref(C) =

 1 0
0 1
0 0

, but column 2 of C is not a linear combination

of the columns of B. This means S1 = colspace(B) is not equal to S2 = colspace(C).
Geometrically, S1 and S2 are planes in R3 which intersect only along the line L through
the two points (0, 0, 0) and (1, 0, 1).

What went wrong? The culprit is the toolkit operation swap.

Details and Proofs

Proof of Theorem 5.38, Size of a Basis: The proof proceeds by the formal method
of contradiction. Assume the hypotheses are true and the conclusion is false. Then
p ̸= q. Without loss of generality, let the larger basis be listed first, p > q.

Because u⃗1, . . . , u⃗q is a basis of the vector space V , then there are coefficients {aij} such
that

v⃗1 = a11u⃗1 + · · · + a1qu⃗q,
v⃗2 = a21u⃗1 + · · · + a2qu⃗q,

...
v⃗p = ap1u⃗1 + · · · + apqu⃗q.

Let A = [aij ] be the p × q matrix of coefficients. Because p > q, then rref(AT ) has at
most q leading variables and at least p− q > 0 free variables.

Then the q × p homogeneous system AT x⃗ = 0⃗ has infinitely many solutions. Let x⃗ be a
nonzero solution of AT x⃗ = 0⃗.

The equation AT x⃗ = 0⃗ means
∑p

i=1 aijxi = 0 for 1 ≤ j ≤ p, giving the dependence
relation ∑p

i=1 xiv⃗i =
∑p

i=1 xi

∑q
j=1 aij u⃗j

=
∑q

j=1

∑p
i=1 aijxiu⃗j

=
∑q

j=1(0)u⃗j

= 0⃗

The independence of v⃗1, . . . , v⃗p is contradicted. Arrival of the contradiction implies
p = q. ■

Proof of Theorem 5.39, Basis of a finite dimensional vector space:
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1 Let S = span(L), a subspace of V . By independence, dim(S) = n. By hypothesis,
dim(V ) = n. Suppose v⃗ is in V . Let L equal the list of n + 1 elements v⃗1, . . . , v⃗n, v⃗.
Then L is contained in V . Space V has dimension n, which means that no independent
subset exists of size larger than n. So list L is not an independent set, which implies
that v⃗ is in S = span(L). Therefore S = V and L is a basis for V .

2 It suffices to prove under the given hypotheses that L is an independent set. If not,
then V = span(L) is spanned by less than n independent vectors. This implies the
dimension of V is less than n. A contradiction is reached, therefore L is an independent
set.

3 Choose any independent subset of L, call it w⃗1, . . . , w⃗q. If q = n, then we are done,

by 1 . Otherwise, the span of these q vectors is a subspace of V not equal to V . Choose
a vector v⃗q+1 not in the subspace. Then w⃗1, . . . , w⃗q+1 is an independent set in V . Repeat
the construction until the number of constructed vectors equals n. Then the constructed
list is a basis for V .

4 Assume S = span(L) = V . If L contains fewer than n independent vectors, then V
would have a basis of fewer than n elements, a violation of dim(V ) = n. Therefore, L
contains n independent vectors. It cannot have more than n, without violating dim(V ) =
n. Therefore, L contains exactly n independent vectors, which form a basis for V .

Proof of Theorem 5.40, Basis and Dimension in Rn: The first result is due to the
fact that all bases contain the same identical number of vectors. Because the columns of
the n× n identity are independent and span Rn, then all bases must contain n vectors,
exactly.

A list of n+1 vectors v⃗1, . . . , v⃗n+1 generates a subspace S = span(v⃗1, . . . , v⃗n+1). Because
S is contained in Rn, then S has a basis of n elements or less. Therefore, the list of n+1
vectors is dependent. ■

Proof of Theorem 5.41, The Pivot Theorem:

1 : To prove: the pivot columns of A are independent. Let v⃗1, . . . , v⃗k be the vectors
columns of matrix A. Let i1, . . . , ip be the pivot columns of A.

To apply the independence test, form the system of equations

c1v⃗i1 + · · ·+ cpv⃗ip = 0⃗

and solve for the constants c1, . . . , cp, independence confirmed if they are all zero. The
tool used to solve for the constants is the elementary matrix formula

A = M rref(A), M = E1E2 · · ·Er,

where E1, . . . , Er denote certain elementary matrices. Each elementary matrix is the
inverse of a swap, multiply or combination operation applied to A, in order to reduce
A to rref(A). Because elementary matrices are invertible, then M is invertible. The

equation A = ⟨v⃗1| · · · |v⃗k⟩ implies the pivot columns of A satisfy the equation

v⃗iq = Me⃗q, q = 1, . . . , p,

where e⃗1 = col(I, 1), . . . , e⃗p = col(I, p) are the consecutive columns of the identity
matrix which occupy the columns of the leading ones in rref(A). Then

0⃗ = c1v⃗i1 + · · ·+ cpv⃗ip
= M(c1e⃗1 + · · ·+ cpe⃗p)
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5.5 Basis, Dimension and Rank

implies by invertibility of M that

c1e⃗1 + · · ·+ cpe⃗p = 0⃗.

Distinct columns of the identity matrix are independent (subsets of independent sets are
independent), therefore c1 = · · · = cp = 0. The independence of the pivot columns of A

is established. The proof of 1 is complete.

2 : To prove: a non-pivot column of A is a linear combination of the pivot columns of
A. Let column j of A be non-pivot. Let’s express this column as a linear combination of
the pivot columns of A.

Consider the homogeneous system Ax⃗ = 0⃗ and its equivalent system rref(A)x⃗ = 0⃗.
The pivot column subscripts determine the leading variables and the remaining column
subscripts determine the free variables. Then column j matches a free variable xj . Define
xj = 1. Define all other free variables to be zero. The lead variables are now determined

and the resulting nonzero vector x⃗ satisfies the homogeneous equation rref(A)x⃗ = 0⃗,
and hence also Ax⃗ = 0⃗. Translating this equation into a linear combination of columns
implies  ∑

pivot subscripts i

xiv⃗i

+ v⃗j = 0⃗

which in turn implies that column j of A is a linear combination of the pivot columns of
A. The proof of 2 is complete.

Proof of Theorem 5.42, The Pivot Method: According to the Pivot Theorem
5.41, the fixed vectors are independent. An attempt to add another column of A to
these chosen columns results in a non-pivot column being added. The Pivot Theorem
applies: the column added is dependent on the pivot columns. Therefore, the set of pivot
columns of A forms a largest independent subset of the columns of A. ■

Proof of Theorem 5.43, The Rank-Nullity Theorem: The rank of A is the number
of leading ones in rref(A). The nullity of A is the number of non-pivot columns in A.
The sum of the rank and nullity is the number of variables, which is the column dimension
n of A. Then the rank + nullity = n, as claimed. ■

Proof of Theorem 5.44, Basis for Ax⃗ = 0⃗: The system rref(A)x⃗ = 0⃗ has exactly
the same solution set as Ax⃗ = 0⃗. This system has a standard general solution x⃗ expressed
in terms of invented symbols t1, . . . , tk. Define X⃗j = ∂tj x⃗, j = 1, . . . , k. Then (1) holds.
It remains to prove independence, which means we are to solve for c1, . . . , ck in the
system

c1X⃗1 + · · ·+ ckX⃗k = 0⃗.

The left side is a solution x⃗ of Ax⃗ = 0⃗ in which the invented symbols have been assigned
values c1, . . . , ck. The right side implies each component of x⃗ is zero. Because the
standard general solution assigns invented symbols to free variables, the relation above
implies that each free variable is zero. But free variables have already been assigned
values c1, . . . , ck. Therefore, c1 = · · · = ck = 0. ■

Proof Theorem 5.45, Row Rank equals Column Rank: Let S be the set of all
linear combinations of columns of A. Then S = span(columns of A) = Image(A). The
non-pivot columns of A are linear combinations of pivot columns of A. Therefore, any
linear combination of columns of A is a linear combination of the p = rank(A) linearly
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independent pivot columns. By definition, the pivot columns form a basis for the vector
space S, and p = rank(A) = dim(S).

The span R of the rows of A is defined to be the set of all linear combinations of the
columns of AT .

Let q = rank(AT ) = dim(R). It will be shown that p = q, which proves the theorem.

Let rref(A) = E1 · · ·EkA where E1, . . . , Ek are elementary swap, multiply and combi-
nation matrices. The invertible matrix M = E1 · · ·Ek satisfies the equation rref(A) =
MA. Then:

rref(A)T = ATMT

Matrix rref(A)T has its first p columns independent and its remaining columns are zero.
Each nonzero column of rref(A)T is expressed on the right as a linear combination of the
columns of AT . Therefore, R contains p independent vectors. The number q = dim(R)
is the vector count in any basis for R. This implies p ≤ q.

The preceding display can be solved for AT , because MT is invertible, giving

AT = rref(A)T (MT )−1.

Then every column of AT is a linear combination of the p nonzero columns of rref(A)T .
This implies a basis for R contains at most p elements, i.e., q ≤ p.

Combining p ≤ q with q ≤ p proves p = q. ■

Proof of Theorem 5.46, Dimension Identities:

(a) dim(nullspace(A)) = dim(kernel(A)) = nullity(A)

The nullspace is the kernel, defined as the set of solutions to Ax⃗ = 0⃗ . This set
has basis Strang’s Special Solutions, the number of which matches the number of
free variables. That number is the nullity of A.

(b) dim(colspace(A)) = dim(Image(A)) = rank(A)

The column space has as a basis the pivot columns of A. The number of pivot
columns is the rank of A.

(c) dim(rowspace(A)) = dim(Image
(
AT
)
= rank(A)

The row space has a basis given by the pivot columns of AT . The number of
columns is the number of independent rows of A, or the row rank of A, which by
Theorem 5.45 equals the rank of A.

(d) dim(kernel(A)) + dim(Image(A)) = column dimension of A

This identity restates the Rank-Nullity Theorem 5.43.

(e) dim(kernel(A)) + dim(kernel
(
AT )

)
= column dimension of A

Apply part (d) to AT . If dim(kernel(A)) = dim(Image(AT )) then identity (e)
follows. Let r = dim(kernel(A)) and s = dim(Image(AT )). We must show r = s.
Already known is r = nullity(A), which equals the number of Strang’s Special
Solutions. Number s is the number of independent columns in AT , which equals
the row rank of A. Theorem 5.45 applies: s equals the row rank of A, which is the
rank of A, which is r. Then r = s, as claimed. ■

Proof of Theorem 5.47, Equivalent Bases: Vectors w⃗1, . . . , w⃗k are a basis for S
provided they are independent and span S. The three items from the theorem:
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(1) Each of u⃗1, . . . , u⃗ℓ is a linear combination of v⃗1, . . . , v⃗k.

(2) The set u⃗1, . . . , u⃗ℓ is independent.

(3) The sets are the same size, k = ℓ.

Sufficiency. Assume given vectors v⃗1, . . . , v⃗k which form a basis for S. Assume vectors
u⃗1, . . . , u⃗ℓ are also a basis for S. Then these vectors are independent and span S.
The spanning condition S = span(u⃗1, . . . , u⃗k) implies (1). Independence implies (2).
Theorem 5.38 applies: the two bases have the same size: k = ℓ, which proves (3) holds.

Necessity. Assume that vectors v⃗1, . . . , v⃗k form a basis for S. Assume given vectors
u⃗1, . . . , u⃗ℓ in S satisfying (1), (2), (3). We prove u⃗1, . . . , u⃗ℓ is a basis for S. Item (2)
implies the vectors u⃗1, . . . , u⃗ℓ are independent and (1) implies they span S, because v⃗1,
. . . , v⃗k span S. The definition of basis applies: vectors u⃗1, . . . , u⃗ℓ form a basis for S. ■

Proof of Theorem 5.48, Equivalence test for bases in Rn:
Because rank(B) = k, then the first k columns of W are independent. If some column
of C is independent of the columns of B, then W would have k+1 independent columns,
which violates k = rank(W ). Therefore, the columns of C are linear combinations of the
columns of B. The vector space U = colspace(C) is therefore a subspace of the vector
space V = colspace(B). Because each vector space has dimension k, then U = V. ■

Exercises 5.5 �

Basis and Dimension
Compute a basis and the report the dimen-
sion of the subspace S.

1. In R3, S is the solution space of∣∣∣∣ x1 + x3 = 0,
x2 + x3 = 0.

∣∣∣∣
2. In R4, S is the solution space of∣∣∣∣ x1 + 2x2 + x3 = 0,

x4 = 0.

∣∣∣∣
3. In R2, S = span(v⃗1, v⃗2). Vectors v⃗1, v⃗2

are columns of an invertible matrix.

4. Set S = span(v⃗1, v⃗2), in R4. The vec-
tors are columns in a 4 × 4 invertible
matrix.

5. Set S = span(sin2 x, cos2 x, 1), in the
vector space V of continuous functions.

6. Set S = span(x, x − 1, x + 2), in the
vector space V of all polynomials.

7. Set S = span(sinx, cosx), the solution
space of y′′ + y = 0.

8. Set S = span
(
e2x, e3x

)
, the solution

space of y′′ − 5y′ + 6y = 0.

Euclidean Spaces

9. Let A be 3×2. Why is it impossible for
the columns of A to be a basis for R3?

10. Let A be m × n. What condition on
indices m,n implies it is impossible for
the columns of A to be a basis for Rm?

11. Find a pairwise orthogonal basis forR3

which contains

 1
1
−1

.

12. Display a basis for R4 which contains

the independent columns of

0 1 2 0
0 1 1 0
0 2 1 0
0 0 1 0

.

13. Let S be a subspace of R10 of dimen-
sion 5. Insert a basis for S into an m×n
augmented matrix A. What are m and
n?

14. Suppose A and B are 3 × 3 matrices
and let C = AB. Assume the columns
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of A are not a basis for R3. Is there a
matrix B so that the columns of C form
a basis for R3?

15. The term Hyperplane is used for an
equation like x4 = 0, which in R4 de-
fines a subspace S of dimension 3. Find
a basis for S.

16. Find a 3-dimensional subspace S of R4

which has no basis consisting of columns
of the identity matrix.

Polynomial Spaces
Symbol V is the vector space of all polyno-
mials p(x). Given subspace S of V , find a
basis for S and dim(S).

17. The subset S of span(1, x, x2) is de-
fined by dp

dx (1) = 0.

18. The subset S of span(1, x, x2, x3) is de-
fined by p(0) = dp

dx (1) = 0.

19. The subset S of span(1, x, x2) is de-

fined by
∫ 1

0
p(x)dx = 0.

20. The subset S of span(1, x, x2, x3) is de-

fined by
∫ 1

0
xp(x)dx = 0.

Differential Equations
Find a basis for solution subspace S. As-
sume the general solution of the 4th order
linear differential equation is

y(x) = c1 + c2x+ c3e
x + c4e

−x.

21. Subspace S1 is defined by y(0) =
dy
dx (0) = 0.

22. Subspace S2 is defined by y(1) = 0.

23. Subspace S3 is defined by y(0) =∫ 1

0
y(x)dx.

24. Subspace S4 is defined by y(1) =

0,
∫ 1

0
y(x)dx = 0.

Largest Subset of Independent Vectors
Find a largest independent subset of the
given vectors.

25. The columns of

0 0 1 1
0 0 1 1
0 1 1 0
0 1 2 1

.

26. The columns of


3 1 2 0 5
2 1 1 0 4
3 2 1 0 7
1 0 1 0 1
3 2 1 0 7

.

27. The polynomials x, 1 + x, 1− x, x2.

28. The continuous functions x, ex, x+ex,
e2x.

Pivot Theorem Method
Extract a largest independent set from the
columns of the given matrix A. The answer
is a list of independent columns of A, called
the pivot columns of A.

29.

(
1 2 1
1 1 0
2 1 0

)

30.

0 1 2 1
0 1 1 0
0 2 1 0
0 0 1 1



31.


0 2 1 0 1
1 5 2 0 3
1 3 1 0 2
0 2 1 0 3
0 2 1 0 1



32.


0 0 2 1 0 1
0 1 5 2 0 3
0 1 3 1 0 2
0 2 4 1 0 3
0 0 2 1 0 1
0 2 4 1 0 3


Row and Column Rank
Justify by direct computation that
rank(A) = rank

(
AT
)
, which means that

the row rank equals the column rank.

33. A =

(
1 0 1
0 1 1
0 0 0

)

34. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


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Nullspace or Kernel
Find a basis for the nullspace of A, which
is also called the kernel of A.

35. A =

(
1 0 1
0 1 1
0 0 0

)

36. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Row Space
Find a basis for the row space of A. There
are two possible answers: (1) The nonzero
rows of rref(A), (2) The pivot columns of
AT . Answers (1) and (2) can differ wildly.

37. A =

(
1 0 1
0 1 1
0 0 0

)

38. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Column Space
Find a basis for the column space of A, in
terms of the columns of A. Normally, we
report the pivot columns of A.

39. A =

(
1 0 1
0 1 1
0 0 0

)

40. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Dimension Identities
Let A be an m×n matrix of rank r. Prove
the following dimension identities in Theo-
rem 5.46.

41. dim(nullspace(A)) = n− r

42. dim(colspace(A)) = r

43. dim(rowspace(A)) = r

44. The dimensions of nullspace(A) and
colspace(A) add to n.

Orthogonal Complement S⊥

Let S be a subspace of vector space V =
Rn. Define the Orthogonal comple-
ment by

S⊥ = {x⃗ : x⃗T y⃗ = 0, y⃗ in S}.(4)

45. Let V = R3 and let S be the xy-plane.
Compute S⊥. Answer: The z-axis.

46. Prove that S⊥ is a subspace, using the
Subspace Criterion.

47. Prove that the orthogonal complement

of S⊥ is S. In symbols,
(
S⊥)⊥ = S.

48. Prove that

V = {x⃗+ y⃗ : x⃗ ∈ S, y⃗ ∈ S⊥}.

This relation is called the Direct Sum
of S and S⊥.

Fundamental Theorem of Linear Alge-
bra
Let A be an m× n matrix.

49. Write a short proof:
Lemma. Any solution of Ax⃗ = 0⃗ is
orthogonal to every row of A.

50. Find the dimension of the kernel and
image for both A and AT . The four an-
swers use symbols m,n, rank(A). The
main tool is the rank-nullity theorem.

51. Prove
kernel(A) = Image

(
AT
)⊥

. Use Exer-
cise 49.

52. Prove
kernel

(
AT
)
= Image (A)

⊥
.

Fundamental Subspaces
The kernel and image of both A and AT are
called The Four Fundamental Subspaces by
Gilbert Strang. Let A denote an n × m
matrix.

53. Prove using Exercise 51:
kernel(A) = rowspace(A)⊥

54. Establish these four identities.
kernel(A) = Image

(
AT
)⊥

kernel
(
AT
)
= Image (A)

⊥

Image (A) = kernel(AT )⊥

Image
(
AT
)
= kernel(A)⊥
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Notation. kernel is null space, image is
column space, symbol ⊥ is orthogonal com-
plement: see equation (1).

Equivalent Bases
Test the given subspaces for equality.

55. S1 = span

1
1
0

 ,

1
1
1

,

S2 = span

 3
3
−1

 ,

1
1
1


56. S3 = span

1
0
1

 ,

1
2
1

,

S4 = span

1
0
0

 ,

0
1
0



57. S5 = span



1
0
1
1

 ,


1
2
1
1


,

S6 = span



1
0
1
1

 ,


0
1
0
1




58. S7 = span



2
1
1
1

 ,


1
2
1
1


,

S8 = span




1
−1
0
0

 ,


3
3
2
2



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Chapter 6

Scalar Linear Differential
Equations

Contents

6.1 Linear 2nd Order Constant . . . . . . . . . . . . . 430

6.2 Continuous Coefficient Theory . . . . . . . . . . . 442

6.3 Higher Order Linear Constant Equations . . . . . 451

6.4 Variation of Parameters . . . . . . . . . . . . . . . 464

6.5 Undetermined Coefficients . . . . . . . . . . . . . . 470

6.6 Undamped Mechanical Vibrations . . . . . . . . . 490

6.7 Forced and Damped Vibrations . . . . . . . . . . . 506

6.8 Resonance . . . . . . . . . . . . . . . . . . . . . . . . 528

6.9 Kepler’s laws . . . . . . . . . . . . . . . . . . . . . . 546

Studied here are linear differential equations of the second order

a(x)y′′ + b(x)y′ + c(x)y = f(x)(1)

and corresponding nth order models. Important to the theory is continuity of
the coefficients a(x), b(x), c(x) and the non-homogeneous term f(x), which
is also called the forcing term or the input.

6.1 Linear 2nd Order Constant

Studied is the homogeneous 2nd order equation

Ay′′ +By′ + Cy = 0

where A ̸= 0, B and C are constants. An explicit formula for the general so-
lution is developed. Prerequisites are the quadratic formula, complex numbers,
Cramer’s rule for 2×2 linear algebraic equations and first order linear differential
equations.
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6.1 Linear 2nd Order Constant

Theorem 6.1 (How to Solve Second Order Constant Equations)
In the differential equation Ay′′+By′+Cy = 0, let A ̸= 0, B and C be real constants.
Let r1, r2 denote the two roots of the quadratic equation Ar2 +Br+C = 0. If the
roots are complex, then let r1 = a + ib with b > 0, and r2 = r1 = a − ib. Define
solutions y1(x), y2(x) of Ay

′′+By′+Cy = 0 according to the following three cases,
which are organized by the sign of the college algebra discriminant D = B2 − 4AC:

Case 1. D > 0 (Real distinct) y1(x) = er1x, y2(x) = er2x.

Case 2. D = 0 (Real equal) y1(x) = er1x, y2(x) = xer1x.

Case 3. D < 0 (Conjugate roots) y1(x)=eax cos(bx), y2(x)=eax sin(bx).

Then each solution of Ay′′ + By′ + Cy = 0 is obtained, for some specialization of
the constants c1, c2, from the expression

y(x) = c1y1(x) + c2y2(x).

Proof on page 437. Examples 6.1–6.3, page 434, consider the three cases.

A general solution is an expression that represents all solutions of the differ-
ential equation. Theorem 6.1 gives an expression of the form

y(x) = c1y1(x) + c2y2(x)

where c1 and c2 are symbols representing constants and y1, y2 are special solu-
tions of the differential equation, determined by the roots of the characteristic
equation Ar2 +Br + C = 0 as in Theorem 6.1.

The initial value problem for Ay′′ +By′ +Cy = 0 selects the constants c1, c2
in the general solution y = c1y2 + c2y2 from initial conditions of the form

y(x0) = g1, y′(x0) = g2.

In these conditions, x0 is a given point in −∞ < x < ∞ and g1, g2 are two real
numbers, e.g., g1 = position, g2 = velocity at x = x0.

Theorem 6.2 (Picard-Lindelöf Existence-Uniqueness)
Let A ̸= 0, B, C, x0, g1 and g2 be constants. Then the initial value problem
Ay′′ +By′ +Cy = 0, y(x0) = g1, y

′(x0) = g2 has one and only one solution, found
from the general solution y = c1y1 + c2y2 by applying Cramer’s rule or the method
of elimination. The solution is defined on −∞ < x <∞.

Proof on page 437. Cramer’s rule details are in Example 6.4, page 435.

Working Rule to solve Ay′′ +By′ + Cy = 0.

Find the roots of the characteristic equation Ar2 + Br + C = 0.
Apply Theorem 6.2 to write down y1, y2. The general solution
is then y = c1y1 + c2y2. If initial conditions are given, then
determine c1, c2 explicitly, otherwise c1, c2 remain symbols.
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Theorem 6.3 (Superposition)
In differential equation Ay′′ + By′ + Cy = 0, let A ̸= 0, B and C be constants.
Assume y1, y2 are solutions and c1, c2 are constants. Then y = c1y1 + c2y2 is a
solution of Ay′′ +By′ + Cy = 0.

A proof appears on page 438. The result is implicitly used in Theorem 6.1, in
order to show that a general solution satisfies the differential equation.

Structure of Solutions

The special solutions y1, y2 constructed in Theorem 6.1 have the form

eax, xeax, eax cos bx, eax sin bx.

These functions will be called Euler solution atoms or briefly Atoms.

Definition 6.1 (Euler Solution Atoms)
Define an Euler base atom to be one of the functions

eax, eax cos bx, eax sin bx,

where a, b > 0 are real constants with b > 0. Define

Euler solution atom = xn(base atom), n = 0, 1, 2, . . . .

L. Euler (1707-1783) discovered these special solutions by substitution of y = erx

into the differential equation Ay′′+By′+Cy = 0, which results in the equations

Ar2erx +Brerx + Cerx = 0 Euler’s Substitution y = erx.

Ar2 +Br + C = 0 Characteristic equation, found by canceling
erx.

The same equations can also be found for the substitution y = xerx, called
Euler’s substitution. Together, the equations imply:

Theorem 6.4 (Euler’s Exponential Substitution)
Euler atom y = erx is a solution of Ay′′ + By′ + Cy = 0 if and only if r is a
root of characteristic equation Ar2 +Br + C = 0.

Euler atom y = xerx is a solution of Ay′′ +By′ +Cy = 0 if and only if r is a
double root of characteristic equation Ar2 +Br + C = 0.

Euler atoms y = eax cos bx and y = eax sin bx are real solutions of Ay′′ +
By′ + Cy = 0 if and only if r = a + ib and r = a − ib are complex roots of
characteristic equation Ar2 +Br + C = 0.

Proof on page 439.

Theorem 6.1 may be succinctly summarized as follows.
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The general solution y of a second order linear homogeneous constant-
coefficient differential equation is a sum of constants times Euler solution
atoms. The atoms are found from Euler’s Theorem.

Speed

The time taken to write out the general solution varies among individuals and
according to the algebraic complexity of the characteristic equation. Judge your
understanding of the Theorem by these statistics: most persons can write out the
general solution in under 60 seconds. Especially simple equations like y′′ = 0,
y′′ + y = 0, y′′ − y = 0, y′′ + 2y′ + y = 0, y′′ + 3y′ + 2y = 0 are finished in less
than 30 seconds.

Graphics

Computer programs can produce plots for initial value problems. Computers
cannot plot symbolic solutions containing unevaluated symbols c1, c2 that
appear in the general solution.

Errors

Recorded below in Table 1 are some common but fatal errors made in displaying
the general solution.

Table 1. Errors in Applying Theorem 6.1.

Bad equation For y′′ − y = 0, the correct characteristic equation is
r2 − 1 = 0. A common error is to write r2 − r = 0.

Sign reversal For factored equation (r + 1)(r + 2) = 0, the roots are
r = −1, r = −2. A common error is to claim r = 1
and/or r = 2 is a root.

Miscopy signs The equation r2+2r+2 = 0 has complex conjugate roots
a ± bi, where a = −1 and b = 1 (b > 0 is required). A
common error is to miscopy signs on a and/or b.

Copying ±i The equation r2 + 2r + 5 = 0 has roots a ± ib where
a = −1 and b = 2. A common mistake is to display
e−x cos(±2ix) and e−x sin(±2ix). These expressions are
not real solutions: neither ± nor the complex unit i
should be copied.
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Examples

Example 6.1 (Case 1)
Solve y′′ + y′ − 2y = 0.

Solution: The general solution is y = c1e
x + c2e

−2x. Ordering is not important; an
equivalent answer is y = c1e

−2x + c2e
x. The answer will be justified below, by finding

the two solutions y1, y2 in Theorem 6.1.

The characteristic equation r2 + r − 2 = 0 is found formally by replacements y′′ → r2,
y′ → r and y → 1 in the differential equation y′′ + y′ − 2y = 0.1

A college algebra method2 called inverse-FOIL applies to factor r2 + r − 2 = 0 into
(r − 1)(r + 2) = 0. The roots are r = 1, r = −2. Used implicitly here are the college
algebra factor theorem and root theorem3.

Applying case D > 0 of Theorem 6.1 gives solutions y1 = ex and y2 = e−2x.

Example 6.2 (Case 2)
Solve 4y′′ + 4y′ + y = 0.

Solution: The general solution is y = c1e
−x/2 + c2xe

−x/2. To justify this formula, find
the characteristic equation 4r2 +4r+1 = 0 and factor it by the inverse-FOIL method
or square completion to obtain (2r + 1)2 = 0. The roots are both −1/2.
Case D = 0 of Theorem 6.1 gives y1 = e−x/2, y2 = xe−x/2. Then the general solution is
y = c1y1 + c2y2, which completes the verification.

Example 6.3 (Case 3)
Solve 4y′′ + 2y′ + y = 0.

Solution: The solution is y = c1e
−x/4 cos(

√
3x/4) + c2e

−x/4 sin(
√
3x/4). This formula

is justified below, by showing that the solutions y1, y2 of Theorem 6.1 are given by
y1 = e−x/4 cos(

√
3x/4) and y2 = e−x/4 sin(

√
3x/4).

The characteristic equation is 4r2 + 2r + 1 = 0. The roots by the quadratic formula are

r =
−B ±

√
B2 − 4AC

2A
College algebra formula for the roots of the quadratic
Ar2 +Br + C = 0.

=
−2±

√
22 − (4)(4)(1)

(2)(4)
Substitute A = 4, B = 2, C = 1.

= −1

4
±
√
−1
√
12

8
Simplify. Used

√
(−1)(12) =

√
−1
√
12.

= −1

4
± i

√
3

4
Convert to complex form, i =

√
−1.

1Some history. Euler’s formal substitution y = erx into the differential equation y′′+y′−2y =
0 produces r2 + r − 2 = 0 directly. Formal replacement y′′ → r2, y′ → r and y → 1 gives the
same characteristic equation r2 + r− 2 = 0, with a reduction in errors. We prefer the shortcut,
to increase the speed.

2FOIL is an abbreviation for First=AC, Outside=AD, Inside=BC, Last=BD in the ex-
pansion of the algebraic product (A+B)(C +D).

3Theorem. r = r0 is a root of p(r) = 0 if and only if (r − r0) is a factor of p(r).
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The real part of the root is labeled a = −1/4. The two imaginary parts are
√
3/4 and

−
√
3/4. Only the positive one is labeled, the other being discarded: b =

√
3/4.

Theorem 6.1 applies in the discriminant case D < 0 to give solutions y1 = eax cos(bx)
and y2 = eax sin(bx). Substitution of a = −1/4 and b =

√
3/4 results in the formulas

y1 = e−x/4 cos(
√
3x/4), y2 = e−x/4 sin(

√
3x/4). The verification is complete.

The substitutions of a, b are remembered from the following diagram.

−1/4
√
3/4

↓ ↓

e a x cos
(
b x
)

−1/4
√
3/4

↓ ↓

e a x sin
(
b x
)

e−x/4 cos
(√

34x
)
, e−x/4 sin

(√
34x
)

It is recommended to perform the a, b substitution to find the first atom, which is

e−x/4 cos
(√

34x
)
. Then replace cos by sin in that expression to obtain the second

atom e−x/4 sin
(√

34x
)
.

Example 6.4 (Initial Value Problem)
Solve y′′ + y′ − 2y = 0, y(0) = 1, y′(0) = −2 and graph the solution on 0 ≤ x ≤ 2.

Solution: The solution to the initial value problem is y = e−2x. The graph appears in
Figure 1.

Details. The general solution is y = c1e
x + c2e

−2x, from Example 6.1. The prob-
lem of finding c1, c2 uses the two equations y(0) = 1, y′(0) = −2 and the general
solution to obtain expanded equations for c1, c2. For instance, y(0) = 1 expands to
(c1e

x + c2e
−2x)

∣∣
x=0

= 1, which is an equation for symbols c1, c2. The second equation
y′(0) = −2 expands similarly, to give the two equations

e0c1 + e0c2 = 1,
e0c1 − 2e0c2 = −2.

The equations will be solved by the method of elimination. Because e0 = 1, the equations
simplify. Subtracting them eliminates the variable c1 to give 3c2 = 3. Therefore, c2 = 1
and back-substitution finds c1 = 0. Then y = c1e

x + c2e
−2x reduces, after substitution

of c1 = 0, c2 = 1, to the equation y = e−2x.

Graph. The solution y = e−2x is graphed by a routine application of curve library
methods, which appear in the appendices, page 1015. No hand-graphing methods will
be discussed here. To produce a computer graphic of the solution, the following code is
offered. Calculator plots are similar.

plot(exp(-2*x),x=0..2); Maple

plot2d(exp(-2*x),[x,0,2]); Maxima

Plot[{exp(-2 x)},{x,0,2}]; Mathematica

plot [0:2] exp(-2*x) Gnuplot

x=0:0.05:2; plot(x,exp(-2*x)) Matlab and Scilab

1

0
20

Figure 1. Exponential solution y = e−2x.
The graph decreases to zero at x =∞.
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Example 6.5 (Euler Solution Atoms)
Consider the list

1, x2, 2, 3x+ 4x2, x3ex/π, 2x+ 3 cosx,
x

1 + x2
.

Box each entry that is precisely an atom and identify its base atom. Double-box the
non-atom list entries that are a sum of constants times atoms.

Solution:
The answers and explanations:

1 An atom. Base atom = 1.

x2 An atom. Base atom = 1.

2 X Not an atom. Constant 2 times the atom 1, which is a linear
combination of atoms.

3x+ 4x2 X Not an atom. Linear combination of atoms x, x2.

ex/π An atom. Base atom = eax where a = 1/π.

2x+ 3 cosx X Not an atom. Linear combination of atoms x, cosx.

x

1 + x2
X Not an atom. Not a linear combination of atoms.

Example 6.6 (Inverse Problem)
Consider a 2nd order differential equation Ay′′ + By′ + Cy = 0, the coefficients
A,B,C initially unknown. Find a set of coefficients for each of the following three
examples, given the supplied information about the differential equation.

(a) The characteristic equation is r2 + 2r + 5 = 0.

(b) The characteristic equation has roots r = −1, 2.
(c) Two solutions are ex and xex.

Solution:
(a) The characteristic equation of Ay′′+By′+Cy = 0 is Ar2+Br+C = 0. Comparing
terms to r2 + 2r + 5 = 0 implies a differential equation is y′′ + 2y′ + 5y = 0. The
substitutions y → 1, y′ → r, y′′ → r2 are used here in reverse.

(b) The characteristic polynomial Ar2 + Br + C factors into A(r − r1)(r − r2) where
r1, r2 are the two roots of the quadratic equation. Given r1 = −1 and r2 = 2, then
the characteristic equation has to be A(r − (−1))(r − 2) = 0 for some number A ̸= 0.
Assume A = 1 to find one equation. Multiply out the product (r + 1)(r − 2) to give
characteristic equation r2− r− 2 = 0. This reduces the problem to methods in part (a).
Then a differential equation is y′′ − y′ − 2y = 0.

(c) The two given solutions are Euler solution atoms created from root r = 1. Consulting
Theorem 6.4, these two atoms are solutions of a second order equation with characteristic
equation roots r = 1, 1 (a double root). The method in (b) is then applied: multiply out
the product (r− 1)(r− 1) to get characteristic equation r2− 2r+1 = 0. Then apply the
method of (a). A differential equation is y′′ − 2y′ + y = 0.
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Proofs and Details

Proof of Theorem 6.1: To show that y1 and y2 are solutions is left to the exercises.
For the remainder of the proof, assume y is a solution of Ay′′ +By′ +Cy = 0. It has to
be shown that y = c1y1 + c2y2 for some real constants c1, c2.

Algebra background. In college algebra it is shown that the polynomial Ar2+Br+C
can be written in terms of its roots r1, r2 as A(r − r1)(r − r2). In particular, the sum
and product of the roots satisfy the relations B/A = −r1 − r2 and C/A = r1r2.

Case D > 0. The equation Ay′′+By′+Cy = 0 can be re-written in the form y′′− (r1+
r2)y

′ + r1r2y = 0 due to the college algebra relations for the sum and product of the
roots of a quadratic equation. The equation factors into (y′ − r2y)

′ − r1(y
′ − r2y) = 0,

which suggests the substitution u = y′− r2y. Then Ay′′ +By′ +Cy = 0 is equivalent to
the first order system

u′ − r1u = 0,
y′ − r2y = u.

Growth-decay theory, page 3, applied to the first equation gives u = u0e
r1x. The second

equation y′ − r2y = u is then solved by the integrating factor method, as in Example
2.14, page 99. This gives y = y0e

r2x + u0e
r1x/(r1− r2). Therefore, any possible solution

y has the form c1e
r1x + c2e

r2x for some c1, c2. This completes the proof of the case
D > 0.

Case D = 0. The details follow the case D > 0, except that y′ − r2y = u has a different
solution, y = y0e

r1x+u0xe
r1x (exponential factors er1x and er2x cancel because r1 = r2).

Therefore, any possible solution y has the form c1e
r1x + c2xe

r1x for some c1, c2. This
completes the proof of the case D = 0.

Case D < 0. The equation Ay′′+By′+Cy = 0 can be re-written in the form y′′− (r1+
r2)y

′ + r1r2y = 0 as in the case D > 0, even though y is real and the roots are complex.
The substitution u = y′ − r2y gives the same equivalent system as in the case D > 0.
The solutions are symbolically the same, u = u0e

r1x and y = y0e
r1x + u0e

r1x/(r1 − r2).
Therefore, any possible real solution y has the form C1e

r1x + C2e
r2x for some possibly

complex C1, C2.

Taking the real part of both sides of this equation gives y = c1e
ax cos(bx)+ c2e

ax sin(bx)
for some real constants c1, c2. Details follow.

y = Re(y) Because y is real.

= Re(C1e
r1x + C2e

r2x) Substitute y = C1e
r1x + C2e

r2x.

= eaxRe(C1e
ibx + C2e

−ibx) Use eu+iv = eueiv.

= eaxRe (C1 cos bx+ iC1 sin bx
+C2 cos bx− iC2 sin bx)

Use eiθ = cos θ + i sin θ.

= eaxRe(C1 + C2)) cos bx
+ eaxRe(iC1 − iC2) sin bx

Collect on trigonometric factors.

= c1e
ax cos(bx) + c2e

ax sin(bx) Where c1 = Re(C1+C2) and c2 = Im(C2−C1)
are real.

This completes the proof of the case D < 0.

Proof of Theorem 6.2: The left sides of the two requirements y(x0) = g1, y
′(x0) =

g2 are expanded using the relation y = c1y1 + c2y2 to obtain the following system of
equations for the unknowns c1, c2:

y1(x0)c1 + y2(x0)c2 = g1,
y′1(x0)c1 + y′2(x0)c2 = g2.
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If the determinant of coefficients

∆ = y1(x0)y
′
2(x0)− y′1(x0)y2(x0)

is nonzero, then Cramer’s rule says that the solutions c1, c2 are given as quotients

c1 =
g1y

′
2(x0)− g2y2(x0)

∆
, c2 =

y1(x0)g2 − y′1(x0)g1
∆

.

The organization of the proof is made from the three cases of Theorem 6.1, using x
instead of x0, to simplify notation. The issue of a unique solution has now been reduced
to verification of ∆ ̸= 0, in the three cases.

Case D > 0. Then

∆ = er1xr2e
r2x − r1e

r1xer2x Substitute for y1, y2.

= (r2 − r1)e
r1x+r2x Simplify.

̸= 0 Because r1 ̸= r2.

Case D = 0. Then

∆ = er1x(er1x + r1xe
r1x)− r1e

r1xxer1x Substitute for y1, y2.

= e2r1x Simplify.

̸= 0

Case D < 0. Then r1 = r2 = a+ ib and

∆ = be2ax(cos2 bx+ sin2 bx) Two terms cancel.

= be2ax Use cos2 θ + sin2 θ = 1.

̸= 0 Because b > 0.

In applications, the method of elimination is sometimes used to find c1, c2. In some
references, it is called Gaussian elimination.

Proof of Superposition Theorem 6.3: The three terms of the differential equation
are computed using the expression y = c1y1 + c2y2:

Term 1: cy = cc1y1 + cc2y2

Term 2: by′ = b(c1y1 + c2y2)
′

= bc1y
′
1 + bc2y

′
2

Term 3: ay′′ = a(c1y1 + c2y2)
′′

= ac1y
′′
1 + ac2y

′′
2

The left side of the differential equation, denoted LHS, is the sum of the three terms. It
is simplified as follows:

LHS = c1[ay
′′
1 + by′1 + cy1] Add terms 1,2 and 3,

+ c2[ay
′′
2 + by′2 + cy2] then collect on c1, c2.

= c1[0] + c2[0] Both y1, y2 satisfy ay′′ + by′ + cy = 0.

= RHS The left and right sides match.
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Proof of Euler’s Theorem 6.4 The substitution y = erx requires the derivative
formulas y′ = rerx, y′′ = r2erx, which then imply from Ay′′ +By′ +Cy = 0 the relation

Ar2erx +Brerx + Cerx = 0.(2)

Assume that y = erx is a solution of the differential equation. Then relation (2) holds.
Cancel erx to obtain Ar2 +Br + C = 0, then r is a root of the characteristic equation.

Conversely, if r is a root of the characteristic equation, then multiply Ar2 +Br+C = 0
by erx to give relation (2). Then y = erx is a solution of the differential equation.

This completes the proof of the first statement in Euler’s theorem, in the special case
for r real. Examination of the details reveals it is also valid for complex r = a+ ib, with
y = erx a complex solution.

We go on to prove the third statement in Euler’s theorem. A complex exponential
solution y = erx, with r = a + ib, can be expanded as y = erx = eax+ibx = eax cos bx +
ieax sin bx, because of Euler’s formula eiθ = cos θ + i sin θ. Write u = eax cos bx and
v = eax sin bx, then y = u + iv with u, v real. Expand the differential equation Ay′′ +
By′ + Cy = 0 using y = u+ iv as

(Au′′ +Bu′ + Cu) + i(Av′′ +Bv′ + Cv) = 0 + 0i.

Then A,B,C, u, v all real implies, by equality of complex numbers, the two equations

Au′′ +Bu′ + Cu = 0,
Av′′ +Bv′ + Cv = 0.

Together, these equations imply that u = eax cos bx and v = eax sin bx are solutions of
the differential equation. Conversely, if both u and v are solutions, then the steps can
be reversed to show y = erx is a solution, which in turn implies r = a + ib is a root of
the characteristic equation. Finally, if a+ ib is a root and A,B,C are real, then college
algebra implies a− ib is a root. This completes the proof of the last statement of Euler’s
theorem.

The second statement of Euler’s theorem will be proved. Substitute y = xerx into the
differential equation using the formulas y′ = erx + rxerx, y′′ = 2rerx + r2xerx to obtain
the relation

(Ar2 +Br + C)xerx + (2Ar +B)erx = 0.(3)

If y = xerx is a solution of the differential equation, then relation (3) holds for all x.
Cancel erx to get the polynomial relation

(Ar2 +Br + C)x+ (2Ar +B) = 0, for all x.

Substitute x = 0 and then x = 1 to obtain 2Ar + B = 0 and Ar2 + Br + C = 0.
These equations say that r is a double root of the characteristic equation, because the
polynomial p(t) = At2 +Bt+ C then satisfies p(r) = p′(r) = 0.

Conversely, suppose that r is a double root of Ar2+Br+C = 0. Then p(t) = At2+Bt+C
must satisfy the relations p(r) = p′(r) = 0, which imply Ar2+Br+C = 0 and 2Ar+B =
0. Then for all x, relation (3) holds, which in turn implies that y = xerx is a solution. ■
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Exercises 6.1 �

General Solution 2nd Order
Solve the constant equation using Theorem
6.1, page 431. Report the general solution
using symbols c1, c2. Model the solution
after Examples 6.1–6.3, page 434.

1. y′′ = 0
Ans: y = c1 + c2x

2. 3y′′ = 0

3. y′′ + y′ = 0

4. 3y′′ + y′ = 0

5. y′′ + 3y′ + 2y = 0

6. y′′ − 3y′ + 2y = 0

7. y′′ − y′ − 2y = 0

8. y′′ − 2y′ − 3y = 0

9. y′′ + y = 0

10. y′′ + 4y = 0

11. y′′ + 16y = 0

12. y′′ + 8y = 0

13. y′′ + y′ + y = 0

14. y′′ + y′ + 2y = 0

15. y′′ + 2y′ + y = 0

16. y′′ + 4y′ + 4y = 0

17. 3y′′ + y′ + y = 0

18. 9y′′ + y′ + y = 0

19. 5y′′ + 25y′ = 0

20. 25y′′ + y′ = 0

21. 2y′′ + y′ − y = 0

22. 2y′′ − 3y′ − 2y = 0

23. 2y′′ + 7y′ + 3y = 0

24. 4y′′ + 8y′ + 3y = 0

25. 6y′′ + 7y′ + 2y = 0

26. 6y′′ + y′ − 2y = 0

27. y′′ + 4y′ + 8y = 0

28. y′′ − 2y′ + 4y = 0

29. y′′ + 2y′ + 4y = 0

30. y′′ + 4y′ + 5y = 0

31. 4y′′ − 4y′ + y = 0

32. 4y′′ + 4y′ + y = 0

33. 9y′′ − 6y′ + y = 0

34. 9y′′ + 6y′ + y = 0

35. 4y′′ + 12y′ + 9y = 0

36. 4y′′ − 12y′ + 9y = 0

Initial Value Problem 2nd Order
Solve the given problem, modeling the so-
lution after Example 6.4.

37. 6y′′+7y′+2y = 0, y(0) = 0, y′(0) = −1

38. 2y′′+7y′+3y = 0, y(0) = 5, y′(0) = −5

39. y′′ − 2y′ + 4y = 0, y(0) = 1, y′(0) = 1

40. y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 1

41. 9y′′ − 6y′ + y = 0, y(0) = 3, y′(0) = 1

42. 4y′′+12y′+9y = 0, y(0) = 2, y′(0) = 1

Detecting Euler Solution Atoms
A Euler solution atom is defined in Def-
inition 6.1 page 432. Box each list entry
that is precisely an atom. Double-box non-
atom list entries that are a sum of constants
times atoms. Follow Example 6.5 page 436.

43. 1, ex/5, −1, e1.1x, 2ex

44. −x cosπx, x2 sin 2x, x3, 2x3

45. e2x, e−x2/2, cos2 2x, sin 1.57x

46. x7ex cos 3x, x10ex sin 4x

47. x7ex cosh 3x, x10e−x sinh 5x

48. cosh2 x, x(1 + x), x1.5,
√
xe−x
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49. x1/2ex/2,
1

x
ex, ex(1 + x2)

50.
x

1 + x
,
1

x
(1 + x2), ln |x|

Euler Base Atom
An Euler base atom is defined in Defini-
tion 6.1 page 432. Find the base atom for
each Euler solution atom in the given list.

51. x cosπx, x3, x10e−x sin 5x

52. x6, x4e2x, x2e−x/π, x7ex cos 1.1x

Inverse Problems
Find the homogeneous 2nd order differen-
tial equation, given the supplied informa-
tion. Follow Example 6.6.

53. e−x/5 and 1 are solutions.
Ans: 5y′′ + y′ = 0.

54. e−x and 1 are solutions.

55. ex + e−x and ex − e−x are solutions.

56. e2x + xe2x and xe2x are solutions.

57. x and 2 + x are solutions.

58. 4ex and 3e2x are solutions.

59. The characteristic equation is r2+2r+
1 = 0.

60. The characteristic equation is 4r2 +
4r + 1 = 0.

61. The characteristic equation has roots
r = −2, 3.

62. The characteristic equation has roots
r = 2/3, 3/5.

63. The characteristic equation has roots
r = 0, 0.

64. The characteristic equation has roots
r = −4,−4.

65. The characteristic equation has com-
plex roots r = 1± 2i.

66. The characteristic equation has com-
plex roots r = −2± 3i.

Details of proofs

67. (Theorem 6.1, Background) Expand
the relationAr2+Br+C = A(r−r1)(r−
r2) and compare coefficients to obtain
the sum and product of roots relations

B

A
= −(r1 + r2),

C

A
= r1r2.

68. (Theorem 6.1, Background)

Let r1, r2 be the two roots of Ar2 +
Br + C = 0. The discriminant is D =
B2−4AC. Use the quadratic formula to
derive these relations for D > 0, D = 0,
D < 0, respectively:

r1 = −B+
√
D

2A , r2 = −B−
√
D

2A ,

r1 = r2 =
√
D

2A .

r1 = −B+i
√
−D

2A , r2 = −B−i
√
−D

2A .

69. (Theorem 6.1, Case 1)

Let y1 = er1x, y2 = er2x. Assume
Ar2+Br+C = A(r−r1)(r−r2). Show
that y1, y2 are solutions of Ay′′+By′+
Cy = 0.

70. (Theorem 6.1, Case 2)

Let y1 = er1x, y2 = x er1x. Assume
Ar2 +Br + C=A(r − r1)(r − r1).
Show that y1, y2 are solutions of Ay′′ +
By′ + Cy = 0.

71. (Theorem 6.1, Case 3)

Let a, b be real, b > 0. Let y1 =
eax cos bx, y2 = eax sin bx. Assume fac-
torization
Ar2+Br+C=A(r−a−ib)(r−a+ib)
then show that y1, y2 are solutions of
Ay′′ +By′ + Cy = 0.
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6.2 Continuous Coefficient Theory

6.2 Continuous Coefficient Theory

The existence, uniqueness and structure of solutions for the equation

a(x)y′′ + b(x)y′ + c(x)y = f(x)(1)

will be studied, guided in part by the first order theory.

Continuous–Coefficient Equations

The homogeneous equation is a(x)y′′ + b(x)y′ + c(x)y = 0 while the non-
homogeneous equation is a(x)y′′+ b(x)y′+ c(x)y = f(x). An equation is said
to have constant coefficients if a, b and c are scalars.

A linear combination of two functions y1, y2 is c1y1(x)+c2y2(x), where c1 and
c2 are constants. The natural domain is the common domain of y1 and y2.

The general solution of a(x)y′′ + b(x)y′ + c(x)y = f(x) is an expression which
describes all possible solutions of the equation. Exactly how to write such an
expression is revealed in the theorems below.

An initial value problem is the problem of solving a(x)y′′ + b(x)y′ + c(x)y =
f(x) subject to initial conditions y(x0) = g1, y

′(x0) = g2. It is assumed that
x0 is in the common domain of continuity of the coefficients and that g1, g2 are
prescribed numbers.

Theorem 6.5 (Superposition)
The homogeneous equation a(x)y′′ + b(x)y′ + c(x)y = 0 has the superposition
property:

If y1, y2 are solutions and c1, c2 are constants, then the linear combina-
tion y(x) = c1y1(x) + c2y2(x) is a solution.

Proof on page 445.

Theorem 6.6 (Picard-Lindelöf Existence-Uniqueness)
Let the coefficients a(x), b(x), c(x), f(x) be continuous on an interval J containing
x = x0. Assume a(x) ̸= 0 on J . Let g1 and g2 be constants. Then the initial value
problem

a(x)y′′ + b(x)y′ + c(x)y = f(x), y(x0) = g1, y′(x0) = g2

has a unique solution y(x) defined on J .

Proof on page 446.

Theorem 6.7 (Homogeneous Structure)
The homogeneous equation a(x)y′′ + b(x)y′ + c(x)y = 0 has a general solution of
the form yh(x) = c1y1(x) + c2y2(x), where c1, c2 are arbitrary constants and y1(x),
y2(x) are solutions.

Proof on page 447.
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6.2 Continuous Coefficient Theory

Theorem 6.8 (Non-Homogeneous Structure)
The non-homogeneous equation a(x)y′′+b(x)y′+c(x)y = f(x) has general solution
y = yh + yp, where yh(x) is the general solution of the homogeneous equation
a(x)y′′+b(x)y′+c(x)y = 0 and yp(x) is a particular solution of the non-homogeneous
equation a(x)y′′ + b(x)y′ + c(x)y = f(x).

Proof on page 447.

Theorem 6.9 (Reduction of Order)
Let y1(x) be a solution of a(x)y′′ + b(x)y′ + c(x)y = 0 on an interval J . Assume
a(x) ̸= 0, y1(x) ̸= 0 on J . Let all coefficients be continuous on J . Select x0 in J .
Then the general solution has the form yh(x) = c1y1(x) + c2y2(x) where c1, c2 are
constants and

y2(x) = y1(x)

∫ x

x0

e
−
∫ t
x0

(b(r)/a(r))dr

y21(t)
dt.

Proof on page 448.

Theorem 6.10 (Equilibrium Method)
A non-homogeneous equation

ay′′ + by′ + cy = f

has an easily-found particular solution yp(x) in the special case when all coefficients
a, b, c, f are constant. The solution can be found by the equilibrium method. The
answers:

c ̸= 0 yp(x) =
f

c
,

c = 0, b ̸= 0 yp(x) =

∫
f

b
dx =

f

b
x,

c = b = 0, a ̸= 0 yp(x) =

∫ (∫
f

a
dt

)
dx =

f

a

x2

2
.

See Example 6.11 page 445.

Equilibrium Method. The method applies to non-homogeneous equations
with constant coefficients ay′′ + by′ + cy = f . The method:

Truncate the LHS of the differential equation to just the lowest order term,
then solve the resulting equation by the method of quadrature.

Examples and Methods

Example 6.7 (Superposition)
Verify that y = c1y1 + c2y2 is a solution, given equation y′′ + 4y′ + 4y = 0 and
solutions y1(x) = e2x, y2(x) = xe2x.
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6.2 Continuous Coefficient Theory

Solution: The answer check details can be simplified as follows.

LHS = y′′ + 4y′ + 4y Given differential equation LHS.

LHS = c1y
′′
1 + c2y

′′
2+

4(c1y
′
1 + c2y

′
2)+

4(c1y1 + c2y2)
Substitute y = c1y1 + c2y2.

LHS = c1(y
′′
1 + 4y′1 + 4y1)+

c2(y
′′
2 + 4y′2 + 4y2)

Collect on c1, c2.

LHS = c1(0)+
c2(0)

Because y1, y2 are solutions of the equation y′′+
4y′ + 4y = 0.

Then y = c1y1 + c2y2 satisfies y′′ + 4y′ + 4y = 0, as claimed.

Example 6.8 (Continuous Coefficients)
Determine all intervals J of existence of y(x), according to Picard’s theorem, for the
differential equation y′′ + 1

1+xy
′ + x

2+xy = 0.

Solution: The challenge is describe the open intervals J where 1+x ̸= 0 and 2+x ̸= 0,
because the coefficients are continuous whenever both inequalities hold. The real line
is divided by the exceptions x = −1, x = −2. Then −∞ < x < −2, −2 < x < −1,
−1 < x <∞ are the possible intervals J in Picard’s theorem.

Example 6.9 (Recognizing yh)
Consider y′′ + 4y = x. Extract from the solution y = 2 cos 2x + 3 sin 2x + x/4 a
particular solution yp with fewest terms.

Solution: The homogeneous equation y′′+4y = 0 has characteristic equation r2+4 = 0
with complex roots ±2i and Euler solution atoms cos 2x, sin 2x. Then 2 cos 2x+3 sin 2x is
a solution yh of the homogeneous equation and y = yh+x/4. Subtract the homogeneous
solution to obtain a particular solution x/4. By Theorem 6.8, this is a particular solution
yp. It has the fewest possible terms.

Example 6.10 (Reduction of Order)
Given solution y1 = 1, find an independent solution y2 of y′′ + 4y′ = 0 by reduction
of order.

Solution: The answer is y2 = 1
4

(
1− e−4x

)
. The method is Theorem 6.9.

We apply the theorem by inserting the formula y1 = 1 into

y2(x) = y1(x)

∫ x

x0

e
−
∫ t
x0

(b(r)/a(r))dr

y21(t)
dt.

Then, using x0 = 0, a(x) = 1, b(x) = 4, c(x) = 0 gives

y2(x) = (1)

∫ x

0

e−
∫ t
0
(4/1)dr

(1)2
dt

= (1)

∫ x

0

e−4t

(1)2
dt

=
e−4x − 1

−4
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6.2 Continuous Coefficient Theory

Example 6.11 (Equilibrium Method)
Apply the equilibrium method to find yp, then find the general solution y = yh + yp.
This method works only for constant coefficients. meaning a(x), b(x), c(x), f(x) in
equation (1) are constant.

(a) y′′ + 4y′ + 4y = π

(b) 2y′′ + 3y′ = −5

(c) 3y′′ = 20

Solution: All equations have constant coefficients, therefore the method applies. The
method selects a trial solution for yp which makes all terms zero except the lowest
derivative term. Then solve for the trial solution by quadrature to obtain yp. The
answer should be verified due to the possibility of integration and algebra errors.

(a) Truncate all but the lowest term to obtain 4y = π, then yp(x) = π/4. The ho-
mogeneous solution yh is the solution of y′′ + 4y′ + 4y = 0 with characteristic equa-
tion r2 + 4r + 4 = 0, factoring into (r + 2)(r + 2) = 0. Then the atoms are e−2x,
xe−2x and yh(x) = c1e

−2x + c2xe
−2x. The general solution is y(x) = yh(x) + yp(x) =

c1e
−2x + c2xe

−2x +
π

4
.

(b) Truncate to 3y′ = −5 and integrate to obtain yp(x) = −5
3 x. The characteristic

equation of 2y′′ + 3y′ = 0 is (2r + 3)r = 0 with roots r = 0,−3/2. The atoms are e0x,
e−3x/2 and then yh(x) = c1e

0x+c2e
−3x/2. The general solution is y(x) = yh(x)+yp(x) =

c1 + c2e
−3x/2 + −5

2 x, because e0x is written as 1.

(c) The quadrature solution is yp(x) = 20
3

x2

2 . The characteristic equation for 3y′′ = 0
is 3r2 = 0 with double root r = 0, 0. The atoms are e0x, xe0x and the homogeneous
solution is yh(x) = c1e

0x + c2xe
0x = c1 + c2x. Then the general solution is y(x) =

yh(x) + yp(x) = c1 + c2x+ 20
3

x2

2 .

Example 6.12 (Equilibrium Method Failure)
The equation y′′ + y′ = 2x fails to have constant coefficients, meaning a(x), b(x),
c(x), f(x) are not all constant. Blind application of the equilibrium method gives
y = x2, not a solution. Explain.

Solution: The error: y′′+ y′ = 2x does not have constant coefficients, which is required
to apply the equilibrium method. What went wrong? The equilibrium method blindly
applied gives the equation 0+y′ = 2x, which by quadrature implies y(x) = x2. It appears
to work! Let’s test y = x2. Insert y = x2 into y′′ + y′ = 2x, then (x2)′′ + (x2)′ = 2x,
which implies 2 + 2x = 2x and finally the false equation 2 = 0. Therefore, y = x2 is not
a solution of y′′ + y′ = 2x.

Proofs and Details

Proof of Theorem 6.5: The three terms of the differential equation, c(x)y, b(x)y′

and a(x)y′′, are computed using the expression y = c1y1+ c2y2. The formulas are added
to obtain the left hand side LHS of the differential equation:
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6.2 Continuous Coefficient Theory

LHS = c1[ay
′′
1 + by′1 + cy1] Add terms c(x)y, b(x)y′, a(x)y′′

+ c2[ay
′′
2 + by′2 + cy2] and then collect on c1, c2.

= c1[0] + c2[0] Both y1, y2 satisfy ay′′ + by′ + cy = 0.

= RHS The left and right sides match.

Proof of Theorem 6.6: The basic ideas for the proof appear already in the proof of
the Picard-Lindelöf theorem, page 68. Additional proof is required, because the solution
is supposed to be defined on all of J , whereas the basic Picard-Lindelöf theorem supplies
only local existence.

Existence. Picard’s ideas write the solution y(x) on J as the sum of an infinite series
of continuous functions. This is accomplished by using the Position-Velocity substi-
tution x = t, X = y(t), Y = y′(t) and definitions t0 = x0, X0 = g1, Y0 = g2 to re-write
the differential equation and initial conditions in the new form

X ′ = Y, Y ′ = (f(t)− b(t)Y − c(t)X)/a(t),
X(t0) = X0, Y (t0) = Y0.

The Picard iterates are defined by

Xn(t) =

∫ t

t0

Yn−1(x)dx,

Yn(t) =

∫ t

t0

(f(x)− b(x)Yn−1(x)− c(x)Xn−1(x))
dx

a(x)
.

The new bit of information provided by these formulas is significant: because X0 and
Y0 are defined everywhere on J , so also are Xn and Yn. This explains why the series
equality

y(x) = X0 +

∞∑
n=1

(Xn(x)−Xn−1(x))

provides a formula for y(x) on all of interval J , instead of on just a local section of the
interval.

The demand that the series converge on J creates new technical problems, to be solved
by modifying Picard’s proof. Suffice it to say that Picard’s ideas are sufficient to give
series convergence and hence existence of y(x) on J .

Uniqueness. An independent proof of the uniqueness will be given, based upon calculus
ideas only.

Let two solutions y1 and y2 of the differential equation be given, having the same initial
conditions. Then their difference y = y1 − y2 satisfies the homogeneous differential
equation a(x)y′′+b(x)y′+c(x)y = 0 and the initial conditions y(x0) = y′(x0) = 0. Some
details:

LHS = ay′′ + by′ + cy Left side of ay′′ + by′ + cy = f .

= ay′′1 + by′1 + cy1 Substitute y = y1 − y2.

− (ay′′2 + by′2 + cy2)

= f(x)− f(x) Both y1, y2 satisfy ay′′ + by′ + cy = f .

= 0 The homogeneous equation is satisfied.
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To prove y1 = y2, it suffices to show y(x) ≡ 0. This will be accomplished by showing
that the non-negative function

z(t) = (y(t))2 + (y′(t))2

satisfies z(t) ≤ 0, which implies z(t) ≡ 0 and then y(x) ≡ 0. The argument depends
upon the following inequality.

Lemma. The function z(t) satisfies |z′| ≤Mz for some constant M ≥ 0.

To finish the uniqueness proof, observe first that initial conditions y(x0) = y′(x0) = 0
imply z(t0) = 0. By the lemma, |z′| ≤Mz for some constant M , or equivalently −Mz ≤
z′ ≤ Mz. Multiply z′ ≤ Mz by the integrating factor e−Mt to give (e−Mtz(t))′ ≤ 0.
Integration over [t0, t] shows e−Mtz(t) ≤ 0. Then z(t) = 0 for t ≥ t0. Similarly,
−z′ ≤ Mz implies z(t) = 0 for t ≤ t0. This concludes the uniqueness proof, except
for the proof of the lemma.

Proof of the lemma. Compute the derivative z′ as follows, using notation X = y(t)
and Y = y′(t) to re-write z(t) = (y(t))2 + (y′(t))2 = X2 + Y 2.

z′ = 2XX ′ + 2Y Y ′ Power and product rules.

= 2XY + 2Y (−cX − bY )/a Use X ′ = Y and the homogeneous equation
aY ′ + bY + cX = 0.

= (2− 2c/a)XY + (−2b/a)Y 2 Collect terms.

Let M = 2maxA≤x≤B{|1 − c(x)/a(x)| + | − 2b(x)/a(x)|}, where [A,B] is an arbitrary
subinterval of J containing x0. The estimate |z′| ≤Mz will be established.

|z′| = |(2− 2c/a)XY + (−2b/a)Y 2| Estimate modulus of z′.

≤ |1− c/a||2XY |+ | − 2b/a||Y |2 Apply |c+ d| ≤ |c|+ |d| and |uv| = |u||v|.
≤ (M/2)|2XY |+ (M/2)|Y |2 Definition of maximum M applied.

≤Mz Use |2XY | ≤ X2 + Y 2, proved from (|X| −
|Y |)2 ≥ 0.

Proof of Theorem 6.7: To define y1 and y2 requires application of Picard’s existence-
uniqueness Theorem 6.6, page 442. Select them by their initial conditions, y1(x0) = 1,
y′1(x0) = 0 and y2(x0) = 0, y′2(x0) = 1.

To complete the proof, a given solution y(x) must be expressed as a linear combination
y(x) = c1y1(x) + c2y2(x) for some values of c1, c2.

Define c1 = y(x0), c2 = y′(x0). Let u(x) = y(x) − c1y1(x) − c2y2(x). The equation
y(x) = c1y1(x) + c2y2(x) will be verified by showing u(x) ≡ 0.

First, u is a solution of a(x)y′′ + b(x)y′ + c(x)y = 0, by the superposition principle,
Theorem 6.5. It has initial conditions u(x0) = y(x0) − c1(1) − c2(0) = 0 and u′(x0) =
y′(x0) − c1(0) − c2(1) = 0. By uniqueness of initial value problems, u(x) ≡ 0, which
completes the proof.

Proof of Theorem 6.8: Let yp(x) be a given particular solution of a(x)y′′ + b(x)y′ +
c(x)y = f(x). Let y(x) be any other solution of this equation and define u(x) =
y(x) − yp(x). Subtract the two differential equations to verify that u is a solution of
the homogeneous equation a(x)u′′ + b(x)u′ + c(x)u = 0. By Theorem 6.7, u = yh(x) for
some choice of constants c1, c2. Then y(x) = u(x) + yp(x) = yh(x) + yp(x), as was to be
shown, completing the proof.
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Proof of Theorem 6.9: . Let W (x) = e
−
∫ x
x0

(b(r)/a(r))dr
. By the chain rule and the

fundamental theorem of calculus, W ′ = −bW/a. Let u(x) = 1/y21(x) to simplify displays.
The successive derivatives of y2 are

y2(x) = y1(x)
∫ x

x0
Wudt Definition of y2, u and W .

y′2(x) =
(
y1(x)

∫ x

x0
Wudt

)′
Apply the product rule.

= y′1(x)
∫ x

x0
Wudt+ y1(x)W (x)u(x) Use (

∫ x

x0
G(t)dt)′ = G(x).

= y′1(x)
∫ x

x0
Wudt+

W (x)

y1(x)

y′′2 (x) =

(
y′1(x)

∫ x

x0
Wudt+

W (x)

y1(x)

)′

= y′′1 (x)
∫ x

x0
Wudt+ y′1(x)W (x)u(x)

+
W ′(x)y1(x)−W (x)y′1(x)

y21(x)

Apply the sum and quotient rules.

= y′′1 (x)
∫ x

x0
Wudt+

W ′(x)

y1(x)
Simplify non-integral terms.

= y′′1 (x)
∫ x

x0
Wudt− b(x)W (x)

a(x)y1(x)
Use W ′ = −(b/a)W .

The derivative formulas are multiplied respectively by c, b and a to obtain an expression
E = ay′′2 + by′2 + cy2, which must be shown to be zero. The details:

E = cy2 + by′2 + ay′′2
= c

(
y1
∫
Wu

)
+ b

(
y′1
∫
Wu+W/y1

)
+ a

(
y′′1
∫
Wu− bW/(ay1)

)
= (cy1 + by′1 + ay′′1 )

∫
Wu

+ bW/y1 − bW/y1

Collect all integral terms.

= 0 Because ay′′1 + by′1 + cy1 = 0.

General Solution. To show that c1y1 + c2y2 is the general solution, for this choice of
y1, y2, let y(x) be a solution of the homogeneous equation and define

c1 =
y(x0)

y1(x0)
, c2 = y1(x0)(y

′(x0)− c1y
′
1(x0)).

It will be shown that y(x) = c1y1(x)+ c2y2(x) by verifying that u(x) = y(x)− c1y1(x)−
c2y2(x) is zero. Superposition implies u is a solution of the homogeneous equation. It
has initial conditions u(x0) = 0, u′(x0) = 0, because y′2(x0) = 1/y1(x0). Uniqueness of
initial value problems implies u(x) ≡ 0, completing the proof.

Proof of Theorem 6.10, Equilibrium Method: In the case c ̸= 0, find an equilib-
rium solution y = constant by substitution of y = k into the differential equation (the
equilibrium method). Then ck = f and yp(x) =

f
c .

For case c = 0, b ̸= 0, observe that the differential equation in terms of the velocity
v = y′ is av′+ bv = f . Apply the equilibrium method to this equation to obtain v = f/b
and finally y =

∫
vdx = f

b x.

For the last case b = c = 0 and a ̸= 0, then the equation is in terms of the acceleration
p = y′′ the new equation ap = f . Then p = f/a is the quadrature equation y′′ = f/a

with solution yp(x) =
f
a
x2

2 .
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Exercises 6.2 �

Continuous Coefficients
Determine all intervals J of existence of
y(x), according to Picard’s theorem.

1. y′′ + y = ln |x|

2. y′′ = ln |x− 1|

3. y′′ + (1/x)y = 0

4. y′′ + 1
1+xy

′ + 1
xy = 0

5. x2y′′ + y = sinx

6. x2y′′ + xy′ = 0

Superposition
Verify that y = c1y1 + c2y2 is a solution.

7. y′′ = 0, y1(x) = 1, y2(x) = x

8. y′′ = 0, y1(x) = 1 + x, y2(x) = 1− x

9. y′′′ = 0, y1(x) = x, y2(x) = x2

10. y′′′ = 0, y1(x) = 1 + x, y2(x) = x+ x2

Structure
Verify that y = yh + yp is a solution.

11. y′′ + y = 2, yh(x) = c1 cosx + c2 sinx,
yp(x) = 2

12. y′′ + 4y = 4, yh(x) = c1 cos 2x +
c2 sin 2x, yp(x) = 1

13. y′′ + y′ = 5, yh(x) = c1 + c2e
−x,

yp(x) = 5x

14. y′′ + 3y′ = 5, yh(x) = c1 + c2e
−3x,

yp(x) = 5x/3

15. y′′ + y′ = 2x, yh(x) = c1 + c2e
−x,

yp(x) = x2 − 2x

16. y′′ + 2y′ = 4x, yh(x) = c1 + c2e
−2x,

yp(x) = x2 − x

Initial Value Problems
Solve for constants c1, c2 in the general so-
lution yh = c1y1 + c2y2.

17. y′′ = 0, y1 = 1, y2 = x, y(0) = 1,
y′(0) = 2

18. y′′ = 0, y1 = 1+x, y2 = 1−x, y(0) = 1,
y′(0) = 2

19. y′′ + y = 0, y1 = cosx, y2 = sinx,
y(0) = 1, y′(0) = −1

20. y′′ + y = 0, y1 = sinx, y2 = cosx,
y(0) = 1, y′(0) = −1

21. y′′ + 4y = 0, y1 = cos 2x, y2 = sin 2x,
y(0) = 1, y′(0) = −1

22. y′′ + 4y = 0, y1 = sin 2x, y2 = cos 2x,
y(0) = 1, y′(0) = −1

23. y′′+y′ = 0, y1 = 1, y2 = e−x, y(0) = 1,
y′(0) = −1

24. y′′+y′ = 0, y1 = 1, y2 = e−x, y(0) = 2,
y′(0) = −3

25. y′′ + 3y′ = 0, y1 = 1, y2 = e−3x,
y(0) = 1, y′(0) = −1

26. y′′ + 5y′ = 0, y1 = 1, y2 = e−5x,
y(0) = 1, y′(0) = −1

Recognizing yh
Extract from the given solution y a partic-
ular solution yp with fewest terms.

27. y′′ + y = x,
y = c1 cosx+ c2 sinx+ x

28. y′′ + y = x,
y = cosx+ x

29. y′′ + y′ = x,
y = c1 + c2e

−x + x2/2− x

30. y′′ + y′ = x,
y = e−x − x+ 1 + x2/2

31. y′′ + 2y′ + y = 1 + x,
y = (c1 + c2x)e

−x + x− 1

32. y′′ + 2y′ + y = 1 + x,
y = e−x + x+ xe−x − 1

Reduction of Order
Given solution y1, find an independent so-
lution y2 by reduction of order.
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33. y′′ + 2y′ = 0, y1(x) = 1

34. y′′ + 2y′ = 0, y1(x) = e−2x

35. 2y′′ + 3y′ + y = 0, y1(x) = e−x

36. 2y′′ − y′ − y = 0, y1(x) = ex

Equilibrium Method
Apply the equilibrium method to find yp,
then find the general solution y = yh + yp.

37. 2y′′ = 3

38. y′′ + 4y′ = 5

39. y′′ + 3y′ + 2y = 3

40. y′′ − y′ − 2y = 2

41. y′′ + y = 1

42. 3y′′ + y′ + y = 7

43. 6y′′ + 7y′ + 2y = 5

44. y′′ − 2y′ + 4y = 8

45. 4y′′ − 4y′ + y = 8

46. 4y′′ − 12y′ + 9y = 18
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6.3 Higher Order Linear Constant Equations

6.3 Higher Order Linear

Constant-Coefficient Equations

Discussed here are structure results for the n-th order linear differential equation

any
(n) + · · ·+ a0y = f(x).

It is assumed that each coefficient is constant and the leading coefficient an is
not zero. The forcing term or input f(x) is assumed to either be zero, in
which case the equation is called homogeneous, or else f(x) is nonzero and
continuous, and then the equation is called non-homogeneous. The charac-
teristic equation is

anr
n + · · ·+ a0 = 0.

It is obtained from Euler’s substitution y = erx or by the shortcut substitutions
y(k) → rk. The left side of the characteristic equation is called the characteristic
polynomial.

Picard-Lindelöf Theorem

The foundation of the theory of linear constant coefficient differential equations
is the existence-uniqueness result of Picard-Lindelöf, which says that, given con-
stants g1, . . . , gn, the initial value problem

any
(n) + · · ·+ a0y = f(x),

y(0) = g1, . . . , y
n−1(0) = gn,

has a unique solution y(x) defined on each open interval for which f(x) is defined
and continuous.

General Solution

A linear homogeneous constant coefficient differential equation has a general
solution yh(x) written in terms of n arbitrary constants c1, . . . , cn and n solutions
y1(x), . . . , yn(x) as the linear combination

yh(x) = c1y1(x) + · · ·+ cnyn(x).

Discussed here is one way to define the solutions y1, . . . , yn.

Consider the case of n = 2, already discussed. The Picard-Lindelöf theorem
applies with initial values y(0) = 1, y′(0) = 0 to define solution y1(x). The initial
values are changed to y(0) = 0, y′(0) = 1, then Picard-Lindelöf applies again to
define solution y2(x). Solution y(x) = c1y1(x)+c2y2(x) satisfies initial conditions
y(0) = g1, y

′(0) = g2 when c1 = g1, c2 = g2.
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In the n = 2 case, solutions y1, y2 are defined using initial conditions which
form the columns of the 2 × 2 identity matrix. In a similar way, for general n,
solutions y1(x), . . . , yn(x) are defined by applying the Picard-Lindeöf theorem,
with initial conditions g1, . . . , gn successively taken as the columns of the n× n
identity matrix.

The expression yh(x) is called a general solution, because any solution of the
differential equation is equal to yh(x) for a unique specialization of the constants
c1, . . . , cn.

Solution Structure

An Euler base atom is one of the functions

eax, eax cos bx, eax sin bx

where a and b are real numbers, b > 0.

An Euler solution atom is a power xn times a base atom, where n ≥ 0 is an
integer.

Complex Numbers and Atoms. An Euler solution atom can alternatively
be defined as the nonzero real or imaginary part of xnerx where r = a+ ib with
symbols a and b ≥ 0 are real and n ≥ 0 is an integer, provided minus signs are
stripped off, leaving coefficient 1. Euler’s formula

eiθ = cos θ + i sin θ

facilitates taking real and imaginary parts of the complex exponential term xnerx.
For instance,

x7e(2+3i)x = x7e2x cos 3x+ ix7e2x sin 3x

has real and imaginary parts x7e2x cos 3x, x7e2x sin 3x, which are themselves
atoms.

A complete list of all possible atoms appears in the rightmost section of the table
below, in which a, b are real, b > 0 and n ≥ 0 is an integer.

r = 0 1, x, x2, . . . , xn, . . .
r = a eax, xeax, x2eax, . . . , xneax, . . .
r = ib cos bx, x cos bx, x2 cos bx, . . . , xn cos bx, . . .
r = ib sin bx, x sin bx, x2 sin bx, . . . , xn sin bx, . . .
r = a+ ib eax cos bx, xeax cos bx, x2eax cos bx, . . . , xneax cos bx, . . .
r = a+ ib eax sin bx, xeax sin bx, x2eax sin bx, . . . , xneax sin bx, . . .

The table only uses b > 0, because Euler atoms must have coefficient 1. For
instance, xe(1−2i)x = xex cos 2x − ixex sin 2x does not have atoms for real and
imaginary parts (coefficient −1 is the problem). Yes, stripping the minus sign
gives xex sin 2x, which is an atom (coefficient 1).
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Detecting Euler Solution Atoms

A term that makes up an atom has coefficient 1, therefore 2 and 2ex are not
atoms, but the 2 can be stripped off to expose atoms 1 and ex. Combinations
like 2x + 3x2 are not atoms, but individual stripped terms x and x2 are atoms.
Terms like ex

2
, ln |x| and x/(1+x2) are not atoms, nor are they sums of constants

times atoms. The expressions coshx, sinhx and sin4 x are not atoms, but they
are combinations of atoms. Fractional powers may not appear in atoms, for
instance, neither xπ nor x5/2 sinx is an atom.

Linear Algebra Background

Borrowed from the subject of linear algebra is the terminology linear combina-
tion, which in the case of two functions f1, f2 is the expression f = c1f1 + c2f2.
More generally, given functions f1, . . . , fk, and constants c1, . . . , ck, the expres-
sion f = c1f1 + · · ·+ ckfk is called a linear combination of the functions f1, . . . ,
fk.

A function list f1, . . . , fk is called linearly independent provided every linear
combination is uniquely represented by the constants c1, . . . , ck.

Independence is tested by solving for constants c1, . . . , ck in the equation c1f1(x)+
· · ·+ ckfk(x) = 0, assumed satisfied for all x in a common domain of f1, . . . , fk.
Independence holds if and only if the constants are all zero.

Theorem 6.11 (Independence and Euler Solution Atoms)
A list of finitely many distinct Euler solution atoms is linearly independent.

Outline of the proof on page 398.

Because subsets of independent sets are independent, then list x2, x5, x8 is
independent by virtue of independence of the powers 1, x, . . . , xn.

Solution methods for linear constant differential equations implicitly use Theorem
6.11.

Fundamental Results

Theorem 6.12 (Homogeneous Solution yh and Atoms)
Linear homogeneous differential equations with constant coefficients have general
solution yh(x) equal to a linear combination of Euler atoms.

Theorem 6.13 (Particular Solution yp and Atoms)
Linear non-homogeneous differential equations with constant coefficients having forc-
ing term f(x) equal to a linear combination of atoms have a particular solution yp(x)
which is a linear combination of Euler atoms.
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Theorem 6.14 (General Solution y and Atoms)
Linear non-homogeneous differential equations with constant coefficients having forc-
ing term f(x) = a linear combination of Euler atoms have general solution

y(x) = yh(x) + yp(x) = a linear combination of Euler atoms.

The first result, for the special case of second order differential equations, can be
justified from Theorem 6.1, page 431. The solutions er1x, er2x, xer1x, eax cos bx
and eax sin bx in the theorem are Euler atoms.

The third theorem easily follows from the first two. The first and second theo-
rems follow directly from Euler’s Theorem 6.15 and the method of undetermined
coefficients, infra.

How to Solve Equations of Order n

Picard’s existence–uniqueness theorem says that y′′′ + 2y′′ + y = 0 has general
solution y constructed from linear combinations of 3 independent solutions of
this differential equation. The general solution of an n-th order linear differential
equation is constructed from linear combinations of n independent solutions of
the equation.

Linear algebra defines the dimension of the solution set to be this same fixed
number n. Once n independent solutions are found for the differential equation,
the search for the general solution has ended: the general solution y must be a
linear combination of these n independent solutions.

Because of the preceding structure theorems, we have reduced the search for the
general solution to the following:

Find n distinct Euler solution atoms of the nth order differential
equation.

Euler’s basic result tells us how to find the list of distinct atoms.

Theorem 6.15 (Euler’s Theorem)
Assume r0 is a real or complex root of the characteristic equation. If complex, write
r0 = a+ ib with a, b real.

(a) The functions er0x, xer0x, . . . , xker0x are solutions of a linear homogeneous
constant–coefficient differential equation if and only if (r − r0)

k+1 is a factor of the
characteristic polynomial.

(b) Assume b > 0. Functions eax cos bx, xeax cos bx, . . . , xkeax cos bx, eax sin bx,
xeax sin bx, . . . , xkeax sin bx (a, b real, b > 0) are solutions of a linear homogeneous
constant–coefficient differential equation if and only if ((r− a)2 + b2)k+1 is a factor
of the characteristic polynomial.

Proof on page 459.
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Theorem 6.16 (Real and Complex Solutions)
Let y(x) = u(x) + iv(x) be a solution of a linear constant-coefficient differential
equation (a0,. . . ,an assumed real), with u(x) and v(x) both real. Then u(x) and
v(x) are both real solutions of the differential equation. Briefly stated, the real and
imaginary parts of a solution are also solutions.

Proof on page 460

Root Multiplicity

A polynomial equation p(r) = 0 is defined in college algebra to have a root r = r0
of multiplicity m provided (r − r0)

m divides p(r) but (r − r0)
m+1 does not. For

instance, (r − 1)3(r + 2)(r2 + 4)2 = 0 has roots 1, −2, 2i, −2i of multiplicity 3,
1, 2, 2, respectively.

Atom Lists

Let r = r0 be a real root of the characteristic equation p(r) = 0, of multiplicity
k + 1. Then Euler’s theorem finds a base atom solution er0x. A total of k + 1
solutions are obtained from this base atom by multiplying the base atom by
the powers 1, x, . . . , xk:

er0x, xer0x, . . . , xker0x.

A special case occurs when r0 = 0. Then e0x = 1 is the base atom and the k+ 1
solution atoms are the powers

1, x, . . . , xk.

The number of Euler solution atoms expected for a given root r = r0 equals
the multiplicity of the root r0.

Let r = a + ib be a complex root of the characteristic equation p(r) = 0, of
multiplicity k + 1. Euler’s Theorem implies that eax+ibx is a solution, and the
theorem on complex solutions implies that the differential equation has two base
solution atoms

eax cos bx, eax sin bx.

Euler’s Theorem implies that we should multiply these base atoms by powers 1,
x, . . . , xk to obtain k + 1 solution atoms for each of the base atoms, giving the
atom list for a complex root

eax cos(bx), xeax cos(bx), . . . , xkeax cos(bx),
eax sin(bx), xeax sin(bx), . . . , xkeax sin(bx).
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A special case occurs when a = 0. Then the base atoms are pure harmonics
cos bx, sin bx and the list has no visible exponentials:

cos(bx), x cos(bx), . . . , xk cos(bx),
sin(bx), x sin(bx), . . . , xk sin(bx).

Shortcut Explained. A remaining mystery is the skipped complex root a− ib.
We explain why we focused on a+ ib with b > 0 and ignored its conjugate a− ib.
Euler’s formula eiθ = cos θ + i sin θ using θ = rx = ax+ ibx implies

xjerx =
(
xjeax cos(bx)

)
+ i
(
xjeax sin(bx)

)
.

The real and imaginary parts of this complex linear combination are Euler atoms.
If r is replaced by its complex conjugate r = a − ib, then the same two atoms
are distilled from the linear combination. Picard’s Theorem dictates that we find
2k+2 atoms from the pair of roots a± ib. Because the process above finds 2k+2
atoms, the second conjugate root is ignored, as a shortcut.

Examples and Methods

Example 6.13 (First Order)
Solve 2y′ + 5y = 0, showing yh = c1e

−5x/2.

Solution: Euler’s Theorem 6.15 will be applied. The characteristic equation is 2r+5 = 0
with real root r = −5/2. The corresponding atom erx is given explicitly by e−5x/2.
Because the order of the differential equation is 1, then all atoms have been found. Write
the general solution yh by multiplying the atom list by constant c1, then yh = c1e

−5x/2.

Example 6.14 (Second Order Distinct Real Roots)
Solve y′′ + 3y′ + 2y = 0, showing yh = c1e

−x + c2e
−2x.

Solution: The factored characteristic equation is (r + 1)(r + 2) = 0. The distinct real
roots are r1 = −1, r2 = −2. Euler’s Theorem 6.15 applies to find the atom list e−x,
e−2x. All atoms have been found, because the order of the differential equation is 2.
The general solution yh is written by multiplying the atom list by constants c1, c2, then
yh = c1e

−x + c2e
−2x.

Example 6.15 (Second Order Double Real Root)
Solve y′′ + 2y′ + y = 0, showing yh = c1e

−x + c2xe
−x.

Solution: The factored characteristic equation is (r+1)(r+1) = 0, with double real root
r = −1,−1. The root multiplicity is 2, so we must find two atoms for the root r = −1.
Euler’s Theorem 6.15 applies to find a base atom e−x. Multiply the base atom by 1, x
to find two solution atoms e−x, xe−x. Because the order of the differential equation is 2,
then all atoms have been found. Write the general solution yh by multiplying the atom
list by constants c1, c2, then yh = c1e

−x + c2xe
−x.
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Example 6.16 (Second Order Complex Conjugate Roots)
Solve the differential equation y′′ + 2y′ + 5y = 0, verifying the equation yh =
c1e

−x cos 2x+ c2e
−x sin 2x.

Solution: The characteristic equation r2 + 2r + 5 = 0 factors into (r + 1)2 + 4 = 0,
therefore it has complex conjugate roots r1 = −1 + 2i, r2 = −1 − 2i. There are two
methods for finding the atoms associated with these roots. We discuss both possibilities.

Method 1. The first statement in Euler’s Theorem 6.15 applies to report two complex
solutions e−x+2xi, e−x−2xi. These solutions are not atoms, but linear combinations of
atoms, from which a list of two atoms is determined. The atoms are e−x cos 2x, e−x sin 2x.
This process uses the two identities

eiθ = cos θ + i sin θ, e−iθ = cos θ − i sin θ.

Write
e−x+2xi =

(
e−x cos 2x

)
+ i
(
e−x sin 2x

)
,

e−x−2xi =
(
e−x cos 2x

)
− i
(
e−x sin 2x

)
,

then extract the two distinct atoms that appear in these two linear combinations:

e−x cos 2x, e−x sin 2x.

Method 2. The second statement in Euler’s Theorem 6.15 is more efficient. Character-
istic equation root r = −1 + 2i was found from the factorization (r+ 1)2 + 4 = 0, which
by Euler’s theorem implies there are two distinct solution atoms

e−x cos 2x, e−x sin 2x.

General Solution. Because the order of the differential equation is 2, then all atoms
have been found. Write the general solution yh by multiplying the atom list by constants
c1, c2, then yh = c1e

−x cos 2x+ c2e
−x sin 2x.

The example uses a shortcut. Euler’s theorem applied to the second conjugate root
−1 − 2i will produce no new atoms. The step of finding the distinct atoms can be
shortened by observing that the outcome is exactly the real and imaginary parts of the
first complex exponential eax+ibx with b > 0. The preferred method for finding the atoms
is to use the second statement in Euler’s theorem.

Example 6.17 (Third Order Distinct Roots)
Solve y′′′ − y′ = 0, showing yh = c1 + c2e

x + c3e
−x.

Solution: The factored characteristic equation is r(r − 1)(r + 1) = 0 with real roots
r1 = 0, r2 = 1, r3 = −1. Euler’s Theorem 6.15 applies to report the atom list e0x, ex,
e−x. The general solution yh is written by multiplying the atom list by constants c1, c2,
c3, giving yh = c1e

0x + c2e
x + c3e

−x. Convention replaces e0x by 1 in the final equation.

Example 6.18 (Third Order with One Double Root)
Solve y′′′ − y′′ = 0, verifying that yh = c1 + c2x+ c3e

x.

Solution: The characteristic equation is r3 − r2 = 0. It factors into r2(r − 1) = 0 with
real roots r1 = 0, r2 = 0, r3 = 1. Euler’s Theorem 6.15 applies to find the base atom
list e0x, ex. Because root r = 0 has multiplicity 2, we must multiply base atom e0x by 1
and x to find the required 2 atoms e0x, xe0x. Then the completed list of 3 atoms is 1,
x, ex. The general solution yh is written by multiplying the atom list by constants c1,
c2, c3 to give yh = c1 + c2x+ c3e

x.
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Example 6.19 (Fourth Order)
Solve yiv − y′′ = 0, showing yh = c1 + c2x+ c3e

x + c4e
−x.

Solution: Notation: Define yiv =
d4y

dx4
, the fourth derivative of y. The factored charac-

teristic equation is r2(r − 1)(r + 1) = 0 with real roots r1 = 0, r2 = 0, r3 = 1, r4 = −1.
Euler’s Theorem 6.15 applies to obtain the base atom list e0x, ex, e−x. The first base
atom e0x comes from root r = 0, which has multiplicity 2. Euler’s Theorem requires
that this base atom be multiplied by 1, x. The atom list of 4 atoms is then 1, x, ex,
e−x. All atoms have been found, because the order of the differential equation is 4. The
general solution yh is written by multiplying the atom list by constants c1, c2, c3, c4 to
obtain the general solution yh = c1 + c2x+ c3e

x + c4e
−x.

Example 6.20 (Tenth Order)
A linear homogeneous constant coefficient differential equation has characteristic
equation

r2(r − 1)2(r2 − 1)(r2 + 1)2 = 0.

Solve the differential equation, showing that

yh = c1 + c2x+ c3e
x + c4xe

x + c5x
2ex + c6e

−x

+c7 cosx+ c8x cosx+ c9 sinx+ c10x sinx.

Solution: The factored form of the characteristic equation is

r3(r − 1)2(r − 1)(r + 1)(r − i)2(r + i)2 = 0.

The roots, listed according to multiplicity, make the list of roots

L = {0, 0, 1, 1, 1, −1, i, i, −i,−i}.

There are two methods for finding the atoms from list L.

Method 1. The first statement in Euler’s theorem gives the exponential-type solutions

e0x, xe0x, ex, xex, x2ex, e−x, eix, xeix, e−ix, xe−ix.

The first six in the list are atoms, but the last four are not. Because eix = cosx+ i sinx,
we can distill from the complex exponentials the additional four atoms cosx, x cosx,
sinx, x sinx. Then the list of 10 distinct atoms is

1, x, ex, xex, x2ex, e−x, cosx, x cosx, sinx, x sinx.

Method 2. The above list can be obtained directly from the second statement in Euler’s
theorem. The real exponential atoms are obtained from the first statement in Euler’s
theorem:

1, x, ex, xex, x2ex, e−x.

The second statement of Euler’s theorem applies to the complex factor (r2+1)2 to obtain
the trigonometric atoms

cosx, x cosx, sinx, x sinx.

General Solution. Then yh is a linear combination of the 10 atoms:

yh = c1 + c2x+ c3e
x + c4xe

x + c5x
2ex + c6e

−x

+c7 cosx+ c8x cosx+ c9 sinx+ c10x sinx.
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Example 6.21 (Differential Equation from General Solution)
A linear homogeneous constant coefficient differential equation has general solution

yh = c1 + c2x+ c3e
x + c4xe

x + c5x
2ex + c6 cosx+ c7 sinx.

Find the differential equation.

Solution: Take the partial derivative of yh with respect to the symbols c1, . . . , c7 to
give the atom list

1, x, ex, xex, x2ex, cosx, sinx.

This atom list is constructed from exponential solutions obtained from Euler’s theorem,
applied to the root list

0, 0, 1, 1, 1, i,−i.

There are 7 roots, hence by the root-factor theorem of college algebra the characteristic
polynomial has individual factors r, r, r−1, r−1, r−1, r− i, r+ i. Then the differential
equation is of order 7 with characteristic polynomial

p(r) = (r − 0)2(r − 1)3(r − i)(r + i)
= r6 − 2r5 + 2r4 − 2r3 + r2.

The differential equation is obtained by the translation rj → y(j):

y(6) − 2y(5) + 2y(4) − 2y′′′ + y′′ = 0.

Proofs and Details

Proof of Euler’s Theorem 6.15: The first statement will be proved for n = 2. The
details for the general case are left as an exercise.

Let y = erx. Then
y = erx, y′ = rerx, y′′ = r2erx.

Substitute into the differential equation to obtain the following.

a2y
′′ + a1y

′ + a0y = 0

a2r
2erx + a1re

rx + a0e
rx = 0(

a2r
2 + a1r + a0

)
erx = 0

Then y = erx is a solution if and only if a2r
2 + a1r + a0 = 0, that is, the characteristic

equation is satisfied.

To prove the second statement, assume a differential equation of order n

any
(n) + · · ·+ a0y = 0.

Perform a change of variables y = ecxz, which changes dependent variable y into z. If y
is a solution, then

y = ecxz, y′ = cecxz + ecxz′, y′′ = c2ecxz + 2cecxz′ + ecxz′′, · · ·
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Because each derivative of y is a multiple of ecx, then, after substitution of the relations
into the differential equation, the common factor ecx cancels, giving a new constant
coefficient differential equation for z.

To illustrate, in the case n = 2, the new differential equation for z is

a2z
′′ + (2a2c+ a1)z

′ + (a2c
2 + a1c+ a0)z = 0.

The coefficients of the z-equation are the Taylor series coefficients
pk(0)

k!
of the charac-

teristic polynomial p(r) = a2r
2 + a1r + a0:

a2 =
p′′(c)

2!
,

(2a2c+ a1) =
p′(c)

1!
,

(a2c
2 + a1c+ a0) =

p(c)

0!
.

By induction, the change of variables y = ecxz produces from any
(n) + · · · + a0y = 0 a

new constant-coefficient differential equation bnz
(n)+ · · ·+b0z = 0 whose coefficients are

given by

bk =
pk(c)

k!
.

Assume now characteristic polynomial p(r) = anr
n + · · · + a0 and let r = c be a root

of p(r) = 0 of algebraic multiplicity k + 1. Then p(c) = p′(c) = · · · = p(k)(c) = 0. This
means that b0 = · · · = bk = 0. Therefore, the z-equation is a differential equation in the
variable v = z(k+1). Because the selections z = 1, x, . . . , xk all imply v = 0, then the
polynomials 1, x, . . . , xk are solutions of the z-equation. Hence, y = ecxz implies ecx,
xecx, . . . , xkecx are solutions of the y-equation.

Conversely, assume that ecx, xecx, . . . , xkecx are solutions of the y-equation. We will
verify that r = c is a root of p(r) = 0 of algebraic multiplicity k + 1. First, 1, . . . , xk

are solutions of the z-equation. Setting z = 1 implies b0 = 0 Then setting z = x implies
b1 = 0 (because b0 = 0 already). Proceeding in this way, b0 = · · · = bk = 0. Therefore,
the characteristic polynomial of the z-equation is

q(r) = bnr
n + · · ·+ bk+1r

k+1.

The reader can prove the following useful result; see the exercises.

Lemma 6.1 (Kümmer’s Lemma) Under the change of variables y = ecxz, the character-
istic polynomials p(r), q(r) of the y-equation and the z-equation, respectively, satisfy the
relation q(r) = p(r + c).

Assuming Kümmer’s Lemma, we can complete the proof. Already, we know that rk+1

divides q(r). Then rk+1 divides p(r + c), or equivalently, (r − c)k+1 divides p(r). This
implies r = c is a root of p(r) = 0 of algebraic multiplicity k + 1. ■

Proof of Theorem 6.16: Substitute y = u + iv into the differential equation and
separate terms as follows:

(anu
(n) + · · ·+ a0u) + i(anv

(n) + · · ·+ a0v) = 0.
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6.3 Higher Order Linear Constant Equations

For each x, the left side of the preceding relation is a complex number a + ib with a, b
real. The right side is 0 + 0i. By equality of complex numbers, a = 0 and b = 0, which
implies

anu
(n) + · · ·+ a0u = 0,

anv
(n) + · · ·+ a0v = 0.

Therefore, u and v are real solutions of the differential equation. ■

Exercises 6.3 �

Constant Coefficients
Solve for y(x). Proceed as in Examples
6.13–6.20.

1. 3y′ − 2y = 0

2. 2y′ + 7y = 0

3. y′′ − y′ = 0

4. y′′ + 2y′ = 0

5. y′′ − y = 0

6. y′′ − 4y = 0

7. y′′ + 2y′ + y = 0

8. y′′ + 4y′ + 4y = 0

9. y′′ + 3y′ + 2y = 0

10. y′′ − 3y′ + 2y = 0

11. y′′ + y = 0

12. y′′ + 4y = 0

13. y′′ + y′ + y = 0

14. y′′ + 2y′ + 2y = 0

15. y′′ = 0

16. y′′′ = 0

17. d4y
dx4 = 0

18. d5y
dx5 = 0

19. y′′′ + 2y′′ = 0

20. y′′′ + 4y′ = 0

21. d4y
dx4 + y′′ = 0

22. d5y
dx5 + y′′′ = 0

Detecting Atoms
Decompose each atom into a base atom
times a power of x. If the expression fails
to be an atom, then explain the failure.

23. −x

24. x

25. x2 cosπx

26. x3/2 cosx

27. x1000e−2x

28. x+ x2

29.
x

1 + x2

30. ln |xe2x|

31. sinx

32. sinx− cosx

Higher Order
A homogeneous linear constant-coefficient
differential equation can be defined by (1)
coefficients, (2) the characteristic equation,
(3) roots of the characteristic equation. In
each case, solve the differential equation.

33. y′′′ + 2y′′ + y′ = 0

34. y′′′ − 3y′′ + 2y′ = 0

35. y(4) + 4y′′ = 0

36. y(4) + 4y′′′ + 4y′′ = 0

37. Order 5, r2(r − 1)3 = 0

38. Order 5, (r3 − r2)(r2 + 1) = 0.

39. Order 6, r2(r2 + 2r + 2)2 = 0.
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40. Order 6, (r2 − r)(r2 + 4r + 5)2 = 0.

41. Order 10, (r4+r3)(r2−1)2(r2+1) = 0.

42. Order 10, (r3+r2)(r−1)3(r2+1)2 = 0.

43. Order 5, roots r = 0, 0, 1, 1, 1.

44. Order 5, roots r = 0, 0, 1, i,−i.

45. Order 6, roots r = 0, 0, i,−i, i,−i.

46. Order 6, roots r = 0,−1, 1 + i, 1 −
i, 2i,−2i.

47. Order 10, roots r =
0, 0, 0, 1, 1,−1,−1,−1, i,−i.

48. Order 10, roots r =
0, 0, 1, 1, 1,−1, i,−i, i,−i.

Initial Value Problems
Given in each case is a set of independent
solutions of the differential equation. Solve
for the coefficients c1, c2, . . . in the general
solution, using the given initial conditions.

49. ex, e−x, y(0) = 0, y′(0) = 1

50. xex, ex, y(0) = 1, y′(0) = −1

51. cosx, sinx, y(0) = −1, y′(0) = 1

52. cos 2x, sin 2x, y(0) = 1, y′(0) = 0

53. ex, cosx, sinx, y(0) = −1, y′(0) = 1,
y′′(0) = 0

54. 1, cosx, sinx, y(0) = −1, y′(0) = 1,
y′′(0) = 0

55. ex, xex, cosx, sinx, y(0) = −1, y′(0) =
1, y′′(0) = 0, y′′′(0) = 0

56. 1, x, cosx, sinx, y(0) = 1, y′(0) = −1,
y′′(0) = 0, y′′′(0) = 0

57. 1, x, x2, x3, x4, y(0) = 1, y′(0) = 2,
y′′(0) = 1, y′′′(0) = 3, y(4)(0) = 0

58. ex, xex, x2ex, 1, x, y(0) = 1, y′(0) = 0,
y′′(0) = 1, y′′′(0) = 0, y(4)(0) = 0

Inverse Problem
Find a linear constant-coefficient homoge-
neous differential equation from the given
information. Follow Example 6.21.

59. The characteristic equation is (r +
1)3(r2 + 4) = 0.

60. The general solution is a linear com-
bination of the Euler solution atoms
ex, e2x, e3x, cosx, sinx.

61. The roots of the characteristic polyno-
mial are 0, 0, 2 + 3i, 2− 3i.

62. The equation has order 4. Known so-
lutions are ex + 4 sin 2x, xex.

63. The equation has order 10. Known so-
lutions are sin 2x, x7ex.

64. The equation ismy′′+cy′+ky = 0 with
m = 1 and c, k positive. A solution is
y(x) = e−x/5 cos(2x− θ) for some angle
θ.

Independence of Euler Atoms

65. Apply the independence test page 378
to atoms 1 and x: form equation 0 =
c1 + c2x, then solve for c1 = 0, c2 = 0.
This proves Euler atoms 1, x are inde-
pendent.

66. Show that Euler atoms 1, x, x2 are in-
dependent using the independence test
page 378,

67. A Taylor series is zero if and only if its
coefficients are zero. Use this result to
give a complete proof that the list 1, . . . ,
xk is independent. Hint: a polynomial
is a Taylor series.

68. Show that Euler atoms ex, xex, x2ex

are independent using the independence
test page 378.

Wronskian Test
Establish independence of the given lists of
functions by using the Wronskian test page
385:

Functions f1, f2, . . . , fn are independent if
W (x0) ̸= 0 for some x0, where W (x) is the
n× n determinant∣∣∣∣∣∣∣

f1(x) · · · fn(x)
...

f
(n−1)
1 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣
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69. 1, x, ex

70. 1, x, x2, ex

71. cosx, sinx, ex

72. cosx, sinx, sin 2x

Kümmer’s Lemma

73. Compute the characteristic polynomi-
als p(r) and q(r) for

y′′ + 3y′ + 2y = 0 and
z′′ + z′ = 0.

Verify the equations are related by y =
e−xz and p(r − 1) = q(r).

74. Compute the characteristic polynomi-
als p(r) and q(r) for

ay′′ + by′ + cy = 0 and
az′′ + (2ar0 + b)z′+
(ar20 + br0 + c)z = 0.

Verify the equations are related by y =
er0xz and p(r + r0) = q(r).
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6.4 Variation of Parameters

The Method of Variation of Parameters applies to solve

a(x)y′′ + b(x)y′ + c(x)y = f(x).(1)

Continuity of a, b, c and f is assumed, plus a(x) ̸= 0. The method is important
because it solves the largest class of equations. Specifically included are func-
tions f(x) like ln |x|, |x|, ex2

, x/(1 + x2), which are excluded in the method of
undetermined coefficients.

Homogeneous Equation

The method of variation of parameters uses facts about the homogeneous differ-
ential equation

a(x)y′′ + b(x)y′ + c(x)y = 0.(2)

Success in the method depends upon a general solution expression for (2). As-
sumed are two known solutions y1, y2, Symbols c1, c2 represent arbitrary con-
stants. The general solution:

y = c1y1(x) + c2y2(x)(3)

If a, b, c are constants, then Theorem 6.1, page 431, applied to (2) implies y1
and y2 can be selected as independent Euler solution atoms.

Independence

Two solutions y1, y2 of (2) are called independent if neither is a constant
multiple of the other. The term dependent means not independent, in which
case either y1(x) = cy2(x) or y2(x) = cy1(x) holds for all x, for some constant
c. Independence can be tested through the Wronskian determinant of y1, y2,
defined by

W (x) =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ = y1(x)y
′
2(x)− y′1(x)y2(x).

Theorem 6.17 (Wronskian and Independence)
The Wronskian of two solutions satisfies a(x)W ′+b(x)W = 0, which implies Abel’s
identity

W (x) = W (x0)e
−
∫ x
x0

(b(t)/a(t))dt
.

Two solutions of (2) are independent if and only if W (x) ̸= 0.

Proof on page 466.

Niels Henrik Abel (1802–1829) was born in Nedstrand, Norway. He made major
contributions to mathematics, especially elliptic functions, dying from tubercu-
losis at age 26.
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Theorem 6.18 (Variation of Parameters Formula)
Let a, b, c, f be continuous near x = x0 and a(x) ̸= 0. Let y1, y2 be two
independent solutions of homogeneous equation a(x)y′′+ b(x)y′+ c(x)y = 0 and let
W (x) = y1(x)y

′
2(x)− y′1(x)y2(x). Then the non-homogeneous differential equation

a(x)y′′ + b(x)y′ + c(x)y = f

has a particular solution

yp(x) =

(∫
y2(x)(−f(x))
a(x)W (x)

dx

)
y1(x) +

(∫
y1(x)f(x)

a(x)W (x)
dx

)
y2(x).(4)

If both integrals have limits x0 and x, then yp(x0) = 0.

Proof on page 467.

History of Variation of Parameters

The solution yp was discovered by varying the constants c1, c2 in the homogeneous
solution yh = c1y1 + c2y2, assuming c1, c2 depend on x. This results in formulas

c1(x) =
∫
C1F , c2(x) =

∫
C2F where F (x) = f(x)/a(x), C1(t) =

−y2(t)
W (t)

,C2(t) =

y1(t)

W (t)
; see the historical details on page 467. Then

y = c1y1(x) + c2y2(x) Formula for yh.

y =

(∫
C1F

)
y1(x) +

(∫
C2F

)
y2(x) Substitute for c1, c2.

=

(∫
−y2

F

W

)
y1(x) +

(∫
y1

F

W

)
y2(x) Use (2) for C1, C2.

=

∫
(y2(x)y1(t)− y1(x)y2(t))

F (t)

W (t)
dt Collect on F/W .

=

∫
y1(t)y2(x)− y1(x)y2(t)

y1(t)y′2(t)− y′1(t)y2(t)
F (t)dt Expand W = y1y

′
2 − y′1y2.

Any one of the last three equivalent formulas is called a Classical variation
of parameters formula. The fraction in the last integrand is called Cauchy’s
kernel. We prefer the first, equivalent to equation (4), for ease of use.

Examples and Methods

Example 6.22 (Independence)
Consider y′′ − y = 0. Show the two solutions sinh(x) and cosh(x) are independent
using Wronskians.
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Solution: Let W (x) be the Wronskian of sinh(x) and cosh(x). The calculation below
shows W (x) = −1. By Theorem 6.17, the solutions are independent.

Background. The calculus definitions for hyperbolic functions are sinhx = (ex−e−x)/2,
coshx = (ex + e−x)/2. Their derivatives are (sinhx)′ = coshx and (coshx)′ = sinhx.
For instance, (coshx)′ stands for 1

2 (e
x+ e−x)′, which evaluates to 1

2 (e
x− e−x), or sinhx.

Wronskian detail. Let y1 = sinhx, y2 = coshx. Then

W = y1(x)y
′
2(x)− y′1(x)y2(x) Definition of Wronskian W .

= sinh(x) sinh(x)− cosh(x) cosh(x) Substitute for y1, y
′
1, y2, y

′
2.

= 1
4 (e

x − e−x)2 − 1
4 (e

x + e−x)2 Apply exponential definitions.

= −1 Expand and cancel terms.

Example 6.23 (Wronskian)
Given 2y′′ − xy′ + 3y = 0, verify that a solution pair y1, y2 has Wronskian W (x) =

W (0)ex
2/4.

Solution: Let a(x) = 2, b(x) = −x, c(x) = 3. The Wronskian is a solution of W ′ =

−(b/a)W , hence W ′ = xW/2. The solution is W = W (0)ex
2/4, by the linear integrating

factor method or the homogeneous equation shortcut.

Example 6.24 (Variation of Parameters)
Solve y′′ + y = secx by variation of parameters, verifying y = c1 cosx + c2 sinx +
x sinx+ cos(x) ln | cos(x)|.

Solution:
Homogeneous solution yh. Theorem 6.1 is applied to the constant equation y′′+y = 0.
The characteristic equation r2+1 = 0 has roots r = ±i and then yh = c1 cosx+ c2 sinx.

Wronskian. Suitable independent solutions are y1 = cosx and y2 = sinx, taken from
the formula for yh. Then W (x) = cos2 x+ sin2 x = 1.

Calculate yp. The variation of parameters formula (4) is applied. The integration
proceeds near x = 0, because sec(x) is continuous near x = 0.

yp(x) = −y1(x)
∫
y2(x) sec(x)dx+ y2(x)

∫
y1(x) secxdx 1

= − cosx
∫
tan(x)dx+ sinx

∫
1dx 2

= x sinx+ cos(x) ln | cos(x)| 3

Details: 1 Use equation (4). 2 Substitute y1 = cosx, y2 = sinx. 3 Integral tables
applied. Integration constants set to zero.

Proofs and Details

Proof of Theorem 6.17: The function W (t) given by Abel’s identity is the unique
solution of the growth-decay equation W ′ = −(b(x)/a(x))W ; see page 3. It suffices then
to show that W satisfies this differential equation. The details:
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W ′ = (y1y
′
2 − y′1y2)

′ Definition of Wronskian.

= y1y
′′
2 + y′1y

′
2 − y′′1 y2 − y′1y

′
2 Product rule; y′1y

′
2 cancels.

= y1(−by′2 − cy2)/a− (−by′1 − cy1)y2/a Both y1, y2 satisfy (2).

= −b(y1y′2 − y′1y2)/a Cancel common cy1y2/a.

= −bW/a Verification completed.

The independence statement will be proved from the contrapositive: W (x) = 0 for all x
if and only if y1, y2 are not independent. Technically, independence is defined relative
to the common domain of the graphs of y1, y2 and W . Henceforth, for all x means for
all x in the common domain.

Let y1, y2 be two solutions of (2), not independent. By re-labelling as necessary, y1(x) =
cy2(x) holds for all x, for some constant c. Differentiation implies y′1(x) = cy′2(x). Then
the terms in W (x) cancel, giving W (x) = 0 for all x.

Conversely, let W (x) = 0 for all x. If y1 ≡ 0, then y1(x) = cy2(x) holds for c = 0 and y1,
y2 are not independent. Otherwise, y1(x0) ̸= 0 for some x0. Define c = y2(x0)/y1(x0).
Then W (x0) = 0 implies y′2(x0) = cy′1(x0). Define y = y2 − cy1. By linearity, y is a
solution of (2). Further, y(x0) = y′(x0) = 0. By uniqueness of initial value problems,
y ≡ 0, that is, y2(x) = cy1(x) for all x, showing y1, y2 are not independent.

Proof of Theorem 6.18: Let F (t) = f(t)/a(t), C1(x) = −y2(x)/W (x), C2(x) =
y1(x)/W (x). Then yp as given in (4) can be differentiated twice using the product rule
and the fundamental theorem of calculus rule (

∫
g)′ = g. Because y1C1 + y2C2 = 0 and

y′1C1 + y′2C2 = 1, then yp and its derivatives are given by

yp(x) = y1
∫
C1Fdx+ y2

∫
C2Fdx,

y′p(x) = y′1
∫
C1Fdx+ y′2

∫
C2Fdx,

y′′p (x) = y′′1
∫
C1Fdx+ y′′2

∫
C2Fdx+ F (x).

Let F1 = ay′′1 + by′1 + cy1, F2 = ay′′2 + by′2 + cy2. Then

ay′′p + by′p + cyp = F1

∫
C1Fdx+ F2

∫
C2Fdx+ aF.

Because y1, y2 are solutions of the homogeneous differential equation, then F1 = F2 = 0.
By definition, aF = f . Therefore,

ay′′p + by′p + cyp = f.

■

Historical Details. The original variation ideas, attributed to Joseph Louis Lagrange
(1736-1813), involve substitution of y = c1(x)y1(x) + c2(x)y2(x) into (1) plus imposing
an extra unmotivated condition on the unknowns c1, c2:

c′1y1 + c′2y2 = 0.

The product rule gives y′ = c′1y1 + c1y
′
1 + c′2y2 + c2y

′
2, which then reduces to the two-

termed expression y′ = c1y
′
1 + c2y

′
2. Substitution into (1) gives

a(c′1y
′
1 + c1y

′′
1 + c′2y

′
2 + c2y

′′
2 ) + b(c1y

′
1 + c2y

′
2) + c(c1y1 + c2y2) = f

which upon collection of terms becomes

c1(ay
′′
1 + by′1 + cy1) + c2(ay

′′
2 + by′2 + cy2) + ay′1c

′
1 + ay′2c

′
2 = f.
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The first two groups of terms vanish because y1, y2 are solutions of the homogeneous
equation, leaving just ay′1c

′
1+ay′2c

′
2 = f . There are now two equations and two unknowns

X = c′1, Y = c′2:
ay′1X + ay′2Y = f,
y1X + y2Y = 0.

Solving by elimination,

X =
−y2f
aW

, Y =
y1f

aW
.

Then c1 is the integral of X and c2 is the integral of Y , which completes the historical
account of the relations

c1(x) =

∫
−y2(x)f(x)
a(x)W (x)

dx, c2(x) =

∫
y1(x)f(x)

a(x)W (x)
dx.

Exercises 6.4 �

Independence: Constant Equation
Find solutions y1, y2 of the given homoge-
neous differential equation using Theorem
6.1 page 431. Then apply the Wronskian
test page 464 to prove independence, fol-
lowing Example 6.22.

1. y′′ − y = 0

2. y′′ − 4y = 0

3. y′′ + y = 0

4. y′′ + 4y = 0

5. 4y′′ = 0

6. y′′ = 0

7. 4y′′ + y′ = 0

8. y′′ + y′ = 0

9. y′′ + y′ + y = 0

10. y′′ − y′ + y = 0

11. y′′ + 8y′ + 2y = 0

12. y′′ + 16y′ + 4y = 0

Independence for Euler’s Equation
Change variables, x = et, u(t) = y(x)
in Ax2y′′(x) + Bxy′(x) + Cy(x) = 0
to obtain a constant-coefficient equation

A

(
d2u

dt2
− du

dt

)
+B

du

dt
+Au = 0. Solve for

u(t) and then substitute t = ln |x| to obtain
y(x). Find two solutions y1, y2 which are
independent by the Wronskian test page
464.

13. x2y′′ + y = 0

14. x2y′′ + 4y = 0

15. x2y′′ + 2xy′ + y = 0

16. x2y′′ + 8xy′ + 4y = 0

Wronskian
Compute the Wronskian, up a constant
multiple, without solving the differential
equation: Example 6.23 page 466.

17. y′′ + y′ − xy = 0

18. y′′ − y′ + xy = 0

19. 2y′′ + y′ + sin(x)y = 0

20. 4y′′ − y′ + cos(x)y = 0

21. x2y′′ + xy′ − y = 0

22. x2y′′ − 2xy′ + y = 0

Variation of Parameters
Find the general solution yh + yp by ap-
plying a variation of parameters formula:
Example 6.24 page 466.

23. y′′ = x2

24. y′′ = x3
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25. y′′ + y = sinx

26. y′′ + y = cosx

27. y′′ + y′ = ex

28. y′′ + y′ = −ex

29. y′′ + 2y′ + y = e−x

30. y′′ − 2y′ + y = ex
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6.5 Undetermined Coefficients

Themethod of undetermined coefficients applies to solve constant-coefficient
differential equations

ay′′ + by′ + cy = f(x).(1)

It finds a particular solution yp without the integration steps present in variation
of parameters. The method’s importance is argued from its direct applicability to
second order differential equations in mechanics and circuit theory. Requirements
for f(x) appear below.

Everything said here for second order differential equations applies unchanged to
higher order differential equations

y(n) + pn−1y
(n−1) + · · ·+ p0y = f(x).

Definition 6.2 (Euler Solution Atom)
The term atom is an abbreviation for the phrase Euler solution atom of a constant-
coefficient linear homogeneous differential equation. Assume symbols a and b are
real constants with b > 0. Define an Euler base atom as one of the functions

eax, eax cos bx, eax sin bx.

Define an Euler solution atom as a power xm times a base atom, for integers
m = 0, 1, 2, . . .:

Euler solution atom = xm(base atom).

Requirements

The method of undetermined coefficients has special requirements:

• Equation ay′′ + by′ + cy = f(x) has constant coefficients a, b, c.

• The function f(x) is a sum of constants times Euler solution atoms.

Method of Undetermined Coefficients

Step 1. Define the list of k Euler atoms in a trial solution using Rule I and Rule II
[details below]. Multiply these atoms by undetermined coefficients d1,
. . . , dk, then add to define trial solution y.

Step 2. Substitute y into the differential equation.

Step 3. Match coefficients of Euler atoms left and right to write out linear algebraic
equations for unknowns d1, d2, . . . , dk. Solve the equations.

Step 4. The trial solution y with evaluated coefficients d1, d2, . . . , dk becomes
the particular solution yp.
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The Trial Solution Method

Central to the method of undetermined coefficients is the concept of a trial
solution y, which is formally a linear combination of functions with coefficients
yet to be determined. The method uses a guess of the form of a particular
solution, then finds it explicitly without actually solving the differential equation.
Knowing one particular solution yp is enough to give the general solution of the
differential equation (1), due to the superposition principle

y = yh + yp.

Example 6.25 (Trial Solution Illustration)

Consider the equation y′′ = 6x+ ex and a trial solution

y = d1x
3 + d2e

x.

Derive the equation
yp = x3 + ex,

by calculating the undetermined coefficients d1, d2.

Solution: We first discuss how to solve the differential equation, because this background
is needed to understand how the trial solution method works.

Answer check. The method of quadrature also applies to find y = c1 + c2x+ x3 + ex

instead of y = x3 + ex. Superposition y = yh + yp implies that the shortest answer for
a particular solution is yp = x3 + ex, obtained by dropping the homogeneous solution
c1 + c2x.

Details.

We will show how to find d1, d2 in the trial solution y = d1x
3 + d2e

x without solv-
ing the differential equation. The idea is to substitute the trial solution into the
differential equation. This gives from equation y′′ = 6x+ ex the successive relations

(d1x
3 + d2e

x)′′ = 6x+ ex

6d1x+ d2e
x = 6x+ ex

The last relation implies, by independence of the atoms x, ex, the coefficient-matching
equations 4

6d1 = 6,
d2 = 1.

The solution to this 2 × 2 linear system of equations is d1 = d2 = 1. Then the trial
solution is

y = d1x
3 + d2e

x = x3 + ex.

We write yp = x3 + ex.

That yp is actually a solution of y′′ = 6x+ ex can be justified by computing the second
derivative of x3 + ex.

4Euler atoms are independent in the sense of linear algebra. See Theorem 6.11, page 453.
Independence means unique representation of linear combinations, which provides coefficient
matching.
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Why the Trial Solution has only Atoms x3 and ex

The differential equation y′′ = 6x + ex can also be solved by answering this
question:

What expression y is differentiated twice to obtain 6x+ ex?

Calculus suggests differentiating some cubic polynomial and some expression con-
taining ex. This is the central idea behind choosing a trial solution. Any trial
solution, when substituted into the left side y′′ of the differential equation, has to
produce the terms in 6x+ ex. Therefore, Euler atoms in the trial solution must
have base atoms which appear in terms of the right side 6x+ ex.

Explained is why terms in the trial solution y = d1x
3+d2e

x are limited to base
atoms 1 and ex.

Unexplained is why atoms 1, x, x2 were not included in the trial solution.
Insight can be gained by substitution of a combination d3 + d4x+ d5x

2 into the
differential equation. Consider these steps:

(trial solution)′′ = 6x+ ex

(d3 + d4x+ d5x
2)′′ = 6x+ ex

d3(1)
′′ + d4(x)

′′ + d5(x
2)′′ = 6x+ ex

d3(0) + d4(0) + d5(2) = 6x+ ex

The coefficients d3 and d4 are multiplied by zero, because 1, x are solutions
of the homogeneous equation y′′ = 0. In general, homogeneous solution terms
should not be added to a trial solution, because upon substitution these terms
vanish from the left side of the differential equation. More succinctly, the missing
variables d3, d4 are free variables in the language of linear algebra. We would
choose d3 = d4 = 0 for simplicity. Term 2d5 is a multiple of base atom 1 = e0x.
Because that atom does not appear on the right side 6x+ ex, then d5 = 0. The
conclusion for this experiment: the trial solution y = d3 + d4x + d5x

2 has three
useless terms which do not contribute to terms on the right side of y′′ = 6x+ ex.

Euler Solution Atoms in the General Solution

Superposition y = yh + yp is used to describe the structure of solutions in dif-
ferential equations solved by the method of undetermined coefficients. The ho-
mogeneous solution yh of ay′′ + by′ + cy = 0 is constructed from atoms found
by Euler’s theorem. Therefore, yh is a sum of constants times atoms. For the
nonhomogeneous equation ay′′+by′+cy = f(x), the method of undetermined co-
efficients finds yp as a sum of constants times atoms. The plan here is to describe
completely the atoms in solutions yh and yp.

Theorem 6.19 (Solution Structure)
A differential equation ay′′ + by′ + cy = f(x) with constant coefficients a, b, c and
right side f(x) a sum of constants times Euler atoms has general solution y = yh+yp
which is a sum of constants times Euler atoms. In the language of linear algebra:
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Solutions y(x) of ay′′ + by′ + cy = f(x) are a linear combination of
Euler atoms.

Euler Atoms in the Homogeneous Solution

The atoms in yh are found from Euler’s theorem applied to the characteristic
equation ar2+br+c = 0. To illustrate, the characteristic equation r2+2r+1 = 0
has double root −1, −1 and the corresponding atoms are e−x, xe−x.

Euler atoms can be extracted from a general solution yh = c1e
x+c2xe

x by taking
partial derivatives on the symbols c1, c2. Conversely, two distinct Euler atoms
are sufficient to form the general solution yh. Euler atoms for the homogeneous
equation can therefore be prescribed by any one of the following means:

1. The characteristic equation ar2 + br + c = 0.

2. The roots of the characteristic equation.

3. The general solution expression yh, with symbols c1, c2.

Euler Atoms in a Particular Solution yp

The Euler atoms that appear in yp may be assumed to not duplicate any atoms in
yh. The logic is that yp can be shortened in length by moving any homogeneous
solution into the terms of yh, due to superposition y = yh + yp.

Explained below is how to construct the k atoms in yp directly from the right
side f(x) of the differential equation. This is done by two rules, called Rule I
and Rule II. We always proceed under the assumption that Rule I will work,
and if it fails, then we go on to apply Rule II.

Undetermined Coefficients Rule I

Assume f(x) in the equation ay′′ + by′ + cy = f(x) is a sum of constants times Euler
atoms. For each atom A appearing in f(x), extract all distinct atoms that appear in A,
A′, A′′, . . . , then collect all computed atoms into a list of k distinct Euler atoms.

Test for a Valid Trial Solution

If the list contains no solution of the homogeneous differential equation, then
multiply the k Euler atoms by undetermined coefficients d1, . . . , dk to form the trial
solution

yp = d1(atom 1) + d2(atom 2) + · · ·+ dk(atom k).
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Undetermined Coefficients Rule II

Assume Rule I constructed a list of k atoms, but Rule I FAILED the TEST. The
particular solution yp is still a sum of constants times k Euler atoms. Rule II changes
some or all of the k atoms, by repeated multiplication by x.

The k-atom list is subdivided into groups with the same base atom, called group 1,
group 2, and so on. Each group is tested for a solution of the homogeneous differential
equation. If found, then multiply each Euler atom in the group by factor x. Repeat until
no group contains a solution of the homogeneous differential equation. The final
set of k Euler atoms is used to construct

yp = d1(atom 1) + d2(atom 2) + · · ·+ dk(atom k).

Grouping Atoms

The Rule I process of finding derivatives A, A′, A′′,. . . can be replaced by the
simpler task of forming the group of each atom A. The idea can be seen from
the example A = x2ex. Each differentiation A,A′A′′, . . . causes one lower power
of x to appear, then we can predict that the distinct atoms that appear in the
derivatives of A are

ex, xex, x2ex.

This set is called the group of Euler atom A. In this example, B = ex is the
base atom for atom A = x2ex and the group is base atom B multiplied by the
powers 1, x, x2.

Assume Euler atom A is base atom B times a power xm, for some integer m ≥ 0.
The Group of Euler atom A is the base atom B multiplied successively by the
m + 1 powers 1, x, . . . , xm. The group starts with the base atom B and ends
with the atom A = xmB.

B = any base atom
group of xmB ≡ B, xB, x2B, . . . , xmB.

Differentiation of an atom A with a sine or cosine factor produces two groups,
not one. For example, A = x2 sinx upon differentiation produces two groups

cosine group : cosx, x cosx, x2 cosx
sine group : sinx, x sinx, x2 sinx.

Key Examples of Atom Grouping

1. The atom x2e0x has base atom e0x = 1 and group 1, x, x2. The group size is 3.

2. The atom e−πx has base atom e−πx and group e−πx. A base atom has group size
1.

3. Atom x3ex cosx has base atom ex cosx and two 4-element groups:
ex cosx, xex cosx, x2ex cosx, x3ex cosx and
ex sinx, xex sinx, x2ex sinx, x3ex sinx.
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4. Atom x2ex has base atom ex. The group is the set of 3 atoms ex, xex, x2ex.

5. If A = xex cos 2x, then the Rule I process of extracting atoms from A, A′, A′′,
. . . causes two groups to be formed, group 1: ex cos 2x, xex cos 2x and group 2:
ex sin 2x, xex sin 2x. A shortcut for writing the second group is to change cosine
to sine in the first group.

Undetermined Coefficient Method Details

The undetermined coefficients trial solution y uses Rule I and Rule II. Then a
particular solution, according to the method, is

yp = a linear combination of atoms.

The discussion here is restricted to second order equations n = 2.

Superposition. The relation y = yh + yp suggests solving ay′′ + by′ + cy = f(x)
in two stages:

(a) Apply Euler’s Theorem to find yh as a sum of constants times atoms.

(b) Apply the method of undetermined coefficients to find yp as a sum of
constants times atoms.

Symbols. The symbols c1, c2 are reserved for use as arbitrary constants in the
general solution yh of the homogeneous equation. Symbols d1, d2, . . . are reserved
for use in the trial solution y of the non-homogeneous equation. Abbreviations:
c = constant, d = determined.

Expect to find two arbitrary constants c1, c2 in the solution yh, but in contrast,
no arbitrary constants appear in yp. The literature’s terminology undetermined
coefficients is misleading, because in fact symbols d1, d2, . . . are determined.

Algebra Background. The trial solution method requires background in the
solution of simultaneous linear algebraic equations, as is often taught in college
algebra. A linear algebra background will make the details seem even easier.

Example 6.26 (Undetermined Coefficients Illustration)

Solve the differential equation y′′ − y = x + xex by the method of undetermined
coefficients, verifying

yh = c1e
x + c2e

−x, yp = −x−
1

4
xex +

1

4
x2ex.

Solution:
Homogeneous Solution. The homogeneous equation

y′′ − y = 0
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has characteristic equation r2 − 1 = 0. The roots r = ±1 produce by Euler’s theorem
the list of atoms ex, e−x. Then the homogeneous solution is a linear combination of the
Euler atoms: yh = c1e

x + c2e
−x.

Trial Solution. The shortest trial solution is

y = (d1 + d2x) + (d3xe
x + d4x

2ex),

to be justified below.

Rule I. Let f(x) = x + xex. The derivatives f, f ′, f ′′, . . . are linear combinations of
the four Euler atoms 1, x, ex, xex. Because ex is a solution of the homogeneous equation
y′′ − y = 0, then Rule I FAILS the TEST.

Rule II. Divide the list 1, x, ex, xex into two groups with identical base atom:

Group Euler Atoms Base Atom
group 1 : 1, x 1
group 2 : ex, xex ex

Group 1 contains no solution of the homogeneous equation y′′ − y = 0, therefore Rule
II changes nothing. Group 2 contains solution ex of the homogeneous equation. Rule
II says to multiply group 2 by x, until the modified group contains no solution of the
homogeneous differential equation y′′ − y = 0 .Then

Group Euler Atoms Action
New group 1 : 1, x no change
New group 2 : xex, x2ex multiplied once by x

In New Group 2, xex is not a solution of the homogeneous problem, because if it is,
then 1 is a double root of the characteristic equation r2 − 1 = 0 [it isn’t].

The final groups have been found in Rule II. The shortest trial solution is

y = linear combination of Euler atoms in the new groups
= d1 + d2x+ d3xe

x + d4x
2ex.

Equations for the undetermined coefficients. Substitute y = d1 + d2x + d3xe
x +

d4x
2ex into y′′ − y = x+ xex. The details:

LHS = y′′ − y Left side of the equation.

= [y′′1 − y1] + [y′′2 − y2] Let y = y1 + y2, y1 = d1 + d2x, y2 = d3xe
x +

d4x
2ex.

= [0− y1]+
[2d3e

x + 2d4e
x + 4d4xe

x]
Use y′′1 = 0 and y′′2 = y2+2d3e

x+2d4e
x+4d4xe

x.

= (−d1)1 + (−d2)x+
(2d3 + 2d4)e

x + (4d4)xe
x

Collect on distinct Euler atoms.

Then y′′ − y = f(x) simplifies to

(−d1)1 + (−d2)x+ (2d3 + 2d4)e
x + (4d4)xe

x = f(x).

Write out a 4×4 system. Because f(x) = x+xex, the last display gives the expansion
below, which has been written with each side a linear combination of the atoms 1, x, ex,
xex.

(−d1)1 + (−d2)x+
(2d3 + 2d4)e

x + (4d4)xe
x = (0)1 + (1)x+ (0)ex + (1)xex.

(2)
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Equate coefficients of matching atoms 1, x, ex, xex left and right to give the system of
equations

−d1 = 0, match on 1
−d2 = 1, match on x

2d3 +2d4 = 0, match on ex

4d4 = 1. match on xex

(3)

Atom matching effectively removes x and changes the equation into a 4×4 linear algebraic
nonhomogeneous system of equations for d1, d2, d3, d4.

The technique is independence. To explain, linear independence of atoms means that a
linear combination of atoms is uniquely represented. Then two such equal representations
must have matching coefficients. Relation (2) says that two linear combinations of the
same list of atoms are equal. Then coefficients of 1, x, ex, xex left and right in (2) must
match, giving system (3).

Solve the equations. The 4× 4 system by design always has a unique solution. In the
language of linear algebra, there are zero free variables. In the present case, the system
is triangular, solved by back-substitution to give the unique solution d1 = 0, d2 = −1,
d4 = 1/4, d3 = −1/4.
Report yp. The trial solution y = d1+d2x+d3xe

x+d4x
2ex with determined coefficients

d1 = 0, d2 = −1, d3 = −1/4, d4 = 1/4 becomes the particular solution

yp = −x− 1

4
xex +

1

4
x2ex.

General solution. Superposition implies the general solution is y = yh + yp. From
above, yh = c1e

x + c2e
−x and yp = −x− 1

4xe
x + 1

4x
2ex. Then y = yh + yp is given by

y = c1e
x + c2e

−x − x− 1

4
xex +

1

4
x2ex.

Answer Check. Computer algebra system maple is used.

yh:=c1*exp(x)+c2*exp(-x);

yp:=-x-(1/4)*x*exp(x)+(1/4)*x^2*exp(x);

de:=diff(y(x),x,x)-y(x)=x+x*exp(x):

odetest(y(x)=yh+yp,de); # Success is a report of zero.

Further examples: pages 481, 482, 484, 484.

Constructing Euler Atoms from Roots

An Euler atom is constructed from a real number a or a complex number a+ ib.
The number used for the construction is called a root for the atom. Euler’s
theorem page 454 provides the rules:

Real root r = a constructs the exponential base atom eax. If a = 0, then
the base atom is e0x = 1.

For a complex root r = a + ib, b > 0, construct two base atoms eax cos bx
and eax sin bx.
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Atoms constructed from roots a or a+ ib using Euler’s multiplicity theorem gives
the complete list of all possible atoms:

Root Euler Atoms (b > 0)

r = a eax, xeax, x2eax, . . . , xneax

r = a+ ib eax cos bx, xeax cos bx, x2eax cos bx, . . . , xneax cos bx

r = a+ ib eax sin bx, xeax sin bx, x2eax sin bx, . . . , xneax sin bx

Constructing Roots from Euler Atoms

An Euler atom can be viewed as having been constructed from a unique real
root a or a unique pair of complex roots a ± ib. The reverse process considers
an atom and finds the possible root (or roots) used for its construction plus the
root’s multiplicity. Details in the following table:

Euler Atom Base Atom Root Multiplicity

xneax eax a n+ 1

xneax cos(bx) eax cos(bx) a± ib n+ 1

xneax sin(bx) eax sin(bx) a± ib n+ 1

Examples of Atoms and Roots

The atoms for root r = 0 of multiplicity 4 are 1, x, x2, x3. The atoms for root
r = 2 + 3i of multiplicity 3 are

e2x cos(3x), xe2x cos(3x), x2e2x cos(3x)
e2x sin(3x), xe2x sin(3x), x2e2x sin(3x).

The roots for atom x3 are r = 0, 0, 0, 0 (quad root). The roots for atom xex are
r = 1, 1. The roots for atom x cosx are r = i,−i, i,−i (double complex root).

Polynomials and Root Multiplicity

In college algebra, roots of polynomials are studied through the theory of equa-
tions, which includes the root and factor theorem, the rational root theorem, the
division algorithm and Descarte’s rule of signs.

The multiplicity of a polynomial root r = r0 is defined in college algebra to be
the unique integer m such that (r−r0)

m divides the polynomial, but (r−r0)
m+1

does not.

The algebra topic is enriched by calculus:

Theorem 6.20 (Multiplicity of a Root)
Let p(r) be the characteristic polynomial for a given linear homogeneous differential
equation with constant coefficients. The Multiplicity of a root r = r0 of p(r) = 0
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can be determined by calculus as follows.

Multiplicity 1 p(r0) = 0, p′(r0) ̸= 0
Multiplicity 2 p(r0) = p′(r0) = 0, p′′(r0) ̸= 0
Multiplicity 3 p(r0) = p′(r0) = p′′(r0) = 0, p′′′(r0) ̸= 0

...
...

Multiplicity m p(r0) = · · · = p(m−1)(r0) = 0, p(m)(r0) ̸= 0

Factorization of the characteristic polynomial may be possible. If so, then the
roots and their multiplicities are all known at once. Factorization is not needed
at all to test if r = r0 is a root, and only basic calculus is required to determine
the multiplicity of a root.

Computing the Shortest Trial Solution

Described here is are two alternatives to Rule I and Rule II, to construct the short-
est trial solution in the method of undetermined coefficients. The first method
uses Laplace theory. The second method uses differential operator techniques,
presented here assuming minimal background.

Laplace’s Method

Readers who are unfamiliar with Laplace theory should skip this subsection and
go on to the next.

The idea will be communicated by example, which hopefully is enough for a
reader already familiar with Laplace theory. Suppose we are going to solve the
equation

d2y

dt2
+ y = t+ et

using the theory of undetermined coefficients. Then Rule I applies and we don’t
need Rule II, giving y = yh + yp where

yh = c1 cos t+ c2 sin t, yp = d1 + d+ 2t+ d3e
t.

Laplace theory can quickly find yp by assuming zero initial data y(0) = y′(0) = 0,
in which case another candidate y for yp is found by the transfer function method:

L(y) = (Transfer function)(Laplace of t+ et) =
s2 + s− 1

s2(s− 1)(s2 + 1)
.

Partial fraction theory applies:

L(y) = a+ bs

s2 + 1
+

c

s
+

d

s2
+

f

s− 1
= L(a sin t+ b cos t+ c+ dt+ fet).
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Lerch’s theorem applies:

y = a sin t+ b cos t+ c+ dt+ fet.

The term a sin t + b cos t represents a solution yh of the homogeneous problem
y′′ + y = 0. Remove the homogeneous solution, then report a particular solution
as having the form

yp = c+ dt+ fet.

This is the shortest trial solution, obtained by Laplace theory.

The Method of Annihilators

Suppose that f(x) is a sum of constants times Euler atoms. The Annihilator of
f(x) is the unique minimal-order homogeneous constant-coefficient higher order
differential equation of leading coefficient one which has f(x) as a particular
solution.

For example, if f(x) = x + ex, then the annihilator of f(x) is the third order
constant-coefficient homogeneous differential equation [details in examples below]

y′′′ − y′′ = 0

Required is that f(x) is a particular solution of the differential equation, related
to the general solution y(x) by specialization of constants.

Examples of annihilators: The differential equation y′′+y = 0 is the annihila-
tor for sinx, but also the annihilator for 2 cosx− sinx. The differential equation
y′′′ + 4y′ = 0 is the annihilator for any of sin 2x, 1 + cos 2x, 7− 5 sin 2x.

An annihilator can be given by its characteristic equation, e.g., r3 + 4r = 0
generates annihilator y′′′ + 4y′ = 0.

Characteristic Polynomial of the Annihilator

Let f(x) be a given linear combination of atoms. The algorithm:

1. Determine the list of atoms for f(x).

2. Find the root(s) for each base atom B. Then find the corresponding highest
power real factors in the characteristic equation, using Euler’s theorem.

3. The characteristic polynomial is the product of the highest power distinct
factors so found.

For instance, f(x) = 2ex + cos 3x − x − x3 has base atoms ex, cos 3x, 1 with
corresponding roots 1, ±3i, 0, 0, 0, 0, listed according to multiplicity. By Euler’s
theorem, the corresponding factors with highest powers are r−1, r2+9, (r−0)4,
which implies the characteristic polynomial is (r − 1)(r2 + 9)r4.
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Annihilator Method Algorithm

Assume that the non-homogeneous differential equation of order n has constant
coefficients and the right side f(x) is a linear combination of atoms. The method
arises by applying the annihilator of f , as a differential operator, to the non-
homogeneous differential equation

y(n) +
n−1∑
k=0

aky
(k) = f(x).

Because the annihilator applied to f(x) is zero, then any solution y = yp(x)
satisfies a higher-order homogeneous equation, whose characteristic equation is
known [see item 3 below].

1. Find the homogeneous equation characteristic polynomial p(r).

2. Find the characteristic polynomial q(r) for the annihilator of f(x).

3. The shortest trial solution is a linear combination of the atoms obtained from
p(r)q(r) = 0, after removing those atoms which correspond to the roots of
p(r) = 0.

Further examples pages 486, 486.

Further study

The trial solution method is enriched by developing a Library of Special Meth-
ods for finding yp, which includes Kümmer’s method; see page 575. The library
provides an independent justification of the trial solution method. The only
background required is college algebra and polynomial calculus. The trademark
of the library method is the absence of linear algebra, tables or special cases, that
can be found in other literature on the subject.

Examples

Example 6.27 (Polynomial Trial Solution)

Solve for yp in y′′ = 2 − x + x3 using the method of undetermined coefficients,

verifying yp = x2 − 1

6
x3 +

1

20
x5.

Solution:
Homogeneous solution. The homogeneous equation y′′ = 0 has characteristic equa-
tion r2 = 0 with roots r = 0, 0. Euler’s theorem generates the two atoms 1, x. Then the
homogeneous solution is yh = c1 + c2x.

Trial solution. Let’s justify the selection of the trial solution

y = d1x
2 + d2x

3 + d3x
4 + d4x

5.
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Rule I applied to the right side f(x) = 2− x+ x3 gives a single group of four atoms

group 1 : 1, x, x2, x3.

Because 1 is a solution of the homogeneous equation y′′ = 0, then Rule I FAILS the
TEST. Rule II is applied to group 1, which modifies the group by multiplication by
x. The correction by x-multiplication must be applied twice, because both 1 and x are
solutions of the homogeneous differential equation y′′ = 0. Then the new group is

New group 1 : x2, x3, x4, x5.

The trial solution is then a linear combination of four Euler atoms from the new group,
y = d1x

2 + d2x
3 + d3x

4 + d4x
5.

Equations for the undetermined coefficients. The details:

2− x+ x3 = y′′ Reverse sides.

= 2d1 + 6d2x+ 12d3x
2 + 20d4x

3 Substitute y.

Equate coefficients of Euler atoms on each side of the equal sign to obtain the system of
equations

2d1 = 2,
6d2 = −1,
12d3 = 0,
20d4 = 1.

Solve the equations. This is a triangular system of linear equations for unknowns d1,
d2, d3, d4. Solving gives d1 = 1, d2 = −1/6, d3 = 0, d4 = 1/20.

Report yp. The trial solution expression y = d1x
2+d2x

3+d3x
4+d4x

5 after substitution
of the values found for d1 to d4 gives the particular solution

yp = x2 − 1

6
x3 +

1

20
x5.

Example 6.28 (Undetermined Coefficient Method)

Solve y′′+y = 2+ex+sin(x) by the trial solution method, verifying y = c1 cos(x)+
c2 sin(x) + 2 + 1

2e
x − 1

2x sinx.

Solution:

Homogeneous solution. The characteristic equation for the homogeneous equation
y′′ + y = 0 is r2 + 1 = 0. It has roots r = ±i and atom list cosx, sinx. Then yh is a
linear combination of the two atoms:

yh = c1 cosx+ c2 sinx.

Symbols c1 and c2 are arbitrary constants.

Rule I. The right side f(x) = 2 + ex + sinx of the differential equation is differentiated
a few times to discover the atom list 1, ex, cosx, sinx. Because cosx is a solution of the
homogeneous equation y′′ + y = 0, then Rule I FAILS the TEST.

Rule II. The Euler atoms are grouped by equal base atom as follows.
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Group Euler Atoms Rule II action New Group
group 1: 1 no change 1
group 2: ex no change ex

group 3: cosx multiply once by x x cosx
group 4: sinx multiply once by x x sinx

Group 1 and Group 2 are unchanged by Rule II, because they do not contain a
solution of the homogeneous equation y′′ + y = 0. Group 3 and Group 4 do contain a
homogeneous solution, therefore each group is multiplied by x. The resulting new groups
3 and 4 do not contain a homogeneous solution. It is expected, in general, to iterate on
x-multiplication on a group until the first time that the new group contains no solution
of the homogeneous equation.

The trial solution is a linear combination of the four Euler atoms in the new groups:

y = d1 + d2e
x + d3x cosx+ d4x sinx.

Equations for the undetermined coefficients.

LHS = y′′ + y Left side of the equation y′′ + y =
2 + ex + sin(x).

= d1 + 2d2e
x − 2d3 sin(x) + 2d4 cos(x) Substitute trial solution y.

The equation y′′ + y = 2 + ex + sin(x) becomes

d1 + 2d2e
x − 2d3 sin(x) + 2d4 cos(x) = 2 + ex + sin(x).

Equating coefficients of atoms left and right implies the equations

d1 = 2,
2d2 = 1,
−2d3 = 1,
2d4 = 0.

Solve the equations. There are no details, because the system is diagonal. The
displayed answers are d1 = 2, d2 = 1/2, d3 = −1/2, d4 = 0.

Particular solution yp. The particular solution is obtained from the trial solution
y = d1 + d2e

x + d3x cosx+ d4x sinx by replacing the undetermined coefficients d1 to d4
by their values determined above:

yp = 2 +
1

2
ex − 1

2
x cos(x).

General Solution. Add yh and yp to obtain the general solution

y = c1 cos(x) + c2 sin(x) + 2 +
1

2
ex − 1

2
x cos(x).

Answer check. Computer algebra system maple checks the answer as follows.

dsolve(diff(y(x),x,x)+y(x)=2+exp(x)+sin(x),y(x));

# y(x) = 2+1/2*exp(x)-1/2*cos(x)*x+_C1*cos(x)+_C2*sin(x)
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Example 6.29 (Two Methods)

Solve y′′ − y = ex by undetermined coefficients and by variation of parameters.
Explain any differences in the answers.

Solution: The general solution is reported to be y = yh + yp = c1e
x + c2e

−x + xex/2.
Details follow.

Homogeneous solution. The characteristic equation r2 − 1 = 0 for y′′ − y = 0 has
roots ±1 with atom list ex, e−x. The homogeneous solution is yh = c1e

x + c2e
−x.

Undetermined Coefficients Summary. The right side of the differential equation,
f(x) = ex, contains only the single atom ex, therefore the Rule I atom list is ex. Rule I
FAILS the TEST, because ex is a solution of the homogeneous equation. Rule II applies,
then x multiplies the group ex to obtain the new group xex. This atom is not a solution
of the homogeneous equation, therefore the trial solution is y = d1xe

x. Substitute it into
y′′ − y = ex to obtain 2d1e

x + d1xe
x − d1xe

x = ex. Match coefficients of ex to compute
d1 = 1/2. Then yp = xex/2.

Variation of Parameters Summary. The homogeneous solution yh = c1e
x + c2e

−x

found above implies y1 = ex, y2 = e−x is a suitable independent pair of solutions. Their
Wronskian is

W =

∣∣∣∣ ex e−x

ex −e−x

∣∣∣∣ = −2.
The variation of parameters formula (6.18) applies:

yp(x) =

(∫
−e−x

−2
exdx

)
ex +

(∫
ex

−2
exdx

)
e−x.

Integration with zero constants of integration gives yp(x) = xex/2− ex/4.

Differences. The two methods give respectively yp = xex/2 and yp = xex/2 − ex/4.
The solutions y1 = xex/2 and y2 = xex/2 − ex/4 differ by the homogeneous solution
yh = y2 − y1 = −xex/4. In both cases, the general solution is y = c1e

x + c2e
−x + 1

2xe
x,

because homogeneous solution terms can be absorbed into the arbitrary constants c1, c2.

Example 6.30 (Sine–Cosine Trial solution)
Verify for y′′ + 4y = sinx− cosx that yp(x) = 5 cosx+ 3 sinx, using trial solution
y = A cosx+B sinx.

Solution: Let’s justify the trial solution. Rule I differentiates f(x) = sinx − cosx
to determine the atom list cosx, sinx. Because cosx and sinx are not solutions of
the homogeneous equation y′′ + 4y = 0, then Rule I succeeds and the trial solution is
y = d1 cosx + d2 sinx. Replace d1, d2 by symbols A, B to agree with the given trial
solution.

Equations for the undetermined coefficients. Substitute y = A cosx+B sinx into
the differential equation and use u′′ = −u for u = sinx or u = cosx to obtain the relation

sinx− cosx = y′′ + 4y
= (−A+ 4) cosx+ (−B + 4) sinx.

Matching coefficients of sine and cosine terms on the left and right gives the system of
equations

−A+ 4 = −1,
−B + 4 = 1.
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6.5 Undetermined Coefficients

Solve the equations. The system is diagonal, therefore A = 5 and B = 3.

Report yp. The trial solution y = A cosx + B sinx after substitution of found values
for A, B becomes the particular solution yp(x) = 5 cosx+ 3 sinx.

Generally, the method of undetermined coefficients applied to similar second order prob-
lems produces linear algebraic equations that must be solved by linear algebra techniques.
Sometimes, the most convenient is Cramer’s 2× 2 rule.

Example 6.31 (Exponential Trial Solution)

Solve for yp in
y′′ − 2y′ + y = (1 + x− x2)ex

by the method of undetermined coefficients, verifying that

yp =
1

2
x2ex +

1

6
x3ex − 1

12
x4ex.

Solution:

Homogeneous solution. The homogeneous equation is y′′ − 2y′ + y = 0. The char-
acteristic equation r2 − 2r + 1 = 0 has a double root r = 1 and by Euler’s theo-
rem the corresponding atom list is ex, xex. Then the homogeneous general solution is
yh = c1e

x + c2xe
x, where c1 and c2 are arbitrary constants.

Trial solution. Let’s apply Rule I. The derivatives of f(x) = (1 + x − x2)ex are
combinations of the list of distinct Euler atoms ex, xex, x2ex. Because the first two
atoms are solutions of the homogeneous equation, then Rule I FAILS the TEST. Rule II
applies: the list of atoms for f(x) has just one group:

group 1 : ex, xex, x2ex.

Rule II modifies the list of three atoms by x-multiplication. It is applied twice, because
both ex and xex are solutions of the homogeneous differential equation. The new group
of three atoms is

New group 1 : x2ex, x3ex, x4ex.

A trial solution according to Rule II is a linear combination of the new group atoms:

y = d1x
2ex + d2x

3ex + d3x
4ex.

Equations for the undetermined coefficients. Substitute the trial solution y =
d1x

2ex+d2x
3ex+d3x

4ex solution into y′′− 2y′+ y = (1+x−x2)ex, in order to find the
undetermined coefficients d1, d2, d3. To present the details, let q(x) = d1x

2+d2x
3+d3x

4,
then y = q(x)ex implies

LHS = y′′ − 2y′ + y
= [q(x)ex]′′ − 2[q(x)ex]′ + q(x)ex

= q(x)ex + 2q′(x)ex + q′′(x)ex − 2q′(x)ex − 2q(x)ex + q(x)ex

= q′′(x)ex

= [2d1 + 6d2x+ 12d2x
2]ex.

Matching coefficients of Euler atoms left and right gives the 3× 3 system of equations

2d1 = 1,
6d2 = 1,
12d3 = −1.
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6.5 Undetermined Coefficients

Solve the equations. The 3 × 3 system is diagonal and needs no further analysis:
d1 = 1/6, d2 = 1/6, d3 = −1/12.
Report yp. The trial solution after substitution of found coefficients d1, d2, d3 becomes
the particular solution

yp =
1

2
x2ex +

1

6
x3ex − 1

12
x4ex.

General solution. The superposition relation y = yh + yp is the general solution

y = c1e
x + c2xe

x +
1

2
x2ex +

1

6
x3ex − 1

12
x4ex.

Answer check. The maple code:

de:=diff(y(x),x,x)-2*diff(y(x),x)+y(x)=(1+x-x^2)*exp(x);

dsolve(de,y(x));

# y(x) = 1/2*exp(x)*x^2 + 1/6*exp(x)*x^3

# -1/12*exp(x)*x^4+_C1*exp(x)+_C2*exp(x)*x

Example 6.32 (Annihilator)
Find the annihilator for f(x) = x− 4 sin 3x.

Solution: First, identify f(x) = x − 4 sin 3x as a linear combination of the atoms
x, sin 3x. Euler’s theorem implies that the characteristic polynomial must have roots
0, 3i,−3i. Then the characteristic polynomial must contain these factors:

Roots r = 0, 0 Atoms 1, x Factor r2

Roots ±3i Atoms cos 3x, sin 3x Factors r − 3i, r + 3i

Multiply the factors r2 and (r − 3i)(r + 3i) = r2 + 9 to generate the characteristic
polynomial

(factor r2) times (factor r2 + 9) = r4 + 9r2.

The annihilator is y(4) + 9y′′ = 0, obtained by translation of characteristic equation
r4 + 9r2 = 0 into a differential equation.

Example 6.33 (Annihilator)
Find the annihilator for f(x) = ex(x2 − 2 cos 3x).

Solution: Function f(x) = ex(x2 − 2 cos 3x) is a linear combination of the atoms x2ex,
ex cos 3x. Euler’s theorem implies that the roots are r = 1, 1, 1, 1± 3i. Then the charac-
teristic polynomial must contain factors as follows.

Roots Atoms Factor
r = 1, 1, 1 ex, xex, x2ex (r − 1)3

1± 3i ex cos 3x, ex sin 3x (r − 1− 3i)(r − 1 + 3i)

Multiply the factors (r − 1)3 and (r − 1)2 + 9 to generate the characteristic equation

(r − 1)3((r − 1)2 + 9) = 0.

Expanding, the characteristic polynomial is r5 − 5 r4 + 19 r3 − 37 r2 + 32 r − 10. In
applications, we would stop here, with the characteristic polynomial. If we continue,
then the annihilator is the differential equation y(5)−5y(4)+19y′′′−37y′′+32y′−10y = 0.
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Example 6.34 (Annihilator Method)
Find the shortest trial solution for the differential equation y′′ − y = x + xex using
the Method of Annihilators.

Solution: The example was solved previously using Rule I and Rule II with answer

yp = d1 + d2x+ d3xe
x + d4x

2ex.

Homogeneous equation. The characteristic polynomial for homogeneous equation
y′′− y = 0 is p(r) = r2− 1. It has roots r = 1, r = −1 and corresponding atoms ex, e−x.

Annihilator for f(x). The right side of the differential equation is f(x) = x + xex.
We compute the characteristic polynomial q(r) of an annihilator of f(x). The atoms
for f, f ′, f ′′, . . . are 1, x, ex, xex with corresponding roots 0, 0, 1, 1. The factors of the
characteristic polynomial q(r) are then r2, (r− 1)2, by Euler’s theorem. Specifically, we
used these specialized conclusions from Euler’s theorem:

1. Root r = 0 of q(r) = 0 has multiplicity 2 if and only if r2 is a factor of q(r);

2. Root r = 1 of q(r) = 0 has multiplicity 2 if and only if (r− 1)2 is a factor of q(r).

The conclusion of this analysis is that q(r) = product of the factors = r2(r − 1)2.

Trial solution. Let

w(r) = p(r)q(r) = (r2 − 1)r2(r − 1)2 = r2(r + 1)(r − 1)3.

Then yp must be a solution of the differential equation with characteristic equation
w(r) = 0, which implies that yp is a linear combination of the atoms

1, x, e−x, ex, xex, x2ex.

Atoms e−x and ex are solutions of the homogeneous equation, therefore they are removed.
The shortest trial solution is a linear combination of the Euler atoms

1, x, xex, x2ex.

Then
yp = d1 + d2x+ d5xe

x + d6x
2ex,

which agrees with the shortest trial solution obtained by Rule I and Rule II.

Exercises 6.5 �

Polynomial Solutions
Determine a polynomial solution yp for the
given differential equation.

1. y′′ = x

2. y′′ = x− 1

3. y′′ = x2 − x

4. y′′ = x2 + x− 1

5. y′′ − y′ = 1

6. y′′ − 5y′ = 10

7. y′′ − y′ = x

8. y′′ − y′ = x− 1

9. y′′ − y′ + y = 1

10. y′′ − y′ + y = −2

11. y′′ + y = 1− x

12. y′′ + y = 2 + x
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13. y′′ − y = x2

14. y′′ − y = x3

Polynomial-Exponential Solutions
Determine a solution yp for the given dif-
ferential equation.

15. y′′ + y = ex

16. y′′ + y = e−x

17. y′′ = e2x

18. y′′ = e−2x

19. y′′ − y = (x+ 1)e2x

20. y′′ − y = (x− 1)e−2x

21. y′′ − y′ = (x+ 3)e2x

22. y′′ − y′ = (x− 2)e−2x

23. y′′ − 3y′ + 2y = (x2 + 3)e3x

24. y′′ − 3y′ + 2y = (x2 − 2)e−3x

Sine and Cosine Solutions
Determine a solution yp for the given dif-
ferential equation.

25. y′′ = sin(x)

26. y′′ = cos(x)

27. y′′ + y = sin(x)

28. y′′ + y = cos(x)

29. y′′ = (x+ 1) sin(x)

30. y′′ = (x+ 1) cos(x)

31. y′′ − y = (x+ 1)ex sin(2x)

32. y′′ − y = (x+ 1)ex cos(2x)

33. y′′ − y′ − y = ex sin(2x)

34. y′′ − y′ − y = (x2 + x)ex cos(2x)

Undetermined Coefficients
Algorithm
Determine a solution yp for the given dif-
ferential equation.

35. y′′ = x+ sin(x)

36. y′′ = 1 + x+ cos(x)

37. y′′ + y = x+ sin(x)

38. y′′ + y = 1 + x+ cos(x)

39. y′′ + y = sin(x) + cos(x)

40. y′′ + y = sin(x)− cos(x)

41. y′′ = x+ xex + sin(x)

42. y′′ = x− xex + cos(x)

43. y′′ − y = sinh(x) + cos2(x)

44. y′′ − y = cosh(x) + sin2(x)

45. y′′ + y′ − y = x2ex

46. y′′ + y′ − y = xex sin(2x)

Roots and Related Atoms
Euler atoms A and B are said to be re-
lated if and only if the derivative lists A,
A′, . . . and B, B′, . . . share a common Euler
atom.

47. Find the roots, listed according to mul-
tiplicity, for the atoms 1, x, x2, e−x,
cos 2x, sin 3x, x cosπx, e−x sin 3x.

48. Find the roots, listed according to
multiplicity, for the atoms 1, x3, e2x,
cosx/2, sin 4x, x2 cosx, e3x sin 2x.

49. Let A = xe−2x and B = x2e−2x. Ver-
ify that A and B are related.

50. Let A = xe−2x and B = x2e2x. Verify
that A and B are not related.

51. Prove that atoms A and B are related
if and only if their base atoms have the
same roots.

52. Prove that atoms A and B are re-
lated if and only if they are in the same
group. See page 474 for the definition
of a group of atoms.

Modify a Trial Solution
Apply Rule II to modify the given Rule I
trial solution into the shortest trial solu-
tion.
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53. The characteristic equation has factors
r3, (r3 + 2r2 + 2), (r − 1)2, (r + 1),
(r2 + 4)3 and the Rule I trial solution
is constructed from atoms 1, x, ex, xex,
e−x, cos 2x, sin 2x, cosx, sinx.

54. The characteristic equation has factors
r2, (r3 +3r2 +2), (r+1), (r2 +4)3 and
the Rule I trial solution is constructed
from atoms 1, x, ex, xex, e−x, cos 2x,
sin 2x.

Annihilators and Laplace Theory
Laplace theory can construct the annihila-
tor of f(t). The example y′′ + 4y = t+ 2t3

is used to discuss the techniques. Formu-
las to be justified: p(s) = L(f)/L(y) and
q(s) = denom(L(f(t))).

55. (Transfer Function) Find the charac-
teristic polynomial q(r) for the homo-
geneous equation y′′ + 4y = 0. The
transfer function for y′′ + 4y = f(t) is
L(y)/L(f), which equals 1/q(s).

56. (Laplace of yp(t))

The Laplace of y(t) for problem
y′′ + 4y = f(t), y(0) = y′(0) = 0
must equal the Laplace of f(t) times the
transfer function. Justify and explain
what it has to do with finding yp.

57. (Annihilator of f(t))

Let g(t) = t+2t3. Verify that L(g(t)) =
s2 + 12

s4
, which is a proper fraction with

denominator s4. Then explain why
one annihilator of g(t) has character-
istic polynomial r4. The result means
that y = g(t) = t + 2t3 is a solution of
y′′′′ = 0.

58. (Laplace Theory finds yp)

Show that the problem y′′+4y = t+2t3,
y(0) = y′(0) = 0 has Laplace transform

L(y) = s2 + 12

(s2 + 4)s4
.

Explain why y(t) must be a solution
of the constant-coefficient homogeneous
differential equation having characteris-
tic polynomial w(r) = (r2 + 4)r4.

Annihilator Method Justified
The method of annihilators can be justi-
fied by successive differentiation of a non-
homogeneous differential equation, then
forming a linear combination of the re-
sulting formulas. It is carried out here,
for exposition efficiency, for the non-
homogeneous equation y′′ + 4y = x + 2x3.
The right side is f(x) = x + 2x3 and the
homogeneous equation is y′′ + 4y = 0.

59. (Homogeneous equation)

Verify that y′′ +4y = 0 has characteris-
tic polynomial q(r) = r2 + 4.

60. (Annihilator)

Verify that y(4) = 0 is an annihilator
for f(x) = x + 2x3, with characteristic
polynomial q(r) = r4.

61. (Composite Equation)

Differentiate four times across the equa-
tion y′′ + 4y = f(x) to obtain y(6) +
4y(4) = f (4)(x). Argue that f (4)(x) = 0
because y(4) = 0 is an annihilator of
f(x). This proves that yp is a solution
of higher order equation y(6)+4y(4) = 0.
Then argue that w(r) = r4(r2+4) is the
characteristic polynomial of the equa-
tion y(6) + 4y(4) = 0.

62. (General Solution)

Solve the homogeneous composite equa-
tion y(6)+4y(4) = 0 using its character-
istic polynomial w(r) = r4(r2 + 4).

63. (Extraneous Atoms)

Argue that the general solution from
the previous exercise contains two terms
constructed from atoms derived from
roots of the polynomial q(r) = r2 + 4.
Remove these terms to obtain the short-
est expression for yp and explain why it
works.

64. (Particular Solution)

Report the form of the shortest particu-
lar solution of y′′+4y = f(x), according
to the previous exercise.

489
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6.6 Undamped Mechanical Vibrations

The study of vibrating mechanical systems begins here with examples for un-
damped systems with one degree of freedom. The main example is a mass on a
spring. The undamped, unforced cases are considered in a number of physical
examples, which include the following: simple pendulum, compound pendulum,
swinging rod, torsional pendulum, shockless auto, sliding wheel, rolling wheel.

Simple Harmonic Motion

Consider the spring-mass system of Figure 2, where x measures the signed dis-
tance from the equilibrium position of the mass. The spring is assumed to exert
a force under both compression and elongation. Such springs are commonly used
in automotive suspension systems, notably coil springs and leaf springs. In the
case of coil springs, there is normally space between the coils, allowing the spring
to exert bidirectional forces.

k

mx > 0

x < 0
x = 0

Figure 2. An Undamped Spring-Mass Sys-
tem.
Compression, equilibrium and elongation of the
spring are shown with corresponding positions of the
mass m.

Hooke’s Law. The basic physical law to be applied is:

The linear restoring force F exerted by a spring is proportional to
the signed elongation X, briefly, F = −kX.

The number k is called Hooke’s constant for the spring. In the model of Figure
2, X = x(t) and k > 0. The minus sign accounts for the action of the force: the
spring tries to restore the mass to the equilibrium state, so the vector force is
directed toward the equilibrium position x = 0.

Newton’s Second Law. Specialized to the model in Figure 2, Newton’s second
law says:

The force F exerted by a mass m attached to a spring is F = ma
where a = d2x/dt2 is the acceleration of the mass.

The Weight W = mg is defined in terms of the Gravitational Constant
g = 32 ft/s2, 9.8 m/s2 or 980 cm/s2 where the mass m is given respectively in
slugs, kilograms or grams. The weight is the force due to gravity and it has
the appropriate units for a force: pounds in the case of the fps system of units.
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Method of Force Competition

Hooke’s law F = −kx(t) and Newton’s second law F = mx′′(t) give two inde-
pendent equations for the force acting on the system. Equating competing forces
implies that the signed displacement x(t) satisfies the Free Vibration equation

mx′′(t) + kx(t) = 0.

It is also called the Harmonic Oscillator in its equivalent form

x′′(t) + ω2x(t) = 0, ω2 =
k

m
.

In this context, ω is theNatural Frequency of the free vibration. The harmonic
oscillator is said to describe a Simple Harmonic Motion x(t). By Theorem
6.1 page 431:

x(t) = c1 cosωt+ c2 sinωt

Background: Fundamental Trigonometric Identities

The identities used repeatedly in differential equations applications are:

cos2 θ + sin2 θ = 1
1 + tan2 θ = sec2 θ
cot2 θ + 1 = csc2 θ

Pythagorean identities. 1

sin(−θ) = − sin(θ)
cos(−θ) = cos(θ)

Odd-even identities. 2

1 : Divide the first by cos2 θ or sin2 θ to derive the others.

2 : Identities like tan(−θ) = − tan(θ) can be derived as needed from these two
identities, e.g., tan θ = sin θ/ cos θ.

sin(a+ b) = sin(a) cos(b) + sin(b) cos(a)
cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

Sum identities. 3

sin(a− b) = sin(a) cos(b)− sin(b) cos(a)
cos(a− b) = cos(a) cos(b) + sin(a) sin(b)

Difference identities. 4

3 : Obtain the second from the first by differentiation on symbol a, holding b
constant.

4 : Both follow from the sum identities by replacing symbol b by −b, then apply
the even-odd relations.
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Background: Harmonic Motion

It is known from trigonometry that

x(t) = A cos(ωt− α)

has Amplitude A, Period 2π/ω and Phase shift α/ω. A full period is called
a Cycle and a half-period a Semicycle. The Frequency ω/(2π) is the number
of complete cycles per second, or the reciprocal of the period.

−A 2π
ω

A

α
ω Figure 3. Simple Harmonic Motion.

Shown is x(t) = A cos(ωt − α), period 2π/ω, phase
shift α/ω and amplitude A.

Visualization of Harmonic Motion

A simple harmonic motion can be obtained graphically by means of the ex-
periment shown in Figure 4, in which an undamped spring-mass system has an
attached pen that writes on a moving paper chart. The chart produces the simple
harmonic motion x(t) = c1 cosωt+ c2 sinωt or equivalently x(t) = A cos(ωt−α).

paper

pen

mass
motion

Figure 4. A Chart from Harmonic Motion.
A moving paper chart records the vertical motion of
a mass on a spring using an attached pen.

Phase-Amplitude Conversion

Given a simple harmonic motion x(t) = c1 cosωt+c2 sinωt, as in Figure 3, define
Amplitude A and Phase angle α by the formulas

A =
√
c21 + c22, c1 = A cosα and c2 = A sinα.

Then the simple harmonic motion has the Phase-Amplitude form

x(t) = A cos(ωt− α).(1)

Details. Equation (1) is derived from the cosine difference identity page 491 and
basic triangle definitions of sine and cosine.

x(t) = c1 cosωt+ c2 sinωt Harmonic oscillator x′′ + ω2x = 0,
general solution.
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x(t) = A cosα cosωt+A sinα sinωt Insert identities c1 = A cosα and c2 =
A sinα.

x(t) = A cos(ωt− α) Use a = ωt and b = α in the cosine
difference identity.

Phase Shift Calculations. The phase shift is the amount of horizontal trans-
lation required to shift the cosine curve cos(ωt − α) so that its graph is atop
cos(ωt). To find the phase shift from equation (1), set the argument of the cosine
term to zero, then solve for t.

To solve for α ≥ 0 and less than 2π, the expected range, form equations c1 =
A cosα, c2 = A sinα, then compute numerically by calculator the radian angle
ϕ = arctan(c2/c1), |ϕ| < π/2. Quadrantial angle rules are applied when c1 = 0
or c2 = 0. Calculators return a division by zero error for c1 = 0 and maybe ϕ = 0
for c2 = 0, the latter incorrect if c1 < 0. Computers should have atan2, a C
library function that accepts c1, c2 and returns angle |ϕ| < π/2. A calculator or
computer answer that is negative requires correction by adding 2π to the radian
answer. The corrected answer would give cos(ωt−α−2π) instead of cos(ωt−α),
however the cosine has period 2π: the phase-amplitude answers are equal.

Applications

Considered below are a variety of models with pendulum-like motion. The il-
lustrations start with the simple pendulum and end with applications to auto
suspension systems and rolling wheels.

Simple Pendulum

A pendulum is constructed from a thin massless wire or rod of length L and a
body of mass m, as in Figure 5.

m

θ

mg⃗ Figure 5. A Simple Pendulum

Derived below is the Pendulum Equation

θ′′(t) +
g

L
sin θ(t) = 0.(2)

Details: Along the circular arc traveled by the mass, the velocity is ds/dt where
s = Lθ(t) is arclength. The acceleration is Lθ′′(t). Newton’s second law for the
force along this arc is F = mLθ′′(t). Another relation for the force can be found
by resolving the vector gravitational force mg⃗ into its normal and tangential
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components. By trigonometry, the tangential component gives a second force
equation F = −mg sin θ(t). Equate competing forces and cancel m to obtain (2).

Because the mass m cancels from the equation, the pendulum oscillation depends
only upon the length of the string and not upon the mass!

The Linearized pendulum equation is

Θ′′(t) +
g

L
Θ(t) = 0.(3)

Details: Approximation sinu ≈ u is valid for small angles u. Apply the approx-
imation to (2). The result is the linearized pendulum (3).

Equation (2) is indistinguishable from the classical harmonic oscillator, except
for variable names. The solution of (3):

Θ(t) = A cos(ωt− α), ω2 = g/L

Gymnast Swinging about a Horizontal Bar

The mass m of the gymnast is assumed concentrated at the center of the gym-
nast’s physical height H. The problem is then simplified to a pendulum motion
with L = H/2. The resulting equation of motion for the angle θ between the
gravity vector and the gymnast is by equation (2) the Gymnast’s Equation

θ′′(t) +
2g

H
sin θ(t) = 0.(4)

The linearized version of this equation is not interesting, because the angle θ is
never small. Commonly, θ(t) goes through many multiples of 2π radians, during
an exercise.

Physical Pendulum

The Compound Pendulum or Physical Pendulum is a rigid body of total
mass m having center of mass C which is suspended from a fixed origin O – see
Figure 6.

mg⃗

θ

O

C

Figure 6. A Physical Pendulum

Derived by force competition is the Compound Pendulum equation

θ′′(t) +
mgd

I
sin θ(t) = 0.(5)
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Details: The vector r⃗ from O to C has magnitude d = ∥r⃗∥ > 0. The gravity force
vector G⃗ = mg⃗ (mass × acceleration due to gravity) makes angle θ with vector
r⃗. The restoring torque r⃗× G⃗ has magnitude F = −∥r⃗× G⃗∥ = −∥r⃗∥∥G⃗∥ sin θ =
−mgd sin θ. Newton’s second law gives a second force equation F = Iθ′′(t) where
I is the torque of the rigid body about O. Force competition results in equation
(5).

Approximation sinu ≈ u applied to equation (5) gives a harmonic oscillator
known as the linearized compound pendulum:

Θ′′(t) + ω2Θ(t) = 0, ω =

√
mgd

I
.(6)

Swinging Rod

As depicted in Figure 7, a swinging rod is a special case of the compound pendu-
lum. Assumed for the modeling is a rod of length L and mass m, with uniform
mass density.

Figure 7. A Swinging Rod

The Swinging Rod equation

θ′′(t) +
3g

2L
sin θ(t) = 0(7)

will be derived from the compound pendulum equation (5).

Details: The center of mass distance d = L/2 appears in the calculus torque
relation I = mL2/3. Then:

mgd

I
=

3mgL

2mL2
=

3g

2L

Insert this relation into the compound pendulum equation (5). The result is the
swinging rod equation (7).

If equation (6) is used instead (5), then the result is the linearized swinging
rod equation

Θ′′(t) + ω2Θ(t) = 0, ω =

√
3g

2L
.(8)

Torsional Pendulum

A model for a balance wheel in a watch, a gavanometer or a Cavendish torsional
balance is the torsional pendulum, which is a rigid body suspended by a solid
wire – see Figure 8.
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θ0

Figure 8. A Torsional Pendulum.
An example is a balance wheel in a watch. The wheel
rotates angle θ0 about the vertical axis, which acts as a
spring, exerting torque I against the rotation.

The Torsional Pendulum equation:

θ′′0(t) + ω2θ0(t) = 0, ω =

√
κ

I
.(9)

Details: The wire undergoes twisting, which exerts a restoring force F = −κθ0
when the body is rotated through angle θ0. There is no small angle restriction on
this restoring force, because it acts in the spirit of Hooke’s law like a linear spring
restoring force. The model uses Newton’s second law force relation F = Iθ′′0(t),
as in the physical pendulum. Force competition against the restoring force F =
−κθ0 gives the torsional pendulum equation (9).

Shockless Auto

An automobile loaded with passengers is supported by four coil springs, as in
Figure 9, but all of the shock absorbers are worn out. The simplistic linear
model mx′′(t) + kx(t) = 0 will be applied. The plan is to estimate the number
of seconds it takes for one complete oscillation. This is the time between two
consecutive bottom–outs of the automobile.5

Figure 9. Car on Four Springs: Linear Model

Assume the car plus occupants has mass 1350 Kg. Let each coil spring have
Hooke’s constant k = 20000 Newtons per meter. The load is divided among
the four springs equally, so each spring supports m = 1350/4 Kg. Let ω be the
natural frequency of vibration. Then the number of seconds for one complete
oscillation is the period T = 2π/ω seconds. The free vibration model for one
spring is

1350

4
x′′(t) + 20000x(t) = 0.

The harmonic oscillator form is x′′ + ω2x = 0, where ω2 = 20000(4)
1350 = 59.26.

Therefore, ω = 7.70. Then the period is T = 2π/ω = 0.82 seconds. The inter-
pretation: the auto bottoms-out every 0.82 seconds.

5Teenagers popularized late-night cruising of Los Angeles boulevards in shockless 4-door
sedans. They disabled the shock absorbers and modified the suspension to give a completely
undamped ride.
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Rolling Wheel on a Spring

A wheel of total mass m and radius R is attached at its center to a spring of
Hooke’s constant k, as in Figure 10. The wheel rolls without slipping. The spring
is assumed to have negligible mass and zero kinetic energy. Let k be the Hooke’s
constant for the spring. Let x(t) be the elongation of the spring from equilibrium,
x > 0 corresponding to the wheel rolling to the right and x < 0 corresponding to
the wheel rolling to the left.

k

0 x Figure 10. A Rolling Wheel on a Spring.

Derived below is the Rolling Wheel Equation

mx′′(t) +
2

3
kx(t) = 0.(10)

Details: The spring does not react only to tension, but it reacts like a coil spring
with spacing that restores bi-directionally to equilibrium.

Figure 11. Restoring Force F = kx.
By Hooke’s law, the spring restores to equilibrium for
both compression and elongation.

If the wheel slides frictionless, then the model is the harmonic oscillator equa-
tion mx′′(t) + kx(t) = 0. A wheel that rolls without slipping has inertia, and
consideration of this physical difference will be shown to give equation (10).

A curious consequence is that x(t) is identical to the frictionless sliding wheel with
spring constant reduced from k to 2k/3. This makes sense physically, because
rolling wheel inertia is observed to reduce the apparent stiffness of the spring.

The derivation begins with the energy conservation law

Kinetic + Potential = constant.

The kinetic energy T is the sum of two energies, T1 = 1
2mv2 for translation and

T2 = 1
2Iω

2 for the rolling wheel, whose inertia is I = 1
2mR2. The velocity is

v = Rω = x′(t). Algebra gives T = T1 + T2 = 3
4mv2. The potential energy

is K = 1
2kx

2 for a spring of Hooke’s constant k. Application of the energy
conservation law T + K = c gives the equation 3

4m(x′(t))2 + 1
2k(x(t))

2 = c.
Differentiate this equation on t to obtain 3

2mx′(t)x′′(t) + kx(t)x′(t) = 0, then
cancel x′(t) to give equation (10).
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Examples and Methods

Example 6.35 (Harmonic Vibration)
A mass of m = 250 grams attached to a spring of Hooke’s constant k undergoes
free undamped vibration. At equilibrium, the spring is stretched 25 cm by a force
of 8 Newtons. At time t = 0, the spring is stretched 0.5 m and the mass is set in
motion with initial velocity 5 m/s directed downward from equilibrium. Find:

(a) The numerical value of Hooke’s constant k.

(b) The initial value problem for vibration x(t).

Solution:
(a): Hooke’s law Force=k(elongation) is applied with force 8 Newtons and elongation
25/100 = 1/4 meter. Equation 8 = k(1/4) implies k = 32 N/m.

(b): Given m = 250/1000 kg and k = 32 N/m from part (a), then the free vibration
model mx′′ + kx = 0 becomes 1

4x
′′ + 32x = 0. Initial conditions are x(0) = 0.5 m and

x′(0) = 5 m/s. The initial value problem is
d2x

dt2
+ 128x = 0,

x(0) = 0.5,
x′(0) = 5.

Example 6.36 (Phase-Amplitude Conversion)
Write the vibration equation

x(t) = 2 cos(3t) + 5 sin(3t)

in phase-amplitude form x = A cos(ωt−α). Create a graphic of x(t) with labels for
period, amplitude and phase shift.

Solution:
The answer and the graphic appear below.

x(t) =
√
29 cos(3t− 1.190289950) =

√
29 cos(3(t− 0.3967633167)).

F P

A

Figure 12. Harmonic Oscillation.

The graph of 2 cos(3t) + 5 sin(3t). It has
amplitude A =

√
29 = 5.385, period P =

2π/3 and phase shift F = 0.3967633167.
The graph is on 0 ≤ t ≤ P + F .
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Algebra Details. The plan is to re-write x(t) in the form x(t) = A cos(ωt− α), called
the phase-amplitude form of the harmonic oscillation. The main tools from trigonometry
appear on page 491.

Start with x(t) = 2 cos(3t)+5 sin(3t). Compare the expression for x(t) with Trig identity
x(t) = A cos(ωt− α) = A cos(α) cos(ωt) +A sin(α) sin(ωt). Then define accordingly

ω = 3, A cos(α) = 2, A sin(α) = 5.

The Pythagorean identity cos2 α + sin2 α = 1 implies A2 = 22 + 52 = 29 and then the
amplitude is A =

√
29. Because cosα = 2/A, sinα = 5/A, then both the sine and cosine

are positive, placing angle α in quadrant I. Divide equations cosα = 2/A, sinα = 5/A
to obtain tan(α) = 5/2, which by calculator implies α = arctan(5/2) = 1.190289950
radians or 68.19859051 degrees. Then x(t) = A cos(ωt−α) =

√
29 cos(3t−1.190289950).

Computer Details. Either equation for x(t) can be used to produce a computer
graphic. A hand-drawn graphic would use only the phase-amplitude form. The pe-
riod is P = 2π/ω = 2π/3. The amplitude is A =

√
29 = 5.385164807 and the phase shift

is F = α/ω = 0.3967633167. The graph is on 0 ≤ t ≤ P + F .

# Maple

F:=evalf(arctan(5/2)/3); P:=2*Pi/3;A:=sqrt(29);

X:=t->2*cos(3*t)+5*sin(3*t);

opts:=xtickmarks=[0,F,P/2+F,P+F],ytickmarks=[-A,0,A],

axes=boxed,thickness=3,labels=["",""];

plot(X(t),t=0..P+F,opts);

Example 6.37 (Undamped Spring-Mass System)
A mass of 6 Kg is attached to a spring that elongates 20 centimeters due to a force
of 12 Newtons. The motion starts at equilibrium with velocity −5 m/s. Find an
equation for x(t) using the free undamped vibration model mx′′ + kx = 0.

Solution: The answer is x(t) = −
√

5
2 sin(

√
10t).

The mass is m = 6 kg. Hooke’s law F = kx is applied with F = 12 N and x = 20/100 m.
Then Hooke’s constant is k = 60 N/m. Initial conditions are x(0) = 0 m (equilibrium)
and x′(0) = −5 m/s. The model is

6
d2x

dt2
+ 60x = 0,

x(0) = 0,
x′(0) = −5.

Solve the Initial Value Problem. The characteristic equation 6r2 + 60 = 0 is solved
for r = ±i

√
10, then the Euler solution atoms are cos(

√
10t), sin(

√
10t). The general

solution is a linear combination of Euler atoms:

x(t) = c1 cos(
√
10t) + c2 sin(

√
10t).

The task remaining is determination of constants c1, c2 subject to initial conditions
x(0) = 0, x′(0) = −5. The linear algebra problem uses the derivative formula

x′(t) = −
√
10c1 sin(

√
10t) +

√
10c2 cos(

√
10t).
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The 2×2 system of linear algebraic equations for c1, c2 is obtained from the two equations
x(0) = 0, x′(0) = −5 as follows.{

cos(0)c1 + sin(0)c2 = 0, Equation x(0) = 0

−
√
10 sin(0)c1 +

√
10 cos(0)c2 = −5, Equation x′(0) = −5

Because cos(0) = 1, sin(0) = 0, then c1 = 0 and c2 = −5/
√
10 = −

√
5/2. Insert answers

c1, c2 into the general solution to find the answer to the initial value problem:

x(t) = −
√

5

2
sin(
√
10t).

Example 6.38 (Pendulum)
A simple linearized pendulum of length 2.5 m oscillates with angle variable θ(t)
satisfying θ(0) = 0 (equilibrium position) and θ′(0) = 3 (radial velocity). Find θ(t)
in phase-amplitude form and report the period, amplitude and phase shift.

Solution: The answer is θ(t) = 3
√

25
98 sin

(√
98
25 t
)
, which has amplitude 3

√
25

98
, period

2π

√
25

98
, phase shift zero.

The mass is not given, because we use model equation (3), θ′′(t) + g
Lθ(t) = 0, in which

g = 9.8 and L = 2.5. Then the initial value problem is
d2θ

dt2
+

98

25
θ = 0,

θ(0) = 0,
θ′(0) = 3.

Solve the Initial Value Problem. The characteristic equation r2 + 98
25 = 0 is solved

for r = ±iω where ω =
√

98
25 . The Euler solution atoms are cos(ωt), sin(ωt). The general

solution:
θ(t) = c1 cos(ωt) + c2 sin(ωt).

The task remaining is determination of constants c1, c2 subject to initial conditions
θ(0) = 0, θ′(0) = 3. The linear algebra problem uses the derivative formula

θ′(t) = −ωc1 sin(ωt) + ωc2 cos(ωt).

The 2 × 2 system of equations for c1, c2 is obtained from equations θ(0) = 0, θ′(0) = 3
as follows. {

cos(0)c1 + sin(0)c2 = 0, Equation θ(0) = 0
−ω sin(0)c1 + ω cos(0)c2 = 3, Equation θ′(0) = 3

Because cos(0) = 1, sin(0) = 0, then c1 = 0 and c2 = 3/ω = 3
√

25
98 . The solution to the

initial value problem is

θ(t) = 3

√
25

98
sin

(√
98

25
t

)
.
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Example 6.39 (Gymnast)
Consider the change of variables x(t) = θ(t), y(t) = θ′(t), called the position-

velocity substitution. Re-write the gymnast equation (4), θ′′ + 2g
H sin θ = 0, in the

form
dx

dt
= y(t),

dy

dt
= −2g

H
sin(x(t)).

(11)

Apply the method of quadrature to develop the equation for the total mechanical
energy

1

2
y2 +

2g

H
(1− cosx) = E.(12)

Solution: The terms in the energy equation (12) are 1
2y

2, called the Kinetic Energy,
and ω2(1− cosx), called the Potential Energy. We will show that E = 1

2y(0)
2.

Details for (11): Define x(t) = θ(t) and y(t) = θ′(t). Then

x′ = θ′

= y
Used x(t) = θ(t) and y(t) = θ′(t).

y′ = θ′′

= −2g

H
sin(θ)

= −2g

H
sin(x)

Used x(t) = θ(t) and θ′′ + 2g
H sin θ = 0.

Details for (12): Because y = x′, we multiply the second equation in (11) by y and
then re-write the resulting equation as

yy′ = −2g

H
x′ sin(x).

This is a quadrature equation. Integrate on variable t across the equation to obtain for
some constant C the identity

1

2
y2 =

2g

H
cos(x) + C.

Let t = 0 in this equation to evaluate C = 1
2 (y(0))

2− 2g
H . Then rearrange terms to obtain

the equation
1

2
y2 +

2g

H
(1− cos(x)) =

1

2
(y(0))

2
.

This is equation (12) with E = 1
2 (y(0))

2.

Example 6.40 (Swinging Rod)
A uniform rod of length 16 cm swings from a support at origin O. The motion
started at angle θ(0) = π/12 radians with radial velocity zero. Find approximate
equations for the motion at the extreme end of the rod in rectangular coordinates.
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Solution: The answer is

x(t) =
16

100
cos(θ(t)),

y(t) =
16

100
sin(θ(t)),

θ(t) =
π

12
cos

(
t

2

√
735

)
.

The mass is not given, because we use model equation (8), θ′′(t) + 3g
2L sin(θ(t)) = 0, in

which g = 9.8 m/s2 and L = 16/100 m. Then the initial value problem is
d2θ

dt2
+

735

4
sin(θ) = 0,

θ(0) = π/2,
θ′(0) = 0.

The linearized equation will be used to find an approximate formula for the motion. The
initial value problem is 

d2θ

dt2
+

735

4
θ = 0,

θ(0) = π/12,
θ′(0) = 0.

(13)

The rectangular coordinates for the end of the rod are

x(t) = L cos(θ(t)), y(t) = L sin(θ(t)).

Solve the Initial Value Problem. As in two previous examples, system (8) is readily
solved with general solution

θ(t) = c1 cos (ωt) + c2 sin (ωt) , ω =

√
735

2
.

Initial conditions imply c1 = π
12 , c2 = 0. Details not supplied. Then

θ(t) =
π

12
cos

(√
735

2
t

)
.

Final Answer. The formula for θ(t) is inserted into polar coordinate equations x =
r cos θ, y = r sin θ with r = L to obtain the reported answers.

Example 6.41 (Torsional Pendulum)
The balance wheel of a classical watch oscillates with angular amplitude π radians
and period 0.5 seconds. Find the following values.

(a) The maximum angular speed of the balance wheel.

(b) The angular speed when the angle equals π/2 radians.

(c) The angular acceleration when the angle equals π/4 radians.
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Solution: The answers are (a) 4π2, (b) −2π2
√
3, (c) −4π3.

The model is equation (9), θ′′0 (t) + ω2θ0(t) = 0, where ω =
√

κ
I . The general solution

in phase-amplitude form is θ0(t) = A cos(ωt − α), with constants A, α replacing the
constants c1, c2 in a general solution. We are given that A = π. The period 2π

ω equals
0.5, which implies ω = 4π. Then

θ0(t) = π cos(4πt− α).

The constant α is undetermined by the information supplied.

(a): The angular speed is θ′0(t) = −4π2 sin(4πt − α). It is a maximum when the sine
factor equals −1. Then θ′0(t) = 4π2 is the maximum angular speed of the balance wheel.

(b): The angle θ0(t) = π/2 is valid only when the cosine factor in θ0(t) = π cos(4πt−α)
is equal to 1/2. Then sin(4πt − α) =

√
3/2, from trigonometry. The angular speed at

this moment is θ′0(t) = −4π2 sin(ωt− α) = −2π2
√
3.

(c): Apply the equation θ′′0 (t) + ω2θ0(t) = 0 to obtain the acceleration relation θ′′0 (t) =
−16π2θ0(t). When θ0(t) = π/4, then the acceleration equals −4π3.

Example 6.42 (Shockless Auto)
A shockless auto of total mass 1400 kg bounces on a level street, making 8 bottom-
outs in 10 seconds. Estimate the Hooke’s constant k for each of the four coil springs.

Solution: The answer is k = 8750π2 ≈ 86596.

The model equation mx′′ + kx = 0 is used. Then x(t) = A cos(ωt − α) is a general
solution, with A and α constant and ω2 = k

m . The mass is not 1400 kg, but 1/4 of that,
because each of the four springs carries an equal load. Let m = 1400/4. The period of
oscillation is 2π/ω, which has to equal 1

2
8
10 , because two bottom-outs mark one complete

cycle. Then 2π
ω = 4

10 implies ω = 5π. Finally, k = mω2 = 1400
4 (5π)2 = 8750π2.

Example 6.43 (Rolling Wheel)
A wheel of mass 10 kg and radius 0.35 m rolls frictionless with attached coil spring
as in Figure 23. The observed frequency of oscillation is 8 full cycles every 3 seconds.
Estimate the Hooke’s constant k of the spring.

Solution: The answer is k = 135π2

16 .

The rolling wheel model (10) will be used, equation mx′′(t)+ 2
3 kx(t) = 0. Known is the

mass m = 10 kg and the general solution x(t) = A cos(ωt − α) with A and α constant

and natural frequency ω =

√
2

3

k

m
. Then the period of oscillation is 2π

ω = 8
3 , because the

cosine factor passes through 8 periods in 3 seconds. The equation determines ω = 3
8 (2π).

Then k = m 3
2ω

2 = 10 3
2

(
6π
8

)2
= 135π2

16 .
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Exercises 6.6 �

Simple Harmonic Motion
Determine the model equation mx′′(t) +
kx(t) = 0, the natural frequency ω =√
k/m, the period 2π/ω and the solution

x(t) for the following spring–mass systems.

1. A mass of 4 Kg attached to a spring of
Hooke’s constant 20 Newtons per meter
starts from equilibrium plus 0.05 meters
with velocity 0.

2. A mass of 2 Kg attached to a spring of
Hooke’s constant 20 Newtons per meter
starts from equilibrium plus 0.07 meters
with velocity 0.

3. A mass of 2 Kg is attached to a spring
that elongates 20 centimeters due to a
force of 10 Newtons. The motion starts
at equilibrium with velocity −5 meters
per second.

4. A mass of 4 Kg is attached to a spring
that elongates 20 centimeters due to a
force of 12 Newtons. The motion starts
at equilibrium with velocity −8 meters
per second.

5. A mass of 3 Kg is attached to a coil
spring that compresses 2 centimeters
when 1 Kg rests on the top coil. The
motion starts at equilibrium plus 3 cen-
timeters with velocity 0.

6. A mass of 4 Kg is attached to a coil
spring that compresses 2 centimeters
when 2 Kg rests on the top coil. The
motion starts at equilibrium plus 4 cen-
timeters with velocity 0.

7. A mass of 5 Kg is attached to a coil
spring that compresses 1.5 centimeters
when 1 Kg rests on the top coil. The
motion starts at equilibrium plus 3 cen-
timeters with velocity −5 meters per
second.

8. A mass of 4 Kg is attached to a coil
spring that compresses 2.2 centimeters
when 2 Kg rests on the top coil. The

motion starts at equilibrium plus 4 cen-
timeters with velocity −8 meters per
second.

9. A mass of 5 Kg is attached to a spring
that elongates 25 centimeters due to a
force of 10 Newtons. The motion starts
at equilibrium with velocity 6 meters
per second.

10. A mass of 5 Kg is attached to a spring
that elongates 30 centimeters due to a
force of 15 Newtons. The motion starts
at equilibrium with velocity 4 meters
per second.

Phase–amplitude Form
Solve the given differential equation and re-
port the general solution. Solve for the con-
stants c1, c2. Report the solution in phase–
amplitude form

x(t) = A cos(ωt− α)

with A > 0 and 0 ≤ α < 2π.

11. x′′ + 4x = 0,
x(0) = 1, x′(0) = −1

12. x′′ + 4x = 0,
x(0) = 1, x′(0) = 1

13. x′′ + 16x = 0,
x(0) = 2, x′(0) = −1

14. x′′ + 16x = 0,
x(0) = −2, x′(0) = −1

15. 5x′′ + 11x = 0,
x(0) = −4, x′(0) = 1

16. 5x′′ + 11x = 0,
x(0) = −4, x′(0) = −1

17. x′′ + x = 0,
x(0) = 1, x′(0) = −2

18. x′′ + x = 0,
x(0) = −1, x′(0) = 2

19. x′′ + 36x = 0,
x(0) = 1, x′(0) = −4

20. x′′ + 64x = 0,
x(0) = −1, x′(0) = 4
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Pendulum
The formula

P1

P2
=

R1

R2

√
L1

L2

is valid for the periods P1, P2 of two pen-
dulums of lengths L1, L2 located at dis-
tances R1, R2 from the center of the earth.
The formula implies that a pendulum can
be used to find the radius of the earth at
a location. It is also useful for designing a
pendulum clock adjustment screw.

21. Derive the formula, using ω =
√
g/L,

period P = 2π/ω and the gravitational
relation g = GM/R2.

22. A pendulum clock taken on a voyage
loses 2 minutes a day compared to its
exact timing at home. Determine the
altitude change at the destination.

23. A pendulum clock with adjustable
length L loses 3 minutes per day when
L = 30 inches. What length L adjusts
the clock to perfect time?

24. A pendulum clock with adjustable
length L loses 4 minutes per day when
L = 30 inches. What fineness length F
is required for a 1/4–turn of the adjust-
ment screw, in order to have 1/4–turns
of the screw set the clock to perfect time
plus or minus one second per day?

Torsional Pendulum
Solve for θ0(t).

25. θ′′0 (t) + θ0(t) = 0

26. θ′′0 (t) + 4θ0(t) = 0

27. θ′′0 (t) + 16θ0(t) = 0

28. θ′′0 (t) + 36θ0(t) = 0

Shockless Auto
Find the period and frequency of oscilla-
tion of the car on four springs. Use model
mx′′(t) + kx(t) = 0.

29. Assume the car plus occupants has
mass 1650 Kg. Let each coil spring have
Hooke’s constant k = 20000 Newtons
per meter.

30. Assume the car plus occupants has
mass 1850 Kg. Let each coil spring have
Hooke’s constant k = 20000 Newtons
per meter.

31. Assume the car plus occupants has
mass 1350 Kg. Let each coil spring have
Hooke’s constant k = 18000 Newtons
per meter.

32. Assume the car plus occupants has
mass 1350 Kg. Let each coil spring have
Hooke’s constant k = 16000 Newtons
per meter.

Rolling Wheel on a Spring
Solve the rolling wheel model mx′′(t) +
2
3 kx(t) = 0 and also the frictionless model
mx′′(t) + kx(t) = 0, each with the given
initial conditions. Graph the two solutions
x1(t), x2(t) on one set of axes.

33. m = 1, k = 4,
x(0) = 1, x′(0) = 0

34. m = 5, k = 18,
x(0) = 1, x′(0) = 0

35. m = 11, k = 18,
x(0) = 0, x′(0) = 1

36. m = 7, k = 18,
x(0) = 0, x′(0) = 1
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6.7 Forced and Damped Vibrations

The study of vibrating mechanical systems continues. The main example is
a system consisting of an externally forced mass on a spring with damping.6

Both undamped and damped systems are studied. A few physical examples are
included: clothes dryer, cafe door, pet door, bicycle trailer.

Forced Undamped Motion

The equation for study is a forced spring–mass system

mx′′(t) + kx(t) = f(t).

The model originates by equating the Newton’s second law force mx′′(t) to the
sum of the Hooke’s force −kx(t) and the external force f(t). The physical model
is a laboratory box containing an undamped spring–mass system, transported on
a truck as in Figure 13, with external force f(t) = F0 cosωt induced by the speed
bumps.

k

mx > 0
x = 0

Figure 13. An undamped, forced
spring-mass system.
A box containing a spring-mass system is
transported on a truck. Speed bumps on the
shoulder of the road transfer periodic vertical
oscillations to the box.

The forced spring-mass system takes the form x′′(t) + ω2
0 x(t) = F0

m cosωt.

Symbol ω0 =
√
k/m is called the Natural Frequency. It is the number of full

periods of free oscillation per second for the unforced spring–mass system
x′′(t) + ω2

0 x(t) = 0 . The External Frequency ω is the number of full periods
of oscillation per second of the external force f(t) = F0 cosωt. In the case of
Figure 13, f(t) is the vertical force applied to the box containing the spring–
mass system, due to the speed bumps. The general solution x(t) always presents
itself in two pieces, as the sum of the homogeneous solution xh and a particular
solution xp. For ω ̸= ω0, the solution formulas are (full details on page 522)

x′′(t) + ω2
0 x(t) =

F0

m
cosωt, ω0 =

√
k

m
,

x(t) = xh(t) + xp(t),
xh(t) = c1 cosω0t+ c2 sinω0t, c1, c2 constants,

xp(t) =
F0/m

ω2
0 − ω2

cosωt.

(1)

A general statement can be made about the solution decomposition:

6Damping is energy dissipation and dampening is making something wet.
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The solution is a sum of two harmonic oscillations, one of natural
frequency ω0 due to the spring and the other of natural frequency
ω due to the external force F0 cosωt.

Beats

The physical phenomenon of beats refers to the periodic interference of two
sound waves of slightly different frequencies. Human heartbeat uses the same
terminology. Our pulse rate is 40 − 100 beats per minute at rest. The phe-
nomenon of beats will be explained mathematically infra. An illustration of the
graphical meaning is in Figure 14.

Figure 14. Beats.
Shown is a periodic oscillation

x(t) = 2 sin 4t sin 40t

with rapidly–varying factor sin 40t and the two
slowly–varying envelope curves

x1(t) = 2 sin 4t, x2(t) = −2 sin 4t.

A key example is piano tuning. A tuning fork is struck, then the piano string is
tuned until the beats are not heard. The number of beats per second (unit Hz) is
approximately the frequency difference between the two sources, e.g., two tuning
forks of frequencies 440 Hz and 437 Hz would produce 3 beats per second.

The average human ear can detect beats only if the two interfering sound waves
have a frequency difference of about 7 Hz or less. Ear-tuned pianos are subject
to the same human ear limitations. Two piano keys are more than 7 Hz apart,
even for a badly tuned piano, which is why simultaneously struck piano keys are
heard as just one sound (no beats).

A destructive interference occurs during a very brief interval, so our impres-
sion is that the sound periodically stops, only briefly, and then starts again with
a beat, a section of sound that is instantaneously loud again. The beat we hear
corresponds to maxima in Figure 14.

In Figure 14, we see not the two individual sound waves, but their superpo-
sition, because 2 sin(4t) sin(40t) = cos(36t) − cos(44t) = sum of two harmonic
oscillations of different frequencies. See equation 2 below for details. When the
tuning fork and the piano string have the same exact frequency ω, then Figure
14 would show a simple harmonic wave, because the two sounds would super-
impose to a graph that looks like cos(ωt− α).
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6.7 Forced and Damped Vibrations

The origin of the phenomenon of beats can be seen from the formula

x(t) = 2 sin at sin bt.

There is no sound when x(t) ≈ 0: this is when destructive interference occurs.
When a is small compared to b, e.g., a = 4 and b = 40, then there are long
intervals between the zeros of A(t) = 2 sin at, at which destructive interference
occurs. Otherwise, the amplitude of the sound wave is the average value of A(t),
which is 1. The sound stops at a zero of A(t) and then it is rapidly loud again,
causing the beat.

Black Box in the Trunk

Return to the forced harmonic oscillator

x′′(t) + ω2
0 x(t) =

F0

m
cosωt, ω0 =

√
k

m
,

whose solution x(t) appears in equation (1). The expression for x(t) will show the
phenomenon of beats for certain choices of frequencies ω0, ω and initial position
and velocity x(0), x′(0).

For instance, consider one possible expression x(t) = cos(ω0t)− cos(ωt). Use the
trigonometric identity 2 sin c sin d = cos(c−d)−cos(c+d), derived from identities
on page 491, to write

x(t) = cos(ω0t)− cos(ωt) = 2 sin
1

2
(ω − ω0)t sin

1

2
(ω0 + ω)t.(2)

If ω ≈ ω0, then the first factor 2 sin 1
2(ω−ω0)t has natural frequency a = 1

2(ω−ω0)
near zero. The natural frequency b = 1

2(ω0 + ω) of the other factor can be
relatively large and therefore x(t) is a product of a Slowly Varying oscillation
2 sin at and a Rapidly Varying oscillation sin bt. A graphic of x(t) looks like
Figure 14.

Rotating Drum on a Cart

Figure 15 shows a model for a rotating machine, like a front–loading clothes
dryer.

For modeling purposes, the rotating drum with load is replaced by an idealized
model: a mass M on a string of radius R rotating with angular speed ω. The
center of rotation is located along the center–line of the cart. The total mass m
of the cart includes the rotating massM, which we imagine to be an off–center
lump of wet laundry inside the dryer drum. Vibrations cause the cart to skid left
or right.
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6.7 Forced and Damped Vibrations

k

x0

M
θR

Figure 15. Rotating Vertical Drum.

Like a front-loading clothes dryer, or a washing
machine, the drum is installed on a cart with skids.
An internal spring restores the cart to equilibrium
x = 0.

A spring of Hooke’s constant k restores the cart to its equilibrium position x = 0.
The cart has position x > 0 corresponding to skidding distance x to the right of
the equilibrium position, due to the off-center load. Similarly, x < 0 means the
cart skidded distance |x| to the left.

Modeling. Friction ignored, Newton’s second law gives force F = mx′′(t), where
x locates the cart’s center of mass. Hooke’s law gives force F = −kx(t). The
centroid x can be expanded in terms of x(t) by using calculus moment of inertia
formulas. Let m1 = m−M be the cart mass, m2 =M the drum mass, x1 = x(t)
the moment arm for m1 and x2 = x(t) + R cos θ the moment arm for m2. Then
θ = ωt in Figure 15 gives

x(t) =
m1x1 +m2x2

m1 +m2

=
(m−M)x(t) +M(x(t) +R cos θ)

m

= x(t) +
RM
m

cosωt.

(3)

Force competition mx′′ = −kx and derivative expansion results in the forced
harmonic oscillator

mx′′(t) + kx(t) = RMω2 cosωt.(4)

Forced Damped Motion

Real systems do not exhibit idealized harmonic motion, because damping oc-
curs. A watch balance wheel submerged in oil is a key example: frictional forces
due to the viscosity of the oil will cause the wheel to stop after a short time. The
same wheel submerged in air will appear to display harmonic motion, but indeed
there is friction present, however small, which slows the motion.

Consider a spring–mass system consisting of a mass m and a spring with Hooke’s
constant k, with an added dashpot or damper, depicted in Figure 16 as a piston
inside a cylinder attached to the mass. A useful physical model, for purposes of
intuition, is a screen door with USA hardware: the door is equipped with a spring
to restore the door to the jamb position and an adjustable piston–cylinder style
dashpot.

cmk
Figure 16. A spring-mass system with dash-
pot
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6.7 Forced and Damped Vibrations

The dashpot is assumed to operate in the viscous domain, which means that
the force due to the damper device is proportional to the speed that the mass
is moving: F = cx′(t). The number c ≥ 0 is called the dashpot constant.
Three forces act: (1) Newton’s second law F1 = mx′′(t), (2) viscous damping
F2 = cx′(t) and (3) the spring restoring force F3 = kx(t). The sum of the forces
F1 + F2 + F3 acting on the system must equal the External Force f(t), which
gives the equation for a Forced Damped Spring–Mass System

mx′′(t) + cx′(t) + kx(t) = f(t).(5)

If there is no external force, f(t) = 0, then the vibration is called free or un-
forced and otherwise it is called forced. Equation (5) is called damped if c > 0
and undamped if c = 0.

A useful visualization for a forced system is a vertical laboratory spring–mass
system with dashpot placed inside a box, which is transported down a washboard
road inside an auto trunk. The function f(t) is the vertical oscillation of the auto
trunk. The function x(t) is the signed excursion of the mass in response to the
washboard road. See Figure 17.

k

mx > 0
x = 0

c

Figure 17. A Damped Spring-Mass System
with External Forcing.
The apparatus is placed in a box, then transported
in an auto trunk along a washboard road. Vertical
excursion x(t) of the mass is measured from equilib-
rium.

Seismoscope

The 1875 horizontal motion seismoscope of F. Cecchi (1822-1887) reacted
to an earthquake. It started a clock, and then it started motion of a recording
surface, which ran at a speed of 1cm per second for 20 seconds. The clock
provided the observer with the earthquake hit time.

Figure 18. A Simplistic Vertical Mo-
tion Seismoscope.

The apparently stationary heavy mass on a
spring writes with the attached stylus onto a
rotating drum, as the ground moves up.

The motion of the heavy mass m in Figure 18 can be modeled by a forced spring-
mass system with damping. The first model has the form

mx′′ + cx′ + kx = f(t)
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6.7 Forced and Damped Vibrations

where f(t) is the vertical ground force due to the earthquake. In terms of the
vertical ground motion u(t), Newton’s second law gives the force equation f(t) =
−mu′′(t). The second model for the motion of the mass is then

x′′(t) + 2βΩ0x
′(t) + Ω2

0x(t) = −u′′(t),
c
m = 2βΩ0,

k
m = Ω2

0,
x(t) = mass position measured from equilibrium,
u(t) = vertical ground motion due to the earthquake.

(6)

Some observations about equation (6):

Slow ground movement means x′ ≈ 0 and x′′ ≈ 0, then (6) implies Ω2
0x(t) =

−u′′(t). The seismometer records ground acceleration.

Fast ground movement means x ≈ 0 and x′ ≈ 0, then (6) implies x′′(t) =
−u′′(t). The seismometer records ground displacement.

A release test will find β,Ω0 experimentally. See the exercises for details.

The point of (6) is to determine u(t), by knowing x(t) from the seismograph.

Free damped motion

Consider the special case of no external force, f(t) = 0. The vibration x(t)
satisfies the homogeneous differential equation

mx′′(t) + cx′(t) + kx(t) = 0.(7)

Cafe Door

Restaurant waiters and waitresses are accustomed to the cafe door, which par-
tially blocks the view of onlookers, but allows rapid, collision-free trips to the
kitchen – see Figure 19. The door is equipped with a spring which tries to re-
store the door to the equilibrium position x = 0, which is the plane of the door
frame. There is a dashpot attached, to keep the number of oscillations low.

Figure 19. A Cafe Door.
There are three hinges with dashpot in the lower hinge.
The equilibrium position is the plane of the door frame.

The top view of the door, Figure 20, shows how the angle x(t) from equilibrium
x = 0 is measured from different door positions.
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x < 0

x = 0

x > 0

Figure 20. Top View of a Cafe Door.
The three possible door positions.

x < 0 kitchen
x = 0 door frame
x > 0 restaurant

The figure shows that, for modeling purposes, the cafe door can be reduced
to a torsional pendulum with viscous damping. This results in the cafe door
equation

Ix′′(t) + cx′(t) + κx(t) = 0.(8)

The removal of the spring (κ = 0) causes the vibration x(t) to be monotonic,
which is a reasonable fit to a springless cafe door.

Pet Door

Designed for dogs and cats, the small door in Figure 21 permits free entry and
exit.

Figure 21. A Pet Door.
The equilibrium position is the plane of the door frame.
The door swings from hinges on the top edge.
One hinge is spring-loaded with dashpot.

Like the cafe door, the spring restores the door to the equilibrium position while
the dashpot acts to eventually stop the oscillations. However, there is one fun-
damental difference: if the spring–dashpot system is removed, then the door
continues to oscillate! The cafe door model will not describe the pet door.

For modeling purposes, the door can be compressed to a linearized swinging rod
of length L (the door height). The torque I = mL2/3 of the door assembly
becomes important, as well as the linear restoring force kx of the spring and the
viscous damping force cx′ of the dashpot. All considered, a suitable model is the
pet door equation

I x′′(t) + cx′(t) +

(
k +

mgL

2

)
x(t) = 0.(9)

Derivation of (9) is by equating to zero the algebraic sum of the forces.

Removing the dashpot and spring (c = k = 0) gives a harmonic oscillator x′′(t)+

ω2x(t) = 0 with ω2 =
mgL

2I
, which matches physical intuition. Equation (9)

is formally the cafe door equation with an added linearization term
mgL

2
x(t)

obtained from
mgL

2
sinx(t).

Modeling Unforced Damped Vibration

The cafe door (8) and the pet door (9) have equations in the same form as a
damped spring–mass system (7), and all equations can be reduced, for suitable
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definitions of constants p and q, to the simplified second order differential equa-
tion

x′′(t) + p x′(t) + q x(t) = 0.(10)

The solution x(t) of this equation is a linear combination of two Euler atoms
determined by the roots of the characteristic equation

r2 + pr + q = 0.

There are three types of solutions possible, organized by the sign of the discrim-
inant

p2 − 4q.

Positive Discriminant Distinct real roots r1 ̸= r2
x = c1e

r1t + c2e
r2t

Zero Discriminant Double real root r1 = r2
x = c1e

r1t + c2 t e
r1t

Negative Discriminant Complex conjugate roots a± i b
x = eat(c1 cos bt+ c2 sin bt)

Tuning a dashpot

The pet door and the cafe door have dashpots with an adjustment screw. The
screw changes the dashpot coefficient c which in turn changes the size of coeffi-
cient p in (10). More damping c means p is larger.

There is a critical damping effect for a certain screw setting: if the setting is
decreased more, then the door oscillates, whereas if the setting is increased, then
the door has a monotone non-oscillatory behavior. The monotonic behavior can
result in the door opening in one direction followed by slowly settling to exactly
the door jamb position. If p is too large, then it could take 10 minutes for the
door to close!

The critical case corresponds to the least p > 0 (the smallest damping constant
c > 0) required to close the door with this kind of monotonic behavior. The same
can be said about decreasing the damping: the more p is decreased, the more the
door oscillations approach those of no dashpot at all, which is a pure harmonic
oscillation.

As viewed from the characteristic equation r2 + pr + q = 0, the change is due
to a change in character of the roots from real to complex, which is measured
by a sign change from positive to negative for the Discriminant p2 − 4q. The
physical response and the three cases of the constant–coefficient theorem, page
431, lead to the following terminology.

Classification Defining properties

Overdamped Distinct real roots r1 ̸= r2
Positive discriminant
x = c1e

r1t + c2e
r2t

= exponential × monotonic function
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Critically damped Double real root r1 = r2
Zero discriminant
x = c1e

r1t + c2 t e
r1t

= exponential × monotonic function

Underdamped Complex conjugate roots a± i b
Negative discriminant
x = eat(c1 cos bt+ c2 sin bt)
= exponential × harmonic oscillation

Envelope Curves and Pseudo-Period

In the under-damped case the solution x(t) ofmx′′+cx′+kx = 0 can be expressed
in phase-amplitude form

x(t) = eat(c1 cos bt+ c2 sin bt)
= eatC cos(bt− α).

In this formula, c1 = C cosα, c2 = C sinα and C =
√
c21 + c22. The Pseudo-

Period is T =
2π

b
, so named because the harmonic factor cos(bt−α) has period

2π/b. The factor Ceat generates the two envelope curves

y = Ceat, y = −Ceat.

The solution x(t) oscillates entirely inside the region defined by the envelope
curves. Crossings of the t-axis happen at bt = nπ+α, n = 0,±1,±2, . . .. Contact
with the envelope curves happens at bt = nπ + π/2 + α, n = 0,±1,±2, . . ..

Figure 22. Envelope Curves.
A particular solution of the differential equa-
tion 25x′′ + 10x′ + 226x = 0 is
x(t) = 4e−t/5 sin 3t red,

which has pseudo-period T =
2π

3
.

The envelope curves are
x1(t) = 4e−t/5 yellow,
x2(t) = −4e−t/5 green.

Bicycle trailer

An auto tows a one–wheel trailer over a washboard road. Shown in Figure 23 is
the trailer strut, which has a single coil spring and two dampers. The mass m
includes the trailer and the bicycles.
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cc
k

Figure 23. A trailer strut with dampers on a
washboard road

Suppose a washboard dirt road has about 2 full oscillations (2 bumps and 2
valleys) every 3 meters and a full oscillation has amplitude 6 centimeters. Let
s denote the horizontal distance along the road and let ω be the number of
full oscillations of the roadway per unit length. The oscillation period is 2π/ω,
therefore 2π/ω = 3/2 or ω = 4π/3. A model for the road surface is

y =
5

100
cosωs.

Let x(t) denote the vertical elongation of the spring, measured from equilibrium.
Newton’s second law gives a force F1 = mx′′(t) and the viscous damping force
is F2 = 2cx′(t). The trailer elongates the spring by x− y, therefore the Hooke’s
force is F3 = k(x− y). The sum of the forces F1 + F2 + F3 must be zero, which
implies

mx′′(t) + 2cx′(t) + k(x(t)− y(t)) = 0.

Write s = vt where v is the speedometer reading of the car in meters per second.
The expanded differential equation is the forced damped spring-mass system
equation

mx′′(t) + 2cx′(t) + kx(t) =
k

20
cos(4πvt/3).

The solution x(t) of this model, with x(0) and x′(0) given, describes the vertical
excursion of the trailer bed from the roadway. The observed oscillations of
the trailer are modeled by the steady-state solution

xss(t) = A cos(4πvt/3) +B sin(4πvt/3),

where A, B are constants determined by the method of undetermined coefficients.

From physical data, the amplitude C =
√
A2 +B2 of this oscillation might be

6cm or larger. The maximum amplitude C over all speedometer readings v can
be found by calculus. The computation uses the formula

C(v) =
k/20√

(k −mω2)2 + (2cω)2
, ω =

4πv

3
.(11)

Set dC
dv = 0 and then solve for the speed v∗ which maximizes C(v). The maximum

excursion of the trailer is then

C(v∗) =
km

40c
√
km− c2

.

The values of k, m, c can be found from an experiment: record C(v) at three
different speeds v = v1, v2, v3. Then solve the system of three equations in three
unknowns m, k, c, arising from (11).
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Examples and Methods

Example 6.44 (Forced Undamped Vibration)
Solve the vibration equation

x′′ + 225x = 209 cos(4t).

Solution: The answer is x(t) = c1 cos(15t) + c2 sin(15t) + cos(4t). The vibration is an
example of beats for certain values of c1, c2. The solution is a superposition of two
harmonic oscillations of frequencies 15 and 4. There are two ways to solve the problem,
detailed below.

First Solution Details. A shortcut is to use equations (1), page 506. The given
equation x′′ + 225x = 209 cos(4t) provides symbols m = 1, k = 225, F0 = 209, ω = 4.
Then ω0 =

√
225 = 15 is the unforced natural frequency of vibration. Substitution of

the symbols into equations (1) gives xh = c1 cos(15t) + c2 sin(15t) and xp = F1 cos(4t)
with F1 = (209/1)/(225− 42) = 1. By superposition x = xh+xp. The reported solution
is verified.

Second Solution Details. The characteristic equation r2+225 = 0 of the homogeneous
problem x′′ + 225x = 0 has complex conjugate roots ±15i and Euler solution atoms
cos(15t), sin(15t). Then xh(t) = c1 cos(15t) + c2 sin(15t).

A particular solution by Rule I of the method of undetermined coefficients is x(t) =
A cos(4t) + B sin(4t). Substitution into the non-homogeneous equation x′′ + 225x =
209 cos(4t) gives the relation

−16(A cos(4t) +B sin(4t)) + 225(A cos(4t) +B sin(4t)) = 209 cos(4t).

It reduces to the equation

209A cos(4t) + 226B sin(4t) = 209 cos(4t).

Independence of Euler atoms cos(4t), sin(4t) implies matching coefficients. Then B = 0
and A = 1. The trial solution x(t) = A cos(4t) + B sin(4t) upon substitution of A =
1, B = 0 becomes particular solution xp(t) = cos(4t).

Superposition gives general solution x(t) = xh(t) + xp(t), therefore the answer reported
has been verified.

Example 6.45 (Beats)
Write the linear combination x(t) = cos 10t−cos 20t in the form x(t) = C sin at sin bt.
Then graph the slowly-varying envelope curves and the curve x(t).

Solution: The answer is x(t) = 2 sin(5t) sin(15t), which implies C = 2, a = 5, b = 15
with envelope curves ±2 sin 5t (sine factor with longer period appears first). The graphic
in Figure 24 is made from these formulas using a computer graphics program.

Figure 24. Beats Oscillation.
Plot of slowly-varying envelopes ±2 sin(5t) and
the oscillation x(t) = 2 sin(5t) sin(15t).
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Details. The basic tool is the cosine sum formula from page 491. Let’s assemble the
formulas

cos(A−B) = cosA cosB + sinA sinB,
cos(A+B) = cosA cosB − sinA sinB.

Because x(t) = cos 10t− cos 20t = cos(A−B)− cos(A+B) = 2 sinA sinB, then choose
A − B = 10t and A + B = 20t. Then the unique solution is A = 15t, B = 5t, which
implies the formula

x(t) = 2 sinA sinB = 2 sin (15t) sin (5t) .

The slowly-varying envelope curves are ±2 sin (5t), because the sine factor periods are
2π/15 and 2π/5, the second being the longer period.

Example 6.46 (Rotating Drum)
An unloaded European-style washing machine weighs 156 lbs. When loaded with an
off-center wet mass of 4 kg, it has horizontal excursions x from equilibrium satisfying
approximately the rotating drum equation (4):

mx′′(t) + kx(t) = RMω2 cosωt.

Assume Hooke’s spring constant k = 10 slugs per foot. The drum has diameter 30
in and during a water extraction cycle it rotates at 600 rpm. Discuss assumptions
and computations for the values M = 0.275, m = 5.15, R = 1.25 and ω = 20π.
Then compute the approximate expression

x (t) = c1 cos

(
20t√
206

)
+ c2 sin

(
20t√
206

)
− 55

π2 cos (20π t)

824π2 − 4
.(12)

Solution:
Details. Central to the mathematical formulation is Newton’s formula W = mg, which
in words is weight W (a force) equals mass m times gravitational acceleration g. Use
g = 32 ft/sec per second, for simplicity of discussion. Using g = 32.2 changes constants
in a minor way.

Basic plan. Use model (4). After, we will be tormented and humiliated by closer anal-
ysis of the physical problem. Let’s assume the centroid of the wet load is approximately
on the edge of the rotating drum, in order to simplify the formulas and use model (4).
The rotating machine in the absence of the wet load is assumed to operate at equilib-
rium x = 0. Issues like additional internal damping and frictional forces on the mounting
surface will be patently ignored with no apologies.

Wet load massM: A unit conversion is required for the wet load mass: 4 kg represents
4(2.2) lbs. ThenW = 8.8 lbs is the wet load weight and its mass isM = W/g = 8.8/32 =
0.275 slugs.

Total machine mass m: Total machine weight is W = 156 + 8.8 = 164.8 lbs, then
formula W = mg implies the total mass is m = 164.8/32 = 5.15 slugs.

Drum radius R: A conversion to feet is required, giving R = 1
2 (30) in = 15

12 in = 1.25
ft.

Natural frequency of rotation ω: Supplied is the rotational period 2π/ω, which is
equal to 1/10 second (600 revolutions in 60 seconds). Solve 2π/ω = 1/10 for ω = 20π.
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Solution x(t): We’ll use equation (4) with the constants inserted:

5.15x′′(t) + 10x(t) = 1.25(0.275)(20π)2 cos(20πt).

Without machine assist, the homogeneous equation 5.15x′′(t) + 10x(t) = 0 is solved as
xh = c1 cos(bt) + c2 sin(bt) where b =

√
k/m = 20/

√
206. Then undetermined coeffi-

cients is applied with (shortcut) trial solution x = A cos(20πt) to the non-homogeneous
problem, giving

A =
−55π2

824π2 − 4
, xp =

−55π2

824π2 − 4
cos(20πt).

The reported answer in equation (12) is x = xh + xp.

Answer check: Computer algebra system maple solves the equation using this code:

f:=t->1.25*(0.275)*(20*Pi)^2*cos (20*Pi* t);

de:=5.15*diff(x(t),t,t)+10*x(t)=f(t);

dsolve(de,x(t));

Vibrations of xp have amplitude about 0.13 cm and period 0.1. The harmonic vibrations
of xh have a longer period of about 4.5. For example, if the spin cycle starts from rest,
then x(t) will have amplitude of about 0.13 and its graphic on 0 < t < 4.5 will look like
a beats figure, with slow oscillation envelope of approximate period 4.5.

Example 6.47 (Damped Spring-Mass System)
Let x(t) be the defected distance from equilibrium in a damped spring-mass system
with free oscillation equation

4x′′(t) + 3x′(t) + 17x(t) = 0.

Find an expression for x(t).

Solution: The answer is

x(t) = c1e
−3t/8 cos(

√
263t/8) + c2e

−3t/8 sin(
√
263t/8).

Details. The homogeneous solution x(t) is a linear combination of two Euler solution
atoms found from the characteristic equation 4r2 + 3r+ 17 = 0. The roots according to
the quadratic formula are − 3

8 ±
i
8

√
263. Then the two Euler solution atoms are

e−3t/8 cos(
√
263t/8), e−3t/8 sin(

√
263t/8),

from which the solution formula follows.

Remarks. The oscillation is classified as under-damped, because of the presence
of sine and cosine oscillatory factors in the Euler solution atoms. Any solution is the
product of an exponential factor and a harmonic oscillation, therefore the solution is
pseudo-periodic with pseudo-period 16π/

√
263.

Example 6.48 (Seismoscope)
Consider the seismoscope equation

x′′(t) + 12x′(t) + 100x(t) = −u′′(t).

Find an expression for the seismoscope stylus record x(t) in terms of the ground
motion u(t).
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Solution: In terms of particular solution xp(t), defined below in integral equation (14)
or (15), the answer is

x(t) = c2e
−6t cos(8t) + c2e

−6t sin(8t) + xp(t).(13)

Details. The solution method is superposition x(t) = xh(t) + xp(t) where xh is the
solution of the homogeneous equation x′′(t)+12x′(t)+100x(t) = 0 and xp is a variation
of parameters solution of the non-homogeneous equation x′′(t)+12x′(t)+100x(t) = f(t),
where f(t) = −u′′(t).

Homogeneous solution xh. The characteristic equation r2 + 12r + 100 = 0 has
factorization (r + 6)2 + 64 = 0, hence complex conjugate roots r = −6 ± 8i. The
Euler solution atoms are e−6t cos(8t), e−6t sin(8t), from which we construct the general
solution

xh(t) = c2e
−6t cos(8t) + c2e

−6t sin(8t).

Non-homogeneous solution xp. Let’s start by writing the variation of parameters
formula in the different form

xp(t) = y1(t)

(∫ t

0

−y2(x)f(x)

W (x)
dx

)
+ y2(t)

(∫ t

0

y1(x)f(x)

W (x)
dx

)
=

∫ t

0

W1(t, x)

W (x)
f(x)dx

where

f(x) = −u′′(x),
y1(t) = e−6t cos(8t),
y2(t) = e−6t sin(8t),

W (x) = 8e−12x, Details below in 1 .
W1(t, x) = −y1(t)y2(x) + y2(t)y1(x)

= e−6t−6x(sin 8t cos 8x− cos 8t sin 8x)
= e−6t−6x sin(8t− 8x). Trig identity.

Condensing the definitions gives the final formula

xp(t) = −
∫ t

0

e−6t+6x sin(8t− 8x)u′′(x)dx.(14)

It is possible to integrate this equation by parts and express the answer entirely in terms
of u(t). Some integration by parts free terms are collected into xh(t) to produce the
replacement formula

x∗
p(t) = −u(t) +

∫ t

0

K(t− x)u(x)dx,

K(w) = 12 e−6w cos(8w) +
7

2
e−6w sin(8w).

(15)

Laplace theory can derive formula (15) using the convolution theorem. Generally, (14)
and (15) are different answers.

1 Wronskian determinant details.

A shortcut is to use Theorem 6.17, page 464. The answer is W (x) = W (0)e−12x where
W (0) = 8 is computed from the first line of the determinant expansion below. Details
below compute W (x) directly from the definition.
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6.7 Forced and Damped Vibrations

W (x) =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ Variation of parameters definition of the
Wronskian of y1, y2.

=

∣∣∣∣ y1 y2
−6y1 − 8y2 −6y2 + 8y1

∣∣∣∣ Because y′1 = −6y1− 8y2 and y′2 = −6y2 +
8y1.

=

∣∣∣∣ y1 y2
−8y2 8y1

∣∣∣∣ Combination rule combo(1,2,6).

= 8(y21 + y22) Sarrus’ Rule.

= 8e−12x(cos2(8x) + sin2(8x)) Expand y1(x) = e−6x cos(8x) and y2(x) =
e−6x sin(8x).

= 8e−12x. Pythagorean identity.

Example 6.49 (Cafe Door)
Consider the cafe door equation (8):

Ix′′(t) + cx′(t) + κx(t) = 0.

Find an expression for x(t). Then show details for why the motion x(t) is eventually
monotonic when the spring is removed.

Solution:

First, divide by torque I > 0 to obtain equation x′′ + 2ax′ + bx = 0 with new symbols
2a = c/I, b = κ/I. The characteristic equation is (r + a)2 + b − a2 = 0. There are
three cases determined by the sign of b − a2 for the form of the solution. Because

b− a2 = 4Iκ−c2

4I2 , then b− a2 has sign determined by 4Iκ− c2.

Case 4Iκ− c2 > 0.
Then the characteristic equation roots are complex conjugates −a ± i

√
b− a2. The

solution is under-damped, oscillatory and given by

x(t) = c1e
−at cos(

√
b− a2 t) + c2e

−at sin(
√
b− a2 t)

= c1e
ct
2I cos

(√
4Iκ− c2

t

2I

)
+ c2e

ct
2I sin

(√
4Iκ− c2

t

2I

)
.

Case 4Iκ− c2 = 0.
Then the characteristic equation roots are equal, −a,−a. The solution is critically
damped, non-oscillatory and given by

x(t) = c1e
−at + c2 t e

−at = c1e
ct
2I + c2 t e

ct
2I .

Case 4Iκ− c2 < 0.
Then the characteristic equation roots are real and unequal, −a±

√
a2 − b. The solution

is over-damped, non-oscillatory and given by

x(t) = c1e
−at−

√
a2−b t + c2 t e

−at+
√
a2−b t

= c1 e
(c−

√
c2−4Iκ) t

2I + c2 e
(c+

√
c2−4Iκ) t

2I .
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Cafe door with no spring. This event is defined by κ = 0, which eliminates the
under-damped case 4Iκ− c2 > 0. Suppose hereafter that x(t) is a nonzero solution. The
critically damped case is a = 0. Then the solution can be written as x(t) = c1 + c2 t,
which crosses the axis x = 0 at most once. The over-damped case 4Iκ − c2 < 0 can be
written x(t) =

(
c1 + c2 e

B
)
eAt where B > 0. Similarly, it crosses the axis x = 0 at most

once, due to the factor c1 + c2 e
Bt.

Example 6.50 (Pet Door)
A pet door of height L = 1.5 feet and weight 8 pounds oscillates freely because
the dashpot has been removed. Assume Hooke’s spring constant k = 10. Find an
expression for the angular motion x(t) using equation (9) with torque I = mL2/3:

I x′′(t) + cx′(t) +

(
k +

mgL

2

)
x(t) = 0.

Solution:
Removal of the dashpot corresponds to c = 0. The mass m satisfies W = mg, which from
W = 8 and g = 32 gives m = 0.25 slugs. Then the torque is I = mL2/3 = L2/12 = 3/16
and mgL/2 = 3g/16 = 6. Equation (9) becomes

3

16
x′′(t) + 16x(t) = 0.

This is the classical harmonic oscillator x′′+ω2x = 0 with ω2 = 162/3. Then ω = 16/
√
3

and

x(t) = c1 cos

(
16 t√
3

)
+ c2 sin

(
16 t√
3

)
.

Example 6.51 (Tuning a Dashpot)
Classify the following equations as over-damped, critically damped or under-damped
free vibrations.

(a) x′′ + 2x′ + 3x = 0

(b) x′′ + 4x′ + 3x = 0

(c) x′′ + 2x′ + x = 0

Solution: The answers: (a) Under-damped, (b) Over-damped, (c) Critically damped.
Definitions on page 513.

Details (a). The characteristic equation r2 + 2r + 3 = 0 factors into (r + 1)2 + 2 = 0
with complex conjugate roots −1 ± i

√
2. The Euler solution atoms contain sines and

cosines, therefore (a) is oscillatory, classified as under-damped.

Details (b). The characteristic equation r2+4r+3 = 0 factors into (r+3)(r+1) = 0 with
distinct real roots −3,−1. Therefore, (b) is non-oscillatory, classified as over-damped
because of distinct roots.

Details (c). The characteristic equation r2 + 2r + 1 = 0 factors into (r + 1)(r + 1) = 0
with equal real roots −1,−1. Therefore, (b) is non-oscillatory, classified as critically
damped because of equal roots.
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6.7 Forced and Damped Vibrations

Summary of Methods. Classification requires only the roots of the characteristic
equation.

Over-damped means too much damping. In the screen door example, the tuning screw
has made the dashpot constant c large, which means an overly-aggressive dashpot that
halts motion. This means the screen door hangs open. Then the screen door has no
oscillations, equivalently, x(t) has no sines or cosines.

Critically damped is an unstable state. In the screen door example, it is the impossible
to achieve the ideal dashpot tuning screw setting on a screen door: the door opens and
then slowly closes to the jamb position, the door hardware making a single click as it
locks the door on the jamb. A turn of the tuning screw in either direction jumps between
oscillation and non-oscillation of the screen door.

Under-damped means not enough damping effect. Physically, the dashpot is not ef-
fective. In the screen door example this means the screen door oscillates and bangs
repeatedly on the door jamb. Detection in x(t) is the presence of oscillating sines and
cosines. Solution x(t) is called oscillatory.

Example 6.52 (Pseudo-Period)
Find the pseudo-period and time-varying amplitude for the free damped vibration

4x′′ + 2x′ + 3x = 0, x(0) = 1, x′(0) = −1.

Solution: The answers: Pseudo period 8π/
√
11 and amplitude 4e−t/4 are obtained from

the solution x(t) = 4e−t/4 cos
(√

11 t
4

)
.

Details. The characteristic equation 4r2 + 2r + 3 = 0 has complex conjugate roots

− 1
4 ± i

√
11
4 , obtained from the quadratic formula. Then the general solution is

x(t) = c1 e
−t/4 cos

(√
11

t

4

)
+ c2 e

−t/4 sin

(√
11

t

4

)
.

Initial conditions x(0) = 4, x′(0) = −1 give the two equations

(1)c1 + (0)c2 = 4,(−1
4

)
c1 +

(√
11
4

)
c2 = −1,

with unique solution c1 = 4, c2 = 0. The pseudo-period is the period 2π/ω of the trig
factor cos(ωt), where ω = 1

4

√
11. The time-varying amplitude is the factor in front of

the cosine factor, namely 4e−t/4.

Remark on Method. If both c1, c2 are nonzero, then a trig identity is applied first to
write x(t) = Ae−t/4 cos(ωt−α). The amplitude is then Ae−t/4. The period is unchanged.

Proofs and Details

Details for equation (1), page 506:

Homogeneous solution xh. The characteristic equation for x′′ + ω2
0x = 0 is r2 +

ω2
0 = 0 with complex conjugate roots r = πiω0. Then the Euler solution atoms are

cos(ω0t), sin(ω0t). The general solution is a linear combination of the Euler solution
atoms, as displayed in equation (1).
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6.7 Forced and Damped Vibrations

Particular solution xp. The method of undetermined coefficients applies, because
the equation has constant coefficients and the forcing term f(t) = (F0/m) cos(ωt) is a
linear combination of Euler solution atoms. Derivatives of f(t) are linear combinations
of the two atoms cos(ωt), sin(ωt) and therefore the initial trial solution in the method
of undetermined coefficients is x(t) = d1 cos(ωt) + d2 sin(ωt). Neither of the two atoms
appearing in the trial solution are solutions of the unforced equation x′′ + ω2

0x = 0,
because that would require the false equation ω0 = ω). Therefore, the initial trial
solution is the final trial solution, no changes made, no Rule II applied.

The trial solution x(t) = d1 cos(ωt) + d2 sin(ωt) is substituted into x′′ + ω2
0x = F0

m cosωt
in order to determine d1, d2. The calculation uses the equation x′′ + ω2x = 0, satisfied
by cosωt, sinωt and the trial solution x(t). Then

x′′ + ω2
0x = F0

m cos(ωt),
−ω2x+ ω2

0x = F0

m cos(ωt),(
ω2
0 − ω2

)
x = F0

m cos(ωt),
Cd1 cos(ωt) + Cd2 sin(ωt) = F0

m cos(ωt),

where C =
(
ω2
0 − ω2

)
. Matching coefficients of the Euler atoms cos(ωt), sin(ωt) then

implies
Cd1 = F0

m ,
Cd2 = 0.

Division by C gives d1 = F0

mC and d2 = 0, which implies x(t) = F0

mC cos(ωt). This is the
answer for xp reported in equation (1).

Exercises 6.7 �

Forced Undamped Vibration
Solve the given equation.

1. x′′ + 100x = 20 cos(5t)

2. x′′ + 16x = 100 cos(10t)

3. x′′+ω2
0x = 100 cos(ωt), when the inter-

nal frequency ω0 is twice the external
frequency ω.

4. x′′ + ω2
0x = 5 cos(ωt), when the inter-

nal frequency ω0 is half the external fre-
quency ω.

Black Box in the Trunk

5. Construct an example x′′ + ω2
0x =

F1 cos(ωt) with a solution x(t) having
beats every two seconds.

6. A solution x(t) of x′′ + 25x =
100 cos(ωt) has beats every two seconds.
Find ω.

Rotating Drum
Solve the given equation.

7. x′′ + 100x = 500ω2 cos(ωt), ω ̸= 10.

8. x′′ + ω2
0x = 5ω2 cos(ωt), ω ̸= ω0.

Harmonic Oscillations
Express the general solution as a sum of
two harmonic oscillations of different fre-
quencies, each oscillation written in phase-
amplitude form.

9. x′′ + 9x = sin 4t

10. x′′ + 100x = sin 5t

11. x′′ + 4x = cos 4t

12. x′′ + 4x = sin t

Beats: Convert and Graph
Write each linear combination as x(t) =
C sin at sin bt. Then graph the slowly-
varying envelope curves and the curve x(t).

13. x(t) = cos 4t− cos t
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14. x(t) = cos 10t− cos t

15. x(t) = cos 16t− cos 12t

16. x(t) = cos 25t− cos 23t

Beats: Solve, find Envelopes
Solve each differential equation with x(0) =
x′(0) = 0 and determine the slowly-varying
envelope curves.

17. x′′ + x = 99 cos 10t.

18. x′′ + 4x = 252 cos 10t.

19. x′′ + x = 143 cos 12t.

20. x′′ + 256x = 252 cos 2t.

Waves and Superposition
Graph the individual waves x1, x2 and then
the superposition x = x1 + x2. Report
the apparent period of the superimposed
waves.

21. x1(t) = sin 22t, x2(t) = 2 sin 20t

22. x1(t) = cos 16t, x2(t) = 4 cos 20t

23. x1(t) = cos 16t, x2(t) = 4 sin 16t

24. x1(t) = cos 25t, x2(t) = 4 cos 27t

Periodicity

25. Let x1(t) = cos 25t, x2(t) = 4 cos 27t.
Their sum has period T = m 2π

25 = n 2π
27

for some integers m,n. Find all m,n
and the least period T .

26. Let x1(t) = cosω1t, x2(t) = cosω2t.
Find a condition on ω1, ω2 which im-
plies that the sum x1 + x2 is periodic.

27. Let x(t) = cos(t) − cos(
√
2t). Explain

without proof, from a graphic, why x(t)
is not periodic.

28. Let x(t) = cos(5t) + cos(5
√
2t). Is x(t)

is periodic? Explain without proof.

Rotating Drum
Let x(t) and xp(t) be defined as in Exam-
ple 4, page 509. Replace Hooke’s constant
k = 10 by k = 1, all other constants un-
changed.

29. Re-compute the amplitude A(t) of so-
lution xp(t). Find the decimal value for
the maximum of |A(t)|.

30. Find x(t) when x(0) = x′(0) = 0. It
is known that x(t) fails to be periodic.
Let t1 = 0, . . . , t29 be the consecutive
extrema on 0 ≤ t ≤ 1.4. Verify graphi-
cally or by computation that |x(ti+1)−
x(ti)| ≈ 0.133 for i = 1, . . . , 28.

Musical Instruments
Melodious tones are superpositions of har-
monics sin(nωt), with n = an integer, ω =
fundamental frequency.

In 1885 Alexander J. Ellis introduced a
measurement unit Cent by the equation
one cent = 2

1
12 ≈ 1.0005777895. On most

pianos, the frequency ratio between two
adjacent keys equals 100 cents, called an
equally tempered semitone. Two pi-
ano keys of frequencies 480 Hz and 960 Hz
span 1200 cents and have tones sin(ωt) and
sin(2ωt) with ω = 480. A span of 1200
cents between two piano key frequencies is
called an Octave.

31. (Equal Temperament) Find the 12
frequencies of equal temperament for
octave 480 Hz to 960 Hz. The first two
frequencies are 480, 508.5422851.

32. (Flute or Noise) Equation x(t) =
sin 220πt+2 sin 330πt could represent a
tone from a flute or just a dissonant,
unpleasing sound. Discuss the impossi-
bility of answering the question with a
simple yes or no.

33. (Guitar) Air inside a guitar vibrates a
little like air in a bottle when you blow
across the top. Consider a flask of vol-
ume V = 1 liter, neck length L = 5
cm and neck cross-section S = 3 cm2.
The vibration has model x′′ + f2x = 0

with f = c
√

S
V L , where c = 343 m/s is

the speed of sound in air. Compute f
2π

and λ = 2πc
f , the frequency and wave-

length. The answers are about 130 Hz
and λ = 2.6 meters, a low sound.
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34. (Helmholtz Resonance) Repeat the
previous exercise calculations, using a
flask with neck diameter 2.0 cm and
neck length 3 cm. The tone should
be lower, about 100 Hz, and the wave-
length λ should be longer.

Seismoscope

35. Verify that xp given in (14) and x∗
p

given by (15), page 519, have the same
initial conditions when u(0) = u′(0) =
0, that is, the ground does not move at
t = 0. Conclude that xp = x∗

p in this
situation.

36. A release test begins by starting a
vibration with u = 0. Two successive
maxima (t1, x1), (t2, x2) are recorded.
Explain how to find β,Ω0 in the equa-
tion x′′ + 2βΩ0x

′ + Ω2
0x = 0, using Ex-

ercises 69 and 70, infra.

Free Damped Motion
Classify the homogeneous equation mx′′ +
cx′ + kx = 0 as over-damped, critically
damped or under-damped. Then solve
the equation for the general solution x(t).

37. m = 1, c = 2, k = 1

38. m = 1, c = 4, k = 4

39. m = 1, c = 2, k = 3

40. m = 1, c = 5, k = 6

41. m = 1, c = 2, k = 5

42. m = 1, c = 12, k = 37

43. m = 6, c = 17, k = 7

44. m = 10, c = 31, k = 15

45. m = 25, c = 30, k = 9

46. m = 9, c = 30, k = 25

47. m = 9, c = 24, k = 41

48. m = 4, c = 12, k = 34

Cafe and Pet Door
Classify as a cafe door model and/or a pet
door model. Solve the equation for the gen-
eral solution and identify as oscillatory or
non-oscillatory.

49. x′′ + x′ = 0

50. x′′ + 2x′ + x = 0

51. x′′ + 2x′ + 5x = 0

52. x′′ + x′ + 3x = 0

53. 9x′′ + 24x′ + 41x = 0

54. 6x′′ + 17x′ = 0

55. 9x′′ + 24x′ = 0

56. 6x′′ + 17x′ + 7x = 0

Classification
Classify mx′′ + cx′ + kx = 0 as over-
damped, critically damped or under-
damped without solving the differential
equation.

57. m = 5, c = 12, k = 34

58. m = 7, c = 12, k = 19

59. m = 5, c = 10, k = 3

60. m = 7, c = 12, k = 3

61. m = 9, c = 30, k = 25

62. m = 25, c = 80, k = 64

Critically Damped
The equation mx′′ + cx′ + kx = 0 is criti-
cally damped when c2−4mk = 0. Establish
the following results for c > 0.

63. The mass undergoes no oscillations,
because

x(t) = (c1 + c2t)e
− ct

2m .

64. The mass passes through x = 0 at most
once.

Over-Damped
Equation mx′′ + cx′ + kx = 0 is defined to
be over-damped when c2 − 4mk > 0. Es-
tablish the following results for c > 0.

525



6.7 Forced and Damped Vibrations

65. The mass undergoes no oscillations,
because if r1, r2 are the roots of mr2 +
cr + c = 0, then

x(t) = c1e
r1t + c2e

r2t.

66. The mass passes through equilibrium
position x = 0 at most once.

Under-Damped
Equation mx′′ + cx′ + kx = 0 is defined
to be under-damped when c2 − 4mk < 0.
Establish the following results.

67. The mass undergoes infinitely many
oscillations. If c = 0, then the oscil-
lations are harmonic.

68. The solution x(t) can be factored as an
exponential function e−

ct
2m times a har-

monic oscillation. In symbols:

x(t) = e−
ct
2m (A cos(ωt− α)) .

Experimental Methods
Assume modelmx′′+cx′+kx = 0 is oscilla-
tory. The results apply to find nonnegative
constants m, c, k from one experimentally
known solution x(t). Provide details.

69. Let x(t) have consecutive maxima at
t = t1 and t = t2 > t1. Then t2 − t1 =
T = 2π

ω = pseudo period of x(t).

70. Let (t1, x1) and (t2, x2) be two consec-
utive maximum points of the graph of a
solution x(t) = Ce−ct/(2m) cos(ωt − α)
of mx′′ + cx′ + kx = 0. Let a ± ωi
be the two complex roots of mr2 +
cr + k = 0 where a = −c/(2m) and
ω = 1

2m

√
4mk − c2. Then

ln
x1

x2
=

cπ

mω
,

71. (Bike Trailer) Assume fps units. A
trailer equipped with one spring and
one shock has mass m = 100 in the
model mx′′ + cx′ + kx = 0. Find
c and k from this experimental data:
two consecutive maxima of x(t) are
(0.35, 10/12) and (1.15, 8/12).
Hint: Use exercises 69 and 70.

72. (Auto) Assume fps units. An auto
weighing 2.4 tons is equipped with four
identical springs and shocks. Each
spring-shock module has damped oscil-
lations satisfying mx′′ + cx′ + kx =
0. Find m. Then find c and k from
this experimental data: two consecu-
tive maxima of x(t) are (0.3, 3/12) and
(0.7, 2/12).
Hint: Use exercises 69 and 70.

Structure of Solutions
Establish these results for the damped
spring-mass system mx′′ + cx′ + kx = 0.
Assume m > 0, c > 0, k > 0.

73. (Monotonic Factor) Let the equation
be critically damped or over-damped.
Prove that

x(t) = e−ptf(t)

where p ≥ 0 and f(t) is monotonic (f ′

one-signed).

74. (Harmonic Factor) Let the equation
be under-damped. Prove that

x(t) = e−atf(t)

where a > 0 and f(t) = c1 cosωt +
c2 sinωt = A cos(ωt − α) is a harmonic
oscillation.

75. (Limit Zero and Transients) A term
appearing in a solution is called tran-
sient if it has limit zero at t = ∞.
Prove that positive damping c > 0 im-
plies that the homogeneous solution sat-
isfies limt→∞ x(t) = 0.

76. (Steady-State) An observable or
steady-state is expression obtained
from a solution by excluding all terms
with limit zero at t = ∞. The Tran-
sient is the expression excluded to ob-
tain the steady state. Assume mx′′ +
cx′ + kx = 25 cos 2t has a solution

x(t) = 2te−t − cos 2t+ sin 2t.

Find the transient and steady-state
terms.
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6.7 Forced and Damped Vibrations

Damping Effects
Construct a figure on 0 ≤ t ≤ 2 with two
curves, to illustrate the effect of removing
the dashpot. Curve 1 is the solution of
mx′′ + cx′ + kx = 0, x(0) = x0, x

′(0) = v0.
Curve 2 is the solution of my′′ + ky = 0,
y(0) = x0, y

′(0) = v0.

77. m = 2, c = 12, k = 50,
x0 = 0, v0 = −20

78. m = 1, c = 6, k = 25,
x0 = 0, v0 = 20

79. m = 1, c = 8, k = 25,
x0 = 0, v0 = 60

80. m = 1, c = 4, k = 20,
x0 = 0, v0 = 4

Envelope and Pseudo-period
Plot on one graphic the envelope curves and
the solution x(t), over two pseudo-periods.
Use initial conditions x(0) = 0, x′(0) = 4.

81. x′′ + 2x′ + 5x = 0

82. x′′ + 2x′ + 26x = 0

83. 2x′′ + 12x′ + 50x = 0

84. 4x′′ + 8x′ + 20x = 0
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6.8 Resonance

6.8 Resonance

A highlight in the study of vibrating mechanical systems is the theory of pure
and practical resonance.

Pure Resonance and Beats

The notion of pure resonance in the differential equation

x′′(t) + ω2
0 x(t) = F0 cos(ωt)(1)

is the existence of a solution that is unbounded as t→∞. Unbounded means not
bounded. Bounded means a constant M exists such that |x(t)| ≤M for all values
of t. Already known, The theory of Beats page 507 solves (1) for ω ̸= ω0. The
solution is the sum of two harmonic oscillations, hence it is bounded. Equation
(1) for ω = ω0 has by the method of undetermined coefficients the unbounded os-

cillatory solution x(t) =
F0

2ω0
t sin(ω0 t). Technical details are similar to Example

6.53, infra.

Pure resonance occurs exactly when the natural internal frequency ω0 matches
the natural external frequency ω, in which case all solutions of the differential
equation are unbounded.

Figure 25 illustrates pure resonance for x′′(t)+16x(t) = 8 cos 4t, which in equation
(1) corresponds to ω = ω0 = 4 and F0 = 8.

t

x

Figure 25. Pure resonance.
Equation x′′(t) + 16x(t) = 8 cosωt, ω = 4.
Graphs:
envelope curve x = t yellow
envelope curve x = −t green
solution x(t) = t sin 4t red

Resonance and Undetermined Coefficients

An explanation of resonance can be based upon the theory of undetermined
coefficients. An initial trial solution for

x′′(t) + 16x(t) = 8 cosωt

is x = d1 cosωt+d2 sinωt. The homogeneous solution is xh = c1 cos 4t+ c2 sin 4t.
Euler atoms in xh(t) match Euler atoms in the trial solution x = d1 cosωt +
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6.8 Resonance

d2 sinωt exactly when ω = 4. RULE II in undetermined coefficients applies
exactly for ω = 4. The two cases ω ̸= 4 and ω = 4 give final trial solution

x(t) =

{
d1 cosωt+ d2 sinωt ω ̸= 4,

t(d1 cosωt+ d2 sinωt) ω = 4.
(2)

Even before the undetermined coefficients d1, d2 are evaluated, it is decided
that unbounded solutions occur exactly when frequency matching ω = 4 occurs,
because of the amplitude factor t. If ω ̸= 4, then xp(t) is a pure harmonic
oscillation, hence bounded. If ω = 4, then amplitude factor t times a pure
harmonic oscillation makes xp unbounded.

Practical Resonance

The notion of pure resonance is easy to understand both mathematically and
physically, because frequency matching characterizes the event. This ideal situ-
ation never happens in the physical world, because damping is always present.
In the presence of damping c > 0, it will be established below that only bounded
solutions exist for the forced spring-mass system

mx′′(t) + cx′(t) + kx(t) = F0 cosωt.(3)

Our intuition about resonance seems to vaporize in the presence of damping
effects. But not completely. Most would agree that the undamped intuition is
correct when the damping effects are nearly zero.

Practical resonance is said to occur when the external frequency ω has been
tuned to produce the largest possible solution (a more precise definition appears
below). It will be shown that the steady-state solution xss(t) has maximum
amplitude, over all possible input frequencies ω, at the precise tuned frequency
ω = Ω given by the equation

Ω =

√
k

m
− c2

2m2
.(4)

The equation only makes sense when k
m−

c2

2m2 > 0. Pure resonance ω =
√
k/m is

the limiting case obtained by setting the damping constant c to zero in condition
(4). This strange but predictable interaction exists between the damping constant
c and the magnitude of a solution, relative to the external frequency ω, even
though all solutions remain bounded.

The decomposition of x(t) into homogeneous solution xh(t) and particular solu-
tion xp(t) gives some intuition into the complex relationship between the input
frequency ω and the size of the solution x(t).
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6.8 Resonance

Homogeneous Solution xh(t)

Solution xh(t) for homogeneous equation mx′′(t)+ cx′(t)+ kx(t) = 0 for positive
constants m, c, k will be shown to have limit zero at t = ∞, which means the
graph of xh(t) follows the t-axis to t =∞. An inequality of the form |xh(t)| ≤ e−qt

holds as t→∞, for some q > 0: see the proof of Theorem 6.21. Figure 26 shows
that the graph of xh(t) can cross the t-axis infinitely often, even though it is
trapped between envelope curves x = ±e−qt near t =∞.7

Theorem 6.21 (Transient Solution)
Assume positive values for m, c, k. The solution xh(t) of the homogeneous equation
mx′′(t) + cx′(t) + kx(t) = 0 has limit zero at t =∞:

lim
t→∞

xh(t) = 0 for positive m, c, k

Proof on page 542.

Definition 6.3 (Transient Solution)
A solution x(t) of a differential equation is called a transient solution provided it
satisfies the relation limt→∞ x(t) = 0.

A transient solution x(t) for large t has its graph atop the axis x = 0, as in Figure
26.

1

0 t
50

x

Figure 26. Transient Oscillatory Solution.
Shown is solution x = e−t/8(cos t + sin t) of differential
equation 64x′′ + 16x′ + 65x = 0.

Particular Solution xp(t)

Let’s find xp(t) for mx′′(t)+ cx′(t)+kx(t) = F0 cosωt by the method of undeter-
mined coefficients. It will be found that xp(t) equals xss(t) defined in Definition
6.4 and explicitly given in equation (5) infra.

Definition 6.4 (Steady-State Solution)
Assume for non-homogeneous equation mx′′(t)+ cx′(t)+kx(t) = F0 cosωt that m,
c, k are all positive values. The steady–state solution xss(t) is a particular solution
xp(t) in superposition x(t) = xp(t) + xh(t), found from any general solution x(t)
by removing all terms containing negative exponentials. The terms removed add to
some homogeneous solution xh(t).

7A funnel in first order theory for y′ = f(y) may also have limit y = 0 at infinity, but the
funnel graph cannot cross y = 0.
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6.8 Resonance

Steady-state solution xss(t) is observable, because it is visible as the graph of
x(t) for t large enough for the negative exponential terms become zero to pixel
resolution. Uniqueness of xss(t) implies Definition 6.4 is sensible, details in the
proof of Theorem 6.22.

Theorem 6.22 (Steady-State Solution)
Assume positive values for m, c, k. The unique steady-state solution xss(t) of the
non-homogeneous equation mx′′(t) + cx′(t) + kx(t) = F0 cosωt with period 2π/ω
is given by

xss(t) =
F0

(k −mω2)2 + (cω)2
(
(k −mω2) cosωt+ (cω) sinωt

)
=

F0√
(k −mω2)2 + (cω)2

cos(ωt− α),
(5)

where α is defined by the phase–amplitude relations (see page 492)

C cosα = k −mω2, C sinα = cω,

C = F0/
√
(k −mω2)2 + (cω)2.

(6)

Proof on page 543.

It is possible to be mislead by the method of undetermined coefficients, in which it
turns out that xp(t) and xss(t) are the same. Alternatively, a particular solution
xp(t) can be calculated by variation of parameters, a method which produces in
xp(t) extra terms containing negative exponentials. These extra terms come from
the homogeneous solution – their appearance cannot always be avoided. This
justifies the careful definition of steady–state solution, in which the transient
terms are removed from a general solution x(t) to produce xss(t).

Definition 6.5 (Practical Resonance)
Assume positive values for m, c, k in non-homogeneous equation mx′′(t) + cx′(t) +
kx(t) = F0 cosωt. Practical resonance occurs if there is a value of external fre-
quency ω > 0 in which produces the largest possible steady-state amplitude C(ω) in
the steady-state periodic solution xss defined by equation (5) in Theorem 6.22.

Theorem 6.23 (Practical Resonance Identity)
Assume positive values for m, c, k in non-homogeneous equation mx′′(t) + cx′(t) +
kx(t) = F0 cosωt. Practical resonance for mx′′(t) + cx′(t) + kx(t) = F0 cosωt
occurs precisely when the external frequency ω is tuned to

Ω =

√
k

m
− c2

2m2

and the square root argument k
m −

c2

2m2 is positive.

Proof on page 543.
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6.8 Resonance

Theorem 6.24 (Pure Resonance Identity)
Assume m and k are positive in non-homogeneous equation mx′′(t) + kx(t) =
F0 cosωt. Pure resonance results from tuned external frequency value

ω =

√
k

m
=

(√
k

m
− c2

2m2

)∣∣∣∣∣
c=0

This value is the limiting case c = 0 in Theorem 6.23. If ω = k
m is inserted into

mx′′(t) + kx(t) = F0 cosωt, then xp(t) =
F0

2mω
t sin(ωt) is an unbounded solution,

causing all solutions x(t) to be unbounded. Proof on page 543.

An Illustration. Figure 27 illustrates practical resonance for x′′ + cx′ + 26x =
10 cosωt. The amplitude C(ω) of the steady–state periodic solution is graphed
against the external natural frequency ω for damping constants c = 1, 2, 3. The
practical resonance condition is Ω =

√
26− c2/2. As c increases from 1 to 3, the

maximum point (Ω, C(Ω)) satisfies a monotonicity condition: both Ω and C(Ω)
decrease as c increases. The maxima for the three curves in the figure occur at
ω =
√
25.5,

√
24,
√
21.5. Pure resonance occurs when c = 0 and ω =

√
26.

ω

c = 3

c = 2

c = 1

C

Figure 27. Practical resonance for x′′ + cx′ + 26x = 10 cosωt.

The amplitude C(ω) = 10/
√
(26− ω2)2 + (cω)2 is plotted versus external frequency ω

for c = 1, 2, 3.

Uniqueness of the Steady–State Periodic Solution

Any two solutions of the nonhomogeneous differential equation (3) which are
periodic of period 2π/ω must be identical by Theorem 6.22. A more general
statement is true:

Theorem 6.25 (Uniqueness of a T -Periodic Solution)
Assume m, c, k positive. Consider the equation mx′′(t) + cx′(t) + kx(t) = f(t)
with f continuous and T -periodic: f(t + T ) = f(t). Then a T–periodic solution is
unique. Proof on page 544.

An Illustration. In Figure 28, the unique steady–state periodic solution is
graphed for the differential equation x′′+2x′+2x = sin t+2 cos t. The transient
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6.8 Resonance

solution of the homogeneous equation and the steady–state solution appear in
Figure 29. In Figure 30, several solutions are shown for the differential equation
x′′ + 2x′ + 2x = sin t+ 2 cos t, all of which reproduce at t =∞ the steady–state
solution x = sin t.

x

0
6π

t

1

Figure 28. Steady-state solution.
Differential equation x′′ + 2x′ + 2x = sin t+ 2 cos t.
Periodic steady-state solution xss = sin t.

2

1

0
0

6π
t

x

Figure 29. Transient and Steady-state.
General solution x(t) is the graphical sum of xh

(green) and xss (red):
Transient Green xh = e−t (2 ∗ cos t+ 2 sin t)
Steady-state Red xss = sin t

x

0
0

2

3

1

t

3π

Figure 30. Steady-state.
Initial value problem solutions of x′′ +
2x′ + 2x = sin t+ 2 cos t with x′(0) = 1 and
x(0) = 1, 2, 3.
All graphically coincide with the steady-
state solution x = sin t for t ≥ π.

Pseudo–Periodic Solution

Resonance gives rise to solutions of the form x(t) = A(t) sin(ωt− α) where A(t)
is a time–varying amplitude. Figure 31 shows such a solution, which is called a
pseudo–periodic solution because it has a natural period 2π/ω arising from
the trigonometric factor sin(ωt − α). The only requirement on A(t) is that it
be non–vanishing, so that it acts like an amplitude. The pseudo–period of a
pseudo–periodic solution can be determined graphically, by computing the length
of time it takes for x(t) to vanish three times.
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4
e

0 t
20

x

Figure 31. Pseudo-periodic solution.
Equation 16x′′ + 8x′ + 145x = 96e−t/4 cos 3t.
Legend for the graphic:
Envelope x = te−t/4 Yellow
Envelope x = −te−t/4 Green
Solution x = te−t/4 sin(3t) Red

The pseudo-period 2π/3 of x = te−t/4 sin(3t) is found by solving for t in x(t) = 0,
equivalently te−t/4 sin(3t) = 0. Then 3t = 0, π, 2π are the first three crossings of
x(t) with the t-axis. The pseudo-period is 2π/3. The terminology does not mean
that x(t) is periodic, but pseudo-periodic, which is a periodic function multiplied
by a nonzero amplitude function.

Resonance History

Soldiers Breaking Cadence, 1831

Figure 32. The Rebuilt Broughton Suspension Bridge.

On 12 April 1831, the original bridge collapsed, blamed on mechanical resonance from

troops marching in cadence. The bridge spans the River Irwell between Broughton and

Pendleton near Manchester, England. Photo from 1883.

The collapse of the Broughton suspension bridge in 1831 reportedly caused the
now–standard military rule of breaking cadence when soldiers cross a bridge.
Bridges like the Broughton bridge have many natural low frequencies of vibra-
tion, so it is possible for a column of soldiers to vibrate the bridge at one of
the bridge’s natural frequencies. The bridge locks onto the frequency while the
soldiers continue to add to the excursions with every step, causing larger and
larger bridge oscillations.
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Figure 33. The London Albert Bridge.

A sign added in 1973 warns marching ranks of soldiers to break cadence.

The Tacoma Narrows Bridge, 1940

The literature is rich with accounts of the November 7, 1940 Tacoma bridge
disaster, the date when the bridge fell into the Tacoma Narrows.

Figure 34. The Tacoma Narrows Bridge, 1940.

Historically, the disaster has been presented as an instance of resonance, a technical

term which requires a periodic input of energy. No observer witnessed a periodic input

of energy, and this is the source of the controversy over the cause of the bridge failure.

The bridge disaster has been blamed on Aeroelastic Flutter, a term used for
aircraft:

If energy input by aerodynamic excitation is larger than what is dissi-
pated by system damping, then the amplitude of vibration will increase,
resulting in self-exciting oscillation.

The Tacoma bridge was injected with energy from a 40 mph wind. The energy
did not dissipate through the damping properties of the bridge structure. The
energy was dissipated by the formation of longitudinal and transverse vibrations
of the roadway, which eventually lead to failure.

There have been other explanations, none of which are more popular than aeroe-
lastic flutter.
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6.8 Resonance

1940 Theodore von Karman proposed that vortex shedding had created a (pe-
riodic) force in its wake that excited the bridge into resonant oscillations.
This resonance theory requires a periodic input caused by a 40 mph wind
acting on the bridge structure. Wind tunnel experiments seemed to verify
the explanation. The final Federal Works Administration report rejected
the explanation.

2000 The resonance model was re-visited, because the hanging bridge suspen-
sion cables produce a force only in one direction. Using a modification
of the classical linear resonance model, simulations reproduced oscillation
magnitudes seen in the 1940 film of the bridge failure.

The Wine Glass Experiment, 1985

The equation mx′′ + cx′ + kx = F0 cos(ωt) with c replaced by zero is advertised
as the basis for a physics experiment to break a wine glass with resonant sound
waves.

701

803.2

Stereo Amplifier

Frequency Counter

Frequency synthesizer

Chan 1 Chan 2

Speaker Microphone

Wine Glass

Oscilloscope Function Generator

Figure 35. The Wine Glass Experiment Lab Table.

Equipment: A wine glass, a stereo amplifier, a speaker for sound waves, a frequency

generator and a microphone connected to an oscilloscope.

The wine glass experiment is a portion of a film produced in 1985 by the An-
nenberg/CPB Project in Episode 17, Resonance, which is one of 52 episodes
in The Mechanical Universe series. A synopsis appears below for a por-
tion of episode 17, with parenthetical remarks inserted for the model equation
mx′′ + kx = F0 cosωt.

A physicist in front of an audience of physics students equips a lab table
with a frequency generator, an amplifier and an audio speaker. The
valuable wine glass is replaced by a glass beaker. The frequency generator
is tuned to the natural frequency of the glass beaker (ω ≈ ω0), then the
volume knob on the amplifier is suddenly turned up (F0 adjusted larger),
whereupon the sound waves emitted from the speaker break the glass
beaker.

The glass itself will vibrate at a certain frequency, as can be determined exper-
imentally by pinging the glass rim. This vibration operates within elastic limits
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of the glass and the glass will not break under these circumstances. A physical
explanation for the breakage is that an incoming sound wave from the speaker is
timed to add to the glass rim excursion. After enough amplitude additions, the
glass rim moves beyond the elastic limit and the glass breaks. The explanation
implies that the external frequency from the speaker has to match the natural fre-
quency of the glass. But there is more to it: the glass has some natural damping
that nullifies feeble attempts to increase the glass rim amplitude. The physicist
uses to great advantage this natural damping to tune the external frequency to
the glass. The reason for turning up the volume on the amplifier is to nullify the
damping effects of the glass. The amplitude additions then build rapidly and the
glass breaks.

The London Millennium Foot-Bridge, 2000

Figure 36. The London Millennium Foot-Bridge.

Opened June 10, 2000 and closed two days later, London visitors nicknamed it the

Wobbly Bridge. The reconstruction finished in 2002 added 5M pounds to the initial

cost of 18M.

The opening of the bridge brought crowds of 90,000 people per day. The natural
swaying motion of people walking across the span caused small sideways bridge
oscillations, which in turn caused people on the bridge to sway in step, adding
to the amplitude of the bridge oscillations.

Engineers fixed the vibration problem by retrofitting 37 energy dissipating vis-
cous fluid dashpots to control horizontal movement and 52 tuned inertial mass
dampers to control vertical movement.
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Examples and Methods

Example 6.53 (Beats and Pure Resonance)
Solve by undetermined coefficients for a particular solution of the equation x′′(t) +
16x(t) = 8 cosωt for all values of ω > 0, verifying that

xp(t) =


8

16− ω2
cos(ωt) ω ̸= 4,

t sin(4t) ω = 4.

Solution:

Trial solution details. Rule I of undetermined coefficients requires derivatives of f(t) =
8 cos(ωt), which are linear combinations of Euler atoms cos(ωt), sin(ωt). Then the Rule
I trial solution is x = d1 cos(ωt) + d2 sin(ωt).

The homogeneous solution solves x′′ + 16x = 0, then xh = c1 cos(4t) + c2 sin(4t). Euler
atoms cos(ωt), sin(ωt) will be homogeneous solutions if and only if ω = 4. Rule II applies
only in the case ω = 4, in which case the trial solution is x = d1t cos(4t)+ d2t sin(4t) (ωt
equals 4t).

Details for Beats, ω ̸= 4: Write u = cos(ωt), v = sin(ωt) and x(t) = d1u+ d2v. Then
x(t) = d1u+ d2v. Because u′′ + ω2u = 0 and v′′ + ω2v = 0, then x′′ + ω2x = 0.

x′′ + 16x = 8u Original equation, u = cos(ωt).

−ω2x+ 16x = 8u Substitute from x′′ + ω2x = 0.

(16− ω2)(d1u+ d2v) = 8u Collect on x. Substitute x = d1u+ d2v.∣∣∣∣ (16− ω2)d1 = 8,
(16− ω2)d2 = 0.

∣∣∣∣ Independence. Match coefficients of u, v.

d1 =
8

16− ω2
, d2 = 0 Solve for d1, d2.

Details for Pure Resonance, ω = 4: Define u = cos(4t), v = sin(4t). The modified
trial solution x(t) then satisfies

x(t) = d1tu+ d2tv,
x′(t) = d1u+ d2v − 4d1tv + 4d2tu,
x′′(t) = −8d1v + 8d2u− 16x(t).

(7)

Then

x′′ + 16x = 8u Original equation, u = cos(ωt).

−8d1v + 8d2u = 8u Use equation (7), then cancel 16x(t).∣∣∣∣ −8d1 = 0,
8d2 = 8.

∣∣∣∣ Independence of u, v implies matching coefficients.

x(t) = d1tu+ d2tv
= tv,
= t sin(4t).

Insert answers d1 = 0, d2 = 1. Answer found.
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Example 6.54 (Damped Forced Spring-Mass System Trial Solution )

To equation mx′′ + cx′ + kx = F0 cos(ωt) with all coefficients positive apply unde-
termined coefficients to obtain trial solution

x(t) = A cosωt+B sinωt.

Solution: The derivatives of f(t) = F0 cos(ωt) are linear combinations of Euler solution
atoms cos(ωt), sin(ωt). Rule I of the method of undetermined coefficients gives trial
solution x(t) = d1 cos(ωt) + d2 sin(ωt).

For characteristic equation mr2 + cr + k = 0 with positive m, c, k, there are 3 cases to
consider, based on the sign of the discriminant. In all 3 cases, equation mr2+ cr+k = 0
has roots with nonzero real part. For instance, the real part is − c

2m for a negative
discriminant. Then the trial solution is not a solution of the homogeneous differential
equation mx′′ + cx′ + kx = 0. Rule I in the method of undetermined coefficients does
not fail and Rule II is not applied.

The reported trial solution is the final trial solution. To agree with notation, replace
symbols d1, d2 by symbols A,B and report trial solution x(t) = A cos(ωt) +B sin(ωt).

Example 6.55 (Undetermined Coefficients Calculation)
Substitute the trial solution x(t) = A cos(ωt) +B sin(ωt) into the equation mx′′ +
cx′ + kx = F0 cos(ωt) to obtain the system of equations

(k −mω2)A + (cω)B = F0,
(−cω)A + (k −mω2)B = 0.

(8)

Solution: Define u = cos(ωt), v = sin(ωt), to simplify the displays. Equations u′′ +
ω2u = 0 and v′′ + ω2v = 0 are valid. By superposition, x′′ + ω2x = 0 holds for the trial
solution x(t) = A cos(ωt) +B sin(ωt).

mx′′ + cx′ + kx = F0u Original differential equation.

−mω2x+ cx′ + kx = F0u Use x′′ + ω2x = 0.

(k −mω2)x+ cx′ = F0u Collect on x and x′.

(k −mω2)(Au+Bv)+
c(−Aωv +Bωu) = F0u

Expand with x = Au + Bv and x′ =
−Aωv +Bωu.(

(k −mω2)A+ cωB
)
u+(

−cωA+ (k −mω2)B
)
v = F0u

Collect on u, v.(
(k −mω2)A+ cωB

)
= F0,(

−cωA+ (k −mω2)B
)

= 0.
Independence of u, v implies their coeffi-
cients match.

(k −mω2)A +cωB = F0,
−cωA +(k −mω2)B = 0.

Linear equations in unknowns A,B. Sys-
tem (8) found.

Example 6.56 (Cramer’s Rule Solution for A, B)
Verify using Cramer’s determinant rule the formulas

A =
(k −mω2)F0

(k −mω2)2 + (cω)2
, B =

cωF0

(k −mω2)2 + (cω)2

for the answers A,B to the system of equations (8).
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Solution: Cramer’s 2× 2 rule for system a11x1 + a12x2 = b1, a21x1 + a22x2 = b2 is the
set of equations

x1 =
∆1

∆
, x2 =

∆2

∆
, ∆ =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ , ∆1 =

∣∣∣∣b1 a12
b2 a22

∣∣∣∣ , ∆2 =

∣∣∣∣a11 b1
a21 b2

∣∣∣∣ .
Apply these formulas to system (8). Then

∆ =

∣∣∣∣k −mω2 cω
−cω k −mω2

∣∣∣∣ , ∆1 =

∣∣∣∣F0 cω
0 k −mω2

∣∣∣∣ , ∆2 =

∣∣∣∣k −mω2 F0
−cω 0

∣∣∣∣ .
Sarrus’ 2× 2 rule is applied to evaluate the determinants. Then

∆ = (k −mω2)2 + (cω)2, ∆1 = (k −mω2)F0, ∆2 = cωF0.

Cramer’s rule formulas A = ∆1

∆ , B = ∆2

∆ give the reported answers.

Example 6.57 (Transient and Steady-State Solutions)

Compute the transient and steady-state solutions xtr and xss for the equation 2x′′+
3x′ + 2x = 174 cos(4t), verifying the formulas

xtr = e−3t/4 (c1 cos(kt) + c2 sin(kt)) , k =
√
7
4 ,

xss = −5 cos(4t) + 2 sin(4t).

Solution:
Homogeneous Solution: The characteristic equation 2r2 + 3r + 2 = 0 has complex

conjugate roots− 3
4±

√
7
4 i. Then the Euler solution atoms are e−3t/4 cos(kt), e−3t/4 sin(kt)

where k =
√
7
4 . The homogeneous solution is then

xh = e−3t/4 (c1 cos(kt) + c2 sin(kt)) .

Particular Solution: The method of undetermined coefficients applies with Rule I
trial solution x = A cos(4t) + B sin(4t). Let’s justify this statement. The right side
f(t) = 174 cos(4t) has derivatives a linear combination of the Euler solution atoms
cos(4t), sin(4t). Rule I does not fail, because these Euler atoms are not solutions of
the homogeneous equation. Rule II does not apply, and the final trial solution is
x = A cos(4t) +B sin(4t).

Let u = cos(4t), v = sin(4t). Then u′′ + 16u = 0, v′′ + 16v = 0. Superposition implies
x′′ + 16x = 0. The following steps find the undetermined coefficients A = −5, B = 2.

2x′′ + 3x′ + 2x = 174u Original differential equation, u = cos 4t.

−32x+ 3x′ + 2x = 174u Substitute x′′ + 16x = 0, where x = Au+Bv.

−30(Au+Bv)+
3(−4Av + 4Bu) = 174u

Substitute x = Au+Bv, x′ = −4Av + 4Bu.

(−30A+ 12B)u+
(−12A− 30B)v = 174u

Collect on u, v.∣∣∣∣ −30A+ 12B = 174,
−12A− 30B = 0.

∣∣∣∣ Independence of u, v implies matching coefficients (inde-
pendent Euler atoms).
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∣∣∣∣ A = −5,
B = 2.

∣∣∣∣ Solve for A,B by elimination or Cramer’s rule.

The particular solution is xp = −5 cos 4t+ 2 sin 4t.

General Solution: Superposition gives general solution

x = xh + xp = e−3t/4 (c1 cos(kt) + c2 sin(kt))− 5 cos 4t+ 2 sin 4t.

Transient Solution: This is the part of the general solution with negative exponential
terms (terms that limit to zero at infinity). Then

xtr = e−3t/4 (c1 cos(kt) + c2 sin(kt)) .

Steady-State Solution: This is the part of the solution left over after the transients
are removed. Then

xss = −5 cos 4t+ 2 sin 4t.

Example 6.58 (Pseudo-periodic solution)
Derive the pseudo-periodic solution x = te−t/4 sin(3t) and its envelope curves x =

±te−t/4 for the equation 16x′′ + 8x′ + 145x = 96e−t/4 cos 3t.

Solution:
Envelope Curves. For damped oscillations, a solution of the form x(t) = eat(c1 cos(bt)+
c2 sin(bt)) has to be re-written in phase-amplitude form, using the formulas from page
492. Then x(t) = Ceat cos(bt− α) and by definition the envelope curves are x = ±Ceat,
because the cosine factor has extreme values ±1.
In the present example, the pseudo-periodic solution is x(t) = te−t/4 sin(3t). The same
logic applies. The sine factor has extreme values ±1, then the envelope curves are
x = ±te−t/4.

Pseudo-periodic Solution. Undetermined coefficients will be applied to find a par-
ticular solution xp of 16x′′ + 8x′ + 145x = 96e−t/4 cos 3t. It turns out that the desired
pseudo-periodic solution is the undetermined coefficients answer x = te−t/4 sin 3t. This
is because the method subtracts all homogeneous terms from the particular solution.
Superposition x = xh + xp was invisibly used here. If xp was found from another
method, then homogeneous terms should be removed from the answer, before reporting
the pseudo-periodic solution.

Homogeneous Solution. It is found from 16x′′ + 8x′ + 145x = 0. The Euler solution
atoms are e−t/4 cos(3t), e−t/4 sin(3t), found from the characteristic equation 16r2 +8r+
145 = 0, which has complex conjugate roots r = − 1

4 ± 3i. Then

xh(t) = c1e
−t/4 cos(3t) + c2e

−t/4 sin(3t).

Particular solution xp. It is found by undetermined coefficients. The answer to be
justified below is

xp(t) = te−t/4 sin(3t).

Differentiate the right side f(t) = 96e−t/4 cos 3t of the non-homogeneous equation to
identify the Euler atoms e−t/4 cos 3t, e−t/4 sin 3t. Rule I of undetermined coefficients
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fails, because these atoms are solutions of the homogeneous equation. Then Rule II is
applied to find the final trial solution

x = t
(
d1e

−t/4 cos 3t+ d2e
−t/4 sin 3t

)
= t(d1u+ d2v)

where u = e−t/4 cos 3t and v = e−t/4 sin 3t. Then u, v are solutions of 16x′′+8x′+145x =
0. Define w = d1u+d2v. Superposition implies w is also a solution of 16x′′+8x′+145x =
0.

Compute the derivatives of the trial solution:

x = t (d1u+ d2v) = tw,
x′ = w + tw′

x′′ = 2w′ + tw′′.
(9)

16x′′ + 8x′ + 145x = 96u Original equation, u = e−t/4 cos 3t.

16(2w′ + tw′′)+
8(w + tw′) + 145tw = 96u

Use equations (9).

32w′ + 8w+
t(16w′′ + 8w′ + 145w) = 96u

Collect terms on factor t.

32w′ + 8w = 96u Use homogeneous equation 16w′′ +8w′ +145w =
0.

−96d1v + 96d2u = 96u Expand w = d1u+d2v, w
′ = − 1

4w−3d1v+3d2u.
Cancel 8w.

d1 = 0, d2 = 1 Independence of u, v implies matching coefficients.

The trial solution x = tw becomes x = te−t/4 sin(3t).

Other Methods to Find xp. The possible methods are variation of parameters,
Laplace theory and a computer algebra system. Below is sample maple code to check
the answer given above.

de:=16*diff(x(t),t,t)+8*diff(x(t),t)+145*x(t)=

96*exp(-t/4)*cos(3*t);

dsolve(de,x(t));

The answer involves homogeneous terms with arbitrary constants C1, C2. These terms
must be removed to check the answer, xp = te−t/4 sin(3t).

The example is complete.

Proofs and Technical Details

Proof of Theorem 6.21, Transient Solution:
For positive damping c > 0, equation (3) has homogeneous solution xh(t) = c1x1(t) +
c2x2(t) where Euler atoms x1 and x2 are according to Theorem 6.1 page 431 given in
terms of the roots of the characteristic equation mr2 + cr + k = 0 as follows:

Let D = c2 − 4mk. The discriminant of mr2 + cr + k = 0.

Case 1, D > 0 x1 = er1t, x2 = er2t with r1 and r2 negative.
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Case 2, D = 0 x1 = er1t, x2 = ter1t with r1 negative.

Case 3, D < 0 x1 = eat cos bt, x2 = eat sin bt with b > 0 and
a negative.

Let’s verify that xh(t) = e−qt(bounded function) for some q > 0, regardless of the
positive values of m, c, k. For instance, Case 2 implies xh = er1t/2(c1e

r1t/2 + c2te
r1t/2)

and (c1e
r1t/2 + c2te

r1t/2) is bounded by some number M . Let −q = r1/2 < 0. Then
|xh(t)| ≤Me−qt, which proves xh(t) has limit zero at t =∞. A similar analysis applied
to cases 1,2,3 reveals that |xh(t)| ≤Me−qt holds if q is smaller than |Re(λ)| for all roots
λ of the characteristic equation. ■

Proof of Theorem 6.22, Steady-State Solution
Uniqueness. Assume (5) has been proved. Suppose x(t) is a periodic solution of period
2π/ω. Superposition implies x(t) = xss(t) + xh(t) for some homogeneous solution xh(t).
Then x(t)−xss(t) has period 2π/ω and equals some xh(t), which has limit zero at t =∞
by Theorem 6.21. Because a nonzero periodic function cannot have limit zero at t =∞,
then xh(t) = 0, proving uniqueness x(t) = xss(t).

Details for (6). The method of undetermined coefficients applies to mx′′(t) + cx′(t) +
kx(t) = F0 cosωt with trial solution x(t) = A cosωt + B sinωt. The TEST succeeds,
because by Theorem 6.21 the Euler atoms in xh(t) cannot match cosωt or sinωt. More
details in Example 6.54 page 539. Substitution of x(t) into mx′′(t) + cx′(t) + kx(t) =
F0 cosωt produces a linear combination of Euler atoms on the left. Match the coefficients
of the atoms left and right to verify the equations

(k −mω2)A + (cω)B = F0,
(−cω)A + (k −mω2)B = 0.

(10)

Details in Example 6.55 page 539. Solve (10) for A,B with Cramer’s rule or elimination.
Then:

A =
(k −mω2)F0

(k −mω2)2 + (cω)2
, B =

cωF0

(k −mω2)2 + (cω)2
.(11)

Details in Example 6.56 page 539. Substitute the answers in (11) into trial solution
x(t) = A cosωt+B sinωt. Convert this solution to phase-amplitude form using formulas
on page 492. Then (6) holds. ■

Proof of Theorem 6.23, Practical Resonance Identity:
Mathematically, a maximum happens exactly when the amplitude function C = C(ω)
defined in (6) has a maximum. If a maximum exists on 0 < ω < ∞, then C ′(ω) = 0 at
the maximum. The derivative is computed by the power rule:

C ′(ω) =
−F0

2

2(k −mω2)(−2mω) + 2c2ω

((k −mω2)2 + (cω)2)3/2

= ω
(
2mk − c2 − 2m2ω2

) C(ω)3

F 2
0

(12)

If 2km − c2 ≤ 0, then C ′(ω) does not vanish for 0 < ω < ∞. Then C ′(ω) is one-signed
and there is no maximum. If 2km − c2 > 0, then 2km − c2 − 2m2ω2 = 0 has exactly
one root ω =

√
k/m− c2/(2m2) in 0 < ω < ∞. Because C(∞) = 0, then C(ω) is a

maximum. ■

Proof of Theorem 6.24, Pure Resonance Identity:
The details follow Example 6.53 page 538. Let ω = k

m . The homogeneous equation
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mx′′(t) + kx(t) = 0 has general solution x = c1x1 + c2x2 given by Euler atoms x1 =
cosωt, x2 = sinωt. Undetermined coefficients applies, RULE II giving modified trial
solution X = t(d1 cosωt + d2 sinωt). Like Example 6.53, the trial solution is inserted
into mx′′(t) + kx(t) = F0 cosωt, then Euler atom coefficients are matched left and right
to obtain a diagonal system of linear algebraic equations for d1, d2. The answer: d1 = 0,
d2 = F0

2mω . Insert the answers into the trial solution to find xp(t) = 0 + d2t sinωt =
F0

2mω t sinωt. ■

Proof of Theorem 6.25, Uniqueness T -periodic Solution:
The vehicle of proof is to show that the difference x(t) of two T -periodic solutions is
zero. Difference x(t) is a solution of the homogeneous equation, it is T–periodic and it
has limit zero at infinity. A periodic function with limit zero must be zero, therefore
x(t) = 0, which proves the two solutions are identical. ■

Exercises 6.8 �

Beats
Each equation satisfies the beats relation
ω ̸= ω0. Find the general solution. See
Example 6.53, page 538.

1. x′′ + 100x = 10 sin 9t

2. x′′ + 100x = 5 sin 9t

3. x′′ + 25x = 5 sin 4t

4. x′′ + 25x = 5 cos 4t

Pure Resonance
Each equation satisfies the pure resonance
relation ω = ω0. Find the general solution.
See Example 6.53, page 538.

5. x′′ + 4x = 10 sin 2t

6. x′′ + 4x = 5 sin 2t

7. x′′ + 16x = 5 sin 4t

8. x′′ + 16x = 10 sin 4t

Practical Resonance
For each model, find the tuned practical
resonance frequency Ω and the resonant
amplitude C:

Ω =
√
k/m− c2/(2m2),

C = F0/
√
(k −mΩ2)2 + (cΩ)2

9. x′′ + 2x′ + 17x = 100 cos(4t)

10. x′′ + 2x′ + 10x = 100 cos(4t)

11. x′′ + 4x′ + 5x = 10 cos(2t)

12. x′′ + 2x′ + 6x = 10 cos(2t)

Transient Solution
Identify from superposition x = xh + xp a
shortest particular solution, given one par-
ticular solution.

13. x′′ + 2x′ + 10x = 26 cos(3t),
x = 100e−t cos(3t) + 3 cos (2 t) +
2 sin (2 t)

14. x′′ + 4x′ + 13x = 920 cos(3t),
x = 5 e−2 t cos (3 t) + 23 cos (3 t) +
69 sin (3 t)

15. x′′ + 2x′ + 2x = 2 cos(t),
x = 3 e−t sin (t)+5 e−t cos (t)+cos (t)+
2 sin (t)

16. x′′ + 2x′ + 17x = 65 cos(4t),
x = −2 e−t sin (4 t) + 7 e−t cos (4 t) +
cos (4 t) + 8 sin (4 t)

Steady-State Periodic Solution
Consider the model mx′′ + cx′ + kx =
F0 cos(ωt) of external frequency ω. Com-
pute the unique steady-state solution
A cos(ωt) + B sin(ωt) and its amplitude
C(ω) =

√
A2 +B2. Graph the ratio

100C(ω)/C(Ω) on 0 < ω < ∞, where Ω
is the tuned practical resonance frequency.

17. x′′ + 2x′ + 17x = 100 cos(4t)

18. x′′ + 2x′ + 10x = 100 cos(4t)

19. x′′ + 4x′ + 5x = 10 cos(2t)
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20. x′′ + 2x′ + 6x = 10 cos(2t)

21. x′′ + 4x′ + 5x = 5 cos(2t)

22. x′′ + 2x′ + 5x = 5 cos(1.5t)

Phase-Amplitude
Solve for a particular solution in the form
x(t) = C cos(ωt− α).

23. x′′ + 6x′ + 13x = 174 sin(5t)

24. x′′+8x′+25x = 100 cos(t)+260 sin(t)

545



6.9 Kepler’s laws

6.9 Kepler’s laws

Kepler’s empirical laws of planetary motion are:

1. All planets move in elliptical orbits with the sun at one focus.

2. The radius vector from the sun to any planet sweeps out equal
areas in equal times.

3. The square of the orbital period is proportional to the cube of
the major semi-axis of its elliptical orbit.

Precise observations over 20 years on the planets and 777 stars visible to the
naked eye were made by the Danish astronomer Tycho Brahe (1546-1601), who
was a teacher of the German astronomer Johannes Kepler (1571-1630). It is
Kepler who is credited with analyzing his teacher’s observations, from which
he deduced the three laws of planetary motion, about 1605. The results were
published in 1609 and 1618.

About 100 years after Kepler, Isaac Newton formulated his renowned univer-
sal gravitation law. Newton showed in his Principia Mathematica (1687) that
Kepler’s laws implied his universal gravitation law. Newton also showed that
Kepler’s first two laws were a consequence of the universal gravitation law.

The purpose of this section is to establish Kepler’s first two laws from New-
ton’s universal gravitation law. Modern calculus courses provide the differential
equations background outlined below.

Background

The derivation of Kepler’s first two laws from Newton’s law requires diverse
background from calculus, analytic geometry, physics and differential equations.
Outlined here is the material required to understand the derivation.

Analytic Geometry

An ellipse or circle equation in standard form is

x2

a2
+

y2

b2
= 1.

The numbers a > 0, b > 0 are called the major and minor semi-axis lengths,
respectively. They are related by b = a

√
1− e2, where 0 ≤ e < 1 is called the

eccentricity. The equation is a circle if and only if e = 0.
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Polar Coordinates

A point (r, θ) in polar coordinates is related to its rectangular coordinates (x, y)
defined by the equations

x = r cos θ, y = r sin θ, x2 + y2 = 1, tan θ = y/x.

Circles and ellipses have respectively the polar equations

r = 2a cos(θ − θ0), r =
ed

1 + e cos(θ − θ0)
.

The number a > 0 is the radius of the circle. The number d > 0 is the distance
to the directrix. The eccentricity satisfies 0 < e < 1.

Calculus

The area of a sector in polar coordinates is given by

A =
1

2
r2θ.

A polar equation r = f(θ) encloses on the interval θ1 ≤ θ ≤ θ2 the area

A =

∫ θ2

θ1

|f(θ)|2 dθ.

Physics

Newton’s universal gravitation law is given by the formula

F = G
m1m2

r2
,

where G = 6.672× 10−11N·m2

kg2 is the universal gravitation constant and r is the

distance between the two massesm1, m2. This equation gives only the magnitude
of the force. Implied by the formula is the value of the fundamental constant
g ≈ 9.80 meters per second, the acceleration due to gravity:

g = G
M

R
,

where M ≈ 5.98× 1024 kilograms and R ≈ 6.38× 106 meters are respectively the
mass of the earth and the radius of the earth. A similar formula applies for any
planet. While g is computed for sea level, it varies significantly with altitude,
e.g., 7.33 to 0.13 at altitudes from 1000 to 50, 000 kilometers.
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Differential Equations

The second order differential equation

u′′ + u = 0

is called the harmonic oscillator. It’s solution is u = c1 cosx + c2 sinx, by
the classical constant-coefficient Theorem 6.1. The forced equation u′′ + u = c,
where c is a constant, has a particular solution u = c, obtained by the equilibrium
method. Therefore, the forced equation has the general solution

u = c1 cosx+ c2 sinx+ c.

Derivation of Kepler’s First Two Laws

The second law will be derived first, then the details are used to derive the first
law. The third law is not discussed here.

Kepler’s Second Law

Assumed is the sun at the origin in the plane of motion of the planet. The position
of the planet is written in vector form in polar coordinates by the formula

r⃗(t) =

(
r(t) cos θ(t)
r(t) sin θ(t)

)
.

Newton’s universal gravitation law implies that the acceleration vector r⃗ ′′(t)
satisfies

r⃗ ′′(t) = − k

|⃗r(t)|3
r⃗(t).

The planet’s motion can be expanded by the product rule and chain rule of
calculus to give the relation

r⃗ ′(t) =

(
cos θ(t)
sin θ(t)

)
r′(t) +

(
− sin θ(t)
cos θ(t)

)
r(t)θ′(t).

The column vectors in this formula are orthogonal hence independent. One more
application of the product and chain rules gives

r⃗ ′′(t) =
(
r′′(t)− r(t)(θ′(t))2

)( cos θ(t)
sin θ(t)

)
+

(
1

r(t)

(
r2(t)θ′(t)

)′)( − sin θ(t)
cos θ(t)

)
.

The independent vectors appearing in the formula happen to be the normal
and tangential components of the acceleration, although we don’t use this fact.
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Newton’s law expansion of r⃗ ′′(t) requires that corresponding vector components
must match, giving the relations

r′′(t)− r(t)(θ′(t))2 = − k

r2(t)
,

1

r(t)

(
r2(t)θ′(t)

)′
= 0.

(1)

The second formula in (1) implies that dA(t) = 0, where dA(t) is the polar area
increment swept out by the planet. Kepler’s second law is proved.

Kepler’s First Law

Write the second equation in (1) in integrated form r2(t)θ′(t) = h. Combine the
first formula in (1) with the second (in integrated form) to obtain the nonlinear
second order differential equation

r′′(t)− h2

r3(t)
= − k

r2(t)
.(2)

Because θ′(t) = h/r2(t) ̸= 0, then a variable change t = t(θ) is possible: r(t) =
r(t(θ)) is a function of θ. Let u(θ) = 1/r(t(θ)), then by the chain rule

r′(t) = −du/dt

u2(θ)
= −r2(t)u′(θ)θ′(t)
= −hu′(θ).

Differentiate again on θ and use (2) to obtain

u′′(θ) + u(θ) = c,

where c = k/h2. Solving gives

u(θ) = c1 cos θ + c2 sin θ + c .

Use u = 1/r to re-write this formula in the new form

r(t(θ)) =
1

c+ c1 cos θ + c2 sin θ
.

Define angle θ0 and amplitude R by the formulas R cos θ0 = c1, R sin θ0 = c2.
The sum formula for the cosine implies

R cos(θ − θ0) = R cos θ cos θ0 +R sin θ sin θ0
= c1 cos θ + c2 sin θ.

Substitution gives the ellipse equation in polar coordinates

r(t(θ)) =
1

c+R cos(θ − θ0)

=
ℓ

1 + e cos(θ − θ0)
.
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Here, ℓ = h2/k is half the latus rectum and e = Rℓ is the eccentricity of the ellipse.
Initially, we don’t know that 0 ≤ e < 1, but the requirement that a planetary
orbit be bounded discards the possibility e ≥ 1 (parabola or hyperbola). This
completes the proof of Kepler’s first law.
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Chapter 7

Topics in Linear Differential
Equations

Contents

7.1 Higher Order Homogeneous . . . . . . . . . . . . . 551

7.2 Differential Operators . . . . . . . . . . . . . . . . . 557

7.3 Higher Order Non-Homogeneous . . . . . . . . . . 560

7.4 Cauchy-Euler Equation . . . . . . . . . . . . . . . . 566

7.5 Variation of Parameters Revisited . . . . . . . . . 569

7.6 Undetermined Coefficients Library . . . . . . . . . 574

Developed here is the theory for higher order linear constant-coefficient differen-
tial equations. Besides a basic formula for the solution of such equations, exten-
sions are developed for the topics of variation of parameters and undetermined
coefficients.

Enrichment topics include the Cauchy-Euler differential equation, the Cauchy
kernel for second order linear differential equations, and a library of special meth-
ods for undetermined coefficients methods, the latter having prerequisites of only
basic calculus and college algebra. Developed within the library methods is a
verification of the method of undetermined coefficients, via Kümmer’s change of
variable.

7.1 Higher Order Homogeneous

Presented here is a solution method for higher order linear differential equations
with real constant coefficients

yn + an−1y
(n−1) + · · ·+ a0y = 0.(1)
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This topic was covered earlier, therefore the central purpose of this section is the
collection of additional exercises. The only new topics have to do with factoriza-
tion of polynomials and differential operators. The first subject has to do with
efficiency, a shortcut to speed up the process of solving a constant-coefficient
linear homogeneous differential equation.

How to Solve Higher Order Equations

The Characteristic Equation of (1) is the polynomial equation

rn + an−1r
n−1 + · · ·+ a0 = 0.(2)

The left side of (2) is called the Characteristic Polynomial. We assume the
coefficients are real numbers.

For a real root r = a of the characteristic equation, symbol k equals itsAlgebraic
Multiplicity. Then k is the maximum power such that (r − a)k divides the
characteristic polynomial.

The same symbol k is used for the algebraic multiplicity of a complex root
r = a+ ib. Complex roots always come in pairs, a± ib, because the coefficients
of the characteristic polynomial are real. This means k is the maximum power
such that ((r − a)2 + b2)k divides the characteristic polynomial.

Constructing the General Solution

The general solution y of (1) is constructed as a linear combination of n Euler
atoms. The list of n Euler atoms is found from the roots of the characteristic
equation, by iterating on Step I and Step II below.

Step I: Real Roots

Each multiplicity k real root r = a of the characteristic equation produces
a group of k Euler atoms

erx, xerx, . . . , xk−1erx

which are solutions of (1). Append the group to the list of Euler atoms for
equation (1).

Step II: Complex Root pairs

Each multiplicity k pair of complex roots z = a+ ib and z = a− ib of the
characteristic equation produces two groups of k distinct Euler atoms

group 1: eax cos bx, xeax cos bx, . . . , xk−1eax cos bx,
group 2: eax sin bx, xeax sin bx, . . . , xk−1eax sin bx,
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which are solutions to the differential equation. Append the two groups to
the list of Euler atoms for equation (1).

Exponential Solutions and Euler’s Theorem

Characteristic equation (2) is formally obtained from the differential equation by
replacing y(k) by rk. This device for remembering how to form the characteristic
equation is attributed to Euler, because of the following fact.

Theorem 7.1 (Euler’s Exponential Substitution)
Let w be a real or complex number. The function y(x) = ewx is a solution of (1) if
and only if r = w is a root of the characteristic equation (2).

Steps I and II above are justified from Euler’s basic result:

Theorem 7.2 (Euler’s Multiplicity Theorem)
Function y(x) = xpewx is a solution of (1) if and only if (r − w)p+1 divides the
characteristic polynomial.

An Illustration of the Higher Order Method

Consider the problem of solving a constant coefficient linear differential equation
(1) of order 11 having factored characteristic equation

(r − 2)3(r + 1)2(r2 + 4)2(r2 + 4r + 5) = 0.

To be applied is the solution method for higher order equations. Then Step I
loops on the two linear factors r − 2 and r + 1, while Step 2 loops on the two
real quadratic factors r2 + 4 and r2 + 4r + 5.

Hand solutions can be organized by a tabular method for generating the general
solution y. The key element is that rows are distinct factors of the characteris-
tic polynomial. This feature insures that each row contains distinct atoms not
duplicated in another row.

Factor Roots Multiplicity Atom Groups

(r − 2)3 r = 2, 2, 2 3 e2x, xe2x, x2e2x

(r + 1)2 r = 1, 1 2 ex, xex

(r2 + 4)2 r = ±2i,±2i 2 cos 2x, x cos 2x
sin 2x, x sin 2x

(r + 2)2 + 1 r = −2± i 1 e2x cosx
e2x sinx

The equation has order n = 11. Symbols c1, . . . , cn will represent arbitrary
constants in the general solution y. A real root of multiplicity k will consume k of
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these symbols, while a complex conjugate pair of roots of multiplicity k consumes
2k symbols. The number of terms added in Step I equals the multiplicity of the
root, or twice that in Step II, the case of complex roots. The symbols are used
in order, as the general solution is constructed, as follows.

Root(s) Count Solution Terms Added

r = 2, 2, 2 3 (c1 + c2x+ c3x
2)e2x

r = −1,−1 2 (c4 + c5x)e
−x

r = ±2i,±2i 4 (c6 + c7x) cos 2x+ (c8 + c9x) sin 2x

r = −2± i 2 c10e
−2x cosx+ c11e

−2x sinx

Then the general solution is

y = (c1 + c2x+ c3x
2)e2x

+(c4 + c5x)e
−x

+(c6 + c7x) cos 2x+ (c8 + c9x) sin 2x
+c10e

−2x cosx+ c11e
−2x sinx.

Computer Algebra System Solution

The system maple can symbolically solve a higher order equation. Below, @ is
the function composition operator, @@ is the repeated composition operator and
D is the differentiation operator. The coding writes the factors of

(r − 2)3(r + 1)2(r2 + 4)2(r2 + 4r + 5)

as differential operators (D − 2)3, (D + 1)2, (D2 + 4)2, D2 + 4D + 5. Then the
differential equation is the composition of the component factors. See the next
section for details about differential operators.

id:=x->x;

F1:=(D-2*id) @@ 3;

F2:=(D+id) @@ 2;

F3:=(D@D+4*id) @@ 2;

F4:=D@D+4*D+5*id;

de:=(F1@F2@F3@F4)(y)(x)=0:

dsolve({de},y(x));
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Exercises 7.1 �

Higher Order Factored
Solve the higher order equation with the
given characteristic equation. Display the
roots according to multiplicity and list the
corresponding solution atoms.

1. (r − 1)(r + 2)(r − 3)2 = 0

2. (r − 1)2(r + 2)(r + 3) = 0

3. (r − 1)3(r + 2)2r4 = 0

4. (r − 1)2(r + 2)3r5 = 0

5. r2(r − 1)2(r2 + 4r + 6) = 0

6. r3(r − 1)(r2 + 4r + 6)2 = 0

7. (r − 1)(r + 2)(r2 + 1)2 = 0

8. (r − 1)2(r + 2)(r2 + 1) = 0

9. (r − 1)3(r + 2)2(r2 + 4) = 0

10. (r − 1)4(r + 2)(r2 + 4)2 = 0

Higher Order Unfactored
Completely factor the given characteristic
equation, then the roots according to mul-
tiplicity and the solution atoms.

11. (r − 1)(r2 − 1)2(r2 + 1)3 = 0

12. (r + 1)2(r2 − 1)2(r2 + 1)2 = 0

13. (r + 2)2(r2 − 4)2(r2 + 16)2 = 0

14. (r + 2)3(r2 − 4)4(r2 + 5)2 = 0

15. (r3 − 1)2(r − 1)2(r2 − 1) = 0

16. (r3 − 8)2(r − 2)2(r2 − 4) = 0

17. (r2 − 4)3(r4 − 16)2 = 0

18. (r2 + 8)(r4 − 64)2 = 0

19. (r2 − r + 1)(r3 + 1)2 = 0

20. (r2 + r + 1)2(r3 − 1) = 0

Higher Order Equations
The exercises study properties of Euler
atoms and nth order linear differential
equations.

21. (Euler’s Theorem)

Explain why the derivatives of atom
x3ex satisfy a higher order equation
with characteristic equation (r − 1)4 =
0.

22. (Euler’s Theorem)

Explain why the derivatives of atom
x3 sinx satisfy a higher order equation
with characteristic equation (r2+1)4 =
0.

23. (Kümmer’s Change of Variable)

Consider a fourth order equation with
characteristic equation (r+a)4 = 0 and
general solution y. Define y = ue−ax.
Find the differential equation for u and
solve it. Then solve the original differ-
ential equation.

24. (Kümmer’s Change of Variable)

A polynomial u = c0 + c1x + c2x
2 sat-

isfies u′′′ = 0. Define y = ueax. Prove
that y satisfies a third order equation
and determine its characteristic equa-
tion.

25. (Ziebur’s Derivative Lemma)

Let y be a solution of a higher or-
der constant-coefficient linear equation.
Prove that the derivatives of y satisfy
the same differential equation.

26. (Ziebur’s Lemma: atoms)

Let y = x3ex be a solution of a higher
order constant-coefficient linear equa-
tion. Prove that Euler atoms ex, xex,
x2ex are solutions of the same differen-
tial equation.

27. (Ziebur’s Atom Lemma)

Let y be an Euler atom solution of
a higher order constant-coefficient lin-
ear equation. Prove that the Euler
atoms extracted from the expressions
y, y′, y′′, . . . are solutions of the same
differential equation.
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28. (Differential Operators)

Let y be a solution of a differential
equation with characteristic equation
(r − 1)3(r + 2)6(r2 + 4)5 = 0. Ex-
plain why y′′′ is a solution of a differen-
tial equation with characteristic equa-
tion (r − 1)3(r + 2)6(r2 + 4)5r3 = 0.

29. (Higher Order Algorithm)

Let atom x2 cosx appear in the general
solution of a linear higher order equa-
tion. Find the pair of complex conju-
gate roots that constructed this atom,
and the multiplicity k. Report the 2k
atoms which must also appear in the
general solution.

30. (Higher Order Algorithm)

Let Euler atom xex cos 2x appear in the

general solution of a linear higher order
equation. Find the pair of complex con-
jugate roots that constructed this atom
and estimate the multiplicity k. Report
the 2k atoms which are expected to ap-
pear in the general solution.

31. (Higher Order Algorithm)

Let a higher order equation have char-
acteristic equation (r− 9)3(r− 5)2(r2+
4)5 = 0. Explain precisely using
existence-uniqueness theorems why the
general solution is a sum of constants
times Euler atoms.

32. (Higher Order Algorithm)

Explain why any higher order linear ho-
mogeneous constant-coefficient differen-
tial equation has general solution a sum
of constants times Euler atoms.
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7.2 Differential Operators

A polynomial in the symbolD = d/dx is called aDifferential Operator and the
formal manipulation of these expressions is called an Operational Calculus.

The meaning of an expression such as D2 + 3D + 2 is through linearity, [D2 +
3D+2]y meaning D2y+3Dy+2y, and each term has the corresponding meaning

Dy = y′(x), D2y = y′′(x), · · ·

Products of the expressions are defined through composition. For example, (D+
1)(D+2)y means (D+1)(y′+2y), which in turn is defined to be (y′+2y)′+(y′+2y).
This example suggests that expansion of such factored products is identical to
expansion of polynomial (x+ 1)(x+ 2) into x2 + 3x+ 2.

Theorem 7.3 (Commuting Operators)
Let P = p0 + · · · + pnD

n and Q = q0 + · · · + qmDm be two differential operators

with constant coefficients. Define R = r0+ · · ·+rkD
k to be the polynomial product

expansion of P and Q. Then for every infinitely differentiable function y(x),

P (Qy) = Q(Py) = Ry.

In short, P and Q commute and their product in either order is the formal expanded
polynomial product.

Proof: Define pi = 0 for i > n and qj = 0 for j > m, so that P and Q can be written as
infinite series. The Cauchy product theorem from series implies that rℓ = p0qℓ+· · ·+pℓq0.
By definitions, and the Cauchy product theorem,

P (Qy) =
∑∞

i=0 piD
i(Qy)

=
∑∞

i=0 piD
i
(∑∞

j=0 qjy
(j)
)

=
∑∞

i=0 pi

(∑∞
j=0 qjy

(i+j)
)

=
∑∞

i=0

∑∞
j=0 piqjy

(i+j)

=
∑∞

ℓ=0

∑ℓ
j=0 pℓ−jqjy

(ℓ)

=
∑∞

ℓ=0 rℓy
(ℓ)

= Ry

Because the series product in reverse order gives the identical answer, the proof is com-
plete.

Factorization

The fundamental theorem of algebra implies that the characteristic equation of
a real nth order linear constant-coefficient differential equation has exactly n
roots, counted according to multiplicity. Some number of the roots are real and
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the remaining roots appear in complex conjugate pairs. This implies that every
characteristic equation has a factored form

(r − a1)
k1 · · · (r − aq)

kqQ1(r)
m1 · · ·Qp(r)

mp = 0

where a1, . . . , aq are the distinct real roots of the characteristic equation of
algebraic multiplicities k1, . . . , kq, respectively. Factors Q1(r), . . . , Qp(r) are the
distinct real quadratic factors of the form (r − z)(r − z). Symbol z exhausts the
distinct complex roots z = a+ ib with b > 0, having corresponding algebraic
multiplicities m1, . . . , mp. The quadratic (r − z)(r − z) is normally written
(r − a)2 + b2.

General Solution

An nth order linear homogeneous differential equation with real constant coef-
ficients can be written in D-operator notation via the distinct real linear and
quadratic factors of the characteristic equation as(

(D − a1)
k1 · · · (D − aq)

kqQ1(D)m1 · · ·Qp(D)mp

)
y = 0.

For Q = (r − a)2 + b2, symbol Q(D) = (D − a)2 + b2.

Picard’s theorem on existence-uniqueness fixes the possible number of indepen-
dent solutions at exactly n, the order of the differential equation. Each factor,
real or quadratic, generates a certain number of distinct Euler solution atoms,
the union of which counts to exactly n independent atoms, forming a solution
basis for the differential equation.

Specifically, the general solution of

(D − a)k+1y = 0

is a polynomial u = c0 + c1x+ · · ·+ ckx
k with k + 1 terms times eax. This fact

is proved by Kümmer’s change of variable y = eaxu, which finds an equivalent
equation Dk+1u = 0, solvable by quadrature. Details in the exercises.

The general solution of
((D − a)2 + b2)k+1y = 0

is a real polynomial u1 = a0 + · · ·+ akx
k with k+1 terms times eax cos(bx) plus

a real polynomial u2 = b0 + · · ·+ bkx
k with k + 1 terms times eax sin(bx).

Technical details: Kümmer’s change of variable y = eaxu transforms to the
equation (D2+b2)k+1u = 0. Because D2+b2 = (D−ib)(D+ib), the work done in
the preceding paragraph applies, resulting in solutions that are polynomials with
k+1 terms times eibx and e−ibx. Taking real and imaginary parts of these solutions
give the real solutions u1 cos(bx), u2 sin(bx). Transforming back multiplies these
answers by eax.
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Exercises 7.2 �

Operator Arithmetic
Compute the operator and solve the corre-
sponding differential equation.

1. D(D + 1) +D

2. D(D + 1) +D(D + 2)

3. D(D + 1)2

4. D(D2 + 1)2

5. D2(D2 + 4)2

6. (D − 1)((D − 1)2 + 1)2

Operator Properties.

7. (Operator Composition) Multiply
P = D2 + D and Q = 2D + 3 to get
R = 2D3 + 5D2 + 3D. Then compute
P (Qy) and Q(Py) for y(x) 3-times
differentiable, and show both equal Ry.

8. (Kernels)

The operators (D − 1)2(D + 2) and
(D− 1)(D+ 2)2 share common factors.
Find the Euler solution atoms shared
by the corresponding differential equa-
tions.

9. (Operator Multiply)

Let differential equation (D2 + 2D +
1)y = 0 be formally differentiated four
times. Find its operator and solve the
equation. What does this have to do
with operator multiply?

10. (Non-homogeneous Equation) The
differential equation (D5 + 4D3)y = 0
can be viewed as (D2 + 4)u = 0 and
u = D3y. On the other hand, y is
a linear combination of the atoms gen-
erated from the characteristic equation
r3(r2 + 4) = 0. Use these facts to
find a particular solution of the non-
homogeneous equation y′′′ = 3 cos 2x.

Kümmer’s Change of Variable
Kümmer’s change of variable y = ueax

changes a y-differential equation into a u-
differential equation. It can be used as a
basis for solving homogeneous nth order
linear constant coefficient differential equa-
tions.

11. Supply details: y = ueax changes y′′ =
0 into u′′ + 2au′ + a2u = 0.

12. Supply details: y = ueax changes
(D2 +4D)y = 0 into ((D+ a)2 +4(D+
a))u = 0.

13. Supply details: y = ueax changes the
differential equation Dny = 0 into (D+
a)nu = 0.

14. Kümmer’s substitution y = ueax

changes the differential equation (Dn +
an−1D

n−1 + · · · + a0)y = 0 into (Fn +
an−1F

n−1 + · · ·+ a0)u = 0, where F =
D + a. Write the proof.
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7.3 Higher Order Non-Homogeneous

Continued here is the study of higher order linear differential equations with real
constant coefficients.

The homogeneous equation is

yn + an−1y
(n−1) + · · ·+ a0y = 0.(1)

The variation of parameters formula and the method of undetermined coefficients
are discussed for the associated non-homogeneous equation

yn + an−1y
(n−1) + · · ·+ a0y = f(x).(2)

Variation of Parameters Formula

The Picard-Lindelöf theorem implies that on (−∞,∞) there a unique solution
of the initial value problem

yn + an−1y
(n−1) + · · ·+ a0y = 0,

y(0) = · · · = y(n−2)(0) = 0, y(n−1)(0) = 1.
(3)

The unique solution is called Cauchy’s kernel, written K(x).
To illustrate, Cauchy’s kernel K(x) for y′′′ − y′′ = 0 is obtained from its general
solution y = c1 + c2x + c3e

x by computing the values of the constants c1, c2, c3
from initial conditions y(0) = 0, y′(0) = 0, y′′(0) = 1, giving K(x) = ex − x− 1.

Theorem 7.4 (Higher Order Variation of Parameters)
Let yn + an−1y

(n−1) + · · · + a0y = f(x) have constant coefficients a0, . . . , an−1

and continuous forcing term f(x). Denote by K(x) Cauchy’s kernel for the homoge-
neous differential equation. Then a particular solution is given by the Variation of
Parameters Formula

yp(x) =

∫ x

0
K(x− u)f(u)du.(4)

This solution has zero initial conditions y(0) = · · · = y(n−1)(0) = 0.

Proof: Define y(x) =
∫ x

0
K(x−u)f(u)du. Compute by the 2-variable chain rule applied

to F (x, y) =
∫ x

0
K(y − u)f(u)du the formulas

y(x) = F (x, x)
=

∫ x

0
K(x− u)f(u)du,

y′(x) = Fx(x, x, ) + Fy(x, x)
= K(x− x)f(x) +

∫ x

0
K′(x− u)f(u)du

= 0 +
∫ x

0
K′(x− u)f(u)du.

The process can be continued to obtain for 0 ≤ p < n− 1 the general relation

y(p)(x) =

∫ x

0

K(p)f(u)du.
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The relation justifies the initial conditions y(0) = · · · = y(n−1)(0) = 0, because each
integral is zero at x = 0. Take p = n− 1 and differentiate once again to give

y(n)(x) = K(n−1)(x− x)f(x) +

∫ x

0

K(n)f(u)du.

Because K(n−1)(0) = 1, this relation implies

y(n) +

n−1∑
p=0

apy
(p) = f(x) +

∫ x

0

(
K(n)(x− u) +

n−1∑
p=0

apK(p)(x− u)

)
f(u)du.

The sum under the integrand on the right is zero, because Cauchy’s kernel satisfies
the homogeneous differential equation. This proves y(x) satisfies the nonhomogeneous
differential equation. ■

Undetermined Coefficients Method

The method applies to higher order nonhomogeneous linear differential equations
with real constant coefficients

y(n) + an−1y
(n−1) + · · ·+ a0y = f(x).(5)

It finds a particular solution yp of (5) without the integration steps present in vari-
ation of parameters. The theory was already presented earlier, for the special case
of second order differential equations. The contribution of this section is a higher
order example and more exercises. The term Euler atom is an abbreviation
for the phrase Euler solution atom of a constant-coefficient linear homogeneous
differential equation. A base atom is one of eax, eax cos bx, eax sin bx where
symbols a and b are real constants with b > 0. Euler atoms are xn times a base
atom n = 0, 1, 2, 3, . . ..

Requirements and limitations:

1. The coefficients on the left side of (5) are constant.

2. The function f(x) is a sum of constants times atoms.

Method of Undetermined Coefficients

Step 1. Define the list of k atoms in a trial solution using Rule I and Rule II
[details below]. Multiply these atoms by undetermined coefficients
d1, . . . , dk, then add to define trial solution y.

Step 2. Substitute y into the differential equation.

Step 3. Match coefficients of Euler atoms left and right to write out linear
algebraic equations for unknowns d1, d2, . . . , dk. Solve the equations.

Step 4. The trial solution y with evaluated coefficients d1, d2, . . . , dk becomes
the particular solution yp.
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Undetermined Coefficients Rule I

Assume f(x) in the equation y(n) + · · ·+ a0y = f(x) is a sum of constants times Euler
atoms. For each atom A appearing in f(x), extract all distinct atoms that appear in A,
A′, A′′, . . . , then collect all these computed atoms into a list of k distinct Euler atoms.

If the list contains a solution of the homogeneous differential equation, then Rile
I FAILS. Otherwise, multiply the k atoms by undetermined coefficients d1, . . . , dk to
form trial solution

y = d1(atom 1) + d2(atom 2) + · · ·+ dk(atom k).

Undetermined Coefficients Rule II

Assume Rule I constructed a list of k Euler atoms but FAILED. The particular solution
yp is still a sum of constants times k atoms. Rule II changes some or all of the k atoms,
by repeated multiplication by x.

The k-atom list is subdivided into groups with the same base atom, called group 1,
group 2, and so on. Test each group for a solution of the homogeneous differential
equation. If found, then multiply each atom in the group by factor x. Repeat until no
group contains a solution of the homogeneous differential equation. The final set
of k Euler atoms is used to construct trial solution

y = d1(atom 1) + d2(atom 2) + · · ·+ dk(atom k).

A Common Difficulty

An able and earnest student working on undetermined coefficients writes:

I substituted trial solution y into the differential equation, but then I
couldn’t solve the equations. What’s wrong?

Trial solution substitution can result in a missing variable dp on the left. It
happens exactly when the trial solution contains a term dpA, where A is an Euler
solution atom of the homogeneous equation.

To illustrate, suppose y = d1x+d2x
2 is substituted into left side of the differential

equation y′′′ − y′′ = x+ x2 to get

d1[(x)
′′′ − (x)′′] + d2[(x

2)′′′ − (x2)′′] = x+ x2,
d1[0] + d2[−2] = x+ x2.

Then d1 vanishes from the left side, because (x)′′′− (x)′′ evaluates to zero! Equa-
tion (x)′′′ − (x)′′ = 0 means function y(x) = x is a solution of the homogeneous
differential equation for y′′′−y′′ = f(x). Then d1 is a free variable in the linear
algebra problem. The other coefficient d2 is determined to be zero. The nonsense
equation 0 = x+ x2 tells us we chose the wrong trial solution.

What caused the missing variable? Function y = x was a solution of the homo-
geneous differential equation for y′′′ − y′′ = x+ x2.

To prevent the error, test the trial solution before substitution:
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Search the Euler atom list for trial solution y for a solution of the
homogeneous equation – there shouldn’t be any!

The test should be used before embarking upon the time–consuming task of
writing the linear algebraic equations and solving them.

Illustration: nth Order Undetermined Coefficients

Let’s solve
y′′′ − y′′ = xex + 2x+ 1 + 3 sinx

Answer:

yp(x) = −
3

2
x2 − 1

3
x3 − 2xex +

1

2
x2ex +

3

2
cosx+

3

2
sinx.

Solution:
Check Applicability. The right side f(x) = xex + 2x + 1 + 3 sinx is a sum of terms
constructed from Euler atoms xex, x, 1, sinx. The left side has constant coefficients.
Therefore, the method of undetermined coefficients applies to find a particular solution
yp.

Homogeneous solution. The equation y′′′ − y′′ = 0 has general solution yh equal to a
linear combination of Euler atoms 1, x, ex.

Rule I. The Euler atoms found in f(x) are subjected to repeated differentiation. The
six distinct atoms so found are 1, x, ex, xex, cosx, sinx (drop coefficients to identify
new atoms). Three of these are solutions of the homogeneous equation: Rule I FAILS.

Rule II. Divide the list of six atoms 1, x, ex, xex, cosx, sinx into four groups with
identical base atom:

Group Euler Atoms Base Atom
group 1 : 1, x 1
group 2 : ex, xex ex

group 3 : cosx cosx
group 4 : sinx sinx

Group 1 contains a solution of the homogeneous equation y′′′− y′′ = 0. Rule II says to
multiply group 1 by x. Rule II is repeated, because the new group x, x2 still contains a
solution of the homogeneous equation. The process stops with new group x2, x3. Group
2 contains solution ex of the homogeneous equation. Rule II says to multiply group 2
by x. The new group xex, x2ex contains no solution of the homogeneous differential
equation y′′ − y = 0 .The last two groups are unchanged, because neither contains a
solution of the homogeneous equation. Then

Group Atoms Action
New group 1 : x2, x3 multiplied by x twice
New group 2 : xex, x2ex multiplied once by x

group 3 : cosx unchanged
group 4 : sinx unchanged
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The final groups have been found. The shortest trial solution is

y = linear combination of atoms in the new groups
= d1x

2 + d2x
3 + d3xe

x + d4x
2ex + d5 cosx+ d6 sinx.

Equations for d1 to d6. Substitution of trial solution y into y′′′− y′′ requires formulas
for y′, y′′, y′′′:

y′ = 2 d1x+ 3 d2x
2 + d3e

xx+ d3e
x + 2 d4xe

x + d4x
2ex

− d5 sin(x) + d6 cos(x),
y′′ = 2 d1 + 6 d2x+ d3e

xx+ 2 d3e
x + 2 d4e

x + 4 d4xe
x + d4x

2ex

− d5 cos(x)− d6 sin(x),
y′′′ = 6 d2 + d3e

xx+ 3 d3e
x + 6 d4e

x + 6 d4xe
x + d4x

2ex

+ d5 sin(x)− d6 cos(x)

Then

f(x) = y′′′ − y′′ Given equation.

= 6d2 − 2d1 − 6d2x+ (d3 + 4d4)e
x + 2d4xe

x Substitute, then

+ (d5 − d6) cos(x) + (d5 + d6) sin(x) collect on atoms.

Because f(x) ≡ 1 + 2x + xex + 3 sinx, then two linear combinations of the same set of
six Euler atoms are equal:

1 + 2x+ xex + 3 sinx = (6d2 − 2d1)(1) + (−6d2)x
+(d3 + 4d4)e

x + (2d4)xe
x

+(d5 − d6) cos(x) + (d5 + d6) sin(x).

Coefficients of Euler atoms on the left and right must match, by independence of atoms.
Write out the equations for matching coefficients:

−2d1 + 6d2 = 1,
−6d2 = 2,

d3 + 4d4 = 0,
2d4 = 1,

d5 − d6 = 0,
d5 + d6 = 3.

Solve. The first four equations can be solved by back-substitution to give d2 = −1/3,
d1 = −3/2, d4 = 1/2, d3 = −2. The last two equations are solved by elimination or
Cramer’s rule to give d5 = 3/2, d6 = 3/2.

Report yp. The corrected trial solution y with evaluated coefficients d1 to d6 becomes
the particular solution

yp(x) = −
3

2
x2 − 1

3
x3 − 2xex +

1

2
x2ex +

3

2
cosx+

3

2
sinx.
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Exercises 7.3 �

Variation of Parameters
Solve the higher order equation given by its
characteristic equation and right side f(x).
Display the Cauchy kernel K(x) and a par-
ticular solution yp(x) with fewest terms.
Use a computer algebra system to evaluate
integrals, if possible.

1. (r − 1)(r + 2)(r − 3)2 = 0,
f(x) = ex

2. (r − 1)2(r + 2)(r + 3) = 0,
f(x) = ex

3. (r − 1)3(r + 2)2r4 = 0,
f(x) = x+ e−2x

4. (r − 1)2(r + 2)3r5 = 0,
f(x) = x+ e−2x

5. r2(r − 1)2(r2 + 4r + 6) = 0,
f(x) = x+ ex

6. r3(r − 1)(r2 + 4r + 6)2 = 0,
f(x) = x2 + ex

7. (r − 1)(r + 2)(r2 + 1)2 = 0,
f(x) = cosx+ e−2x

8. (r − 1)2(r + 2)(r2 + 1) = 0,
f(x) = sinx+ e−2x

9. (r − 1)3(r + 2)2(r2 + 4) = 0,
f(x) = cos 2x+ ex

10. (r − 1)4(r + 2)(r2 + 4)2 = 0,
f(x) = sin 2x+ ex

Undetermined Coefficient Method
A higher order equation is given by its char-
acteristic equation and right side f(x). Dis-
play (a) a trial solution, (b) a system of
equations for the undetermined coefficients,
and (c) a particular solution yp(x) with
fewest terms. Use a computer algebra sys-
tem to solve for undetermined coefficients,
if possible.

11. (r − 1)(r + 2)(r − 3)2 = 0,
f(x) = ex

12. (r − 1)2(r + 2)(r + 3) = 0,
f(x) = ex

13. (r − 1)3(r + 2)2r4 = 0,
f(x) = x+ e−2x

14. (r − 1)2(r + 2)3r5 = 0,
f(x) = x+ e−2x

15. r2(r − 1)2(r2 + 4r + 6) = 0,
f(x) = x+ ex

16. r3(r − 1)(r2 + 4r + 6)2 = 0,
f(x) = x2 + ex

17. (r − 1)(r + 2)(r2 + 1)2 = 0,
f(x) = cosx+ e−2x

18. (r − 1)2(r + 2)(r2 + 1) = 0,
f(x) = sinx+ e−2x

19. (r − 1)3(r + 2)2(r2 + 4) = 0,
f(x) = cos 2x+ ex

20. (r − 1)4(r + 2)(r2 + 4)2 = 0,
f(x) = sin 2x+ ex
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7.4 Cauchy-Euler Equation

The differential equation

anx
ny(n) + an−1x

n−1y(n−1) + · · ·+ a0y = 0

is called the Cauchy-Euler differential equation of order n. The symbols ai,
i = 0, . . . , n are constants and an ̸= 0.

The Cauchy-Euler equation is important in the theory of linear differential equa-
tions because it has direct application to Fourier’s method in the study of
partial differential equations. In particular, the second order Cauchy-Euler equa-
tion

ax2y′′ + bxy′ + cy = 0

accounts for the bulk of such applications in applied literature.

A second argument for studying the Cauchy-Euler equation is theoretical: it is
a single example of a differential equation with non-constant coefficients that
has a known closed-form solution. This fact is due to a change of variables
(x, y) −→ (t, z) given by equations

x = et, z(t) = y(x),

which changes the Cauchy-Euler equation into a constant-coefficient differential
equation. Since the constant-coefficient equations have closed-form solutions, so
also do the Cauchy-Euler equations.

Theorem 7.5 (Cauchy-Euler Equation)
The change of variables x = et, z(t) = y(et) transforms the Cauchy-Euler equation

ax2y′′ + bxy′ + cy = 0

into its equivalent constant-coefficient equation

a
d

dt

(
d

dt
− 1

)
z + b

d

dt
z + cz = 0.

The result is memorized by the general differentiation formula

xky(k)(x) =
d

dt

(
d

dt
− 1

)
· · ·
(

d

dt
− k + 1

)
z(t).(1)

Proof: The equivalence is obtained from the formulas

y(x) = z(t), xy′(x) =
d

dt
z(t), x2y′′(x) =

d

dt

(
d

dt
− 1

)
z(t)

by direct replacement of terms in ax2y′′ + bxy′ + cy = 0. It remains to establish the
general identity (1), from which the replacements arise.
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The method of proof is mathematical induction. The induction step uses the chain rule
of calculus, which says that for y = y(x) and x = x(t),

dy

dx
=

dy

dt

dt

dx
.

The identity (1) reduces to y(x) = z(t) for k = 0. Assume it holds for a certain integer
k; we prove it holds for k + 1, completing the induction.

Let us invoke the induction hypothesis LHS = RHS in (1) to write

d

dt
RHS =

d

dt
LHS Reverse sides.

=
dx

dt

d

dx
LHS Apply the chain rule.

= et
d

dx
LHS Use x = et, dx/dt = et.

= x
d

dx
LHS Use et = x.

= x
(
xky(k)(x)

)′
Expand with ′ = d/dx.

= x
(
kxk−1y(k)(x) + xky(k+1)(x)

)
Apply the product rule.

= k LHS+ xk+1y(k+1)(x) Use xky(k)(x) = LHS.

= k RHS+ xk+1y(k+1)(x) Use hypothesis LHS = RHS.

Solve the resulting equation for xk+1y(k+1). The result completes the induction. The
details, which prove that (1) holds with k replaced by k + 1:

xk+1y(k+1) =
d

dt
RHS− k RHS

=

(
d

dt
− k

)
RHS

=

(
d

dt
− k

)
d

dt

(
d

dt
− 1

)
· · ·
(

d

dt
− k + 1

)
z(t)

=
d

dt

(
d

dt
− 1

)
· · ·
(

d

dt
− k

)
z(t)

Example 7.1 (How to Solve a Cauchy-Euler Equation)
Show the solution details for the equation

2x2y′′ + 4xy′ + 3y = 0,

verifying general solution

y(x) = c1x
−1/2 cos

(√
5

2
ln |x|

)
+ c2e

−t/2 sin

(√
5

2
ln |x|

)
.

Solution: The characteristic equation 2r(r− 1)+4r+3 = 0 can be obtained as follows:
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7.4 Cauchy-Euler Equation

2x2y′′ + 4xy′ + 3y = 0 Given differential equation.

2x2r(r − 1)xr−2 + 4xrxr−1 + 3xr = 0 Use Euler’s substitution y = xr.

2r(r − 1) + 4r + 3 = 0 Cancel xr.
Characteristic equation found.

2r2 + 2r + 3 = 0 Standard quadratic equation.

r = − 1
2 ±

√
5
2 i Quadratic formula complex roots.

Cauchy-Euler Substitution. The second step is to use y(x) = z(t) and x = et to
transform the differential equation. By Theorem 7.5,

2(d/dt)2z + 2(d/dt)z + 3z = 0,

a constant-coefficient equation. Because the roots of the characteristic equation 2r2 +
2r + 3 = 0 are r = −1/2±

√
5i/2, then the Euler solution atoms are

e−t/2 cos

(√
5

2
t

)
, e−t/2 sin

(√
5

2
t

)
.

Back-substitute x = et and t = ln |x| in this equation to obtain two independent solutions
of 2x2y′′ + 4xy′ + 3y = 0:

x−1/2 cos

(√
5

2
ln |x|

)
, e−t/2 sin

(√
5

2
ln |x|

)
.

Substitution Details. Because x = et, the factor e−t/2 is re-written as (et)−1/2 =
x−1/2. Because t = ln |x|, the trigonometric factors are back-substituted like this:

cos
(√

5
2 t
)
= cos

(√
5
2 ln |x|

)
.

General Solution. The final answer is the set of all linear combinations of the two
preceding independent solutions.

Exercises 7.4 �

Cauchy-Euler Equation
Find solutions y1, y2 of the given homoge-
neous differential equation which are inde-
pendent by the Wronskian test, page 464.

1. x2y′′ + y = 0

2. x2y′′ + 4y = 0

3. x2y′′ + 2xy′ + y = 0

4. x2y′′ + 8xy′ + 4y = 0

Variation of Parameters
Find a solution yp using a variation of pa-
rameters formula.

5. x2y′′ = x

6. x3y′′ = ex

7. y′′ + 9y = sec 3x

8. y′′ + 9y = csc 3x
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7.5 Variation of Parameters Revisited

The independent functions y1 and y2 in the general solution yh = c1y1 + c2y2 of
a homogeneous linear differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0

are used to define Cauchy’s kernel1

K(x, t) = y1(t)y2(x)− y1(x)y2(t)

y1(t)y′2(t)− y′1(t)y2(t)
.(1)

The denominator is the Wronskian W (t) of y1, y2. Define

C1(t) =
−y2(t)
W (t)

, C2(t) =
y1(t)

W (t)
.(2)

Then Cauchy’s kernel K has these properties (proved on page 571):

K(x, t) = C1(t)y1(x) + C2(t)y2(x), K(x, x) = 0,
Kx(x, t) = C1(t)y

′
1(x) + C2(t)y

′
2(x), Kx(x, x) = 1,

Kxx(x, t) = C1(t)y
′′
1(x) + C2(t)y

′′
2(x), aKxx + bKx + cK = 0.

Theorem 7.6 (Cauchy Kernel Shortcut)
Let a, b, c be constants and let U be the unique solution of aU ′′ + bU ′ + cU = 0,
U(0) = 0, U ′(0) = 1. Then Cauchy’s kernel is K(x, t) = U(x− t).

Proof on page 572.

Theorem 7.7 (Variation of Parameters Formula: Cauchy’s Kernel)
Let a, b, c, f be continuous near x = x0 and a(x) ̸= 0. Let K be Cauchy’s kernel
for ay′′ + by′ + cy = 0. Then the non-homogeneous initial value problem

ay′′ + by′ + cy = f, y(x0) = y′(x0) = 0

has solution

yp(x) =

∫ x

x0

K(x, t)f(t)
a(t)

dt.

Proof on page 572.

Specific initial conditions y(x0) = y′(x0) = 0 imply that yp can be determined
in a laboratory with just one experimental setup. The integral form of yp shows
that it depends linearly on the input f(x).

Example 7.2 (Cauchy Kernel)
Verify that the equation 2y′′ − y′ − y = 0 has Cauchy kernel K(x, t) = 2

3(e
x−t −

e−(x−t)/2).

1Pronunciation ko–she.
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Solution: The two independent solutions y1, y2 are calculated from Theorem 6.1, which
uses the characteristic equation 2r2− r− 1 = 0. The roots are −1/2 and 1. The general
solution is y = c1e

−x/2 + c2e
x. Therefore, y1 = e−x/2 and y2 = ex.

The Cauchy kernel is the quotient

K(x, t) = y1(t)y2(x)− y1(x)y2(t)

y1(t)y′2(t)− y′1(t)y2(t)
Definition page 569.

=
e−t/2ex − e−x/2et

e−t/2et + 0.5e−t/2et
Substitute y1 = e−x/2, y2 = ex.

=
2

3
(e−tex − e−x/2et/2) Simplify.

=
2

3
(ex−t − e(t−x)/2) Final answer.

An alternative method to determine the Cauchy kernel is to apply the shortcut Theorem
7.6. We will apply it to check the answer. Solution U must be U(x) = Ay1(x) +By2(x)
for some constants A, B, determined by the conditions U(0) = 0, U ′(0) = 1. The
resulting equations for A, B are A+B = 0, −A/2+B = 1. Solving gives −A = B = 2/3
and then U(x) = 2

3 (e
x − e−x/2). The kernel is K(x, t) = U(x− t) = 2

3 (e
x−t − e−(x−t)/2).

Example 7.3 (Variation of Parameters)
Solve y′′ = |x| by Cauchy kernel methods, verifying y = c1 + c2x+ |x|3/6.

Solution: First, an independent method will be described, in order to provide a check
on the solution. The method involves splitting the equation into two problems y′′ = x
and y′′ = −x. The two polynomial answers y = x3/6 on x > 0 and y = −x3/6 on x < 0,
obtained by quadrature, are re-assembled to obtain a single formula yp(x) = |x|3/6 valid
on −∞ < x <∞.

The Cauchy kernel method will be applied to verify the general solution y = c1 + c2x+
|x|3/6.
Homogeneous solution. Theorem 6.1 for constant equations, applied to y′′ = 0, gives
yh = c1 + c2x. Suitable independent solutions are y1(x) = 1, y2(x) = x.

Cauchy kernel for y′′ = 0. It is computed by formula, K(x, t) = ((1)(x)− (t)(1))/(1)
or K(x, t) = x− t.

Variation of parameters. The solution is yp(x) = |x|3/6, by Theorem 7.7, details
below.

yp(x) =
∫ x

0
K(x, t)|t|dt Theorem 7.7, page 569.

=
∫ x

0
(x− t)tdt Substitute K = x− t and |t| = t for x > 0.

= x
∫ x

0
tdt−

∫ x

0
t2dt Split into two integrals.

= x3/6 Evaluate for x > 0.

If x < 0, then the evaluation differs only by |t| = −t in the integrand. This gives
yp(x) = −x3/6 for x < 0. The two formulas can be combined into yp(x) = |x|3/6, valid
for −∞ < x <∞.

Example 7.4 (Two Methods)
Solve y′′ − y = ex by undetermined coefficients and by variation of parameters.
Explain any differences in the answers.
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Solution:

Homogeneous solution. The characteristic equation r2 − 1 = 0 for y′′ − y = 0 has
roots ±1. The homogeneous solution is yh = c1e

x + c2e
−x.

Undetermined Coefficients Summary. The general solution is reported to be y =
yh + yp = c1e

x + c2e
−x + xex/2.

Kümmer’s polynomial × exponential method applies to give y = exY and [(D + 1)2 −
1]Y = 1. The latter simplifies to Y ′′ +2Y ′ = 1, which has polynomial solution Y = x/2.
Then yp = xex/2.

Variation of Parameters Summary. The homogeneous solution yh = c1e
x + c2e

−x

found above implies y1 = ex, y2 = e−x is a suitable independent pair of solutions, because
their Wronskian is W = −2
The Cauchy kernel is given by K(x, t) = 1

2 (e
x−t − et−x), details below. The shortcut

Theorem 7.6 also applies with U(x) = sinh(x) = (ex − e−x)/2. Variation of parameters
Theorem 7.7 gives yp(x) =

∫ x

0
K(x, t)etdt. It evaluates to yp(x) = xex/2− (ex − e−x)/4,

details below.

Differences. The two methods give respectively yp = xex/2, and yp = xex/2 − (ex −
e−x)/4. The solutions yp = xex/2 and yp = xex/2− (ex − e−x)/4 differ by the homoge-
neous solution (ex − e−x)/4. In both cases, the general solution is

y = c1e
x + c2e

−x +
1

2
xex,

because terms of the homogeneous solution can be absorbed into the arbitrary constants
c1, c2.

Computational Details.

K(x, t) = y1(t)y2(x)− y1(x)y2(t)

y1(t)y′2(t)− y′1(t)y2(t)
Definition page 569.

=
ete−x − exe−t

et(−e−t)− ete−t
Substitute.

=
1

2
(ex−t − et−x) Cauchy kernel found.

yp(x) =

∫ x

0

K(x, t)etdt Theorem 7.7, page 569.

=
1

2

∫ x

0

(ex−t − et−x)etdt Substitute K = 1
2 (e

x−t − et−x).

=
1

2
ex
∫ x

0

dt− 1

2

∫ x

0

e2t−xdt Split into two integrals.

=
1

2
xex − 1

4
(ex − e−x) Evaluation completed.

Proofs and Technical Details

Proofs for page 569, Cauchy Kernel Properties:
The equation K(x, t) = C1(t)y1(x)+C2(t)y2(x) is an algebraic identity, using the defini-
tions of C1 and C2. Then K(x, x) is a fraction with numerator y1(x)y2(x)−y1(x)y2(x) =
0, giving the second identity K(x, x) = 0.
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The partial derivative formula Kx(x, t) = C1(t)y
′
1(x)+C2(t)y

′
2(x) is obtained by ordinary

differentiation on x in the previous identity. Then Kx(x, x) is a fraction with numera-
tor y1(x)y

′
2(x)− y′1(x)y2(x), which exactly cancels the denominator, giving the identity

Kx(x, x) = 1.

The second derivative formula Kxx(x, t) = C1(t)y
′′
1 (x) + C2(t)y

′′
2 (x) results by ordinary

differentiation on x in the formula for Kx. The differential equation aKxx+bKx+cK = 0
is satisfied, because K in the variable x is a linear combination of y1 and y2, which are
given to be solutions.

Proof of Theorem 7.6, Cauchy Kernel Shortcut:
Let y(x) = K(x, t) − U(x − t) for fixed t. It will be shown that y is a solution and
y(t) = y′(t) = 0. Already known from page 569 is the relation aKxx(x, t) + bKx(x, t) +
cK(x, t) = 0. By assumption, aU ′′(x − t) + bU ′(x − t) + cU(x − t) = 0. By the chain
rule, both terms in y satisfy the differential equation, hence y is a solution. At x = t,
y(t) = K(t, t) − U(0) = 0 and y′(t) = Kx(t, t) − U ′(0) = 0 (see page 569). Then y
is a solution of the homogeneous equation with zero initial conditions. By uniqueness,
y(x) ≡ 0, which proves K(x, t) = U(x− t).

Proof of Theorem 7.7, Variation of Parameters:
Let F (t) = f(t)/a(t). It will be shown that yp as given has two continuous derivatives
given by the integral formulas

y′p(x) =

∫ x

x0

Kx(x, t)F (t)dt, y′′p (x) =

∫ x

x0

Kxx(x, t)F (t)dt+ F (x).

Then

ay′′p + by′p + cyp =

∫ x

x0

(aKxx + bKx + cK)F (t)dt+ aF.

The equation aKxx + bKx + cK = 0, page 569, shows the integrand on the right is zero.
Therefore ay′′p + by′p + cyp = f(x), which would complete the proof.

Needed for the calculation of the derivative formulas is the fundamental theorem of

calculus relation
(∫ x

x0
G(t)dt

)′
= G(x), valid for continuous G. The product rule from

calculus can be applied directly, because yp is a sum of products:

y′p =
(
y1(x)

∫ x

x0
C1Fdt+ y2(x)

∫ x

x0
C2Fdt

)′
= y′1

∫ x

x0
C1Fdt+ y′2

∫ x

x0
C2Fdt+ y1(x)C1(x)F (x) + y2(x)C2(x)F (x)

= y′1
∫ x

x0
C1Fdt+ y′2

∫ x

x0
C2Fdt+K(x, x)F (x)

=
∫ x

x0
Kx(x, t)F (t)dt

The terms contributed by differentiation of the integrals add to zero because K(x, x) = 0
(page 569).

y′′p =
(
y′1(x)

∫ x

x0
C1Fdt+ y′2(x)

∫ x

x0
C2Fdt

)′
= y′′1

∫ x

x0
C1Fdt+ y′′2

∫ x

x0
C2Fdt+ y′1(x)C1(x)F (x) + y′2(x)C2(x)F (x)

= y′′1
∫ x

x0
C1Fdt+ y′′2

∫ x

x0
C2Fdt+Kx(x, x)F (x)

=
∫ x

x0
Kxx(x, t)F (t)dt+ F (x)

The terms contributed by differentiation of the integrals add to F (x) because Kx(x, x) =
1 (page 569).

572



7.5 Variation of Parameters Revisited

Exercises 7.5 �

Cauchy Kernel
Find the Cauchy kernelK(x, t) for the given
homogeneous differential equation.

1. y′′ − y = 0

2. y′′ − 4y = 0

3. y′′ + y = 0

4. y′′ + 4y = 0

5. 4y′′ + y′ = 0

6. y′′ + y′ = 0

7. y′′ + y′ + y = 0

8. y′′ − y′ + y = 0

Variation of Parameters
Find the general solution yh+ yp by apply-
ing a variation of parameters formula.

9. y′′ = x2

10. y′′ = x3

11. y′′ + y = sinx

12. y′′ + y = cosx

13. y′′ + y′ = ln |x|

14. y′′ + y′ = − ln |x|

15. y′′ + 2y′ + y = e−x

16. y′′ − 2y′ + y = ex
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7.6 Undetermined Coefficients Library

The study of undetermined coefficients continues for the problem

ay′′ + by′ + cy = f(x).(1)

As in previous sections, f(x) is assumed to be a sum of constants times Euler
solution atoms and the symbols a, b, c are constants. Recorded here are special
methods for efficiently solving (1). Linear algebra is not required in any of the
special methods: only calculus and college algebra are assumed as background.

The special methods provide a justification for the trial solution method, pre-
sented earlier in this text.

The Easily-Solved Equations

The algebra problem for undetermined coefficients can involve many unknowns.
It is recommended to reduce the size of the algebra problem by breaking the
differential equation into several simpler differential equations. A particular so-
lution yp of (1) can be expressed as a sum

yp = y1 + · · ·+ yn

where each yk solves a related easily-solved differential equation.

The idea can be quickly communicated for n = 3. The superposition principle
applied to the three equations

ay′′1 + by′1 + cy1 = f1(x),
ay′′2 + by′2 + cy2 = f2(x),
ay′′3 + by′3 + cy3 = f3(x)

(2)

shows that y = y1 + y2 + y3 is a solution of

ay′′ + by′ + cy = f1 + f2 + f3.(3)

If each equation in (2) is easily solved, then solving equation (3) is also easy: add
the three answers for the easily solved problems.

To use the idea, it is necessary to start with f(x) and determine a decomposition
f = f1 + f2 + f3 so that equations (2) are easily solved.

Each Easily-Solved equation is engineered to have right side in one of the four
forms below:

p(x) polynomial,

p(x)ekx polynomial × exponential,

p(x)ekx cosmx polynomial × exponential × cosine,

p(x)ekx sinmx polynomial × exponential × sine.

(4)
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To illustrate, consider

ay′′ + by′ + cy = x+ xex + x2 sinx− πe2x cosx+ x3.(5)

The right side is decomposed as follows, in order to define the easily solved
equations:

ay′′1 + by′1 + cy1 = x+ x3 Polynomial.

ay′′2 + by′2 + cy2 = xex Polynomial × exponential.

ay′′3 + by′3 + cy3 = x2 sinx Polynomial × exponential × sine.

ay′′4 + by′4 + cy4 = −πe2x cosx Polynomial × exponential × cosine.

There are n = 4 equations. In the illustration, x3 is included with x, but it
could have caused creation of a fifth equation. To decrease effort, minimize the
number n of easily solved equations. One final checkpoint: the right sides of the
n equations must add to the right side of (5).

Library of Special Methods

It is assumed that the differential equation is already in easily-solved form: the
library methods are designed to apply directly. If an equation requires a decom-
position into easily-solved equations, then the desired solution is then the sum
of the answers to the decomposed equations.

Equilibrium and Quadrature Methods

The special case of ay′′ + by′ + cy = k where k is a constant occurs so often that
an efficient method has been isolated to find yp. It is called the equilibrium
method, because in the simplest case yp is a constant solution or an equilibrium
solution. The method in words:

Verify that the right side of the differential equation is constant.
Cancel on the left side all derivative terms except for the lowest
order and then solve for y by quadrature.

The method works to find a solution, because if a derivative y(n) is constant, then
all higher derivatives y(n+1), yn+2, etc., are zero. A precise description follows
for second order equations.
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Differential Equation Cancelled DE Particular Solution

ay′′ + by′ + cy = k, c ̸= 0 cy = k yp =
k

c

ay′′ + by′ = k, b ̸= 0 by′ = k yp =
k

b
x

ay′′ = k, a ̸= 0 ay′′ = k yp =
k

a

x2

2

The equilibrium method also applies to nth order linear differential equations∑n
i=0 aiy

(i) = k with constant coefficients a0, . . . , an and constant right side k.

A special case of the equilibrium method is the simple quadrature method, illus-
trated in Example 7.5 page 582. The method is used in elementary physics to
solve falling body problems.

The Polynomial Method

The method applies to find a particular solution of ay′′ + by′ + cy = p(x), where
p(x) represents a polynomial of degree n ≥ 1. Such equations always have a
polynomial solution; see Theorem 7.8 page 581.

Let a, b and c be given with a ̸= 0. Differentiate the differential equation succes-
sively until the right side is constant:

ay′′ + by′ + cy = p(x),
ay′′′ + by′′ + cy′ = p′(x),
ayiv + by′′′ + cy′′ = p′′(x),

...

ay(n+2) + by(n+1) + cy(n) = p(n)(x).

(6)

Apply the equilibrium method to the last equation in order to find a polynomial
trial solution

y(x) = dm
xm

m!
+ · · ·+ d0.

It will emerge that y(x) always has n + 1 terms, but its degree can be either n,
n + 1 or n + 2. The undetermined coefficients d0, . . . , dm are resolved by
setting x = 0 in equations (6). The Taylor polynomial relations d0 = y(0), . . . ,
dm = y(m)(0) give the equations

ad2 + bd1 + cd0 = p(0),
ad3 + bd2 + cd1 = p′(0),
ad4 + bd3 + cd2 = p′′(0),

...

adn+2 + bdn+1 + cdn = p(n)(0).

(7)
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These equations can always be solved by back-substitution; linear algebra is
not required. Three cases arise, according to the number of zero roots of the
characteristic equation ar2+br+c = 0. The values m = n, n+1, n+2 correspond
to zero, one or two roots r = 0.

No root r = 0. Then c ̸= 0. There were n integrations to find the trial solution,
so dn+2 = dn+1 = 0. The unknowns are d0 to dn. The system can be solved by
back-substitution to uniquely determine d0, . . . , dn. The resulting polynomial
y(x) is the desired solution yp(x).

One root r = 0. Then c = 0, b ̸= 0. The unknowns are d0, . . . , dn+1. There
is no condition on d0; simplify the trial solution by taking d0 = 0. Solve (7) for
unknowns d1 to dn+1 as in the no root case.

Double root r = 0. Then c = b = 0 and a ̸= 0. The equilibrium method gives
a polynomial trial solution y(x) involving d0, . . . , dn+2. There are no conditions
on d0 and d1. Simplify y by taking d0 = d1 = 0. Solve (7) for unknowns d2 to
dn+2 as in the no root case.

College algebra back-substitution applied to (7) is illustrated in Example 7.7,
page 583. A complete justification of the polynomial method appears in the
proof of Theorem 7.8, page 588.

Recursive Polynomial Hybrid

A recursive method based upon quadrature appears in Example 7.8, page 584.
This method, independent from the polynomial method above, is useful when the
number of equations in (6) is two or three.

Some researchers (see [Gupta]) advertise the recursive method as easy to remem-
ber, easy to use and faster than other methods. In this textbook, the method is
advertised as a hybrid: equations in (6) are written down, but equations (7) are
not. Instead, the undetermined coefficients are found recursively, by repeated
quadrature and back-substitution.

Classroom testing of the recursive polynomial method reveals it is best suited to
algebraic helmsmen with flawless talents. The method should be applied when
conditions suggest rapid and reliable computation details. Error propagation
possibilities dictate that polynomial solutions of degree 4 or larger be suspect
and subjected to an answer check.

Polynomial × Exponential Method

The method applies to special equations ay′′ + by′ + cy = p(x)ekx where p(x) is
a polynomial. The idea, due to Kümmer, uses the transformation y = ekxY to
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obtain the auxiliary equation

[a(D + k)2 + b(D + k) + c]Y = p(x), D =
d

dx
.

The polynomial method applies to find Y . Multiplication by ekx gives y.

Computational details are in Example 7.9, page 584. Justification appears in
Theorem 7.9. In words, to find the differential equation for Y :

In the differential equation, replace D by D + k and cancel ekx on
the RHS.

Polynomial × Exponential × Cosine Method

The method applies to equations ay′′ + by′ + cy = p(x)ekx cos(mx) where p(x) is
a polynomial. Kümmer’s transformation y = ekxRe(eimxY ) gives the auxiliary
problem

[a(D + z)2 + b(D + z) + c]Y = p(x), z = k + im, D =
d

dx
.

The polynomial method applies to find Y . Symbol Re extracts the real part of a
complex number. Details are in Example 7.10, page 585. The formula is justified
in Theorem 7.10. In words, to find the equation for Y :

In the differential equation, replace D by D + k + im and cancel
ekx cosmx on the RHS.

Polynomial × Exponential × Sine Method

The method applies to equations ay′′ + by′ + cy = p(x)ekx sin(mx) where p(x) is
a polynomial. Kümmer’s transformation y = ekx Im(eimxY ) gives the auxiliary
problem

[a(D + z)2 + b(D + z) + c]Y = p(x), z = k + im, D =
d

dx
.

The polynomial method applies to find Y . Symbol Im extracts the imaginary
part of a complex number. Details are in Example 7.11, page 586. The formula
is justified in Theorem 7.10. In words, to find the equation for Y :

In the differential equation, replace D by D + k + im and cancel
ekx sinmx on the RHS.
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Kümmer’s Method

The methods known above as the polynomial × exponential method, the polyno-
mial × exponential × cosine method, and the polynomial × exponential × sine
method, are collectively called Kümmer’s method, because of their origin.

Trial Solution Shortcut

The library of special methods leads to a justification for the trial solution
method, a method which has been popularized by leading differential equation
textbooks published over the past 50 years.

Trial Solutions and Kümmer’s Method

Assume given ay′′ + by′ + cy = f(x) where f(x) =(polynomial)ekx cosmx, then
the method of Kümmer predicts

y = ekxRe (Y (x)(cosmx+ i sinmx)) ,

where Y (x) is a polynomial solution of a different, associated differential
equation. In the simplest case, Y (x) =

∑n
j=0Ajx

j + i
∑n

j=0Bjx
j , a polynomial

of degree n with complex coefficients, matching the degree of the polynomial in
f(x). Expansion of the Kümmer formula for y plus definitions aj = Aj − Bj ,
bj = Bj +Aj gives a trial solution

y =

cos(mx)
n∑

j=0

ajx
j + sin(mx)

n∑
j=0

bjx
j

 ekx.(8)

The undetermined coefficients are a0, . . . , an, b0,. . . , bn. Exactly the same trial
solution results when f(x) =(polynomial)ekx sinmx. If m = 0, then the trigono-
metric functions do not appear and the trial solution is either a polynomial
(k = 0) or else a polynomial times an exponential.

The characteristic equation for the associated differential equation has root r = 0
exactly when r = k+m

√
−1 is a root of ar2+br+c = 0. Therefore, Y , and hence

y, must be multiplied by x for each time k+m
√
−1 is a root of ar2+br+c = 0. In

the trial solution method, this requirement is met by multiplication by x until the
trial solution no longer contains a term of the homogeneous solution. Certainly
both correction rules produce exactly the same final trial solution.

Shortcuts using (8) have been known for some time. The results can be summa-
rized in words as follows.

If the right side of ay′′+by′+cy = f(x) is a polynomial of degree n
times ekx cos(mx) or ekx sin(mx), then an initial trial solution y is
given by relation (8), with undetermined coefficients a0, . . . , an, b0,
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. . . , bn. Correct the trial solution y by multiplication by x, once for
each time r = k + m

√
−1 is a root of the characteristic equation

ar2 + br + c = 0.

The Correction Rule

The Final Trial Solution is found by this rule:

Given an initial trial solution y for au′′+by′+cy = f(x), from Table
1 below, correct y by multiplication by x, once for each time that
r = k+m

√
−1 is a root of the characteristic equation ar2+br+c =

0. This is equivalent to multiplication by x until the trial solution
no longer contains a term of the homogeneous solution.

Once the final trial solution y is determined, then y is substituted into the
differential equation. The undetermined coefficients are found by matching terms
of the form xjekx cos(mx) and xjekx sin(mx), which appear on the left and right
side of the equation after substitution.

A Table Lookup Method

Table 1 below summarizes the form of an initial trial solution in special cases,
according to the form of f(x).

Table 1. A Table Method for Trial Solutions.

The table predicts the Initial Trial Solution y in the method of undetermined coeffi-

cients. Then the Correction Rule is applied to find the final trial solution. Symbol

n is the degree of the polynomial in column 1.

Form of f(x) Values Initial Trial Solution

constant k = m = 0 y = a0 =constant

polynomial k = m = 0 y =
∑n

j=0 ajx
j

combination of k = 0, m > 0 y = a0 cosmx+ b0 sinmx

cosmx and sinmx

(polynomial)ekx m = 0 y =
(∑n

j=0 ajx
j
)
ekx

(polynomial)ekx cosmx y =
(∑n

j=0 ajx
j
)
ekx cosmx

or m > 0

(polynomial)ekx sinmx +
(∑n

j=0 bjx
j
)
ekx sinmx

Details for lines 2-3 of Table 1 appear in Examples 7.6 and 7.13.
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Alternate Trial Solution Shortcut

The method avoids the root testing of the correction rule, at the expense of
repeated substitutions. The simplicity of the method is appealing, but a few
computations reveal that the correction rule is a more practical method.

Let y be the initial trial solution of Table 1. Substitute it into
the differential equation. It will either compute yp, or else some
coefficients cannot be determined. In the latter case, multiply y by
x and repeat, until a solution yp is found.

Key Theorems

Theorem 7.8 (Polynomial Solutions)
Assume a, b, c are constants, a ̸= 0. Let p(x) be a polynomial of degree d. Then
ay′′ + by′ + cy = p(x) has a polynomial solution y of degree d, d + 1 or d + 2.
Precisely, these three cases hold:

Case 1. ay′′ + by′ + cy = p(x)
c ̸= 0.

Then y = y0 + · · ·+ yd
xd

d!
.

Case 2. ay′′ + by′ = p(x)
b ̸= 0.

Then y =

(
y0 + · · ·+ yd

xd

d!

)
x.

Case 3. ay′′ = p(x)
a ̸= 0.

Then y =

(
y0 + · · ·+ yd

xd

d!

)
x2.

Proof on page 588.

Theorem 7.9 (Polynomial × Exponential)
Assume a, b, c, k are constants, a ̸= 0, and p(x) is a polynomial. If Y is a

solution of [a(D + k)2 + b(D + k) + c]Y = p(x), then y = ekxY is a solution of
ay′′ + by′ + cy = p(x)ekx.

Proof on page 588.

Theorem 7.10 (Polynomial × Exponential × Cosine or Sine)
Assume a, b, c, k, m are real, a ̸= 0, m > 0. Let p(x) be a real polynomial
and z = k + im. If Y is a solution of [a(D + z)2 + b(D + z) + c]Y = p(x),
then y = ekxRe(eimxY ) is a solution of ay′′ + by′ + cy = p(x)ekx cos(mx) and
y = ekx Im(eimxY ) is a solution of ay′′ + by′ + cy = p(x)ekx sin(mx).

Proof on page 589.

The theorems form the theoretical basis for the method of undetermined coeffi-
cients.
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Examples and Methods

Example 7.5 (Simple Quadrature)

Solve for yp in y′′ = 2− x+ x3 using the fundamental theorem of calculus, verifying
yp = x2 − x3/6 + x5/20.

Solution: Two integrations using the fundamental theorem of calculus give y = y0 +
y1x + x2 − x3/6 + x5/20. The terms y0 + y1x represent the homogeneous solution
yh. Therefore, yp = x2 − x3/6 + x5/20 is reported. The method works in general
for ay′′ + by′ + cy = p(x), provided b = c = 0, that is, in case 3 of Theorem 7.8. Some
explicit details:∫

y′′(x)dx =
∫
(2− x+ x3)dx Integrate across on x.

y′ = y1 + 2x− x2/2 + x4/4 Fundamental theorem.∫
y′(x)dx =

∫
(y1 + 2x− x2/2 + x4/4)dx Integrate across again on x.

y = y0 + y1x+ x2 − x3/6 + x5/20 Fundamental theorem.

Example 7.6 (Undetermined Coefficients: A Hybrid Method)

Solve for yp in the equation y′′−y′+y = 2−x+x3 by the method of undetermined
coefficients, verifying yp = −5− x+ 3x2 + x3.

Solution: Let’s begin by calculating the trial solution y = d0 + d1x+ d2x
2/2+ x3. This

is done by differentiation of y′′ − y′ + y = 2− x+ x3 until the right side is constant:

yv − yiv + y′′′ = 6.

The equilibrium method solves the truncated equation 0 + 0+ y′′′ = 6 by quadrature to
give y = d0 + d1x+ d2x

2/2 + x3.

The undetermined coefficients d0, d1, d2 will be found by a classical technique in
which the trial solution y is back-substituted into the differential equation. We begin by
computing the derivatives of y:

y = d0 + d1x+ d2x
2/2 + x3 Calculated above; see Theorem 7.8.

y′ = d1 + d2x+ 3x2 Differentiate.

y′′ = d2 + 6x Differentiate again.

The relations above are back-substituted into the differential equation y′′ − y′ + y =
2− x+ x3 as follows:

2− x+ x3 = y′′ − y′ + y Write the DE backwards.

= [d2 + 6x]
− [cd1 + d2x+ 3x2]
+ [d0 + d1x+ d2x

2/2 + x3]
Substitute for y, y′, y′′.

= [c2 − c1 + c0]
+ [6− d2 + c1]x
+ [−3 + d2/2]x

2

+ [1]x3

Collect on powers of x.
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The coefficients d0, d1, d2 are found by matching powers on the LHS and RHS of the
expanded equation:

2 = [d2 − d1 + c0] match constant term,
−1 = [6− d2 + d1] match x-term,
0 = [−3 + d2/2] match x2-term.

(9)

These equations are solved by back-substitution, starting with the last equation and
proceeding to the first equation. The answers are successively d2 = 6, d1 = −1, d0 =
−5. For more detail on back-substitution, see the next example. Substitution into
y = d0 + d1x+ d2x

2/2 + x3 gives the particular solution yp = −5− x+ 3x2 + x3.

Example 7.7 (Undetermined Coefficients: Taylor’s Method)

Solve for yp in the equation y′′ − y′ + y = 2− x+ x3 by Taylor’s method, verifying
yp = −5− x+ 3x2 + x3.

Solution: Theorem 7.8 implies that there is a polynomial solution y = d0 + d1x +
d2x

2/2 + d3x
3/6. The undetermined coefficients d0, d1, d2, d3 will be found by

a technique related to Taylor’s method in calculus. The Taylor technique requires
differential equations obtained by successive differentiation of y′′ − y′ + y = 2− x+ x3,
as follows.

y′′ − y′ + y = 2− x+ x3 The original.

y′′′ − y′′ + y′ = −1 + 3x2 Differentiate the original once.

yiv − y′′′ + y′′ = 6x Differentiate the original twice.

yv − yiv + y′′′ = 6 Differentiate the original three times. The process stops
when the right side is constant.

Set x = 0 in the above differential equations. Then substitute the Taylor polynomial
derivative relations

y(0) = d0, y′(0) = d1, y′′(0) = d2, y′′′(0) = d3.

It is also true that yiv(0) = yv(0) = 0, since y is a cubic. This produces the following
equations for undetermined coefficients d0, d1, d2, d3:

d2 − d1 + d0 = 2
d3 − d2 + d1 = −1
−d3 + d2 = 0

d3 = 6

These equations are solved by back-substitution, working in reverse order. No expe-
rience with linear algebra is required, because this is strictly a low-level college algebra
method. Successive back-substitutions, working from the last equation in reverse order,
give the answers

d3 = 6, Use the fourth equation first.

d2 = d3 Solve for d2 in the third equation.

= 6, Back-substitute d3.

d1 = −1 + d2 − d3 Solve for d1 in the second equation.
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= −1, Back-substitute d2 and d3.

d0 = 2 + d1 − d2 Solve for d0 in the first equation.

= −5. Back-substitute d1 and d2.

The result is d0 = −5, d1 = −1, d2 = 6, d3 = 6. Substitution into y = d0 + d1x +
d2x

2/2 + d3x
3/6 gives the particular solution yp = −5− x+ 3x2 + x3.

Example 7.8 (Polynomial Method: Recursive Hybrid)

In the equation y′′ − y′ = 2− x+ x3, verify yp = −7x− 5x2/2− x3 − x4/4 by the
polynomial method, using a recursive hybrid.

Solution: A Recursive Method will be applied, based upon the fundamental theorem
of calculus, as in Example 7.5.

Step 1. Differentiate y′′ − y′ = 2− x+ x3 until the right side is constant, to obtain

Equation 1: y′′ − y′ = 2− x+ x3 The original.

Equation 2: y′′′ − y′′ = −1 + 3x2 Differentiate the original once.

Equation 3: yiv − y′′′ = 6x Differentiate the original twice.

Equation 4: yv − yiv = 6 Differentiate the original three times. The pro-
cess stops when the right side is constant.

Step 2. There are 4 equations. Theorem 7.8 implies that there is a polynomial solution
y of degree 4. Then yv = 0.

The last equation yv − yiv = 6 then gives yiv = −6, which can be solved for y′′′ by the
fundamental theorem of calculus. Then y′′′ = −6x + c. Evaluate c by requiring that y
satisfy equation 3: yiv − y′′′ = 6x. Substitution of y′′′ = −6x + c, followed by setting
x = 0 gives −6− c = 0. Hence c = −6. The conclusion: y′′′ = −6x− 6.

Step 3. Solve y′′′ = −6x− 6, giving y′′ = −3x2 − 6x+ c. Evaluate c as in Step 2 using
equation 2: y′′′ − y′′ = −1 + 3x2. Then −6 − c = −1 gives c = −5. The conclusion:
y′′ = −3x2 − 6x− 5.

Step 4. Solve y′′ = −3x2−6x−5, giving y′ = −x3−3x2−5x+ c. Evaluate c as in Step
2 using equation 1: y′′− y′ = 2−x+x3. Then −5− c = 2 gives c = −7. The conclusion:
y′ = −x3 − 3x2 − 5x− 7.

Step 5. Solve y′ = −x3 − 3x2 − 5x− 7, giving y = −x4/4− x3 − 5x2/2− 7x+ c. Just
one solution is sought, so take c = 0. Then y = −7x − 5x2/2 − x3 − x4/4. Theorem
7.8 also drops the constant term, because it is included in the homogeneous solution yh.
While this method duplicates all the steps in Example 7.7, it remains attractive due to
its simplistic implementation. The method is best appreciated when it terminates at
step 2 or 3.

Example 7.9 (Polynomial × Exponential)

Solve for yp in y′′ − y′ + y = (2− x+ x3)e2x, verifying that yp = e2x(x3/3− x2 +
x+ 1/3).
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Solution: Let y = e2xY and [(D+2)2−(D+2)+1]Y = 2−x+x3, as per the polynomial
× exponential method, page 577. The equation Y ′′+3Y ′+3Y = 2−x+x3 will be solved
by the polynomial method of Example 7.7.

Differentiate Y ′′ + 3Y ′ + 3Y = 2− x+ x3 until the right side is constant.

Y ′′ + 3Y ′ + 3Y = 2− x+ x3

Y ′′′ + 3Y ′′ + 3Y ′ = −1 + 3x2

Y iv + 3Y ′′′ + 3Y ′′ = 6x
Y v + 3Y iv + 3Y ′′′ = 6

The last equation, by the equilibrium method, implies Y is a polynomial of degree 4,
Y = d0 + d1x+ d2x

2/2 + d3x
3/6. Set x = 0 and di = Y (i)(0) in the preceding equations

to get the system
d2 + 3d1 + 3d0 = 2
d3 + 3d2 + 3d1 = −1
d4 + 3d3 + 3d2 = 0
d5 + 3d4 + 3d3 = 6

in which d4 = d5 = 0. Solving by back-substitution gives the answers d3 = 2, d2 = −2,
d1 = 1, d0 = 1/3. Then Y = x3/3− x2 + x+ 1/3.

Finally, Kümmer’s transformation y = e2xY implies y = e2x(x3/3− x2 + x+ 1/3).

Example 7.10 (Polynomial × Exponential × Cosine)

Solve in y′′ − y′ + y = (3 − x)e2x cos(3x) for yp, verifying that yp = 1
507((26x −

107)e2x cos(3x) + (115− 39x)e2x sin(3x)).

Solution: Let z = 2 + 3i. If Y satisfies [(D + z)2 − (D + z) + 1]Y = 3 − x, then
y = e2xRe(e3ixY ), by the method on page 578. The differential equation simplifies into
Y ′′+(3+6i)Y ′+(9i−6)Y = 3−x. It will be solved by the recursion method of Example
7.8.

Step 1. Differentiate Y ′′+(3+6i)Y ′+(9i−6)Y = 3−x until the right side is constant,
to obtain Y ′′′ + (3 + 6i)Y ′′ + (9i− 6)Y ′ = −1. The conclusion: Y ′ = 1/(6− 9i).

Step 2. Solve Y ′ = 1/(6 − 9i) for Y = x/(6 − 9i) + c. Evaluate c by requiring Y
to satisfy the original equation Y ′′ + (3 + 6i)Y ′ + (9i − 6)Y = 3 − x. Substitution of
Y ′ = x/(6− 9i) + c, followed by setting x = 0 gives 0 + (3+ 6i)/(6− 9i) + (9i− 6)c = 3.
Hence c = (−15+33i)/(6−9i)2. The conclusion: Y = x/(6−9i)+(−15+33i)/(6−9i)2.

Step 3. Use variable y = e2xRe(e3ixY ) to complete the solution. This is the point
where complex arithmetic must be used. Let y = e2xY where Y = Re(e3ixY ). Some
details:

Y =
x

6− 9i
+
−15 + 33i

(6− 9i)2
The plan: write Y = Y1 + iY2.

= x
6 + 9i

62 + 92
+

(−15 + 33i)(6 + 9i)2

(62 + 92)2
Use 1/Z = Z/|Z|2, Z = a + ib, Z =
a− ib, |Z| = a2 + b2.

=
2x

39
+

xi

13
+
−2889− 3105i

1172
Use 62 + 92 = 117 = (9)(13).

=
26x− 107

507
+ i

39x− 115

507
Split off real and imaginary.
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Y1 =
26x− 107

507
, Y2 =

39x− 115

507
Decomposition found.

Y = Re((cos 3x+ i sin 3x)(Y1 + iY2)) Use e3ix = cos 3x+ i sin 3x.

= Y1 cos 3x− Y2 sin 3x Take the real part.

=
26x− 107

507
cos 3x+

115− 39x

507
sin 3x Substitute for Y1, Y2.

The solution y = e2xY multiplies the above display by e2x. This verifies the formula
yp = 1

507 ((26x− 107)e2x cos(3x) + (115− 39x)e2x sin(3x)).

Example 7.11 (Polynomial × Exponential × Sine)

Solve in y′′ − y′ + y = (3− x)e2x sin(3x) for yp, verifying that a particular solution
is yp =

1
507

(
(39x− 115)e2x cos(3x) + (26x− 107)e2x sin(3x)

)
.

Solution: Let z = 2 + 3i. Kümmer’s transformation y = e2x Im(e3ixY ) as on page 578
implies that Y satisfies [(D+z)2−(D+z)+1]Y = 3−x. This equation has been solved in
the previous example: Y = Y1+iY2 with Y1 = (26x−107)/507 and Y2 = (39x−115)/507.
Let Y = Im(e3ixY ). Then

Y = Im((cos 3x+ i sin 3x)(Y1 + iY2)) Expand complex factors.

= Y2 cos 3x+ Y1 sin 3x Extract the imaginary part.

=
(39x− 115) cos 3x+ (26x− 107) sin 3x

507
Substitute for Y1 and Y2.

The solution y = e2xY multiplies the display by e2x. This verifies the formula y =
1

507

(
(39x− 115)e2x cos(3x) + (26x− 107)e2x sin(3x)

)
.

Example 7.12 (Undetermined Coefficient Library Methods)

Solve y′′ − y′ + y = 1 + ex + cos(x), verifying

y = c1e
x/2 cos(

√
3x/2) + c2e

x/2 sin(
√
3x/2) + 1 + ex − sin(x).

Solution: There are n = 3 easily solved equations: y′′1 − y′1 + y1 = 1, y′′2 − y′2 + y2 = ex

and y′′3 − y′3 + y3 = cos(x). The plan is that each such equation is solvable by one of the
library methods. Then yp = y1 + y2 + y3 is the sought particular solution.

Equation 1: y′′1 − y′1 + y1 = 1. It is solved by the equilibrium method, which gives
immediately solution y1 = 1.

Equation 2: y′′2 − y′2 + y2 = ex. Then y2 = exY and [(D + 1)2 − (D + 1) + 1]Y = 1,
by the polynomial × exponential method. The equation simplifies to Y ′′ + Y ′ + Y = 1.
Obtain Y = 1 by the equilibrium method, then y2 = ex.

Equation 3: y′′3 − y′3 + y3 = cos(x). Then [(D + i)2 − (D + i) + 1]Y = 1 and y3 =
Re(eixY ), by the polynomial × exponential × cosine method. The equation simplifies to
Y ′′+(2i−1)Y ′− iY = 1. Obtain Y = i by the equilibrium method. Then y3 = Re(eixY )
implies y3 = − sin(x).

Solution yp. The particular solution is given by addition, yp = y1 + y2 + y3. Therefore,
yp = 1 + ex − sin(x).
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7.6 Undetermined Coefficients Library

Solution yh. The homogeneous solution yh is the linear equation solution for y′′−y′+y =
0, obtained from Theorem 6.1, which uses the characteristic equation r2−r+1 = 0. The
latter has roots r = (1 ± i

√
3)/2 and then yh = c1e

x/2 cos(
√
3x/2) + c2e

x/2 sin(
√
3x/2)

where c1 and c2 are arbitrary constants.

General Solution. Add yh and yp to obtain the general solution

y = c1e
x/2 cos(

√
3x/2) + c2e

x/2 sin(
√
3x/2) + 1 + ex − sin(x).

Example 7.13 (Sine–Cosine Trial solution)
Verify for y′′ + 4y = sinx− cosx that yp(x) = 5 cosx+ 3 sinx.

Solution: The lookup table method suggests to substitute y = d1 cosx + d2 sinx into
the differential equation. The correction rule does not apply, because the homogeneous
solution terms involve cos 2x, sin 2x. Use u′′ = −u for u = sinx or u = cosx to obtain
the relation

sinx− cosx = y′′ + 4y
= (−d1 + 4) cosx+ (−d2 + 4) sinx.

Comparing sides, matching sine and cosine terms, gives

−d1 + 4 = −1,
−d2 + 4 = 1.

Solving, d1 = 5 and d2 = 3. The trial solution y = d1 cosx + d2 sinx becomes yp(x) =
5 cosx+ 3 sinx.

Historical Notes

The method of undetermined coefficients presented on page 104 uses the idea of
a trial solution. Textbooks that present this method appear in the references,
especially Edwards–Penney [EP2] and Kreyszig [Kreyszig].

If the right side f(x) is a polynomial, then the trial solution is a polynomial
y = d0 + · · · + dkx

k with unknown coefficients. It is substituted into the non-
homogeneous differential equation to determine the coefficients d0, . . . , dk, as in
Example 7.6. The Taylor method in Example 7.7 implements the same ideas.
In the some textbook presentations, the three key theorems of this section are
replaced by Table 1 and the Correction Rule on page 580. Attempts have been
made to integrate the correction rule into the table itself; see Edwards–Penney
[EP], [EP2].

Themethod of annihilators has been used as an alternative approach; see Kreider–
Kuller–Ostberg–Perkins [KKOP]. The approach gives a deeper insight into higher
order differential equations. It requires knowledge of linear algebra and a small
nucleus of differential operator calculus.

The idea to employ a recursive polynomial method seems to appear first in a
paper by Love [Love1989]. A generalization and expansion of details appears in
[Gupta]. The method is certainly worth learning, but doing so does not excuse
one from learning other methods. The recursive method is a worthwhile hybrid
method for special circumstances.
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Proofs and Technical Details

Proof of Theorem 7.8: The three cases correspond to zero, one or two roots r = 0 for
the characteristic equation ar2 + br + c = 0. The missing constant and x-terms in case
2 and case 3 are justified by including them in the homogeneous solution yh, instead of
in the particular solution yp.

Assume p(x) has degree d and succinctly write down the successive derivatives of the
differential equation as

ay(2+k) + by(1+k) + cy(k) = p(k)(x), k = 0, . . . , d.(10)

Assume, to consider simultaneously all three cases, that

y = y0 + y1 + · · ·+ ym+d
xm+d

(m+ d)!

where m = 0, 1, 2 corresponding to cases 1,2,3, respectively. It has to be shown that
there are coefficients y0, . . . , ym+d such that y is a solution of ay′′ + by′ + cy = p(x).

Let x = 0 in equations (10) and use the definition of polynomial y to obtain the equations

ay2+k + by1+k + cyk = p(k)(0), k = 0, . . . , d.(11)

In case 1 (c ̸= 0), m = 0 and the last equation in (11) gives ym+d = p(d)(0)/c.
Back-substitution succeeds in finding the other coefficients, in reverse order, because
y(d+1)(0) = y(d+2)(0) = 0, in this case. Define the constants y0 to yd to be the solutions
of (11). Define yd+1 = yd+2 = 0.

In case 2 (c = 0, b ̸= 0), m = 1 and the last equation in (11) gives ym+d = p(d)(0)/b.
Back-substitution succeeds in finding the other coefficients, in reverse order, because
y(d+2)(0) = 0, in this case. However, y0 is undetermined. Take it to be zero, then define
y1 to yd+1 to be the solutions of (11). Define yd+2 = 0.

In case 3 (c = b = 0), m = 2 and the last equation in (11) gives ym+d = p(d)(0)/a.
Back-substitution succeeds in finding the other coefficients, in reverse order. However,
y0 and y1 are undetermined. Take them to be zero, then define y2 to yd+2 to be the
solutions of (11).

It remains to prove that the polynomial y so defined is a solution of the differential
equation ay′′ + by′ + cy = p(x). Begin by applying quadrature to the last differentiated
equation ay(2+d) + by(1+d) + cy(d) = p(d)(x). The result is ay(1+d) + by(d) + cy(d−1) =
p(d−1)(x)+C with C undetermined. Set x = 0 in this equation. Then relations (11) say
that C = 0. This process can be continued until ay′′+ by′+ cy = q(x) is obtained, hence
y is a solution.

Proof of Theorem 7.9: Kümmer’s transformation y = ekxY is differentiated twice to
give the formulas

y = ekxY,

y′ = kekxY + ekxY ′

= ekx(D + k)Y,

y′′ = k2ekxY + 2kekxY ′ + ekxY ′′

= ekx(D + k)2Y.

Insert them into the differential equation a(D + k)2Y + b(D + k)Y + cY = p(x). Then
multiply through by ekx to remove the common factor e−kx on the left, giving ay′′ +
by′ + cy = p(x)ekx. This completes the proof.
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Proof of Theorem 7.10: Abbreviate ay′′ + by′ + cy by Ly. Consider the complex
equation Lu = p(x)ezx, to be solved for u = u1 + iu2. According to Theorem 7.9,
u can be computed as u = ezxY where [a(D + z)2 + b(D + z) + c]Y = p(x). Take
the real and imaginary parts of u = ezxY and Lu = p(x)ezx. Then u1 = Re(ezxY ) and
u2 = Im(ezxY ) satisfy Lu1 = Re(p(x)ezx) = p(x) cos(mx)ekx and Lu2 = Im(p(x)ezx) =
p(x) sin(mx)ekx. ■

Exercises 7.6 �

Polynomial Solutions
Determine a polynomial solution yp for the
given differential equation. Apply Theorem
7.8, page 581, and model the solution after
Examples 7.5, 7.6, 7.7 and 7.8.

1. y′′ = x

2. y′′ = x− 1

3. y′′ = x2 − x

4. y′′ = x2 + x− 1

5. y′′ − y′ = 1

6. y′′ − 5y′ = 10

7. y′′ − y′ = x

8. y′′ − y′ = x− 1

9. y′′ − y′ + y = 1

10. y′′ − y′ + y = −2

11. y′′ + y = 1− x

12. y′′ + y = 2 + x

13. y′′ − y = x2

14. y′′ − y = x3

Polynomial-Exponential Solutions
Determine a solution yp for the given differ-
ential equation. Apply Theorem 7.9, page
581, and model the solution after Example
7.9.

15. y′′ + y = ex

16. y′′ + y = e−x

17. y′′ = e2x

18. y′′ = e−2x

19. y′′ − y = (x+ 1)e2x

20. y′′ − y = (x− 1)e−2x

21. y′′ − y′ = (x+ 3)e2x

22. y′′ − y′ = (x− 2)e−2x

23. y′′ − 3y′ + 2y = (x2 + 3)e3x

24. y′′ − 3y′ + 2y = (x2 − 2)e−3x

Sine and Cosine Solutions
Determine a solution yp for the given differ-
ential equation. Apply Theorem 7.10, page
581, and model the solution after Examples
7.10 and 7.11.

25. y′′ = sin(x)

26. y′′ = cos(x)

27. y′′ + y = sin(x)

28. y′′ + y = cos(x)

29. y′′ = (x+ 1) sin(x)

30. y′′ = (x+ 1) cos(x)

31. y′′ − y = (x+ 1)ex sin(2x)

32. y′′ − y = (x+ 1)ex cos(2x)

33. y′′ − y′ − y = (x2 + x)ex sin(2x)

34. y′′ − y′ − y = (x2 + x)ex cos(2x)

Undetermined Coefficients Algorithm
Determine a solution yp for the given dif-
ferential equation. Apply the polynomial
algorithm, page 576, and model the solu-
tion after Example 7.12.

35. y′′ = x+ sin(x)

36. y′′ = 1 + x+ cos(x)
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37. y′′ + y = x+ sin(x)

38. y′′ + y = 1 + x+ cos(x)

39. y′′ + y = sin(x) + cos(x)

40. y′′ + y = sin(x)− cos(x)

41. y′′ = x+ xex + sin(x)

42. y′′ = x− xex + cos(x)

43. y′′ − y = sinh(x) + cos2(x)

44. y′′ − y = cosh(x) + sin2(x)

45. y′′ + y′ − y = x2ex + xex cos(2x)

46. y′′ + y′ − y = x2e−x + xex sin(2x)

Additional Proofs
The exercises below fill in details in the
text. The hints are in the proofs in the
textbook. No solutions will be given for
the odd exercises.

47. (Theorem 7.8)

Supply the missing details in the proof
of Theorem 7.8 for case 1. In particular,
give the details for back-substitution.

48. (Theorem 7.8)

Supply the details in the proof of The-
orem 7.8 for case 2. In particular, give
the details for back-substitution and ex-
plain fully why it is possible to select
y0 = 0.

49. (Theorem 7.8)

Supply the details in the proof of Theo-
rem 7.8 for case 3. In particular, explain
why back-substitution leaves y0 and y1
undetermined, and why it is possible to
select y0 = y1 = 0.

50. (Superposition)

Let Ly denote ay′′+by′+cy. Show that
solutions of Lu = f(x) and Lv = g(x)
add to give y = u + v as a solution of
Ly = f(x) + g(x).

51. (Easily Solved Equations)

Let Ly denote ay′′ + by′ + cy. Let
Lyk = fk(x) for k = 1, . . . , n and de-
fine y = y1+ · · ·+ yn, f = f1+ · · ·+ fn.
Show that Ly = f(x).
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Chapter 8

Laplace Transform
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The Laplace transform solves differential equations. Besides being a different
and efficient alternative to variation of parameters and undetermined coefficients,
Laplace’s method is especially advantageous for a forcing term that is piecewise–
defined, periodic or impulsive.

The Laplace method. It has humble beginnings as an extension of the method
of quadrature to higher order differential equations and systems. The method is
based upon ordinary calculus integrals:

Multiply the differential equation by the Laplace integrator dx = e−stdt and
integrate across the equation from t = 0 to t = ∞. Isolate left the Laplace
integral

∫ t=∞
t=0 y(t)e−stdt. Look up the answer y(t) in a Laplace integral table.

Definition 8.1 (Laplace Integral)
The Laplace integral or the direct Laplace transform of a function f(t) defined for
0 ≤ t <∞ is the answer to the Newton calculus integration problem

∫∞
0 f(t)e−stdt.

Special notation replaces the integral notation in literature:

L(f(t)) replaces

∫ ∞

0
f(t) e−st dt.
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8.1 Laplace Method Introduction

Decoding and Encoding. The L–notation recognizes that integration always
proceeds over t = 0 to t =∞ and that the integral always has a fixed integrator
e−stdt instead of the expected dx. These minor differences distinguish Laplace
integrals from the ordinary integrals found on the inside covers of calculus texts.

When reading mathematical text, replace symbol L by these words: Laplace of.
Notation L(f(t)) decodes into calculus by replacing L by

∫∞
0 , then append the

Laplace integrator e−stdt. For instance, notation L(t2) decodes to
∫∞
0 (t2) e−s t dt.

To encode
∫∞
0 (sin t) e−s t dt to L(sin t), replace

∫∞
0 by L, then erase Laplace

integrator e−stdt.

History. The first application of the Laplace method might have been in the
1910 work of H. Bateman [Bateman], who transformed Rutherford’s radioactive
decay equation d

dtA(t) = −hA(t) by setting a(x) =
∫∞
0 e−xtA(t)dt, thereby ob-

taining an equation in variable x (Laplace theory uses s instead of x). The first
example presented here will parallel Bateman’s 1910 exposition, in which he de-
rived several properties of the Laplace integral as well as isolating what is today
called Laplace’s method. He used Lerch’s 1903 theorem published in Acta Mathe-
matica. The name Laplace Transform dates back to Euler 1763 and Spitzer 1878,
which nowadays refers to the linear map f → L(f(t)) ≡

∫∞
0 e−stf(t)dt.

8.1 Laplace Method Introduction

The foundation of Laplace theory is Lerch’s 1903 cancellation law∫∞
0 y(t)e−stdt =

∫∞
0 f(t)e−stdt implies y(t) = f(t),

or
L(y(t) = L(f(t)) implies y(t) = f(t).

(1)

In differential equation applications, y(t) is the unknown appearing in the equa-
tion while f(t) is an explicit expression extracted or computed from Laplace
integral tables. See page 596.

An Illustration. Laplace’s method will be applied to solve the initial value
problem1

dy

dt
= −1, y(0) = 0.

No background in Laplace theory is assumed here, only a calculus background is
used. Calculus verifies the answer y(t) = −t.
The Plan. The method obtains an equation L(y(t)) = L(−t), then Lerch’s
cancellation law implies that the L-symbols cancel, which gives the differential
equation solution y(t) = −t.
The Laplace method is advertised as a generalization of the method of quadrature
to higher order differential equations and systems of differential equations. In
addition to quadrature, the method uses table lookup: solution y(t) is found from
a special integral table.

1Laplace theory uses t instead of x. Prime notation y′ means dy
dt
.
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Laplace Integral

The integral
∫∞
0 g(t)e−stdt is called the Laplace integral of the function g(t).

It is defined by limN→∞
∫ N
0 g(t)e−stdt and depends on variable s. The ideas will

be illustrated for g(t) = 1, g(t) = t and g(t) = t2, producing the integral formulas
in Table 1, infra.

1
∫∞
0 (1)e−stdt = −(1/s)e−st

∣∣t=∞
t=0

Laplace integral of g(t) = 1.

= 1/s Assumed s > 0.

2
∫∞
0 (t)e−stdt =

∫∞
0 −

d
ds(e

−st)dt Laplace integral of g(t) = t.

= − d
ds

∫∞
0 (1)e−stdt

∫
d
dsF (t, s)dt= d

ds

∫
F (t, s)dt.

= − d
ds(1/s) By 1 .

= 1/s2 Differentiate.

3
∫∞
0 (t2)e−stdt =

∫∞
0 −

d
ds(te

−st)dt Laplace integral of g(t) = t2.

= − d
ds

∫∞
0 (t)e−stdt

= − d
ds(1/s

2) By 2 .

= 2/s3

Table 1. The Laplace Integral
∫∞
0

g(t)e−stdt for g(t) = 1, t and t2.

∫∞
0 (1)e−st dt =

1

s
,

∫∞
0 (t)e−st dt =

1

s2
,

∫∞
0 (t2)e−st dt =

2

s3
.

In summary, L(tn) = n!

s1+n

Illustration Details for y′ = −1, y(0) = 0

The Laplace method will be applied to find the solution y(t) = −t of the
problem

y′ = −1, y(0) = 0.

Laplace’s method in Table 2 is entirely different from variation of parameters
or undetermined coefficients. The method uses only basic calculus and college
algebra. In the second Table 3, a succinct version of the first Table 2 is given,
using L-notation. The briefer exposition is a model for Laplace Method details
as found in references.
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Table 2. Laplace Method Details for Illustration y′ = −1, y(0) = 0.

y′(t)e−stdt = −e−stdt Multiply y′ = −1 by e−stdt.∫∞
0 y′(t)e−stdt =

∫∞
0 −e

−stdt Integrate t = 0 to t =∞.∫∞
0 y′(t)e−stdt = −1/s Use Table 1 forwards.

s
∫∞
0 y(t)e−stdt− y(0) = −1/s Integrate by parts on the left.∫∞

0 y(t)e−stdt = −1/s2 Use y(0) = 0 and divide.∫∞
0 y(t)e−stdt =

∫∞
0 (−t)e−stdt Use Table 1 backwards.

y(t) = −t Apply Lerch’s cancellation law.
Solution found.

Table 3. Laplace Method L-notation
Details for y′ = −1, y(0) = 0 translated from Table 2.

L(y′(t)) = L(−1) Apply L across y′ = −1, or multiply y′ = −1
by e−stdt, integrate t = 0 to t =∞.

L(y′(t)) = −1/s Use Table 1 forwards.

sL(y(t))− y(0) = −1/s Integrate by parts on the left.

L(y(t)) = −1/s2 Use y(0) = 0 and divide.

L(y(t)) = L(−t) Apply Table 1 backwards.

y(t) = −t Invoke Lerch’s cancellation law.

In Lerch’s law, the formal rule of erasing the integral signs is valid provided the
integrals are equal for large s and certain conditions hold on y and f — see
Theorem 8.2. The illustration in Table 2 shows that Laplace theory requires an
in-depth study of a special integral table, a table which is a true extension
of the usual table found on the inside covers of calculus books; see Table 1 and
section 8.2, Table 4 page 601.

The L-notation for the direct Laplace transform produces briefer details, as wit-
nessed by the translation of Table 2 into Table 3. It is advised to move from
Laplace integral notation to the L–notation as soon as possible, in order to high-
light goalposts in the method.

Some Transform Rules

The formal properties of calculus integrals plus the integration by parts formula
used in Tables 2 and 3 leads to these rules for the Laplace transform:

L(f(t) + g(t)) = L(f(t)) + L(g(t)) The integral of a sum is the sum of the
integrals.
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L(cf(t)) = cL(f(t)) Constants c pass through the integral
sign.

L(y′(t)) = sL(y(t))− y(0) The t-derivative rule, or integration by
parts. See Theorem 8.3.

L(y(t)) = L(f(t)) implies y(t) = f(t) Lerch’s cancellation law. See Theorem
8.2.

The four rules above appear in Bateman’s 1910 publication [Bateman]. The first
two rules are referenced as linearity of the Laplace transform, which allow
manipulation of the symbol L with rules known from calculus and matrix algebra.
Laplace symbol L manipulates like matrix multiply.

Existence of the Transform

The Laplace integral
∫∞
0 e−stf(t) dt is known to exist in the sense of the improper

integral definition2 ∫ ∞

0
g(t)dt = lim

N→∞

∫ N

0
g(t)dt

provided f(t) belongs to a class of functions known in the literature as functions
of exponential order. For this class of functions the relation

lim
t→∞

f(t)

eα t
= 0(2)

is required to hold for some real number α, or equivalently, for some constants
M and α,

|f(t)| ≤Meαt.(3)

In addition, f(t) is required to be piecewise continuous on each finite subin-
terval of 0 ≤ t <∞, a term defined as follows.

Definition 8.2 (Piecewise Continuous)
A function f(t) is piecewise continuous on a finite interval [a, b] provided there
exists a partition a = t0 < · · · < tn = b of the interval [a, b] and functions f1, f2,
. . . , fn continuous on (−∞,∞) such that for t not a partition point

f(t) =


f1(t) t0 < t < t1,
...

...
fn(t) tn−1 < t < tn.

(4)

The values of f at partition points are undecided by equation (4). In particular,
equation (4) implies that f(t) has one-sided limits at each point of a < t < b and
appropriate one-sided limits at the endpoints. Therefore, f has at worst a jump
discontinuity at each partition point.

2An advanced calculus background is assumed for the Laplace transform existence proof.
Applications of Laplace theory require only a calculus background.
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Theorem 8.1 (Existence of L(f))
Let f(t) be piecewise continuous on every finite interval in t ≥ 0 and satisfy |f(t)| ≤
Meαt for some constants M and α. Then:

1. Laplace integral L(f(t)) exists for s > α.

2. Laplace is zero at s =∞: lims→∞ L(f(t)) = 0.3

Proof on page 598.

Theorem 8.2 (Lerch 1903)
If f1(t) and f2(t) are continuous, of exponential order and for all s > s0∫ ∞

0
f1(t)e

−stdt =

∫ ∞

0
f2(t)e

−stdt,

then f1(t) = f2(t) for t ≥ 0.4

Proofs in French: Lerch (1903) [Lerch] and English: Widder [Widd1941]. See also
[Weis].

Theorem 8.3 (Parts Rule or t-Derivative Rule)
Let f(t) be continuous and of exponential order. Let f ′(t) be piecewise continu-
ous and of exponential order. Then L(f ′(t)) exists for all large s and L(f ′(t)) =
sL(f(t))− f(0).

Proof on page 639.

Theorem 8.4 (Euler Solution Atoms have Laplace Integrals)
Let f(t) be tneat or the real or imaginary part of tneat+ibt where a, b are real, b > 0
and n ≥ 0 is an integer. Briefly, f is an Euler solution atom. Then f is of
exponential order and L(f(t)) exists. Further, if g(t) is a linear combination of Euler
atoms, then L(g(t)) exists.
Proof on page 598.

Remark. Because solutions to undetermined coefficient problems are a linear
combination of Euler solution atoms, then Laplace’s method applies to all such
differential equations. This is the class of all constant-coefficient higher order lin-
ear differential equations, and all systems of differential equations with constant
coefficients, having a forcing term which is a linear combination of Euler solution
atoms.

3Literature might write F (s) for L(f(f)) and lims→∞ F (s) = 0
4The result extends to piecewise continuous functions provided the conclusion is weakened to:

at points where both f1, f2 are continuous, f1(t) = f2(t). Reference: CRC Concise Encyclopedia
of Mathematics by Weisstein.
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Examples and Methods

Example 8.1 (Laplace Method)
Solve the initial value problem y′ = 5−2t, y(0) = 1 by the Laplace method to obtain
y(t) = 1 + 5t− t2.

Solution: Laplace’s method is outlined in Tables 2 and 3. The L-notation of Table 3
will be used to find the solution y(t) = 1 + 5t− t2.

L(y′(t)) = L(5− 2t) Apply L across y′ = 5− 2t.

= 5L(1)− 2L(t) Linearity of the transform.

=
5

s
− 2

s2
Use Table 1 forwards.

sL(y(t))− y(0) =
5

s
− 2

s2
Apply the parts rule, Theorem 8.3.

L(y(t)) = 1

s
+

5

s2
− 2

s3
Use y(0) = 1 and divide.

L(y(t)) = L(1) + 5L(t)− L(t2) Apply Table 1 backwards.

= L(1 + 5t− t2) Linearity of the transform.

y(t) = 1 + 5t− t2 Use Lerch’s cancellation law.

Example 8.2 (Laplace Method)
Solve by Laplace’s method the initial value problem y′′ = 10, y(0) = y′(0) = 0 to
obtain y(t) = 5t2.

Solution: The L-notation of Table 3 will be used to find the solution y(t) = 5t2.

L(y′′(t)) = L(10) Apply L across y′′ = 10.

sL(y′(t))− y′(0) = L(10) Apply the parts rule to y′, that is, replace f by y′

in Theorem 8.3.
s[sL(y(t))− y(0)]− y′(0) = L(10) Repeat the parts rule, on y.

s2L(y(t)) = L(10) Use y(0) = y′(0) = 0.

L(y(t)) = 10

s3
Use Table 1 forwards. Then divide.

L(y(t)) = L(5t2) Apply Table 1 backwards.

y(t) = 5t2 Invoke Lerch’s cancellation law.

Example 8.3 (Exponential Order)
Show that f(t) = et cos t+ t is of exponential order.

Solution: The proof must show that f(t) is piecewise continuous on every interval [a, b]
and then find an α > 0 such that limt→∞ f(t)/eαt = 0.

The given f(t) is continuous on (−∞,∞). Given interval [a, b], define t0 = a, t1 = b and
f1(t) = f(t). Then (4) holds. Definition 8.2 implies f is piecewise continuous.

From L’Hospital’s rule in calculus, limt→∞ p(t)/eαt = 0 for any polynomial p and any
α > 0. Choose α = 2, then

lim
t→∞

f(t)

e2t
= lim

t→∞

cos t

et
+ lim

t→∞

t

e2t
= 0.
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Proofs and Technical Details

Proof of Theorem 8.1, Existence Laplace Integral:
Details 1. It has to be shown that the Laplace integral of f is finite for s > α.
Advanced calculus implies that it is sufficient to show that the integrand is absolutely
bounded above by an integrable function g(t). Take g(t) = Me−(s−α)t. Then g(t) ≥ 0.
Furthermore, g is integrable, because∫ ∞

0

g(t)dt =
M

s− α
.

Inequality |f(t)| ≤ Meαt implies the absolute value of the Laplace transform integrand
f(t)e−st is estimated by ∣∣f(t)e−st

∣∣ ≤Meαte−st = g(t).

Details 2. The limit statement lims→∞ L(f(t)) = 0 follows from |L(f(t))| ≤
∫∞
0

g(t)dt =
M

s− α
, because the right side of this inequality has limit zero at s =∞. ■

Proof of Theorem 8.4, Euler Atoms:
Function f(t) = tneat is everywhere continuous. By calculus, ln |x| ≤ 2x for x ≥ 1.
Define c = 2|n| + |a|. Then |f(t)| = en ln |t|+at ≤ ect for t ≥ 1, which proves f is of
exponential order. Similarly, f(t) = Re(tneat+ibt) is everywhere continuous and |f(t)| ≤
|tneat+ibt| = |tneat| ≤ ect. Details for f(t) = Im(tneat+ibt) are similar. Then f is of
exponential order in all three cases. The Laplace integral exists by Theorem 8.1 page
596. ■

Exercises 8.1 �

Laplace method
Solve the given initial value problem using
Laplace’s method.

1. y′ = −2, y(0) = 0.

2. y′ = 1, y(0) = 0.

3. y′ = −t, y(0) = 0.

4. y′ = t, y(0) = 0.

5. y′ = 1− t, y(0) = 0.

6. y′ = 1 + t, y(0) = 0.

7. y′ = 3− 2t, y(0) = 0.

8. y′ = 3 + 2t, y(0) = 0.

9. y′′ = −2, y(0) = y′(0) = 0.

10. y′′ = 1, y(0) = y′(0) = 0.

11. y′′ = 1− t, y(0) = y′(0) = 0.

12. y′′ = 1 + t, y(0) = y′(0) = 0.

13. y′′ = 3− 2t, y(0) = y′(0) = 0.

14. y′′ = 3 + 2t, y(0) = y′(0) = 0.

Exponential order
Show that f(t) is of exponential order, by
finding a constant α ≥ 0 in each case such

that lim
t→∞

f(t)

eαt
= 0.

15. f(t) = 1 + t

16. f(t) = et sin(t)

17. f(t) =
∑N

n=0 cnt
n, for any choice of the

constants c0, . . . , cN .

18. f(t) =
∑N

n=1 cn sin(nt), for any choice
of the constants c1, . . . , cN .

Existence of transforms
Let f(t) = tet

2

sin(et
2

). Establish these re-
sults.
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19. The function f(t) is not of exponential
order.

20. The Laplace integral of f(t),∫∞
0

f(t)e−stdt, converges for all
s > 0.

Jump Magnitude
For f piecewise continuous, define the
jump at t by

J(t) = lim
h→0+

f(t+ h)− lim
h→0+

f(t− h).

Compute J(t) for the following f .

21. f(t) = 1 for t ≥ 0, else f(t) = 0

22. f(t) = 1 for t ≥ 1/2, else f(t) = 0

23. f(t) = t/|t| for t ̸= 0, f(0) = 0

24. f(t) = sin t/| sin t| for t ̸= nπ, f(nπ) =
(−1)n

Taylor series
The series relation L(

∑∞
n=0 cnt

n) =∑∞
n=0 cnL(tn) often holds, in which case

the result L(tn) = n!s−1−n can be em-
ployed to find a series representation of the
Laplace transform. Use this idea on the fol-
lowing to find a series formula for L(f(t)).
25. f(t) = e2t =

∑∞
n=0(2t)

n/n!

26. f(t) = e−t =
∑∞

n=0(−t)n/n!

Transfer of Radiance
The differential equation d

drN + αN =
N∗ models laser beam radiance (absorp-
tion and scattering out of the beam) in a
medium like water, where r is the distance
from the source.

27. Solve d
drN + 2N = 1, N(0) = 20 by

Laplace’s method.
Ans: N (r) = 1

2 + 39
2 e−2 r.

Hint: Obtain L(N(t)) = 1+20 s
s(s+2) = 1

2s +
39

2(s+2) using L(e
at) = 1

s−a from the For-

ward Table page 601.

28. Solve d
drN + 2N = 1− e−r, N(0) = 25

by any method.
Ans: N (r) = 1

2 − e−r + 51
2 e−2 r.

Hint: A particular solution is Np =
1
2−e

−r. Superposition applies. See also
Example 8.11 page 609.

Piecewise-Defined Functions

29. Define a piecewise continuous function

f(t) on [−1, 1] that agrees with sin(t)
|t|

except at t = 0. Suggestion: use Tay-
lor expansion sin(t) = t − t3/6 + · · ·
to define continuous functions f1, f2 on
−∞ < t <∞.

30. Explain in detail why 1/t is not piece-
wise continuous on [−1, 1]. ■

31. Find L(f(t)), given

f(t) =

{
1 1 ≤ t < 2,
0 otherwise.

32. Find L(pulse(t, a, b)), given

pulse(t, a, b) =

{
1 a ≤ t < b,
0 otherwise.

33. Define

f(t) =

 1 1 ≤ t < 2,
2 3 ≤ t < 4,
0 otherwise.

Find the weights c1, c2 such that
f(t) = c1 pulse(t, 1, 2)+

c2 pulse(t, 3, 4).

34. Let
f(t) = cos(t)pulse(t, 0, π)+

(sin(t)− 1)pulse(t, π, 2π)
Write f as a piecewise-defined function
and graph it.

Piecewise Continuous Definition
Let g(t) be zero for t < 0 and have on t ≥ 0
at most finitely many points of discontinu-
ity, at which finite right and left hand limits
exist.

This definition is an alternative way to
define piecewise continuous, crafted for
Laplace theory.

35. Let t1, t2 be consecutive points of dis-
continuity of g. Define a function g1(t)
continuous on −∞ < t < ∞ such that
g(t) = g1(t) on t1 ≤ t ≤ t2.

The whole real line is the required domain of g1,

which must be defined using g itself and right

and left hand limit values of g.
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8.1 Laplace Method Introduction

36. Let t1, t2, t3 be consecutive points of
discontinuity of g. Invent functions
g1(t), g2(t) continuous on −∞ < t <∞
such that g(t) = g1(t) on t1 ≤ t ≤ t2
and g(t) = g2(t) on t2 ≤ t ≤ t3.

37. Define g1, g2 as in Exercise 36 above.
Compute the jump at t = t2, J(t2) =
g(t2 + 0)− g(t2 − 0), in terms of g1, g2.

38. Using the preceding steps, prove that g
is piecewise continuous according to the
definition given in the text.
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8.2 Laplace Integral Table

The objective in developing Laplace integral Table 4 and Table 6 is to keep the
table size small. Table manipulation rules in Table 5 page 601 effectively increase
the table size manyfold, making it possible to solve typical differential equations
from electrical and mechanical models. The combination of Laplace tables plus
the table manipulation rules is called the Laplace transform calculus.

Table 4 is considered to be a table of minimum size. Table 6 adds a number of
special-use entries.

Derivations are postponed to page 650. The theory of the generalized factorial
function, the gamma function Γ(x), is on page 603. The Dirac impulse δ(t)
is defined in Section 8.6 page 644.

Table 4. Minimal Forward Laplace Integral Table with L-notation

∫∞
0

(tn)e−st dt =
n!

s1+n
L(tn) = n!

s1+n∫∞
0

(eat)e−st dt =
1

s− a
L(eat) = 1

s− a∫∞
0

(cos bt)e−st dt =
s

s2 + b2
L(cos bt) = s

s2 + b2∫∞
0

(sin bt)e−st dt =
b

s2 + b2
L(sin bt) = b

s2 + b2

Table 5. Minimal Forward and Backward Laplace Integral Tables

Forward Table

L(tn) =
n!

s1+n

L(eat) =
1

s− a

L(cos bt) =
s

s2 + b2

L(sin bt) =
b

s2 + b2

Backward Table

1

s1+n
= L

(
tn

n!

)
1

s− a
= L

(
eat
)

s

s2 + b2
= L (cos bt)

1

s2 + b2
= L

(
sin bt

b

)
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8.2 Laplace Integral Table

On first reading of LaPlace theory, learn Table 5 and back-burner the other
tables. To fully understand Table 6 below requires hours of Laplace use.

Table 6. Extended Laplace Integral Table

Forward Table

L(tn) =
n!

s1+n

L(eat) =
1

s− a

L(cos bt) =
s

s2 + b2

L(sin bt) =
b

s2 + b2

Conventions and Shortcuts

Zero Assumed on t < 0. Laplace theory assumes a given f(t) is zero for
t < 0. Therefore, a given f(t) in Laplace calculations can be formally replaced
by f(t)u(t), where u is the unit step defined by u(t) = 1 for t ≥ 0, u(t) = 0 for
t < 0.

Exponential Order. Unless specifically assumed otherwise, any f(t) in Laplace
theory is assumed to have exponential order so that L(f(t)) exists. Exceptions:
Function f(t) = tα is not of exponential order for α < 0, but L(f(t)) exists; Dirac
impulse δ(t) is in the extended table, but it is not of exponential order, because
δ(t) is not a function.

Unit Step and Ramp. Table entry f(t) = 1 is called the unit step and entry
f(t) = t is called the unit ramp. Entry f(t) = 1 is equivalent to u(t), whose
graph shape resembles a staircase step. Entry f(t) = t is equivalent to tu(t),
whose graph shape resembles a wheelchair ramp.

Step and Ramp Inputs. Digital design might refer to y′′(t) + y(t) = u(t) as
an oscillator with step input. Similarly, y′′(t) + y(t) = tu(t) is an oscillator with
unit ramp input.

Trigonometric Shortcut. Even function f(t) = cos(bt) L-transforms to an
odd fraction F (s) = s

s2+b2
. Similarly, odd function f(t) = sin(bt) transforms to

even fraction b
s2+b2

.

Trig table entries cos, sin change even-odd under L-transformation.
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Gamma Function

In mathematical physics, the Gamma function or the generalized factorial
function is given by the identity

Γ(x) =

∫ ∞

0
e−ttx−1 dt, x > 0.(1)

This function is tabulated and available in computer languages such as Fortran,
C, C++ and C#. It is also available in computer algebra systems and numerical
laboratories, such as maple, matlab, mathematica.

Fundamental Properties of Γ(x)

The generalized factorial function Γ(x) =
∫∞
0 e−ttx−1 dt has the following funda-

mental properties.

1 Γ(1) = 1

2 Γ(1 + x) = xΓ(x) for x > 0.

3 Γ(1 + n) = n! for integers n ≥ 1.

Details for relations 1 , 2 and 3 : Start with
∫∞
0

e−tdt = 1, which gives Γ(1) = 1,

hence 1 . Use this identity and successively relation 2 to obtain relation 3 . To prove

identity 2 , integration by parts is applied, as follows:

Γ(1 + x) =
∫∞
0

e−ttxdt Definition.

= −txe−t|t=∞
t=0 +

∫∞
0

e−txtx−1dt Use u = tx, dv = e−tdt.

= x
∫∞
0

e−ttx−1dt Boundary terms are zero
for x > 0.

= xΓ(x).

Examples and Methods

Example 8.4 (Forward Table)
Let f(t) = t(t− 5)− sin 2t+ e3t. Compute L(f(t)) using the forward Laplace table
and transform linearity properties.

Solution:

L(f(t)) = L(t2 − 5t− sin 2t+ e3t) Expand t(t− 5).

= L(t2)− 5L(t)− L(sin 2t) + L(e3t) Linearity applied.

=
2

s3
− 5

s2
− 2

s2 + 4
+

1

s− 3
Forward Table.
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Example 8.5 (Backward Table)
Use the backward Laplace table plus transform linearity properties to solve for f(t)
in the equation

L(f(t)) = s

s2 + 16
+

2

s− 3
+

s+ 1

s3
.

Solution:

L(f(t)) = s

s2 + 16
+ 2

1

s− 3
+

1

s2
+

1

2

2

s3
Convert to table entries.

= L(cos 4t) + 2L(e3t) + L(t) + 1
2L(t

2) Backward Laplace table.

= L(cos 4t+ 2e3t + t+ 1
2 t

2) Linearity applied.

f(t) = cos 4t+ 2e3t + t+ 1
2 t

2 Lerch’s cancellation law.

Example 8.6 (Unit Step and Pulses)
Find L(f(t)) in Figure 1.

1

31 5

5

Figure 1. A piecewise defined function f(t)
on 0 ≤ t < ∞: f(t) = 0 except for 1 ≤ t < 2 and
3 ≤ t < 4.

Solution: A pulse on [a, b] is defined by

pulse(t, a, b) = u(t− a)− u(t− b) =

{
1 a ≤ t < b,
0 otherwise.

The formula for f(t):

f(t) =

 1 1 ≤ t < 2,
5 3 ≤ t < 4,
0 otherwise

=

{
1 1 ≤ t < 2,
0 otherwise

+ 5

{
1 3 ≤ t < 4,
0 otherwise

= f1(t) + 5f2(t), where
f1(t) = u(t− 1)− u(t− 2) = pulse(t, 1, 2),
f2(t) = u(t− 3)− u(t− 4) = pulse(t, 3, 4).

The extended Laplace table gives

L(f(t)) = L(f1(t)) + 5L(f2(t)) Linearity.

= L(u(t− 1))− L(u(t− 2)) + 5L(f2(t)) Substitute for f1.

=
e−s − e−2s

s
+ 5L(f2(t)) Extended table used.

=
e−s − e−2s + 5e−3s − 5e−4s

s
Similarly for f2.
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Example 8.7 (Dirac Impulse)
A machine shop tool that repeatedly hammers a die is modeled by a Dirac impulse

model f(t) =
∑N

n=1 δ(t− n). Verify the formula L(f(t)) =
∑N

n=1 e
−ns.

Solution:

L(f(t)) = L
(∑N

n=1 δ(t− n)
)

=
∑N

n=1 L(δ(t− n)) Linearity.

=
∑N

n=1 e
−ns Extended Laplace table.

Example 8.8 (Square wave)
A periodic camshaft force f(t) applied to a mechanical system has the idealized
graph shown in Figure 2. Verify formulas f(t) = 1 + sqw(t) and L(f(t)) = 1

s (1 +
tanh(s/2)).

0

2

1 3

Figure 2. A periodic force f(t) applied to a
mechanical system.

Solution:

1 + sqw(t) =

{
1 + 1 2n ≤ t < 2n+ 1, n = 0, 1, . . .,
1− 1 2n+ 1 ≤ t < 2n+ 2, n = 0, 1, . . .,

=

{
2 2n ≤ t < 2n+ 1, n = 0, 1, . . .,
0 otherwise,

= f(t).

By the extended Laplace table, L(f(t)) = L(1) + L(sqw(t)) = 1

s
+

tanh(s/2)

s
.

Example 8.9 (Sawtooth wave)
Express the P -periodic sawtooth wave represented in Figure 3 as f(t) = ct/P −
cfloor(t/P ) and obtain the formula

L(f(t)) = c

Ps2
− ce−Ps

s− se−Ps
.

0

c

P 4P

Figure 3. A P -periodic sawtooth wave f(t) of
height c > 0.
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8.2 Laplace Integral Table

Solution: The representation originates from geometry, because the periodic function
f can be viewed as derived from ct/P by subtracting the correct constant from each of
intervals [P, 2P ], [2P, 3P ], etc.

The technique used to verify the identity is to define g(t) = ct/P − cfloor(t/P ) and then
show that g is P -periodic and f(t) = g(t) on 0 ≤ t < P . Two P -periodic functions equal
on the base interval 0 ≤ t < P have to be identical, hence the representation follows.

Periodicity: Let’s show g(u + P ) − g(u) = 0 for all u. Used below is the identity
floor(1 + x) = 1 + floor(x). Details: Let x = u/P , then

g(u+ P )− g(u) = cu+P
P − cfloor

(
u+P
P

)
− g(u)

= cx+ c− cfloor(1 + x)− cx+ cfloor(x)

= 0.

Base interval equality: On 0 ≤ t < P , define x = t/P so that 0 ≤ x < 1. Then
floor(x) = 0 and f(t) = ct/P = cx. Compute g(t) = ct/P − cfloor(t/P ) = cx −
cfloor(x) = cx = f(t).

Laplace Calculation:

L(f(t)) = c

P
L(t)− cL(floor(t/P )) Linearity.

=
c

Ps2
− ce−Ps

s− se−Ps
Basic and extended table applied.

Example 8.10 (Triangular wave)
Express the triangular wave f of Figure 4 in terms of the square wave sqw and obtain

L(f(t)) = 5

πs2
tanh(πs/2).

0

5

2π
Figure 4. A 2π-periodic triangular wave f(t)
of height 5.

Solution: The representation of f in terms of sqw is f(t) = 5
∫ t/π

0
sqw(x)dx.

Details: A 2-periodic triangular wave of height 1 is obtained by integrating the square
wave of period 2. A wave of height c and period 2 is given by c trw(t) = c

∫ t

0
sqw(x)dx.

Then f(t) = c trw(2t/P ) = c
∫ 2t/P

0
sqw(x)dx where c = 5 and P = 2π.

Laplace calculation: Use the extended Laplace table as follows.

L(f(t)) = 5

π
L(π trw(t/π)) =

5

πs2
tanh(πs/2).
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Exercises 8.2 �

Laplace Transform Forward Table
Using the basic Laplace table and linear-
ity properties of the transform, compute
L(f(t)). Do not use the direct Laplace
transform!

1. L(2t)

2. L(4t)

3. L(1 + 2t+ t2)

4. L(t2 − 3t+ 10)

5. L(sin 2t)

6. L(cos 2t)

7. L(e2t)

8. L(e−2t)

9. L(t+ sin 2t)

10. L(t− cos 2t)

11. L(t+ e2t)

12. L(t− 3e−2t)

13. L((t+ 1)2)

14. L((t+ 2)2)

15. L(t(t+ 1))

16. L((t+ 1)(t+ 2))

17. L(
∑10

n=0 t
n/n!)

18. L(
∑10

n=0 t
n+1/n!)

19. L(
∑10

n=1 sinnt)

20. L(
∑10

n=0 cosnt)

Laplace Backward Table
Solve the given equation for the function
f(t). Use the basic table and linearity prop-
erties of the Laplace transform.

21. L(f(t)) = s−2

22. L(f(t)) = 4s−2

23. L(f(t)) = 1/s+ 2/s2 + 3/s3

24. L(f(t)) = 1/s3 + 1/s

25. L(f(t)) = 2/(s2 + 4)

26. L(f(t)) = s/(s2 + 4)

27. L(f(t)) = 1/(s− 3)

28. L(f(t)) = 1/(s+ 3)

29. L(f(t)) = 1/s+ s/(s2 + 4)

30. L(f(t)) = 2/s− 2/(s2 + 4)

31. L(f(t)) = 1/s+ 1/(s− 3)

32. L(f(t)) = 1/s− 3/(s− 2)

33. L(f(t)) = (2 + s)2/s3

34. L(f(t)) = (s+ 1)/s2

35. L(f(t)) = s(1/s2 + 2/s3)

36. L(f(t)) = (s+ 1)(s− 1)/s3

37. L(f(t)) =
∑10

n=0 n!/s
1+n

38. L(f(t)) =
∑10

n=0 n!/s
2+n

39. L(f(t)) =
∑10

n=1

n

s2 + n2

40. L(f(t)) =
∑10

n=0

s

s2 + n2

Laplace Table Extension
Compute the indicated Laplace integral us-
ing the extended Laplace table, page 602.

41. L(u(t− 2) + 2u(t))

42. L(u(t− 3) + 4u(t))

43. L(u(t− π)(u(t) + u(t− 1)))

44. L(u(t− 2π) + 3u(t− 1)u(t− 2))

45. L(δ(t− 2))

46. L(5δ(t− π))

47. L(δ(t− 1) + 2δ(t− 2))

48. L(δ(t− 2)(5 + u(t− 1)))
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49. L(floor(3t))

50. L(floor(2t))

51. L(5 sqw(3t))

52. L(3 sqw(t/4))

53. L(4 trw(2t))

54. L(5 trw(t/2))

55. L(t+ t−3/2 + t−1/2)

56. L(t3 + t−3/2 + 2t−1/2)

Inverse Laplace, Extended Table
Solve the given equation for f(t), using the
extended Laplace integral table.

57. L(f(t)) = e−s/s

58. L(f(t)) = 5e−2s/s

59. L(f(t)) = e−2s

60. L(f(t)) = 5e−3s

61. L(f(t)) = e−s/3

s(1− e−s/3)

62. L(f(t)) = e−2s
s(1− e−2s)

63. L(f(t)) = 4 tanh(s)

s

64. L(f(t)) = 5 tanh(3s)

2s

65. L(f(t)) = 4 tanh(s)

3s2

66. L(f(t)) = 5 tanh(2s)

11s2

67. L(f(t)) = 1√
s

68. L(f(t)) = 1√
s3
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8.3 Laplace Transform Rules

In Table 7, the basic table manipulation rules are summarized. Full statements
and proofs of the rules appear in section 8.5, page 637.

The rules are applied here to several key examples using the 8 rules. Partial
fraction expansions including Heaviside’s coverup method will be delayed to the
section on Heaviside’s Method page 8.4.

Table 7. Laplace transform Rules

L(f(t) + g(t)) = L(f(t)) + L(g(t))
L(cf(t)) = cL(f(t))

Linearity.
The Laplace of a sum is the sum of the Laplaces.
Constants move through the L-symbol.

L(y′(t)) = sL(y(t))− y(0) The t-derivative or parts rule.
Derivatives L(y′) are replaced in transformed equations.

L
(∫ t

0
g(x)dx

)
=

1

s
L(g(t))

1

s
L(g(t)) = L

(∫ t

0
g(x)dx

) Forward t-integral rule.

Backward t-integral rule.

L(tf(t)) = − d

ds
L(f(t))

d

ds
L(f(t)) = L((−t)f(t))

Forward s-differentiation rule.
Each erased t-factor inserts − d

ds
in front of L.

Backward s-differentiation rule.

L(eatf(t)) = L(f(t))|s→(s−a)

L(f(t))|s→(s−a) = L(e
atf(t))

Forward First Shifting rule.
Backward First Shifting rule.
Multiplying f by eat replaces s by s − a.

L(g(t)u(t− a)) = e−asL(g(t+ a)),
e−asL(f(t)) = L(f(t− a)u(t− a))

Forward Second Shifting rule.
Backward Second Shifting rule.

L(f(t)) =
∫ P

0
f(t)e−stdt

1− e−Ps
Rule for P -periodic functions.
Assumed: f(t + P ) = f(t).

L(f(t))L(g(t)) = L((f ∗ g)(t)) Convolution rule.
Define (f ∗ g)(t) =

∫ t
0 f(x)g(t − x)dx.

Examples and Methods

Example 8.11 (Rutherford Decay)
Solve the radioactive chain decay problem x′ + 2x = −e−2t, x(0) = 10 by Laplace’s
method.

Solution: The solution is x = e−2t − te−2t. The details:

L(x′ + 2x) = L(−e−2t) 1 Apply L across the equation.

L(x′) + 2L(x) = −L(e−2t) Linearity of L.
sL(x)− x(0) + 2L(x) = −L(e−2t) Parts rule.

(s+ 2)L(x) = 10− L(e−2t) Use x(0) = 10. Collect left on L(x).
(s+ 2)L(x) = 10− 1

s+2 Forward Laplace table: L(e−2t) = 1
s+2 .
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L(x) = 10
s+2 −

1
(s+2)2 Divide to isolate L(x) left.

L(x) = 10
s+2 −

1
s2

∣∣
s→s+2

2 First shifting rule preparation.

L(x) = L(e−2t)− L(t)|s→s+2 Backward Laplace table:
1

s−a = L(eat), 1
s2 = L(t).

L(x) = L(e−2t)− L(te−2t) 3 Backwards first shifting theorem.

L(x) = L(e−2t − te−2t) Linearity.

x = e−2t − te−2t Lerch’s theorem: cancel L on each side.

Laplace’s method: Multiply across by e−stdt, then integrate across t = 0 to t =∞. It
is the same as applying L across the equation.

The details used algebraic steps and Laplace rules to obtain L(x(t)) on the left and
L(some t-expression) on the right. In the last step Lerch’s theorem applies to cancel L
on each side, which isolates the solution x(t) = some t-expression.

1 : Think of L as a matrix and Laplace’s method as matrix multiply.

2 : Fraction 1
(s+2)2 is 1

w2 using substitution w = s + 2. Mentally replace w by s and

search the Backward Table for a matching entry. The intuition comes from u-substitution
in calculus, but because u is the unit step function in Laplace theory, symbol w is used
instead of u in substitution examples.

3 : The backwards first shifting theorem in words: Remove |s→s−a by inserting expo-
nential eat inside the scope of L.

Example 8.12 (Harmonic oscillator)
Solve the initial value problem x′′+x = 0, x(0) = 0, x′(0) = 1 by Laplace’s method.

Solution: The solution is x(t) = sin t. The details:

L(x′′) + L(x) = L(0) Apply L across the equation.

sL(x′)− x′(0) + L(x) = 0 The t-derivative or parts rule.

s[sL(x)− x(0)]− x′(0) + L(x) = 0 Again the parts rule.

(s2 + 1)L(x) = 1 Use x(0) = 0, x′(0) = 1.

L(x) = 1

s2 + 1
Divide to isolate L(x(t)) left.

= L(sin t) Forward Laplace table.

x(t) = sin t Lerch’s cancellation law.

Example 8.13 (Forward Table First Shifting Rule)

Show the steps for the identity L(t2 e−3t) =
2

(s+ 3)3
.

Solution:

L(t2e−3t) = L(t2)
∣∣
s→s−(−3)

First shifting rule.

=

(
2

s2+1

)∣∣∣∣
s→s−(−3)

Forward Laplace table.
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=
2

(s+ 3)3
Identity verified.

Example 8.14 (Backward Table First Shifting Rule I)

Solve for f(t) in the equation L(f(t) = s+ 7

s2 + 4s+ 8
.

Solution: The answer is f(t) = e−2t(cos 2t+ 5
2 sin 2t). The details:

L(f(t)) = s+ 7

(s+ 2)2 + 4
Complete the square.

=
w + 5

w2 + 4
Replace s+ 2 by w.

=
w

w2 + 4
+

5

2

2

w2 + 4
Split into table entries.

=
s

s2 + 4
+

5

2

2

s2 + 4

∣∣∣∣
s→w=s+2

Shifting rule preparation.

= L
(
cos 2t+ 5

2 sin 2t
)∣∣

s→w=s+2
Basic Laplace table.

= L(e−2t(cos 2t+ 5
2 sin 2t)) First shifting rule.

f(t) = e−2t(cos 2t+ 5
2 sin 2t) Lerch’s cancellation law.

Example 8.15 (Backward Table First Shifting Rule II)

Solve the equation L(f(t)) = s+ 2

22 + 2s+ 2
for f(t).

Solution: The answer is f(t) = e−t cos t+ e−t sin t. The details:

L(f(t)) = s+ 2

s2 + 2s+ 2
Signal for this method: the denom-
inator has complex roots.

=
s+ 2

(s+ 1)2 + 1
Complete the square, denominator.

=
w + 1

w2 + 1
Substitute w for s+ 1.

=
w

w2 + 1
+

1

w2 + 1
Split into Laplace table entries.

= (L(cos t) + L(sin t))|s→w=s+1 Basic Laplace table.

= L(e−t cos t) + L(e−t sin t) First shifting rule.

f(t) = e−t cos t+ e−t sin t Lerch’s cancellation law.

Example 8.16 (Damped oscillator)
Solve by Laplace’s method the initial value problem x′′ + 2x′ + 2x = 0, x(0) = 1,
x′(0) = −1.
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Solution: The solution is x(t) = e−t cos t. The details:

L(x′′) + 2L(x′) + 2L(x) = L(0) Apply L across the equation.

sL(x′)− x′(0) + 2L(x′) + 2L(x) = 0 The t-derivative rule on x′.

s[sL(x)− x(0)]− x′(0)
+2[L(x)− x(0)] + 2L(x) = 0

The t-derivative rule on x.

(s2 + 2s+ 2)L(x) = 1 + s Use x(0) = 1, x′(0) = −1.

L(x) = s+ 1

s2 + 2s+ 2
Divide to isolate L(x).

=
s+ 1

(s+ 1)2 + 1
Complete the square.

=
w

w2 + 1

∣∣∣∣
w=s+1

Replace s+ 1 by w.

= L(cos t)|s→w=s+1 Backward table: s
s2+1 = L(cos t).

= L(e−t cos t) First shifting rule.

x(t) = e−t cos t Lerch’s cancellation law.

Example 8.17 (Forward Table s-Differentiation)

Show the steps for the identity L(t2 e5t) = 2

(s− 5)3
.

Solution:

L(t2e5t) =
(
− d

ds

)(
− d

ds

)
L(e5t) Apply s-differentiation.

= (−1)2 d

ds

d

ds

(
1

s− 5

)
Basic Laplace table.

=
d

ds

(
−1

(s− 5)2

)
Calculus power rule (un)′ = nun−1u′.

=
2

(s− 5)3
Identity verified.

Example 8.18 (Backward Table s-Differentiation)

Solve the equation L(f(t)) = 2s

(s2 + 1)2
for f(t).

Solution: The solution is f(t) = t sin t. The details:

L(f(t)) = 2s

(s2 + 1)2

= − d

ds

(
1

s2 + 1

)
Calculus power rule (un)′ = nun−1u′.

= − d

ds
(L(sin t)) Basic Laplace table.
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= L(t sin t) Apply the s-differentiation rule.

f(t) = t sin t Lerch’s cancellation law.

Example 8.19 (Forward Table Second shifting rule)

Show the steps for the identity L(sin(t)u(t− π)) =
−e−πs

s2 + 1
, where u(t) is the unit

step function: u(t) = 1 for t ≥ 0, u(t) = 0 otherwise.

Solution: The second shifting rule is applied as follows, where LHS and RHS abbreviate
the left and right hand side.

LHS = L(sin t u(t− π)) Left side of the identity.

= L(g(t)u(t− a)) Choose g(t) = sin t, a = π.

= e−asL(g(t+ a)) Second form, second shifting theorem.

= e−πsL(sin(t+ π)) 1 Substitute a = π, g(t) = sin(t).

= e−πsL(− sin t) Trig rules sin(a + b) = sin a cos b +
sin b cos a and sinπ = 0, cosπ = −1.

= e−πs −1
s2 + 1

Forward Laplace table.

= RHS Identity verified.

1 : Easy for some readers, difficult for others. How did we change symbol g(t+ a) into
sin(t+ π)? For g(t) = sin t, the replacement process g → sin and a→ π can be written
as g(t+ a) = g(x)|x=t+a = sin(x)|x=t+π = sin(t+ π).

Example 8.20 (Backward Table Second Shifting Rule)

Solve the equation L(f(t)) = e−3s s+ 1

s2 + 2s+ 2
for f(t).

Solution: The answer is f(t) = e3−t cos(t−3) for t ≥ 3, f(t) = 0 otherwise. The details:

L(f(t)) = e−3s s+ 1

(s+ 1)2 + 1
Complete the square.

= e−3w+3 w

w2 + 1
Let w = s + 1, like a calculus u-
substitution.

= e−3w+3 (L(cos t))|s→w Backward table:
s

s2+1 = L(cos t)

= e3
(
e−3sL(cos t)

)∣∣
s→w

Regroup factor e−3w.

= e3 (L(cos(t− 3)u(t− 3)))|s→w=s+1 Second shifting rule, 1st form.

= e3L(cos(t− 3)u(t− 3)e−t) First shifting rule.

f(t) = e3−t cos(t− 3)u(t− 3) Lerch’s cancellation law.
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Example 8.21 (Trigonometric formulas)
Show the steps used to obtain these Laplace identities:

(a) L(t cos at) = s2 − a2

(s2 + a2)2
(c) L(t2 cos at) = 2(s3 − 3sa2)

(s2 + a2)3

(b) L(t sin at) = 2sa

(s2 + a2)2
(d) L(t2 sin at) = 6s2a− a3

(s2 + a2)3

Solution: The details for (a):

L(t cos at) = −(d/ds)L(cos at) Use s-differentiation.

= − d

ds

(
s

s2 + a2

)
Basic Laplace table.

=
s2 − a2

(s2 + a2)2
Calculus quotient rule.

The details for (c):

L(t2 cos at) = −(d/ds)L((−t) cos at) Use s-differentiation.

=
d

ds

(
− s2 − a2

(s2 + a2)2

)
Result of (a).

=
2s3 − 6sa2)

(s2 + a2)3
Calculus quotient rule.

The similar details for (b) and (d) are left as exercises.

Example 8.22 (Exponential Formulas)
Show the steps used to obtain these Laplace identities:

(a) L(eat cos bt) = s− a

(s− a)2 + b2
(c) L(teat cos bt) = (s− a)2 − b2

((s− a)2 + b2)2

(b) L(eat sin bt) = b

(s− a)2 + b2
(d) L(teat sin bt) = 2b(s− a)

((s− a)2 + b2)2

Solution: Details for (a):

L(eat cos bt) = L(cos bt)|s→s−a First shifting rule.

=

(
s

s2 + b2

)∣∣∣∣
s→s−a

Basic Laplace table.

=
s− a

(s− a)2 + b2
Verified (a).

Details for (c):

L(teat cos bt) = L(t cos bt)|s→s−a First shifting rule.

=

(
− d

ds
L(cos bt)

)∣∣∣∣
s→s−a

Apply s-differentiation.

=

(
− d

ds

(
s

s2 + b2

))∣∣∣∣
s→s−a

Basic Laplace table.
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=

(
s2 − b2

(s2 + b2)2

)∣∣∣∣
s→s−a

Calculus quotient rule.

=
(s− a)2 − b2

((s− a)2 + b2)2
Verified (c).

Left as exercises are (b) and (d).

Example 8.23 (Hyperbolic Functions)
Establish these Laplace transform facts about coshu = (eu + e−u)/2 and sinhu =
(eu − e−u)/2.

(a) L(cosh at) = s

s2 − a2
(c) L(t cosh at) = s2 + a2

(s2 − a2)2

(b) L(sinh at) = a

s2 − a2
(d) L(t sinh at) = 2as

(s2 − a2)2

Solution: The details for (a):

L(cosh at) = 1
2 (L(e

at) + L(e−at)) Definition plus linearity of L.

=
1

2

(
1

s− a
+

1

s+ a

)
Basic Laplace table.

=
s

s2 − a2
Identity (a) verified.

The details for (d):

L(t sinh at) = − d

ds

(
a

s2 − a2

)
Apply the s-differentiation rule.

=
a(2s)

(s2 − a2)2
Calculus power rule; (d) verified.

Left as exercises are (b) and (c).

Example 8.24 (Rectified sine wave)
Compute the Laplace transform of the rectified sine wave f(t) = | sinωt| and show
that it can be expressed in the form

L(| sinωt|) =
ω coth

(
πs
2ω

)
s2 + ω2

.

Solution: The periodic function formula will be applied with period P = 2π/ω. The

calculation reduces to the evaluation of J =
∫ P

0
f(t)e−stdt. Because sinωt ≤ 0 on

π/ω ≤ t ≤ 2π/ω, integral J can be written as J = J1 + J2, where

J1 =

∫ π/ω

0

sinωt e−stdt, J2 =

∫ 2π/ω

π/ω

− sinωt e−stdt.

Integral tables give the result∫
sinωt e−st dt = −ωe−st cos(ωt)

s2 + ω2
− se−st sin(ωt)

s2 + ω2
.
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Then

J1 =
ω(e−π∗s/ω + 1)

s2 + ω2
, J2 =

ω(e−2πs/ω + e−πs/ω)

s2 + ω2
,

J =
ω(e−πs/ω + 1)2

s2 + ω2
.

The remaining challenge is to write the answer for L(f(t)) in terms of coth(u) = cosh(u)
sinh(u)

where cosh(u) = 1
2e

u + 1
2e

−u and sinh(u) = 1
2e

u − 1
2e

−u. The details:

L(f(t)) = J

1− e−Ps
Periodic function formula.

=
J

(1− e−Ps/2)(1 + e−Ps/2)
Apply 1 − x2 = (1 − x)(1 + x)
where x = e−Ps/2.

=
ω(1 + e−Ps/2)

(1− e−Ps/2)(s2 + ω2)
Cancel factor 1 + e−Ps/2.

=
ePs/4 + e−Ps/4

ePs/4 − e−Ps/4

ω

s2 + ω2
Factor out e−Ps/4, then cancel.

=
2 cosh(Ps/4)

2 sinh(Ps/4)

ω

s2 + ω2
Apply cosh, sinh identities.

=
ω coth(Ps/4)

s2 + ω2
Use coshu

sinhu = cothu.

=
ω coth

(
πs
2ω

)
s2 + ω2

Identity verified.

Example 8.25 (Half–wave Rectification)
Determine the Laplace transform of the half–wave rectification g(t) of sinωt, in
which the negative cycles of sinωt have been replaced by zero to define g(t). Show
in particular that

L(g(t)) = 1

2

ω

s2 + ω2

(
1 + coth

(πs
2ω

))
Solution: The half–wave rectification of sinωt is g(t) = (sinωt + | sinωt|)/2. The
Forward Table plus the result of Example 8.24 gives

L(2g(t)) = L(sinωt) + L(| sinωt|)

=
ω

s2 + ω2
+

ω cosh(πs/(2ω))

s2 + ω2

=
ω

s2 + ω2
(1 + cosh(πs/(2ω))

Dividing by 2 produces the identity.

Exercises 8.3 �

First Order Linear DE
Display the Laplace method details which
verify the supplied answer.
The first two exercises use forward and back-

ward Laplace tables plus the first shifting theo-

rems. The others require a calculus background

in partial fractions.
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1. x′ + x = e−t, x(0) = 1;
x(t) = (1 + t)e−t.

2. x′ + 2x = −e−2t, x(0) = 1;
x(t) = (1− t)e−2t.

3. x′ + x = 1, x(0) = 1; x(t) = 1.

4. x′ + 4x = 4, x(0) = 1; x(t) = 1.

5. x′ + x = t, x(0) = −1; x(t) = t− 1.

6. x′ + x = t, x(0) = 1;
x(t) = t− 1 + 2e−t.

Second Order Linear DE
Display the Laplace method details which
verify the supplied answer.
The first 4 exercises require only forward and

backward Laplace tables and the first shifting

theorems. The others require methods in par-

tial fractions beyond a calculus background.

7. x′′ + x = 0, x(0) = 1, x′(0) = 1;
x(t) = cos t+ sin t.

8. x′′ + x = 0, x(0) = 1, x′(0) = 2;
x(t) = cos t+ 2 sin t.

9. x′′ + 2x′ + x = 0, x(0) = 0, x′(0) = 1;
x(t) = te−t.

10. x′′+2x′+x = 0, x(0) = 1, x′(0) = −1;
x(t) = e−t.

11. x′′+3x′+2x = 0, x(0) = 1, x′(0) = −1;
x(t) = e−t.

12. x′′+3x′+2x = 0, x(0) = 1, x′(0) = −2;
x(t) = e−2t.

13. x′′ + 3x′ = 0, x(0) = 5, x′(0) = 0;
x(t) = 5.

14. x′′ + 3x′ = 0, x(0) = 1, x′(0) = −3;
x(t) = e−3t.

15. x′′ + x = 1, x(0) = 1, x′(0) = 0;
x(t) = 1.

16. x′′ = 2, x(0) = 0, x′(0) = 0; x(t) = t2.

Forward Integral Rule
The rule is L

(∫ t

0
g(r)dr

)
= 1

sL(g(t))

17. Relate this rule to the convolution rule
with f(t) = 1.

18. Compute L
(∫ t

0
sin(r)dr

)
.

19. Compute L
(∫ t

0
(r + 1)3 dr

)
.

20. Compute L
(∫ t

0
sqw(r)dr

)
, where sqw

is the square wave of period 2. Use the
Extended Laplace Table.

Backward Integral Rule
Apply rule 1

sL(g(t)) = L
(∫ t

0
g(r)dr

)
and Lerch’s theorem to solve for f(t).

21. L(f(t)) = 1
s(s2+1)

22. L(f(t)) = 1
s

s+1
s2+1

23. L(f(t)) = 1
s

(
1

s+1 −
1

s+2

)
24. L(f(t)) = 1

s
e−s

s
Hint: L(u(t− a)) = 1

se
−as.

The s–Integral Rule
Identity L

(
f(t)
t

)
=
∫∞
s
L(f(t)) ds

requires piecewise continuous f(t) of expo-

nential order with limt→0+
f(t)
t = L.

25. Prove the identity.

26. Compute L
(

sin(t)
t

)
.

Forward First Shifting Rule
Apply L(f(t)eat) = L(f(t))|s→s−a to find
the Laplace transform.

27. L(tet)

28. L(tet + e2t)

29. L(sin(t)et)

30. L(sin(2t)e2t + cos(t)et)

31. L(t cosh(2t)) using identity
cosh(w) = 1

2e
w + 1

2e
−w.

32. L((t+ 1)3 et)

Backward First Shifting Rule
Apply L(f(t))|s→s−a = L(f(t)eat) and
Lerch’s theorem to solve for f(t).
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33. Explain for L(t2)
∣∣
s→s−4

the rule

Erase a shift |s→s−a by inserting eat in-
side the scope of L.

34. L(f(t)) = s
s2+1

∣∣∣
s→s−1

35. L(f(t)) = s−1
(s−1)2+4

36. L(f(t)) = 8
(s+1)2+4

37. L(f(t)) = s+1
s2+2s+5

38. L(f(t)) = 4
s2+8s+17

39. L(f(t)) = 2
(s+1)2

40. L(f(t)) = 1
(s+2)101

Forward s-Differentiation
Apply L((−t)f(t)) = d

dsL(f(t)) to find the
Laplace transform.

41. Explain for L((−t) cos(t)) the rule
Multiplying by (−t) differentiates the
Laplace transform..

42. L((−t) sin(2t))

43. L((−t) sinh(2t)), using identity
sinh(w) = 1

2e
w − 1

2e
−w.

44. L(tet sin(2t) + te2t cos(t))

Backward s-Differentiation
Apply d

dsL(f(t)) = L((−t)f(t)) and
Lerch’s theorem to solve for f(t).

45. Explain for d
dsL(cos(t)) the rule

Erase d
ds by inserting factor (−t) inside

the scope of L.

46. L(f(t)) = d
ds

s
s2+4

47. L(f(t)) = d2

ds2
1

(s+1)5

48. L(f(t)) = d3

ds3
s+1

s2+2s+5

Unit Step and Pulse
Define

pulse(t, a, b) =

{
1 a ≤ t < b,
0 else,

which is a tool for encoding and decoding
piecewise-defined functions.

49. Prove the identity
pulse(t, a, b)=u(t− a)− u(t− b),
where u is the unit step.

50. Prove the Laplace formula

L(pulse(t, a, b))= e−at−e−bt

s

51. Verify that f(t) defined by2 1 ≤ t < 2,
0 else

+

3 3 ≤ t < 4,
0 else

encodes to representation
2pulse(t, 1, 2)+3pulse(t, 3, 4).

52. Decode f(t) into a piecewise–defined
function and graph it by hand, no com-
puter, given f(t) is
et pulse(t, 1, 3)+e−t pulse(t, 4, 6)

53. Decode f(t) into a piecewise–defined
function and graph it, no computer,
given f(t) is the sum∑3

n=1 | sin(nπt)|pulse(t, 2n, 2n+1)

54. Encode as a combination of pulses

f(t)=


1 1 ≤ t < 2,
−2 3 ≤ t < 4,
1 5 ≤ t < 6,
0 else,

showing all encoding details. Ans:
f(t)=pulse(t,1,2)−2pulse(t,3,4)

+pulse(t,5,6).

Alternate Second Shifting Rule
L(g(t)u(t− a)) = e−asL

(
g(w)|w=t+a

)
. No

Laplace here. The focus is on function no-
tation and finding g(t + a) = g(w)|w=t+a,
which means substitute w = t + a into the
g(w)–formula.

55. Let g(t) = te−t. Verify identity
g(w)|w=t+2 = e−2(te−t + 2e−t).

56. Let g(t) = t3. Verify identity
g(w)|w=t+2 = 8 + 12t+ 6t2 + t3.

57. Typical polynomial g(w) = 1 + 2w2 +
3w4 upon substitution w = t + a re-
quires expansions for (t + a)2 and (t +
a)4. Pascal’s Triangle can be use-
ful. Find the answer for g(t + a) =
g(w)|w=t+a.
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58. Polynomial 1+2w2+3w4 upon substi-
tution w = t− b is a Taylor polynomial
expansion

f(t) =
∑4

n=0
f(n)(b)

n! (t− b)n .
Find the Maclaurin expansion

f(t) =
∑4

n=0
f(n)(0)

n! tn.

Forward Second Shifting Rule
L(g(t)u(t− a)) = e−asL(g(t+ a))
Find L(f(t)), where u is the unit step.

59. f(t) = u(t− π)

60. f(t) = et u(t− 1)

61. f(t) = t3u(t− π)

62. f(t) = et pulse(t, 1, 2), where
pulse(t, a, b)=u(t− a)−u(t− b).

63. f(t) = tetu(t− 2)

64. f(t) = t sin(t)u(t− π)

Backward Second Shifting Rule
e−asL(f(t)) = L(f(t− a)u(t− a))
Find f(t) using the rule and Lerch’s theo-
rem, giving a piecewise–defined display and
a unit step or pulse formula.

65. L(f(t)) = 1
se

−3s

Ans: f(t)=u(t− 3)=

{
1 t ≥ 3,
0 else,

66. L(f(t)) = 1

s2
e3−3s

67. L(f(t)) = 4

s2 + 8s+ 17
e−2s

68. L(f(t)) = 4 + s

s2 + 8s+ 17
e−3s

69. L(f(t)) =
(

1

s2
+

2

s3

)
e−2s

70. L(f(t)) = 1

(s− 4)2
e−2s

Trigonometric Formulas
Supply the details in Example 8.21.

71. L(t sin at) = 2as

(s2 + a2)2

72. L(t2 sin at) = 6s2a− a3

(s2 + a2)3

Exponential Formulas
Supply the details in Example 8.22.

73. L(eat sin bt) = b

(s− a)2 + b2

74. L(teat sin bt) = 2b(s− a)

((s− a)2 + b2)2

Hyperbolic Functions
Supply the details in Example 8.23.

75. L(sinh at) = a

s2 − a2

76. L(t cosh at) = s2 + a2

(s2 − a2)2

Waves
Use Laplace ideas from Examples 8.24
and 8.25. Each f(t) can be expressed
as a pulse train, which is an expres-
sion

∑∞
n=1 fn(t)pulse(t, ai, bi) to which

the second shifting theorem applies.

77. Find L(f(t)) for the square wave
f(t)=

∑∞
n=0(−1)n pulse(t, n, n+ 1)

78. Define pulse train
f(t)=

∑∞
n=0 fn(t)pulse(t, n, n+ 1),

f2n(t)=t − 2n, f2n+1(t)=2 − t + 2n.
Show that f(t+ 2) = f(t) and

f(t)=

{
t 0 ≤ t < 1,
2− t 1 ≤ t ≤ 2.

79. Find L(f(t)) for

f(t) =

{
| sin(2t)| 0 ≤ t ≤ π,
0 π ≤ t ≤ 2π,

and f(t+ rπ) = f(t).

80. Find L(f(t)) for

f(t) =

{
1 0 ≤ t ≤ π,
| sin(t)| π ≤ t ≤ 2π,

and f(t+ 2π) = f(t).

81. Given f(t) = 1
2 (| sin t| + sin t),

called the Half–wave rectifi-
cation of the sine wave, derive
L(f(t))= 1

(s2+1)(1−e−πs)

82. Solve for 2–periodic function f(t):

L(f(t)) = 1

s
tanh

(s
2

)
.

Use the Extended Laplace Integral Ta-
ble.
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8.4 Heaviside’s Partial Fraction Method

8.4 Heaviside’s Partial Fraction Method

This clever algebraic shortcut is used to solve an equation like

L(f(t)) = 2s

(s+ 1)(s2 + 1)

for the time domain function f(t) = −e−t+cos t+sin t. The details in Heaviside’s
method involve a sequence of easy-to-learn college algebra steps. The practical
method was popularized by English electrical engineer Oliver Heaviside (1850–
1925).

More precisely, Heaviside’s method starts with a polynomial quotient

a0 + a1s+ · · ·+ ans
n

b0 + b1s+ · · ·+ bmsm
(1)

and computes an expression f(t) such that

a0 + a1s+ · · ·+ ans
n

b0 + b1s+ · · ·+ bmsm
= L(f(t)) ≡

∫ ∞

0
f(t)e−stdt.

Symbols a0, . . . , an, b0, . . . , bm are real constants. Heaviside’s method assumes
limit zero at s =∞ for polynomial quotient (1). 5

Partial Fraction Theory

It is a college algebra theorem that a rational function (1) can be expressed as
the sum of partial fractions.

Definition 8.3 (Partial Fraction)
A partial fraction is a polynomial fraction with a constant in the numerator and a
polynomial denominator having exactly one root, i.e.,

partial fraction =
C

(s− s0)k
.(2)

The numerator C in (2) is a real or complex constant. The denominator has
exactly one root s = s0, real or complex. We expect power (s − s0)

k to be a
divisor of the denominator in fraction (1).

Real Root Case. If s0 in (2) is a real number, then C is real.

Complex Root Case. If s0 = a + ib in (2), then (s − s0)
k also divides the

denominator in (1), where s0 = a − ib is the complex conjugate of s0. The
corresponding partial fractions used in the expansion turn out to be complex

5Otherwise, fraction (1) equals by long division a polynomial plus a remainder. Heaviside’s
method applies to the remainder.
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8.4 Heaviside’s Partial Fraction Method

conjugates of one another, which can be paired and re-written as a fraction with
numerator Q(s) a real polynomial.

C

(s− s0)k
+

C

(s− s0)k
=

Q(s)

((s− a)2 + b2)k
.(3)

To illustrate, if C = u+ iv, then

C

(s− 2i)2
+

C

(s+ 2i)2
=

(C + C)s2 + 4i(C − C)s− 4(C + C)

(s2 + 4)2

=
2us2 + 8vs− 8u

(s2 + 4)2
.

The numerator 2us2 + 8vs− 8u can be expanded by the college algebra division
algorithm as Q(s) = A1(s

2 + 4) + A2s + A3, with real coefficients A1, A2, A3.
Then the fraction can be written as

Q(s)

(s2 + 4)2
=

A1

s2 + 4
+

A2s+A3

(s2 + 4)2
.

Similarly, numerator 2us3−12vs2−24us+16v expands as A1(s
2+4)2+A2(s

2+
4) +A3s+A4 in the following example:

u+ iv

(s− 2i)3
+

u− iv

(s+ 2i)3
=

2us3 − 12vs2 − 24us+ 16v

(s2 + 4)3

=
A1

s2 + 4
+

A2

(s2 + 4)2
+

A3s+A4

(s2 + 4)3

for some real coefficients A1, A2, A3, A4.

This discussion generalizes to all powers k > 1. Partial fractions with denomi-
nator (s − s0)

k and (s − s0)
k with s0 = a complex number are paired and the

division algorithm is employed as in the examples to replace the pair of terms by
a sum of terms of the form

linear polynomial in s

((s− a)2 + b2)j
, 1 ≤ j ≤ k.

The numerator has the form c1+c2s with real coefficients c1, c2. This real partial
fraction form is preferred over the sum of complex fractions, because integral
tables and Laplace tables typically contain only formulas with real coefficients.
See Example 8.26, page 629.

Simple Roots

Assume that (1) has real coefficients and the denominator of the fraction (1) has
distinct real roots s1, . . . , sN and distinct complex roots α1 ± iβ1, . . . ,
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8.4 Heaviside’s Partial Fraction Method

αM ± iβM . The partial fraction expansion of (1) is a sum given in terms of real
constants Ap, Bq, Cq by

a0 + a1s+ · · ·+ ans
n

b0 + b1s+ · · ·+ bmsm
=

N∑
p=1

Ap

s− sp
+

M∑
q=1

Bq + Cq(s− αq)

(s− αq)2 + β2
q

.(4)

Multiple Roots

Assume (1) has real coefficients and the denominator of the fraction (1) has
possibly multiple roots. Let Np be the multiplicity of real root sp and let Mq be
the multiplicity of complex root αq + iβq (βq > 0), 1 ≤ p ≤ N , 1 ≤ q ≤M . The
partial fraction expansion of (1) is given in terms of real constants Ap,k, Bq,k,
Cq,k by

N∑
p=1

∑
1≤k≤Np

Ap,k

(s− sp)k
+

M∑
q=1

∑
1≤k≤Mq

Bq,k + Cq,k(s− αq)

((s− αq)2 + β2
q )

k
.(5)

Summary

A polynomial quotient p/q with limit zero at infinity has a unique expansion into
partial fractions. A partial fraction is either a constant divided by a divisor of q
having exactly one real root, or else a linear function divided by a real divisor of
q, having exactly one complex conjugate pair of roots.

Sampling Method

Consider the expansion in partial fractions

s− 1

s(s+ 1)2(s2 + 1)
=

A

s
+

B

s+ 1
+

C

(s+ 1)2
+

Ds+ E

s2 + 1
.(6)

The five undetermined real constants A through E are found by clearing the
fractions, that is, multiply (6) by the denominator on the left to obtain the
polynomial equation

s− 1 = A(s+ 1)2(s2 + 1) +Bs(s+ 1)(s2 + 1)
+Cs(s2 + 1) + (Ds+ E)s(s+ 1)2.

(7)

Next, five different samples of s are substituted into (7) to obtain equations for
the five unknowns A through E.6 Always use the roots of the denominator

6The values chosen for s are called samples, that is, they are cleverly chosen values. The
number of s-values sampled equals the number of symbols A, B, . . . to be determined, which in
turn equals the degree of the denominator.

622



8.4 Heaviside’s Partial Fraction Method

to start: s = 0, s = −1, s = i, s = −i are the roots of s(s + 1)2(s2 + 1) = 0 .
Each complex root results in two equations, by taking real and imaginary parts.
The complex conjugate root s = −i is not used, because it duplicates equations
already obtained from s = i. The three roots s = 0, s = −1, s = i give only four
equations, so we invent another sample s = 1 to get the last equation:

−1 = A (s = 0)
−2 = −2C (s = −1)

i− 1 = (Di+ E)i(i+ 1)2 (s = i)
0 = 8A+ 4B + 2C + 4(D + E) (s = 1)

(8)

Because D and E are real, the complex equation (s = i) becomes two equations,
as follows.

i− 1 = (Di+ E)i(i2 + 2i+ 1) Expand power (i+ 1)2.

i− 1 = −2Di− 2E Simplify using i2 = −1.
1 = −2D Equate imaginary parts.

−1 = −2E Equate real parts.
Root i created 2 equations!

The 5 × 5 system of linear algebraic equations is solved for answers A = −1,
B = 3/2, C = 1, D = −1/2, E = 1/2.

Method of Atoms

Consider the expansion in partial fractions

2s− 2

s(s+ 1)2(s2 + 1)
=

a

s
+

b

s+ 1
+

c

(s+ 1)2
+

ds+ e

s2 + 1
.(9)

Clearing the fractions in (9) gives the polynomial equation

2s− 2 = a(s+ 1)2(s2 + 1) + bs(s+ 1)(s2 + 1)
+cs(s2 + 1) + (ds+ e)s(s+ 1)2.

(10)

The method of atoms expands all polynomial products and collects on powers
of s. Functions 1, s, s2, . . . are by definition called Euler solution atoms, hence
the terminology. The coefficients of the powers are matched to give 5 equations
in the five unknowns a through e. Some details:

2s− 2 = (a+ b+ d) s4 + (2a+ b+ c+ 2d+ e) s3

+(2a+ b+ d+ 2e) s2 + (2a+ b+ c+ e) s+ a
(11)

Matching powers of s implies the 5 equations

a+ b+ d = 0, 2a+ b+ c+ 2d+ e = 0, 2a+ b+ d+ 2e = 0,
2a+ b+ c+ e = 2, a = −2.

Solving, the unique solution is a = −2, b = 3, c = 2, d = −1, e = 1.
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8.4 Heaviside’s Partial Fraction Method

Heaviside’s Coverup Method

Assume distinct roots in the denominator of fraction (1). Extensions to multiple-
root cases can be made; see page 625.

To illustrate Oliver Heaviside’s 1890 ideas, consider the problem details

2s+ 1

s(s− 1)(s+ 1)
=

A

s
+

B

s− 1
+

C

s+ 1
(12)

= L(A) + L(Bet) + L(Ce−t)

= L(A+Bet + Ce−t)

The first line in (12) uses college algebra partial fractions. The second and third
lines use the basic Laplace table and linearity of L. Missing here are the values
of constants A,B,C. Heaviside’s ideas provide an efficient method to evaluate
A = −1, B = 3

2 , C = −1
2 . Then L(y) =

2s+1
s(s−1)(s+1) = L(−1 +

3
2e

t − 1
2e

−t) implies

y = −1 + 3
2e

t − 1
2e

−t.

Mysterious Details

Oliver Heaviside proposed to find A = −1, B = 3
2 , C = −1

2 in (12) by a cover-up
method. The method is completely mental, no writing at all. We explain in
detail how Heaviside found C = −1

2 .

Heaviside starts with the identity

2s+ 1

s(s− 1)(s+ 1)
=

A

s
+

B

s− 1
+

C

s+ 1
.(13)

The cover–up method finds C by mentally clearing the fraction C
s+1 , that is,

multiply (13) by the denominator s+ 1 of the partial fraction C
s+1 to obtain

the partially-cleared fraction relation

(2s+ 1) (s+ 1)

s(s− 1) (s+ 1)
=

A (s+ 1)

s
+

B (s+ 1)

s− 1
+

C (s+ 1)

(s+ 1)
.

Set (s+ 1) = 0 in the display. Cancellations left and right plus annihilation of

two terms on the right give the answer for C:

2s+ 1

s(s− 1)

∣∣∣∣
s+ 1 =0

= 0 + 0 + C.

Heaviside’s cryptic instructions are to cover–up the matching factors (s + 1) on

the left and right in (13) with box (s+ 1) (Heaviside used his fingertips), then
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8.4 Heaviside’s Partial Fraction Method

evaluate on the left at the root s which causes the box contents to be zero. The
other terms on the right are replaced by zero. Heaviside would find C = −1

2
by placing his fingers over the factors (s + 1) left and right in (13), the boxes

(s+ 1) below being his finger tips:

2s+ 1

s(s− 1) (s+ 1)

∣∣∣∣∣∣
s+1 =0

=
C

(s+ 1)
.

The factor (s+ 1) in (13) is by no means special: the same procedure applies to
find A and B. The method works for denominators with simple roots, that is,
no repeated roots are allowed. Heaviside’s method in words:7

To determine C in partial fraction C
s−s0

, multiply the relation by (s − s0), to
partially clear the fraction. Substitute root s of equation s − s0 = 0 into the
partially cleared relation.

Extension to Multiple Roots

Heaviside’s method can be extended to the case of repeated roots. The basic idea
is to factor–out the repeats. To illustrate, consider the partial fraction expansion
details

R =
1

(s+ 1)2(s+ 2)
A sample rational function having repeated
roots.

=
1

s+ 1

(
1

(s+ 1)(s+ 2)

)
Factor–out the repeats.

=
1

s+ 1

(
1

s+ 1
+
−1
s+ 2

)
Apply the cover–up method to the simple
root fraction.

=
1

(s+ 1)2
+

−1
(s+ 1)(s+ 2)

Multiply. Observe that 1
(s+1)2

is a partial

fraction!

=
1

(s+ 1)2
+
−1
s+ 1

+
1

s+ 2
Apply the cover–up method to the last frac-
tion on the right.

Term 1
(s+1)2

has constant numerator and denominator with only one root. It is

already a partial fraction.8 Therefore the work centers on expansion of quotients
in which the denominator has two or more roots.

7Root s = s0 is called a pole and the answer C is called a residue. See page 627.
8Re–read the definition of partial fraction page 620.
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Special Methods

Heaviside’s method has a useful extension for the case of roots of multiplicity
two. To illustrate, consider these details:

R =
1

(s+ 1)2(s+ 2)
1 A fraction with multiple roots.

=
A

s+ 1
+

B

(s+ 1)2
+

C

s+ 2
2 See equation (5), page 622.

=
A

s+ 1
+

1

(s+ 1)2
+

1

s+ 2
3 Find B and C by Heaviside’s cover–up
method.

=
−1
s+ 1

+
1

(s+ 1)2
+

1

s+ 2
4 Details below.

Details 4 . Multiply the equation 1 = 2 by s+ 1 to partially clear fractions,
the same step as the cover-up method:

1

(s+ 1)(s+ 2)
= A+

B

s+ 1
+

C(s+ 1)

s+ 2
.

Don’t substitute s from s+ 1 = 0, because it gives infinity for the second term.
Instead, set s =∞ to get the equation 0 = A+C. Because C = 1 from 3 , then
A = −1.
The illustration works for one root of multiplicity two, because s =∞ will resolve
the coefficient not found by the cover–up method.

In general, if the denominator in (1) has a root s0 of multiplicity k, then the
partial fraction expansion contains terms

C1

s− s0
+

C2

(s− s0)2
+ · · ·+ Ck

(s− s0)k
.

Heaviside’s cover–up method directly finds Ck, but not C1 to Ck−1.

Cover-up Method and Complex Numbers

Consider the partial fraction expansion

10

(s+ 1)(s2 + 9)
=

A

s+ 1
+

Bs+ C

s2 + 9
.

The symbols A, B, C are real. The value of A can be found directly by the cover-
up method, giving A = 1. To find B and C, multiply the fraction expansion by
s2+9, in order to partially clear fractions, then formally set s2+9 = 0 to obtain
the two equations

10

s+ 1
= Bs+ C, s2 + 9 = 0.
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The method applies the identical idea used for one real root. By clearing fractions
in the first, the equations become

10 = Bs2 + Cs+Bs+ C, s2 + 9 = 0.

Substitute s2 = −9 into the first equation to give the linear equation

10 = (−9B + C) + (B + C)s.

Because this linear equation has two complex roots s = ±3i, then real constants
B, C satisfy the 2× 2 system

−9B + C = 10,
B + C = 0.

Solving gives B = −1, C = 1.

The same method applies especially to fractions with 3-term denominators, like
s2 + s+1. The only change made in the details is the replacement s2 → −s− 1.
By repeated application of s2 = −s − 1, the first equation can be distilled into
one linear equation in s with two roots. As before, a 2× 2 system results.

Residues, Poles and Oliver Heaviside

The language of residues and poles invaded engineering literature years ago,
blamed in part on engineers who studied the foundations of complex variables.
The terminology formalizes the naming of partial fraction theory constants and
roots that appear in Oliver Heaviside’s cover-up method, detailed above, which
is an electrical engineering partial fraction shortcut that dates back to the year
1890.

Residues and poles do not provide any new mathematical tools for solving partial
fraction problems. The service of residues and poles is to provide a new language
for discussing the answers, a language that appears in current engineering and
science literature. If you know how to compute coefficients in partial fractions
using Heaviside’s shortcut, then you already know how to find residues and poles.

A Key Example. Heaviside’s shortcut finds the coefficients c1 = 1
2 , c2 =

−5, c3 = 5
2 in the expansion

5− 2(s+ 2)(s+ 3)

(s+ 1)(s+ 2)(s+ 3)
=

c1
s+ 1

+
c2

s+ 2
+

c3
s+ 3

by clearing the fractions one at a time, each clearing followed by substitution of
the corresponding root found in the denominator.

For instance, to clear the fraction for c2 requires multiplication by (s+2), to give
the intermediate step (Heaviside did it mentally, writing nothing)

5− 2(s+ 2)(s+ 3)

(s+ 1)(s+ 3)
=

c1(s+ 2)

s+ 1
+

c2
1

+
c3(s+ 2)

s+ 3
.
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Root s = −2 of s+ 2 = 0 is substituted above to give c2 = −5.

Table 8. Working Definition of Pole and Residue

A pole is the same as a root of the denominator in a quotient
p(x)

q(x)
.

A residue is the same as a coefficient in the partial fraction expansion of the

quotient
p(x)

q(x)
(precise details below).

In the key example, the residue at pole s = −2 (the pole is the root of s+2 = 0)
is defined by the equation

lim
s→−2

(s+ 2)
5− (2(s+ 2)(s+ 3)

(s+ 1)(s+ 2)(s+ 3)
.

To evaluate the limit, cancel the common factor (s + 2) and substitute s = −2.
Oliver Heaviside would be surprised by the unnecessary limit.

Definition 8.4 (Poles and Residues)
A function f(z) of complex variable z has a pole at z = z0 provided there is an
integer n ≥ 0 such that g(z) = (z − z0)

nf(z) can be written as a power series

g(z) = g0 + g1(z − z0) + g2(z − z0)
2 + · · ·

convergent in a disk |z − z0| < R and g0 ̸= 0 (which means g(z0) ̸= 0).

The order of the pole is the integer n. The residue is g0.

If f(z) has a pole z = z0 of order n, then the residue g0 at the pole can be computed
from the limit formula

g0 = lim
z→z0

(z − z0)
nf(z).

In terms of series expansion, a pole of order n means that

f(z) =
g0

(z − z0)n
+ · · ·+ gn + gn+1(z − z0) + gn+2(z − z0)

2 + · · · ,

which is called a Laurent Series.

Table 9. Pole, Residue and Applications

A real pole defines the damping coefficient in a transient.

A complex pole on the imaginary axis describes frequency.

Residues are mode shape information.
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Examples and Methods

Example 8.26 (Partial Fractions I)

Show the details of the partial fraction expansion

s3 + 2s2 + 2s+ 5

(s− 1)(s2 + 4)(s2 + 2s+ 2)
=

2/5

s− 1
+

1/2

s2 + 4
− 1

10

7 + 4 s

s2 + 2 s+ 2
.

Solution:
Background. The problem originates as equality 5 = 6 in the sequence of Example
8.28, page 632, which solves for x(t) using the method of partial fractions:

5 L(x) = s3 + 2s2 + 2s+ 5

(s− 1)(s2 + 4)(s2 + 2s+ 2)

6 =
2/5

s− 1
+

1/2

s2 + 4
− 1

10

7 + 4 s

s2 + 2 s+ 2

College algebra detail. College algebra partial fractions theory says that there exist
real constants A, B, C, D, E satisfying the identity

s3 + 2s2 + 2s+ 5

(s− 1)(s2 + 4)(s2 + 2s+ 2)
=

A

s− 1
+

B + Cs

s2 + 4
+

D + Es

s2 + 2 s+ 2
.

As explained on page 621, the complex conjugate roots ±2i and −1±i are not represented
as terms c/(s − s0), but in the combined real form seen in the above display, which is
suited for use with Laplace tables.

The sampling method applies to find the constants. In this method, the fractions are
cleared to obtain the polynomial relation

s3 + 2s2 + 2s+ 5 = A(s2 + 4)(s2 + 2s+ 2)
+(B + Cs)(s− 1)(s2 + 2s+ 2)
+(D + Es)(s− 1)(s2 + 4).

The roots of the denominator (s− 1)(s2 + 4)(s2 + 2s+ 2) to be inserted into the previous
equation are s = 1, s = 2i, s = −1 + i. The conjugate roots s = −2i and s = −1− i are
not used. Each complex root generates two equations, by equating real and imaginary
parts, therefore there will be 5 equations in 5 unknowns. Substitution of s = 1, s = 2i,
s = −1 + i gives three equations

s = 1 10 = 25A,
s = 2i −4i− 3 = (B + 2iC)(2i− 1)(−4 + 4i+ 2),
s = −1 + i 5 = (D − E + Ei)(−2 + i)(2− 2(−1 + i)).

Writing each expanded complex equation in terms of its real and imaginary parts, ex-
plained in detail below, gives 5 equations

s = 1 2 = 5A,
s = 2i −3 = −6B + 16C,
s = 2i −4 = −8B − 12C,
s = −1 + i 5 = −6D − 2E,
s = −1 + i 0 = 8D − 14E.
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The equations are solved to give A = 2/5, B = 1/2, C = 0, D = −7/10, E = −2/5
(details for B, C below).

Complex equation to two real equations. It is an algebraic mystery how exactly
the complex equation

−4i− 3 = (B + 2iC)(2i− 1)(−4 + 4i+ 2)

gets converted into two real equations. The process is explained here.

First, the complex equation is expanded, as though it is a polynomial in variable i, to
give the steps

−4i− 3 = (B + 2iC)(2i− 1)(−2 + 4i)
= (B + 2iC)(−4i+ 2 + 8i2 − 4i) Expand.
= (B + 2iC)(−6− 8i) Use i2 = −1.
= −6B − 12iC − 8Bi+ 16C Expand, use i2 = −1.
= (−6B + 16C) + (−8B − 12C)i Convert to form x+ yi.

Next, the two sides are compared. Because B and C are real, then the real part of the
right side is (−6B + 16C) and the imaginary part of the right side is (−8B − 12C).
Equating matching parts on each side gives the equations

−6B + 16C = −3,
−8B − 12C = −4,

which is a 2× 2 linear system for the unknowns B, C.

Solving the 2 × 2 system. Such a system with a unique solution can be solved by
Cramer’s rule, matrix inversion or elimination. The answer: B = 1/2, C = 0.

The easiest method turns out to be elimination. Multiply the first equation by 4 and
the second equation by 3, then subtract to obtain C = 0. Then the first equation is
−6B + 0 = −3, implying B = 1/2.

Example 8.27 (Partial Fractions II)

Verify the partial fraction expansion

1
s5 + 8 s4 + 23 s3 + 31 s2 + 24 s+ 9

(s+ 1)2 (s2 + s+ 1)2
=

4

s+ 1
+

5− 3s

s2 + s+ 1
.

Solution:
Basic partial fraction theory implies that there are unique real constants a, b, c, d, e, f
satisfying the equation

s5 + 8 s4 + 23 s3 + 31 s2 + 24 s+ 9

(s+ 1)
2
(s2 + s+ 1)

2 =
a

s+ 1
+

b

(s+ 1)2

+
c+ ds

s2 + s+ 1
+

e+ f s

(s2 + s+ 1)2

Sanity checks apply when constructing the expansion. First, the number of real con-
stants is always the degree of the denominator, which is 6 in this example. This caused
the invention of 6 symbols a, b, c, d, e, f . Only real polynomials appear in the fraction

630



8.4 Heaviside’s Partial Fraction Method

denominators on the right. The following checkpoints are done mentally: we never in a
partial fraction problem write out such details:

s+ 1 divides (s+ 1)
2 (

s2 + s+ 1
)2

(s+ 1)2 divides (s+ 1)
2 (

s2 + s+ 1
)2

s2 + s+ 1 divides (s+ 1)
2 (

s2 + s+ 1
)2

(s2 + s+ 1)2 divides (s+ 1)
2 (

s2 + s+ 1
)2

The sampling method applies to clear fractions and replace the fractional equation by
the polynomial relation

s5 + 8 s4 + 23 s3 + 31 s2 + 24 s+ 9 = a(s+ 1)(s2 + s+ 1)2

+b(s2 + s+ 1)2

+(c+ ds)(s2 + s+ 1)(s+ 1)2

+(e+ f s)(s+ 1)2

However, the prognosis for the resultant algebra is grim: only three of the six required
equations can be obtained by substitution of the roots (s = −1, s = −1/2 + i

√
3/2)

of the denominator. The sampling idea is abandoned, because of the complexity of the
6× 6 system of linear equations required to solve for the six constants a through f .

Instead, the fraction R on the left of 1 is written with repeated factors extracted, as
follows:

R =
1

(s+ 1)(s2 + s+ 1)

(
p(s)

(s+ 1)(s2 + s+ 1)

)
,

p(s) = s5 + 8 s4 + 23 s3 + 31 s2 + 24 s+ 9.

Long division gives the formulas

p(s)

(s+ 1)(s2 + s+ 1)
= s2 + 6s+ 9,

R =
p(s)

(s+ 1)2(s2 + s+ 1)2
=

(s+ 3)2

(s+ 1)(s2 + s+ 1)
.

The simplified form of R has a partial fraction expansion

(s+ 3)2

(s+ 1)(s2 + s+ 1)
=

a

s+ 1
+

b+ cs

s2 + s+ 1

where a, b, c are real constants. Reuse of earlier symbols a, b, c, d, e, f has occurred,
similar to always using symbol x in a quadratic equation. Progress: the dimension of
the algebra problem went from 6× 6 to 3× 3.

Heaviside’s cover-up method gives a = 4. Applying Heaviside’s method again to the
quadratic factor implies the pair of equations

(s+ 3)2

s+ 1
= b+ cs, s2 + s+ 1 = 0.

These equations can be solved for b = 5, c = −3. The details assume that s is a root of
s2 + s+ 1 = 0, then

(s+ 3)2

s+ 1
= b+ cs The first equation.
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s2 + 6s+ 9

s+ 1
= b+ cs Expand.

−s− 1 + 6s+ 9

s+ 1
= b+ cs Use s2 + s+1 = 0.

5s+ 8 = (s+ 1)(b+ cs) Clear fractions.

5s+ 8 = bs+ cs+ b+ cs2 Expand again.

5s+ 8 = bs+ cs+ b− cs− c Use s2 + s+1 = 0.

Conclusion 5 = b and 8 = b − c follows because the last equation is linear but has two
complex roots. Solve: b = 5, c = −3.
Finally: a = 4, b = 5, c = −3, which verifies 1 .

Example 8.28 (Third Order Initial Value Problem)
Solve the third order initial value problem

x′′′ − x′′ + 4x′ − 4x = 5e−t sin t,
x(0) = 0, x′(0) = x′′(0) = 1.

Solution:
The answer is

x(t) =
2

5
et +

1

4
sin 2t− 3

10
e−t sin t− 2

5
e−t cos t.

Method. Apply L to the differential equation. In steps 1 to 3 the Laplace integral
of x(t) is isolated, by applying linearity of L, integration by parts L(f ′) = sL(f)− f(0)
and the basic Laplace table.

L(x′′′)− L(x′′) + 4L(x′)− 4L(x) = 5L(e−t sin t) 1

(s3L(x)− s− 1)− (s2L(x)− 1) + 4(sL(x))− 4L(x)= 5

(s+ 1)2 + 1
2

(s3 − s2 + 4s− 4)L(x) = 5
1

(s+ 1)2 + 1
+ s 3

Steps 5 and 6 use the college algebra theory of partial fractions, the details of which

appear in Example 8.26, page 629. Steps 7 and 8 write the partial fraction expansion

in terms of Laplace table entries. Step 9 converts the s-expressions, which are basic
Laplace table entries, into Laplace integral expressions. Algebraically, we replace s-
expressions by expressions in symbols L and t.

L(x) =
5

(s+1)2+1 + s

s3 − s2 + 4s− 4
4

=
s3 + 2s2 + 2s+ 5

(s− 1)(s2 + 4)(s2 + 2s+ 2)
5

=
2/5

s− 1
+

1/2

s2 + 4
− 1/10

7 + 4 s

s2 + 2 s+ 2
6

=
2/5

s− 1
+

1/2

s2 + 4
− 1/10

3 + 4(s+ 1)

(s+ 1)2 + 1
7

=
2/5

s− 1
+

1/2

s2 + 4
− 3/10

(s+ 1)2 + 1
− (2/5)(s+ 1)

(s+ 1)2 + 1
8
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= L
(
2

5
et +

1

4
sin 2t− 3

10
e−t sin t− 2

5
e−t cos t

)
9

The last step 10 applies Lerch’s cancellation theorem to L(x(t)) = 9 .

x(t) =
2

5
et +

1

4
sin 2t− 3

10
e−t sin t− 2

5
e−t cos t 10

Example 8.29 (Second Order System)
Solve for x(t) and y(t) in the 2nd order system of linear differential equations

2x′′ − x′ + 9x− y′′ − y′ − 3y = 0, x(0) = x′(0) = 1,
2′′ + x′ + 7x− y′′ + y′ − 5y = 0, y(0) = y′(0) = 0.

Solution: The answer is

x(t) =
1

3
et +

2

3
cos(2 t) +

1

3
sin(2 t),

y(t) =
2

3
et − 2

3
cos(2 t)− 1

3
sin(2 t).

Transform. The intent of steps 1 and 2 is to transform the initial value problem

into two equations in two unknowns. Used repeatedly in 1 is integration by parts

L(f ′) = sL(f)− f(0). No Laplace tables were used. In 2 the substitutions x1 = L(x),
x2 = L(y) are made to produce two equations in the two unknowns x1, x2.

(2s2 − s+ 9)L(x) + (−s2 − s− 3)L(y) = 1 + 2s,
(2s2 + s+ 7)L(x) + (−s2 + s− 5)L(y) = 3 + 2s,

1

(2s2 − s+ 9)x1 + (−s2 − s− 3)x2 = 1 + 2s,
(2s2 + s+ 7)x1 + (−s2 + s− 5)x2 = 3 + 2s.

2

Step 3 uses Cramer’s rule. Equations 2 are of the form ax1 + bx2 = e, cx1 + dx2 = f .
Cramer’s rule expresses answers x1, x2 by determinant fractions

x1 =

∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ , x2 =

∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .
The variable names x1, x2 stand for the Laplace integrals of the unknowns x(t), y(t),
respectively. The answers, following a tedious calculation:

x1 =
s2 + 2/3

s3 − s2 + 4 s− 4
,

x2 =
10/3

s3 − s2 + 4 s− 4
.

3

Step 4 writes each fraction resulting from Cramer’s rule as a partial fraction expansion

suited for backward Laplace table look-up (details after 6 ). Step 5 does the table

look-up and prepares for step 6 to apply Lerch’s cancellation law, in order to display
the answers x(t), y(t).
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
x1 =

1/3

s− 1
+

2

3

s

s2 + 4
+

1

3

2

s2 + 4
,

x2 =
2/3

s− 1
− 2

3

s

s2 + 4
− 1

3

2

s2 + 4
.

4


L(x(t)) = L

(
1

3
et +

2

3
cos(2 t) +

1

3
sin(2 t)

)
,

L(y(t)) = L
(
2

3
et − 2

3
cos(2 t)− 1

3
sin(2 t)

)
.

5


x(t) =

1

3
et +

2

3
cos(2 t) +

1

3
sin(2 t),

y(t) =
2

3
et − 2

3
cos(2 t)− 1

3
sin(2 t).

6

Partial fraction details. Shown below is how to obtain the expansion

s2 + 2/3

s3 − s2 + 4 s− 4
=

1/3

s− 1
+

2

3

s

s2 + 4
+

1

3

2

s2 + 4
.

The denominator s3 − s2 + 4 s− 4 factors into s−1 times s2+4. Partial fraction theory
implies that there is an expansion with real coefficients A, B, C of the form

s2 + 2/3

(s− 1)(s2 + 4)
=

A

s− 1
+

Bs+ C

s2 + 4
.

Let’s verify A = 1/3, B = 2/3, C = 2/3. Clear the fractions to obtain the polynomial
equation

s2 + 2/3 = A(s2 + 4) + (Bs+ C)(s− 1).

Instead of using s = 1 and s = 2i, which are roots of the denominator, invent samples
s = 1, s = 0, s = −1 to get a real 3× 3 system for A, B, C:

s = 1 : 1 + 2/3 = A(1 + 4) + 0,
s = 0 : 0 + 2/3 = A(4) + C(−1),
s = −1 : 1 + 2/3 = A(1 + 4) + (−B + C)(−2).

Write this system as an augmented matrix G with variables A, B, C assigned to the first
three columns of G:

G =

 5 0 0 5/3
4 0 −1 2/3
5 2 −2 5/3


Using computer assist, calculate

rref(G) =

 1 0 0 1/3
0 1 0 2/3
0 0 1 2/3


Then A, B, C are the last column entries of rref(G), which verifies the partial fraction
expansion.

Heaviside cover-up detail. It is possible to rapidly check that A = 1/3 using the
cover-up method. Less obvious is that the cover-up method also applies to the fraction
with complex roots.
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The idea is to multiply the fraction decomposition by s2+4 to partially clear the fractions
and then set s2+4 = 0. This process formally sets s equal to one of the two roots s = ±2i.
Complex numbers are avoided entirely by solving for B, C in the pair of equations

s2 + 2/3

s− 1
= A(0) + (Bs+ C), s2 + 4 = 0.

Because s2 = −4, the first equality is simplified to
−4 + 2/3

s− 1
= Bs + C. Swap sides of

the equation, then cross-multiply to obtain Bs2 + Cs − Bs − C = −10/3 and then use
s2 = −4 again to simplify to (−B + C)s + (−4B − C) = −10/3. Because this linear
equation in variable s has two solutions, then −B+C = 0 and −4B−C = −10/3. Solve
this 2× 2 system by elimination to obtain B = C = 2/3.

The algebraic method: First, find two equations in symbols s, B, C. Next, symbol s is
eliminated to give two equations in symbols B, C. Finally, the 2× 2 system for B, C is
solved.

Exercises 8.4 �

Partial Fraction Mistakes

1. How many real constants appear in the
partial fraction expansion of the frac-

tion
s+ 1

s2(s+ 2)(s+ 3)2
?

2. How many real constants appear
in the partial fraction expansion of

s+ 1

s2(s2 + 4)(s2 + 2s+ 5)2
?

3. Guido expanded
s+ 1

s(s+ 2)(s+ 3)2

to get
a

s
+

b

s+ 2
+

c

(s+ 3)2
.

What is the mistake?

4. Helena made this expansion:
s+ 1

s(s+ 2)
=
a

s
+

b

s+ 2
+

c

s+ 3
The expansion is correct! Explain how
you know that c = 0 without comput-
ing anything.
This example explains why fractions on the

right have denominators dividing the denom-

inator on the left.

5. Marco made an expansion:
s+ 1

s(s2 + 4)
=
a

s
+

b

s+ 2
+

c

s− 2
Explain why it is a mistake.

This example explains why sanity checks have

more than one item to check.

6. Violeta made an expansion
s+ 2

s(s− 2)(s+ 2)
=
a

s
+

b

s− 2
+

c

s+ 2
Explain why c = 0 without computing
anything.

This example explains why common factors

of numerator and denominator should be re-

moved.

7. Find the mistake in expansion
(s+ 2)2

s(s− 2)
=
a

s
+

b

s− 2
This example explains why the degree of the

numerator and denominator are checkpoints.

8. Is there a mistake here?
(s+ 2)2

s2(s− 2)
=
a

s
+

b

s2
+

c

s− 2

Sampling Method
Apply the sampling method (a failsafe
method) to verify the given equation.

9.
s

s2 − 1
=

1/2

s− 1
+

1/2

s+ 1

10.
s

s4 − 1
=

1/4

s− 1
+

1/4

s+ 1
+
−s/2
s2 + 1

Method of Atoms
Apply the method of atoms to verify the
given equation.

11.
2s

s2 − 1
=

1

s− 1
+

1

s+ 1
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12.
4s

s4 − 1
=

1

s− 1
+

1

s+ 1
+
−2s
s2 + 1

Heaviside’s 1890 Shortcut
Apply Heaviside’s shortcut to verify the
given equation.

13.
2s

s2 − 4
=

1

s− 2
+

1

s+ 2

14.
s+ 4

s3 + 4s
=
1

s
+
−s+ 1

s2 + 4

Residues and Poles
Compute the residue for the given pole.

15. Residue at s = 2 for
2s

s2 − 4
.

16. Residue at s = 0 for
s+ 4

s3 + 16s
.

Scalar Differential Equations
The transfer function of x′′ + x = f(t)
is H(s) = 1

s2+1 . A common definition is
H(s) = L(f(t)) divided by L(x(t)), assum-
ing x(0) = x′(0) = 0.

17. Verify for x′′ + x = e−t with x(0) = 0,
x′(0) = 0 that L(x)= 1

s+1
1

s2+1 . Then
compute H(s).

18. Explain the transfer function
equation
H(s) = 1

characteristic equation
.

19. Solve L(x(t))= 1
s+1

1
s2+1 by Heaviside

cover–up for output x(t) = 1
2 (e

−t −
cos t+ sin t).

20. Given x′′ + x = te−t, x(0) = x′(0) = 0,
show all steps to find
L(x(t)) = 1

(s+1)2
1

s2+1 .

First Order System
Using Example 8.29 as a guide, solve the
system for x1(t) by Laplace’s method.

21.

 x′
1=x2,

x′
2=4x1 + 12e−t,

x1(0)=x2(0)=0.

Ans: x1(t)=e2t + 3e−2t − 4e−t.

22.


x′
1=x2,

x′
2=x3,

x′
3=4x1 − 4x2 + x3 + 10e−t,

x1(0)=x2(0)=x3(0)=0.

Ans: x1(t)=et − e−t − sin(2t).

Second Order System
Using Example 8.29 as a guide, compute
x(t), y(t).

23. L(x(t))= 3s2+2
(s−1)(s2+4) ,

L(y(t))= 10
(s−1)(s2+4) .

Ans: x=2 cos(2t)+ sin(2t)+et,
y=− 2 cos(2t)− sin(2t)+2et

24. L(x(t))= 2s2+4
(s+1)(s2+1) ,

L(y(t))= 2
(s+1)(s2+1) .

Ans: x=− cos(t)+ sin(t)+3e−t,
y=− cos(t)+ sin(t)+e−t.
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8.5 Transform Properties

Collected here are the major theorems for the manipulation of Laplace transform
tables along with their derivations. Those who study in isolation are advised to
dwell on the details of proof and re-read the examples of preceding sections. No
exercises are appropriate and none are supplied.

Theorem 8.5 (Linearity)
The Laplace transform has these inherited integral properties:

(a) L(f(t) + g(t)) = L(f(t)) + L(g(t)),
(b) L(cf(t)) = cL(f(t)).

Theorem 8.6 (The t-Derivative Rule or Parts Rule)
Let y(t) be continuous, of exponential order and let y′(t) be piecewise continuous
on t ≥ 0. Then L(y′(t)) exists and

L(y′(t)) = sL(y(t))− y(0+).

Theorem 8.7 (The t-Integral Rule)
Let g(t) be of exponential order and continuous for t ≥ 0. Then

L
(∫ t

0 g(x) dx
)
=

1

s
L(g(t))

or equivalently

L(g(t)) = sL
(∫ t

0 g(x) dx
)

Theorem 8.8 (The s-Differentiation Rule)
Let f(t) be of exponential order. Then

L(tf(t)) = − d

ds
L(f(t)).

Theorem 8.9 (First Shifting Rule)
Let f(t) be of exponential order and −∞ < a <∞. Then

L(eatf(t)) = L(f(t))|s→(s−a) .

Theorem 8.10 (Second Shifting Rule)
Let f(t) and g(t) be of exponential order and assume a ≥ 0. Then

(a) L(f(t− a)H(t− a)) = e−asL(f(t)),
(b) L(g(t)H(t− a)) = e−asL(g(t+ a)).
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Theorem 8.11 (Periodic Function Rule)
Let f(t) be of exponential order and satisfy f(t+ P ) = f(t). Then

L(f(t)) =
∫ P
0 f(t)e−stdt

1− e−Ps
.

Theorem 8.12 (Convolution Rule)
Let f(t) and g(t) be of exponential order. Then

L(f(t))L(g(t)) = L
(∫ t

0
f(x)g(t− x)dx

)
.

Theorem 8.13 (Laplace at Infinity is Zero)
Let f(t) be of piecewise continuous and of exponential order. Then

lim
s→∞

L(f(t)) = 0.

Theorem 8.14 (Initial and Final Value Rules)
Let f(t) and f ′(t) be functions of exponential order. Then, when all indicated limits
exist,

1. f(0+) = lim
t→0+

f(t) = lim
s→∞

sL(f(t)),
2. f(∞) = lim

t→∞
f(t) = lim

s→0
sL(f(t)).

Initial and Final Value Pitfalls

In Theorem 8.14, impulses and higher order singularities at t = 0 are disallowed,
because hypotheses require sL(f(t)) to be bounded.

Examples f(t) = sin t and f(t) = et don’t satisfy hypotheses for 2 because f(∞)
is undefined, but 1 applies for both examples.

A pole, defined precisely on page 628, is a root of the denominator in a fraction
F (s) = L(f(t)). The location of the poles influences the possibility of using
Theorem 8.14:

If there are poles in the right s-plane, then f(t) will contain exponentially
growing terms, which implies f(∞) does not exist.

If there are pairs of complex conjugate poles on the imaginary axis, then
f(t) will contain sinusoids and f(∞) is not defined.

Poles in the left s-plane contribute exponentially decaying terms to f(t)
which do not affect the final value.

Signal f(t) has possibly a constant final value, the steady state of the
signal, only when there are poles at the origin of the s-plane.
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Proofs and Details

Proof of Theorem 8.5 (Linearity):

LHS = L(f(t) + g(t)) Left side of the identity in (a).

=
∫∞
0

(f(t) + g(t))e−stdt Direct transform.

=
∫∞
0

f(t)e−stdt+
∫∞
0

g(t)e−stdt Calculus integral rule.

= L(f(t)) + L(g(t)) Equals RHS; identity (a) verified.

LHS = L(cf(t)) Left side of the identity in (b).

=
∫∞
0

cf(t)e−stdt Direct transform.

= c
∫∞
0

f(t)e−stdt Calculus integral rule.

= cL(f(t)) Equals RHS; identity (b) verified.

Proof of Theorem 8.6 (t-Derivative or parts rule): Already L(f(t)) exists, because
f is of exponential order and continuous. On an interval [a, b] where f ′ is continuous,
integration by parts using u = e−st, dv = f ′(t)dt gives∫ b

a
f ′(t)e−stdt = f(t)e−st|t=b

t=a −
∫ b

a
f(t)(−s)e−stdt

= −f(a)e−sa + f(b)e−sb + s
∫ b

a
f(t)e−stdt.

On any interval [0, N ], there are finitely many intervals [a, b] on each of which f ′ is
continuous. Add the above equality across these finitely many intervals [a, b]. The
boundary values on adjacent intervals match and the integrals add to give∫ N

0

f ′(t)e−stdt = −f(0+)e0 + f(N)e−sN + s

∫ N

0

f(t)e−stdt.

Take the limit across this equality as N → ∞. Then the right side has limit −f(0) +
sL(f(t)), because of the existence of L(f(t)) and limt→∞ f(t)e−st = 0 for large s.
Therefore, the left side has a limit, and by definition L(f ′(t)) exists and L(f ′(t)) =
−f(0) + sL(f(t)).

Proof of Theorem 8.7 (t-Integral rule): Let f(t) =
∫ t

0
g(x)dx. Then f is of expo-

nential order and continuous. The details:

L(
∫ t

0
g(x)dx) = L(f(t)) By definition.

=
1

s
L(f ′(t)) Because f(0) = 0 implies L(f ′(t)) = sL(f(t)).

=
1

s
L(g(t)) Because f ′ = g by the Fundamental theorem of

calculus.

Proof of Theorem 8.8 (s-Differentiation): Let’s prove L((−t)f(t)) = (d/ds)L(f(t)),
an equivalent relation. If f is of exponential order, then so is (−t)f(t), therefore
L((−t)f(t)) exists. It remains to show the s-derivative exists and satisfies the given
equality.

The proof below is based in part upon the calculus inequality∣∣e−x + x− 1
∣∣ ≤ x2, x ≥ 0.(1)
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The inequality is obtained from two applications of the mean value theorem g(b)−g(a) =
g′(x)(b− a), which gives e−x + x− 1 = xxe−x1 with 0 ≤ x1 ≤ x ≤ x.

In addition, the existence of L(t2|f(t)|) is used to define s0 > 0 such that L(t2|f(t)|) ≤ 1
for s > s0. This follows from the transform existence theorem for functions of exponential
order, where it is shown that the transform has limit zero at s =∞. See also the proof
of Theorem 8.13.

Consider h ̸= 0 and the Newton quotient Q(s, h) = (F (s + h) − F (s))/h for the s-
derivative of the Laplace integral. We have to show that

lim
h→0
|Q(s, h)− L((−t)f(t))| = 0.

This will be accomplished by proving for s > s0 and s+ h > s0 the inequality

|Q(s, h)− L((−t)f(t))| ≤ |h|.

For h ̸= 0,

Q(s, h)− L((−t)f(t)) =
∫ ∞

0

f(t)
e−st−ht − e−st + the−st

h
dt.

Assume h > 0. Due to the exponential rule eA+B = eAeB , the quotient in the integrand
simplifies to give

Q(s, h)− L((−t)f(t)) =
∫ ∞

0

f(t)e−st

(
e−ht + th− 1

h

)
dt.

Inequality (1) applies with x = ht ≥ 0, giving

|Q(s, h)− L((−t)f(t))| ≤ |h|
∫ ∞

0

t2|f(t)|e−stdt.

The right side is |h|L(t2|f(t)|), which for s > s0 is bounded by |h|, completing the proof
for h > 0. If h < 0, then a similar calculation is made to obtain

|Q(s, h)− L((−t)f(t))| ≤ |h|
∫ ∞

0

t2|f(t)|e−st−htdt.

The right side is |h|L(t2|f(t)|) evaluated at s + h instead of s. If s + h > s0, then the
right side is bounded by |h|, completing the proof for h < 0.

Proof of Theorem 8.9 (First Shifting Rule): The left side LHS of the equality can
be written because of the exponential rule eAeB = eA+B as

LHS =

∫ ∞

0

f(t)e−(s−a)tdt.

This integral is L(f(t)) with s replaced by s − a, which is precisely the meaning of the
right side RHS of the equality. Therefore, LHS = RHS.

Proof of Theorem 8.10 (Second Shifting Rule): The details for (a) are

LHS = L(H(t− a)f(t− a))

=
∫∞
0

H(t− a)f(t− a)e−stdt Direct transform.
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=
∫∞
a

H(t− a)f(t− a)e−stdt Because a ≥ 0 and H(x) = 0 for x < 0.

=
∫∞
0

H(x)f(x)e−s(x+a)dx Change variables x = t− a, dx = dt.

= e−sa
∫∞
0

f(x)e−sxdx Use H(x) = 1 for x ≥ 0.

= e−saL(f(t)) Direct transform.

= RHS Identity (a) verified.

In the details for (b), let f(t) = g(t+ a), then

LHS = L(H(t− a)g(t))

= L(H(t− a)f(t− a)) Use f(t− a) = g(t− a+ a) = g(t).

= e−saL(f(t)) Apply (a).

= e−saL(g(t+ a)) Because f(t) = g(t+ a).

= RHS Identity (b) verified.

Proof of Theorem 8.11 (Periodic Function Rule):

LHS = L(f(t))
=
∫∞
0

f(t)e−stdt Direct transform.

=
∑∞

n=0

∫ nP+P

nP
f(t)e−stdt Additivity of the integral.

=
∑∞

n=0

∫ P

0
f(x+ nP )e−sx−nPsdx Change variables t = x+ nP .

=
∑∞

n=0 e
−nPs

∫ P

0
f(x)e−sxdx Because f(x) is P–periodic and eAeB =

eA+B .

=
∫ P

0
f(x)e−sxdx

∑∞
n=0 r

n The summation has a common factor. De-
fine r = e−Ps.

=
∫ P

0
f(x)e−sxdx

1

1− r
Sum the geometric series.

=

∫ P

0
f(x)e−sxdx

1− e−Ps
Substitute r = e−Ps.

= RHS Periodic function identity verified.

Left unmentioned here is the convergence of the infinite series on line 3 of the proof,
which follows from f of exponential order.

Proof of Theorem 8.12 (Convolution rule): The details use Fubini’s integration
interchange theorem for a planar unbounded region, and therefore this proof involves
advanced calculus methods that may be outside the background of the reader. Modern
calculus texts contain a less general version of Fubini’s theorem for finite regions, usually
referenced as iterated integrals. The unbounded planar region is written in two ways:

D = {(r, t) : t ≤ r <∞, 0 ≤ t <∞},
D = {(r, t) : 0 ≤ r <∞, 0 ≤ r ≤ t}.

Readers should pause here and verify that D = D.
The change of variable r = x+ t, dr = dx is applied for fixed t ≥ 0 to obtain the identity

e−st
∫∞
0

g(x)e−sxdx =
∫∞
0

g(x)e−sx−stdx

=
∫∞
t

g(r − t)e−rsdr.
(2)

The left side of the convolution identity is expanded as follows:
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LHS = L(f(t))L(g(t))
=
∫∞
0

f(t)e−stdt
∫∞
0

g(x)e−sxdx Direct transform.

=
∫∞
0

f(t)
∫∞
t

g(r − t)e−rsdrdt Apply identity (2).

=
∫
D
f(t)g(r − t)e−rsdrdt Fubini’s theorem applied.

=
∫
D f(t)g(r − t)e−rsdrdt Descriptions D and D are the same.

=
∫∞
0

∫ r

0
f(t)g(r − t)dte−rsdr Fubini’s theorem applied.

Then

RHS = L
(∫ t

0
f(u)g(t− u)du

)
=
∫∞
0

∫ t

0
f(u)g(t− u)due−stdt Direct transform.

=
∫∞
0

∫ r

0
f(u)g(r − u)due−srdr Change variable names r ↔ t.

=
∫∞
0

∫ r

0
f(t)g(r − t)dt e−srdr Change variable names u↔ t.

= LHS Convolution identity verified.

Proof of Theorem 8.13 (Laplace at Infinity is Zero): Assumed is an inequality
|f(t)| ≤Mekt for some constants M ≥ 0 and k. Then∣∣∣∣∣

∫ N

0

f(t)e−stdt

∣∣∣∣∣ ≤
∫ N

0

|f(t)|e−stdt ≤M

∫ N

0

e−(s−k)tdt.

The integral on the right is estimated for s > k and all N ≥ 0 as follows:∫ N

0

e−(s−k)tdt =
1− e−(s−k)N

s− k
≤ 1

s− k
.

Limiting as N → ∞ across the chained inequalities implies the fundamental estimate
|L(f(t))| ≤ M

s−k , s > k, therefore lims→∞ L(f(t)) = 0.

Proof of Theorem 8.14 (Initial and Final Values):
1 : Write L(f ′(t)) in two ways: (1) L(f ′(t)) = sL(f(t))−f(0+) using the parts formula,
and (2) L(f ′(t)) =

∫∞
0

f ′(t)e−stdt, using the direct Laplace definition.

A high-powered calculus theorem is needed to tell us that the integral on the right
in (2) has limit as s → 0+ equal to

∫∞
0

f ′(t)(1)dt = f(t)|t=∞
t=0 = f(∞) − f(0+).

The needed result is Lebesgue’s Bounded Convergence Theorem, which says that un-
der certain conditions (met by the assumed hypotheses here) limn→∞

∫∞
0

fn(t)dt =∫∞
0

(limn→∞ fn(t)) dt. We take fn(t) = f ′(t)e−snt where {sn} is any sequence of positive
numbers with limit zero.

Assembling the two ways to write L(f ′(t)) implies lims→0+ sL(f(f))− f(0) = f(∞)−
f(0+). Cancel f(0+) from each side of this identity. Then lims→0+ sL(f(t)) = f(∞).

2 : Theorem 8.13 implies L(f ′(t)) has limit zero as s→∞. Limit as s→∞ across the
parts formula L(f ′(t)) = sL(f(t))−f(0+) to obtain the limit lims→∞ sL(f(t))−f(0+) =
0, which is the claimed identity.
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Exercises 8.5 �

There are no exercises for this section. The
content is exclusively statements of theo-
rems and proofs, for the following theo-
rems.

Linearity

The t-Derivative Rule or Parts Rule

The t-Integral Rule

The s-Differentiation Rule

First Shifting Rule

Second Shifting Rule

Periodic Function Rule

Convolution Rule

Initial and Final Value Rules
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8.6 Heaviside Step and Dirac Impulse

Heaviside Function

The unit step function u(t) is distinguished from the more precise clone called
the Heaviside function H(t), which is undefined at t = 0. The definitions:

u(t) =


1 for t > 0,
1 for t = 0,
0 for t < 0,

H(t) =


1 for t > 0,
undefined for t = 0,
0 for t < 0.

Functions 1,u(t), H(t) agree for t > 0 because all functions in Laplace theory are
assumed zero for t < 0.

An often–used formula involving the unit step function is the characteristic
function of the interval a ≤ t < b, or unit pulse:

pulse(t, a, b) = u(t− a)− u(t− b) =

{
1 a ≤ t < b,
0 otherwise.

(1)

To illustrate, a square wave sqw(t) = (−1)floor(t) can be written in the series
form

∑∞
n=0(−1)n pulse(t, n, n+ 1) as a pulse train.9

Trouble at t = 0. Computer algebra systems like maple distinguish between the
piecewise-defined unit step function and the Heaviside function. The Heaviside
function H(t) is left undefined at t = 0, whereas the unit step is defined every-
where. This seemingly minor distinction makes more sense when taking formal
derivatives. On the domain t ̸= 0 of H, the ordinary calculus derivative dH/dt
is defined and equals zero. In contrast, u(t) on its domain −∞ < t <∞ fails to
have a derivative at one point: t = 0.

Fundamental Theorem of Calculus. Calculus rule
∫ b
a f ′(t)dt = f(b) − f(a)

fails for f = H, due to integrand f ′(t) = dH/dt = 0. Riemann and Stieltjes
filled the gap in the theory by providing a new definition of integral and corre-
sponding theory of integration, these days called Riemann–Stieltjes Integra-
tion. In their theory, integral

∫ b
a

dH
dt dt makes sense and

∫ b
a

dH
dt dt = H(b)−H(a).

Riemann–Stieltjes theory will be used to explain a contribution of Paul Dirac
(1902-1984) to Laplace theory called the Dirac impulse, denoted δ in the liter-
ature.

Dirac Impulse

Following the 1932 work of Paul A. M. Dirac the definition should be

δ(t) =
d

dt
u(t).

9A square wave resembles a train of boxcars.
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8.6 Heaviside Step and Dirac Impulse

One year after Dirac introduced impulse δ, he received the Nobel Prize in physics
for his quantum theory work. Laurent Schwartz later justified mathematically
the use of δ.

A precise mathematical definition of the Dirac impulse is δ(t) = du(t), where
u(t) is the unit step and du(t)/dt has meaning under the integral sign in a
Riemann-Stieltjes integral. This definition restrains du(t) to have meaning only
under an integral sign. It is in this sense that the Dirac impulse δ is defined.10

Dirac Impulse in Applications. What is the meaning of the differential
equation

x′′ + 16x = 5δ(t− t0)?

The equation x′′+16x = f(t) represents an undamped spring-mass system having
Hooke’s constant 16, subject to external force f(t). In a mechanical context,
the Dirac impulse term 5δ(t − t0) is an idealization of a hammer-hit at time
t = t0 > 0 with impulse 5. The hammer-hit injects energy into the system
almost instantaneously.

Forcing term f(t) in x′′ + 16x = f(t) can be formally written as a Riemann-
Stieltjes integrator 5 du(t − t0) where u is the unit step function: u(t) = 1 on
t ≥ 0, else u(t) = 0.

The Dirac impulse or derivative of the unit step, nonsensical as it may ap-
pear, is realized in applications via the two–sided or central difference quotient
u(t+ h)− u(t− h)

2h
≈ du(t). Given t0, let a = t0 − h, b = t0 + h for h > 0 very

small. A simplistic approximation for ideal impulse 5δ(t − t0) is given by the
central difference approximation

5

2h

{
1 a ≤ t < b
0 else

= 5
u(t− a)− u(t− b)

b− a

=
5

b− a
pulse(t, a, b)

The impulse11 of the actual force f is therefore approximated by∫ ∞

−∞
f(t) dt ≈ 5

∫ b

a

1

b− a
pulse(t, a, b) dt = 5,

due to the integrand being 1/(b− a) on a ≤ t < b and otherwise 0.

10The definition of the Dirac Impulse by Laurent Schwartz uses Lebesgue integration theory.
In differential equations applications, the Riemann–Stieltjes definition δ(t) = du(t) suffices, with
an unremarkable quantity of exceptions. The presentation here requires a calculus background
but no Lebesgue theory background.

11Momentum is defined to be mass times velocity. If the force f is given by Newton’s law as
f(t) = d

dt
(mv(t)) and v(t) is velocity, then

∫ b

a
f(t)dt = mv(b)−mv(a) is the net momentum or

impulse on [a, b].
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Modeling Impulses

One argument for the Dirac impulse idealization is that an infinity of choices exist
for modeling an impulse. There are in addition to the central difference quotient
two other popular difference quotients, the forward quotient (u(t+ h)− u(t))/h
and the backward quotient (u(t)− u(t− h))/h (h > 0 assumed). In reality, h is
unknown in any application, and the impulsive force of a hammer hit is hardly
constant, as is supposed by this naive modeling.

The modeling logic often applied for the Dirac impulse is that the external force
f(t) will be used in the model in a limited manner, in which only the momentum
p = mv is important. More precisely, only the change in momentum or impulse
is important,

∫ b
a f(t)dt = ∆p = mv(b)−mv(a).

The precise force f(t) is replaced during the modeling by a simplistic piecewise–
defined force that has exactly the same impulse ∆p. The replacement is justified
by arguing that if only the impulse is important, and not the actual details of the
force, then both models should give similar results. Most of the intuition for this
modeling magic comes from investigation of two models: (1) f(t) is piecewise–
defined and depends on h, (2) f(t) is an idealized Dirac impulse. The result
of the investigation is that answers from (1) converge as h → 0 to the single
idealized answer from (2).

Impulses in Differential Equations. In Laplace theory, there is a natural
encounter with Dirac’s ideas, because L(f(t)) routinely appears on the right of
the equation after transformation. Let a = t0 − h, b = t0 + h for small h > 0.
Then 2h = b − a. Assume t0 > 0 and t0 − h > 0 for the purpose of illustration.
If the input f(t) is a simplistic impulsive force of impulse c, then representation
f(t) = c

b−a pulse(t, a, b) permits a direct computation of the impulse:

impulse =

∫ ∞

−∞
f(t)dt =

∫ b

a

c

b− a
pulse(t, a, b)dt = c.

The Laplace integral L(f(t)) evaluates as follows:

L(f(t)) =
∫∞
0 f(t)e−stdt

=
∫ b
a

c
b−a pulse(t, a, b)e

−stdt

=
∫ b
a

c
b−a(1)e

−stdt

= c
b−a

(
e−sa−e−sb

−s

)
1

= c e−sh−esh

2sh e−s t0 2

≈ ce−s t0 3

1 : Factor the constant c
b−a outside the integral, use the definition of pulse, then

integrate the exponential.
2 : Replace a = t0 − h, b = t0 + h, simplify, then collect denominator factors s
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and 2h = b− a.
3 : As h→ 0, factor esh−e−sh

2sh converges to 1 because of L’Hôspital’s rule applied

to ex−e−x

2x at x = 0.

Mathematical Flaw. The immediate naive modeling conclusion is that the
simplistic impulsive force f should be replaced by an equivalent one f∗ such that

L(f∗(t)) = c e−s t0 .

Unfortunately, there is no such function f∗!

The apparent mathematical flaw in this idea was resolved by the work of Laurent
Schwartz on distributions. In short, there is a solid foundation for introducing
f∗, but unfortunately the mathematics involved is not elementary nor especially
accessible to those readers whose background is just calculus.12 The theory of
distributions provides a resolution of the mathematical flaw:

L(c δ(t− t0)) = c e−s t0 .

It is mistake to write f∗(t) = c δ(t− t0) and call f∗ a function, because it is not.
Expression f∗ makes sense only under an integral sign.

Function or Operator? The work of physics Nobel prize winner Paul Dirac
(1902–1984) proceeded for about 15 years before the mathematical community
developed a sound mathematical theory for his impulsive force representations. A
systematic theory was developed in 1936 by the Soviet mathematician S. Sobolev.
The French mathematician Laurent Schwartz further developed the theory in
1945. He observed that the idealization δ is not a function but an operator or
linear functional, in particular, δ maps or associates to each function ϕ(t) its
value at t = 0, in short, δ(ϕ) = ϕ(0). This fact was observed early on by Dirac
and others, during the replacement of simplistic forces by δ.

Laplace Theory and the Dirac Impulse. When Laplace theory manipulates
the Dirac impulse δ, it does so by obeying the under the integral sign rule. The
good news is that answers can be calculated formally, as though f∗ was a func-
tion. What are we to do when applying the formal rules? We think of δ(t− t0)
as a simplistic impulse given on an interval [a, b] that shrinks to t0. A simplis-
tic impulse is a function! Laplace theory provides a transition from simplistic
impulse modeling to idealized Dirac impulse.

12Practising engineers and scientists might be able to ignore the vast literature on distribu-
tions, citing the example of physicist Paul Dirac, who succeeded in applying impulsive force
ideas without the distribution theory developed by S. Sobolev and L. Schwartz. Those who
wish to read current literature on partial differential equations have no such luxury, because the
work on distributions has forever changed the required background for reading new literature.

647



8.6 Heaviside Step and Dirac Impulse

Properties of the Dirac Impulse

Theorem 8.15 (Fundamental Identities for Dirac δ)
Let u(t) denote the unit step function. Define δ(t) = du(t) as a Riemann–Stieltjes
integrator. Let g(t) be piecewise continuous and a ≥ 0. Then

(1)

∫ ∞

−∞
δ(t)dt = 1, meaning

∫∞
−∞ du(t) = 1

(2)

∫ ∞

−∞
g(t)δ(t− a)dt = g(a+), meaning

∫∞
−∞ g(t)du(t− a) = g(a+)

(3) L(δ(t− a)) = e−s a, meaning
∫∞
0 e−st du(t− a) = e−s a.

Proof:
Symbol g(a+) means limh→0+ g(a+ h), the right–hand limit at t = a.

Property (1) follows from property (2) by choosing g(t) = u(t) and a = 0.

Property (3) follows from property (2) by choosing g(t) = u(t).

Details (2): The definition of the Dirac impulse is a formal one, in which every occurrence
of δ(t−a)dt under an integrand is replaced by du(t−a). The differential symbol du(t−a)
is taken in the sense of the Riemann-Stieltjes integral, which is defined in Rudin [Rudin]
for monotonic integrators α(x) as∫ b

a

f(x)dα(x) = lim
N→∞

N∑
n=1

f(xn)(α(xn)− α(xn−1)).

Required in the definition: x0 = a, xN = b and x0 < x1 < · · · < xN forms a partition
of [a, b] whose mesh max{|xj − xj−1| : 1 ≤ j ≤ N} approaches zero as N → ∞. Used
exclusively here is nondecreasing integrator α = u, the unit step.

Steps below verify that the left and right sides in (2) are equal.

LHS = L(g(t)δ(t− a)) Left side of (2).

=
∫∞
0

g(t)e−stδ(t− a)dt Laplace integral, a ≥ 0 assumed.

=
∫∞
0

g(t)e−stdu(t− a) Replace δ(t− a)dt by du(t− a).

= lim
M→∞

∫M

0
g(t)e−stdu(t− a) Definition of improper integral.

= g(a)e−sa Explained below.

= RHS Property (2) verified.

To explain the last step, apply the definition of the Riemann-Stieltjes integral to α = u
with given partition 0 = t0 < t1 < · · · < tN = M of [0,M ], M a large positive number.
It is assumed that the mesh approaches zero as N →∞. Then∫ M

0

g(t)e−stdu(t− a) = lim
N→∞

N−1∑
n=0

g(tn)e
−stn(u(tn − a)− u(tn−1 − a))

Given point a satisfying 0 ≤ a < M , then this point has to lie in exactly one interval:
tn−1 ≤ a < tn. Then u(tn − a)− u(tn−1 − a) = 1 and for all other intervals this factor
is zero. The sum reduces to a single term g(tn)e

−s tn . This term limits to g(a+) e−sa as
N →∞, because tn limits to a from the right. ■
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Exercises 8.6 �

Unit Step and Heaviside

1. The unit step u(t) is defined on the
whole real line. Is it piecewise continu-
ous on the whole line?

2. Is there a continuous function on the
real line that agrees with the Heaviside
function except at t = 0?

3. The piecewise continuous function
pulse(t, a, b) is defined everywhere. Re-
define pulse(t, a, b) using H(t) instead
of u(t).

4. Write f(t) = floor(t)u(t) as a sum
of terms, each of which has the form
g(t)pulse(t, a, b).

Dirac Impulse

5. Verify
∫∞
−∞

pulse(t,a,b)
b−a dt = 1.

6. Verify by direct integration that f(t) =
10 pulse(t,−0.001, 0.001) represents a
simple impulse of 10 at t = 0 of du-
ration 0.002. Graph it without using
technology.

7. Find L(δ(t− 1) + δ(t− 2)).

8. Find L(10 δ(t− 1)− 5 δ(t− 2)).

9. Solve for f(t) in terms of δ:
L(f(t)) = 10e−s

10. Solve for f(t) in terms of δ:
L(f(t)) = 10e−s + s

s2+1 e
−2s

11. Find L
(∑10

n=1(1 + n)δ(t− n)
)
.

12. A sequence of camshaft impulses hap-
pening periodically in a finite time
interval have transform L(f(t)) =∑N

i=1 e−ci s. Find the idealized impulse
train f .

Riemann–Stieltjes Integral
Evaluate the integrals either directly from
the definition or else by using Theorem
8.15.

13.
∫ 2

0
du(t− 1)

14.
∫∞
0

du(t− 2)

15.
∫ 2

0
tanh(t2 + 1) du(t− 1)

16.
∫∞
0

t
1+t2 du(t− 2)
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8.7 Laplace Table Derivations

Verified here are two Laplace tables: the minimal Laplace Table 7.2-4 and its
extension Table 7.2-6. This section is for reading, designed to enrich lectures and
to aid those who study in isolation. Due to density of proof details, there are no
exercises.

Derivation of Laplace integral formulas in Table 7.2-4, page 601.

• Proof of L(tn) = n!/s1+n:

The first step is to evaluate L(tn) for n = 0.

L(1) =
∫∞
0

(1)e−stdt Laplace integral of f(t) = 1.

= −(1/s)e−st|t=∞
t=0 Evaluate the integral.

= 1/s Assumed s > 0 to evaluate limt→∞ e−st.

The value of L(tn) for n = 1 can be obtained by s-differentiation of the relation L(1) =
1/s, as follows.

d
dsL(1) =

d
ds

∫∞
0

(1)e−stdt Laplace integral for f(t) = 1.

=
∫∞
0

d
ds (e

−st) dt Used d
ds

∫ b

a
Fdt =

∫ b

a
dF
ds dt.

=
∫∞
0

(−t)e−stdt Calculus rule (eu)′ = u′eu.

= −L(t) Definition of L(t).

Then

L(t) = − d
dsL(1) Rewrite last display.

= − d
ds (1/s) Use L(1) = 1/s.

= 1/s2 Differentiate.

This idea can be repeated to give L(t2) = − d
dsL(t) and hence L(t2) = 2/s3. The pattern

is L(tn) = − d
dsL(t

n−1) which gives L(tn) = n!/s1+n.

• Proof of L(eat) = 1/(s− a):

The result follows from L(1) = 1/s, as follows.

L(eat) =
∫∞
0

eate−stdt Direct Laplace transform.

=
∫∞
0

e−(s−a)tdt Use eAeB = eA+B .

=
∫∞
0

e−Stdt Substitute S = s− a.

= 1/S Apply L(1) = 1/s.

= 1/(s− a) Back-substitute S = s− a.

• Proof of L(cos bt) = s/(ss + b2) and L(sin bt) = b/(ss + b2):

Use will be made of Euler’s formula eiθ = cos θ + i sin θ, usually first introduced in
trigonometry. In this formula, θ is a real number in radians and i =

√
−1 is the complex

unit.
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eibte−st = (cos bt)e−st + i(sin bt)e−st Substitute θ = bt into Euler’s formula and
multiply by e−st.∫∞

0
e−ibte−stdt =

∫∞
0

(cos bt)e−stdt

+ i
∫∞
0

(sin bt)e−stdt

Integrate t = 0 to t =∞. Then use prop-
erties of integrals.

1

s− ib
=
∫∞
0

(cos bt)e−stdt

+ i
∫∞
0

(sin bt)e−stdt

Evaluate the left hand side using L(eat) =
1/(s− a), a = ib.

1

s− ib
= L(cos bt) + iL(sin bt) Direct Laplace transform definition.

s+ ib

s2 + b2
= L(cos bt) + iL(sin bt) Use complex rule 1/z = z/|z|2, z = A +

iB, z = A− iB, |z| =
√
A2 +B2.

s

s2 + b2
= L(cos bt) Extract the real part.

b

s2 + b2
= L(sin bt) Extract the imaginary part.

Derivation of Laplace integral formulas in Table 7.2-6, page 602.

• Proof of the Heaviside formula L(u(t− a)) = e−as/s.

L(u(t− a)) =
∫∞
0

u(t− a)e−stdt Direct Laplace transform. Assume a ≥ 0.

=
∫∞
a

(1)e−stdt Because u(t− a) = 0 for 0 ≤ t < a.

=
∫∞
0

(1)e−s(x+a)dx Change variables t = x+ a.

= e−as
∫∞
0

(1)e−sxdx Constant e−as moves outside integral.

= e−as(1/s) Apply L(1) = 1/s.

• Proof of the Dirac impulse formula L(δ(t− a)) = e−as.

The definition of the Dirac impulse is a formal one, in which every occurrence of δ(t−a)dt
under an integrand is replaced by du(t− a). The differential symbol du(t− a) is taken
in the sense of the Riemann-Stieltjes integral. This integral is defined in Rudin [Rudin]
for monotonic integrators α(x) as the limit∫ b

a

f(x)dα(x) = lim
N→∞

N∑
n=1

f(xn)(α(xn)− α(xn−1))

where x0 = a, xN = b and x0 < x1 < · · · < xN forms a partition of [a, b] whose mesh
approaches zero as N → ∞. Instance α(x) = x duplicates the theory of the Riemann
integral in calculus.

The steps in computing the Laplace integral of the Dirac impulse appear below. Ad-
mittedly, the proof requires advanced calculus skills and a certain level of mathematical
maturity. The reward is a fuller understanding of the Dirac symbol δ(x). More details
and further properties of the Dirac impulse can be found in Section 8.6, page 648.

L(δ(t− a)) =
∫∞
0

e−stδ(t− a)dt Laplace integral, a ≥ 0 assumed.

=
∫∞
0

e−stdu(t− a) Replace δ(t− a)dt by du(t− a).

= limM→∞
∫M

0
e−stdu(t− a) Definition of improper integral.

= e−sa Explained below.
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To explain the last step, apply the definition of the Riemann-Stieltjes integral:∫ M

0

e−stdu(t− a) = lim
N→∞

N−1∑
n=0

e−stn(u(tn − a)− u(tn−1 − a))

where 0 = t0 < t1 < · · · < tN = M is a partition of [0,M ] whose mesh max1≤n≤N (tn −
tn−1) approaches zero as N →∞. Given a partition, then point a in 0 ≤ a < M lies in
exactly one interval: tn−1 ≤ a < tn. By the definition of unit step, u(tn − a)−u(tn−1−
a) = 1, while for any other interval this factor is zero. Therefore, the sum reduces to a
single term e−s tn . This term approaches e−s a as N →∞, because tn must approach a
from the right.

• Proof of L(floor(t/a)) = e−as

s(1− e−as)
:

The library function floor present in computer languages C and Fortran is defined by
floor(x) = greatest whole integer ≤ x, e.g., floor(5.2) = 5 and floor(−1.9) = −2. The
computation of the Laplace integral of floor(t) requires ideas from infinite series, as
follows.

F (s) =
∫∞
0

floor(t)e−stdt Laplace integral definition.

=
∑∞

n=0

∫ n+1

n
(n)e−stdt On n ≤ t < n+ 1, floor(t) = n.

=
∑∞

n=0

n

s
(e−ns − e−ns−s) Evaluate each integral.

=
1− e−s

s

∑∞
n=0 ne

−sn Common factor removed.

=
x(1− x)

s

∑∞
n=0 nx

n−1 Define x = e−s.

=
x(1− x)

s

d

dx

∑∞
n=0 x

n Term-by-term differentiation.

=
x(1− x)

s

d

dx

1

1− x
Geometric series sum.

=
x

s(1− x)
Compute the derivative, simplify.

=
e−s

s(1− e−s)
Substitute x = e−s.

To evaluate the Laplace integral of floor(t/a), a change of variables is made.

L(floor(t/a)) =
∫∞
0

floor(t/a)e−stdt Laplace integral definition.

= a
∫∞
0

floor(r)e−asrdr Change variables t = ar.

= aF (as) Apply the formula for F (s).

=
e−as

s(1− e−as)
Simplify.

• Proof of L(sqw(t/a)) = 1

s
tanh(as/2):

The square wave defined by sqw(x) = (−1)floor(x) is periodic of period 2 and piecewise-

defined. Let P =
∫ 2

0
sqw(t)e−stdt.
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P =
∫ 1

0
sqw(t)e−stdt+

∫ 2

1
sqw(t)e−stdt Apply

∫ b

a
=
∫ c

a
+
∫ b

c
.

=
∫ 1

0
e−stdt−

∫ 2

1
e−stdt Use sqw(x) = 1 on 0 ≤ x < 1 and

sqw(x) = −1 on 1 ≤ x < 2.

=
1

s
(1− e−s) +

1

s
(e−2s − e−s) Evaluate each integral.

=
1

s
(1− e−s)2 Collect terms.

An intermediate step is to compute the Laplace integral of sqw(t):

L(sqw(t)) =
∫ 2

0
sqw(t)e−stdt

1− e−2s
Periodic function formula, page 638.

=
1

s
(1− e−s)2

1

1− e−2s
. Use the computation of P above.

=
1

s

1− e−s

1 + e−s
. Factor 1− e−2s = (1− e−s)(1 + e−s).

=
1

s

es/2 − e−s/2

es/2 + e−s/2
. Multiply the fraction by es/2/es/2.

=
1

s

sinh(s/2)

cosh(s/2)
. Use sinhu = (eu − e−u)/2,

coshu = (eu + e−u)/2.

=
1

s
tanh(s/2). Use tanhu = sinhu/ coshu.

To complete the computation of L(sqw(t/a)), a change of variables is made:

L(sqw(t/a)) =
∫∞
0

sqw(t/a)e−stdt Direct transform.

=
∫∞
0

sqw(r)e−asr(a)dr Change variables r = t/a.

=
a

as
tanh(as/2) See L(sqw(t)) above.

=
1

s
tanh(as/2)

• Proof of L(a trw(t/a)) = 1

s2
tanh(as/2):

The triangular wave is defined by trw(t) =
∫ t

0
sqw(x)dx.

L(a trw(t/a)) = 1

s
(f(0) + L(f ′(t)) Let f(t) = a trw(t/a). Use L(f ′(t)) =

sL(f(t))− f(0), page 596.

=
1

s
L(sqw(t/a)) Use f(0) = 0, (a

∫ t/a

0
sqw(x)dx)′ = sqw(t/a).

=
1

s2
tanh(as/2) Table entry for sqw.

• Proof of L(tα) = Γ(1 + α)

s1+α
:

L(tα) =
∫∞
0

tαe−stdt Direct Laplace transform.

=
∫∞
0

(u/s)αe−udu/s Change variables u = st, du = sdt.
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=
1

s1+α

∫∞
0

uαe−udu

=
1

s1+α
Γ(1 + α). Where Γ(x) =

∫∞
0

ux−1e−udu, by
definition.

The generalized factorial function Γ(x) is defined for x > 0 and it agrees with the classical
factorial n! = (1)(2) · · · (n) in case x = n+1 is an integer. In literature, α! means Γ(1+α).
For more details about the Gamma function, see Abramowitz and Stegun [Abram-St],
or maple documentation.

• Proof of L(t−1/2) =

√
π

s
:

L(t−1/2) =
Γ(1 + (−1/2))

s1−1/2
Apply the previous formula.

=

√
π√
s

Use Γ(1/2) =
√
π.

8.8 Modeling

Laplace Modeling in Engineering

A differential equation model in variable t can be subjected to the Laplace trans-
form, which produces an algebraic model in transform variable s.

The possibility of equivalence of models

mx′′(t) + cx′(t) + kx(t) = 0 and
1

ms2 + cs+ k
,

can be understood because of the one-to-one correspondence of the physical pa-
rameters m, c, k. Lerch’s theorem provides a theoretical foundation which says
that the differential equation model in the t-domain and the algebraic model in
the s-domain are equivalent, that is, the solution of one model gives the solution
to the other model.

←→
mx′′ + cx′ + kx = f(t),

x(0) = x′(0) = 0
X(s) =

F (s)

ms2 + cs+ k

Figure 5. Differential Equation and Laplace Model Equivalence

In mechanical, electrical and computer engineering it is commonplace to deal
only with the Laplace algebraic model, and to back-burner discussions of the
differential equation model in the time domain.

Modeling conversations are often exclusively in terms of transforms. Differential
equations are rarely mentioned! Terminology for such modeling is necessarily
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specialized, which gives rise to new contextual meanings to the terms input and
output. For example, an RLC-circuit could be discussed with input

F (s) =
ω

s2 + ω2
,

and the listener must know that this expression is the Laplace transform of the
time input f(t) = sinωt. The audience would then know that the RLC-circuit
is driven by a sinusoidal input of natural frequency ω and amplitude one. The
output could be the Laplace transform

X(s) =
1

s+ 1
+

d1 + d2ω

s2 + ω2
.

Lerch’s equivalence provides extra information, deemed momentarily useless, that
X(s) is the Laplace transform of the time output x(t) = e−t+d1 cosωt+d2 sinωt.

It is important to know for modeling that fraction 1
s+1 is the Laplace transform

of the transient part of the output, while fraction d1+d2ω
s2+ω2 is the Laplace transform

of the steady state output.

DC Gain

Background. Gain may be voltage gain (OP-amp, V/V), power gain (RF-
amp, W/W) or sensor gain (light, e.g., 5 µV per photon). Steady state gain
and DC-gain are synonyms for the same number. Laplace theory can compute
steady-state values for a differential equation.

Signal applications might seek the signal x(t) as the output of an underdamped
model with switch at t = 0:

x′′ + 2ζωx′ + ω2x = GDC ω2 u(t).

The three parameters ζ, ω,GDC are known respectively as the damping ratio,
frequency and DC-gain. Symbol u(t) is the unit step function. Under-damped
for this equation means ζ > 1, the case for complex roots of the characteristic
equation. The Euler atoms for the homogeneous problem are exponential decay
factors times sines and cosines.

On time interval 0 ≤ t <∞ the unit step u(t) is replaced by 1:

x′′ + 2ζωx′ + ω2x = GDC ω2

Superposition implies x = xh + xp with equilibrium solution xp(t) = GDC and
homogeneous general solution xh(t) = c1e

−at cos(bt) + c2e
−at sin(bt), symbols

defined by a = ζω and b = ω
√
ζ2 − 1. Because of the exponential decay of

xh(t), the constant solution xp(t) = GDC is the signal steady state. This is why
a simulator in a lab given a constant input k has DC-gain equal to the steady
state of the output signal divided by k.
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The DC-gain can be found mathematically from fractions in the s-domain instead
of from time domain formulas. One possibility is to use the final value rule
page 638 to find the steady state gain (DC-gain) GDC. Assume the input is the
unit step function u(t). Then the steady state value is limt→∞ x(t) = x(∞) =

lim
s→0

sL(x(t)). The s-domain product sL(x(t)) =
L(x(t))
L(u(t))

equals the Laplace of

the output divided by the Laplace of the input. Evaluation of this quotient at
s = 0 is the system’s steady state gain (DC-gain) GDC.

The transfer function H(s) is the Laplace of the output x(t) with input
u(t) and zero initial data. For this special output x(t) the equation L(x(t)) =

H(s)L(u(t)) =
H(s)

s
holds. Therefore, the steady state gain (DC-gain) equals

H(0).

Illustration. An underdamped system whose transfer function is the fraction

H(s) =
2

s2 + 2s+ 2
has DC-gain H(0) = 1.

Engineering Inverse Problems

Linear time-invariant systems are used as building blocks to construct complex
systems, in which the output of one system is the input of the next system.
The systems are modeled by constant-coefficient linear differential equations.
Practical applications endeavor to find a mathematical model to represent the
block, technically an inverse problem.

What is the Inverse Problem? The terminology inverse problem applied
to x′′ + px′ + qx = f(t) means: given input f(t) and output x(t) as numerical
data, recover the values of p and q. Imagine the experimental data is in a graph
of signal x(t) viewed on an oscilloscope. The graph data is imported into a
numerical workbench in order to find the system parameters p, q in the predicted
mathematical model

x′′ + px′ + qx = f(t), transfer function =
1

s2 + ps+ q
.

Oscilloscope Experiments. It may help to think of the block as a physical
device, like part of a battery charging circuit on a mobile phone. Initial states for
a block are x(0) = 0, x′(0) = 1 or x(0) = x′(0) = 0. Possible input signals are zero
input f(t) = 0, a step input f(t) = k u(t) or an impulse input f(t) = δ(t). Zero
input means no battery. A step input can be considered a toggle which switches
in a k–volt battery at t = 0. Impulse input δ(t) is practically a simplistic impulse
1
h(u(t) − u(t − h)) with h > 0 very small; a function generator would work. A
special BNC cable carries output signal x(t) from the block to the oscilloscope for
display. Oscilloscopes can save x(t) data in text format for import into computer
software.

Graphical Recognition of Block Types. A nontrivial aspect of an inverse
problem is examination of graphical output in order to predict the block type.
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The process can be more art than science. Multiple graphics might be produced
for accurate prediction of the model type. For simplicity, there are two possibil-
ities:

Non–oscillatory x′′ + px′ + qx = 0, called over–damped in applica-
tions. It means characteristic equation r2 + pr + q = 0 has two real
distinct roots −a,−b. Assumed below is a < b.

Oscillatory x′′ + px′ + qx = 0, called under–damped in applications.
It means characteristic equation r2+pr+q = 0 has complex conjugate
roots r = −a± b i with b > 0.

Skipped in the analysis above is the critically–damped case in which the charac-
teristic equation has a double root. This case is technically non–oscillatory and
physically indistinguishable from the over–damped case. In spring–mass systems,
coefficient p is the damping constant, imagined as a tuning parameter adjusted by
a set screw, for which the critically–damped value for p separates the two phys-
ically observable classifications oscillatory (small p > 0) and non–oscillatory
(large p > 0).

The two observable cases are graphed in Figures 6 and 7. The distinction: the
first curve touches the t-axis just once, while the second curve touches the t-
axis infinitely often. In oscilloscope output, oscillations may be damped severely,
looking non–oscillatory like Figure 6. Nonlinear blocks may have output com-
pletely different from Figures 6, 7. The choice of model is then art instead of
science.

Figure 6. Block Out-
put, Over-Damped.
Non–oscillatory output x(t)
for x′′ + 3x′ + 2x = 0,
x(0) = 0, x′(0) = 1.

Figure 7. Block Out-
put, Under-Damped
Oscillatory output x(t) for
x′′+2x′+5x = 0, x(0) = 0,
x′(0) = 1.
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Second Order Models

The models can be represented by

x′′(t) + 2ζωx′(t) + ω2x(t) = 0,

where ζ is the damping ratio and ω is the undamped natural frequency. Cases
ζ < 1, ζ = 1 and ζ > 1 are named over-damped, critically-damped and
under-damped, respectively.

The over–damped and under–damped cases specialize respectively to

x′′ + (a+ b)x′ + abx = 0, a < b,
x′′ + 2ax′ +

(
a2 + b2

)
x = 0, b > 0.

Because ζ, ω can be found from a, b, then the inverse problem seeks values for
a, b instead of the damping ratio and undamped frequency.

Theorem 8.16 (Solution Formulas for Second Order Over–Damped)
The differential equation is x′′ + (a + b)x′ + abx = f(t). Assume a < b. Formulas
are for t > 0.

(1) Zero Input f(t) = 0, x(0) = 0, x′(0) = 1:

x(t) =
1

b− a

(
e−at − e−bt

)
(2) Step Input f(t) = k u(t), x(0) = 0, x′(0) = 0:

x(t) =
k

ab
+

k

a2 − ab
e−at +

k

b2 − ab
e−bt

(3) Dirac Input f(t) = kδ(t), x(0) = 0, x′(0) = 0:

x(t) =
1

2

1

b− a

(
e−at − e−bt

)
Details for Theorem 8.16: Paper and pencil solutions use Laplace theory. The
formulas can be obtained from a CAS like maple or mathematica, which use Laplace
theory to solve the equation. The maple code:

deOD:=diff(z(t),t,t)+(a+b)*diff(z(t),t)+a*b*z(t);

ic1:=z(0)=0,D(z)(0)=1;ic2:=z(0)=0,D(z)(0)=0;

dsolve({deOD=0,ic1},z(t));dsolve({deOD=k,ic2},z(t));

dsolve({deOD=Dirac(t),ic2},z(t));convert(%,piecewise);

Theorem 8.17 (Solution Formulas for Second Order Under–Damped)
The equation is x′′(t) + 2ax′(t) +

(
a2 + b2

)
x(t) = f(t). Assume b > 0. Formulas

are for t > 0.

(1) Zero Input f(t) = 0, x(0) = 0, x′(0) = 1:

x(t) = e−a t sin(b t)

b
(2) Step Input f(t) = k u(t), x(0) = 0, x′(0) = 0:
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x(t) =
k − k e−a t(ab sin(b t) + cos(b t))

a2 + b2

(3) Dirac Input f(t) = δ(t), x(0) = 0, x′(0) = 0:

x(t) =
e−a t

2

sin(b t)

b

Details for Theorem 8.17: Paper and pencil solutions use Laplace theory. The maple
code:

deUD:=diff(z(t),t,t)+2*a*diff(z(t),t)+(a^2+b^2)*z(t);

ic1:=z(0)=0,D(z)(0)=1;ic2:=z(0)=0,D(z)(0)=0;

dsolve({deUD=0,ic1},z(t));dsolve({deUD=k,ic2},z(t));

dsolve({deUD=Dirac(t),ic2},z(t));convert(%,piecewise);

System Parameters for Over-Damped Problems

It is assumed that a signal x(t) is known via a graphic with numerical data
available. The graphic must pass the following visual test:

The curve starts at t = 0, x = 0 and increases. The region of increase
may end at a maximum and after decrease to limit zero, or else the region
of increase is a half–line and x(t) limits to a nonzero steady–state value.

Expected is a rich sample of the plot data, because computations use the numeric
data, not the graphic. The initial data and the input are assumed to satisfy one
of the following three cases.

Zero Input: x(0) = 0, x′(0) = 1, f(t) = 0
Step Input: x(0) = 0, x′(0) = 0, f(t) = k u(t)
Impulse Input: x(0) = 0, x′(0) = 0, f(t) = δ(t)

A graphic that passes the visual test predicts the model

x′′ + (a+ b)x′ + abx = f(t), Transfer Function =
1

(s+ a)(s+ b)
, a < b.

The plan is to compute numerical values for a, b from the graphical data. The
product of the computation is a mathematical model for the block represented
by the graphic.

Example 8.30 (System Parameters: Over-Damped with Zero Input)

Oscilloscope data created Figure 8 from block initial state x(0) = 0, x′(0) = 1 and
zero input. Explain why the graphic predicts over–damped model

x′′(t) + (a+ b)x′(t) + abx(t) = f(t), Transfer Function =
1

(s+ a)(s+ b)
.

Then verify system parameters a = 1, b = 2 from graphical numeric data.
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Figure 8. Oscilloscope output x(t) for Example 8.30. The cyan dots are located

at (0.5, 0.2387) and (3, 0.0473).

Solution: The curve in Figure 8 passes through t = 0, x = 0, then increases to a
maximum and after decreases to zero. The curve fails to have infinity many crossings of
the x-axis, therefore the system model is non–oscillatory over–damped.

We have only numeric output data for x(t) and not the differential equation itself, so a, b
are unknown. We discuss how to find a = 1 and b = 2 directly from the numerical data
used to plot Figure 8.

Choose two points on the curve, one on the increasing section and one on the decreasing
section. For example, the cyan dots in the figure, t = 0.5, x = 0.2387 and t = 3.0, x =
0.0473. Define F (t, a, b) = 1

b−a

(
e−at − e−bt

)
, which is symbolic solution (1) in Theorem

8.16. Use a CAS like maple or mathematica, or a workbench like matlab to solve
for a, b in the equations F (0.5, a, b) = 0.2387, F (3.0, a, b) = 0.0473. The answer is
b = 1.998164793, a = 1.000799323. Due to F (t, a, b) = F (t, b, a), there are two answers,
but only one answer with requirement a < b. The maple code:

F:=(t,a,b)->(exp(-a*t)-exp(-b*t))/(b-a);

fsolve({F(0.5,a,b)=0.2387,F(3.0,a,b)=0.0473},{a,b});

Numerical computations like this might be done with algebra and shortcuts, like finding
the smaller root from x(t) ≈ e−at/(b− a) for large t.

Example 8.31 (System Parameters: Over–Damped with Step Input)

Oscilloscope data created Figure 9 from block state x(0) = 0, x′(0) = 0 and unit
step input. Explain why the graphic predicts over–damped model

x′′(t) + (a+ b)x′(t) + abx(t) = f(t), Transfer Function =
1

(s+ a)(s+ b)
.

Then verify system parameters a = 1, b = 2 from graphical numeric data.
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Figure 9. Oscilloscope output x(t) for Example 8.31. The cyan dots are located

at (2, 0.374) and (3, 0.451). The steady–state is y0 = 1/2.

Solution:
The response curve has only one t-axis crossing, which classifies it nonoscillatory. The
block type prediction is based upon seeing a response curve that starts at (0, 0) and
increases to nonzero steady–state, which is y0 = 1

2 in this example.

Choose two data points on the graphic, the cyan dots in the figure: t = 2, y = 0.374
and t = 3, y = 0.451. Let F (t, a, b) = 1

ab + 1
a2−ab e

−at + 1
b2−ab e

−bt, which is symbolic
solution (2) in Theorem 8.16. Solve the equations F (2, a, b) = 0.374, F (3, a, b) = 0.451
in a CAS or numerical workbench to get b = 1.972417640, a = 1.017736613. Because
F (t, a, b) = F (t, b, a), switching a, b values gives another solution. Only one of these
meets requirement a < b. The maple code:

F:=(t,a,b)->1/(a*b)+exp(-a*t)/(a^2-a*b)+exp(-b*t)/(b^2-a*b);

fsolve({F(2,a,b)=0.374,F(3,a,b)=0.451},{a,b});

Example 8.32 (System Parameters: Over–Damped Impulse Input)

Oscilloscope data created Figure 10 from block state x(0) = 0, x′(0) = 0 and Dirac
input. Explain why the graphic predicts over–damped model

x′′(t) + (a+ b)x′(t) + abx(t) = f(t), Transfer Function =
1

(s+ a)(s+ b)
.

Then verify system parameters a = 1, b = 2 from graphical numeric data.

Figure 10. Oscilloscope output x(t) for Example 8.32. The cyan dots are located

at (0.3, 0.0960) and (2, 0.0585).

Solution: The graphic increases from t = 0, x = 0 to a maximum and after decreases to
zero. The response curve has only one t-axis crossing, which classifies it non-oscillatory,
hence over–damped.

661
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Let F (t, a, b) = 1
2

1
b−a

(
e−at − e−bt

)
, which is symbolic solution (3) in Theorem 8.16

for t > 0. Choose two points on the experimental curve, for example the cyan dots
in the figure t = 0.3, x = 0.0960 and t = 2, x = 0.0585. Solve for a, b in the two
equations F (0.3, a, b) = 0.0960 and F (2, a, b) = 0.0585. The answer is a = 2.000235495,
b = 1.000004659. The maple code:

F:=(t,a,b)->(1/2)*(exp(-a*t)-exp(-b*t))/(b-a);

fsolve({F(0.3,a,b)=0.0960,F(2,a,b)=0.0585},{a,b});

System Parameters for Under-Damped Problems

It is assumed that a signal x(t) is known via numerical data for a graphic passing
the following visual test:

The curve starts at t = 0, x = 0 and has at least two local maxima on
t > 0.

The initial data and the input are assumed to satisfy one of the following three
cases.:

Zero Input: x(0) = 0, x′(0) = 1, f(t) = 0
Step Input: x(0) = 0, x′(0) = 0, f(t) = k u(t)
Impulse Input: x(0) = 0, x′(0) = 0, f(t) = δ(t)

A graphic that passes the above test predicts the model

x′′ + 2ax′ +
(
a2 + b2

)
x = f(t), Transfer Function =

1

(s+ a)(s+ b)
, b > 0.

The method computes numerical values for a, b from the graphical data. The
computation finds a mathematical model for the block represented by the graphic.

Theorem 8.18 (Parameters for an Under–Damped Model)
Let x(t) be the response curve for x′′+2ax′+

(
a2 + b2

)
x = f(t) having a maximum

at t = t1, x = x1 and next maximum at t = t2, x = x2.

If the input is f(t) = 0 or f(t) = δ(t), then the system parameters are

a =
1

t2 − t1
ln

∣∣∣∣x1x2
∣∣∣∣ and b =

2π

t2 − t1
.

If the input is f(t) = k u(t) with steady–state solution y0 different from x1 and x2,
then the formulas are

a =
1

t2 − t1
ln

∣∣∣∣x1 − y0
x2 − y0

∣∣∣∣ and b =
2π

t2 − t1
.

Proof of Theorem 8.18, Underdamped Parameters:
For zero input or impulse input, the equation is x′′ + 2ax′ +

(
a2 + b2

)
x = 0 for t > 0

with general solution x = c1e
−at cos(bt) + c2e

−at sin(bt). Convert to the form x =
Ae−at cos(bt− ϕ). For definiteness, assume x1 > 0 and x2 > 0.
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Verify b = 2π
t2−t1

. At max t = t1 the cosine factor must be a max, which is 1, so
bt1 − ϕ = nπ. At the next maximum t = t2 the cosine factor must also be 1, so
bt2− ϕ = nπ+mπ. Because the maxima are consecutive, then m = 2 (the period of the
cosine is 2π). Subtract the two equations to obtain 2π = (bt2−ϕ)− (bt1−ϕ) = b(t2− t1)
and solve for b = 2π

t2−t1
.

Verify a = 1
t2−t1

ln
∣∣∣x1

x2

∣∣∣, x1=Ae−at1 cos(bt1−ϕ). Let x2=Ae−at2 cos(bt2−ϕ). Because

cos(bt1−ϕ) = cos(bt2−ϕ) = 1, as argued above, then x1 divided by x2 gives
x1

x2
= eat2−at1 .

Take the logarithm across this equality and use ln(eu) = u, then ln
∣∣∣x1

x2

∣∣∣ = ln(eat2−at1) =

a(t2 − t1). Solve for a = 1
t2−t1

ln
∣∣∣x1

x2

∣∣∣.
Case f(t) = k u(t). The equation is x′′ + 2ax′ +

(
a2 + b2

)
x = k with steady–state

solution y0 = k/(a2 + b2) and homogeneous solution xh = c1e
−at cos(bt)+ c2e

−at sin(bt).
The change of variables y(t) = x(t) − y0 changes x′′ + 2ax′ +

(
a2 + b2

)
x = k into

y′′ + 2ay′ +
(
a2 + b2

)
y = 0. Because x′(t) = y′(t), the curves x(t) and y(t) have the

same critical points. Further, solution y(t) has consecutive local maxima at t = t1,
y = x(t1) − y0 = x1 − y0 and t = t2, y = x(t2) − y0 = x2 − y0. The zero input case

applies to compute the parameters a = 1
t2−t1

ln
∣∣∣x1−y0

x2−y0

∣∣∣, b = 2π
t2−t1

.13 ■

Example 8.33 (Parameters: Under–Damped, Zero or Impulse Input)

Oscilloscope data created Figure 11 from block state x(0) = 0, x′(0) = 1 and zero
input or block state x(0) = 0, x′(0) = 0 and impulse input. Explain why the graphic
predicts under–damped model

x′′(t) + 2ax′(t) +
(
a2 + b2

)
x(t) = f(t), Transfer Function =

1

(s+ a)2 + b2
.

Then verify system parameters a = 1, b = 2 from graphical numeric data.

Figure 11. Oscilloscope output x(t) for Example 8.33. The cyan dots are located

at (0.554, 0.257) and (3.695, 0.011).

Solution: The curve in Figure 11 passes through t = 0, x = 0, then increases to a
maximum and after decreases to a minimum. The curve crosses the t-axis twice, therefore
it will have infinity many crossings of the t-axis: the system model is oscillatory under–
damped.

13Oscilloscopes can display signal y(t) directly, which simplifies external data processing to
the zero input case. See Example 8.35.
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8.8 Modeling

Only numeric data for x(t) is available and not the differential equation itself, so param-
eters a, b are unknown. Approximations to a = 1 and b = 2 are found directly from the
numerical data used to plot Figure 11.

Choose two points on the curve, one at the first maximum and one at the very next
maximum. These are the cyan dots in the figure, t1 = 0.554, x1 = 0.257 and t2 =

3.695, x2 = 0.011. Apply Theorem 8.18 to obtain a =
ln(x1/x2)

t2 − t1
= 1.003241265 and

b =
2π

t2 − t1
= 2.000377366.

Answer Check. Insert the parameters a = 1, b = 2 into the predicted model, then
plot the symbolic response x(t) for zero input (or δ(t) for impulse input). If the graphic
matches Figure 11, then the computed parameters were likely correct.

Example 8.34 (System Parameters: Under–Damped Step Input)

Oscilloscope data created Figure 12 from block state x(0) = 0, x′(0) = 0 and unit
step input. Explain why the graphic predicts under–damped model

x′′(t) + 2ax′(t) +
(
a2 + b2

)
x(t) = f(t), Transfer Function =

1

(s+ a)2 + b2
.

Then verify system parameters a = 1, b = 4 from graphical numeric data.

Figure 12. Oscilloscope output x(t) for Example 8.34. The cyan dots are located

at (0.7854, 0.0856), (2.3562, 0.0644). The steady–state is y0 = 1/17.

Solution: The curve in Figure 12 passes through t = 0, x = 0, then increases to a
local maximum and after decreases to a local minimum. The steady–state is y0 = 1/17.
The curve crosses the steady–state y0 = 1/17 twice, therefore it will have infinity many
crossings of y0 = 1/17: the system model is oscillatory under–damped.

Choose two points on the curve, one at the first local maximum and one at the very next
local maximum. These are the cyan dots in the figure, t1 = 0.7854, x1 = 0.0856,
t2 = 2.3562, x2 = 0.0644. Let y0 = 1/17. Apply Theorem 8.18 to obtain a =

1
t2−t1

ln
∣∣∣x1−y0

x2−y0

∣∣∣ = 0.9988333798 and b = 2π
t2−t1

= 3.999990646.

Answer Check. Insert the parameters a = 1, b = 4 into the predicted model, then
plot the symbolic response x(t) for x(0) = x′(0) = 0 and unit step input. If the graphic
matches Figure 12, then the computed parameters are probably correct.
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8.8 Modeling

Example 8.35 (Special Case: Under–Damped Step Input)

Oscilloscope data created Figure 13 from block state x(0) = 0, x′(0) = 1 and
unit step input. Explain why the graphic is missing a nonzero steady–state and the
predicted model is

x′′(t) + 2ax′(t) +
(
a2 + b2

)
x(t) = f(t), Transfer Function =

1

(s+ a)2 + b2
.

Discuss which formula to use when verifying a = 1, b = 4.

Figure 13. Oscilloscope output x(t) for Example 8.35. The cyan dots are located

at (0.3927, 0.1580) and (1.9635, 0.0330). The steady–state is x = 0.

Solution: The oscilloscope hardware made a change of variables y = x− 1/17 prior to
display of the y–data. This changed the steady state from y0 = 1/17 to y0 = 0. The
apparent oscillation of the graphic about x = 0 predicts the under–damped case: see the
proof of Theorem 8.18 page 662.

The figure looks like the zero input case, because y satisfies the homogeneous equation
y′′+2ay′+(a2+b2)y = 0 with steady–state zero and initial state y(0) = −1/17, y′(0) = 1.
The single important distinction is that the graph fails to pass through (0, 0).

Apply Theorem 8.18 with y0 = 0 to obtain a =
1

t2 − t1
ln

∣∣∣∣x1

x2

∣∣∣∣ = 1.0006 and b =

2π

t2 − t1
= 3.999991.

Exercises 8.8 �

Oscillatory and Non–oscillatory
Assume x′′+px′+qx = 0 with p, q nonneg-
ative.

Parameter p is imagined as a set screw ad-
justment on a screen door dashpot, larger
p meaning more damping effect.

Parameter q is the Hooke’s constant for the
spring restoring force.

1. Let q = 100, p = 99. Verify that the
equation is over–damped in two ways:
(1) Graph x(t);

(2) Justify that r2 + pr+ q = 0 has real
negative roots.

2. Let q = 100. The case which is
called critically–damped happens at ex-
actly one value p = p∗ between 0 and
99. Compute p∗ numerically. Graph
x(t) using q = 100, p = p∗, x(0) = 0,
x′(0) = 1.

3. Let q = 100. Verify that p = 0 produces
the harmonic oscillator x′′+ω2 x = 0,
ω = 10.
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Small set screw changes from p = 0 to p > 0
are still oscillatory. Under–damped means
weak dashpot reaction.

4. Let q = 100, p = 2. Justify oscillatory
under–damped from the graph of x(t)
and also by solving r2 + pr + q = 0.

Simplistic Dirac Impulse
Define g(t) = 7 e−153800 t u(t) and
f(t, a) = 1

a (u(t)− u(t− a)), a > 0.

The impulse of force h is
∫∞
−∞ h(t) dt.

5. Compute the impulse for f(t, a).
Ans: 1.

6. Plot f(t, a) for a = 0.1, 0.001, 0.0001.

7. Calculate the impulse for g(t).
Ans: About 46 times 10−6.

8. Try to find anRC discharge circuit with
10 volt emf and output g(t).

Circuit response g(t) simulates Dirac impul-

sive force 45.5
1000000

δ(t).

Parameters: Over–Damped
Find a, b, ω =

√
ab, ζ = a+b

2ω given the plot
and two dots on the graph.

9. Step input Figure 9, dots
(1, 0.1998), (4, 0.4819).
Ans: a = 1.0000, b = 1.9997, ω =
1.4141, ζ = 1.0607.

10. Impulse input Figure 10, dots
(0.5, 0.1193), (2, 0.0585).
Ans: a = 0.9991, b = 2.0021, ω =
1.4143, ζ = 1.0610.

Parameters: Under–Damped
Find a, b, ω =

√
a2 + b2, ζ = a

ω given the
plot and two dots on the graph.

11. Zero input like Figure 11, but con-
secutive maxima at (2.5107, 0.0257),
(4.6051, 0.0032).
Ans: Approximately a = 1, b = 3.

12. Step input like Figure 13, but
steady–state y0 = 1/26 and con-
secutive maxima at (0.6283, 0.0205),
(1.8850, 0.0058).
Ans: Approximately a = 1, b = 5.
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Chapter 9

Eigenanalysis

Contents

9.1 Matrix Eigenanalysis . . . . . . . . . . . . . . . . . 667

9.2 Eigenanalysis Applications . . . . . . . . . . . . . . 703

9.3 Advanced Topics in Linear Algebra . . . . . . . . 720

9.1 Matrix Eigenanalysis

Studied here is eigenanalysis for matrix equations. The topics are eigenanalysis,
eigenvalue, eigenvector, eigenpair and diagonalization.

What’s Eigenanalysis?

The term eigenanalysis refers to the identification and computation of a new
coordinate system and scale factors. There is one scale factor per coordinate
direction. The new coordinate system has axes with measurement units defined
by the scale factors. This coordinate system is employed to simplify the ex-
pression of the original mathematical model, be it a matrix model, a differential
equation model, or otherwise.

Matrix eigenanalysis is a tool for a matrix equation y⃗ = Ax⃗ .

Eigenanalysis was born from ideas in the 1822 work of J. B. Fourier on heat
conduction for an insulated rod, which resulted in a simple algebraic re-scaling
formula for the rod temperature: Fourier’s idea is explained on page 676. His
ideas apply to data analysis matrix equations y⃗ = Ax⃗ , systems of linear ordinary
differential equations and partial differential equations of mathematical physics.
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9.1 Matrix Eigenanalysis

Larry Page and Sergey Brin in 1996 created from eigenanalysis a search algorithm
which became Google search. Eigenanalysis is part of the mathematical toolset
for research areas like machine learning and data mining.

Simplification of Linear Algebraic Equations

Consider the matrix equation y⃗ = Ax⃗ , where symbol A is a square matrix of
constants and symbols x⃗ , y⃗ are column vectors. The matrix equation is equiv-
alent to simultaneous linear algebraic equations. For a 3 × 3 matrix A = (aij),
y⃗ = Ax⃗ is equivalent to linear algebraic equations

a11x1 + a12x2 + a13x3 = y1,
a21x1 + a22x2 + a23x3 = y2,
a31x1 + a32x2 + a33x3 = y3.

Table 1. Simplification of 3× 3 Linear Algebraic Equations

Matrix eigenanalysis is a tool for A⃗ x⃗ = b⃗ , a system of linear simul-
taneous algebraic equations. It invents a change of variable x⃗ → X⃗ ,
b⃗ → B⃗ that simplifies the system of equations.

A change of variables X⃗ = P x⃗ , B⃗ = P b⃗ with eigenanalysis vectors
v⃗ 1, v⃗ 2, v⃗ 3 for the columns of P simplifies a 3 × 3 system of linear
algebraic equations Ax⃗ = b⃗ into the diagonal form λ1X1 = B1,

λ2X2 = B2,
λ3X3 = B3.

(1)

Scalar values λ1, λ2, λ3 are scale factors (measurement units) corre-
sponding to the directions v⃗ 1, v⃗ 2, v⃗ 3. Precise definitions are on page
669.

Coordinate Change using Eigenanalysis

Technically, matrix eigenanalysis is an opportunistic change of coordinates,
which means the analysis must compute a set of independent column vectors
that span Rn. Linear algebra calls such a set of vectors a basis. Eigenanalysis
constructs from square matrix A a special basis. This special basis defines a
change of coordinates x⃗ → P x⃗ where P is the augmented matrix of constructed
basis vectors.

Consider vectors v⃗ 1, v⃗ 2, v⃗ 3 which form a basis for R3. To be a basis means that
each possible vector x⃗ in R3 can be uniquely expressed as a linear combination
x⃗ = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3. Geometrically, the triad v⃗ 1, v⃗ 2, v⃗ 3 must define a
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9.1 Matrix Eigenanalysis

parallelepiped of positive volume. For a triad basis v⃗ 1, v⃗ 2, v⃗ 3, each possible x⃗
in R3 can be constructed from the triad using solely the geometric parallelogram
law for vector addition.

The claimed simplifying change of coordinates1 is defined by:

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩ = augmented matrix,

X⃗ = P x⃗ , B⃗ = P b⃗ , a change of Ax⃗ = b⃗ into DX⃗ = B⃗ ,
D = diag(λ1, λ2, λ3) a diagonal matrix of scale factors

(2)

Details on page 675.

Eigenvalue, Eigenvector and Eigenpair Defined

Eigenanalysis for the matrix equation y⃗ = Ax⃗ when matrix A is 3 × 3 is
an algebraic method for discovering basis vectors v⃗ 1, v⃗ 2, v⃗ 3 and scale factors
λ1, λ2, λ3. The vectors are called eigenvectors and the scale factors are called
eigenvalues.

A scale factor λ is thought to be a measurement unit along an axis v⃗ , therefore
the eigenvectors and eigenvalues occur in pairs, called eigenpairs. Pairing is due
to fundamental equation (3) below, which is used in references to define and/or
compute an eigenpair.

Definition 9.1 (Eigenpair)
An Eigenpair (λ, v⃗ ) is defined to be a solution of the problem

Av⃗ = λv⃗ , v⃗ ̸= 0⃗ .(3)

Vector v⃗ is called an eigenvector. The value λ is called the eigenvalue correspond-
ing to the eigenvector v⃗ .

Important. Because v⃗ ̸= 0⃗ in equation (3), then an eigenvector is never the
zero vector: an eigenvector is a direction. Otherwise stated:

An eigenvector answer of zero signals an algebra error.

Motivation for the rather abstract definition of eigenpair appears below. Ex-
cuses aside, definition (3) must be learned and memorized, because of explicit use
in computations and implicit use in literature.

1The triad v⃗ 1, v⃗ 2, v⃗ 3 in principal coordinate analysis and metric scaling simplifies
the data set to find trends and important parameters.
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Why the Equation Av⃗ = λv⃗ ?

The pattern is Av⃗ = λv⃗ . However, it is not the problem being solved. The
maddening historical event of algebraists stripping away the problem from the
definition impacts everyone trying to learn eigenanalysis.

The algebraists’ Definition 9.1 is a sub-problem. It is madness to try to learn
eigenanalysis from it. Learning from it parallels trying to learn about trees by
crawling on the ground through the forest examining tree trunks.

Assume matrix A is 3 × 3. The problem to be solved is computation of
independent vectors v⃗ 1, v⃗ 2, v⃗ 3 to find an opportunistic change of variables that
simplifies the linear algebraic system of equations Ax⃗ = b⃗ .

Algebraists were quick to discover that the problem is solved by finding a basis
v⃗ 1, v⃗ 2, v⃗ 3 of R3 satisfying the three equations (4) infra. They isolated Av⃗ =
λv⃗ as a sub-problem to be solved many times, in order to find the basis.

History of Eigenvector and Eigenvalue Terminology

James J. Sylvester in 1883 coined the term latent root for what has become the term
eigenvalue:

. . . the latent roots of a matrix – latent in a somewhat similar sense as vapour
may be said to be latent in water or smoke in a tobacco-leaf.

The German term eigenwert was coined by David Hilbert in 1904. By 1967, Paul Halmos
gave up the battle over which words to use in his new book A Hilbert Space Problem
Book. The battle: German eigen means proper, wert means value.

For many years I have battled for proper values and against the one and a
half times translated German-English hybrid (Halmos means eigenvalue) that
is often used to refer to them. I have now become convinced that the war is
over, and eigenvalues have won it; in this book I use them.

No longer used are the historical terms hidden value, proper value, characteristic value

and latent root. The term hidden arose because the vectors and scale factors are generally

impossible to determine from matrix A without computation. What has persisted in

literature is the characteristic equation, the equation which determines eigenvalues. See

Theorem 9.2.

Eigenpair Equations and AP = PD

Eigenpair equations for a square matrix A can be written by matrix multiply as
a single equation.

Theorem 9.1 (Eigenpairs and AP = PD)
Assume v⃗ 1, v⃗ 2, v⃗ 3 independent in R3. Let matrix A be 3× 3. Then relations

Av⃗ 1 = λ1v⃗ 1,
Av⃗ 2 = λ2v⃗ 2, (Eigenpair Equations)
Av⃗ 3 = λ3v⃗ 3.

(4)
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hold if and only if AP = PD where P and D are defined by equations

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩, D =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
.(5)

The result holds for dimension n. Proof on page 693.

Computing Eigenpairs of a Matrix

To compute an eigenpair (λ, v⃗ ) of a square matrix A requires finding scalar λ
and a nonzero vector v⃗ satisfying the homogeneous matrix–vector equation

Av⃗ = λv⃗ .

Write it as Ax⃗ − λx⃗ = 0⃗ , then replace λx⃗ by λIx⃗ to obtain the standard
homogeneous linear algebraic system form2

(A− λI)v⃗ = 0⃗ , v⃗ ̸= 0⃗ .

Definition 9.2 (Characteristic Equation)
Determinant equation |A − λI| = 0 is called the characteristic equation. The
characteristic polynomial is the polynomial obtained by determinant evaluation on
the left, normally by cofactor expansion or the triangular rule.

Theorem 9.2 (Eigenvalues of A)
The eigenvalues of a square matrix A are exactly all the roots λ of the polynomial
equation

det(A− λI) = 0.

Proof on page 694

Theorem 9.3 (Find Eigenvectors of Matrix A)
For each root λ of the characteristic equation |A−λI| = 0, form matrix B = A−λI.
Write a toolkit sequence to rref(B). Solve the homogeneous equation Bv⃗ = 0⃗ for
v⃗ in terms of invented symbols t1, t2, . . . .

A basis of eigenvectors of A for eigenvalue λ is the list of vectors ∂t1 v⃗ , ∂t2 v⃗ , . . . .
They are Strang’s special solutions of Bv⃗ = 0⃗ , known to be independent.

These eigenvectors span the nullspace (kernel) of B: if Aw⃗ = λw⃗ , then w⃗ is a
linear combination of these basis vectors.

Proof on page 694.

2Identity I is required to factor out the matrix A − λI. It is wrong to factor out A − λ,
because A is 3× 3 and λ is 1× 1, incompatible sizes for matrix addition.
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Characteristic Equation Illustration.

det

((
1 3
1 2

)
− λ

(
1 0
0 1

))
=

∣∣∣∣ 1− λ 3
1 2− λ

∣∣∣∣
= (1− λ)(2− λ)− 6
= λ2 − 3λ− 4
= (λ+ 1)(λ− 4).

The characteristic equation λ2 − 3λ − 4 = 0 has roots λ1 = −1, λ2 = 4. The
characteristic polynomial is λ2 − 3λ− 4.

Table 2. Shortcut for the Characteristic Polynomial

To find the characteristic polynomial |A − λI|, subtract symbol λ from the
diagonal of A and then evaluate the determinant.

Key Examples for Finding Eigenvectors

Assume given a 3× 3 matrix A. Found after at most 3 applications of Theorem
9.3 is a list of eigenpairs with independent eigenvectors.

There might not be 3 answers!

The amount of work on paper and pencil varies with the number of repeated
eigenvalues. Key examples:

1

(
1 0 1
0 2 4
0 0 3

)
, 2

(
1 0 1
0 1 4
0 0 1

)
, 3

(
1 0 1
0 1 4
0 0 2

)

1 Matrix A has eigenvalues 1, 2, 3. Apply Theorem 9.3 three times to write
three different matrices B. Each B has a toolkit sequence to rref(B), a
total of 3 toolkit sequences. Each sequence produces one eigenvector: there
are 3 answers.

2 Matrix A has eigenvalues 1, 1, 1. Apply Theorem 9.3 one time to write one
matrix B. There is just 1 toolkit sequence to rref(B). Because of 2 free
variables, there are 2 answers. In general, the number of free variables is
1, 2 or 3 with correspondingly 1,2 or 3 answers.

3 Matrix A has eigenvalues 1, 1, 2. Apply Theorem 9.3 two times to write
two matrices B. Each B has a toolkit sequence to rref(B), a total of 2
toolkit sequences. Eigenvalue 1 has a basis of 2 eigenvectors, caused by 2
free variables. Eigenvalue 2 has a basis of just one eigenvector, caused by
only 1 free variable.

In general, the number of answers for a repeated eigenvalue equals the number
of free variables for the toolkit sequence B to rref(B).
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Independence of Eigenvectors

Theorem 9.4 (Independence of Eigenvectors)
If (λ1, v⃗ 1) and (λ2, v⃗ 2) are two eigenpairs of A and λ1 ̸= λ2, then v⃗ 1, v⃗ 2 are linearly
independent vectors.

More generally, if (λ1, v⃗ 1), . . . , (λk, v⃗ k) are eigenpairs of A corresponding to distinct
eigenvalues λ1, . . . , λk, then v⃗ 1, . . . , v⃗ k are independent.

Proof on page 694

Theorem 9.5 (Unions of Eigenvectors)
Let A be an n×n matrix A. Let variable λ denote an arbitrary eigenvalue of A. Let
λ1, . . . , λk be a list of distinct eigenvalues of A.

Let B(λ) be some basis for the eigenpair equation Av⃗ = λv⃗ . Then

(1) For λ ̸= µ, subspaces span(B(λ)) and span(B(µ)) intersect in
only the zero vector.

(2) The union U of bases B(λ1), . . . , B(λk) is a list of independent
vectors in Cn.3

(3) If all eigenvalues are real, then Cn can be replaced by Rn in results
(1), (2).

Proof on page 695

Complete Set of Eigenvectors

Definition 9.3 (Complete Set of Eigenvectors)
A list U = {v⃗ 1, . . . , v⃗ k} of independent eigenvectors of an n× n matrix A is called
complete provided k = n.

Lemma 9.1 (Invertible Change of Variables) Let U = {v⃗ 1, . . . , v⃗n} be a list of
independent eigenvectors of an n × n matrix A. Assume all eigenvalues are real.
Define augmented n× n matrix P = ⟨v⃗ 1| · · · |v⃗n⟩. Then:

The eigenvectors span Rn: span(U) = Rn.

Matrix P is invertible.

Proof: A list U of n independent vectors in Rn is a basis. Then U spans Rn. An n×n
matrix with independent columns is invertible. ■

3Symbol Cn is the vector space of n-vectors with complex entries.
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Theorem 9.6 (Finding Independent Eigenvectors)
Let n× n matrix A be given. Solve the characteristic equation |A− λI| = 0 for all

eigenvalues λ. For each λ, let B = A − λI and solve Bv⃗ = 0⃗ for general solution
v⃗ , which contains invented symbols t1, t2, . . .. Let B(λ) be the list of vector partial
derivatives ∂t1 v⃗ , ∂t2 v⃗ , . . .. Then the union U of all lists B(λ) is a set of independent
eigenvectors. Examples exist where U is not a basis for Rn.

Proof on page 696.

Eigenanalysis Facts

1. An eigenvalue λ of a triangular matrix A is one of the diagonal entries.
If A is non-triangular, then an eigenvalue is found as a root λ of the char-
acteristic equation |A− λI| = 0.

2. An eigenvalue of a square matrix A can be zero, positive, negative or even
complex. It is a pure number, with a physical meaning inherited from the
model, e.g., a scale factor or measurement unit.

3. An eigenvector for eigenvalue λ (a scale factor) is a nonzero direction v⃗
of application satisfying Av⃗ = λv⃗ . It is found from a toolkit sequence
starting at B = A − λI and ending at rref(B). Independent eigenvectors
are computed from the general solution of Bv⃗ = 0⃗ as partial derivatives
∂v⃗ /∂t1, ∂v⃗/∂t2, . . . .

4. If a 3× 3 matrix has three independent real eigenvectors, then they collec-
tively form a basis of R3 (a coordinate system).

Diagonalization and Eigenpair Packages

Definition 9.4 (Diagonalizable Matrix)
An n× n matrix A which has n independent eigenvectors is called diagonalizable.
The eigenvalues are not required to be distinct.

Given a diagonalizable 3 × 3 system y⃗ = Ax⃗ , the augmented matrix P =

⟨v⃗ 1|v⃗ 2|v⃗ 3⟩ of eigenvectors and diagonal matrix D =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
provide a vari-

able change X⃗ = P x⃗ , Y⃗ = P y⃗ to transform system y⃗ = Ax⃗ into the simplified
diagonal system Y⃗ = DX⃗ .

Theorem 9.7 (Diagonalization and Diagonal Matrices)

A 3× 3 diagonal matrix A =

(
a 0 0
0 b 0
0 0 c

)
has eigenvalues on the diagonal. The eigen-
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vectors are the columns of the 3× 3 identity matrix:

λ1 = a, λ2 = b, λ3 = c,

v⃗ 1 =

1
0
0

 , v⃗ 2 =

0
1
0

 , v⃗ 3 =

0
0
1

 .

The theorem extends to n×n matrices. Every n×n diagonal matrix is diagonalizable.

Definition 9.5 (Eigenpair Packages)
Let A be a diagonalizable 3× 3 matrix with eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2), (λ3, v⃗ 3).
Define eigenpair packages by:4

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩, D =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
.(6)

Package definitions for an n× n matrix:

P = ⟨v⃗ 1|v⃗ 2| · · · |v⃗n⟩, D =


λ1 0 · · · 0
0 λ2 · · · 0

...
0 0 · · · λn


If all eigenvalues are real then both P and D are real. Otherwise, matrices P and D
will have complex entries.

Theorem 9.8 (Diagonalization)
Let A be a diagonalizable n× n matrix with eigenpair packages P , D.

1. The matrix A is completely determined by its eigenpairs:

A = PDP−1.

2. The change of variables X⃗ = P x⃗ , Y⃗ = P y⃗ transforms the equation
y⃗ = Ax⃗ into the diagonal system Y⃗ = DX⃗ .

3. The equation A(c1v⃗ 1 + · · ·+ cnv⃗ n) = c1λ1v⃗ 1 + · · ·+ cnλnv⃗ n holds for
any constants c1, . . . , cn with matrix form

AP c⃗ = PDc⃗ , c⃗ =

c1
...
cn

 .(7)

See Fourier Replacement page 676.

4Eigenpair packages are not unique. For 3 × 3, there are six (6) permutations of the pairs,
leading to six different packages. In addition, eigenvectors are not unique, leading to infinitely
many possible eigenpair packages.
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Proof on page 696.

Theorem 9.9 (Distinct Eigenvalues implies Diagonalizable)
If an n × n matrix A has n distinct eigenvalues, real or complex, then it has n
eigenpairs (λi, v⃗ i), i = 1, . . . , n. The eigenpair packages

P = ⟨v⃗ 1| · · · |v⃗n⟩, D =

λ1 · · · 0
...

...
...

0 · · · λn


satisfy AP = PD and matrix A is diagonalizable.

Proof on page 697.

Fourier Replacement

The subject of eigenanalysis was popularized by J. B. Fourier in his 1822 pub-
lication on the theory of heat, Théorie analytique de la chaleur. Fourier’s ideas
can be summarized for the n× n matrix equation y⃗ = Ax⃗ :

Vector Ax⃗ is obtained from x⃗ and a complete set of eigenpairs (λ1, v⃗ 1),
(λ2, v⃗ 2), . . . , (λn, v⃗ n) by replacing the eigenvectors by their scaled versions
λ1v⃗ 1, . . . , λnv⃗ n:

x⃗ = c1v⃗ 1 + c2v⃗ 2 + · · · + cnv⃗ n implies
Ax⃗ = c1λ1v⃗ 1 + c2λ2v⃗ 2 + · · · + cnλnv⃗ n.

(8)

See Example 9.10 page 690 for details about the heat problem.

For the case of R3, basis vectors v⃗ 1, v⃗ 2, v⃗ 3 are re-scaled by invented scale fac-
tors λ1, λ2, λ3, which we imagine as measurement units along the three directions
v⃗ 1, v⃗ 2, v⃗ 3. Fourier’s 1822 idea: vector x⃗ is replaced by a new vector y⃗ = Ax⃗ ,
according to the rule

x⃗ = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3 implies
y⃗ = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3.

(9)

Table 3. Fourier’s 1822 Re-Scaling Idea

Replace v⃗ 1, v⃗ 2, v⃗ 3 by re-scaled vectors λ1v⃗ 1, λ2v⃗ 2, λ3v⃗ 3.

Criticism: Table 3 makes no mention of a matrix A. Fourier’s re-scaling idea
does not need a matrix A, but it resurfaces:
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Theorem 9.10 (Matrix Form of Fourier Replacement)
Let vectors v⃗ 1, v⃗ 2, v⃗ 3 be independent. Let λ1, λ2, λ3 be scalars. Define

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩, D =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
, c⃗ =

c1
c2
c3


Fourier replacement is defined by

x⃗ = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3 implies
y⃗ = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3

for all scalars c1, c2, c3

The statement has vector-matrix forms

x⃗ = P c⃗ implies y⃗ = PDc⃗
y⃗ = Ax⃗ where A = PDP−1

A (c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3) = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3

The theorem extends to n× n. Proof on page 697.

Theorem 9.11 (Fourier Re-scaling and Diagonalization)
Let vectors v⃗ 1, v⃗ 2, v⃗ 3 be independent. Let λ1, λ2, λ3 be scalars. Define P =

⟨v⃗ 1|v⃗ 2|v⃗ 3⟩, D =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
.

(a) Matrix A = PDP−1 has 3 eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2), (λ3, v⃗ 3) and A is
diagonalizable.

(b) If a diagonalizable 3× 3 matrix has eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2), (λ3, v⃗ 3) with
independent eigenvectors, then Fourier replacement (8) holds.

(c) Fourier replacement for matrix equation y⃗ = Ax⃗ defined in (8) is equivalent to
diagonalizability of matrix A.

Proof on page 697.

Re-scaling Example: Data Conversion

Let x⃗ in R3 be a data set variable with coordinates x1, x2, x3 recorded respec-
tively in units of meters, millimeters and centimeters. Imagine the data being
recorded every few milliseconds from three different sensors.

The x⃗ -data set is converted into a y⃗ -data set with meter, kilogram, second units
(MKS units) via the equations

y1 = x1,
y2 = 0.001x2,
y3 = 0.01x3.

(10)
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Equations (10) are an instance of Fourier’s re-scaling process, Table 3. The paired
scale factors and vectors are

λ1 = 1, λ2 = 0.001, λ3 = 0.01,

v⃗ 1 =

1
0
0

 , v⃗ 2 =

0
1
0

 , v⃗ 3 =

0
0
1

 .

Then equations (10) can be written as the replacement process

x⃗ = x1

1
0
0

+ x2

0
1
0

+ x3

0
0
1

 implies

y⃗ = x1λ1

1
0
0

+ x2λ2

0
1
0

+ x3λ3

0
0
1

 .

(11)

Vectors v⃗ 1, v⃗ 2, v⃗ 3 are the data directions (or axes) re-scaled by the measurement
units λ1, λ2, λ3, respectively. In particular, data direction v⃗ 2 is for millimeters
and scale factor λ2 = 0.001 is the measurement unit along axis v⃗ 2. Theorem 9.10

applied to (11) gives y⃗ = Ax⃗ where A =

(
1 0 0
0 1

1000 0
0 0 1

100

)
, agreeing with conversion

of (10) to matrix form.

Fourier Replacement: Matrix Example

Let

A =

 1 3 0
0 2 −1
0 0 −5


λ1 = 1, λ2 = 2, λ3 = -5,

v⃗ 1 =

 1
0
0

 , v⃗ 2 =

 3
1
0

 , v⃗ 3 =

 1
−2
−14

 .

(12)

Then Fourier’s model (9) holds, details in Example 9.3:

x⃗ = c1

1
0
0

 + c2

3
1
0

 + c3

 1
−2
−14


implies

Ax⃗ = c1(1)

1
0
0

 + c2(2)

3
1
0

 + c3(-5)

 1
−2
−14


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Eigenanalysis and Geometry

In case the matrix A is 2× 2 or 3× 3, geometry can provide additional intuition
about eigenanalysis.

Fourier’s 2× 2 replacement A(c1v⃗1 + c2v⃗2) = c1λ1v⃗1 + c2λ2v⃗2 can be interpreted
as the action of the transformation T : x⃗→ Ax⃗ between two copies of the plane
R2; see Figure 1.

Original Coordinates Re−scaled Coordinates

Ax⃗

c1λ1v⃗ 1

c2λ2v⃗ 2
x⃗

c1v⃗ 1

c2v⃗ 2

Figure 1. Transformation T : R2 → R2.
Vector x⃗ is obtained geometrically from v⃗ 1, v⃗ 2 by changing their lengths by
c1, c2, then add with the parallelogram rule. Vector Ax⃗ is obtained from the
two changed vectors by re-scaling by λ1, λ2, then apply the parallelogram rule.

Algebraically, A is replaced by the scale factors λ1, λ2 and the coordinate system
v⃗1, v⃗2. The eigenvalues are the scale factors λ1, λ2. Vectors v⃗ 1, v⃗ 2 used in the
parallelogram rule are the eigenvectors.

Shear is not Equivalent to Scaling along Axes

The important geometrical operations are scaling, shears, rotations, projections,
reflections and translations. Fourier replacement describes scaling along coordi-
nate axes.

A planar horizontal shear (x1, x2)→ (y1, y2) is a set of equations

y1 = x1 + kx2, (k = shear factor ̸= 0),
y2 = x2.

The eigenvalues of A =

(
1 k
0 1

)
are λ1 = λ2 = 1. Assume it is possible to view

this shear as a re-scaling. Then it must be feasible to change coordinates to new
independent axes v⃗ 1, v⃗ 2 and express the shear as

A = PDP−1, D =

(
λ1 0
0 λ2

)
=

(
1 0
0 1

)
, P = ⟨v⃗ 1|v⃗ 2⟩.

Then

(
1 k
0 1

)
= A = PDP−1 = P

(
1 0
0 1

)
P−1 =

(
1 0
0 1

)
, a contradiction to the

shear factor requirement k ̸= 0.

Conclusion: A shear is not equivalent to scaling along axes. Fourier replacement
fails.
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Examples and Methods

Example 9.1 (Computing 2× 2 Eigenpairs)

Find all eigenpairs of the 2× 2 matrix A =

(
1 0
2 −1

)
.

Solution:
The method used to solve for eigenpairs in given in Theorem 9.3 page 671.

College Algebra. The eigenvalues are λ1 = 1, λ2 = −1. Details:

0 = det(A− λI) Characteristic equation.

=

∣∣∣∣ 1− λ 0
2 −1− λ

∣∣∣∣ Subtract λ from the diag-
onal.

= (1− λ)(−1− λ) Sarrus’ rule.

Linear Algebra. The eigenpairs are

(
1,

(
1
1

))
,

(
−1,

(
0
1

))
. Details:

Eigenvector for λ1 = 1.

A− λ1I =

(
1− λ1 0

2 −1− λ1

)
=

(
0 0
2 −2

)
≈
(

1 −1
0 0

)
Swap and multiply rules.

= rref(A− λ1I) Reduced echelon form.

The vector partial derivative ∂t1 v⃗ of the scalar general solution x = t1, y = t1 is

eigenvector v⃗ 1 =

(
1
1

)
.

Eigenvector for λ2 = −1.

A− λ2I =

(
1− λ2 0

2 −1− λ2

)
=

(
2 0
2 0

)
≈
(

1 0
0 0

)
Combination and multiply.

= rref(A− λ2I) Reduced echelon form.

The vector partial derivative ∂t1 v⃗ of the scalar general solution x = 0, y = t1 is eigen-

vector v⃗ 2 =

(
0
1

)
.

Example 9.2 (Computing 2× 2 Complex Eigenpairs)

Find all eigenpairs of the 2× 2 matrix A =

(
1 2
−2 1

)
.
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Solution:
Reference: Theorem 9.3 page 671.

College Algebra. The eigenvalues are λ1 = 1 + 2i, λ2 = 1− 2i. Details:

0 = det(A− λI) Characteristic equation.

=

∣∣∣∣ 1− λ 2
−2 1− λ

∣∣∣∣ Subtract λ from the diagonal.

= (1− λ)2 + 4 Sarrus’ rule.

The roots λ = 1±2i are found from the quadratic formula after expanding (1−λ)2+4 = 0.
Alternatively, use (1− λ)2 = −4 and take square roots.

Linear Algebra. The eigenpairs are

(
1 + 2i,

(
−i
1

))
,

(
1− 2i,

(
i
1

))
.

Eigenvector for λ1 = 1 + 2i.

A− λ1I =

(
1− λ1 2
−2 1− λ1

)
=

(
−2i 2
−2 −2i

)
≈
(

i −1
1 i

)
Multiply rule.

≈
(

0 0
1 i

)
Combination rule, multiplier=−i.

≈
(

1 i
0 0

)
Swap rule.

= rref(A− λ1I) Reduced echelon form.

The partial derivative ∂t1 v⃗ of the general solution x = −it1, y = t1 is eigenvector

v⃗ 1 =

(
−i
1

)
.

Eigenvector for λ2 = 1− 2i.

The answer is eigenvector v⃗ =

(
i
1

)
. See Lemma 9.2 page 685 for the expected

shortcut, which obtains the answer from the eigenvector for λ1 = 1 + 2i. The shortcut
creates no matrix B = A− λI and no toolkit sequence B to rref(B).

The shortcut eliminates the following steps:

A− λ2I =

(
1− λ2 2
−2 1− λ2

)
=

(
2i 2
−2 2i

)
≈
(

i 1
1 −i

)
Multiply rule.

≈
(

0 0
1 −i

)
Combination rule, multiplier=−i.

≈
(

1 −i
0 0

)
Swap rule.

= rref(A− λ2I) Reduced echelon form.
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The partial derivative ∂t1 v⃗ of the general solution x = it1, y = t1 is eigenvector v⃗ 2 =(
i
1

)
.

Example 9.3 (Computing 3× 3 Eigenpairs: Real Eigenvalues)

Find all eigenpairs of the 3× 3 matrix

A =

 1 3 0
0 2 −1
0 0 −5

 .(13)

Solution:
Reference: Theorem 9.3 page 671.

The answers are

λ1 = 1, λ2 = 2, λ3 = −5,

v⃗ 1 =

 1
0
0

 , v⃗ 2 =

 3
1
0

 , v⃗ 3 =

 1
−2
−14

 .

College Algebra. The eigenvalues are λ1 = 1, λ2 = 2, λ3 = −5, because matrix A is
triangular and the eigenvalues of a triangular matrix appear on the diagonal.

Linear Algebra. There are three toolkit sequences B to rref(B) to compute, one for
each distinct eigenvalue λ where B = A− λI.

Eigenvector for λ1 = 1.

Subtract λ1 = 1 from the diagonal of A to obtain the equation Bv⃗ = 0⃗ , where

B = A− λ1I =

(
0 3 0
0 1 −1
0 0 −6

)
.

A toolkit sequence with swap, combo, multiply will find

rref(B) =

(
0 1 0
0 0 1
0 0 0

)
.

The lead variables are v2, v3 and the free variable is v1. Assign invented symbol t1 to
the free variable and back-substitute into Bv⃗ = 0⃗ to obtain the scalar equations

v1 = t1,
v2 = 0,
v3 = 0.

Take the partial derivative on invented symbol t1 across these equations to obtain the
eigenvector

v⃗ 1 =


∂v1
∂t1
∂v2
∂t1
∂v3
∂t1

 =

 1
0
0

 .
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Eigenvector for λ2 = 2.

Subtract λ2 = 2 from the diagonal of A to obtain the equation Bv⃗ = 0⃗ , where

B = A− λ2I =

(
−1 3 0
0 0 −1
0 0 −7

)
.

A toolkit sequence finds

rref(B) =

(
1 −3 0
0 0 1
0 0 0

)
.

The lead variables are v1, v3 and the free variable is v2. Assign invented symbol t1 to
the free variable and back-substitute into Bv⃗ = 0⃗ to obtain the scalar equations

v1 = 3t1,
v2 = t1,
v3 = 0.

Take the partial derivative on invented symbol t1 across these equations to obtain the
eigenvector

v⃗ 2 =


∂v1
∂t1
∂v2
∂t1
∂v3
∂t1

 =

 3
1
0

 .

The eigenpair is (λ2, v⃗ 2) =

2,

3
1
0


Eigenvector for λ3 = −5.
Subtract λ3 = −5 from the diagonal of A to obtain the equation Bv⃗ = 0⃗ , where

B = A− λ2I =

 6 3 0
0 7 −1
0 0 0

 .

A toolkit sequence finds

rref(B) =

 1 0 1/14
0 1 −1/7
0 0 0

 .

The lead variables are v1, v2 and the free variable is v3. Assign invented symbol t1 to
the free variable and back-substitute into Bv⃗ = 0⃗ to obtain the scalar equations

v1 = − 1
14 t1,

v2 = 1
7 t1,

v3 = 0.

Take the partial derivative on invented symbol t1 across these equations to obtain the
eigenvector

v⃗ 3 =


∂v1

∂t1
∂v2

∂t1
∂v3

∂t1

 =

 −
1
14

1
7

1

 .
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It is usual when encountering fractions in an eigenvector to replace the answer v⃗ by
cv⃗ where c ̸= 0 is chosen to make the answer fraction-free and the first nonzero entry
positive. In this case, c = −14 is used, and we replace v⃗ 3 by −14v⃗ 3. The eigenpair is

(λ3, v⃗ 3) =

−5,
 1
−2
−14

.

This completes the computation of all three eigenpairs.

Answer Check. The eigenpair equations are equivalent to the matrix identity AP =
PD where P is the matrix of eigenvectors and D is the diagonal matrix of corresponding
eigenvalues:

P =

(
1 3 1
0 1 −2
0 0 −14

)
, D =

(
1 0 0
0 2 0
0 0 −5

)
.

Eigenpairs are checked by expanding AP and PD, then compare for equality. The two
calculations give

AP =

(
1 6 −5
0 2 10
0 0 70

)
= PD.

Fourier Replacement page 676 is explicitly

x⃗ = c1

1
0
0

 + c2

3
1
0

 + c3

 1
−2
−14


implies

Ax⃗ = c1(1)

1
0
0

 + c2(2)

3
1
0

 + c3(−5)

 1
−2
−14



Example 9.4 (Computing 3× 3 Eigenpairs: Complex Eigenvalues)

Find all eigenpairs of the 3× 3 matrix A =

 1 2 0
−2 1 0
0 0 3

.

Solution:
Reference: Theorem 9.3 page 671.

College Algebra. The eigenvalues are λ1 = 1 + 2i, λ2 = 1− 2i, λ3 = 3. Details:

0 = det(A− λI) Characteristic equation.

=

∣∣∣∣∣∣
1− λ 2 0
−2 1− λ 0
0 0 3− λ

∣∣∣∣∣∣ Subtract λ from the diagonal.

= ((1− λ)2 + 4)(3− λ) Cofactor rule and Sarrus’ rule.

Root λ = 3 is found from the factored form above. The roots λ = 1± 2i are found from
the quadratic formula after expanding (1− λ)2 + 4 = 0. Alternatively, take roots across
(λ− 1)2 = −4.
Linear Algebra.
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The eigenpairs are

1 + 2i,

 −i1
0

,

1− 2i,

 i
1
0

,

3,

 0
0
1

.

Eigenvector for λ1 = 1 + 2i.

A− λ1I =

 1− λ1 2 0
−2 1− λ1 0
0 0 3− λ1


=

 −2i 2 0
−2 −2i 0
0 0 2− 2i

 Subtract λ1 = 1+2i from the diagonal.

≈

 i −1 0
1 i 0
0 0 1

 Multiply rule.

≈

 0 0 0
1 i 0
0 0 1

 Combination rule, factor=−i.

≈

 1 i 0
0 0 1
0 0 0

 Swap rule.

= rref(A− λ1I) Reduced echelon form.

The vector partial derivative ∂t1 v⃗ of the scalar general solution x = −it1, y = t1, z = 0

is eigenvector v⃗ 1 =

 −i1
0

.

Eigenvector for λ2 = 1− 2i.

There is no need for a toolkit sequence to find the eigenvector for a conjugate eigenvalue:

see Lemma 9.2 infra. Answer: (1− 2i, v⃗ 2), v⃗ 2 =

i
1
0

.

Details. To see why, take conjugates5 across the equation (A − λ2I)v⃗ 2 = 0⃗ to give
(A − λ2I)v⃗ 2 = 0⃗ . Then A = A (A is real) and λ1 = λ2 gives (A − λ1I)v⃗ 2 = 0⃗ . Then

v⃗ 2 = v⃗ 1. Finally, v⃗ 2 = v⃗ 2 = v⃗ 1 =

 i
1
0

. These details prove:

Lemma 9.2 If (a + ib, v⃗ ) is an eigenpair of A, then formally replacing i by −i in this
eigenpair finds a second eigenpair for the conjugate eigenvalue.

Eigenvector for λ3 = 3.

A− λ3I =

 1− λ3 2 0
−2 1− λ3 0
0 0 3− λ3


5The complex conjugate is defined by a+ ib = a − ib (replace i by −i). Two useful rules

are z1 + z2 = z1 + z2 and z1z2 = z1 z2. Conjugation rules extend to vectors and matrices by
applying scalar rules componentwise, e.g., u⃗ + v⃗ = u⃗ + v⃗ and Ax⃗ = A x⃗ .
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=

 −2 2 0
−2 −2 0
0 0 0


≈

 1 −1 0
1 1 0
0 0 0

 Multiply rule.

≈

 1 0 0
0 1 0
0 0 0

 Combination and multiply.

= rref(A− λ3I) Reduced echelon form.

The partial derivative ∂t1 v⃗ of the general solution x = 0, y = 0, z = t1 is eigenvector

v⃗ 3 =

 0
0
1

.

Example 9.5 (Data Conversion)
The data conversion problem 

y1 = x1,
y2 = 0.001x2,
y3 = 0.01x3.

is diagonalizable. The three eigenpairs of A are defined by

λ1 = 1, λ2 = 0.001, λ3 = 0.01,

v⃗ 1 =

1
0
0

 , v⃗ 2 =

0
1
0

 , v⃗ 3 =

0
0
1

 .

Solution: References: Theorem 9.3 page 671 and Theorem 9.7 page 674.

The example was introduced in equation (10) page 677. The equations can be written

as y⃗ = Ax⃗ , where A =

(
1 0 0
0 0.001 0
0 0 0.01

)
is already a diagonal matrix, eigenpairs given by

Theorem 9.7 page 674.

Answers can be verified directly from the eigenpair equation Av⃗ = λv⃗ without using

theorems. For instance, when v⃗ =

0
1
0

 and λ = 0.001, then the two sides Av⃗ and λv⃗

are computed from matrix multiply, each giving the same answer

 0
0.001
0

, therefore

Av⃗ = λv⃗ is valid and (λ, v⃗ ) is an eigenpair of A.

Example 9.6 (Decomposition A = PDP−1)

Decompose A = PDP−1 where P , D are eigenvector and eigenvalue packages,
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respectively, for the 3× 3 matrix

A =

 1 2 0
−2 1 0
0 0 3

 .

Illustrate Fourier replacement for this matrix.

Solution: By the preceding example, the eigenpairs are1 + 2i,

 −i1
0

 ,

1− 2i,

 i
1
0

 ,

3,

 0
0
1

 .

The packages are therefore

D = diag(1 + 2i, 1− 2i, 3), P =

 −i i 0
1 1 0
0 0 1

 .

Fourier replacement. The model:

A (c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3) = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3

It means Ax⃗ changes x⃗ by replacing the basis v⃗ 1, v⃗ 2, v⃗ 3 by scaled vectors λ1v⃗ 1, λ2v⃗ 2,
λ3v⃗ 3. Explicitly,

x⃗ = c1

 −i1
0

+ c2

 i
1
0

+ c3

 0
0
1

 implies

Ax⃗ = c1(1 + 2i)

 −i1
0

+ c2(1− 2i)

 i
1
0

+ c3(3)

 0
0
1

 .

Example 9.7 (Diagonalization I)

Report diagonalizable or non-diagonalizable for the 4× 4 matrix

A =


1 2 0 0
−2 1 0 0
0 0 3 1
0 0 0 3

 .

If A is diagonalizable, then report eigenvector and eigenvalue packages P , D.

Solution: Reference: page 674 for definitions and theorems.

The matrix A is non-diagonalizable, because it fails to have 4 eigenpairs. The details:

Eigenvalues.

0 = det(A− λI) Characteristic equation.
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=

∣∣∣∣∣∣∣∣
1− λ 2 0 0
−2 1− λ 0 0
0 0 3− λ 1
0 0 0 3− λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣ 1− λ 2
−2 1− λ

∣∣∣∣ (3− λ)2 Cofactor expansion applied twice.

=
(
(1− λ)2 + 4

)
(3− λ)2 Sarrus’ rule.

The roots are 1± 2i, 3, 3, listed according to multiplicity.

Eigenpairs. They are1 + 2i,


−i
1
0
0


 ,

1− 2i,


i
1
0
0


 ,

3,


0
0
1
0


 .

Matrix A is non-diagonalizable, because only three eigenpairs exist, instead of four.
Details:

Eigenvector for λ1 = 1 + 2i.

A− λ1I =


1− λ1 2 0 0
−2 1− λ1 0 0
0 0 3− λ1 1
0 0 0 3− λ1



=


−2i 2 0 0
−2 −2i 0 0
0 0 2− 2i 1
0 0 0 2− 2i



≈


−i 1 0 0
−1 −i 0 0
0 0 2− 2i 1
0 0 0 1

 Multiply rule, three times.

≈


−i 1 0 0
−1 −i 0 0
0 0 1 0
0 0 0 1

 Combination and multiply rule.

≈


1 i 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 Combination and multiply rule.

= rref(A− λ1I) Reduced echelon form.

The general solution is x1 = −it1, x2 = t1, x3 = 0, x4 = 0. Then ∂t1 applied to this
solution gives the reported eigenpair for λ = 1 + 2i.

Eigenvector for λ2 = 1− 2i.
Because λ2 is the conjugate of λ1 and A is real, then an eigenpair for λ2 is found from
the eigenpair for λ1 by replacing i by −i throughout. See Lemma 9.2 page 685.

Eigenvector for λ3 = 3. In theory, there can be one or two eigenpairs to report. It
turns out there is only one, because of the following details. This single toolkit sequence
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establishes that A is non-diagonalizable. The other toolkit sequences could have been
skipped, if only diagonalizability was the issue and we were clever enough to examine
this case first.

A− λ3I =


1− λ3 2 0 0
−2 1− λ3 0 0
0 0 3− λ3 1
0 0 0 3− λ3



=


−2 2 0 0
−2 −2 0 0
0 0 0 1
0 0 0 0



≈


1 −1 0 0
1 1 0 0
0 0 0 1
0 0 0 0

 Multiply rule, two times.

≈


1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

 Combination and multiply rule.

= rref(A− λ3I) Reduced echelon form.

Apply ∂t1 to the general solution x1 = 0, x2 = 0, x3 = t1, x4 = 0 to give the eigenvector
matching the eigenpair reported above for λ = 3.

Example 9.8 (Diagonalization II)

Report diagonalizable or non-diagonalizable for the 4× 4 matrix

A =


1 2 0 0
−2 1 0 0
0 0 3 0
0 0 0 3

 .

If A is diagonalizable, then assemble and report eigenvalue and eigenvector packages
D, P .

Solution: Reference: page 674 for definitions and theorems.

The matrix A is diagonalizable, because it has 4 eigenpairs1 + 2i,


−i
1
0
0


 ,

1− 2i,


i
1
0
0


 ,

3,


0
0
1
0


 ,

3,


0
0
0
1


 .

Then the eigenpair packages are given by

D =


−1 + 2i 0 0 0

0 1− 2i 0 0
0 0 3 0
0 0 0 3

 , P =


−i i 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 .
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The details parallel the previous example, except for the calculation of eigenvectors
for λ3 = 3. In this case, the reduced echelon form of A − λ3I has two rows of zeros
and parameters t1, t2 appear in the general solution. The answers given above for
eigenvectors correspond to the partial derivatives ∂t1 , ∂t2 applied to the general solution
of (A− 3I)x⃗ = 0⃗ .

Example 9.9 (Non-diagonalizable Matrices)

Verify that the matrices

(
0 1
0 0

)
,

 0 0 1
0 0 0
0 0 0

 ,


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


are all non-diagonalizable.

Solution: References: page 674 for definitions and theorems; Theorem 9.1 page 670 for
AP = PD and eigenpair equations.

Let A denote any one of these matrices and let n be its dimension.

Without computing eigenpairs, diagonalization will be decided. Assume, in order to
reach a contradiction, that eigenpair packages D, P exist with D diagonal and P invert-
ible such that AP = PD. Because A is triangular, its eigenvalues appear already on
the diagonal of A. Only 0 is an eigenvalue and its multiplicity is n. Then the package
D of eigenvalues is the zero matrix and an equation AP = PD reduces to AP = 0.
Multiply AP = 0 on the right by P−1 to obtain A = 0. But A is not the zero matrix, a
contradiction. Conclusion: A is not diagonalizable.

Secondly, attack the diagonalization question directly, by solving for the eigenvectors
corresponding to λ = 0. The toolkit sequence starts with B = A − λI, but B equals
rref(B) and no computations are required. The resulting reduced echelon system is just
x1 = 0, giving n − 1 free variables. Therefore, the eigenvectors of A corresponding to
λ = 0 are the last n − 1 columns of the identity matrix I. Because A does not have n
independent eigenvectors, then A is not diagonalizable.

Similar examples of non-diagonalizable matrices A can be constructed with A having
from 1 up to n − 1 independent eigenvectors. The examples with ones on the super-
diagonal and zeros elsewhere have exactly one eigenvector.

Example 9.10 (Fourier’s 1822 Heat Model)

Fourier’s 1822 treatise Théorie analytique de la chaleur studied dissipation of heat
from a laterally insulated welding rod with ends held at 0◦C (ice-packed ends). As-
sume the initial heat distribution along the rod at time t = 0 is given as a linear
combination

f = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3.

Symbols v⃗ 1, v⃗ 2, v⃗ 3 are in the vector space V of all twice continuously differentiable
functions on 0 ≤ x ≤ 1, given explicitly as

v⃗ 1 = sinπx, v⃗ 2 = sin 2πx, v⃗ 3 = sin 3πx.
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Fourier’s heat model re-scales6 each of these vectors to obtain the temperature
u(t, x) at position x along the rod and time t > 0 as the model equation

u(t, x) = c1e
−π2tv⃗ 1 + c2e

−4π2tv⃗ 2 + c3e
−9π2tv⃗ 3.

Verify that u(t, x) solves Fourier’s partial differential equation heat model

∂u

∂t
=

∂2u

∂x2
,

u(0, x) = f(x), 0 ≤ x ≤ 1, initial temperature,
u(t, 0) = 0, zero Celsius at rod’s left end,
u(t, 1) = 0, zero Celsius at rod’s right end.

Solution: First, let’s prove that the partial differential equation is satisfied by Fourier’s
solution u(t, x). This is done by expanding the left side (LHS) and right side (RHS) of
the differential equation separately, then comparing the two answers for equality.

Trigonometric functions v⃗ 1, v⃗ 2, v⃗ 3 are solutions of three different linear ordinary dif-
ferential equations: u′′ + π2u = 0, u′′ + 4π2u = 0, u′′ + 9π2u = 0. Because of these
differential equations, calculus derivatives can be computed:

∂2u

∂x2
= −π2c1e

−π2tv⃗ 1 − 4π2c2e
−4π2tv⃗ 2 − 9π2c3e

−9π2tv⃗ 3.

Similarly, computing ∂tu(t, x) involves just the differentiation of exponential functions,
giving

∂u

∂t
= −π2c1e

−π2tv⃗ 1 − 4π2c2e
−4π2tv⃗ 2 − 9π2c3e

−9π2tv⃗ 3.

Because the second display is exactly the first, then LHS = RHS, proving that the partial
differential equation is satisfied.

The relation u(0, x) = f(x) holds because each exponential factor becomes e0 = 1 when
t = 0.

The two relations u(t, 0) = u(t, 1) = 0 hold because each of v⃗ 1, v⃗ 2, v⃗ 3 vanish at x = 0
and x = 1. The verification is complete.

Example 9.11 (Powers and Fourier Replacement)

Let 3 × 3 matrix A have eigenpairs (λ1, v⃗ i), i = 1, 2, 3 and (9) holds. Find the
powers Akx⃗ by Fourier’s Replacement equation (8) with just the basic vector space
toolkit, showing

Akx⃗ = x1λ
k
1v⃗ 1 + x2λ

k
2v⃗ 2 + x3λ

k
3v⃗ 3

Solution: The vector toolkit for R3 is used to compute powers:

Ax⃗ = x1λ1v⃗ 1 + x2λ2v⃗ 2 + x3λ3v⃗ 3

A2x⃗ = A(x1λ1v⃗ 1 + x2λ2v⃗ 2 + x3λ3v⃗ 3)
= x1λ

2
1v⃗ 1 + x2λ

2
2v⃗ 2 + x3λ

2
3v⃗ 3 by (8)

...
Akx⃗ = x1λ

k
1 v⃗ 1 + x2λ

k
2 v⃗ 2 + x3λ

k
3 v⃗ 3

6The scale factors are not constants nor are they eigenvalues, but rather, they are exponential
functions of t for fixed t, as is the case for matrix differential equations x⃗ ′ = Ax⃗ . See Example
9.13
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The calculations do not use matrix multiply and the answer does not depend upon finding
previous powers A2, A3, A4, . . . .

Fourier replacement reduces computational effort. Matrix–vector multiplication to pro-
duce y⃗ k = Akx⃗ requires 9k multiply operations whereas Fourier replacement gives the
answer with 3k + 9 multiply operations.

Example 9.12 (Change of Variable x⃗ = P u⃗ for Differential Equations)

Matrix A =

(
1 3 0
0 2 −1
0 0 −5

)
has eigenpairs (v⃗ 1, λ1), (v⃗ 2, λ2), (λ3, v⃗ 3) with three inde-

pendent eigenvectors given by equation (12). Define x⃗ = P u⃗ , P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩,
D = diag(λ1, λ2, λ3). Show that x⃗ = P u⃗ changes x⃗ ′ = Ax⃗ into u⃗ ′ = Du⃗ , which
is the diagonal system of growth-decay equations

u′1 = u1,
u′2 = 2u2,
u′3 = −5u3.

Solution: The calculus derivative of a vector function is performed componentwise.
Matrix multiply as a linear combination of columns shows that equation x⃗ (t) = P u⃗(t)
has derivative x⃗ ′(t) = P u⃗ ′(t), because entries of P are constants. Then equation x⃗ (t) =
P u⃗ (t) can change x⃗ ′ = Ax⃗ into a differential equation in variable u⃗ . The details:

x⃗ ′(t) = Ax⃗ (t) Given.

P u⃗ ′(t) = AP u⃗ (t) Use x⃗ ′(t) = P u⃗ ′(t), x⃗ (t) = P u⃗(t).

P u⃗ ′(t) = PDu⃗ (t) because AP = PD (A is diagonalizable).

u⃗ ′(t) = Du⃗(t) because P has an inverse.

The eigenvalues of triangular matrix A are the diagonal entries: 1,2,-5. Then D =
diag(1, 2,−5) and u⃗ ′ = Du⃗ is the reported system of growth-decay differential equations.

Example 9.13 (Differential Equations and Fourier Replacement)

Solve by Fourier re-scaling x⃗ ′ = Ax⃗ with A =

(
1 3 0
0 2 −1
0 0 −5

)
. The scalar form:


x′1 = x1 + 3x2,
x′2 = 2x2 − x3,
x′3 = − 5x3.

The answer uses the eigenpairs (v⃗ 1, λ1), (v⃗ 2, λ2), (λ3, v⃗ 3) of matrix A in equation
(12): 

x⃗ (t) = c1e
λ1tv⃗ 1 + c2e

λ2tv⃗ 2 + c3e
λ3tv⃗ 3, realized asx1

x2
x3

 = c1e
t

 1
0
0

+ c2e
2t

 3
1
0

+ c3e
−5t

 1
−2
−14

 .
(14)
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Solution: Fourier’s re-scaling idea applies to linear differential equations, as follows.
First, expand the initial condition x⃗ (0) in terms of basis elements:

x⃗ (0) = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3.

Fourier’s re-scaling replaces each v⃗ i by the re-scaled vector eλitv⃗ i. The result:

y⃗ = c1e
λ1tv⃗ 1 + c2e

λ2tv⃗ 2 + c3e
λ3tv⃗ 3(15)

How is this related to Fourier re-scaling? Answer: at each fixed instant t, the basis
vectors v⃗ 1, v⃗ 2, v⃗ 3 are replaced by Λ1v⃗ 1, Λ2v⃗ 2, Λ3v⃗ 3 where

Λ1 = eλ1t, Λ2 = eλ2t, Λ3 = eλ3t.

Why is the solution x⃗ (t) = c1e
λ1tv⃗ 1 + c2e

λ2tv⃗ 2 + c3e
λ3tv⃗ 3? Answer: Evaluate the

LHS and RHS of the differential equation x⃗ ′ = Ax⃗ and compare formulas.

LHS = x⃗ ′(t)

= c1λ1e
λ1tv⃗ 1 + c2λ2e

λ2tv⃗ 2 + c3λ3e
λ3tv⃗ 3

= c1λ1Λ1v⃗ 1 + c2λ2Λ2v⃗ 2 + c3λ3Λ3v⃗ 3

RHS = Ax⃗ (t)

= A(c1Λ1v⃗ 1 + c2Λ2v⃗ 2 + c3Λ3v⃗ 3)

= c1λ1Λ1v⃗ 1 + c2λ2Λ2v⃗ 2 + c3λ3Λ3v⃗ 3 by Theorem 9.10.

The last equality is tricky: equation

A (c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3) = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3

in Theorem 9.10 is applied with c1, c2, c3 replaced by c1Λ1, c2Λ2, c3Λ3.

Justification of the solution is done with Example 9.12 after inserting exponential solu-
tions for the growth-decay equations. A summary of the re-scaling method:

1. Expand x⃗ (0) as a linear combination of eigenvectors.

2. Change on the left x⃗ (0) to x⃗ (t), then re-scale the linear combination on
the right with scale factors Λ1 = eλ1t, Λ2 = eλ2t, Λ3 = eλ3t.

Proofs and Details

Proof of Theorem 9.1, Eigenpairs and AP = PD:
Let

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩, D =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
.

Write the two matrix multiply equations AP and PD in expanded form

AP = ⟨Av⃗ 1|Av⃗ 2|Av⃗ 3⟩, PD = ⟨λ1v⃗ 1|λ2v⃗ 2|λ3v⃗ 3⟩.(16)

AP = PD implies equation (4). Assume AP = PD. Because equal matrices have
equal columns, the columns left and right in the equation AP = PD must match, using
expansion (16). Then

Av⃗ 1 = λ1v⃗ 1, Av⃗ 2 = λ2v⃗ 2, Av⃗ 3 = λ3v⃗ 3,
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which means equation (4) holds.

Equation (4) implies AP = PD. Assume eigenpair equations (4) hold. Then the
two matrices AP and PD in expansion (16) have equal columns. Equality of matrices
implies AP = PD. ■

Proof of Theorem 9.2, Eigenvalues of A:
An eigenvalue λ is a number such that equation Ax⃗ = λx⃗ has a nonzero solution x⃗ .
Let B = A − λI. Then λ is an eigenvalue means Bx⃗ = 0⃗ has a nonzero solution
x⃗ . Homogeneous equation Bv⃗ = 0⃗ has a nonzero solution v⃗ if and only if there are
infinitely many solutions. Because the matrix is square, infinitely many solutions occur
if and only if rref(B) has a row of zeros. Determinant theory gives a more concise
statement: Bv⃗ = 0⃗ has infinitely many solutions if and only if det(B) = 0. ■

Proof of Theorem 9.3, Find Eigenvectors:
Question: Why does the solution of Bv⃗ = 0⃗ have invented symbols? Isn’t there just
one solution?

Answer: According to the three possibilities, homogeneous equation Bv⃗ = 0⃗ should have
unique solution v⃗ = 0⃗ or else infinitely many solutions. An eigenvector cannot be zero.
To get infinitely many solutions there has to be at least one free variable, causing the
last frame algorithm to be applied with invented symbols t1, t2, . . ..

The equation Av⃗ = λv⃗ is equivalent to Bv⃗ = 0⃗ . Because λ is a root of characteristic
equation |A−λI| = 0, then det(B) = 0 and B has no inverse, equivalent to rref(B) ̸= I.
Then square matrix rref(B) must have a row of zeros, which means there is at least
one free variable. The last frame algorithm applies with invented symbols t1, t2, . . . . A
vector basis v⃗ 1, v⃗ 2, . . . for the nullspace of B is obtained from the list of vector partial
derivatives on symbols t1, t2, . . . . These vectors are Strang’s special solutions, which are
known to be collectively independent. The nullspace of B is the span of Strang’s special
solutions v⃗ 1, v⃗ 2, . . .. If Aw⃗ = λw⃗ , then Bw⃗ = 0⃗ , so w⃗ belongs to the nullspace of B:

w⃗ = a linear combination of v⃗ 1, v⃗ 2, . . . ■

Proof of Theorem 9.4, Independence of Eigenvectors:
Let’s solve c1v⃗ 1 + c2v⃗ 2 = 0⃗ for c1, c2. The vectors are independent provided the only
solution is c1 = c2 = 0. Apply A to this equation, obtaining c1Av⃗ 1 + c2Av⃗ 2 = 0⃗ . Use
Av⃗ 1 = λ1v⃗ 1 and Av⃗ 2 = λ2v⃗ 2 to obtain c1λ1v⃗ 1+c2λ2v⃗ 2 = 0⃗ . Multiply c1v⃗ 1+c2v⃗ 2 = 0⃗
by λ1 and subtract it from c1λ1v⃗ 1+c2λ2v⃗ 2 = 0⃗ to get c1(λ1−λ1)v⃗ 1+c2(λ2−λ1)v⃗ 2 = 0⃗ .
Because λ2 ̸= λ1, cancel λ2 − λ1 to give c2v⃗ 2 = 0⃗ . The assumption v⃗ 2 ̸= 0⃗ implies
c2 = 0. Return to the first equation and use c2 = 0 to obtain c1v⃗ 1 = 0⃗ . Because v⃗ 1 ̸= 0⃗ ,
then c1 = 0. This proves v⃗ 1, v⃗ 2 are independent.

The general case is proved by Mathematical Induction on k (see the footnote in the
proof of Theorem 9.5). The case k = 1 follows because a nonzero vector is an independent
set. Assume it holds for k−1 and let’s prove it for k, when k > 1. To prove independence,
we must solve for c1, . . . , ck in the test equation

c1v⃗ 1 + · · ·+ ckv⃗ k = 0⃗ .

Create a second equation by multiplication of the test equation by A, effectively replacing
each ci by λici, due to the eigenpair equation Av⃗ i = λiv⃗ i. Then multiply the test
equation by λ1 and subtract the two equations to get the new equation

c1(λ1 − λ1)v⃗ 1 + c2(λ1 − λ2)v⃗ 2 + · · ·+ ck(λ1 − λk)v⃗ k = 0⃗ .
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The first term is zero. Apply the induction hypothesis to the remaining k − 1 vectors,
then independence implies all coefficients (λ1 − λi)ci are zero. Because λ1 − λi ̸= 0 for
i > 1, then c2 through ck are zero. Substitute the zero values into the test equation to
obtain c1v⃗ 1 = 0⃗ . Because v⃗ 1 ̸= 0⃗ , then c1 = 0. Therefore all ci = 0. The induction is
complete. ■

Proof of Theorem 9.5, Unions of Eigenvectors:
Details (1). Assume there is a nonzero vector v⃗ in the intersection, which must be an
eigenvector for both λ and µ. Then two eigenpairs(λ, v⃗ 1) and (µ, v⃗ 2) have been found,
v⃗ 1 = v⃗ 2 = v⃗ , which violates Theorem 9.4, because v⃗ 1, v⃗ 2 must be independent.

Details (2). Let’s proceed by induction on the number k of eigenvalues used to construct
U .7 Let Sk be the statement that U = union of B(λ1), . . . , B(λk) has independent
elements, no matter how the k distinct eigenvalues {λi}ki=1 are selected and no matter
how the bases are chosen.

Statement S1 is true, because B(λ1) is a list of independent elements.

Assume Sk is true. The proof that Sk+1 is true will be deferred to the exercises. Revealed
here are the fundamental ideas, by examining the cases k = 2 and k = 3.

Case k = 2. Then U is a list of vectors, some from B(λ1) and some from B(λ2). The test
equation for independence of this list of vectors is a linear combination of the vectors
equal to the zero vector. The objective is to prove that the coefficients in this linear
combination are all zero. Rearrange the test equation in the form

Terms using vectors from B(λ1) = Terms using vectors from B(λ2)

The left side of the above equation is an eigenvector v⃗ 1 for eigenvalue λ1, giving eigenpair
(λ1, v⃗ 1). Similarly, the right side determines an eigenpair (λ2, v⃗ 2). The previous theorem
says that v⃗ 1 and v⃗ 2 are independent, if nonzero. Analyzing cases, then both v⃗ 1 and v⃗ 2

are the zero vector. By independence of bases B(λ1) and B(λ2), all coefficients are zero,
proving independence of the list U .

Case k = 3. Let U2 be the union of bases B(λ1),B(λ2), which is a list of vectors v⃗ 1,
. . . , v⃗ q. Given is U = the union of bases B(λ1), B(λ2), B(λ3). The test equation for
independence of the vectors in list U is a linear combination equal to the zero vector.
This equation has a summation left and the zero vector on the right. Isolate left in this
equation those terms that involve basis vectors from B(λ3), then move the remaining
terms to the right. The rearranged equation looks like

Sum of terms from B(λ3) = Sum of terms from U2

The left side is an eigenvector v⃗ for λ3. The right side is a linear combination from U2,
which means v⃗ =

∑q
j=1 cjv⃗ j . Write two equations for λ3v⃗ , using the eigenpair equation

Av⃗ = λ3v⃗ :

λ3v⃗ =

q∑
j=1

cjλ3v⃗ j , λ3v⃗ = Av⃗ =

q∑
j=1

cjAv⃗ j =

q∑
j=1

cjλ(v⃗ j)v⃗ j ,

7Mathematical induction is this theorem:
(1) For each counting number n, Sn is a statement that is either true or false.
(2) Statement S1 is true.
(3) If statement Sk is true, then statement Sk+1 is true.
Conclusion: All the statements are true.
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where λ(v⃗ j) is the eigenvalue for eigenvector v⃗ j . Put these two equations together, then
move the right side to the left and collect terms:

q∑
j=1

cj(λ3 − λ(v⃗ j))v⃗ j = 0⃗ .

Because S2 is true, then the vectors {v⃗ j}qj=1 are independent. Therefore, all coefficients
cj(λ3 − λ(v⃗ j)) = 0. Reminder: symbols λ1, . . . , λk are distinct values and list all

eigenvalues of A. Then λ3 ̸= λ(v⃗ j) implies all cj = 0. This implies v⃗ = 0⃗ , which in
turn implies that all coefficients in the independence test are zero. Therefore, U is a
list of independent vectors. The induction proof is completed by the exercises of this
section. ■

Proof of Theorem 9.6, Finding Independent Eigenvectors:
Exercises of this section show that ∂t1 v⃗ , ∂t2 v⃗ , . . . are independent vectors which consti-
tute a basis B(λ) for the solution set of the eigenpair equation Av⃗ = λv⃗ . These are
Strang’s special solutions for Bv⃗ = 0⃗ . Theorem 9.5 says that the union U of bases
B(λ1), . . . , B(λk) so constructed from the distinct eigenvalues λ1, . . . , λk of A is an

independent set. For an example where U does not span Rn, let n = 2 and A =

(
1 1
0 1

)
,

a matrix with just one eigenpair. ■

Proof of Theorem 9.8, Diagonalization:
Details 1. To prove A = PDP−1, multiply right across AP = PD by matrix P−1,
which isolates A on the left. Then A = AI = APP−1 = PDP−1.

Details 2. Define the change of variables X⃗ = P x⃗ , Y⃗ = P y⃗ . Substitute into the
equation y⃗ = Ax⃗ as follows:

Y⃗ = P y⃗ = PAx⃗ = PAP−1P x⃗ = DX⃗ .

The result is the diagonal system Y⃗ = DX⃗ .

Details 3. Let column vector c⃗ have components c1, . . . , cn. To be proved: the left
side of A(c1v⃗ 1 + · · · + cnv⃗n) = c1λ1v⃗ 1 + · · · + cnλnv⃗n is the expansion of AP c⃗ , while
the right side is the expansion of PDc⃗ . Assume these statements are proved, for the
moment, details delayed. Then AP = PD implies AP c⃗ = PDc⃗ for all vectors c⃗ , which
means (7) holds. It remains to expand AP c⃗ and PDc⃗ , assuming AP = PD, or what is
the same, the eigenpair equations hold: Ac⃗ i = λiv⃗ i for 1 ≤ i ≤ n.

The expansion of AP c⃗ :

AP c⃗ = A < v⃗ 1| · · · |v⃗n > c⃗ Use definition P =< v⃗ 1| · · · |v⃗n >.

= A(c1v⃗ 1 + . . .+ cnv⃗n) Matrix multiply as a linear combination of the
columns.

= c1Av⃗ 1 + . . .+ cnAv⃗n Linearity of matrix multiply.

= c1λ1v⃗ 1 + . . .+ cnλnv⃗n Eigenpair equations Av⃗ i = λiv⃗ i for 1 ≤ i ≤
n.

The expansion of PDc⃗ :

PDc⃗=P


λ1 0 · · · 0
0 λ2 · · · 0

...
0 0 · · · λn

 c⃗ Definition of D.

696



9.1 Matrix Eigenanalysis

=P

 c1λ1

...
cnλn

 Matrix multiply as a dot product.

= < v⃗ 1| · · · |v⃗n >

 c1λ1

...
cnλn

 Definition of P .

=c1λ1v⃗ 1 + . . .+ cnλnv⃗n Matrix multiply as a linear combination of
columns.

■

Proof of Theorem 9.9, Distinct Eigenvalues:
Each eigenvalue λ has at least one eigenvector. Because there are n distinct eigenvalues,
then there are n eigenvectors. The list of these eigenvectors must be independent, by
Theorem 9.5. Therefore, matrix A is diagonalizable. The remaining statements in the
theorem are a consequence of Theorem 9.8. ■

Proof of Theorem 9.10, Matrix Form Fourier Replacement:
1 Let’s prove x⃗ = P c⃗ implies y⃗ = PDc⃗ , assuming the Fourier replacement equation.
Let x⃗ = P c⃗ . Expand the product P c⃗ viewing matrix multiply as a linear combination
of the columns. Then x⃗ = P c⃗ = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3. Because Fourier replacement
holds, then

y⃗ = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3 Re-scale x⃗ .

= P

 c1λ1

c2λ2

c3λ3

 Matrix multiply as a linear combination of
columns.

= P

(
λ1 0 0
0 λ2 0
0 0 λ3

) c1
c2
c3

 Matrix multiply as a dot product.

= PDc⃗ Definition of D.

2 Definition A = PDP−1 was discovered by solving for A in equation AP = PD
(AP = PD means A is diagonalizable). To prove y⃗ = Ax⃗ , first solve x⃗ = P c⃗ for

c⃗ = P−1x⃗ . Then Ax⃗ = PDP−1x⃗ = PDc⃗ = y⃗ by 1 .

3 To prove A (c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3) = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3, replace its left side
by Ax⃗ and right side by y⃗ . Then it suffices to prove Ax⃗ = y⃗ , which has already been
proved in 2 . ■

Proof of Theorem 9.11, Re-scaling and Diagonalization:
(a) Use relation A (c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3) = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3 from Theorem
9.10. Choose c1 = 1, c2 = c3 = 0 to get Av⃗ 1 = λ1v⃗ 1. Similarly, choose zeros and ones
for c1, c2, c3 to get Av⃗ 2 = λ2v⃗ 2 and Av⃗ 3 = λ3v⃗ 3. Then three eigenpair equations hold
with independent eigenvectors and by definition A is diagonalizable.

(b) By Theorem 9.10 it suffices to prove x⃗ = P c⃗ implies Ax⃗ = PDc⃗ . If A is diagonal-
izable, then AP = PD, which gives Ax⃗ = AP c⃗ = PDc⃗ as required.

(c) If A is given and (8) holds, then (a) applies to prove A is diagonalizable. Conversely,
if A is diagonalizable, then (b) applies and Fourier replacement (8) holds. ■
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Exercises 9.1 �

Eigenanalysis
Classify as true or false. If false, then ex-
plain.

1. The purpose of eigenanalysis is to dis-
cover a new coordinate system.

2. Eigenanalysis can discover an oppor-
tunistic change of coordinates.

3. A matrix can have eigenvalue 0.

4. Eigenvalues are scale factors, imagined
to be measurement units.

5. Eigenvectors are directions.

6. For each eigenvalue of a matrix A, there
always exists at least one eigenpair.

7. If A−1 has eigenvalue λ, then A has
eigenvalue 1/λ.

8. Eigenvectors cannot be 0⃗ .

9. The transpose of A has the same eigen-
values as A.

10. Eigenpairs (λ, v⃗ ) of A satisfy the equa-
tion (A− λI)v⃗ = 0⃗ .

Eigenpairs of a Diagonal Matrix
Find eigenpairs of A without computation.
Use Theorem 9.7.

11.

(
2 0
0 3

)

12.

(
1 0
0 4

)

13.

(
2 0 0
0 3 0
0 0 1

)

14.

(
2 0 0
0 1 0
0 0 1

)

15.

(
7 0 0
0 2 0
0 0 −6

)

16.

(
2 0 0
0 −4 0
0 0 −1

)

Fourier Replacement
Let symbols c1, c2 represent arbitrary con-
stants. Let 2 × 2 matrix A have Fourier
replacement equation

A

(
c1

(
1
1

)
+c2

(
1
2

))
= 2c1

(
1
1

)
−5c2

(
1
2

)
17. Display the eigenpairs of A.

18. Display the replacement equation if the
eigenvalues 2,−5 are replaced by 1, 0.

19. Display the eigenpair packages P,D
such that AP = PD.

20. Find A.

Eigenanalysis Facts
Mark as true or false, then explain your an-
swer.

21. If matrix A has all eigenvalues zero,
then A is the zero matrix.

22. If 2 × 2 matrix A has all eigenvalues
zero, then Fourier’s replacement equa-
tion is

A (c1v⃗ 1+c2v⃗ 2) = 0⃗ .

23. There are infinitely many 2×2 matrices
A with complex eigenvalues 1 + i, 1− i.

24. A real 2× 2 matrix A with eigenvalues
2 + 3i, 2 − 3i cannot have a real eigen-
vector.

25. A real 2× 2 matrix A with real eigen-
values has only real eigenvectors.

26. A real 2 × 2 matrix A with complex
eigenvalues has only complex eigenvec-
tors.

Eigenpair Packages and equation
AP = PD

27. Suppose A has eigenpair packages. Ex-
plain why there are so many different
answers for P,D.
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28. Suppose AP = PD and AQ = QD
hold (same diagonal matrix D). Does
P = Q?

29. Find one choice of P and D for A =
2× 2 diagonal matrix.

30. Given A = 3× 3 zero matrix, find one
choice of P and D with column one of

P equal to

(
1
−1
1

)
.

Matrix Eigenanalysis Method

31. The eigenvalues of

(
1 3
1 4

)
satisfy a

quadratic equation. Find the equation
and solve for the eigenvalues.

32. Find the eigenvalues of

(
1 3
2 4

)
.

33. Find all eigenpairs of

(
1 2 0
0 2 2
0 0 3

)
.

34. A triangular n×n matrix with distinct
diagonal entries has n eigenpairs. Pro-
vide a detailed proof for the case n = 3.

35. Find all eigenpairs of

(
1 2 0
0 1 2
0 0 1

)
.

36. A triangular n×nmatrix may not have
n eigenpairs. Provide a series of exam-
ples for dimensions n = 2, 3, 4, 5.

37. Prove that equations Ax⃗ = λx⃗ and
(A − λI)x⃗ = 0⃗ have exactly the same
solutions x⃗ .

38. Cite basic linear algebra theorems to
prove that (A−λI)x⃗ = 0⃗ has a nonzero
solution x⃗ if and only if λ is a root of
the characteristic equation |A−λI| = 0.

Basis of Eigenvectors
The problem Ax⃗ = λx⃗ has a standard
general solution x⃗ with invented symbols
t1, t2, t3, . . .. Strang’s special solutions
are defined to be the vector partial deriva-
tives of x⃗ with respect to the invented sym-
bols.

39. Why are Strang’s special solutions in-
dependent?

40. Prove that linear combinations of
Strang’s special solutions provide all
possible solutions of Ax⃗ = λx⃗ .

Independence of Eigenvectors
Eigenvectors of matrix A for eigenvalue λ
are the nonzero solutions of Ax⃗ = λx⃗ .

41. Invent a 2 × 2 example A with eigen-

pairs

(
2,

(
1
1

))
,

(
2,

(
5
5

))
. Then ex-

plain why an eigenvector for eigenvalue
λ is never unique.

42. Explain: For a given eigenvalue λ,
there are infinitely many eigenvectors.

43. Explain: Each solution x⃗ of Ax⃗ = λx⃗
is a linear combination of Strang’s spe-
cial solutions for B = A− λI.

44. Let P be an invertible 3 × 3 matrix.
Construct a matrix A which has eigen-
vectors equal to the columns of P and
corresponding eigenvalues −1, 0, 0.

Eigenspaces
Let B(λ) denote some basis of eigenvec-
tors for the eigenpair equation Av⃗ = λv⃗ .
The eigenspace for λ is the subspace
span(B(λ)).

45. Explain: The eigenspace of λ does not
depend on the choice of basis.

46. Every nonzero vector in eigenspace
span(B(λ)) is an eigenvector of A for
eigenvalue λ. Provide details of proof.

47. Justify that span(B(λ)) is a vector
subspace of Rn, one possible basis be-
ing Strang’s special solutions for matrix
B = A− λI.

48. Find a 4 × 4 matrix A with only one
eigenvalue λ = 1 such that eigenspace
B(λ) (defined above) has dimension
two.

Independence of Unions of Eigenvec-
tors
Denote by B(λ) some basis for the eigenpair
equation Av⃗ = λv⃗ .
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49. Define U1 to be the union of lists B(λ1),
B(λ2) and define U2 to be the union of
lists B(λ3), B(λ4), where λ1, λ2, λ3, λ4

is a list of distinct eigenvalues of A.
Prove that subspaces V1 = span(U1)
and V2 = span(U2) intersect in only the
zero vector.

50. Complete the details of the induction
proof of Theorem 9.5, using the text-
book details for k = 3.

51. Let U∗ be a subset of the list U of in-
dependent vectors in Theorem 9.5. Ex-
plain why U∗ is an independent set.

52. Let Bi be a subset of the list of inde-
pendent vectors in B(λi), i = 1, . . . , p.
Explain why the union U∗ of B1, . . . , Bp

is an independent set.

Diagonalization Theory

53. Let A =

(
2 0 0
0 5 0
0 0 8

)
.

(a) Find Strang’s special solutions for
each eigenvalue.
(b) Compare to Theorem 9.7 on diago-
nal matrices.

54. Let v⃗ !, v⃗ 2, v⃗ 3 be independent vectors
in R3. Explain why (0, v⃗ 1), (0, v⃗ 2),
(0, v⃗ 3) is a complete set of eigenpairs
for the 3 × 3 zero matrix. Does this
contradict Theorem 9.7?

55. Write a proof of Theorem 9.7 for n = 3.

56. State Theorem 9.7 for n × n diagonal
matrices and outline a proof.

Non-diagonalizable Matrices
Verify that the matrix is not diagonalizable
by using the equation AP = PD.

57. A =

(
5 2
0 5

)

58. A =

(
5 2 1
0 5 1
0 0 5

)

Distinct Eigenvalues
Find the eigenvalues.

59. A =

(
2 6
5 3

)
Ans: 8,−3

60. A =

(
1 2
2 4

)
Ans: 0, 5

61. A =

(
2 6 2
9 3 9
1 3 1

)
Ans: 0, 12,−6

62. A =

(
0 2 0
0 1 0
3 0 3

)
Ans: 0, 1, 3

63. A =

(
7 12 6
2 2 2
−7 −12 −6

)
Ans: 0, 1, 2

64. A =

(
2 2 −6
−3 −4 3
−3 −4 −1

)
Ans: 0, 1, 4

Computing 2× 2 Eigenpairs

65. Verify eigenpairs:

(
1 2
4 3

)
,(

−1,
(
−1
1

))
,

(
5,

(
1
2
1

))

66. Verify eigenpairs:

(
1 6
2 −3

)
,(

−5,
(
−1
1

))
,

(
3,

(
3
−1

))

67. Verify eigenpairs:

(
1 6
4 3

)
,(

7,

(
1
1

))
,

(
−3,

(
−3
2

))

68. Verify eigenpairs:

(
7 4
−1 3

)
,(

5,

(
1
2

))
, only one eigenpair

Computing 2× 2 Complex Eigenpairs

69. Verify eigenpairs:

(
−2 −6
3 4

)
,(

1 + 3i,

(
−1 + i

1

))
,(

1− 3i,

(
−1− i

1

))
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70. Verify eigenpairs:

(
2 3
−3 2

)
,(

2 + 3i,

(
−i
1

))
,

(
2− 3i,

(
i
1

))
71. Let a, b be real with b ̸= 0. As-

sume n× n real matrix A has eigenpair
(a+ ib, v⃗ ). Replace i by −i throughout
expression v⃗ to obtain vector w⃗ . Prove
that (a− ib, w⃗ ) is an eigenpair.

72. Explain: Eigenpairs of a 2 × 2 real
matrix A with complex eigenvalues are
computed with just one row-reduction
sequence.

Computing 3× 3 Eigenpairs

73. Show algorithm steps to compute

eigenpairs of A =

(
2 1 0
1 0 0
0 0 3

)
.

Answers:

(
1,

(
−1
1
0

))
,

(
3,

(
0
0
1

))
74. Show algorithm steps to compute

eigenpairs of A =

(
1 −2 0
0 −1 0
4 −4 −1

)
.

Answers:(
1,

(
1
0
2

))
,

(
−1,

(
1
1
0

))
,(

−1,

(
0
0
1

))
75. Suppose A is row-reduced to a trian-

gular form B. Are the eigenvalues of B
also the eigenvalues of A? Give a proof
or a counter-example.

76. Suppose A−λI is row-reduced to a tri-
angular form B. Explain: The eigen-
values of A are usually unrelated to the
roots λ of |B| = 0.

Decomposition A = PDP−1

Compute the eigenpairs. If diagonalizable,
then display D, P and Fourier’s replace-
ment equation.

77. A =

 7 4 0
−1 3 0
0 0 3


Ans: only 2 eigenpairs

.

78. A =

 1 6 0
2 −3 0
0 0 3


Ans:

(
3 0 0
0 3 0
0 0 −5

)
,

(
3 0 −1
1 0 1
0 1 0

)
Fourier equation: AP c⃗ = PDc⃗ .

Diagonalization
Report diagonalizable or not and explain
why.

79. A =


1 2 0 0
2 1 0 0
0 0 3 1
0 0 0 −3


Ans: diagonalizable

80. A =


1 2 0 0
2 1 0 0
0 0 3 1
0 0 0 3


Ans: not diagonalizable

Non-diagonalizable Matrices

81. Verify A =

(
1 2
−8 9

)
is not diagonaliz-

able.

82. Verify A =

(
1 2 0
−8 9 1
0 0 5

)
is not diagonal-

izable.

83. Invent a 3×3 matrix which has exactly
one eigenpair.

84. Invent a 4×4 matrix which has exactly
two eigenpairs.

Fourier’s Heat Model
Define
v⃗ 1=sinπx, v⃗ 2=sin 2πx, v⃗ 3=sin 3πx
considered as vectors in the vector space
V of twice continuously differentiable func-
tions on 0 ≤ x ≤ 1.

85. Verify that v⃗ 1, v⃗ 2, v⃗ 3 are independent
vectors in V .

86. Verify that v⃗ 1, v⃗ 2, v⃗ 3 vanish at x = 0
and x = 1.
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87. Define u(x) = sinπx (from v⃗ 1). Ex-
plain: Function u satisfies differential

equation
d2u

dx2
+ π2u = 0.

88. Write vector expression

c1e
−π2tv⃗ 1 + c2e

−4π2tv⃗ 2

+c3e
−9π2tv⃗ 3

as a scalar function u(t, x). Find initial
heat distribution u(0, x). Explain how
Fourier replacement (re-scaling) con-
structs future state u(t, x) from initial
state u(0, x).
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9.2 Eigenanalysis Applications

Discrete Dynamical Systems

The matrix equation

y⃗ = Ax⃗ , A =
1

10

 5 4 0
3 5 3
2 1 7

(1)

predicts the state y⃗ of a system initially in state x⃗ after some fixed elapsed time.
The 3× 3 matrix A in (1) represents the dynamics which changes state x⃗ into
state y⃗ .

An equation y⃗ = Ax⃗ like equation (1) is called a discrete dynamical system.
The fixed elapsed time for changing x⃗ to y⃗ is called the period of the discrete
dynamical system. Matrix A is called a transition matrix, provided A has
nonnegative entries and column sums equal to one. See stochastic matrices
page 704

The eigenpairs of matrix A in (1) are shown on page 713 to be (1, v⃗ 1), (1/2, v⃗ 2),
(1/5, v⃗ 3) with eigenvectors

v⃗ 1 =

 12
15
13

 , v⃗ 2 =

 −10
1

 , v⃗ 3 =

 −43
1

 .(2)

Market Shares

A model application of discrete dynamical systems is telephone long distance
company market shares x1, x2, x3, which are fractions of the total market for
long distance service. If three companies provide all the services, then their
market fractions add to one: x1 + x2 + x3 = 1. Equation y⃗ = Ax⃗ in (1) with
eigenpairs (2) predicts the market shares of the three companies after a fixed
time period, say one year. Market shares after one, two and three years are given
by the iterates

y⃗ 1 = Ax⃗ ,
y⃗ 2 = A2x⃗ ,
y⃗ 3 = A3x⃗ .

Fourier’s replacement model (8) page 676 gives succinct and useful formulas for
the iterates. If x⃗ = a1v⃗ 1 + a2v⃗ 2 + a3v⃗ 3, then

y⃗ 1 = Ax⃗ = a1λ1v⃗ 1 + a2λ2v⃗ 2 + a3λ3v⃗ 3,
y⃗ 2 = A2x⃗ = a1λ

2
1v⃗ 1 + a2λ

2
2v⃗ 2 + a3λ

2
3v⃗ 3,

y⃗ 3 = A3x⃗ = a1λ
3
1v⃗ 1 + a2λ

3
2v⃗ 2 + a3λ

3
3v⃗ 3.

(3)
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The eigenpairs of A in (2) show that λ1 = 1 and limn→∞ |λ2|n = limn→∞ |λ3|n =
0. Then for large n

y⃗n ≈ a1(1)v⃗ 1 + a2(0)v⃗ 2 + a3(0)v⃗ 3 =

 12a1
15a1
13a1

 .

The numbers a1, a2, a3 are related to x1, x2, x3 in the expansion x⃗ = a1v⃗ 1 +
a2v⃗ 2+a3v⃗ 3 by the equations 12a1−a2−4a3 = x1, 15a1+3a3 = x2, 13a1+a2+a3 =
x3. Because x1 + x2 + x3 = 1, then a1 = 1/40. The three market shares after a
long time period are predicted to be 3/10, 3/8, 13/40. The market share identity
3
10 +

3
8 +

13
40 = 1 holds because approximating terms from (3) are sums of market

shares adding to one.

Stochastic Matrices

The special matrix A in (1) is a stochastic matrix8, defined by the properties

n∑
i=1

aij = 1, akj ≥ 0, k, j = 1, . . . , n.

The definition is memorized by the phrase each column sum is one.

Leontief input-output models are stochastic models, popularized by 1973
Nobel Prize economist Wassily Leontief. A typical model is A = RT where

R =

 1 0 0
.2 .3 .5
.4 .4 .2

 .

The rows of R add to one, therefore the columns of A add to one. Row 1 is
the bank, Row 2 is Factory 1, Row 3 is Factory 2. Matrix R tracks the money
as it is being passed back and forth between the factories and the bank.

Leslie Models in population biology are similar to stochastic models. It is
a discrete time model v⃗ i+1 = Av⃗ i of an age-structured population describing
mortality, reproduction and development. The Leslie matrix A for n = 4 looks
like

A =


f1 f2 f3 f4
s1 0 0 0
0 s2 0 0
0 0 s3 0

 .

Neither the row sums nor the column sums are one. However, some stochastic
matrix results have analogs for Leslie matrices. Population vector v⃗ i contains
counts of age classes. Number fi ≥ 0 is the average number of female births for
a mother of age class i. Number si ≥ 0 is the fraction of individuals of age class
i that survive to age class i+ 1.

8Technically, a right stochastic matrix, which means columns add to one. A left stochastic
matrix has rows adding to one. The term transition matrix is also used.
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Theorem 9.12 (Stochastic Matrix Properties)
Let A be a stochastic matrix. Then

(a) If x⃗ is a vector with x1+ · · ·+xn = 1, then y⃗ = Ax⃗ satisfies y1+ · · ·+
yn = 1.

(b) If the components of v⃗ are all 1, then AT v⃗ = v⃗ . Therefore, (1, v⃗ ) is
an eigenpair of AT .

(c) One root of the characteristic equation det(A − λI) = 0 is λ = 1. All
other roots satisfy |λ| ≤ 1.

Proof on page 715.

Theorem 9.13 (Perron-Frobenius: Positive Stochastic Matrix)
Let A be a stochastic matrix all of whose entries are strictly positive. Then

(a) There exists an eigenpair (1, w⃗ ) of A such that w⃗ has nonnegative
components and limn→∞An = ⟨w⃗ |w⃗ | · · · |w⃗⟩.

(b) If (1, v⃗ ) is an eigenpair of A, then v⃗ = cw⃗ for c =
∑n

i=1 vi. Briefly, the
eigenspace for λ = 1 has dimension one.

(c) If λ ̸= 1 is a real or complex eigenvalue of A, then |λ| < 1.

(d) If (λ, v⃗ ) is an eigenpair of A and v⃗ has nonnegative components, then
all components of v⃗ are strictly positive, λ = 1 and v⃗ = cw⃗ for some
constant c.

Proof on page 715.

Coupled and Uncoupled Systems

The linear system of differential equations

x′1 = −x1 − x3,
x′2 = 4x1 − x2 − 3x3,
x′3 = 2x1 − 4x3,

(4)

is called coupled, whereas the linear system of growth-decay equations

y′1 = −3y1,
y′2 = −y2,
y′3 = −2y3,

(5)

is called uncoupled. The terminology uncoupled means that each differential
equation in system (5) depends on exactly one variable, e.g., y′1 = −3y1 depends
only on variable y1. In a coupled system, one of the differential equations must
involve two or more variables.
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Matrix Formulation

Coupled system (4) and uncoupled system (5) can be written in matrix form,
x⃗ ′ = Ax⃗ and y⃗ ′ = Dy⃗ , with coefficient matrices

A =

(
−1 0 −1
4 −1 −3
2 0 −4

)
and D =

(
−3 0 0
0 −1 0
0 0 −2

)
.

If the coefficient matrix is diagonal, then the system is uncoupled. If the
coefficient matrix is not diagonal, then one of the corresponding differential
equations involves two or more variables and the system is called coupled or
cross-coupled.

Solving Uncoupled Systems

An uncoupled system consists of independent growth-decay equations of the form
u′ = au. The solution formula u = ceat then leads to the general solution of the
system of equations. For instance, system (5) has general solution

y1 = c1e
−3t,

y2 = c2e
−t,

y3 = c3e
−2t,

(6)

where c1, c2, c3 are arbitrary constants. The number of constants equals the
dimension of the diagonal matrix D.

Coordinates and Coordinate Systems

If vectors v⃗ 1, v⃗ 2, v⃗ 3 are independent in R3, then augmented matrix

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩
is invertible. The columns v⃗ 1, v⃗ 2, v⃗ 3 of P are called a coordinate system.
The matrix P is called a change of coordinates.

Independence of v⃗ 1, v⃗ 2, v⃗ 3 means every vector v⃗ inR3 can be uniquely expressed
as

v⃗ = t1v⃗ 1 + t2v⃗ 2 + t3v⃗ 3.

The values t1, t2, t3 are called the coordinates of v⃗ relative to the basis v⃗ 1, v⃗ 2,
v⃗ 3, or the coordinates of v⃗ relative to P .

Viewpoint of a Driver

The physical meaning of a coordinate system v⃗ 1, v⃗ 2, v⃗ 3 can be understood by
considering an auto traveling up a mountain road. Choose orthogonal v⃗ 1 and
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v⃗ 2 to give positions in the driver’s seat and define v⃗ 3 be the seat-back direction.
These are local coordinates as viewed from the driver’s seat. The road map
coordinates x, y and the altitude z define the global coordinates for the auto’s
position p⃗ = x⃗ı+ yȷ⃗+ zk⃗.

v⃗ 1

v⃗ 3

v⃗ 2

Figure 2. Driver’s coordinates.
The vectors v⃗ 1(t), v⃗ 2(t), v⃗ 3(t) form an or-
thogonal triad which is a local coordinate
system from the driver’s viewpoint. The or-
thogonal triad changes continuously in t.

Change of Coordinates x⃗ = P y⃗

A coordinate change from y⃗ to x⃗ is a linear algebraic equation x⃗ = P y⃗ where
the n × n matrix P is required to be invertible (det(P ) ̸= 0). To illustrate, an
instance of a change of coordinates from y⃗ to x⃗ is given by the linear equations

x⃗ =

(
1 0 1
1 1 −1
2 0 1

)
y⃗ or


x1 = y1 + y3,
x2 = y1 + y2 − y3,
x3 = 2y1 + y3.

(7)

Constructing Coupled Systems

A general method exists to construct rich examples of coupled systems. The idea
uses a change of variables for a given uncoupled system. Consider a diagonal
system y⃗ ′ = Dy⃗ , like (5), and a change of variables x⃗ = P y⃗ , like (7). Differential
calculus applies to give

x⃗ ′ = (P y⃗ )′

= P y⃗ ′

= PDy⃗
= PDP−1 x⃗ .

(8)

The matrix A = PDP−1 is not triangular in general, and therefore the change
of variables produces a cross-coupled system.

An illustration. To give an example, substitute into uncoupled system (5) the
change of variable equations (7). Use equation (8) to obtain

x⃗ ′ =

 −1 0 −1
4 −1 −3
2 0 −4

 x⃗ or


x′1 = −x1 − x3,
x′2 = 4x1 − x2 − 3x3,
x′3 = 2x1 − 4x3.

(9)

This cross-coupled system (9) can be solved using relations (7), (6) and x⃗ = P y⃗
to give the general solution x1

x2
x3

 =

 1 0 1
1 1 −1
2 0 1

 c1e
−3t

c2e
−t

c3e
−2t

 .(10)
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Changing Coupled Systems to Uncoupled

A question, motivated by the above calculations:

Can every coupled system x⃗ ′(t) = Ax⃗ (t) be subjected to a change
of variables x⃗ = P y⃗ which converts the system into a completely
uncoupled system for variable y⃗ (t)?

Answer: A coupled system can be so transformed if and only if matrices P
and D are eigenpair packages of A. Then AP = PD and A is diagonalizable.
Conversely, if A is diagonalizable, then the packages P , D exist and x⃗ = P y⃗
changes x⃗ ′ = Ax⃗ into diagonal system y⃗ ′ = Dy⃗ . The connection between x⃗ and
y⃗ is like (10).

Eigenanalysis provides the opportunity to simultaneously calculate from cross-
coupled system x⃗ ′ = Ax⃗ a change of variable x⃗ = P y⃗ and a diagonal matrix
D for an uncoupled system y⃗ ′ = Dy⃗ . System y⃗ ′ = Dy⃗ consists of uncoupled
scalar growth-decay equations like (5).

Matrices A that fail to be diagonalizable present a problem, because eigenanalysis
does not apply. The demand to obtain an uncoupled system y⃗ ′ = Dy⃗ leaves no
alternative, because if there is a change of variables x⃗ = P y⃗ into diagonal system
y⃗ ′ = Dy⃗ , then AP = PD and A is diagonalizable, a contradiction.

There does exist a change of coordinates P to change x⃗ ′ = Ax⃗ into a triangu-
lar system y⃗ ′ = T y⃗ . This system in scalar form can be solved by the linear
integrating factor method. There is again an answer x⃗ = P y⃗ like (5). See page
721.

Eigenanalysis and Footballs

An ellipsoid or football is a geometric object described by
its semi-axes (see Figure 3). In the vector representa-
tion, the semi-axis directions are unit vectors v⃗ 1, v⃗ 2,
v⃗ 3 and the semi-axis lengths are the constants a, b, c.
The vectors av⃗ 1, bv⃗ 2, cv⃗ 3 form an orthogonal triad.
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cv⃗ 3

av⃗ 1

bv⃗ 2

Figure 3. Ellispoid.
An ellipsoid is built from
orthonormal semi-axis
directions v⃗ 1, v⃗ 2, v⃗ 3 and
the semi-axis lengths a, b,
c. The semi-axis vectors
are av⃗ 1, bv⃗ 2, cv⃗ 3.

Two vectors u⃗ , w⃗ are orthogonal if both are nonzero and their dot product u⃗ · w⃗
is zero. Vectors are orthonormal if each has unit length and they are pairwise
orthogonal. The orthogonal triad v⃗ 1, v⃗ 2, v⃗ 3 is an invariant of the ellipsoid’s
algebraic representations. Algebra does not change the triad: the invariants av⃗ 1,
bv⃗ 2, cv⃗ 3 must somehow be hidden in the equations that represent the ellipsoid.

Algebraic eigenanalysis finds the hidden invariant triad av⃗ 1, bv⃗ 2, cv⃗ 3 from
the ellipsoid’s algebraic equations. Suppose, for instance, that the equation of
the ellipsoid is supplied as

x2 + 4y2 + xy + 4z2 = 16.

A symmetric matrix A is constructed in order to write the equation in the form
X⃗T A X⃗ = 16, where X⃗ has components x, y, z. The replacement equation is9

(
x y z

)  1 1/2 0
1/2 4 0
0 0 4

  x
y
z

 = 16.(11)

It is the 3×3 symmetric matrix A in (11) that is subjected to algebraic eigenanal-
ysis. The matrix calculation will compute the unit semi-axis directions v⃗ 1, v⃗ 2,
v⃗ 3, called the eigenvectors or hidden vectors. The semi-axis lengths a, b, c
are computed at the same time, by finding the eigenvalues or hidden values10

λ1, λ2, λ3, known to satisfy the relations

λ1 =
16

a2
, λ2 =

16

b2
, λ3 =

16

c2
.

For the illustration, the football dimensions are a = 2, b = 1.98, c = 4.17. Details
of the computation are delayed until page 711.

9Multiply matrices to verify this statement. Halving of the entries corresponding to cross-
terms generalizes to any ellipsoid.

10The terminology hidden arises because neither the semi-axis lengths nor the semi-axis di-
rections are revealed directly by the ellipsoid equation.
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Ellipse and Eigenanalysis

An ellipse equation in standard form is λ1u
2 + λ2v

2 = 1, where λ1 = 1/a2,
λ2 = 1/b2 are expressed in terms of the semi-axis lengths a, b. The expression
λ1u

2+λ2v
2 is called a quadratic form. The study of the ellipse λ1u

2+λ2v
2 = 1

is equivalent to the study of the quadratic form equation

r⃗TDr⃗ = 1, where r⃗ =

(
u
v

)
, D =

(
λ1 0
0 λ2

)
.

Cross-terms. An ellipse may be represented by an equation in a xy-coordinate
system having a cross-term xy, e.g., 4x2 + 8xy + 10y2 = 5. The expression
4x2 + 8xy + 10y2 is again called a quadratic form. Calculus courses provide
methods to eliminate the cross-term and represent the equation in standard form,
by a rotation by angle θ of the xy-system into the uv-system:(

u
v

)
= R

(
x
y

)
, R =

(
cos θ sin θ
− sin θ cos θ

)
.

Eigenanalysis computes angle θ through the columns of R, which are the unit
semi-axis directions v⃗ 1, v⃗ 2 for the ellipse 4x2 +8xy+10y2 = 5. If the quadratic
form 4x2 + 8xy + 10y2 is represented as r⃗T A r⃗ , then

r⃗ =

(
x
y

)
, A =

(
4 4
4 10

)
, R =

1√
5

(
1 −2
2 1

)
,

λ1 = 12, v⃗ 1 =
1√
5

(
1
2

)
, λ2 = 2, v⃗ 2 =

1√
5

(
−2
1

)
.

Ellipse equations. There are two coordinate systems, the xy-system and the
rotated uv-system. The equations in each system, each divided by 5:

4
5x

2 + 8
5xy + 2y2 = 1,

2
5u

2 + 12
5 v

2 = 1.
(12)

The rotation relation

(
u
v

)
= R

(
x
y

)
is the set of equations

{
u = = 1√

5
x− 2√

5
y,

v = = 2√
5
x+ 1√

5
y,

(13)

which upon substitution into the uv-equation in (12) gives

2

5

(
1√
5
x− 2√

5
y

)2

+
12

5

(
2√
5
x+

1√
5
y

)2

= 1.

The reader can verify that this is the first equation in (12).
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Rotation matrix angle θ. The components of unit eigenvector v⃗ 1 can be used
to determine θ = −63.4◦:(

cos θ
− sin θ

)
=

1√
5

(
1
2

)
or

{
cos θ = 1√

5
,

− sin θ = 2√
5
.

The interpretation of angle θ: rotate the orthonormal basis v⃗ 1, v⃗ 2 by angle
θ = −63.4◦ in order to obtain the standard unit basis vectors ı⃗ , ȷ⃗ . Calculus texts
might discuss only the inverse rotation, where x, y are given in terms of u, v.
In these references, θ is the negative of the value given here, due to a different
geometric viewpoint.11

Semi-axis lengths. The lengths a ≈ 1.55, b ≈ 0.63 for the ellipse 4x2 + 8xy +
10y2 = 5 are computed from the eigenvalues λ1 = 12, λ2 = 2 of matrix A by the
equations

λ1

5
=

1

a2
,

λ2

5
=

1

b2
.

Geometry. The ellipse 4x2 + 8xy + 10y2 = 5 is completely determined by the
orthogonal semi-axis vectors av⃗ 1, bv⃗ 2. The rotation R is a rigid motion mapping
xy-plane vectors av⃗ 1, bv⃗ 2 into uv-plane vectors a⃗ı, bȷ⃗.

The θ-rotation R maps 4x2+8xy+10y2 = 5 into the uv-equation λ1u
2+λ2v

2 = 5,

where λ1, λ2 are the eigenvalues of A. To see why, let r⃗ =

(
u
v

)
, s⃗ =

(
x
y

)
in the

equation r⃗ = Rs⃗ . Then r⃗TAr⃗ = s⃗T (RTAR)⃗s . Using RTR = I gives R−1 = RT

and RTAR = diag(λ1, λ2). Finally, r⃗
TAr⃗ = λ1u

2 + λ2v
2.

Orthogonal Triad Computation

Let’s compute the semiaxis directions v⃗ 1, v⃗ 2, v⃗ 3 for the ellipsoid x2+4y2+xy+
4z2 = 16. To be applied is Theorem 9.3. As explained on page 709, the starting
point is to represent the ellipsoid equation as a quadratic form W⃗TAW⃗ = 16,
where the symmetric matrix A and vector W⃗ are defined by

A =

 1 1
2 0

1
2 4 0
0 0 4

 , W⃗ =

 x
y
z

 .

College algebra. TheCharacteristic Polynomial det(A−λI) = 0 determines
the eigenvalues or hidden values of the matrix A. By cofactor expansion, this
polynomial equation is

(4− λ)((1− λ)(4− λ)− 1/4) = 0

with roots 4, 5/2 +
√
10/2, 5/2−

√
10/2.

11Rod Serling, author and playwright for the SciFi series The Twilight Zone, enjoyed the view
from the other side.
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Eigenpairs. It will be shown that three eigenpairs are

λ1 = 4, x⃗ 1 =

 0
0
1

 ,

λ2 =
5 +
√
10

2
, x⃗ 2 =

 √10− 3
1
0

 ,

λ3 =
5−
√
10

2
, x⃗ 3 =

 √10 + 3
−1
0

 .

The vector norms of the eigenvectors are given by ∥x⃗ 1∥ = 1, ∥x⃗ 2∥ =
√
20 + 6

√
10,

∥x⃗ 3∥ =
√

20− 6
√
10. The orthonormal semi-axis directions v⃗ k = x⃗k/∥x⃗k∥,

k = 1, 2, 3, are then given by the formulas

v⃗ 1 =

 0
0
1

 , v⃗ 2 =


√
10−3√

20−6
√
10

1√
20−6

√
10

0

 , v⃗ 3 =


√
10+3√

20+6
√
10

−1√
20+6

√
10

0

 .

Eigenpair Details.

⟨A− λ1I, 0⃗⟩ =

 1− 4 1/2 0 0
1/2 4− 4 0 0
0 0 4− 4 0


≈

 1 0 0 0
0 1 0 0
0 0 0 0

 Used Toolkit rules combination, multiply
and swap. Found rref.

⟨A− λ2I, 0⃗⟩ =

 −3−
√
10

2
1
2 0 0

1
2

3−
√
10

2 0 0

0 0 3−
√
10

2 0


≈

 1 3−
√
10 0 0

0 0 1 0
0 0 0 0

 Toolkit rules applied.
Found rref.

⟨A− λ3I, 0⃗⟩ =

 −3+
√
10

2
1
2 0 0

1
2

3+
√
10

2 0 0

0 0 3+
√
10

2 0


≈

 1 3 +
√
10 0 0

0 0 1 0
0 0 0 0

 Toolkit rules applied.
Found rref.
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Solving the corresponding reduced echelon systems gives the preceding formulas
for the eigenvectors x⃗ 1, x⃗ 2, x⃗ 3. The equation for the ellipsoid is λ1X

2 +λ2Y
2 +

λ3Z
2 = 16, where the multipliers of the square terms are the eigenvalues of A

and X, Y , Z define the new coordinate system determined by the eigenvectors
of A. This equation can be re-written in the form X2

a2
+ Y 2

b2
+ Z2

c2
= 1, provided

the semi-axis lengths a, b, c are defined by the relations a2 = 16/λ1, b
2 = 16/λ2,

c2 = 16/λ3. After computation, a = 2, b = 1.98, c = 4.17.

Proofs, Methods and Details

Eigenpairs of (1), Telephone Carriers:
To be computed are the eigenvalues λ and eigenvectors v⃗ for the 3× 3 matrix

A =
1

10

 5 4 0
3 5 3
2 1 7

 .

The eigenpairs are (1, v⃗ 1) ,
(
1
2 , v⃗ 2

)
,
(
1
5 , v⃗ 3

)
where

v⃗ 1 =

 12
15
13

 , v⃗ 2 =

 −10
1

 , v⃗ 3 =

 −43
1

 .(14)

Eigenvalues. The roots λ = 1, 1/2, 1/5 of the characteristic equation det(A − λI) = 0
are found by these details:

0 = det(A− λI)

=

∣∣∣∣∣∣
.5− λ .4 0
.3 .5− λ .3
.2 .1 .7− λ

∣∣∣∣∣∣
=

1

10
− 8

10
λ+

17

10
λ2 − λ3 Expand by cofactors.

= − 1

10
(λ− 1)(2λ− 1)(5λ− 1) Factor the cubic.

The factorization was found by long division of the cubic by λ − 1, the idea born from
the fact that 1 is a root and therefore λ− 1 is a factor, by the Factor Theorem of college
algebra. The root λ = 1 was discovered from the Rational Root theorem of college
algebra.12

Eigenpairs. To each eigenvalue λ = 1, 1/2, 1/5 corresponds one rref calculation, to
find the eigenvectors paired to λ. The three eigenvectors are given by (2). The details:

Eigenvalue λ = 1.

A− (1)I =

 .5− 1 .4 0
.3 .5− 1 .3
.2 .1 .7− 1


≈

 −5 4 0
3 −5 3
2 1 −3

 Multiply rule, multiplier=10.

12A rational root x of anx
n + · · ·+ a0 = 0 is a rational factor of a0/an.
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≈

 0 0 0
3 −5 3
2 1 −3

 Combination rule twice.

≈

 0 0 0
1 −6 6
2 1 −3

 Combination rule.

≈

 0 0 0
1 −6 6
0 13 −15

 Combination rule.

≈

 0 0 0
1 0 − 12

13
0 1 − 15

13

 Multiply rule and combination rule.

≈

 1 0 − 12
13

0 1 − 15
13

0 0 0

 Swap rule.

= rref(A− (1)I)

An equivalent reduced echelon system is x − 12z/13 = 0, y − 15z/13 = 0. The free
variable assignment is z = t1 and then x = 12t1/13, y = 15t1/13.

An eigenvector can be selected as the partial derivative on variable t1 across the general
solution x = 12t1/13, y = 15t1/13, z = t1 (equivalent here to setting t1 = 1). This
computation gives eigenvector x = 12/13, y = 15/13, z = 1.

An eigenvector can be multiplied by a constant c ̸= 0 to obtain another eigenvector. To
eliminate fractions in the answer, the practice is to multiply by an integer c to eliminate
all fractions. Choose constant c = 13 to obtain eigenvector x = 12, y = 15, z = 13.

Eigenvalue λ = 1/2.

A− (1/2)I =

 .5− .5 .4 0
.3 .5− .5 .3
.2 .1 .7− .5


≈

 0 4 0
3 0 3
2 1 2

 Multiply rule, factor=10.

≈

 0 1 0
1 0 1
0 0 0

 Combination and multiply rules.

= rref(A− .5I)

An eigenvector is found from the equivalent reduced echelon system y = 0, x+ z = 0 to
be x = −1, y = 0, z = 1.

Eigenvalue λ = 1/5.

A− (1/5)I =

 .5− .2 .4 0
.3 .5− .2 .3
.2 .1 .7− .2


≈

 3 4 0
1 1 1
2 1 5

 Multiply rule.
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≈

 1 0 4
0 1 −3
0 0 0

 Combination rule.

= rref(A− (1/5)I)

An eigenvector is found from the equivalent reduced echelon system x+4z = 0, y−3z = 0
to be x = −4, y = 3, z = 1.

An answer check in maple:

with(LinearAlgebra):

A:=(1/10)*Matrix([[5,4,0],[3,5,3],[2,1,7]]);

B:=A-lambda*IdentityMatrix(3);

DD,P:=Eigenvectors(A);

factor(Determinant(B));

Proof of Theorem 9.12, Stochastic Matrix Properties:
(a)

∑n
i=1 yi =

∑n
i=1

∑n
j=1 aijxj =

∑n
j=1 (

∑n
i=1 aij)xj =

∑n
j=1(1)xj = 1.

(b) Entry j of AT v⃗ is given by
∑n

i=1(aij)(1) = column sum = 1.

(c) The determinant rule det(BT ) = det(B) applied to B = A − λI implies A and
AT have the same eigenvalues. Apply (b) to verify that A has eigenvalue 1. Any other
root λ of |A − λI| = 0 is also a root of |AT − λI| = 0 with corresponding eigenvector
x⃗ satisfying AT x⃗ = λx⃗ . Because x⃗ ̸= 0⃗ , then x⃗ has a component xj with largest
magnitude |xj | > 0. Isolate index j across equation λx⃗ = AT x⃗ , then divide by |xj |, to
obtain λ =

∑n
i=1 aij

xi

xj
. Because aji ≥ 0 and 0 ≤

∣∣∣ xi

xj

∣∣∣ ≤ 1, then |λ| ≤ 1, because

|λ| ≤
n∑

i=1

aij

∣∣∣∣xi

xj

∣∣∣∣ ≤ n∑
i=1

(aij)(1) = column sum = 1.

Proof of Theorem 9.13, Perron-Frobenius:13

Proof of (a)

Definition 9.6 (Positive Matrix)
Notation A > 0 means all aij > 0. Notation A ≤ B means aij ≤ bij , also written B ≥ A.

Definition 9.7 (Max, Min and Ones Matrices)
Matrix maxr(A) (resp. minr(A)) is obtained from A by replacing each entry aij by the
maximum (resp. minimum) element of row i. Symbol δ = mini,j aij is the least element in
matrix A. Matrix O is the n× n matrix of all ones.

The proof is organized as five lemmas. Assume throughout that A > 0 is stochastic with
least element δ, B ≥ 0 and O is the matrix of all ones.

Lemma 1a. If A,B are stochastic, then BA is stochastic.

Lemma 2a. minr(B) ≤minr(BA) ≤ BA ≤maxr(BA) ≤maxr(B).

13Perron-Frobenius theory is a basis for the Google Search PageRank algorithm.
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Proof: The maximum along row i of C = BA is some cij =
∑n

k=1 bikakj . Let M
denote the maximum along row i of B. Because columns of A sum to 1, then cij =∑n

k=1 bikakj ≤
∑n

k=1 Makj = M . Then BA ≤ maxr(BA) ≤ maxr(B). Details for
inequality minr(B) ≤minr(BA) ≤ BA are similar.

Lemma 3a. maxr(BA)−minr(BA) ≤ (1− δ) (maxr(B)−minr(B)).

Proof: Let C = BA have row i maximum at cij and row minimum at cik. Then all
elements in row i of matrix maxr(BA) −minr(BA) have value S = cij − cik. Let M
(resp. m) be the common entry along row i of maxr(B) (resp. minr(B)). We’ll verify
S ≤ (1− δ) (M −m), which proves the lemma.

Re-write S = cij−cik =
∑n

p=1 bipapj−
∑n

p=1 bipapk =
∑n

p=1 bip(apj−apk). Let p1, . . . , pr
be the set of indices p such that apj − apk > 0 and let q1, . . . , qs be the set of indices
q such that aqj − aqk < 0. Indices p that satisfy apj − apk = 0 contribute zero to S.
In cases r = 0 and/or s = 0 we have S ≤ 0, so the conclusion follows. Henceforth,
assume r ≥ 1 and s ≥ 1. The column sums of A are 1, which implies for instance∑r

ℓ=1 apℓj +
∑s

ℓ=1 aqℓj = 1. We estimate:

S =
∑n

p=1 bip(apj − apk)

=
∑r

ℓ=1 bip(apℓj − apℓk) +
∑s

ℓ=1 bip(aqℓj − aqℓk)
≤ M

∑r
ℓ=1(apℓj − apℓk) +m

∑s
ℓ=1(aqℓj − aqℓk)

= M (1−
∑s

ℓ=1 aqℓj − 1 +
∑s

ℓ=1 aqℓk) +m
∑s

ℓ=1(aqℓj − aqℓk)
= (M −m) (−

∑s
ℓ=1 aqℓj +

∑s
ℓ=1 aqℓk)

≤ (M −m) (−sδ + 1)
≤ (M −m) (−δ + 1) .

Lemma 4a. maxr(A
k+1)−minr(A

k+1) ≤ (1− δ)kO.
Proof: Let B = Ak and apply Lemmas 1a and 3a. Then maxr(A

k+1)−minr(A
k+1) ≤

(1− δ)
(
maxr(A

k)−minr(A
k)
)
. Induction on k implies the result, because maxr(A)−

minr(A) ≤ O.
Lemma 5a. There exists a vector w⃗ with all positive components such that limk→∞ Ak =

⟨w⃗ |w⃗ | · · · |w⃗⟩. Then Aw⃗ = w⃗ and (1, w⃗ ) is an eigenpair.14

Proof: The preceding lemmas and the calculus squeeze theorem for limits imply that
maxr(A

k) and minr(A
k) converge as k → ∞ to some matrix P . Because maxr(A

k)
has identical elements in each row, then so does P . Therefore, the columns of P are
the same vector w⃗ . Take limits across inequality minr(A

k) ≥ δO to prove w⃗ > 0⃗ .
Vector w⃗ equals P u⃗ , where u⃗ = column 1 of the identity matrix. Then w⃗ = P u⃗ =
limk→∞ Ak+1u⃗ = A

(
limk→∞ Aku⃗

)
= Aw⃗ , which is the eigenpair equation w⃗ = Aw⃗ .

Proof of (b)
Eigenpair equation v⃗ = Av⃗ is multiplied repeatedly by A to give v⃗ = Ak+1v⃗ . Take the

limit using part (a): v⃗ = P v⃗ , where P = ⟨w⃗ |w⃗ | · · · |w⃗⟩. Then v⃗ = P v⃗ = (
∑n

i=1 vi) w⃗ .

Proof of (c)
Consider an eigenpair (λ, v⃗ ). Apply A across λv⃗ = Av⃗ to obtain λkv⃗ = Akv⃗ . Use part
(a) to take the limit as k →∞. Then, as in part (b), limk→∞ λkv⃗ = (

∑n
i=1 vi) w⃗ . This

limit exists only in case |λ| ≤ 1. If |λ| = 1, then λ = eiθ for some angle θ. The limit fails
to exist unless θ = 0 modulo 2π. Therefore, λ = 1 and v⃗ = (

∑n
i=1 vi) w⃗ .

Proof of (d)
Let’s suppose some vj = 0, in order to reach a contradiction. Component j of the identity

14The numerical power method can be used to approximate eigenvector w⃗ .
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Av⃗ = λv⃗ says that
∑n

k=1 ajkvk = 0. Because v⃗ ̸= 0⃗ , then at least one vk ̸= 0. Because
ajk > 0, then

∑n
k=1 ajkvk > 0, a contradiction.

Perron-Frobenius proof completed. ■

Exercises 9.2 �

Discrete Dynamical Systems
Define matrix A via equation

y⃗ =
1

10

 5 1 0
3 4 3
2 5 7

 x⃗(15)

1. Find eigenpair packages of A.
Answers:

D=

 0.5 0 0
0 0.1 0
0 0 1


P=

 −1 1 1
0 −4 5
1 3 9


2. Explain: A is a transition matrix.15

3. Assume y⃗ = Ax⃗ has period one year.
Find the system state after two years.

4. Explain: Anx⃗ is the system state after
n periods.

Market Shares
Define matrix A via equation

y⃗ =
1

10

(
5 4 0
3 5 3
2 1 7

)
x⃗(16)

5. Find with software the eigenpairs of A
given by equation 2.

6. Compute A2, A3, A4 using software.
Predict the limit of An as n approaches
infinity.

7. Compute with software (rounded)

A10=

(
.30 .30 .30
.37 .38 .37
.32 .32 .33

)
(17)

8. Let x⃗= 1
3

(
1
1
1

)
. Compute

A10x⃗ =

(
0.30
0.37
0.33

)
(rounded)

in two ways by calculator:
(1) Fourier replacement (3).
(2) Matrix multiply using (3).

Stochastic Matrices
Reference: Perron-Frobenius proof on page
715.

9. Establish the identity |A−λI| = |AT −
λI|.

10. Explain why A and AT have the same
eigenvalues but not necessarily the same
eigenvectors.

11. Verify maxr(A) = ⟨w⃗ |w⃗ | · · · |w⃗ ⟩,
where w⃗ has components wi =
max{aij , 1 ≤ j ≤ n}.

12. Verify maxr(A) = DO, where D is the
diagonal matrix of row maxima and O
is the matrix of all ones.

Perron-Frobenius Theorem
Let A > 0 be n× n stochastic with unique
eigenpair (1, w⃗ ), all wi > 0 and

∑n
i=1 wi =

1. Assume v⃗ ≥ 0⃗ ,
∑n

i=1 vi = 1 and
δ = mini,j aij .

13. Apply inequality minr(A
n)v⃗ ≤ Anv⃗ ≤

maxr(A
n)v⃗ to prove limn→∞ Anv⃗ =(∑n

i=1 vi
)
w⃗ = w⃗ .

14. Verify Euclidean norm inequality
∥Ak+1v⃗ − w⃗∥ ≤

√
n (1− δ)k

Weierstrass Proof
These exercises establish existence of an
eigenpair (1, v⃗ ) for stochastic matrix A
having only nonnegative entries.

15Perron-Frobenius theory extensions in the literature apply to transition matrices. See the
Weierstrass Proof exercises.
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Weierstrass Compactness Theorem

A sequence of vectors {v⃗ i}∞i=1 contained in a

closed, bounded set K in Rn has a subsequence

converging in the vector norm of Rn to some

vector v⃗ in K.

Define set K to be all vectors v⃗ with non-
negative components adding to 1. Let v⃗ 0

be any element of K. Assume stochas-
tic A with aij ≥ 0 and define v⃗N =
1
N

∑N−1
j=0 Ajv⃗ 0.

15. Verify K is closed and bounded in Rn.
Then prove λx⃗ + (1 − λ)y⃗ is in K for
0 ≤ λ ≤ 1 and x⃗ , y⃗ in K.

16. Prove identity
v⃗N+1 = λv⃗N + (1− λ)AN v⃗ 0

where λ = N
N+1 and then prove by in-

duction that v⃗N is in K.

17. Verify all hypotheses in the Weierstrass
theorem applied to {v⃗N}∞N=0. Apply-
ing the theorem produces a subsequence
{v⃗Np}∞p=1 limiting to some v⃗ in K.

18. Verify identity
v⃗N −Av⃗N = 1

N (v⃗ 0 −AN v⃗ 0).

19. Explain why Av⃗ = limp→∞ Av⃗Np .
Then prove v⃗ = Av⃗ .

20. The claimed eigenpair (1, v⃗ ) has been
found, provided v⃗ ̸= 0⃗ . Explain why
v⃗ ̸= 0⃗ .

Coupled Systems
Find the coefficient matrix A. Identify as
coupled or uncoupled and explain why.

21. x′ = 2x+ 3y, y′ = x+ y

22. x′ = 3y, y′ = x

23. x′ = 3x, y′ = 2y

24. x′ = 3x, y′ = 2y, z′ = z

Solving Uncoupled Systems
Solve for the general solution.

25. x′ = 3x, y′ = 2y

26. x′ = 3x, y′ = 2y, z′ = z

Change of Coordinates
Given the change of coordinates y⃗ = Ax⃗ ,
find the matrix B for the inverse change
x⃗ = By⃗ .

27. y⃗ =

(
1 0 0
1 0 1
0 1 0

)
x⃗

28. y⃗ =

(
−1 1 0
1 1 0
0 0 1

)
x⃗

Constructing Coupled Systems
Given the uncoupled system and change of
coordinates y⃗ = P x⃗ , find the coupled sys-
tem.

29. x′
1 = 2x1, x

′
2 = 3x2, P =

(
1 1
2 −1

)
30. x′

1 = x1, x
′
2 = −x2, P =

(
1 −1
2 1

)
Uncoupling a System
Change the given coupled system into an
uncoupled system using the eigenanalysis
change of variables y⃗ = P x⃗ .

31. x′
1 = 2x1, x

′
2 = x1 + x2, x

′
3 = x3

Ans: P =

(
1 0 0
1 0 1
0 1 0

)
, y′1 = 2y1, y

′
2 = y2,

y′3 = y3

32. x′
1 = x1 + x2, x

′
2 = x1 + x2, x

′
3 = x3

Ans: P =

(
−1 1 0
1 1 0
0 0 1

)
, y′1 = 0, y′2 = 2y2,

y′3 = y3

Solving Coupled Systems
Report the answers for x(t), y(t).

33. x′ = −x− 2y, y′ = −4x+ y

34. x′ = 8x− y, y′ = −2x+ 7y

Eigenanalysis and Footballs
The exercises study the ellipsoid
17x2 + 8y2 − 12xy + 80z2 = 80.

35. Let A =

(
17 −6 0
−6 8 0
0 0 80

)
. Expand equa-

tion W⃗TAW⃗ = 80, where W⃗ has com-
ponents x, y, z.
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36. Find the eigenpairs of

A =

(
17 −6 0
−6 8 0
0 0 80

)
.

37. Verify the semi-axis lengths 4, 2, 1.

38. Verify that the ellipsoid has semi-axis
unit directions0
0
1

 , 1√
5

1
2
0

 , 1√
5

−21
0


The Ellipse and Eigenanalysis
The exercises study the ellipse
2x2 + 4xy + 5y2 = 24.

39. Let A =

(
2 2
2 5

)
. Expand equation

W⃗TAW⃗ = 24, where W⃗ =

(
x
y

)
.

40. Find the eigenpairs of A =

(
2 2
2 5

)
.

41. Verify the semi-axis lengths 2, 2
√
6.

42. Verify that the ellipse has semi-axis
unit directions
1√
5

(
1
2

)
, 1√

5

(
−2
1

)
.

Orthogonal Triad Computation
The exercises fill in details from page 711.
The ellipsoid equation:
x2+4y2+xy+4z2=16 or x⃗TAx⃗=16,

A =

 1 1
2 0

1
2 4 0
0 0 4


43. Find the characteristic equation of A.

Then verify the roots are 4, 5/2 +√
10/2, 5/2−

√
10/2.

44. Show the steps from rref to second
eigenvector x⃗2:

rref =

 1 3−
√
10 0

0 0 1
0 0 0

,

x⃗2 =

√10−31
0


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9.3 Advanced Topics in Linear Algebra

Diagonalization and Jordan’s Theorem

A system of differential equations x⃗ ′ = Ax⃗ can be transformed to an uncoupled
system y⃗ ′ = diag(λ1, . . . , λn)y⃗ by a change of variables x⃗ = P y⃗ if and only if A
is diagonalizable and P is an invertible matrix of independent eigenvectors of
A from eigenpairs (λk, v⃗ k), 1 ≤ k ≤ n.

If A fails to be diagonalizable, then eigenanalysis does not help. Jordan’s theorem
9.14 is a possible generator of a change of coordinates x⃗ = P y⃗ . System y⃗ ′ = T y⃗
is not uncoupled, but triangular: the linear integrating factor method applies to
solve the triangular system, details forthcoming.

The sad truth about Jordan’s theorem: matrix P has no algorithm for construc-
tion. The matrix P used as replacement is a matrix of generalized eigenvec-
tors constructed from an algorithm for the Jordan normal form page 894. See
page 898 for a maple example.

Theoretical existence of P for a change of variables may be enough for proofs.
Computation requires a formula for P . What has emerged historically are math-
ematical algorithms to solve system x⃗ ′ = Ax⃗ independent of both Jordan’s theo-
rem and the Jordan normal form page 894. The foundation for computer algebra
algorithms and low dimensional hand algorithms is the Cayley-Hamilton theorem
9.16 on page 721.

Theorem 9.14 (Jordan’s theorem)
Any n× n matrix A can be represented in the form

A = PTP−1

where P is invertible and T is upper triangular. The diagonal entries of T are
eigenvalues of A.

Proof on page 740.

Theorem 9.15 (Jordan’s Extension)
Any n× n matrix A can be represented in the block triangular form

A = PTP−1, T = diag(T1, . . . , Tk),

where P is invertible and each matrix Ti is upper triangular with diagonal entries
equal to a single eigenvalue of A.
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Remarks. An induction proof of the theorem can be based upon Jordan’s Theorem
9.14. No proof is supplied. The theorem is presented again in Proposition 9.15 page 720
as a special case of the Jordan decomposition A = PJP−1, in which J is the Jordan
Form of n × n matrix A. Because the Jordan form is a triangular matrix, then T = J
gives an algorithm for generation of columns in matrix P . Jordan form is largely used
in proofs and theoretical investigations and rarely in computation.
Computer algebra systems can find matrices J and P in the Jordan form of matrix A.
With limitations, there is a constructible matrix P for Jordan’s two theorems 9.14 and
9.15. See page 898 for a maple example.

Cayley-Hamilton Identity

A celebrated and deep result for powers of matrices was discovered by Cayley and
Hamilton (see Birkhoff–MacLane [Birkhoff]), which says that an n× n matrix A
satisfies its own characteristic equation. More precisely:

Theorem 9.16 (Cayley-Hamilton)
Let det(A− λI) be expanded as the nth degree polynomial

p(λ) =
n∑

j=0

cjλ
j ,

for some coefficients c0, . . . , cn−1 and cn = (−1)n. Then A satisfies the equation
p(λ) = 0, that is,

p(A) ≡
n∑

j=0

cjA
j = 0.

In factored form in terms of the eigenvalues {λj}nj=1 (duplicates possible), the matrix
equation p(A) = 0 can be written as

(−1)n(A− λ1I)(A− λ2I) · · · (A− λnI) = 0.

Proof on page 741.

Solving Block Triangular Differential Systems

A matrix differential system y⃗ ′(t) = T y⃗ (t) with T block upper triangular splits
into scalar equations which can be solved by elementary methods for first order
scalar differential equations. To illustrate, consider the system

y′1 = 3y1 + x2 + y3,
y′2 = 3y2 + y3,
y′3 = 2y3.

The techniques that apply are the growth-decay formula for u′ = ku and the
integrating factor method for u′ = ku + p(t). Working backwards from the last
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equation with back-substitution gives

y3 = c3e
2t,

y2 = c2e
3t − c3e

2t,
y1 = (c1 + c2t)e

3t.

What has been said here applies to any triangular system y⃗ ′(t) = T y⃗ (t), in order
to write an exact formula for the solution y⃗ (t).

If A is an n× n matrix, then Jordan’s theorem gives A = PTP−1 with T block
upper triangular and P invertible. The change of variable x⃗ (t) = P y⃗ (t) changes
x⃗ ′(t) = Ax⃗ (t) into the block triangular system y⃗ ′(t) = T y⃗ (t).

There is no special condition on A, to effect the change of variable x⃗ (t) = P y⃗ (t).
The solution x⃗(t) of x⃗ ′(t) = Ax⃗ (t) is a product of the invertible matrix P and
a column vector y⃗ (t); the latter is the solution of the block triangular system
y⃗ ′(t) = T y⃗ (t), obtained by growth-decay and integrating factor methods.

The importance of this idea is to provide a theoretical method for solving any
system x⃗ ′(t) = Ax⃗ (t).

Matrices P and T in Jordan’s extensionA = PTP−1 can be found using computer
algebra systems. See page 898 for a maple example in which T is the Jordan
normal form of A and P is the matrix of generalized eigenvectors.

Symmetric Matrices and Orthogonality

A symmetric matrix A is defined by the identity AT = A. In applications the
symmetric matrix A might be obtained as A = BTB for some non-square matrix
B. Studied here is the eigenanalysis of symmetric matrices, which reproduces
AP = PD from classical eigenanalysis with a difference: the eigenvectors in
columns of P are of unit length, meaning ∥x⃗∥ = 1, and also orthogonal,
meaning dot product zero or 90 degrees apart. See Chapter 5 Section 1.

Definition 9.8 (Unitize)
A vector x⃗ is said to be unitized into vector y⃗ if y⃗ = cx⃗ for some scalar c and
∥y⃗∥ = 1.

An eigenpair (λ, x⃗ ) of A can always be selected so that ∥x⃗∥ = 1: replace eigenvector
x⃗ by 1

∥x⃗∥ x⃗ .

Theorem 9.17 (Orthogonality of Eigenvectors)
Assume that n × n matrix A is symmetric, AT = A. If (α, x⃗ ) and (β, y⃗ ) are
eigenpairs of A with α ̸= β, then x⃗ and y⃗ are orthogonal: x⃗ · y⃗ = 0. Proof on page
741.

Theorem 9.18 (Real Eigenvalues)
If AT = A, then all eigenvalues of A are real. Consequently, matrix A has n real
eigenvalues counted according to multiplicity. Proof on page 741.
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Proposition 9.1 (Independence of Orthogonal Sets) Let v⃗ 1, . . . , v⃗ k be a set
of nonzero orthogonal vectors. Then this set is independent.

Duplicated by the orthogonal vector test Chapter 5 Section 3, Theorem 5.33.

The Gram-Schmidt process

The eigenvectors of a symmetric matrix A may be constructed to be orthogo-
nal. First of all, observe that eigenvectors corresponding to distinct eigenvalues
are orthogonal by Theorem 9.17. It remains to construct from k independent
eigenvectors x⃗ 1, . . . , x⃗k, corresponding to a single eigenvalue λ, another set of
independent eigenvectors y⃗ 1, . . . , y⃗ k for λ which are pairwise orthogonal. The
idea, due to Gram-Schmidt, applies to any set of k independent vectors.

Theorem 9.19 (Gram-Schmidt)
Let x⃗ 1, . . . , x⃗k be independent n-vectors. The set of vectors y⃗ 1, . . . , y⃗ k constructed
below as linear combinations of x⃗ 1, . . . , x⃗k are pairwise orthogonal, independent
and span(x⃗ 1, . . . , x⃗k) = span(y⃗ 1, . . . , y⃗ k).

y⃗ 1 = x⃗ 1

y⃗ 2 = x⃗ 2 −
x⃗ 2 · y⃗ 1

y⃗ 1 · y⃗ 1
y⃗ 1

y⃗ 3 = x⃗ 3 −
x⃗ 3 · y⃗ 1

y⃗ 1 · y⃗ 1
y⃗ 1 −

x⃗ 3 · y⃗ 2

y⃗ 2 · y⃗ 2
y⃗ 2

...

y⃗ k = x⃗k −
x⃗k · y⃗ 1

y⃗ 1 · y⃗ 1
y⃗ 1 − · · · −

x⃗k · y⃗ k−1

y⃗ k−1 · y⃗ k−1
y⃗ k−1

Proof on page 742.

Example 9.14 (Gram-Schmidt on Four Eigenvectors)

Let (−1, v⃗ 1), (2, v⃗ 2), (2, v⃗ 3), (2, v⃗ 4) be eigenpairs of a 4× 4 symmetric matrix A.
Apply the Gram-Schmidt process to find 4 pairwise orthogonal eigenvectors of A.

Solution: Because eigenvector v⃗ 1 is for eigenvalue 1 and the others are for eigenvalue 2,
then Theorem 9.17 implies that v⃗ 1 is orthogonal to v⃗ 2, v⃗ 3, v⃗ 4. Eigenvectors v⃗ 2, v⃗ 3, v⃗ 4

belong to eigenvalue λ = 2, but they are not assumed orthogonal. The Gram-Schmidt
process applied to eigenvectors v⃗ 2, v⃗ 3, v⃗ 4 finds pairwise orthogonal vectors y⃗ 2, y⃗ 3,
y⃗ 4 that are linear combinations of eigenvectors v⃗ 2, v⃗ 3, v⃗ 4. Then y⃗ 2, y⃗ 3, y⃗ 4 are also
eigenvectors for λ = 2. The four eigenvectors v⃗ 1, y⃗ 2, y⃗ 3, y⃗ 4 are pairwise orthogonal, as
required.
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Orthogonal Projection

Reproduced here for reference is the basic material on shadow projection. The
ideas are then extended to obtain the orthogonal projection onto a subspace V
of Rn. Finally, the orthogonal projection formula will be related to the Gram-
Schmidt equations.

The shadow projection of vector X⃗ onto the direction of vector Y⃗ is the number
d defined by

d =
X⃗ · Y⃗
|Y⃗ |

.

The triangle determined by X⃗ and d
Y⃗

|Y⃗ |
is a right triangle.

d

X⃗

Y⃗
Figure 4. Shadow projection d of vector X⃗
onto the direction of vector Y⃗ .

The vector shadow projection of X⃗ onto the line L through the origin in the
direction of Y⃗ is the vector representing the shadow, direction Y⃗ and length d,
defined by

projY⃗ (X⃗) = d
Y⃗

|Y⃗ |
=

X⃗ · Y⃗
Y⃗ · Y⃗

Y⃗ .

Definition 9.9 (One-Dimensional Orthogonal Projection)
Let V be the line through the origin in the direction of nonzero vector Y⃗ . Then

V = span{Y⃗}. Define the orthogonal projection:

ProjV (x⃗ ) = (u⃗ · x⃗ )u⃗ , u⃗ = Y⃗/∥Y⃗∥

Is Definition 9.9 the same as vector shadow projection? Yes. Does the definition
depend on Y⃗ ? No, because of Theorem 9.20 below.

Definition 9.10 (Orthogonal Projection onto a Subspace)
Let subspace V of Rn be spanned by orthonormal vectors u⃗ 1, . . . , u⃗k. Define the
orthogonal projection of vector x⃗ in Rn onto subspace V by the formula (justified
in Theorem 9.20):

ProjV (x⃗ ) =
∑k

j=1(u⃗ j · x⃗ )u⃗ j ,

=
∑k

j=1 vector shadow projection x⃗ onto u⃗ j
(1)
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Theorem 9.20 (Formula ProjV (x⃗ ) is Well-Defined)
Orthogonal projection formula ProjV (x⃗ ) =

∑k
j=1(u⃗ j · x⃗)u⃗ j is independent of the

choice of orthonormal vectors u⃗ 1, . . . , u⃗k that span V .

Proof on page 742

Important: Formula ProjV (x⃗ ) =
∑k

j=1(u⃗ j · x⃗ )u⃗ j requires a basis which is
orthonormal. An orthogonal basis suffices with the shadow projection sum-
mation in (1). Applications might use either formula.

Orthogonal Projection and Gram-Schmidt. Define y⃗ 1, . . . , y⃗ k by the
Gram-Schmidt relations on page 723. Define

u⃗ j = y⃗ j/∥y⃗ j∥

for j = 1, . . . , k. Then Vj−1 = span{u⃗ 1, . . . , u⃗ j−1} is a subspace of Rn of
dimension j − 1 with orthonormal basis u⃗ 1, . . . , u⃗ j−1 and

y⃗ j = x⃗ j −
(
x⃗ j · y⃗ 1

y⃗ 1 · y⃗ 1
y⃗ 1 + · · ·+

x⃗k · y⃗ j−1

y⃗ j−1 · y⃗ j−1
y⃗ j−1

)
= x⃗ j −ProjVj−1

(x⃗ j)

The Gram-Schmidt relations are memorized by the formula

y⃗ j = x⃗ j −
∑
k<j

(vector shadow projection of x⃗ j onto y⃗ k)

Near Point Theorem

Developed here is the characterization of the orthogonal projection of a vector x⃗
onto a subspace V as the unique point v⃗ in V which minimizes ∥x⃗ − v⃗∥, that is,
the point in V which is nearest to x⃗ .

Theorem 9.21 (Orthogonal Projection Properties)
Let subspace V be the span of orthonormal vectors u⃗ 1, . . . , u⃗k.

(a) Each vector v⃗ in V has an orthogonal expansion v⃗ =
∑k

j=1(u⃗ j · v⃗ )u⃗ j .

(b) The orthogonal projection ProjV (x⃗ ) is a vector in V .

(c) Vector w⃗ = x⃗ −ProjV (x⃗) is orthogonal to every vector in V .

(d) Among all vectors v⃗ in V , the minimum value of ∥x⃗ − v⃗∥ is uniquely obtained
by the orthogonal projection v⃗ = ProjV (x⃗ ).

(e) Let n × k matrix A have independent columns that span V . If vector w⃗ is
orthogonal to every vector in V , then AT w⃗ = 0⃗ .

Proof on page 743.
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Theorem 9.22 (Near Point to a Subspace)
Let V be a subspace of Rn and x⃗ a vector not in V . The near point to x⃗ in V is
the orthogonal projection of x⃗ onto V . This point is characterized as the minimum
of ∥x⃗ − v⃗∥ over all vectors v⃗ in the subspace V .

Proof by part (d) of Theorem 9.21.

Theorem 9.23 (Cross Product and Projections)
The cross product a⃗ × b⃗ is a constant multiple of c⃗ −ProjV (⃗c ), where vector c⃗ is

not in V = span{a⃗ , b⃗}.

Proof: The cross product makes sense only in R3. Subspace V is two dimensional when
a⃗ , b⃗ are independent, and Gram-Schmidt applies to find an orthonormal basis u⃗1, u⃗2.
By (c) of Theorem 9.21, the vector c⃗ −ProjV (⃗c) has the same or opposite direction to
the cross product. ■

Linear Least Squares

A primary application of linear least squares is fitting of large data sets to an
equation. Desired is a simple equation which can be used to interpolate or ex-
trapolate missing data items or to find trends in the data.

Example 9.15 (Height-Weight Data)
Verify that slope m = 61.27 and intercept b = −39, 05 best fit equation y = mx+ b
to the 15 data items in Table 4, where x=height, y=weight. Graphic in Figure 5.

The solution is on page 744.

Table 4. Height-Weight Data for 15 women ages 30− 39 years.

Source: The World Almanac and Book of Facts, 1975.

Height (m) 1.47 1.50 1.52 1.55 1.57 1.60 1.63 1.65
Weight (kg) 52.21 53.12 54.48 55.84 57.20 58.57 59.93 61.29

Height (m) 1.68 1.70 1.73 1.75 1.78 1.80 1.83
Weight (kg) 63.11 64.47 66.28 68.10 69.92 72.19 74.46

Figure 5. Best fit
The least squares fit straight line
in blue y = 61.27x− 39.06.
Red dots are the 15 data points
from Table 4.
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Least Squares Normal Equation

Let m× n matrix A and vector b⃗ be given. Assume hereafter that the problem
Ax⃗ = b⃗ has no solution. The discussion will be guided by the unsolvable system{

x+ y = 1,
x+ y = 0.

(2)

System (2) is the special case b∗1 = 1, b∗2 = 0 for system{
x+ y = b∗1,
x+ y = b∗2.

(3)

Least squares chooses two values b∗1, b
∗
2 such that system (3) is solvable for x, y.

The choice requires that substitution of x, y into the original unsolvable equation
(2) gives the least error, in some well-defined sense.

Mathematically, the least error for a trial solution x, y in (5) might be realized
16 by choosing x, y to minimize the vector norm ∥E⃗∥ for error vector

E⃗ =

(
1 1
1 1

)(
x
y

)
−
(
1
0

)
.(4)

Minimization leads to the geometry problem solved in Figure 6. By geometry,
points on the line x + y = 1

2 are half way between the two lines of the original
system. Point x = 1

2 , y = 0 is isolated as a proper candidate for a best solution
to original unsolvable problem (2).

x+ y = 1

x+ y = 0

x+ y = 1
2

Figure 6. Black dot x∗ = 1
2 , y

∗ = 0 is one best solution to system x + y = 1,

x + y = 0. Any point along the red line x + y = 1
2 makes minimum vector norm error

between the two lines x+ y = 1, x+ y = 0.

Warning: The isolated point x = 1
2 , y = 0 does not actually work in the original

equations! The geometrical solution invents one possible solvable replacement

16The expression to minimize is controversial: at the very least, it depends on the intended
application.
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system (3) with best fit to the original unsolvable equations (2):{
x+ y = 1

2 ,

x+ y = 1
2 .

(5)

System (5) has a name:

Definition 9.11 (Normal Equation for Linear Least Squares)
The normal equation for unsolvable problem Ax⃗ = b⃗ is the solvable system

ATAx⃗ = AT b⃗(6)

It is not implied that a solution x⃗ of (6) is also a solution of Ax⃗ = b⃗ : the original
equation is assumed to have no solution.

System (3) has matrix form Ax⃗ = b⃗ ∗. If vector x⃗ solves Ax⃗ = b⃗ ∗, then b⃗ ∗

equals Ax⃗ , which means b⃗ ∗ is a linear combination of the columns of A, or b⃗ ∗

belongs to subspace S = colspace(A). Overloaded symbol x⃗ is not the same as
in equation Ax⃗ = b⃗ : the latter has no solution.

Geometrically, b⃗ ∗ is a specific given vector in S and equation Ax⃗ = b⃗ ∗ can
have infinitely many solutions x⃗ , or just one. Important: the no solution case
has been eliminated from the three possibilities.

Error minimization seeks a best solution x⃗ = x⃗ ∗ to the unsolvable problem
Ax⃗ = b⃗ . Applied literature suggests to find x⃗ = x⃗ ∗ as a minimizer for a function
which measures the error between Ax⃗ and b⃗ .

Proposition 9.2 Ax⃗ = b⃗ ∗ has a solution x⃗ if and only if b⃗ ∗ belongs to subspace
S = colspace(A).

Proposition 9.3 Let x⃗ = x⃗ ∗ achieve the minimum for vector norm ∥Ax⃗−b⃗∥, taken
over all x⃗ in Rn. Then x⃗ = x⃗ ∗ is a best possible solution of unsolvable equation
Ax⃗ = b⃗ , because it minimizes the vector norm error ∥Ax⃗ − b⃗∥ over all possible x⃗ .

Theorem 9.24 (Least Squares Solution of Unsolvable Ax⃗ = b⃗)
Let x⃗ ∗ satisfy

∥Ax⃗ ∗ − b⃗∥ = min
x⃗
∥Ax⃗ − b⃗∥

Then x⃗ = x⃗ ∗ is a solution of Normal Equation ATAx⃗ = AT b⃗ . Vector x⃗ = x⃗ ∗ is
a best possible solution for unsolvable equation Ax⃗ = b⃗ .
Proof on page 743.
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Data Fitting

Assume given experimentally measured values y1, y2, . . . , ym taken at indepen-
dent variable values x1, x2, . . . , xm. Data fitting invents a model equation of the
form17

y =

n∑
j=1

cjfj(x).

The invented functions fj will have additional requirements, for example they
could be polynomials 1, x, x2, . . . or trigonometric functions, e.g., a model moti-
vated by truncation of Taylor series or Fourier series. The problem: find values
for the constants c1, . . . , cn.

Ideally, the model equation fits the data exactly. What actually holds is an exact
equation with error terms E1, . . . , Em:

yi =
n∑

j=1

cjfj(xi) + Ej

Linear least squares minimizes the sum of squares of the errors:

min

m∑
j=1

|Ej |2 over all choices of c1, . . . , cn

Minimization is assumed to return special values c∗1, . . . , c
∗
n giving the best fit.

The predicted model for the data set is then:

y =
n∑

j=1

c∗jfj(x).

The QR Decomposition

Matrix multiply can express Gram-Schmidt formulas as A = QR, where A has
independent columns x⃗ 1, . . . , x⃗n and the columns of Q are the unitized Gram-
Schmidt orthonormal vectors u⃗ 1, . . . , u⃗n.

Definition 9.12 (Orthogonal Matrix)
A matrix Q having pairwise orthogonal columns of unit length is called orthogonal.
Alternatively, QTQ = I. If Q is square, then QQT = I.18

17Statistical experiments might use vector variables. For instance a 3-vector x⃗ with compo-
nents of sex, age and height replaces scalar variable x. Scalars yj could be vectors. Symbol cj
is replaced by symbol βj , these parameters called regressors.

18Non-square matrices with orthonormal columns certainly exist. A warning: terminology
orthonormal matrix usually means the matrix A is square and has orthonormal columns:
ATA = AAT = I.
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Theorem 9.25 (The QR-Decomposition)
Let the m × n matrix A have independent columns x⃗ 1, . . . , x⃗n. Then there is an
upper triangular matrix R with positive diagonal entries and an orthogonal matrix Q
such that

A = QR.

Proof: Let y⃗ 1, . . . , y⃗n be the Gram-Schmidt orthogonal vectors given by relations
on page 723. Define u⃗k = y⃗ k/∥y⃗ k∥ and rkk = ∥y⃗ k∥ for k = 1, . . . , n, and otherwise

rij = u⃗ i · x⃗ j . Let Q = ⟨u⃗1| · · · |u⃗n⟩. Then
x⃗1 = r11u⃗1,
x⃗2 = r22u⃗2 + r21u⃗1,
x⃗3 = r33u⃗3 + r31u⃗1 + r32u⃗2,

...
x⃗n = rnnu⃗n + rn1u⃗1 + · · ·+ rnn−1u⃗n−1.

(7)

It follows from (7) and matrix multiplication that A = QR. The columns of Q have unit
length and they are pairwise orthogonal: Q is orthogonal. ■

Theorem 9.26 (Matrices Q and R in A = QR)
Let m × n matrix A have independent columns x⃗ 1, . . . , x⃗n. Let y⃗ 1, . . . , y⃗n be
the Gram-Schmidt orthogonal vectors from page 723. Define u⃗k = y⃗ k/∥y⃗ k∥. Then
AQ = QR is satisfied by Q = ⟨u⃗ 1| · · · |u⃗n⟩ and

R =


∥y1∥ u⃗ 1 · x⃗ 2 u⃗ 1 · x⃗ 3 · · · u⃗ 1 · x⃗n

0 ∥y2∥ u⃗ 2 · x⃗ 3 · · · u⃗ 2 · x⃗n
...

...
... · · ·

...
0 0 0 · · · ∥yn∥

 .

Proof: Details are contained in the proof of Theorem 9.25 above. ■

Some references cite the diagonal entries as ∥x⃗ 1∥, ∥x⃗⊥
2 ∥, . . . , ∥x⃗⊥

n ∥, where x⃗⊥
j =

x⃗ j − ProjVj−1
(x⃗ j), Vj−1 = span{v⃗ 1, . . . , v⃗ j−1}. Because y⃗ 1 = x⃗ 1 and y⃗ j =

x⃗ j −ProjVj−1
(x⃗ j), the formulas for the entries of R are identical.

Theorem 9.27 (Uniqueness of Q and R)
Let m × n matrix A have independent columns and satisfy the decomposition A =
QR. If Q is m×n orthogonal and R is n×n upper triangular with positive diagonal
elements, then Q and R are uniquely determined.

Proof: The problem is to show that A = Q1R1 = Q2R2 implies R2R
−1
1 = I and

Q1 = Q2. We start with Q1 = Q2R2R
−1
1 . Define P = R2R

−1
1 . Then Q1 = Q2P .

Because I = QT
1 Q1 = PTQT

2 Q2P = PTP , then P is orthogonal. Matrix P is the product
of square upper triangular matrices with positive diagonal elements, which implies P
itself is square upper triangular with positive diagonal elements. The only orthogonal
matrix with these properties is the identity matrix I. Then R2R

−1
1 = P = I, which

implies R1 = R2 and Q1 = Q2. ■
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Theorem 9.28 (The QR Decomposition and Least Squares)
Letm×nmatrix A have independent columns and satisfy the decomposition A = QR
with Q orthogonal and R invertible. Then the normal equation

ATAx⃗ = AT b⃗

in the theory of least squares can be represented as

Rx⃗ = QT b⃗ .

Proof: Because Q is orthogonal, then QTQ = I. Let’s use the identity (CD)T = DTCT ,
the equation A = QR, and assumed RT invertible to obtain

ATAx⃗ = AT b⃗ Normal equation

RTQTQRx⃗ = RTQT x⃗ Substitute A = QR.

Rx⃗ = QT x⃗ Multiply by the inverse of RT .

■

The formula Rx⃗ = QT b⃗ can be solved by back-substitution, which accounts for
its popularity in numerical solution of least squares problems.

Theorem 9.29 (Spectral Theorem)
Let A be a given n × n real matrix. Then A = QDQ−1 with Q orthogonal and D
diagonal if and only if AT = A.

Proof: Requirement Q is orthogonal means that the columns of Q are orthonormal
and n× n. The equation A = AT means A is symmetric.

Assume first that A = QDQ−1 with Q = QT orthogonal (QTQ = I) and D diagonal.
Then QT = Q = Q−1. This implies AT = (QDQ−1)T = (Q−1)TDTQT = QDQ−1 = A.

Conversely, assume AT = A. Then the eigenvalues of A are real and eigenvectors cor-
responding to distinct eigenvalues are orthogonal. The proof proceeds by induction on
the dimension n of the n× n matrix A.

For n = 1, let Q be the 1 × 1 identity matrix. Then Q is orthogonal and AQ = QD
where D is 1× 1 diagonal.

Assume the decomposition AQ = QD for dimension n. Let’s prove it for A of dimension
n + 1. Choose a real eigenvalue λ of A and eigenvector v⃗ 1 with ∥v⃗ 1∥ = 1. Complete
a basis v⃗ 1, . . . , v⃗n+1 of Rn+1. By Gram-Schmidt, we assume as well that this basis is

orthonormal. Define P = ⟨v⃗ 1| · · · |v⃗n+1⟩. Then P is square, orthogonal and satisfies

PT = P−1. Define B = P−1AP . Then B is symmetric (BT = B) and col(B, 1) =
λ col(I, 1). These facts imply that B is a block matrix

B =

(
λ 0
0 C

)
where C is symmetric (CT = C). The induction hypothesis applies to C to obtain the
existence of an orthogonal matrix Q1 such that CQ1 = Q1D1 for some diagonal matrix
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D1. Define block diagonal matrix D, block matrix W and square matrix Q as follows:

D =

(
λ 0
0 D1

)
,

W =

(
1 0
0 Q1

)
,

Q = PW.

Then Q is the product of two orthogonal matrices, which makes Q orthogonal. Compute

W−1BW =

(
1 0

0 Q−1
1

)(
λ 0
0 C

)(
1 0
0 Q1

)
=

(
λ 0
0 D1

)
.

Then Q−1AQ = W−1P−1APW = W−1BW = D. This completes the induction, ending
the proof of the theorem. ■

Spectral Theorem Consequence: The eigenpair equation AP =
PD with A ̸= AT (A not symmetric) cannot be converted to AQ = QD
with Q orthogonal.

Theorem 9.30 (Schur’s Theorem)
Given any real n× n matrix A, possibly non-symmetric, there is an upper triangular
matrix T , whose diagonal entries are the eigenvalues of A, and a complex matrix Q

satisfying Q
T
= Q−1 (Q is unitary), such that

AQ = QT.

If A = AT , then Q is real orthogonal (QT = Q).

Schur’s theorem can be proved by induction, following the induction proof of
Jordan’s theorem, or the induction proof of the Spectral Theorem. The result
can be used to prove the Spectral Theorem in two steps. Indeed, Schur’s Theorem
implies Q is real, T equals its transpose, and T is triangular. Then T must equal
a diagonal matrix D.

Theorem 9.31 (Eigenpairs of a Symmetric A)
Let A be a symmetric n × n real matrix. Then A has n eigenpairs (λ1, v⃗ 1), . . . ,
(λn, v⃗n), with independent eigenvectors v⃗ 1, . . . , v⃗n.

Proof: Apply the Spectral Theorem 9.29, page 731, to prove the existence of an orthog-
onal matrix Q and a diagonal matrix D such that AQ = QD. The diagonal entries of D
are the eigenvalues of A, in some order. For a diagonal entry λ of D appearing in row j,
the relation A col(Q, j) = λ col(Q, j) holds, which implies that A has n eigenpairs. The
eigenvectors are the columns of Q, which are orthogonal and hence independent. ■

Theorem 9.32 (Diagonalization of Symmetric A)
Let A be a symmetric n×n real matrix. Then A has n eigenpairs (λi, x⃗ i). Assume the
eigenvalues are listed with duplicates grouped together. For each distinct eigenvalue
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λ, replace its eigenvectors by orthonormal eigenvectors, using the Gram-Schmidt
process. Let u⃗ 1, . . . , u⃗n be the orthonormal vectors so obtained and define

Q = ⟨u⃗ 1| · · · |u⃗n⟩ D = diag(λ1, . . . , λn).

Then Q is an orthogonal matrix and AQ = QD.

Proof: Theorem 9.31 justifies the eigenanalysis result. Already, eigenpairs correspond-
ing to distinct eigenvalues are orthogonal. Within the set of eigenpairs with the same
eigenvalue λ, the Gram-Schmidt process produces a replacement basis of orthonormal
eigenvectors. Then the union of all the eigenvectors is orthonormal. The process de-
scribed here does not disturb the ordering of eigenpairs, because it only replaces an
eigenvector. ■

The Singular Value Decomposition

Coined the SVD in literature, the singular value decomposition A = UΣV T has
some interesting algebraic properties and it conveys important geometrical and
theoretical insights about linear transformations.

Data science uses the SVD as a compression algorithm. Machine vision uses the
SVD to find the nearest orthogonal matrix to A. Linear regression modeling uses
the SVD to find the pseudo-inverse. Signal processing noise reduction and image
processing size reduction use the SVD. Latent semantic indexing in natural-
language text processing uses the SVD to identify patterns in unstructured text.
Geometric interpretations of the SVD appear in a later subsection.

Theorem 9.33 (Positive Eigenvalues of ATA)
Given an m×n real matrix A, then ATA is a real symmetric matrix whose eigenpairs
(λ, v⃗ ) satisfy19

λ =
∥Av⃗∥2

∥v⃗∥2
≥ 0.(8)

Proof: Symmetry follows from (ATA)T = AT (AT )T = ATA. An eigenpair (λ, v⃗ )

satisfies λv⃗T v⃗ = v⃗TATAv⃗ = (Av⃗ )T (Av⃗ ) = ∥Av⃗∥2, hence (8). ■

Definition 9.13 (Singular Values of A)
Let the real symmetric matrix ATA have real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0 =
λr+1 = · · · = λn. The numbers

σk =
√
λk, 1 ≤ k ≤ n,

are called the singular values of the matrix A. The ordering of the singular values
is always with decreasing magnitude.

19Can a real symmetric matrix have negative or complex eigenvalues?
The answer is NO.
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Theorem 9.34 (Orthonormal Set
→
u1, . . . ,

→
um)

Let the real symmetric matrix ATA have real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0 =
λr+1 = · · · = λn and corresponding orthonormal eigenvectors v⃗ 1,. . . ,v⃗n, obtained
by the Gram-Schmidt process. Define the vectors

u⃗ 1 =
1

σ1
Av⃗ 1, . . . , u⃗ r =

1

σr
Av⃗ r.

Because ∥Av⃗ k∥ = σk, then {u⃗ 1, . . . , u⃗ r} is orthonormal. Gram-Schmidt can extend
this set to an orthonormal basis {u⃗ 1, . . . , u⃗m} of Rm.

Proof of Theorem 9.34: Compute ∥u⃗k∥2 = v⃗ k · (ATAv⃗ k)/λk = ∥v⃗ k∥2 = 1, because
{v⃗ k}nk=1 is an orthonormal set. Then the vectors u⃗k are nonzero. Given i ̸= j, then
σiσju⃗ i · u⃗ j = (Av⃗ i)

T (Av⃗ j) = λjv⃗
T
i v⃗ j = 0, showing that the vectors u⃗k are orthogonal.

The extension of the u⃗k to an orthonormal basis of Rm is not unique, because it depends
upon a choice of independent spanning vectors y⃗ r+1, . . . , y⃗m for the set {x⃗ : x⃗ · u⃗k =
0, 1 ≤ k ≤ r}. Once selected, Gram-Schmidt is applied to u⃗1, . . . , u⃗ r, y⃗ r+1, . . . , y⃗m

to obtain the desired orthonormal basis.

Computer algebra systems can compute the orthonormal basis {u⃗1, . . . , u⃗m} of Rm

by appending all columns of the identity matrix to columns {u⃗1, . . . , u⃗ r} to define an
augmented matrix Z. Then the reduced row echelon form of Z identifies the pivot
columns of Z. The first r pivot columns are u⃗1, . . . , u⃗ r. The remaining pivot columns
are columns of the identity. Apply Gram-Schmidt to the pivot columns to obtain the
orthonormal basis {u⃗1, . . . , u⃗m}. ■

Theorem 9.35 (The Singular Value Decomposition (svd))
Let A be a given real m×n matrix. Let (λ1, v⃗ 1),. . . ,(λn, v⃗n) be a set of orthonormal
eigenpairs for ATA such that σk =

√
λk (1 ≤ k ≤ r) defines the positive singular

values of A and λk = 0 for r < k ≤ n. Complete u⃗ 1 = (1/σ1)Av⃗ 1, . . . , u⃗ r =
(1/σr)Av⃗ r to an orthonormal basis {u⃗k}mk=1for Rm. Define

U = ⟨u⃗ 1| · · · |u⃗m⟩, Σ =

(
diag(σ1, . . . , σr) 0

0 0

)
,

V = ⟨v⃗ 1| · · · |v⃗n⟩.
Then the columns of U and V are orthonormal and

A = UΣV T

= σ1u⃗ 1v⃗
T
1 + · · ·+ σru⃗ rv⃗

T
r

= A(v⃗ 1)v⃗
T
1 + · · ·+A(v⃗ r)v⃗

T
r

Proof of Theorem 9.35: The product of U and Σ is the m× n matrix

UΣ = ⟨σ1u⃗1| · · · |σru⃗ r|0⃗ | · · · |0⃗⟩
= ⟨A(v⃗ 1)| · · · |A(v⃗ r)|0⃗ | · · · |0⃗⟩.

734
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Let v⃗ be any vector in Rn. It will be shown that UΣV T v⃗ ,
∑r

k=1 A(v⃗ k)(v⃗
T
k v⃗ ) and Av⃗

are the same column vector. We have the equalities

UΣV T v⃗ = UΣ

 v⃗T
1 v⃗
...

v⃗T
n v⃗


= ⟨A(v⃗ 1)| · · · |A(v⃗ r)|0⃗ | · · · |0⃗⟩

 v⃗T
1 v⃗
...

v⃗T
n v⃗


=

r∑
k=1

(v⃗T
k v⃗ )A(v⃗ k).

Because v⃗ 1, . . . , v⃗n is an orthonormal basis of Rn, then v⃗ =
∑n

k=1(v⃗
T
k v⃗ )v⃗ k. Addi-

tionally, A(v⃗ k) = 0⃗ for r < k ≤ n implies

Av⃗ = A

(
n∑

k=1

(v⃗T
k v⃗ )v⃗ k

)
=

r∑
k=1

(v⃗T
k v⃗ )A(v⃗ k)

Then Av⃗ = UΣV T v⃗ =
∑r

k=1 A(v⃗ k)(v⃗
T
k v⃗ ), which proves the theorem. ■

Singular Values and Geometry

Discussed here is how to interpret singular values geometrically, especially in
low dimensions 2 and 3. Conics will be reviewed, adopting the viewpoint of
eigenanalysis.

Standard Equation of an Ellipse

Calculus courses consider ellipse equations like

85x2 − 60xy + 40y2 = 2500

and discuss removal of the cross term −60xy. The objective is to obtain a
standard ellipse equation

X2

a2
+

Y 2

b2
= 1.

We re-visit this old problem from a different point of view, and in the derivation
establish a connection between the ellipse equation, the symmetric matrix ATA,
and the singular values of A.

Example 9.16 (Image of the Unit Circle)
Let A =

(
−2 6
6 7

)
.

Verify that the invertible matrix A maps the unit circle into the ellipse

85x2 − 60xy + 40y2 = 2500.
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Solution: The unit circle has parameterization θ → (cos θ, sin θ), 0 ≤ θ ≤ 2π.

The unit circle is mapped by matrix A via the set of dual relations(
x
y

)
= A

(
cos θ
sin θ

)
,

(
cos θ
sin θ

)
= A−1

(
x
y

)
.

The Pythagorean identity cos2 θ+ sin2 θ = 1 used on the vector norm of second relation
implies

85x2 − 60xy + 40y2 = 2500.

Example 9.17 (Removing the xy-Term in an Ellipse Equation)
After a rotation (x, y)→ (X,Y ) to remove the xy-term in

85x2 − 60xy + 40y2 = 2500,

verify that the ellipse equation in the new XY -coordinates is

X2

25
+

Y 2

100
= 1.

Solution: The xy-term removal is accomplished by a change of variables (x, y)→ (X,Y )
which transforms the ellipse equation 85x2−60xy+40y2 = 2500 into the ellipse equation
100X2+25Y 2 = 2500, details below. It’s standard form is obtained by dividing by 2500,
to give

X2

25
+

Y 2

100
= 1.

Analytic geometry says that the semi-axis lengths are
√
25 = 5 and

√
100 = 10.

In previous discussions of the ellipse, the equation 85x2 − 60xy + 40y2 = 2500 was
represented by the vector-matrix identity

(
x y

)( 85 −30
−30 40

)(
x
y

)
= 2500.

The program used earlier to remove the xy-term was to diagonalize the coefficient matrix

B =

(
85 −30
−30 40

)
by calculating the eigenpairs of B:

(
100,

(
−2
1

))
,

(
25,

(
1
2

))
.

Because B is symmetric, then the eigenvectors are orthogonal. The eigenpairs above are
replaced by unitized pairs:(

100,
1√
5

(
−2
1

))
,

(
25,

1√
5

(
1
2

))
.

Then the diagonalization theory for B can be written as

BQ = QD, Q =
1√
5

(
−2 1
1 2

)
, D =

(
100 0
0 25

)
.
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The single change of variables (
x
y

)
= Q

(
X
Y

)
then transforms the ellipse equation 85x2−60xy+40y2 = 2500 into 100X2+25Y 2 = 2500
as follows:

85x2 − 60xy + 40y2 = 2500 Ellipse equation.

u⃗TBu⃗ = 2500 Where B =

(
85 −30
−30 40

)
and u⃗ =

(
x
y

)
.

(Qw⃗ )TB(Qw⃗ ) = 2500 Change u⃗ = Qw⃗ , where w⃗ =

(
X
Y

)
.

w⃗T (QTBQ)w⃗ ) = 2500 Expand, ready to use BQ = QD.

w⃗T (Dw⃗ ) = 2500 Because D = Q−1BQ and Q−1 = QT .

100X2 + 25Y 2 = 2500 Expand w⃗TDw⃗ .

Rotations, Reflections and Scaling

The 2 × 2 singular value decomposition A = UΣV T can be used to decompose
the change of variables (x, y) → (X,Y ) into three distinct changes of variables,
each with a geometrical meaning:

(x, y) −→ (x1, y1) −→ (x2, y2) −→ (X,Y ).

Table 5. Three Changes of Variable

Domain Equation Image Meaning

Circle 1

(
x1
y1

)
= V T

(
cos θ
sin θ

)
Circle 2 Proper Rotation

Circle 2

(
x2
y2

)
= Σ

(
x1
y1

)
Ellipse 1 Scale axes

Ellipse 1

(
X
Y

)
= U

(
x2
y2

)
Ellipse 2 Improper Rotation

Proper Rotation. Matrix R =

(
cos θ sin θ
− sin θ cos θ

)
satisfies RTR = I and |R| = 1,

called a proper rotation. The rotation is clockwise about the origin, following
use in computer graphics. Replace θ by −θ for a counterclockwise rotation about
the origin.

Improper Rotation. Matrix R =

(
0.936 0.352
0.352 −0.936

)
is orthogonal with |R| =

−1, called an improper rotation. It represents a reflection, which inverts
orientation. Reference:

https://en.wikipedia.org/wiki/Rotation matrix
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Geometry

Figure 7 provides a geometrical interpretation for the singular value decomposi-
tion

A = UΣV T .

For illustration, the matrix A is assumed 2× 2 and invertible.

Circle 1 Circle 2 Ellipse 1 Ellipse 2

Rotate Scale Rotate

(x, y) (x1, y1) (X,Y )−→ −→(x2, y2)

v⃗ 2

v⃗ 1

−→

ΣV T U
σ1u⃗ 1

σ2u⃗ 2

Figure 7. Mapping the unit circle.

• Invertible matrix A maps Circle 1 into Ellipse 2.

• Orthonormal vectors v⃗ 1, v⃗ 2 are mapped by matrix A = UΣV T into orthog-
onal vectors Av⃗ 1 = σ1u⃗ 1, Av⃗ 2 = σ2u⃗ 2, which are exactly the semi-axes
vectors of Ellipse 2.

• The semi-axis lengths of Ellipse 2 equal the singular values σ1, σ2 of matrix
A.

• The semi-axis directions of Ellipse 2 are equal to the basis vectors u⃗ 1, u⃗ 2.

• The process is a rotation (x, y) → (x1, y1), followed by an axis-scaling
(x1, y1)→ (x2, y2), followed by (x2, y2)→ (X,Y ), a rotation.

Example 9.18 (Mapping and the SVD)
The singular value decomposition A = UΣV T for A =

(
−2 6
6 7

)
is given by

U =
1√
5

(
1 2
2 −1

)
, Σ =

(
10 0
0 5

)
, V =

1√
5

(
1 −2
2 1

)
.

• Invertible matrix A =

(
−2 6
6 7

)
maps the unit circle into an ellipse.

• The columns of V are orthonormal vectors v⃗ 1, v⃗ 2, computed as eigenpairs
(λ1, v⃗ 1), (λ2, v⃗ 2) of A

TA, ordered by λ1 ≥ λ2.(
100,

1√
5

(
1
2

))
,

(
25,

1√
5

(
−2
1

))
.
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• The singular values are σ1 =
√
λ1 = 10, σ2 =

√
λ2 = 5.

• The image of v⃗ 1 is Av⃗ 1 = UΣV T v⃗ 1 = U

(
σ1
0

)
= σ1u⃗ 1.

• The image of v⃗ 2 is Av⃗ 2 = UΣV T v⃗ 2 = U

(
0
σ2

)
= σ2u⃗ 2.

v⃗ 2

v⃗ 1

Unit Circle Ellipse
σ2u⃗2

σ1u⃗1

A Figure 8.
Mapping the unit circle into
an ellipse.

The Four Fundamental Subspaces

The subspaces appearing in the Fundamental Theorem of Linear Algebra are
called the Four Fundamental Subspaces. They are:

Subspace Notation

Row Space of A Image
(
AT
)

Nullspace of A kernel(A)

Column Space of A Image(A)

Nullspace of AT kernel
(
AT
)

The singular value decomposition A = UΣV T computes orthonormal bases for
the row and column spaces of of A. In the table below, symbol r = rank(A).
Matrix A is assumed m× n, which implies A maps Rn into Rm.

Table 6. Four Fundamental Subspaces and the SVD

Orthonormal Basis Subspace Name

First r columns of U (m× n) Image(A) Column Space of A

Last n− r columns of U kernel
(
AT
)

Nullspace of AT

First r columns of V (n×m) Image
(
AT
)

Row Space of A

Last m− r columns of V kernel(A) Nullspace of A
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Table 7. Fundamental Subspaces by Columns of U and V

m× n A = U ΣV T Singular Value Decomposition

m×m U =
colspace(A) nullspace(AT )

r columns m− r columns

m× n Σ =

 σ1 · · · 0
...

0 · · · σr

 0

0 0

n× n V =
rowspace(A) nullspace(A)

r columns n− r columns

A Change of Basis Interpretation of the SVD

The singular value decomposition can be described as follows:

For every m× n matrix A of rank r, orthonormal bases

{v⃗ i}ni=1 and {u⃗ j}mj=1

can be constructed such that

• Matrix A maps basis vectors v⃗ 1, . . . , v⃗ r to nonnegative multi-
ples of basis vectors u⃗ 1, . . . , u⃗ r, respectively.

• The n − r left-over basis vectors v⃗ r+1, . . . v⃗ n map by A into
the zero vector.

• With respect to these bases, matrix A is represented by a real
diagonal matrix Σ with non-negative entries.

Proofs, Methods and Details

Proof of Theorem 9.14, Jordan’s Theorem:
Proceed by induction on the dimension n of A. For n = 1 there is nothing to prove.
Assume the result for dimension n. Assume A is (n+1)×(n+1). To prove the induction
step, choose an eigenpair (λ1, v⃗ 1) of A with v⃗ 1 ̸= 0⃗ . Complete a basis v⃗ 1, . . . , v⃗n+1 for
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Rn+1 and define V = ⟨v⃗ 1| · · · |v⃗n+1⟩. Then V −1AV =

(
λ1 B

0⃗ A1

)
for some matrices

B and A1. The induction hypothesis implies there is an invertible n× n matrix P1 and

an upper triangular matrix T1 such that A1 = P1T1P
−1
1 . Let R =

(
1 0
0 P1

)
and

T =

(
λ1 BT1

0 T1

)
. Then T is upper triangular and (V −1AV )R = RT , which implies

A = PTP−1 for P = V R. The induction is complete. ■

Proof of Theorem 9.16, Cayley-Hamilton:
An algebraic proof was given in Chapter 5 Section 3. It depended on the adjugate
identity adj(A)A = A adj(A) = |A|I. Below is a different proof which suggests how the
theorem might have been discovered.

If A is diagonalizable, AP = P diag(λ1, . . . , λn), then the proof is obtained from the
expansion

Aj = P diag(λj
1, . . . , λ

j
n)P

−1,

because summing across this identity leads to

p(A) =
∑n

j=0 cjA
j

= P
(∑n

j=0 cj diag(λ
j
1, . . . , λ

j
n)
)
P−1

= P diag(p(λ1), . . . , p(λn))P
−1

= P diag(0, . . . , 0)P−1

= 0.

If A is not diagonalizable, then this proof fails. To handle the general case, apply
Jordan’s theorem 9.14 to write A = PTP−1 where T is upper triangular (instead of
diagonal) and the not necessarily distinct eigenvalues λ1, . . . , λn of A appear on the
diagonal of T . Define

Aϵ = P (T + ϵdiag(1, 2, . . . , n))P−1.

For small ϵ > 0, the matrix Aϵ has distinct eigenvalues λj + jϵ, 1 ≤ j ≤ n. Then
the diagonalizable case implies that Aϵ satisfies its characteristic equation. Let pϵ(λ) =
det(Aϵ − λI). Use 0 = limϵ→0 pϵ(Aϵ) = p(A) to complete the proof.

Proof of Theorem 9.17, orthogonality: Compute αx⃗ · y⃗ = (Ax⃗ )T y⃗ = x⃗TAT y⃗ =
x⃗TAy⃗ . Analogously, βx⃗ · y⃗ = x⃗TAy⃗ . Subtract the relations, then (α − β)x⃗ · y⃗ = 0.
Because α ̸= β, then x⃗ · y⃗ = 0. ■

Proof of Theorem 9.18, real eigenvalues: The second statement is due to the
fundamental theorem of algebra. To prove the eigenvalues are real, it suffices to prove
λ = λ when Av⃗ = λv⃗ with v⃗ ̸= 0⃗ . A complex conjugate is computed by replacing i by
−i. Conjugates of vectors and matrices are found componentwise. Assume that v⃗ may
have complex entries. Because A is real, then A = A. Take the complex conjugate across
Av⃗ = λv⃗ to obtain Av⃗ = λv⃗ . Transpose Av⃗ = λv⃗ to obtain v⃗TAT = λv⃗T and then
conclude v⃗TA = λv⃗T from AT = A. Multiply this equation by v⃗ on the right to obtain
v⃗TAv⃗ = λv⃗T v⃗ . Then multiply Av⃗ = λv⃗ by v⃗T on the left to obtain v⃗TAv⃗ = λv⃗T v⃗ .
The result:

λv⃗T v⃗ = λv⃗T v⃗ .

Because v⃗T v⃗ =
∑n

j=1 |vj |2 > 0, then it cancels: λ = λ and λ is real. ■
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Proof of Theorem 9.19, Gram-Schmidt relations: Induction will be applied on
k to show that y⃗ 1, . . . , y⃗ k are nonzero and orthogonal. If k = 1, then there is just one
nonzero vector constructed y⃗ 1 = x⃗1. Orthogonality for k = 1 is not discussed because
there are no pairs to test. Assume the result holds for k − 1 vectors. Let’s verify that it
holds for k vectors, k > 1. Assume orthogonality y⃗ i · y⃗ j = 0 for i ̸= j and y⃗ i ̸= 0⃗ for

1 ≤ i, j ≤ k − 1. It remains to test y⃗ i · y⃗ k = 0 for 1 ≤ i ≤ k − 1 and y⃗ k ̸= 0⃗ . The test
depends upon the identity

y⃗ i · y⃗ k = y⃗ i · x⃗k −
k−1∑
j=1

x⃗k · y⃗ j

y⃗ j · y⃗ j
y⃗ i · y⃗ j ,

which is obtained from the formula for y⃗ k by taking the dot product with y⃗ i. In the
identity, y⃗ i · y⃗ j = 0 by the induction hypothesis for 1 ≤ j ≤ k− 1 and j ̸= i. Therefore,
the summation in the identity contains just the term for index j = i, and the contribution
is y⃗ i ·x⃗k. This contribution cancels the leading term on the right in the identity, resulting
in the orthogonality relation y⃗ i · y⃗ k = 0. If y⃗ k = 0⃗ , then x⃗k is a linear combination
of y⃗ 1, . . . , y⃗ k−1. But each y⃗ j is a linear combination of {x⃗ i}ji=1, therefore y⃗ k = 0⃗
implies x⃗k is a linear combination of x⃗1, . . . , x⃗k−1, a contradiction to the independence
of {x⃗ i}ki=1. ■

Proof of Theorem 9.20, Formula ProjV (x⃗ ) is Well-Defined:
Suppose that {w⃗ j}kj=1 is another orthonormal basis of V . Define u⃗ =

∑k
i=1(u⃗ i · x⃗ )u⃗ j

and w⃗ =
∑k

j=1(w⃗ j · x⃗ )w⃗ j . It will be established that u⃗ = w⃗ , which justifies that the
projection formula is independent of basis. First, two lemmas.

Lemma 9.3 (Orthonormal Basis Expansion)
Let {v⃗ j}kj=1 be an orthonormal basis of a subspace V in Rn. Then each vector v⃗ in
V is represented as

v⃗ =

k∑
j=1

(v⃗ j · v⃗ )v⃗ j .

Proof: First, v⃗ has a basis expansion v⃗ =
∑k

j=1 cjv⃗ j for some constants
c1, . . . , ck. Take the inner product of this equation with vector v⃗ i to prove
that ci = v⃗ i · v⃗ , hence the claimed expansion is proved.

Lemma 9.4 (Orthogonality) Let {u⃗ i}ki=1 be an orthonormal basis of a subspace V in
Rn. Let x⃗ be any vector in Rn and define u⃗ =

∑k
i=1(u⃗ i ·x⃗ )u⃗ i. Then y⃗ ·(x⃗−u⃗ ) = 0

for all vectors y⃗ in V .

Proof: The first lemma implies u⃗ can be written a second way as a linear
combination of u⃗1, . . . . u⃗k. Independence implies equal basis coefficients,
which gives u⃗ j · u⃗ = u⃗ j · x⃗ . Then u⃗ j · (x⃗ − u⃗) = 0. Because y⃗ is in V , then

y⃗ =
∑k

j=1 cju⃗ j , which implies y⃗ · (x⃗ − u⃗) =
∑k

j=1 cj u⃗ j · (x⃗ − u⃗) = 0. ■

Justification of w⃗ = u⃗

The justification of Formula (1) is concluded here, showing that w⃗ = u⃗ .

w⃗ =
∑k

j=1(w⃗ j · x⃗ )w⃗ j

=
∑k

j=1(w⃗ j · u⃗)w⃗ j Because w⃗ j · (x⃗ − u⃗) = 0 by the second
lemma.
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=
∑k

j=1

(
w⃗ j ·

∑k
i=1(u⃗ i · x⃗ )u⃗ i

)
w⃗ j Definition of u⃗ .

=
∑k

j=1

∑k
i=1(w⃗ j · u⃗ i)(u⃗ i · x⃗ )w⃗ j Dot product properties.

=
∑k

i=1

(∑k
j=1(w⃗ j · u⃗ i)w⃗ j

)
(u⃗ i · x⃗ ) Switch summations.

=
∑k

i=1 u⃗ i(u⃗ i · x⃗ ) First lemma with v⃗ = u⃗ i.

= u⃗ Definition of u⃗ .

Proof of Theorem 9.21, Projection properties: Properties (a), (b) and (c) were
proved in preceding lemmas. Details are outlined here, in case the lemmas were skipped.

(a): Write a basis expansion v⃗ =
∑k

j=1 cju⃗ j for some constants c1, . . . , ck. Take the
inner product of this equation with vector u⃗ i to prove that ci = u⃗ i · v⃗ .
(b): Vector ProjV (x⃗ ) is a linear combination of basis elements of V .

(c): Represent a given vector v⃗ in V by the orthogonal expansion ofv⃗ from (a). Let’s
compute the dot product of w⃗ and v⃗ :

w⃗ · v⃗ = (x⃗ −ProjV (x⃗ )) · v⃗

= x⃗ · v⃗ −

 k∑
j=1

(x⃗ · u⃗ j)u⃗ j

 · v⃗
=

k∑
j=1

(u⃗ j · v⃗ )(x⃗ · u⃗ j)−
k∑

j=1

(x⃗ · u⃗ j)(u⃗ j · v⃗ )

= 0.

(d): Begin with the Pythagorean identity

∥a⃗∥2 + ∥b⃗∥2 = ∥a⃗ + b⃗∥2

valid exactly when a⃗ · b⃗ = 0 (a right triangle, θ = 90◦). Using an arbitrary v⃗ in V ,

define a⃗ = ProjV (x⃗ )− v⃗ and b⃗ = x⃗ −ProjV (x⃗ ). By (b), vector a⃗ is in V . Because of

(c), then a⃗ · b⃗ = 0. This gives the identity

∥ProjV (x⃗ )− v⃗∥2 + ∥x⃗ −ProjV (x⃗ )∥2 = ∥x⃗ − v⃗∥2,

which establishes ∥x⃗ − ProjV (x⃗ )∥ < ∥x⃗ − v⃗∥ except for the unique v⃗ such that
∥ProjV (x⃗ )− v⃗∥ = 0.

(e): Let w⃗ be orthogonal to all vectors in V . Because the columns of A are in V , then
w⃗ is orthogonal to the columns of A, which are rows of AT . Equation AT w⃗ = 0⃗ means
w⃗ is orthogonal to the rows of AT . ■

Proof of Theorem 9.24, Least Squares Solution:
Let V = colspace(A). Let y⃗ = projV (b⃗). Let w⃗ = b⃗ − y⃗ . Because y⃗ is in the column
space of A, then y⃗ = Ax⃗∗ for some x⃗∗. By Theorem 9.21 (c), w⃗ · u⃗ = 0 for every vector
u⃗ in V . This means w⃗ u⃗T = 0 for every column u⃗ of A, which in turn means AT w⃗ = 0⃗ .
Then AT (b⃗ − y⃗ ) = 0⃗ or equivalently AT b⃗ = ATAx⃗∗. The Normal Equation has been

verified for any x⃗∗ such that Ax⃗∗ = y⃗ = projV (b⃗). Theorem 9.21 (d) says that x⃗ = x⃗∗

is a minimizer for ∥Ax⃗ − b⃗∥ over all x⃗ . Then

∥Ax⃗∗ − b⃗∥ = min
x⃗
∥Ax⃗ − b⃗∥
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■

Solution to Example 9.15, Height-Weight Best Fit:
The answer with 10 digits is y = 61.2721865421106x− 39.0619559188439, using assump-
tions made below for what is meant by best fit. A plot of the data and this straight
line are in Figure 5.

Literature for the example might use the statistical term simple linear regression.
The regressors in the example are unknowns m, b. The regression line y = mx + b
gives the expected weight y for height x, so y is the average or mean weight for a given
height. Historically, regression abbreviates regress back to the mean, attributed to
Sir Francis Galton (1822-1911) in work on genetics.

Linear algebraic equations in the unknowns m, b are discovered by inserting Table 4
data into y = mx+ b, x=height, y=weight:

52.21 = 1.47m+ b 53.12 = 1.50m+ b 54.48 = 1.52m+ b 55.84 = 1.55m+ b
57.20 = 1.57m+ b 58.57 = 1.60m+ b 59.93 = 1.63m+ b 61.29 = 1.65m+ b
63.11 = 1.68m+ b 64.47 = 1.70m+ b 66.28 = 1.73m+ b 68.10 = 1.75m+ b
69.92 = 1.78m+ b 72.19 = 1.80m+ b 74.46 = 1.83m+ b

Define height vector H⃗ and weight vector W⃗ from Table 4, both vectors in R15. Let

vector O⃗ in R15 have all entries 1. Define augmented matrix A = ⟨H⃗ |O⃗⟩. The fifteen
linear algebraic equations become:

A

(
m
b

)
= W⃗(9)

Among the three possibilities for a system of linear algebraic equations (Chapter 3 Section
1), system (9) has no solution. Terminology best fit has multiple possibilities, from
which a single interpretation is isolated:

Best Fit

Find m, b to minimize the error between vectors A

(
m
b

)
and W⃗ .

The two vectors are the LHS and RHS of equation (9).

The answers m = 61.2721865421106, b = −39.0619559188439 are found by solving 2× 2
matrix equation (12) on page 745. Details follow.

The idea for solving the unsolvable equation (9) is geometric: replace it with a solvable
equation:

A

(
m
b

)
= Z⃗(10)

Mystery vector Z⃗ in (10) is the unique near point in V = span(H⃗ , O⃗) to W⃗ given by
near point Theorem 9.22.

Uniqueness of Z⃗ means that the new equation A

(
m
b

)
= Z⃗ has a unique solution for

m, b. The solution is efficiently found by multiplication of equation (10) by AT :

ATA

(
m
b

)
= AT Z⃗ = ATW⃗ .(11)

Equality AT Z⃗ = ATW⃗ results from Theorem 9.21 (c): vector w⃗ = W⃗ − ProjV (W⃗ )
is orthogonal to the columns of A and by Theorem 9.21 (e) AT w⃗ = 0⃗ . The simplified
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equation

ATA

(
m
b

)
= ATW⃗(12)

is called the normal equation for unsolvable system (9).

The new system is a 2× 2 system with a unique solution m, b given by matrix inversion:(
m
b

)
=

(
ATA

)−1
ATW⃗

=

(
41.0532 24.76
24.76 15

)−1(
1548.245
931.17

)
=

(
61.2721865421106
−39.0619559188439

)
.

with(LinearAlgebra):# Maple check

H:=Vector([ 1.47,1.50,1.52,1.55,1.57,1.60,1.63,1.65,

1.68,1.70,1.73,1.75,1.78,1.80,1.83]);

W:=Vector([ 52.21,53.12,54.48,55.84,57.20,58.57,59.93,61.29,

63.11,64.47,66.28,68.10,69.92,72.19,74.46]);

ONE:=Vector([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]);

A:=<H|ONE>;

LinearSolve(A,W);Rank(A);# fail expected

B:=A^+ . A; Z:=A^+ . W; (1/B) . Z;

Exercises 9.3 �

Diagonalization
Find the eigenpair packages P and D in the
relation AP = PD.

1. A =

(
−4 2
0 −1

)

2. A =

(
7 5

10 −7

)

3. A =

(
1 2
2 4

)

4. A =

(
1 0
2 −1

)

5. A =

 −1 0 3
3 4 −9
−1 0 3



6. A =

 1 1 0
1 1 0
0 0 −3



7. A =


1 1 0 1
1 1 0 1
0 0 −3 0
0 0 0 −1



8. A =


4 0 0 1
12 −2 0 0
0 0 −3 0
21 −6 1 0


Jordan’s Theorem
Given matrices P and T , verify Jordan’s
relation AP = PT .

9. A =

(
−4 2
0 −1

)
, P = I, T = A.

10. A =

(
0 1
−2 3

)
, P =

(
1 0
1 1

)
, T =(

1 1
0 2

)

Cayley-Hamilton Theorem
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11. Verify that A =

(
a b
c d

)
satisfies

A2=(a+d)A−(ad− bc)

(
1 0
0 1

)
.

12. Verify

(
1 0
2 1

)20

=

(
1 0
40 1

)
by induction

using Cayley-Hamilton.

Gram-Schmidt Process
Find the Gram–Schmidt orthonormal basis
from the given independent set.

13.

1
0
0

,

0
1
0

,

−10
1

.

Ans: Columns of I.

14.

 1
2
−1

,

2
0
3

,

0
4
1

.

15.


1
0
0
1

,


−1
0
2
1

,


0
1
2
0

,


0
0
−1
1

.

16.


1
0
0
0

,


1
1
0
0

,


1
1
1
0

,


1
1
1
1

.

Ans: Columns of I.

Gram-Schmidt on Polynomials
Define V = span(1, x, x2) with inner prod-

uct
∫ 1

0
f(x)g(x)dx. Find a Gram–Schmidt

orthonormal basis.

17. 1, 1 + x, x2

18. 1− x, 1 + x, 1 + x2

Gram-Schmidt: Coordinate Map
Define V = span(1, x, x2) with inner prod-

uct
∫ 1

0
f(x)g(x)dx. The coordinate map is

T : c1 + c2x+ c3x
2 →

c1
c2
c3


19. Find the images of 1− x, 1 + x, 1 + x2

under T .

20. Assume column vectors x⃗1, x⃗2, x⃗3

in R3 orthonormalize under Gram-
Schmidt to u⃗1, u⃗2, u⃗3. Are the pre-
images T−1(u⃗1), T

−1(u⃗2), T
−1(u⃗3) or-

thonormal in V ?

Shadow Projection
Compute shadow vector (x⃗ · u⃗)u⃗ for direc-
tion u⃗ = v⃗

|v⃗ | . Illustrate with a hand–drawn

figure.

21. x⃗ =

(
1
−1

)
, v⃗ =

(
1
2

)
Ans: − 1

5

(
1
2

)

22. x⃗ =

(
1
1

)
, v⃗ =

(
1
3

)

23. x⃗ =

1
1
2

, v⃗ =

1
0
2


Ans:

1
0
2



24. x⃗ =


1
1
2
1

, v⃗ =


1
0
2
1


Orthogonal Projection
Find an orthonormal basis {u⃗k}nk=1 for
V = span(1 + x, x, x + x2), inner product∫ 1

0
f(x)g(x)dx. Then compute the orthog-

onal projection p⃗ =
∑n

k=1(x⃗ · u⃗k)u⃗k.

25. x⃗ = 1 + x+ x2

26. x⃗ = 1 + 2x+ x2 + x3

Orthogonal Projection: Theory

27. Prove that the orthogonal projection
ProjV (x⃗ ) on V = span{Y⃗} is the vec-
tor shadow projection projY⃗ (x⃗ ).

28. (Gram-Schmidt Construction)

Define x⃗⊥
j = x⃗ j −ProjWj−1

(x⃗ j),
and Wj−1 = span(x⃗1, . . . , x⃗ j−1).
Prove these properties.
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(a) Subspace Wj−1 is equal
to the Gram-Schmidt
Vj−1 = span(u⃗1, . . . , u⃗ j).

(b) Vector x⃗⊥
j is orthogonal to all vec-

tors in Wj−1.

(c) The vector x⃗⊥
j is not zero.

(d) The Gram-Schmidt vector is

u⃗ j =
x⃗⊥

j

∥x⃗⊥
j ∥

.

Near Point Theorem
Find the near point to the subspace V .

29. x⃗ =

(
1
1

)
, V = span

((
1
2

))

30. x⃗ =

(
1
1

)
, V = span

((
0
1

))

31. x⃗=

1
1
0

,V= span

1
2
0

 ,

1
0
1



32. x⃗=

1
0
1

,V= span

1
1
0

 ,

1
1
1


QR-Decomposition
Give A, find an orthonormal matrix Q and
an upper triangular matrix R such that
A = QR.

33. A=


5 9
1 7
1 5
3 5

, Ans: R =

(
6 12
0 6

)

34. A=


2 1
2 0
2 0
2 1

, Ans: R =

(
4 1
0 1

)

35. A=


1 0 0
1 1 0
1 1 0
1 0 0

, Ans: R=

(
2 1 0
0 1 0

)

36. A=


1 0 0
1 1 1
1 1 1
1 0 0

, Ans: R=

(
2 1 1
0 1 1

)

Linear Least Squares: 3× 2

Let A=

2 0
0 2
1 1

, b⃗=

1
0
5

.

37. Find the normal equations for Ax⃗ = b⃗ .

38. Solve Ax⃗ = b⃗ by least squares.

Linear Least Squares: 4× 3

Let A=


4 0 1
1 0 1
0 1 0
1 1 1

, b⃗=


3
0
0
0

.

39. Find the normal equations for Ax⃗ = b⃗ .

40. Solve Ax⃗ = b⃗ by least squares.

Orthonormal Diagonal Form
Let A = AT . The spectral theorem im-
plies AQ = QD where D is diagonal and Q
has orthonormal columns. Find Q and D.

41. A=

(
7 2
2 4

)

42. A=

(
1 5
5 1

)

43. A=

(
1 5 0
5 1 0
0 0 2

)
Ans: Eigenvalues −4, 2, 6, orthonormal
eigenvectors

1√
2

−11
0

,

minicolvectorC001, 1√
2

1
1
0


44. A=

(
1 5 0
5 1 1
0 1 1

)

Eigenpairs of Symmetric Matrices:
Spectral Theorem.

45. Let A=

(
3 −1 1
−1 3 −1
1 −1 3

)
. Eigenvalues are

2, 2, 5. Find three orthonormal eigen-
pairs.
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46. Let A=

(
5 −1 1
−1 5 −1
1 −1 5

)
. Then

|A−λI|=(4 − λ)2(7 − λ). Find
three orthonormal eigenpairs.

47. Let A=

(
6 −1 1
−1 6 −1
1 −1 6

)
. Eigenvectors(

1
0
−1

)
,

(
1
1
0

)
,

(
1
−1
1

)
are for λ = 5, 5, 8.

Illustrate AQ = QD with D diagonal
and Q orthogonal.

48. Matrix A for λ = 1, 1, 4 has orthogonal
eigenvectors(
1
1
0

)
,

(
1
0
−1

)
,

(
1
−1
1

)
.

Find A and directly verify A = AT .

Singular Value Decomposition
Find the SVD A = UΣV T .

49. A=

−1 1
−2 2
2 −2

.

Ans: U=3× 3, V=2× 2. Matrix

Σ=

3
√
2 0

0 0
0 0

=3× 2, the size of A.

50. A=

−1 1
−2 2
1 1

.

Ans: σ1 =
√
10, σ2 =

√
2.

51. A=

−3 3
0 0
1 1

.

52. A=

1 1
0 1
1 −1

.

Ellipse and the SVD
Repeat Example 9.17, page 736 for the
given ellipse equation.

53. 50x2 − 30xy + 10y2 = 2500

54. 40x2 − 16xy + 10y2 = 2500

Mapping and the SVD
Reference: Example 9.18, page 738.

Let w⃗=

(
x
y

)
=c1v⃗ 1+c2v⃗ 2,

U= 1√
5

(
1 2
2 −1

)
, Σ=

(
10 0
0 5

)
, V= 1√

5

(
1 −2
2 1

)
,

A=

(
−2 6
6 7

)
. Then A=UΣV T .

55. Verify ∥w⃗∥2 = w⃗ · w⃗ = c21 + c22.

56. Verify V T w⃗=

(
c1
c2

)
from the general

identity V TV = I. Then show that

ΣV T w⃗=

(
10c1
5c2

)
.

Therefore, coordinate map w⃗ →
(
c1
c2

)
under-

goes re-scaling by 10 in direction v⃗ 1 and 5 in

direction v⃗ 2.

57. Find the angle θ of rotation for V T and
the reflection axis for U .

58. Assume |w⃗∥ = 1, a point on the unit
circle. Is Aw⃗ on an ellipse with semi-
axes 10 and 5? Justify your answer ge-
ometrically, no proof expected. Check
your answer with a computer plot.

Four Fundamental Subspaces

Compute matrices S1, S2 such that the col-
umn spaces of S1, S2 are the nullspaces of
A and AT . Verify the two orthogonality re-
lations of the four subspaces page 739 from
the matrix identities AS1 = 0, ATS2 = 0.

59. A =

(
1 0 0
1 1 0
2 1 0

)
. Answer:

S1 =

0
0
1

, S2 =

−1−1
1

.

60. A =

1 0 0
1 1 0
2 1 0
3 2 0

. Answer:

S1 =

0
0
1

, S2 =

−1 −1−2 −1
0 1
1 0


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61. A =

(
1 0 0 0
1 1 0 1
2 2 0 2

)
Answer:

S1 =

 0 0
−1 0
0 1
1 0

, S2 =

−1−1
1



62. A =

1 0 0 0
2 0 0 2
0 0 0 0
0 0 0 2

 Answer:

S1 =

0 0
0 1
1 0
0 0

, S2 =

 2 0
−1 0
0 1
1 0

,

Fundamental Theorem of Linear Alge-
bra
Strang’s Theorem says that the four sub-
spaces built from n×m matrix A and m×n
matrix AT satisfy

colspace(AT ) ⊥ nullspace(A),
colspace(A) ⊥ nullspace(AT ).

Let r = rank(A) = rank(AT ). The four
subspace dimensions are:

dim(colspace(A)) = r,
dim(nullspace(A)) = n− r,
dim(colspace(AT )) = r,
dim(nullspace(AT )) = m− r.

63. Explain why dim(colspace(A)) =
dim(colspace(AT )) = r from the Pivot
Theorem.

64. Suppose A is 10× 4. What are the di-
mensions of the four subspaces?

65. Invent a 4×4 matrix A where one of the
four subspaces is the zero vector alone.

66. Prove that the only vector in common
with rowspace(A) and nullspace(A)
is the zero vector.

67. Prove that each vector x⃗ in Rn can
be uniquely written as x⃗ = x⃗1 + x⃗2

where x⃗1 is in colspace(AT ) and x⃗2 is
in nullspace(A). See direct sum in
exercise 5.5 page 1377.

68. Prove that each vector y⃗ in Rm can
be uniquely written as y⃗ = y⃗ 1 + y⃗ 2

where y⃗ 1 is in colspace(A) and y⃗ 2 is
in nullspace(AT ).
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Chapter 10

Phase Plane Methods

Contents

10.1 Planar Autonomous Systems . . . . . . . . . . . . 751

10.2 Planar Constant Linear Systems . . . . . . . . . . 767

10.3 Planar Almost Linear Systems . . . . . . . . . . . 780

10.4 Biological Models . . . . . . . . . . . . . . . . . . . 790

10.5 Mechanical Models . . . . . . . . . . . . . . . . . . 804

Studied here are planar autonomous systems of differential equations. The topics:

1. Planar Autonomous Systems: Phase Portraits, Stability.

2. Planar Constant Linear Systems: Classification of isolated equilibria, Phase
portraits.

3. Planar Almost Linear Systems: Phase portraits, Nonlinear classifications of
equilibria.

4. Biological Models: Predator-prey models, Competition models, Survival of one
species, Co-existence, Alligators, doomsday and extinction.

5. Mechanical Models: Nonlinear spring-mass system, Soft and hard springs, En-
ergy conservation, Phase plane and scenes.
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10.1 Planar Autonomous Systems

10.1 Planar Autonomous Systems

A set of two scalar differential equations of the form

x′(t) = f(x(t), y(t)),
y′(t) = g(x(t), y(t)).

(1)

is called a planar autonomous system. The term Autonomous means Self-
Governing, justified by the absence of the time variable t in the functions f(x, y),
g(x, y).

To obtain the vector form, let u⃗(t) =

(
x(t)
y(t)

)
, F⃗ (x, y) =

(
f(x, y)
g(x, y)

)
and write

(1) as the first order vector-matrix system

d

dt
u⃗(t) = F⃗ (u⃗(t)).(2)

It is assumed that f , g are continuously differentiable in some region D in the xy-
plane. This assumption makes F⃗ continuously differentiable in D and guarantees
that Picard’s existence-uniqueness theorem for initial value problems applies to
the initial value problem d

dt u⃗(t) = F⃗ (u⃗(t)), u⃗(0) = u⃗0. Accordingly, to each u⃗0 =
(x0, y0) in D there corresponds a unique solution u⃗(t) = (x(t), y(t)), represented
as a planar curve in the xy-plane, which passes through u⃗0 at t = 0.

Such a planar curve is called a Trajectory or Orbit of the system and its
parameter interval is some maximal interval of existence T1 < t < T2, where T1

and T2 might be infinite. A graphic of trajectories drawn as parametric curves in
the xy-plane is called a Phase Portrait and the xy-plane in which it is drawn
is called the Phase Plane.

Trajectories Don’t Cross

Autonomy of the planar system plus uniqueness of initial value problems implies
that trajectories (x1(t), y1(t)) and (x2(t), y2(t)) cannot touch or cross. Hand-
drawn phase portraits are accordingly limited: you cannot draw a solution tra-
jectory that touches another solution curve!

Theorem 10.1 (Identical Trajectories)
Assume that Picard’s existence-uniqueness theorem applies to initial value problems
in D for the planar system

d

dt
u⃗(t) = F⃗ (u⃗(t)), u⃗(t) =

(
x(t)
y(t)

)
.

Let (x1(t), y1(t)) and (x2(t), y2(t)) be two trajectories of the system. If times t1, t2
exist such that

x1(t1) = x2(t2), y1(t1) = y2(t2),(3)
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then for the value c = t1 − t2 the equations x1(t+ c) = x2(t) and y1(t+ c) = y2(t)
are valid for all allowed values of t. This means that the two trajectories are on one
and the same planar curve, or in the contrapositive, two different trajectories cannot
touch or cross in the phase plane.

Proof: Define x(t) = x1(t+c), y(t) = y1(t+c). By the chain rule, (x(t), y(t)) is a solution
of the planar system, because x′(t) = x′

1(t + c) = f(x1(t + c), y1(t + c)) = f(x(t), y(t)),
and similarly for the second differential equation. Further, (3) implies x(t2) = x2(t2)
and y(t2) = y2(t2), therefore Picard’s uniqueness theorem implies that x(t) = x2(t) and
y(t) = y2(t) for all allowed values of t. ■

Equilibria

A trajectory that reduces to a point, or a constant solution x(t) = x0, y(t) = y0,
is called an Equilibrium Solution. The equilibrium solutions or Equilibria
are found by solving the nonlinear equations

f(x0, y0) = 0, g(x0, y0) = 0.

Each such (x0, y0) in D is a trajectory whose graphic in the phase plane is a
single point, called an Equilibrium Point. In applied literature, it may be
called a Critical Point, Stationary Point or Rest Point. Theorem 10.1 has
the following geometrical interpretation.

Assuming uniqueness, no other trajectory (x(t), y(t)) in the phase
plane can touch an equilibrium point (x0, y0).

Equilibria (x0, y0) are often found from linear equations

ax0 + by0 = e, cx0 + dy0 = f,

which are solved by linear algebra methods. They constitute an important sub-
class of algebraic equations which can be solved symbolically. In this special case,
symbolic solutions exist for the equilibria.

It is interesting to report that in a practical sense the equilibria may be reported
incorrectly, due to the limitations of computer software, even in the case when
exact symbolic solutions are available. An example is x′ = x+ y, y′ = ϵy − ϵ for
small ϵ > 0. The root of the problem is translation of ϵ to a machine constant,
which is zero for small enough ϵ. The result is that computer software detects
infinitely many equilibria when in fact there is exactly one equilibrium point.
This example suggests that symbolic computation be used by default.

Practical Methods for Computing Equilibria

There exists no supporting theory to find equilibria for all choices of F and G.
However, there is a rich library of special methods for solving nonlinear algebraic
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equations, including numerical methods based on celebrated univariate methods,
such as Newton’s method and the Bisection method.

Computer algebra systems like maple, maxima and mathematica offer convenient
codes to solve the equations, when possible, including symbolic solutions. Applied
mathematics depends on the dynamically expanding library of special methods,
which grows due to new mathematical discoveries. See the exercises for examples.

Population Biology

Planar autonomous systems have been applied to two-species populations like
two species of trout, who compete for food from the same supply, and foxes and
rabbits, who compete in a predator-prey situation.

Certain equilibria are significant, because they represent the population sizes for
Cohabitation. A point in the phase space that is not an equilibrium point cor-
responds to population sizes that cannot coexist, they must change with time.
Some equilibria are consequently Observable or average population sizes while
non-equilibria correspond to snapshot population sizes that are subject to flux.
Biologists expect population sizes of such two-species competition models to un-
dergo change until they reach approximately the observable values, on the aver-
age.

Rabbit-Fox System

This example is a Predator-Prey system, in which the expected observable
population sizes are averages, about which the actual populations size oscillate
about, periodically over time. Certain equilibria for these systems represent ideal
cohabitation. Biological experiments suggest that initial population sizes close
to the equilibrium values cause populations to stay near the initial sizes, even
though the populations oscillate periodically. Observations by field biologists of
large population variations seem to verify that individual populations oscillate
periodically around the ideal cohabitation sizes.

A typical planar system for predator-prey dynamics of x(t) rabbits and y(t) foxes
is the system

dx

dt
=

1

200
x(40− y),

dy

dt
=

1

100
y(x− 50).

Time variable t is in months. The equilibria are (0, 0), (50, 40). With initial
populations x(0) = 60 rabbits and y(0) = 30 foxes, both x′ and y′ are positive
near t = 0, which implies the populations initially increase in size.

After time, the signs of x′ and y′ are alternately positive and negative, which
reflects the oscillating behavior of the populations about the ideal equilibrium
values x = 50, y = 40. The period of oscillation is about 20 months. This
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predator-prey model predicts coexistence with average populations of 50 rabbits
and 40 foxes.

Trout System

Consider a population of two species of trout who compete for the same food
supply. A typical autonomous planar system for the species x and y is

dx

dt
= x(−2x− y + 180),

dy

dt
= y(−x− 2y + 120).

Equilibria. The equilibrium solutions for the trout system are

(0, 0), (90, 0), (0, 60), (80, 20).

Only nonnegative population sizes are physically significant. Units for the pop-
ulation sizes might be in hundreds or thousands of fish. The equilibrium (0, 0)
corresponds to Extinction of both species, while (0, 60) and (90, 0) correspond to
the unusual situation of extinction for one species. The last equilibrium (80, 20)
corresponds to Co-Existence of the two trout species with observable popula-
tion sizes of 80 and 20.

Phase Portraits

A graphic which contains some equilibria and typical trajectories of a planar
autonomous system (1) is called a Phase Portrait.

While graphing equilibria is not a challenge, graphing typical trajectories, also
called orbits, seems to imply that we are going to solve the differential system.
This is not the case. Approximations will be used that do not require solution
of the differential system.

Equilibria Plot in the xy-plane all equilibria of (1). See Figure 3.

Window Select an x-range and a y-range for the graph window which
includes all significant equilibria (Figure 3).

Grid Plot a uniform grid of N grid points (N ≈ 50 for hand work)
within the graph window, to populate the graphical white space
(Figure 4). The isocline method might also be used to select grid
points.

Field Draw at each grid point a short tangent vector, a replacement
curve for a solution curve through a grid point on a small time
interval (Figure 5).
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Orbits Draw additional threaded trajectories on long time intervals into
the remaining white space of the graphic (Figure 6). This is
guesswork, based upon tangents to threaded trajectories match-
ing nearby field tangents drawn in the previous step. See Figures
1 and 2 for details.

C

y

x
b

a

Figure 1. Badly threaded orbit.
Threaded solution curve C correctly matches its tan-
gent to the tangent at nearby grid point a, but it fails
to match at grid point b.

Why does a threaded solution curve tangent T⃗1 have to match 1 a tangent T⃗2 at
a nearby grid point (see Figure 2)? A tangent vector is given by T⃗ = d

dt u⃗(t) =

F⃗ (u⃗(t)). Then T⃗1 = F⃗ (u⃗1), T⃗2 = F⃗ (u⃗2). However, u⃗1 ≈ u⃗2 in the graphic, hence
by continuity of F⃗ it follows that F⃗ (u⃗1) ≈ F⃗ (u⃗2), which implies T⃗1 ≈ T⃗2.

u⃗ 2

C

x

y ⃗⃗
T 1

⃗⃗
T 2

u⃗ 1

Figure 2. Tangent matching.

Threaded solution curve C matches its tangent
⃗⃗
T 1 at u⃗1

to direction field tangent
⃗⃗
T 2 at nearby grid point u⃗2.

It is important to emphasize that solution curves starting at a grid point are
defined for a small t-interval about t = 0, and therefore their graphics extend
on both sides of the grid point. We intend to shorten these curves until they
appear to be straight line segments, graphically atop the tangent line, to pixel
resolution. Adding an arrowhead pointing in the tangent vector direction is
usual. After all this construction, the shaft of the arrow is graphically atop a
short solution curve segment. In fact, if 50 grid points were used, then 50 short
solution curve segments have already been entered onto the graphic! Threaded
orbits are added to show what happens to solutions that are plotted on longer
and longer t-intervals.

Phase Portrait Illustration

The method outlined above will be applied to the illustration

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

(4)

The equilibria are (1,−1) and (−1, 1). The graph window is selected as |x| ≤ 2,
|y| ≤ 2, in order to include both equilibria. The uniform grid will be 11 × 11,

1Match means nearly identical, in an approximate sense: graphics of the two tangents are
identical to pixel resolution.
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although for hand work 5 × 5 is normal. Tangents at the grid points are short
line segments which do not touch each another – they are graphically the same
as short solution curves.

−2
−2

2
y

2

(1,−1)
x

(−1, 1) Figure 3. Equilibria (1,−1), (−1, 1) with
Invented Graph Window.
The equilibria (x, y) are calculated from equa-
tions 0 = x + y, 0 = 1 − x2. The graph window
|x| ≤ 2, |y| ≤ 2 is invented initially, then up-
dated until Figure 5 reveals sufficiently rich field
details.

−2 2

x−2

2
y

Figure 4. Equilibria (1,−1), (−1, 1) and In-
vented 11× 11 Uniform Grid.
The equilibria (squares) happen to cover up two
grid points. The invented size 11 × 11 should fill
the white space in the graphic.

−1

y

−1 1 x

1
Figure 5. Equilibria, Uniform Grid and
Direction Field.
An arrow shaft at a grid point represents a solu-
tion curve over a small time interval. Threaded
solution curves on long time intervals have tan-
gents matching nearby arrow shaft directions.

y

1

−1

−1 1 x

Figure 6. Initial Phase Portrait.
Equilibria (1,−1), (−1, 1) and 11 × 11 uniform
grid with threaded solution curves. Arrow shafts
included from some direction field arrows.
Threaded solution curve tangents are to match
nearby direction field arrow shafts. See Figures 1
and 2 for how to match tangents.
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1

−1 1 x

−1

y

Figure 7. Final Phase portrait.

Shown are some threaded solution curves and an 11 × 11 grid. The direction field has

been removed for clarity. Threaded solution curves do not actually cross, even though

graphical resolution might suggest otherwise.

Phase Plot by Computer

Illustrated here is how to make a phase plot like Figure 8 or Figure 9, infra, with
computer algebra system maple, for the system of differential equations

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

(5)

Before the computer work begins, the differential equation is defined and the
equilibria are computed. Defaults supplied by maple allow an initial phase por-
trait to be plotted, from which the graph window is invented.

Phase plot tools can simplify initial plot production. To illustrate, maple task
Phase Portrait has this interface:
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Figure 8. PhasePortrait task in computer algebra system Maple for equations

(5).

Minimal input requires two differential equations, equilibria, a graph window and
time interval for threaded curves. Clicking on the graphic produces threaded
solution curves.

The Phase Portrait Task is unlikely to be able to produce a final, production
figure. Other tools are normally used afterwards, to make the final figure.

The initial plot code:

des:=diff(x(t),t)=x(t)+y(t),diff(y(t),t)=1-x(t)^2:

wind:=x=-2..2,y=-2..2:Times:=t=-20..20:

DEtools[DEplot]([des],[x(t),y(t)],Times,wind);

The initial plot suggests which initial conditions near the equilibria should be
selected in order to create typical orbits on the graphic. The final code with
initial data and options:

des:=diff(x(t),t)=x(t)+y(t),diff(y(t),t)=1-x(t)^2:

wind:=x=-2..2,y=-2..2:Times:=t=-20..20:

opts:=stepsize=0.05,dirgrid=[13,13],

axes=none,thickness=3,arrows=small:

ics:=[[x(0)=-1,y(0)=1.1],[x(0)=-1,y(0)=1.5],

[x(0)=-1,y(0)=.9],[x(0)=-1,y(0)=.6],[x(0)=-1,y(0)=.3],

[x(0)=1,y(0)=-0.9],[x(0)=1,y(0)=-0.6],[x(0)=1,y(0)=-0.6],

[x(0)=1,y(0)=-0.3],[x(0)=1,y(0)=-1.6],[x(0)=1,y(0)=-1.3],

[x(0)=1,y(0)=-1.1]]:

DEtools[DEplot]([des],[x(t),y(t)],Times,wind,ics,opts);
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1−1

1

−1

y

x

Figure 9. Phase Portrait
for (5).
The graphic shows typical
solution curves and a direction
field. The graphic was pro-
duced in maple using a 13 × 13
grid.

Stability

Consider an autonomous system d
dt u⃗(t) = F⃗ (u⃗(t)) with F⃗ continuously differen-

tiable in a region D in the plane.

Stable equilibrium. An equilibrium point u⃗0 in D is said to be Stable provided
for each ϵ > 0 there corresponds δ > 0 such that

(a) given u⃗(0) in D with ∥u⃗(0) − u⃗0∥ < δ, then the solution u⃗(t) exists on
0 ≤ t <∞ and

(b) ∥u⃗(t)− u⃗0∥ < ϵ for 0 ≤ t <∞.

Unstable equilibrium. The equilibrium point u⃗0 is called Unstable provided
it is not stable, meaning at least one of (a) or (b) fails.

Asymptotically stable equilibrium. The equilibrium point u⃗0 is said to be
Asymptotically Stable provided (a) and (b) hold (it is stable), and addition-
ally

(c) limt→∞ ∥u⃗(t)− u⃗0∥ = 0 for ∥u⃗(0)− u⃗0∥ < δ.

Applied accounts of stability tend to emphasize item (b). Careful application of
stability theory requires attention to (a), which is the question of extension of
solutions of initial value problems to the half-axis.

Basic extension theory for solutions of autonomous equations says that (a) will be
satisfied provided (b) holds for those values of t for which u⃗(t) is already defined.
Stability verifications in mathematical and applied literature often implicitly use
extension theory, in order to present details compactly. The reader is advised
to adopt the same predisposition as researchers, who assume the reader to be
equally clever as they.

Physical stability. In the model d
dt u⃗(t) = F⃗ (u⃗(t)), physical stability addresses

changes in F⃗ as well as changes in u⃗(0). The meaning is this: physical parameters
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of the model, e.g., the mass m > 0, damping constant c > 0 and Hooke’s constant
k > 0 in a damped spring-mass system

x′ = y,

y′ = − c

m
y − k

m
x,

may undergo small changes without significantly affecting the solution.

In physical stability, stable equilibria correspond to Physically Observed data
whereas other solutions correspond to Transient Observations that disappear
over time.

A typical instance is the trout system

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

(6)

Physically observed data in the trout system (6) corresponds to the carrying
capacity, represented by the Stable Equilibrium point (80, 20), whereas tran-
sient observations are snapshot population sizes that are subject to change over
time. The strange extinction equilibria (90, 0) and (0, 60) are unstable equilib-
ria, which disagrees with intuition about zero births for less than two individu-
als, but agrees with graphical representations of the trout system in Figure 10.
Changing F⃗ (u⃗) for a trout system adjusts the physical constants which describe
the birth and death rates, whereas changing u⃗(0) alters the initial population
sizes of the two trout species.

Figure 10. Phase
Portrait for Trout
System (6).
Shown are typical
solution curves and a
direction field. Equi-
librium (80, 20) is
asymptotically stable
(a square). Equilibria
(0, 0), (90, 0), (0, 60)
are unstable (circles).

Direction Fields by Computer

Direction fields are produced by Maple with tool DEtools[dfieldplot] or with
interactive graphical task PhasePortrait. Basic code that produces a direction
field can be written with minimal effort:
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Maple code:

de1:=diff(x(t),t)=x(t)+y(t);

de2:=diff(y(t),t)=1-x(t)*x(t);vars:=[x(t),y(t)];

trange:=t=-10..10:xrange:=x=-2..2:yrange:=y=-2..2:

opts1:=trange,xrange,yrange:

opts2:=arrows=large,color=cyan,dirfield=[5,5]:

DEtools[dfieldplot]([de1,de2],vars,opts1,opts2);

A Direction Field Procedure

The ideas discussed below for maple apply to other programming languages, such
as Maxima, Mathematica, Ruby, Python and Microsoft developer languages.
Maple code below considers the system

x′ = F1(x, y), y′ = F2(x, y)

with example x′ = F1 = x+ y, y′ = F2 = 1− x2, which was treated above.

F1:=(x,y)->evalf(x+y):F2:=(x,y)->evalf(1-x^2):

P:=directionField(F1,F2):plots[display](P);# proc below
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Maple function plottools[rectangle] requires two arguments ul, lr, which are
the upper left (ul) and lower right (lr) vertices of the rectangle.

Maple function plottools[arrow] requires five arguments P , Q, sw, aw, af :
the two points P , Q which define the arrow shaft and direction, plus the shaft
width sw, arrowhead width aw and arrowhead length fraction af (fraction of the
shaft length).

The two functions rectangle, arrow plot a polygon from its vertices. Function
rectangle computes four vertices and function arrow computes seven vertices.
Maple function plots[display] plots the vertices.

# 2D phase plane direction field with uniform nxm grid.

# Tangent length is 9/10 the grid box width W0.

directionField:=

proc(F1,F2,a:=-2,b:=2,c:=-2,d:=2,n:=11,m:=11)

description "Custom direction field for F1,F2\

Window: a <= x <= b, c <= y <= d, Grid: n by m\

Tangent length = 9/10 grid box width W0.";

local x,y,X,Y,V,H,K,i,j,M1,M2,W0,h,p1,p2,q1,q2; global P;

H:=evalf((b-a)/(n+1)):K:=evalf((d-c)/(m+1)):W0:=min(H,K):

X:=t->a+H*(t):Y:=t->c+K*(t):P:=[]:

for i from 1 to n do

for j from 1 to m do

x:=X(i):y:=Y(j):M1:=F1(x,y): M2:=F2(x,y):

if (M1 =0 and M2 =0) then # no tangent, make a box

h:=W0/5:V:=plottools[rectangle]([x-h,y+h],[x+h,y-h]):

else

h:=evalf(((1/2)*9*W0/10)/sqrt(M1^2+M2^2)):

p1:=x-h*M1:p2:=y-h*M2:q1:=x+h*M1:q2:=y+h*M2:

V:=plottools[arrow]([p1,p2],[q1,q2],0.2*W0,0.5*W0,1/4):

fi:if (P = []) then P:=V: else P:=P,V: fi:

od:od:
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RETURN (P);

end proc:

763



10.1 Planar Autonomous Systems

Exercises 10.1 �

Autonomous Planar Systems.

Consider

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

(7)

1. (Vector-Matrix Form) System (1) can
be written in vector-matrix form

d

dt
u⃗ = F⃗ (u⃗(t)).

Display formulas for u⃗ and F⃗ .

2. (Picard’s Theorem) Picard’s vector
existence-uniqueness theorem applies to
system (1) with initial data x(0) = x0,
y(0) = y0. Show the details.

Trajectories Don’t Cross.

3. (Theorem 10.1 Details) Show dy
dt =

g(x1(t + c), y1(t + c)), then show that
y′(t) = g(x(t), y(t)) in the proof of The-
orem 10.1.

4. (Orbits Can Cross) The example

dx

dt
= 1,

dy

dt
= 3y2/3

has infinitely many orbits crossing at
x = y = 0. Exhibit two distinct or-
bits which cross at x = y = 0. Does
this example contradict Theorem 10.1?

Equilibria. A point (x0, y0) is called an
Equilibrium provided x(t) = x0, y(t) =
y0 is a solution of the dynamical system.

5. Justify that (1,−1), (−1, 1) are the only
equilibria for the system x′ = x + y,
y′ = 1− x2.

6. Display the details which justify
that (0, 0), (90, 0), (0, 60), (80, 20)
are all equilibria for the sys-
tem x′(t) = x(−2x − y + 180),
y′(t) = y(−x− 2y + 120).

Practical Methods for Computing
Equilibria.

7. (Murray System) The biological sys-
tem

x′ = x(6− 2x− y), y′ = y(4− x− y)

has equilibria (0, 0), (3, 0), (0, 4), (2, 2).
Justify the four answers.

8. (Nullclines) Curves along which either
x′ = 0 or y′ = 0 are called nullclines.
The biological system

x′ = x(6− 2x− y), y′ = y(4− x− y)

has nullclines x = 0, y = 0, 6−2x−y =
0, 4 − x − y = 0. Justify the four an-
swers.

9. (Nullclines by Computer) Produce a
graphical display of the nullclines of the
Murray System above. Maple code be-
low makes a plot from equations x(6 −
2x− y) = 0, y(4− x− y) = 0.

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=-5..5,y=-10..10;

opts:=wind,contours=[0];

plots[contourplot](eqns,opts);

10. (Isoclines by Computer) Level curves
f(x, y) = c are called Isoclines.

Maple will plot level curves f(x, y) =
−2, f(x, y) = 0, f(x, y) = 2 using the
nullcline code above, with replacement
contours=[-2,0,2]. Produce an iso-
cline plot for the Murray System above
with these same contours.

11. (Implicit Plot) Equilibria can be
found graphically by an implicit plot.

# MAPLE implicit plot

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=-5..5,y=-10..10;

plots[implicitplot](eqns,wind);

Produce the implicit plot. Is it the same
as the nullcline plot?

12. (Implicit Plot) Find the equilibria
graphically by an implicit plot. Then
find the equilibria exactly.{

x′(t) = x(t) + y(t),
y′(t) = 4− x2(t).
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Rabbit-Fox System.

13. (Predator-Prey) Consider a rabbit
and fox system

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

Argue why extinction of the rabbits
(x = 0) implies extinction of the foxes
(y = 0).

14. (Predator-Prey) The rabbit and fox
system

x′ =
1

200
x(40− y),

y′ =
1

100
y(x− 40),

has extinction of the foxes (y = 0) im-
plying Malthusian population explosion
of the rabbits (limt=∞ x(t) = ∞). Ex-
plain.

Trout System. Consider

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

15. (Carrying Capacity) Show details for
calculation of the equilibrium x = 80,
y = 20, which is co-existence.

16. (Stability) Equilibrium point x = 80,
y = 20 is stable. Explain this statement
using geometry from Figure 10 and the
definition of stability.

Phase Portraits. Consider

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

17. (Equilibria) Solve for x, y in the sys-
tem

0 = x+ y,
0 = 1− x2,

for equilibria (1,−1), (−1, 1). Explain
why |x| ≤ 2, |y| ≤ 2 is a suitable graph
window.

18. (Grid Points) Draw a 5 × 5 grid on
the graph window |x| ≤ 2, |y| ≤ 2. La-
bel the equilibria.

19. (Direction Field) Draw direction field
arrows on the 5× 5 grid of the previous
exercise. They coincide with the tan-
gent direction v⃗ = x′⃗ı+ y′ȷ⃗ = (x+ y)⃗ı+
(1−x2)ȷ⃗, where (x, y) is the grid point.
The arrows may not touch.

20. (Threaded Orbits) On the direction
field of the previous exercise, draw or-
bits (threaded solution curves), using
the rules:

1. Orbits don’t cross.

2. Orbits pass direction field arrows
with nearly matching tangent.

Phase Plot by Computer. Use a com-
puter algebra system or a numerical work-
bench to produce phase portraits for the
given dynamical system. A graph window
should contain all equilibria.

21. (Rabbit-Fox System I)

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

22. (Rabbit-Fox System II)

x′ =
1

100
x(50− y),

y′ =
1

200
y(x− 40).

23. (Trout System I)

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

24. (Trout System II)

x′(t) = x(−2x− y + 200),
y′(t) = y(−x− 2y + 120).

Stability Conditions. Consider equilib-
rium point (0, 0) and nearby solution curves
x(t), y(t) with (x(0), y(0)) near (0, 0).
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25. (Instability: Repeller) Prove: If for
every δ > 0 there is one solution
with |x(0)2 + y(0)2| < δ2 such that
limt→∞ |x(t)| + |y(t)| = ∞ then equi-
librium (0, 0) is unstable.

26. (Stability: Attractor) Prove that
x′(t) < 0 and y′(t) < 0 for all nearby
solutions implies stability at (0, 0), but
not asymptotic stability.

27. (Instability in x) Prove that
limt→∞ |x(t)| = ∞ implies insta-
bility at (0, 0).

28. (Instability in y) Prove that
limt→∞ |y(t)| = ∞ implies instability
at (0, 0).

Geometric Stability.

29. (Attractor) Imagine a dust particle in
a fluid draining down a funnel, whose
trace is a space curve. Assume fluid
drains at x = 0, y = 0 and the funnel
centerline is along the z-axis. Project
the space curve onto the xy-plane. Is
this planar orbit stable at (0, 0) in the
sense of the definition?

30. (Repeller) Imagine a paint droplet
from a paint spray can, pointed down-

ward, which traces a space curve.
Project the space curve onto the xy-
plane orthogonal to the spray nozzle di-
rection, centerline along the z-axis. Is
this planar orbit stable at (0, 0) in the
sense of the definition?

Geometric Stability: Phase Portrait.

31. (Rabbit–Fox I Stability) Plot a phase
portrait for system

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

Provide geometric evidence for stability
of equilibrium x = 40, y = 30.

32. (Rabbit–Fox II Instability) Plot a
phase portrait for system

x′ =
1

100
x(50− y),

y′ =
1

200
y(x− 40).

Provide geometric evidence for instabil-
ity of equilibrium x = 0, y = 0 and
stability of equilibrium x = 40, y = 50.
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10.2 Planar Constant Linear Systems

10.2 Planar Constant Linear Systems

A constant linear planar system is a set of two scalar differential equations of
the form

x′(t) = ax(t) + by(t)),
y′(t) = cx(t) + dy(t)),

(1)

where a, b, c and d are constants. In matrix form,

d

dt
u⃗(t) = Au⃗(t), A =

(
a b
c d

)
, u⃗(t) =

(
x(t)
y(t)

)
.

Solutions drawn in phase portraits don’t cross, because of Picard’s theorem. The
system is autonomous. The origin is always an equilibrium solution. There can
be infinitely many equilibria, found by solving Au⃗ = 0⃗ for the constant vector u⃗,
when A is not invertible.

Formula. System (1) can be solved by a formula which parallels the theorem
for second order constant coefficient equations Ay′′ + By′ + Cy = 0. You are
invited to learn Putzer’s spectral method, page 866, which is used to derive
the formulas. For now, let’s accept the formulas displayed in the next theorem.
Putzer’s result depends only on the Cayley-Hamilton theorem, which says that
a matrix A satisfies the characteristic equation |A − λI| = 0 under substitution
λ = A.

Theorem 10.2 (Planar Constant Linear System: Putzer’s Formula)
Consider the real planar system d

dt u⃗(t) = Au⃗(t). Let λ1, λ2 be the roots of the
characteristic equation det(A − λI) = 0. The real general solution u⃗(t) is given by
the formula

u⃗(t) = Φ(t)u⃗(0)

where the 2× 2 real invertible matrix Φ(t) is defined as follows.

Real λ1 ̸= λ2 Φ(t) = eλ1t I +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I).

Real λ1 = λ2 Φ(t) = eλ1t I + teλ1t (A− λ1I).

Complex λ1 = λ2,
λ1 = a+ bi, b > 0

Φ(t) = eat
(
cos(bt) I + (A− aI)

sin(bt)

b

)
.

Continuity and Redundancy

The formulas are continuous in the sense that limiting λ1 → λ2 in the first
formula or b→ 0 in the last formula produces the middle formula for real equal
roots. The first formula is also valid for complex conjugate roots λ1, λ2 = λ1 and
it reduces to the third when λ1 = a+ ib, therefore the third formula is technically
redundant, but nevertheless useful, because it contains no complex numbers.

Recommended: Memorize the first formula, derive the other two.
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10.2 Planar Constant Linear Systems

About the Newton Quotient. The Newton quotient g(x)−g(x0)
x−x0

in the first

formula of the theorem uses g(x) = ext, x = λ2, x0 = λ1, x − x0 = λ2 − λ1.
Calculus defines g′(x0) as the Newton quotient limit as x→ x0.

Illustrations

Typical cases are represented by the following 2 × 2 matrices A. The two roots
λ1, λ2 of the characteristic equation must fall into one of the three possibilities:
real distinct, real equal or complex conjugate.

λ1 = 5, λ2 = 2

A =

(
−1 3
−6 8

) Real distinct roots.

u⃗(t) =

(
e5t
(
1 0
0 1

)
+

e2t − e5t

2− 5

(
−6 3
−6 3

))
u⃗(0).

λ1 = λ2 = 3

A =

(
2 1
−1 4

) Real equal roots.

u⃗(t) = e3t
(
1− t t
−t 1 + t

)
u⃗(0).

λ1 = λ2 = 2 + 3i

A =

(
2 3
−3 2

) Complex conjugate roots.

u⃗(t) = e2t
(

cos 3t sin 3t
− sin 3t cos 3t

)
u⃗(0).

Isolated Equilibria

An autonomous system is said to have an isolated equilibrium at u⃗ = u⃗0
provided u⃗0 is the only constant solution of the system in |u⃗− u⃗0| < r, for r > 0
sufficiently small.

Theorem 10.3 (Isolated Equilibrium)
The following are equivalent for a constant planar system d

dt u⃗(t) = Au⃗(t):

1. The system has an isolated equilibrium at u⃗ = 0⃗.

2. det(A) ̸= 0.

3. The roots λ1, λ2 of det(A− λI) = 0 satisfy λ1λ2 ̸= 0.

Proof: The expansion det(A− λI) = (λ1 − λ)(λ2 − λ) = λ2 − (λ1 + λ2)λ+ λ1λ2 shows
that det(A) = λ1λ2. Hence 2 ≡ 3. We prove now 1 ≡ 2. If det(A) = 0, then Au⃗ = 0⃗
has infinitely many solutions u⃗ on a line through 0⃗, therefore u⃗ = 0⃗ is not an isolated
equilibrium. If det(A) ̸= 0, then Au⃗ = 0⃗ has exactly one solution u⃗ = 0⃗, so the system
has an isolated equilibrium at u⃗ = 0⃗.
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10.2 Planar Constant Linear Systems

Classification of Isolated Equilibria

For linear equations
d

dt
u⃗(t) = Au⃗(t),

we explain the phase portrait classifications

spiral, center, saddle, node

near the isolated equilibrium point u⃗ = 0⃗, and how to detect them when they
occur. Below, λ1, λ2 are the roots of det(A− λI) = 0.

Figures 13–12 illustrate the classifications. See also duplicate Figures 16–19,
which are organized by geometry.

Figure 11. Spiral Figure 12. Center

Figure 13. Saddle

Figure 14. Proper node Figure 15. Improper node
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Spiral λ1 = λ2 = a+ ib complex, a ̸= 0, b > 0.

A Spiral has solution formula

u⃗(t) = eat cos(bt) c⃗1 + eat sin(bt) c⃗2,

c⃗1 = u⃗(0), c⃗2 =
A− aI

b
u⃗(0).

All solutions are bounded harmonic oscillations of natural frequency
b times an exponential amplitude which grows if a > 0 and decays if
a < 0. An orbit in the phase plane spirals out if a > 0 and spirals
in if a < 0.

Center λ1 = λ2 = a+ ib complex, a = 0, b > 0

A center has solution formula

u⃗(t) = cos(bt) c⃗1 + sin(bt) c⃗2,

c⃗1 = u⃗(0), c⃗2 =
1

b
Au⃗(0).

All solutions are bounded harmonic oscillations of natural frequency
b. Orbits in the phase plane are periodic closed curves of period
2π/b which encircle the origin.

Saddle λ1, λ2 real, λ1λ2 < 0

A saddle has solution formula

u⃗(t) = eλ1tc⃗1 + eλ2tc⃗2,

c⃗1 =
A− λ2I

λ1 − λ2
u⃗(0), c⃗2 =

A− λ1I

λ2 − λ1
u⃗(0).

The phase portrait shows two lines through the origin which are
tangents at t = ±∞ for all orbits.
The line directions are given by the eigenvectors of matrix A. See
Figure 13.

Node λ1, λ2 real, λ1λ2 > 0

The solution formulas are

u⃗(t) = eλ1t (⃗a1 + t⃗a2) , when λ1 = λ2,

a⃗1 = u⃗(0), a⃗2 = (A− λ1I)u⃗(0),

u⃗(t) = eλ1 t⃗b1 + eλ2 t⃗b2, when λ1 ̸= λ2,

b⃗1 =
A− λ2I

λ1 − λ2
u⃗(0), b⃗2 =

A− λ1I

λ2 − λ1
u⃗(0).

Node subclassifications proper and improper are discussed below.
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10.2 Planar Constant Linear Systems

Definition 10.1 (Node)
A node is defined to be an equilibrium point (x0, y0) such that

1. Either limt→∞(x(t), y(t)) = (x0, y0) or else limt→−∞(x(t), y(t)) = (x0, y0),
for all initial conditions (x(0), y(0) close to (x0, y0).

2. For each initial condition (x(0), y(0)) near (x0, y0), there exists a straight line
L through (x0, y0) such that (x(t), y(t)) is tangent at t = ∞ to L. More
precisely, line L has a tangent vector v⃗ and limt→∞(x′(t), y′(t)) = cv⃗ for some
constant c.

Proper Node. Also called a Star Node. Matrix A is required to have two
eigenpairs (λ1, v⃗1), (λ2, v⃗2) with λ1 = λ2. Then u⃗(0) in R2 = span(v⃗1, v⃗2)
implies u⃗(0) = c1v⃗1 + c2v⃗2 and a⃗2 = (A− λ1I)u⃗(0) = 0⃗. Therefore, u⃗(t) =
eλ1ta⃗1 implies trajectories are tangent to the line through (0, 0) in direction
v⃗ = a⃗1/|⃗a1|. Because u⃗(0) = a⃗1 is arbitrary, v⃗ can be any direction, which
explains the star-like phase portrait in Figure 14.

Improper Node with One Eigenpair. The non-diagonalizable case is also
called a Degenerate Node. Matrix A is required to have just one eigen-
pair (λ1, v⃗1) and λ1 = λ2. Then u⃗′(t) = (⃗a2 + λ1a⃗1 + tλ1a⃗2)e

λ1t im-
plies u⃗′(t)/|u⃗′(t)| ≈ a⃗2/|⃗a2| at |t| = ∞. Matrix A − λ1I has rank 1,
hence Image(A − λ1I) = span(v⃗) for some nonzero vector v⃗. Then
a⃗2 = (A−λ1I)u⃗(0) is a multiple of v⃗. Trajectory u⃗(t) is tangent to the line
through (0, 0) with direction v⃗, as in Figure 15.

Improper Node with Distinct Eigenvalues. Discussed here is the first pos-
sibility when matrix A has real eigenvalues with λ2 < λ1 < 0. Not dis-
cussed is the second possibility λ2 > λ1 > 0, which has similar details.
Then u⃗′(t) = λ1⃗b1e

λ1t+λ2⃗b2e
λ2t implies u⃗′(t)/|u⃗′(t)| ≈ b⃗1/|⃗b1| at t =∞. In

terms of eigenpairs (λ1, v⃗1), (λ2, v⃗2), we compute b⃗1 = c1v⃗1 and b⃗2 = c2v⃗2
where u⃗(0) = c1v⃗1 + c2v⃗2. Trajectory u⃗(t) is tangent to the line through
(0, 0) with direction v⃗1. See Figure 15.

Attractor and Repeller

An equilibrium point is called an Attractor provided orbits starting nearby
limit to the point as t→∞. A Repeller is an equilibrium point such that orbits
starting nearby limit to the point as t→ −∞. Terms like Attracting node and
Repelling spiral are defined analogously.

Linear Classification Shortcut for d
dtu⃗ = Au⃗

Presented here is a practical method for deciding the classification of center,
spiral, saddle or node for a linear system d

dt u⃗ = Au⃗. The method uses just the
eigenvalues of A and the corresponding Euler atoms.
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Cayley-Hamilton Basis.

A system d
dt u⃗ = Au⃗ will have general solution

u⃗ = d⃗1(Euler Atom 1) + d⃗2(Euler Atom 2).

The vectors d⃗1, d⃗2 depend on A and u⃗(0). They are never explicitly used in the
shortcut, hence never computed.

The two Euler solution atoms are found from roots λ of the characteristic equation
|A− λI| = 0. There are two kinds of atoms:

No sine or cosine appear in the atoms, making a non-rotating phase
portrait, which is either a node or a saddle.

Sine and cosine appear in the atoms, which make a rotating phase
portrait, which is either a center or a spiral.

Table 1. Non-Rotating Phase Portraits

Figure 16. Saddle

Euler solution atoms for a saddle
or node have form eat, ebt or else
eat, teat. There are no sine or cosine
terms.

Figure 17. Proper node Figure 18. Improper node

Table 2. Rotating Phase Portraits

Figure 19. Center Figure 20. Spiral
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Divide and Conquer. Given 2× 2 matrix A with |A| ≠ 0, find the roots of the
characteristic equation |A−λI| = 0 and construct the two Euler solution atoms.
The classification figure, selected from center, spiral, node, saddle, depends only
on the atoms. Examine the atoms for sines and cosines. If present, then it will be
a rotating figure (center, spiral), otherwise it will be a non-rotating figure (node,
saddle). One more divide and conquer decides the figure, because within each
figure group, rotating or non-rotating, there is only one possible choice.

Rotation Test. Suppose sines and cosines appear in the Euler
atoms. If the Euler atoms are pure sine and cosine, then (0, 0) is
a center, otherwise (0, 0) is a spiral.

Non-Rotation Test. Suppose no sines or cosines appear in the
Euler atoms. If at t =∞ one Euler atom limits to zero and the other
Euler atom limits to infinity, then (0, 0) is a saddle, otherwise it is a
node.

Stability Classification by Euler Atoms.

A center is always stable, characterized by Euler atoms being pure
sine and cosine.

If (0, 0) is not a center, then (0, 0) is stable at t =∞ if and only if
both Euler atoms limit to zero at t =∞.

Divide and conquer via Euler atoms requires no table to decide upon the basic
phase portrait classification: spiral, center, saddle, node. Stability is likewise
decided by Euler atoms.

Node Sub-classifications

If finer geometric sub-classifications of a node are useful to you, then eigenanalysis
is required. Assumed below are λ1, λ2 real and λ1λ2 > 0. Diagonalizable means
there are two eigenpairs (λ1, v⃗1), (λ2, v⃗2).

Let (x0, y0) ̸= (0, 0) denote an arbitrary initial point. Start at this point a tra-
jectory (x(t), y(t)). Think of (x0, y0) as click point on the graphic in a computer
phase portrait plotter: the threaded curve goes through (x0, y0).

Separatrix

A separatrix is a union S of equilibria and special trajectories. Separatrices are
graphing tools. The possible separatrices include every solution curve, so there
is art involved to construct a useful separatrix.

Literature may try to describe the phase portrait geometry of linear system x⃗ ′ =
Ax⃗ using eigenvector directions. The terminology assumes you know how
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to construct a separatrix S from the eigenvectors. A separatrix for a nonlinear
system u⃗ ′ = F⃗ (u⃗ ) is not constructed from eigenvectors but from experimentally
found trajectories in a phase portrait plotter.

For nodes, a separatrix S is constructed which divides the plane into two regions
or four regions. A trajectory from (x0, y0) stays in the region where it starts:
trajectories do not cross S. If (x0, y0) is in S then the trajectory remains in
S: crossing means the trajectory changed regions.

Four regions are separated by four cyan
lines each of which is a trajectory, their
union a separatrix S. The linear system
is

x′ = 2x+ y, y′ = 3y

with eigenpairs(
2,

(
1
0

))
,

(
3,

(
1
1

))

The construction for nodes uses eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2) with real nonzero
eigenvalues λ1, λ2. Let v⃗ 2 = v⃗ 1 if λ1 = λ2 and there is only one eigenpair.

Lemma 10.1 A separatrix for a node is S = span(v⃗ 1) ∪ span(v⃗ 2).

Proof. Euler’s method provides trajectories of u⃗ ′ = Au⃗ :

u⃗ 1(t) = eλ1tv⃗ 1, u⃗ 2(t) = −eλ1tv⃗ 1, u⃗ 3(t) = eλ2tv⃗ 2, u⃗ 4(t) = −eλ2tv⃗ 2

The separatrix is constructed as the union of equilibrium (0, 0) and the four
trajectories, it being understood that v⃗ 1 = v⃗ 2 causes there to be only two
trajectories. Then

S = (0, 0) ∪ u⃗ 1 ∪ u⃗ 2 ∪ u⃗ 3 ∪ u⃗ 4 = span(v⃗ 1) ∪ span(v⃗ 2)

■

The exceptional case where the Lemma is not used as a graphing tool is equal
eigenvalues λ1 = λ2 and independent eigenvectors v⃗ 1, v⃗ 2. The general solution
is u⃗ (t) = (c1v⃗ 1 + c2v⃗ 2) e

λ1t = u⃗ (0)eλ1t. Geometrically, a trajectory starting at
(x0, y0) traverses for −∞ < t < ∞ the ray determined by vector u⃗(0), which is
the vector joining (0, 0) to (x0, y0). Each such ray is a separatrix in the sense
that trajectories cannot cross it. The Lemma is correct: S is a separatrix, but it
is not useful for phase plotting. The phase portrait is a star node.

Node with Equal Eigenvalues

There are two sub-classifications for a matrix A with real equal eigenvalues λ1 =
λ2.
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Star Node: Matrix A is diagonalizable with λ1 = λ2 ̸= 0. Trajectories are
rays from the origin. Equilibrium (0, 0) is an attractor (or a repeller) from
all points (x0, y0). Separatrix not used.

Degenerate Node: Matrix A is not diagonalizable with λ1 = λ2 ̸= 0
and one eigenpair (λ1, v⃗1). Equilibrium (0, 0) is an attractor (or a repeller)
from all points (x0, y0). A threaded trajectory from (x0, y0) does not cross
separatrix S = span(v⃗ 1), which is the union of (0, 0) and two trajectories.

Node with Unequal Eigenvalues

Matrix A has two eigenpairs (λ1, v⃗1), (λ2, v⃗2), because λ1 ̸= λ2. Define separatrix
S = span(v⃗ 1) ∪ span(v⃗ 2), which is a union of two lines through the origin
separating the plane into four regions. Equilibrium (0, 0) is an attractor (or a
repeller) from all (x0, y0), the trajectory not crossing separatrix S.

Proper Node and Improper Node Classifications

The classifications proper and improper organize the possible node phase por-
traits. This terminology may appear in dynamical system literature.

Proper Node: The equilibrium is an attractor (or repeller) from all
(x0, y0)s. Phase portrait: star node. Separatrix not used.

Improper Node: The equilibrium is an attractor (or repeller) from
all (x0, y0). Separatrix: S = span(v⃗ 1) for one eigenpair (λ1, v⃗ 1)
and S = span(v⃗ 1)∪span(v⃗ 2) for two eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2).
Trajectories do not cross S. Phase portraits: degenerate node and
node with unequal eigenvalues.

How to sort out the terminology? The rule is: proper = star. Every non-star
node is improper. It may help to associate the terminology with phase portrait
plots in Figures 17 and 18 on page 772.

Examples and Methods

Example 10.1 (Spiral)
Show the classification details for the spirals represented by the matrices(

5 2
−2 5

)
,

(
−1 3
−3 −1

)
.

Solution: Matrix

(
5 2
−2 5

)
has characteristic equation (λ− 5)2+4 = 0. Then λ = 5± 2i

and the Euler atoms are e5t cos(2t), e5t sin(2t). The atoms have sines and cosines, which
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limits the classification to a center or a spiral. The presence of the exponential factor
e5t implies it is not a center, therefore it is a spiral. Because the atoms limit to zero at
t = −∞, then (0, 0) is a repeller. Classification: unstable spiral.

Matrix

(
−1 3
−3 −1

)
has characteristic equation (λ+1)2+9 = 0. Then λ = −1±3i and the

Euler atoms are e−t cos(3t), e−t sin(3t). The atoms have sines and cosines, which implies
rotation, either a center or a spiral. The presence of the exponential factor e−t implies
it is not a center, therefore it is a spiral. Because the atoms limit to zero at t =∞, then
(0, 0) is an attractor. Classification: stable spiral.

Example 10.2 (Center)
Show the classification details for matrix

(
0 2
−2 0

)
, which represents a center.

Solution: The characteristic equation λ2+4 = 0 has complex roots λ = ±2i. The Euler
atoms are cos(2t), sin(2t), therefore a rotating figure is expected. Because of pure sines
and cosines and no exponentials, the initial classification of spiral or center reduces to a
center. Always a center is stable. Classification: stable center.

Example 10.3 (Saddle)
Show the classification details for the saddles represented by the matrices(

5 4
10 1

)
,

(
−5 4
2 1

)
Solution: We’ll use the theorem |A − λI| = λ2 + trace(A)(−λ) + |A| to find the
characteristic equation. Symbol trace(A) is the sum of the diagonal elements of A and
symbol |A| is the determinant of A, evaluated by Sarrus’s rule.

The characteristic equations are

λ2 − 6λ− 35 = 0, λ2 + 4λ− 13 = 0.

The roots are 3 ± 2
√
11 (9.6,−3.6) and −2 ±

√
17 (2.1,−6.1), respectively. Therefore,

the roots a, b are real with a > 0 and b < 0. Euler atoms are eat, ebt. The absence
of sines and cosines implies the equilibrium (0, 0) is non-rotating, either a saddle or a
node. Because one atom limits to ∞ and the other to zero, at t = ±∞, then (0, 0) is a
saddle. A saddle is always unstable. Classifications: (0, 0) is an unstable saddle for both
matrices.

Saddles have a separatrix S = span(v⃗ 1) ∪ span(v⃗ 2) that divides the plane into four
regions. The analysis follows the node case, v⃗ 1, v⃗ 2 being the eigenvectors. Calcu-
lus uses the terminology asymptotes to describe S and the limit of a point (x, y)
on a saddle graphic as x2 + y2 → ∞. For instance, the second matrix has separa-

trix S = span

((
0.56
1

))
∪ span

((
−3.56

1

))
, the column vectors defining the calculus

asymptotes.

Example 10.4 (Node Sub-Classification: Equal Eigenvalues)

Show the node classification details for the matrices

(
5 0
0 5

)
,

(
5 1
0 5

)
.
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Solution: A 2× 2 matrix is called diagonalizable provided it has 2 eigenpairs. Then(
5 0
0 5

)
is diagonalizable whereas

(
5 1
0 5

)
is not diagonalizable.

The eigenvalues of both matrices are 5, 5. Euler atoms are the same for both matrices:
e5t, te5t. The absence of sines and cosines limits the classification to saddle or node.
Because these atoms limit to zero at t = −∞, then (0, 0) is a node. For both, (0, 0) is a
repeller.

Classifications:

(
5 0
0 5

)
is an unstable proper node (star node) and

(
5 1
0 5

)
is an un-

stable improper node (degenerate node). See page 773. The star node does not use a
separatrix as a graphing tool. A separatrix S for the degenerate node is the line through

(0, 0) with direction v⃗ 1 =

(
1
0

)
, making for two regions separated by S: the upper

half-plane and the lower half-plane. Expect orbits to be tangent to S at t = −∞.

Example 10.5 (Node Sub-Classification: Unequal Eigenvalues)

Show the node classification details for the matrices

(
−5 0
0 −7

)
,

(
5 0
0 7

)
.

Solution: Both matrices are diagonal. Each has two independent eigenvectors v⃗ 1, v⃗ 2,
the columns of the identity matrix. Eigenvalues are the diagonal elements.

Matrix

(
−5 0
0 −7

)
has unequal eigenvalues −5,−7 with Euler atoms e−5t, e−7t. Absence

of sines and cosines limits the classification to saddle or node. The atoms have limit zero
at t =∞, which eliminates the saddle classification and classifies (0, 0) as an attractor, a
stable improper node. Orbits are tangent at t =∞ to ±v⃗1, eigenvector for λ1 = −5. A
separatrix S constructed from eigenvectors v⃗ 1, v⃗ 2 has four regions: the usual 4 quadrants
in the plane.

Matrix

(
5 0
0 7

)
has unequal eigenvalues 5, 7 with Euler atoms e5t, e7t. Absence of sines

and cosines limits the classification to saddle or node. The atoms have limit zero at
t = −∞, which eliminates the saddle classification. Therefore, (0, 0) is a repeller, an
unstable improper node. Orbits are tangent to eigenvector ±v⃗1 at t = −∞. A separatrix
S is identical to the separatrix for the first matrix, because of identical eigenvectors. ■

Computer Phase Portraits. In computer node plots for unequal eigenvalues, an
eigenvector direction can be detected from orbit limits at t = ±∞. Attractors will
have the eigenvector direction for eigenvalue λ with |λ| smallest. Repellers will have the
eigenvector direction for eigenvalue λ with |λ| largest.
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Exercises 10.2 �

Planar Constant Linear Systems

1. (Picard’s Theorem) Explain why pla-
nar solutions don’t cross, by appeal to
Picard’s existence-uniqueness theorem
for d

dt u⃗=Au⃗.

2. (Equilibria) System du⃗
dt = Au⃗ always

has solution u⃗(t) = 0⃗, so there is always
one equilibrium point. Give an exam-
ple of a matrix A for which there are
infinitely many equilibria.

Putzer’s Formula

3. (Cayley-Hamilton) Define matrices

I⃗ =

(
1 0
0 1

)
, 0⃗ =

(
0 0
0 0

)
. Given matrix

A =

(
a b
c d

)
, expand left and right sides

to verify the Cayley-Hamilton iden-
tity
A2−(a+ d)A+ (ad−bc)⃗I = 0⃗ .

4. (Complex Roots) Verify the Putzer so-
lution u⃗ = Φ(t)u⃗(0) of u⃗′ = Au⃗ for com-
plex roots λ1 = λ2 = a+bi, b > 0, where
Φ(t) is

eat
(
cos(bt) I + (A− aI)

sin(bt)

b

)
.

5. (Distinct Eigenvalues) Solve

du⃗

dt
=

(
−1 1
0 2

)
u⃗.

6. (Real Equal Eigenvalues) Solve

du⃗

dt
=

(
6 −4
4 −2

)
u⃗.

7. (Complex Eigenvalues) Solve

du⃗

dt
=

(
2 3
−3 2

)
u⃗.

8. (Purely Complex Eigenvalues) Solve

du⃗

dt
=

(
0 3
−3 0

)
u⃗.

Continuity and Redundancy

9. (Real Equal Eigenvalues) Show that
limiting λ2 → λ1 in the Putzer formula
for distinct eigenvalues gives Putzer’s
formula for real equal eigenvalues.

10. (Complex Eigenvalues) Assume λ1 =
λ2 = a + ib with b > 0. Then Putzer’s
first formula holds. Show the third for-
mula details for Φ(t):

eat
(
cos(bt) I + (A− aI)

sin(bt)

b

)
.

Illustrations

11. (Distinct Eigenvalues) Show the de-
tails for the solution of

du⃗

dt
=

(
−1 3
−6 8

)
u⃗.

12. (Complex Eigenvalues) Show the de-
tails for the solution of

du⃗

dt
=

(
2 5
−5 2

)
u⃗.

Isolated Equilibria

13. (Determinant Expansion) Verify that
|A− λI| equals

λ2 − (λ1 + λ2)λ+ λ1λ2.

14. (Infinitely Many Equilibria) Explain
why Au⃗ = 0⃗ has infinitely many solu-
tions when det(A) = 0.

Classification of Equilibria

15. (Rotating Figures) When sines and
cosines appear in the Euler atoms, the
phase portrait at (0, 0) rotates around
the origin. Explain precisely why this
is true.

16. (Non-Rotating Figures) When sines
and cosines do not appear in the Euler
atoms, the phase portrait at (0, 0) has
no rotation. Give a precise explanation.
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Attractor and Repeller

17. (Classification) Which of spiral, cen-
ter, saddle, node can be an attractor or
a repeller?

18. (Attractor) Prove that (0, 0) is an at-
tractor if and only if the Euler atoms
have limit zero at t =∞.

19. (Repeller) Prove that (0, 0) is a re-
peller if and only if the Euler atoms
have limit zero at t = −∞.

20. (Center) A center is neither an attrac-
tor nor a repeller. Explain, using Euler
atoms.

Phase Portrait Linear
Show the classification details for spi-
ral, center, saddle, proper node, improper
node. Include for saddle and node a draw-
ing which shows eigenvector directions.
Notation: ′ = d

dt .

21. (Spiral)

x′ = 2x+ 3y,
y′ = −3x+ 2y.

22. (Center)

x′ = 3y,
y′ = −3x.

23. (Saddle)

x′ = 3x,
y′ = −5y.

24. (Proper Node)

x′ = 2x,
y′ = 2y.

25. (Improper Node: Degenerate)

x′ = 2x+ y,
y′ = 2y.

26. (Improper Node: λ1 ̸= λ2)

x′ = 2x+ y,
y′ = 3y.
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10.3 Planar Almost Linear Systems

A nonlinear planar autonomous system d
dt u⃗(t) = F⃗ (u⃗(t)) is called almost linear

at equilibrium point u⃗ = u⃗0 if

F⃗ (u⃗) = A(u⃗− u⃗0) + G⃗(u⃗),

lim
∥u⃗−u⃗0∥→0

∥G⃗(u⃗)∥
∥u⃗− u⃗0∥

= 0.

The function G⃗ has the same smoothness as F⃗ . We investigate the possibility
that a local phase portrait at u⃗ = u⃗0 for the nonlinear system d

dt u⃗(t) = F⃗ (u⃗(t))
is graphically identical to the one for the linear system v⃗′(t) = Av⃗(t) at v⃗ = 0.

The results will apply to all isolated equilibria of d
dt u⃗(t) = F⃗ (u⃗(t)). This is

accomplished by expanding F in a Taylor series about each equilibrium point,
which implies that the ideas are applicable to different choices of A and G,
depending upon which equilibrium point u⃗0 was considered.

Define the Jacobian matrix of F⃗ =

(
f
g

)
at equilibrium point u⃗0 by the formula

J =

(
fx fy
gx gy

)
.

Taylor’s theorem for functions of two variables says that

F⃗ (u⃗) = J(u⃗− u⃗0) + G⃗(u⃗)

where G⃗(u⃗)/∥u⃗ − u⃗0∥ → 0 as ∥u⃗ − u⃗0∥ → 0. Therefore, for F⃗ continuously
differentiable, we may always take A = J to obtain from the almost linear system
d
dt u⃗(t) = F⃗ (u⃗(t)) its linearization d

dt v⃗(t) = Av⃗(t).

Phase Portrait of an Almost Linear System

For planar almost linear systems d
dt u⃗(t) = F⃗ (u⃗(t)), phase portraits have been

studied extensively, by Poincaré-Bendixson and a long list of researchers. It
is known that only a finite number of local phase portraits are possible near
each isolated equilibrium point of the nonlinear system, the library of figures
being identical to those possibilities for a linear system v⃗′(t) = Av⃗(t). A precise
statement without proof appears below, followed by a summary that is easier to
remember.

Theorem 10.4 (Paste Theorem: Almost Linear Phase Portrait)
Let the planar almost linear system d

dt u⃗(t) = F⃗ (u⃗(t)) be given with F⃗ (u⃗) = A(u⃗−
u⃗0) + G⃗(u⃗) near the isolated equilibrium point u⃗0 (an isolated root of F⃗ (u⃗0) = 0⃗
with |A| ≠ 0). Let λ1, λ2 be the roots of det(A− λI) = 0. Then:
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1. If λ1 = λ2, then the equilibrium u⃗0 of the nonlinear system d
dt u⃗(t) = F⃗ (u⃗(t))

is either a node or a spiral. The equilibrium u⃗0 is an asymptotically stable
attractor if λ1 < 0 and it is a repeller if λ1 > 0. In short, the nonlinear system
inherits stability from the linear system.

2. If λ1 = λ2 = ib with b > 0, then the equilibrium u⃗0 of the nonlinear system
d
dt u⃗(t) = F⃗ (u⃗(t)) is either a center or a spiral. The stability of the equilibrium
u⃗0 cannot be predicted from properties of A.

3. In all other cases, the isolated equilibrium u⃗0 has graphically the same local
phase portrait as the associated linear system d

dt v⃗(t) = Av⃗(t) at v⃗ = 0⃗. In
particular, local phase portraits of a saddle, spiral or node can be graphed from
the linear system. The nonlinear system inherits locally the linearized system
properties of stability and instability.

Paste Theorem Summary: The linearized phase portrait locally pastes
onto the nonlinear phase portrait with two exceptions:
(1) Nodes from equal roots cause pasting of either a node or spiral.
(2) Centers (complex roots ±ib) cause pasting a center or spiral.
Local stability and instability are inherited except for a center.

Classification of Almost Linear Equilibria

A system d
dt u⃗(t) = A (u⃗(t)− u⃗0) + G⃗(u⃗(t)) has a local phase portrait determined

by the linear system v⃗′(t) = Av⃗(t), except in the case when the roots λ1, λ2 of
the characteristic equation det(A − λI) = 0 are equal or purely imaginary (see
Theorem 10.4). To summarize:

Table 3. Equilibria classification for almost linear systems

Eigenvalues of A Nonlinear Classification

λ1 < 0 < λ2 Unstable saddle
λ1 < λ2 < 0 Stable improper node
λ1 > λ2 > 0 Unstable improper node
λ1 = λ2 < 0 Stable node or spiral
λ1 = λ2 > 0 Unstable node or spiral

λ1 = λ2 = a+ ib, a < 0, b > 0 Stable spiral

λ1 = λ2 = a+ ib, a > 0, b > 0 Unstable spiral

λ1 = λ2 = ib, b > 0 Stable or unstable, center or spiral

Almost Linear Equilibria Geometry

Applied literature may refer to an equilibrium point u⃗0 of a nonlinear system
d
dt u⃗(t) = F⃗ (u⃗(t)) as a spiral, center, saddle or node. The geometry of these
classifications is explained below.
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Spiral. To describe a nonlinear spiral, we require that an orbit starting on a
given ray emanating from the equilibrium point must intersect that ray in
infinitely many distinct points on (−∞,∞).

Intuition. Basic understanding of a nonlinear spiral is obtained from a
linear example, e.g.,

d

dt
u⃗(t) =

(
−1 2
−2 −1

)
u⃗(t).

An orbit has component solutions

x(t) = e−t(A cos 2t+B sin 2t), y(t) = e−t(−A sin 2t+B cos 2t)

which oscillate infinity often on (−∞,∞), rotating around equilibrium
point (0, 0) with amplitude Ce−t, for some constant C > 0.

Center. Local orbits are periodic solutions. Each local orbit is a closed curve
which forms a planar region with boundary, having the equilibrium point
interior. As the periodic orbits shrink, the planar region also shrinks, lim-
iting as a planar set to the equilibrium point. Drawings often portray the
periodic orbit as a convex figure, but this is not correct, in general, because
the periodic orbit can have any shape. In particular, the linearized system
may have phase portrait consisting of concentric circles, but the nonlinear
phase portrait has no such exact geometric structure.

Saddle. The term implies that locally the phase portrait looks like a linear sad-
dle. In nonlinear phase portraits, the straight lines to which orbits are
asymptotic appear to be curves instead. These curves are called separa-
trices, which are generally unions of certain orbits and equilibria.

Node. Each orbit starting near the equilibrium is expected to limit to the equi-
librium at either t = ∞ (stable attractor) or t = −∞ (unstable repeller),
in a fashion asymptotic to a direction v⃗. The terminology applies when
the linearized system is a proper node (a.k.a. star node), in which case
there is an orbit asymptotic to v⃗ for every direction v⃗. If there is only one
direction v⃗ possible, or all orbits are asymptotic to just one separatrix, then
the equilibrium is classified as an improper node. The term degenerate
node applies to a subclass of improper nodes – see Example 10.4 page 776.

Pasting Figures to make a Nonlinear Phase Portrait

The plan provided by the theorem is to paste a library source figure, one of spiral,
center, saddle or node, overlaying (0, 0) in the source figure atop equilibrium point
u⃗ = u⃗0 in the nonlinear phase portrait. Some observations follow, about what
works and what fails.

1. The local paste is valid to graphical resolution near u⃗ = u⃗0, and invalid far
away from the equilibrium point.
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2. The pasted figure can mutate into a spiral, if the source figure is either a
center, or else a node with λ1 = λ2. Otherwise, saddle, spiral and node
locally paste into saddle, spiral, node.

3. Stability of the source figure is inherited by the nonlinear portrait, except
when the source is a center. In this one exceptional case, no stability
conclusion can be drawn. However, an attractor or repeller source figure
always pastes into an attractor or a repeller.

Examples and Methods

Example 10.6 (Compute Isolated Equilibria)
Find all equilibria for the nonlinear system

x′(t) = x(t) + y(t), y′(t) = 1− x2(t).

Solution: Equilibria are constant solutions, obtained formally by setting x′ = y′ = 0 in
the two differential equations x′ = x+ y, y′ = 1− x2. Then solve for constants x, y. The
details:

Set x′ = 0 0 = x+ y

Set y′ = 0 0 = 1− x2

Solve for x, y x = ±1, y = −x.
Equilibria (1,−1) and (−1, 1)

Example 10.7 (Linearization at Equilibria)
Find the two linearizations at equilibria (1,−1), (−1, 1) for the nonlinear system

x′(t) = x(t) + y(t), y′(t) = 1− x2(t).

Solution: The system of differential equations is written with function notation in the
form x′ = f(x, y), y′ = g(x, y). Then

f(x, y) = x+ y, g(x, y) = 1− x2.

The Jacobian matrix

J(x, y) =

(
fx fy
gx gy

)
is computed with symbols x, y, f, g as follows.

Partial derivative fx(x, y): fx = ∂x(x+ y) = 1 + 0 = 1

Partial derivative gx(x, y): gx = ∂x(1− x2) = 0− 2x = −2x
Partial derivative fy(x, y): fy = ∂y(x+ y) = 0 + 1 = 1

Partial derivative gy(x, y): gy = ∂y(1− x2) = 0− 0 = 0
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Then

J(x, y) =

(
fx fy
gx gy

)
=

(
1 1

−2x 0

)
.

The symbols x, y are used for the two substitutions: x = 1, y = −1 and x = −1, y = 1.

J(1,−1) =
(

1 1
−2 0

)
, J(−1, 1) =

(
1 1
2 0

)
.

The two linearized problems are

d

dt
u⃗ =

(
1 1
−2 0

)
u⃗,

d

dt
u⃗ =

(
1 1
2 0

)
u⃗.

Example 10.8 (Classification of Linearized Problems)
Classify the two linear problems

d

dt
u⃗ =

(
1 1
−2 0

)
u⃗,

d

dt
u⃗ =

(
1 1
2 0

)
u⃗.

Solution:

The answers:

(
1 1
−2 0

)
is an unstable spiral;

(
1 1
2 0

)
is an unstable saddle.

The two characteristic equations are λ2 − λ + 2 = 0 and λ2 + λ + 2 = 0 with roots,

respectively, 1
2 ± i

√
7
2 and 2,−1. According to the classification theory, page 769, the

equilibrium (0, 0) is respectively an unstable spiral or an unstable saddle.

Example 10.9 (Pasting Linear Portraits onto Nonlinear Portraits)
Classify equilibria (1,−1), (−1, 1) for the nonlinear system

x′(t) = x(t) + y(t), y′(t) = 1− x2(t),

as nonlinear spiral, center, saddle or node. Paste the linear portraits onto the non-
linear direction field portrait for Jacobians J(−1, 1), J(1,−1), if possible.

Solution: Classifications: (−1, 1) is a nonlinear unstable saddle; (1,−1) is a nonlinear
unstable spiral.

Previous examples show that for the linearized problems, (−1, 1) is an unstable saddle
and (−1, 1) is an unstable spiral. Theorem 10.4 applies to conclude that the two linear
phase portraits directly transfer onto the nonlinear phase portrait. This means that
(0, 0) in each source figure can be pasted atop the corresponding equilibrium point in
the nonlinear system, the pasted figure valid locally.

Computer phase portraits show the two pasted library figures with automatic fine tuning.
Especially, the saddle will be tuned, because a library source figure usually has asymp-
totes parallel to the coordinate axes, whereas the computer graphic will show tuned
asymptotes in eigenvector directions.
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x

y

Figure 21. Pasting Source Figures onto a Nonlinear Phase portrait.
Saddle at (−1, 1), spiral at (1,−1). The saddle source uses a linear phase portrait for
d
dt v⃗ = J(−1, 1)v⃗. The standard saddle source can be rotated to match the nonlinear
direction field, with a similar result.

Example 10.10 (Trout System)
Consider a trout model for two species x, y:

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

The equilibria are (0, 0), (90, 0), (0, 60), (80, 20). Find the linearized problem for each
equilibrium, then make a tuned computer plot.

Solution:
System Form. Let f(x, y) = x(−2x− y + 180), g(x, y) = y(−x− 2y + 120) to convert
to system form x′ = f(x, y), y′ = g(x, y).

Jacobian Matrix. Use symbols f, g, x, y to compute the Jacobian J(x, y) =

(
fx fy
gx gy

)
.

fx = ∂
∂x

(
−2x2 − xy + 180x

)
= −4x− y − 180

fy = ∂
∂y

(
−2x2 − xy + 180x

)
= −x

gx = ∂
∂x

(
−xy − 2y2 + 120y

)
= −y

gy = ∂
∂y

(
−xy − 2y2 + 120y

)
= −x− 4y + 120

J(x, y) =

(
fx fy
gx gy

)
=

(
−4x− y − 180 −x

−y −x− 4y + 120

)
Equilibria. To find the equilibria, formally set x′ = y′ = 0. Details:

x′ = 0 = f(x, y) becomes x(−2x− y + 180) = 0

y′ = 0 = g(x, y) becomes y(−x− 2y + 120) = 0

Set the factors to zero, in four possible ways, to obtain the solutions

x = y = 0, x = 0, y = 60, x = 90, y = 0, x = 80, y = 20.
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Linearized Differential Equations. The linear problems d
dt u⃗ = J(x0, y0)u⃗ at equilib-

ria (0, 0), (0, 60), (90, 0), (80, 20) are created from the four Jacobian matrices

J(0, 0) =

(
−180 0
0 120

)
, J(0, 60) =

(
120 0
−60 −120

)
,

J(90, 0) =

(
−180 −90
0 30

)
, J(80, 20) =

(
−160 −80
−20 −40

)
.

Eigenvalues. Answers for the four matrices are respectively:

120, 180; 120,−120; 30,−180; −27.89,−172.11

Linear Classifications. Because there are no complex eigenvalues, then the possible
linear phase portraits are either saddle or node. Checking limits of Euler atoms at
t = ∞ reveals the classifications unstable node, saddle, saddle, stable node. No equal
eigenvalues implies both nodes are improper.

Paste Theorem. All linear source figures paste directly onto the nonlinear phase por-
trait with stability properties inherited. See Theorem 10.4.

Eigenvectors help understanding of the phase portrait. In all four figures, asymptote di-
rections are along an eigenvector. For instance, at (80, 20) the two eigenvector directions

are v⃗1 =

(
−0.6

1

)
, v⃗2 =

(
6.6
1

)
.

y

x

Figure 22. Trout System Phase portrait.
Saddles at (0, 60) and (90, 0). Improper nodes with unequal eigenvalues at (0, 0) and
(80, 20). A separatrix can be visualized, which connects (90, 0) to (0, 0) to (60, 0) along
the coordinate axes, and then to (80, 20).

Example 10.11 (Rabbit-Fox System)
Consider a predator-prey model for rabbits x(t) and foxes y(t):

x′ =
1

200
x(40− y),

y′ =
1

100
y(x− 50).

The equilibria are (0, 0), (50, 40). Find the linearized problem for each equilibrium,
then make a tuned computer plot.
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Solution:
System Form. Let f(x, y) = 1

200x(40− y), g(x, y) = 1
100y(x− 50) to convert to system

form x′ = f(x, y), y′ = g(x, y).

Jacobian Matrix. Symbols f, g, x, y are used in the Jacobian J(x, y) =

(
fx fy
gx gy

)
.

fx = ∂
∂x (x/5− xy/200) = 1/5− y/200

fy = ∂
∂y (x/5− xy/200) = −x/200

gx = ∂
∂x (−y/2 + xy/100) = y/100

gy = ∂
∂y (−y/2 + xy/100) = −x− 4y + 120

J(x, y) =

(
fx fy
gx gy

)
=

(
−4x− y − 180 −x

−y −x− 4y + 120

)
Equilibria. To find the equilibria (0, 0), (50, 40), formally set x′ = y′ = 0. Details:

0 = f(x, y) becomes 1
200x(40− y) = 0

0 = g(x, y) becomes 1
100y(x− 50) = 0

The solutions are x = y = 0 or else x = 50, y = 40.

Linearized Differential Equations. The linear problems d
dt u⃗ = J(x0, y0)u⃗ at equilib-

ria (0, 0), (50, 40) are created from the two Jacobian matrices

J(0, 0) =

(
1
5 0
0 − 1

2

)
, J(50, 40) =

(
0 − 1

4
2
5 0

)
.

Eigenvalues. The answers are 1
5 ,−

1
2 and ±i/

√
10, respectively.

Linear Classifications. Complex eigenvalues imply linear phase portraits of either
center or node. Checking Euler atoms reveals the classification center at (50, 40). Real
unequal eigenvalues at (0, 0) implies a saddle or node. Checking limits of the Euler atoms
at t =∞ implies (0, 0) is a saddle. Both linear source figures are stable.

Paste Theorem. The linear saddle source figure for (0, 0) pastes directly onto the
nonlinear phase portrait at (0, 0) with stability properties inherited. The linear center
source figure for (50, 40) pastes into a center or a spiral at (50, 40). The paste stability
or instability is not decided. See Theorem 10.4.

The easiest path to deciding the nonlinear portrait at (50, 40) is a computer phase por-
trait, which shows a center structure.

Eigenvectors help understanding of the phase portrait. At (0, 0) the two eigenvector

directions are v⃗1 =

(
1
0

)
, v⃗2 =

(
0
1

)
.
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y

x

Figure 23. Rabbit-Fox System Phase portrait.
Eigenvector directions for the saddle at (0, 0) are parallel to the coordinate axes. The
linear center from J(50, 40) happens to transfer to a nonlinear center at (50, 40).

Exercises 10.3 �

Almost Linear Systems. Find all equi-
libria (x0, y0) of the given nonlinear sys-
tem. Then compute the Jacobian matrix
A = J(x0, y0) for each equilibria.

1. (Spiral and Saddle)

d
dtx = x+ 2y,
d
dty = 1− x2.

2. (Two Improper Nodes, Spiral)

d
dtx = x− 3y + 2xy,
d
dty = 4x− 6y − xy − x2.

3. (Proper Node, Saddle)

d
dtx = 3x− 2y − x2 − y2,
d
dty = 2x− y.

4. (Center and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = 2x− y − xy.

5. (Proper Node and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = y − xy.

6. (Degenerate Node, Spiral and Two

Saddles)

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.

7. (Improper Node, Saddle)

d
dtx = x− y + x3,
d
dty = 2y + 3xy.

8. (Proper Node and a Saddle)

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

Phase Portrait Almost Linear. Linear li-
brary phase portraits can be locally pasted
atop the equilibria of an almost linear sys-
tem, with limitations. Apply the theory
for the following examples. Complete the
phase diagram by computer, thereby re-
solving the possible mutation of a center
or node into a spiral. Label eigenvector di-
rections where it makes sense.

9. (Center and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = 2x− y − xy.

10. (Degenerate Node, Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = y − xy.
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11. (Degenerate Node, Spiral, Two Sad-

dles)

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.

12. (Improper Node, Saddle)

d
dtx = x− y + x3,
d
dty = 2y + 3xy.

13. (Proper Node, Saddle)

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

14. (Two Improper Nodes and Two Sad-

dles)

d
dtx = (120− 4x− 2y)x,
d
dty = (60− x− 2y)y

Classification of Almost Linear Equilib-
ria. With computer assist, find and classify
the nonlinear equilibria.

15. (Co-existing Species)

x′(t) = x(t)(24− 2x(t)− y(t)),
y′(t) = y(t)(30− 2y(t)− x(t)).

16. (Doomsday-Extinction)

x′(t) = x(t)(x(t)− y(t)− 4),
y′(t) = y(t)(x(t) + y(t)− 8).

Almost Linear Geometry. A separatrix
S is a union of curves and equilibria. Ide-
ally, orbits limit to S. With computer as-
sist, make a plot of threaded curves which
identify one or more separatrices near the
equilibrium.

17. (Saddle (−1, 1))

d
dtx = x+ y,
d
dty = 1− x2.

18. (Saddle (−1/5,−2/5))

d
dtx = 3x− 2y − x2 − y2,
d
dty = 2x− y.

19. (Saddle (−2/3, 3
√

4/3))

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

20. (Degenerate Improper Node (0, 0))

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.

Rayleigh and van der Pol. Each exam-
ple below has a unique periodic orbit sur-
rounding an equilibrium point that is the
limit at t = ∞ of any other orbit. Discuss
the spiral repeller at (0, 0) in the attached
figure, from the linearized problem at (0, 0)
and Paste Theorem 10.4. Create a phase
portrait with computer assist for the non-
linear problem.

21. (Lord Rayleigh 1877, Clarinet Reed

Model)

d
dtx = y,

d
dty = −x+ y − y3.

Figure 24. Clarinet Reed.

22. (van der Pol 1924, Radio Oscillator

Circuit Model)

d
dtx = y,

d
dty = −x+ (1− x2)y.

Figure 25. Oscillator Circuit.
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10.4 Biological Models

Studied here are predator-prey models and competition models for two
populations. Assumed as background from Malthus’ Law (Chapter 1 Section 1)
are the one-dimensional Malthusian model d

dtP = kP and the one-dimensional

Verhulst model d
dtP = (a− bP )P .

Predator-Prey Models

One species called the Predator feeds on the other species called the Prey. The
prey feeds on some constantly available food supply, e.g., rabbits eat plants and
foxes eat rabbits.

Credited with the classical predator-prey model is the Italian mathematician
Vito Volterra (1860-1940), who worked on cyclic variations in shark and prey-
fish populations in the Adriatic sea. The following biological assumptions apply
to model a predator-prey system.

Malthusian Growth The prey population grows according to the growth equa-
tion x′(t) = a x(t), a > 0, in the absence of predators.

Malthusian Decay The predator population decays according to the decay
equation y′(t) = −b y(t), b > 0, in the absence of prey.

Chance Encounters The prey decrease population at a rate −pxy, p > 0, due
to chance encounters of predators y with prey x. Preda-
tors increase population due to these chance interactions
at a rate qxy, q > 0.

The interaction terms qxy and −pxy are justified by arguing that the frequency
of chance encounters is proportional to the product xy. Biologists explain the
proportionality by saying that doubling either population should double the fre-
quency of chance encounters. Adding the Malthusian rates and the chance en-
counter rates gives the Volterra predator-prey system2

x′(t) = (a− p y(t))x(t),
y′(t) = (q x(t)− b)y(t).

(1)

The differential equations are displayed in this form in order to emphasize that
each of x(t) and y(t) satisfy a scalar first order differential equation u′(t) =
r(t)u(t) in which the rate function r(t) depends on time. For initial population
sizes near zero, the two differential equations behave very much like the Malthu-
sian growth model u′(t) = a u(t) and the Malthusian decay model u′(t) = −b u(t).
This basic growth/decay property allows us to identify the predator variable y, or
the prey variable x, regardless of the order in which the differential equations are

2The system is written with prey x and predator y. Alphabetical order predator-prey
would suggest the variables to be reversed, y and then x. History is otherwise.
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written. As viewed from Malthus’ law u′ = ru, the prey population has growth
rate r = a− py which gets smaller as the number y of predators grows, resulting
in fewer prey. Likewise, the predator population has decay rate r = −b + qx,
which gets larger as the number x of prey grows, causing increased predation.
These are the basic ideas of Verhulst, applied to the individual populations x and
y.

System Variables

The system of two differential equations (1) can be written as a planar vector
autonomous system

d

dt
u⃗ = F⃗ (u⃗)

where vector functions F⃗ and u⃗ are defined by

F⃗ (u⃗) =

(
(a− py)x
(qx− b)y)

)
, u⃗ =

(
x(t)
y(t)

)
.(2)

The vector function F⃗ is everywhere defined and continuously differentiable. The
Picard–Lindelöf theorem provides existence-uniqueness.

A planar vector autonomous system d
dt u⃗ = F⃗ (u⃗) can be written in standard scalar

system form
x′ = f(x, y), y′ = g(x, y)

by providing definitions for f(x, y) and g(x, y). For predator-prey system (1),
the definitions are

f(x, y) = (a− p y)x, g(x, y) = (q x− b)y.

Equilibria

The equilibrium points u⃗ =

(
x0
y0

)
satisfy F⃗ (u⃗) = 0⃗. For predator-prey system

(1), the equilibria are (0, 0) and (b/q, a/p), found by solving for x0, y0 in the
equations (a− p y0)x0 = 0, (q x0 − b)y0 = 0.

Linearized Predator-Prey System

The linearized system at equilibrium (x0, y0) is the vector-matrix system d
dt v⃗(t) =

Av⃗(t), where A is the Jacobian matrix J(x, y) evaluated at point x = x0, y = y0,
briefly A = J(x0, y0). In terms of system variables3,

J(x0, y0) =

(
fx(x0, y0) fy(x0, y0)
gx(x0, y0) gy(x0, y0)

)
.

3Notation fx means ∂f/∂x, the calculus x-derivative with all other variables held constant.
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For the predator-prey system, we start by computing

fx =
∂

∂x
(a x− p xy) = a− p y, fy =

∂

∂y
(a x− p xy) = 0− p x,

gx =
∂

∂x
(q xy − b y) = q y − 0, gy =

∂

∂y
(q xy − b y) = q x− b.

The Jacobian matrix is given explicitly by

J(x, y) =

(
fx fy
gx gy

)
=

(
a− p y −p x
q y q x− b

)
.(3)

The matrix J is evaluated at equilibrium points (0, 0), (b/q, a/p) to obtain the
2× 2 matrices for the linearized systems:

J(0, 0) =

(
a 0
0 −b

)
, J(b/q, a/p) =

(
0 −bp/q

aq/p 0

)
.

The linearized systems v⃗′(t) = Av⃗(t) are:

Equilibrium (0, 0) d
dt u⃗(t) =

(
a 0
0 −b

)
u⃗(t)

Equilibrium (b/q, a/p) d
dt u⃗(t) =

(
0 −bp/q

aq/p 0

)
u⃗(t)

Saddle J(0, 0). Matrix

(
a 0
0 −b

)
has unequal real eigenvalues a,−b and associated

Euler atoms eat, e−bt. No rotation implies a saddle or node, but limits at infinity
imply a linear saddle. The Paste Theorem implies system d

dt u⃗(t) = F⃗ (u⃗(t))
has a saddle at equilibrium (0, 0).

Center J(b/q, a/p). Matrix

(
0 −bp/q

aq/p 0

)
has eigenvalues λ = ±i

√
ab and as-

sociated Euler atoms cos(t
√
ab), cos(t

√
ab). Pure rotation (no exponential factor)

implies a linear center. The Paste Theorem implies system d
dt u⃗(t) = F⃗ (u⃗(t))

has either a center or a spiral at equilibrium (b/q, a/p).

Shown below in Theorem 10.5 is that the spiral case does not happen. The
proof of Lemma 10.2 is in the exercises.

Lemma 10.2 (Predator-Prey Implicit Solution)
Let (x(t), y(t)) be an orbit of the predator-prey system (1) with x(0) > 0 and
y(0) > 0. Then for some constant C,

a ln |y(t)|+ b ln |x(t)| − q x(t)− p y(t) = C.(4)

Theorem 10.5 (Spiral Case Eliminated)

Equilibrium (b/q, a/p) of predator-prey system (1) cannot be a spiral.
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Proof: Assume the equilibrium (b/q, a/p) is a spiral point and some orbit touches the
line x = b/q in points (b/q, u1), (b/q, u2) with u1 ̸= u2, u1 > a/p, u2 > a/p. Consider the
energy function E(u) = a ln |u| − p u. Due to relation (4), E(u1) = E(u2) = E0, where
E0 ≡ C + b − b ln |b/q|. By the Mean Value Theorem of calculus, dE/du = 0 at some
u between u1 and u2. This is a contradiction, because dE/du = (a − pu)/u is strictly
negative for a/p < u <∞. Therefore, equilibrium (b/q, a/p) is not a spiral. ■

Rabbits and Foxes

An instance of predator-prey theory is a Volterra population model for x rabbits
and y foxes given by the system of differential equations

x′(t) =
1

250
x(t)(40− y(t)),

y′(t) =
1

50
y(t)(x(t)− 60).

(5)

The equilibria of system (5) are (0, 0) and (60, 40). A phase portrait for system
(5) appears in Figure 26.

The linearized system at (60, 40) is

x′(t) = − 6

25
y(t),

y′(t) =
4

5
x(t).

This system has eigenvalues ±i
√

24/125. The Euler atoms are sin(t
√

24/125)
and cos(t

√
24/125), which have period 2π/

√
24/125 ≈ 14.33934302. The linear

classification is a center.

The nonlinear classification at (60, 40) is then a center, because of Theorem
10.5. Intuition dictates that the period of smaller and smaller nonlinear orbits
enclosing the equilibrium (60, 40) must approach a value that is approximately
14.3.

The fluctuations in population size x(t) are measured graphically by the maxi-
mum and minimum values of x in the phase portrait, or more simply, by graphing
t versus x(t) in a planar graphic. To illustrate, the orbit for x(0) = 60, y(0) = 100
is graphed in Figure 27, from which it is determined that the rabbit population
x(t) fluctuates between 39 and 87. Similar remarks apply to foxes y(t).
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y

x

0

40

150

11060−10

Figure 26. Rabbit
and Fox System (5).
Equilibria (0, 0) and
(60, 40) are respec-
tively a saddle and a
center. The oscillation
period is about 17 for
the largest orbit and
14.5 for the smallest
orbit.

240
39

87

t

x(t)

Figure 27. Scene Plot of x(t) Rabbits.
An initial rabbit population of 60 and fox population of 100 causes the rabbit population
x(t) to fluctuate from 39 to 87. The plot uses nonlinear equations (5) with x(0) = 60,
y(0) = 100.

Pesticides, Aphids and Ladybugs

The classical predator-prey equations apply for prey Aphid x(t) and predator
Ladybug y(t), which for simplicity are assumed to be

x′(t) = (1− y(t))x(t),
y′(t) = (x(t)− 1)y(t),

(6)

with units in millions.

Consider deployment of an indiscriminate pesticide which kills a certain percent-
age of each insect. Typically available pesticide strengths are s = 0.5, s = 0.75.
Strength s = 0 is no pesticide. We will assume hereafter that 0 ≤ s < 1. The
predator-prey equations mutate by adding terms for pesticide-caused death rates,
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resulting in the Pesticide Model

x′(t) = (1− y(t))x(t)− s x(t),
y′(t) = (x(t)− 1)y(t)− s y(t).

(7)

Explained below in Figures 28, 29 and 30 are the results in the following table.

Table 4. Effects of Pesticide on Aphids and Ladybugs

The aphids increase and the ladybugs decrease.

The insecticide had a counterproductive effect. Aphid damage to the
garden plants increased by using a pesticide.

y

1.6

0
0

s = 0

s = 0.5

0.7

3
x

Figure 28. Aphid-Ladybug Portraits s = 0, s = 0.5.
Aphid population max and min are measured by the orbit width. Ladybug
population max and min are measured by the orbit height. Both orbits use
x(0) = y(0) = 0.7. Details appear in the x and y scene plots, infra.

Pesticide model (7) is equivalent to the classical predator-prey system (1) with
replacements a = 1− s, b = 1+ s. The nonlinear phase portrait for the pesticide
model has according to predator-prey theory a saddle at (0, 0) and a center at
(1 + s, 1− s).

The scene plots in Figures 29 and 30 show that the aphids increase and the lady-
bugs decrease, for the two populations, x(t) aphids, y(t) ladybugs in pesticide
system (7), with pesticide strengths s = 0 and s = 0.5 and initial populations
x(0) = 0.7, y(0) = 0.7 (in millions).
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y

10 20
x0

1.5

2.8

s = 0

s = 0.5

0

Figure 29. Aphid
Scene x(t).
Aphids increase when
pesticide strength
s = 0.5 is applied.

y

0.7

1.5

x

s = 0

s = 0.5

0
0 10 20

Figure 30. Ladybug Scene y(t).

Ladybugs decrease when pesticide strength s = 0.5 is applied.

Competition Models

Two populations 1 and 2 feed on some constantly available food supply, e.g., two
kinds of insects feed on fallen fruit. The following biological assumptions apply
to model a two-population competition system.

Verhulst model 1 Population 1 grows or decays according to the logistic
equation x′(t) = (a− bx(t))x(t), in the absence of pop-
ulation 2.

Verhulst model 2 Population 2 grows or decays according to the logistic
equation y′(t) = (c− dy(t))y(t), in the absence of pop-
ulation 1.
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Chance encounters Population 1 decays at a rate−pxy, p > 0, due to chance
encounters with population 2. Population 2 decays at
a rate −qxy, q > 0, due to chance encounters with
population 1.

Adding the Verhulst rates and the chance encounter rates gives the Volterra
competition system

x′(t) = (a− bx(t)− py(t))x(t),
y′(t) = (c− dy(t)− qx(t))y(t).

(8)

The equations show that each population satisfies a time-varying first order dif-
ferential equation u′(t) = r(t)u(t) in which the rate function r(t) depends on
time. For initial population sizes near zero, the two differential equations essen-
tially reduce to the Malthusian growth models x′(t) = ax(t) and y′(t) = cy(t). As
viewed from Malthus’ law u′ = ru, population 1 has growth rate r = a− bx− py
which decreases if population 2 grows, resulting in a reduction of population 1.
Likewise, population 2 has growth rate r = c−dy−qx, which reduces population
2 as population 1 grows. While a, c are Malthusian growth rates, constants b,
d measure inhibition (due to lack of food or space) and constants p, q measure
competition.

Equilibria

The equilibrium points u⃗ satisfy F⃗ (u⃗) = 0⃗ where F⃗ is defined by

F⃗ (u⃗) =

(
(a− bx− py)x
(c− dy − qx)y

)
, u⃗ =

(
x
y

)
.(9)

To isolate the most important applications, the assumption will be made of ex-
actly four roots in population quadrant I. This is equivalent to the condition
bd− qp ̸= 0 plus all equilibria have nonnegative coordinates.

Three of the four equilibria are found to be (0, 0), (a/b, 0), (0, c/d). The last two
represent the carrying capacities of the Verhulst models in the absence of the
second population. The fourth equilibrium (x0, y0) is found as the unique root(
x0
y0

)
of the linear system

(
b p
q d

)(
x0
y0

)
=

(
a
c

)
,

which according to Cramer’s rule is

x0 =
ad− pc

bd− qp
, y0 =

bc− qa

bd− qp
.

797



10.4 Biological Models

Linearized Competition System

The Jacobian matrix J(x, y) is computed from the partial derivatives of system
variables f, g, which are found as follows.

f(x, y) = (a− b x− p y)x, = a x− b x2 − p xy
g(x, y) = (c− d y − q x) y = c y − d y2 − q xy

fx = ∂
∂x(a x− b x2 − p xy) = a− 2b x− p y

fy = ∂
∂y (a x− b x2 − p xy) = −p x

gx = ∂
∂x(c y − d y2 − q xy) = −q y

gy = ∂
∂y (c y − d y2 − q xy) = c− 2d y − q x

The Jacobian matrix is given explicitly by

J(x, y) =

(
fx fy
gx gy

)
=

(
a− 2bx− py −px
−qy c− 2dy − qx

)
.(10)

The matrix J is evaluated at an equilibrium point (a root of F⃗ (u⃗) = 0⃗) to obtain
a 2 × 2 matrix A for the linearized system d

dt v⃗(t) = A v⃗(t). The four linearized
systems are:

Equilibrium (0, 0)
Nodal Repeller

d
dt u⃗(t) =

(
a 0
0 c

)
u⃗(t)

Equilibrium (a/b, 0)
Saddle or Nodal Attractor

d
dt u⃗(t) =

(
−a −ap/b
0 c− qa/b

)
u⃗(t)

Equilibrium (0, c/d)
Saddle or Nodal Attractor

d
dt u⃗(t) =

(
a− cp/d 0
−qc/d −c

)
u⃗(t)

Equilibrium (x0, y0)
Saddle or Nodal Attractor

d
dt u⃗(t) =

(
−bx0 −px0
−qy0 −dy0

)
u⃗(t)

Equilibria (a/b, 0) and (0, c/d) are either both saddles or both nodal attractors,
accordingly as bd− qp > 0 or bd− qp < 0, because of the requirement that a, b,
c, d, p, q, x0, y0 be positive.

The analysis of equilibrium (x0, y0) is made by computing the eigenvalues λ of the
linearized system, from characteristic equation λ2+(bx0+dy0)λ+(bd−pq)x0y0 =
0, giving

λ =
1

2

(
−(bx0 + dy0)±

√
D
)
, where D = (bx0 − dy0)

2 + 4pqx0y0.

Because D > 0, the equilibrium is a saddle when the roots have opposite sign,
and it is a nodal attractor when both roots are negative. The saddle case is
D > (bx0+dy0)

2 or equivalently 4x0y0(pq−bd) > 0, which reduces to bd−qp < 0.
In summary:
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If bd− qp > 0, then equilibria (a/b, 0), (0, c/d), (x0, y0) are respec-
tively a saddle, saddle, nodal attractor.

If bd− qp < 0, then equilibria (a/b, 0), (0, c/d), (x0, y0) are respec-
tively a nodal attractor, nodal attractor, saddle.

Biological Meaning of bd− qp Negative or Positive

The quantities bd and qp are measures of inhibition and competition.

Survival-Extinction The inequality bd− qp < 0 means that competition qp is
large compared with inhibition bd. The equilibrium point
(x0, y0) is unstable in this case, which biologically means
that the two species cannot coexist: Survival for one
species and Extinction for the other species.

Co-existence The inequality bd − qp > 0 means that competition qp
is small compared with inhibition bd. The equilibrium
point (x0, y0) is asymptotically stable in this case, which
biologically means the two species Co-exist.

Survival of One Species

Consider populations x(t) and y(t) that satisfy the competition model

x′(t) = x(t)(24− x(t)− 2y(t)),
y′(t) = y(t)(30− y(t)− 2x(t)).

(11)

We apply the general competition theory with a = 24, b = 1, p = 2, c = 30,
d = 1, q = 2. The equilibrium points are (0, 0), (0, 30), (24, 0), (12, 6), shown in
Figure 31 as solid circles and squares. Eigenvalues are computed from Jacobian

matrix J(x, y) =

(
24− 2x− 2y −2x
−2y 30− 2y − 2x

)
evaluated at the four equilibria.

The answers:

Equilibrium (0, 0): λ = 24, 30, nodal repeller.

Equilibrium (0, 30): λ = −36,−30, nodal attractor.

Equilibrium (24, 0): λ = −24,−18, nodal attractor.

Equilibrium (12, 6): λ = 8.23,−26.23, saddle.

The Paste Theorem says that the linear portraits can be pasted atop the four
equilibria in the nonlinear phase portrait. The tuned portrait appears in Figure
31, clipped to the population quadrant x ≥ 0, y ≥ 0.
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0

30

24120

6

y

x

Figure 31. Survival
of One Species.
Portrait for system
(11). Equilibria are
(0, 0), (0, 30), (24, 0)
and (12, 6), classified
respectively as nodal
repeller, nodal attractor,
nodal attractor and
saddle. The population
with initial advantage
survives, while the other
dies out.

Co-existence

Consider populations x(t) and y(t) that satisfy the competition model

x′(t) = x(t)(24− 2x(t)− y(t)),
y′(t) = y(t)(30− 2y(t)− x(t)).

(12)

We apply the general competition theory with a = 24, b = 2, p = 1, c = 30, d = 2,
q = 1. The equilibrium points are (0, 0), (0, 15), (12, 0) and (6, 12), shown in
Figure 32 as solid circles and squares. Eigenvalues are computed from Jacobian

matrix J(x, y) =

(
24− 4x− y −x
−y 30− 4y − x

)
evaluated at the four equilibria.

The answers:

Equilibrium (0, 0): λ = 24, 30, nodal repeller.

Equilibrium (0, 30): λ = 18,−24, saddle.

Equilibrium (24, 0): λ = 9,−30, saddle.

Equilibrium (12, 6): λ = −7.61,−28.39, nodal attractor.

The linear portraits can be pasted atop the four equilibria in the nonlinear phase
portrait, according to the Paste Theorem. Figure 32 is the tuned portrait.

800



10.4 Biological Models

y

x
60 12

0

12

15

Figure 32. Coexis-
tence.
Phase portrait of sys-
tem (12). The equilibria
are (0, 0), (0, 15), (12, 0)
and (6, 12), classified
respectively as nodal
repeller, saddle, saddle,
nodal attractor. A
solution with x(0) > 0,
y(0) > 0 limits at
t = ∞ to the solid
square (6, 12). Co-
existence states are
x = 6, y = 12.

Alligators, Explosion and Extinction

Let us assume a competition-type model (8) in which the Verhulst dynamics has
explosion-extinction type. Accordingly, the signs of a, b, c, d in (8) are assumed
to be negative, but p, q are still positive. The populations x(t) and y(t) are
unsophisticated in the sense that each population in the absence of the other is
subject to only the possibilities of population explosion or population extinction.

It can be verified for this general setting, although we shall not attempt to do
so here, that the population quadrant x(0) > 0, y(0) > 0 is separated into two
regions I and II, whose common boundary is a separatrix consisting of three
equilibria and two orbits. An orbit starting in region I will have (a) x(∞) = 0,
y(∞) = ∞, or (b) x(∞) = ∞, y(∞) = 0, or (c) x(∞) = ∞, y(∞) = ∞. Orbits
starting in region II will satisfy (d) x(∞) = 0, y(∞) = 0. The biological conclu-
sion is that either population explosion or extinction occurs for each population.

Consider the instance

x′(t) = x(t)(x(t)− y(t)− 4),
y′(t) = y(t)(x(t) + y(t)− 8).

(13)

Let’s apply the general competition theory with a = 24, b = 2, p = 1, c = 30,
d = 2, q = 1. The equilibria are (0, 0), (0, 8), (4, 0) and (6, 2), shown in Figure 33
as solid circles and a square. Eigenvalues λ are computed from Jacobian matrix

J(x, y) =

(
2x− y − 4 −x
−y x+ 2y − 8

)
evaluated at the four equilibria. The answers

below and the Paste Theorem predict the tuned portrait in Figure 33.

Equilibrium (0, 0): λ = −4,−8, nodal attractor.
Equilibrium (0, 30): λ = 8,−12, saddle.
Equilibrium (24, 0): λ = 4,−4, saddle.
Equilibrium (12, 6): λ = 4± 2.83 i, spiral repeller.
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Figure 33. Popula-
tion Explosion or Ex-
tinction.
Phase portrait of system
(13). The equilibria are
(0, 0), (0, 8), (4, 0) and
(6, 2), classified respec-
tively as nodal attractor,
saddle, saddle and spiral
repeller. The node and
two saddles are marked
with a solid disk and the
spiral repeller is marked
with a solid square.

Exercises 10.4 �

Predator-Prey Models.

Consider the system

x′(t) =
1

250
(1− 2y(t))x(t),

y′(t) =
3

500
(2x(t)− 1)y(t).

1. (System Variables) The system has
vector-matrix form

d

dt
u⃗ = F⃗ (u⃗(t)).

Display formulas for u⃗ and F⃗ .

2. (System Parameters) Identify the val-
ues of a, b, c, d, p, q, as used in the text-
book’s predator-prey system.

3. (Identify Predator and Prey) Which
of x(t), y(t) is the predator?

4. (Switching Predator and Prey) Give
an example of a predator-prey system
in which x(t) is the predator and y(t) is
the prey.

Implicit Solution Predator-Prey. These
exercises prove equation

a ln |y|+ b ln |x| − q x− p y = C

for predator-prey system

x′(t) = (a− p y(t))x(t),
y′(t) = (q x(t)− b)y(t).

5. (First Order Equation) Verify from
the chain rule of calculus the first or-
der equation

dy

dx
=

y′(t)

x′(t)
=

y

x

qx− b

a− py
.

6. (Separated Variables) Verify(
a

y
− p

)
dy =

(
q − b

x

)
dx.

7. (Quadrature) Integrate the equation of
Exercise 6 to obtain

a ln |y| − p y = q x− b ln |x| = C.

Then re-arrange to obtain the reported
implicit solution.

8. (Energy Function) Define E(t) =
a ln |u| − pu. Show that dE/du = (a −
pu)/u. Then show that dE/du < 0 for
a > 0, p > 0 and a/p < u <∞.

Linearized Predator-Prey System. Con-
sider

x′(t) = (100− 2y(t))x(t),
y′(t) = (2x(t)− 160)y(t).

9. (Find Equilibria) Verify equilibria
(0, 0), (80, 50).

10. (Jacobian Matrix) Compute J(x, y)
for each x, y. Then find J(0, 0) and
J(80, 50).
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11. (Transit Time) Find the transit time
of an orbit for one loop about (0, 0) for

system d
dt v⃗ =

(
0 −160
100 0

)
v⃗ , the lin-

earization about (80, 50).

12. (Paste Theorem) Describe the local
figures expected near equilibria in the
nonlinear phase portrait.

Rabbits and Foxes. Consider

x′(t) =
1

200
x(t)(50− y(t)),

y′(t) =
1

100
y(t)(x(t)− 40).

13. (Equilibria) Verify equilibria (0, 0),
(40, 50), showing all details.

14. (Jacobian) Compute Jacobian J(x, y),
then J(0, 0) and J(40, 50).

15. (Rabbit Oscillation) Find a graphi-
cal estimate for the period of oscilla-
tion of the rabbit population x(t) for
the nonlinear system, given x(0) = 100,
y(0) = 60 and t is in weeks. Answer:
about 23 weeks.

16. (Rabbit-Gerbil Competing Species)

Consider system

x′ =
(
5
4 −

x
160 −

3y
1000

)
x,

y′ =
(
3− 3y

500 −
3x
160

)
y.

Verify equilibria (0, 0), (0, 500), (200, 0),
(80, 250). Show the first three are nodes
and the last is a saddle.

Pesticides. Consider the system

x′(t) = (10− y(t))x(t)− s1x(t),
y′(t) = (x(t)− 20)y(t)− s2y(t).

17. (Average Populations) Explain: A
field biologist should count, on the av-
erage, populations of about 20+s2 prey
and 10− s1 predators.

18. (Equilibria) Show details for com-
puting the pesticide system equilibria
(0, 0), (20+s2, 10−s1), where s1, s2 are
the pesticide death rates.

Survival of One Species. Consider

x′(t) = x(t)(24− x(t)− 2y(t)),
y′(t) = y(t)(30− y(t)− 2x(t)).

19. (Equilibria) Find all equilibria.

20. (Interactions) Show that doubling ei-
ther x or y causes the interaction term
2xy to double.

21. (Nonlinear Classification) Classify
each equilibrium point (x0, y0) as cen-
ter, spiral, node, saddle, using the
Paste Theorem. Determine stability
for node and spiral. Make a computer
phase portrait to confirm the classifica-
tions.

22. (Extinction and Competing Species)

Equilibria for which either x = 0 or
y = 0 signal extinction states. Discuss
how the phase portrait of the nonlinear
system shows extinction of one species
but not both.

Co-existence
Find the equilibria, then classify them as
node, saddle, spiral, center using the Paste
Theorem. Determine stability for node
and spiral. Make a computer phase por-
trait to confirm the classifications.

23. (Node, Saddle, Saddle, Node)

x′ = (144− 2x− 3y)x,
y′ = (90− 6y − x)y.

24. (Node, Saddle, Saddle, Node)

x′ = (120− 4x− 2y)x,
y′ = (60− x− 2y)y.

Explosion and Extinction
Find the equilibria, then classify them as
node, saddle, spiral, center using the Paste
Theorem. Determine stability for node
and spiral. Make a computer phase por-
trait to confirm the classifications.

25. (Node, Saddle, Saddle, Spiral)

x′ = x(x− 2y − 4),
y′ = y(x+ 2y − 8).

26. (Node, Saddle, Saddle, Spiral)

x′ = x(x− y − 4),
y′ = y(x+ y − 6).
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10.5 Mechanical Models

Nonlinear Spring-Mass System

The classical linear undamped spring-mass system is modeled by the equation
mx′′(t)+ kx(t) = 0. This equation describes the excursion x(t) from equilibrium
x = 0 of a mass m attached to a spring of Hooke’s constant k, with no damping
and no external forces.

In the nonlinear theory, the Hooke’s force term −kx is replaced by a Restoring
Force F (x) which satisfies these four requirements:

Equilibrium 0. The equation F (0) = 0 is assumed, which gives x = 0 the status
of a rest position.

Oddness. The equation F (−x) = −F (x) is assumed, which says that the force
F depends only upon the magnitude of the excursion from equilibrium,
and not upon its direction. Then force F acts to restore the mass to its
equilibrium position, like a Hooke’s force x→ kx.

Zero damping. The damping effects always present in a real physical system
are ignored. In linear approximations, it would be usual to assume a viscous
damping effect −cx′(t); from this viewpoint we assume c = 0.

Zero external force. There is no external force acting on the system. In short,
only two forces act on the mass, (1) Newton’s second law and (2) restoring
force F .

The competition method applies to model the nonlinear spring-mass system via
the two competing forces mx′′(t) and F (x(t)). The dynamical equation:

mx′′(t) + F (x(t)) = 0.(1)

Soft and Hard Springs

A restoring force F modeled upon Hooke’s law is given by the equation F (x) =
kx. With this force, the nonlinear spring-mass equation (1) becomes the un-
damped linear spring-mass system

mx′′(t) + kx(t) = 0.(2)

The linear equation can be thought to originate by replacing the actual spring
force F by the first nonzero term of its Taylor series

F (x) = F (0) + F ′(0)x+ F ′′(0)
x2

2!
+ · · · .
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The assumptions F (−x) = −F (x) and F (0) = 0 imply that F (x) is a function of
the form F (x) = xG(x2), hence all even terms in the Taylor series of F are zero.

Linear approximations to the force F drop the quadratic terms and higher from
the Taylor series. More accurate nonlinear approximations are obtained by re-
taining extra Taylor series terms.

A restoring force F is called hard or soft provided it is given by a truncated
Taylor series as follows.

Hard spring F (x) = kx+ βx3, β > 0.

Soft spring F (x) = kx− βx3, β > 0.

For small excursions from equilibrium x = 0, a hard or soft spring force has
magnitude approximately the same as the linear Hooke’s force F (x) = kx.

Energy Conservation

Given nonlinear spring-mass equation mx′′(t) + F (x(t)) = 0, each solution x(t)
satisfies on its domain of existence the Conservation Law

m

2
(x′(t))2 +

∫ x(t)

x(0)
F (u) du = C, C ≡ m

2
(x′(0))2.(3)

To prove the law, multiply the nonlinear differential equation by x′(t) to obtain
mx′′(t)x′(t) + F (x(t))x′(t) = 0, then apply quadrature to obtain (3).

Kinetic and Potential Energy

Using v = x′(t), the term mv2/2 in (3) is called the Kinetic energy (KE) and
the term

∫ x
x0

F (u)du is called the Potential energy (PE). Equation (3) says
that KE + PE = C or that energy is constant along trajectories.

The conservation laws for the soft and hard nonlinear spring-mass systems, using
position-velocity notation x = x(t) and y = x′(t), are therefore given by the
equations

my2 + kx2 +
1

2
βx4 = C1, C1 = constant > 0,(4)

my2 + kx2 − 1

2
βx4 = C2, C2 = constant.(5)

Phase Plane and Scenes

Nonlinear behavior is commonly graphed in the phase plane, in which x = x(t)
and y = x′(t) are the position and velocity of the mechanical system. The plots
of t versus x(t) or x′(t) are called Scenes; these plots are invaluable for verifying
periodic behavior and stability properties.
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10.5 Mechanical Models

Hard spring

The only equilibrium for a hard spring x′ = y, my′ = −kx − βx3 is the origin
x = y = 0. Conservation law (4) describes a closed curve in the phase plane,
which implies that trajectories are periodic orbits that encircle the equilibrium
point (0, 0). The classification of center applies. See Figures 34 and 35.

y

−2

3
2
1

2

x Figure 34. Hard spring x′′(t) + x(t) +
2x3(t) = 0.
Phase portrait for x′ = y, y′ = −2x3 − x on
|x| ≤ 2, |y| ≤ 3.5. Initial data: x(0) = 0 and
y(0) = 1/2, 1, 2, 3.

−1

1

0
6

t

velocity y
position x

Figure 35. Hard spring x′′(t) + x(t) +
2x3(t) = 0.
Coordinate scenes for x′ = y, y′ = −2x3 − x,
x(0) = 0, y(0) = 1.

More intuition about the orbits can be obtained by finding the energy C1 for each
orbit. The value of C1 decreases to zero as orbits close down upon the origin.
Otherwise stated, the xyz-plot with z = C1 has a minimum at the origin, which
physically means that the equilibrium state x = y = 0 minimizes the energy. See
Figure 36.

(0, 0, 0)

Figure 36. Hard spring energy mini-
mization.
Plot for x′′(t) + x(t) + 2x3(t) = 0, using
z = y2 + x2 + x4 on |x| ≤ 1/2, |y| ≤ 1. The
minimum is realized at x = y = 0.

Soft Spring

There are three equilibria for a soft spring

x′ = y,
my′ = −kx+ βx3.

They are (−α, 0), (0, 0), (α, 0), where α =
√

k/β. If (x(0), y(0)) is given not
at these points, then the mass undergoes motion. In short, the stationary mass
positions are at the equilibria.
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10.5 Mechanical Models

Linearization at the equilibria reveals part of the phase portrait. The linearized
system at the origin is the system x′ = y, my′ = −kx, equivalent to the equation
mx′′ + kx = 0. It has a center at the origin. This implies the origin for the
soft spring is either a center or a spiral. The other two equilibria have linearized
systems equivalent to the equation mx′′ − 2kx = 0; they are saddles.

The phase plot in Figure 37 shows separatrices, which are unions of solution
curves and equilibrium points. Orbits in the phase plane, on either side of a
separatrix, have physically different behavior. Shown is a center behavior interior
to the union of the separatrices, while outside all orbits are unbounded.

y

x
Figure 37. Soft spring x′′(t) + x(t) −
2x3(t) = 0.
A phase portrait for x′ = y, y′ = 2x3 − x on
|x| ≤ 1.2, |y| ≤ 1.2. The 8 separatrices are the
6 bold curves plus the two equilibria (

√
0.5, 0),

(−
√
0.5, 0).

−2

−1.5 1.5
position x

velocity y

t

3

Figure 38. Soft spring x′′(t)+x(t)−2x3(t) =
0.
Coordinate scenes for x′ = y, y′ = 2x3 − x,
x(0) = 0, y(0) = 4.

Nonlinear Pendulum

Consider a nonlinear undamped pendulum of length L making angle θ(t) with
the gravity vector. The nonlinear pendulum equation is given by

d2θ(t)

dt2
+

g

L
sin(θ(t)) = 0(6)

and its linearization at θ = 0, called the linearized pendulum equation, is

d2θ(t)

dt2
+

g

L
θ(t) = 0.(7)

The linearized equation is valid only for small values of θ(t), because of the
assumption sin θ ≈ θ used to obtain (7) from (6).

Damped Pendulum

Physical pendulums are subject to friction forces, which we shall assume propor-
tional to the velocity of the pendulum. The corresponding model which includes
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10.5 Mechanical Models

frictional forces is called the damped pendulum equation:

d2θ(t)

dt2
+ c

dθ

dt
+

g

L
sin(θ(t)) = 0.(8)

It can be written as a first order system by setting x(t) = θ(t) and y(t) = θ′(t):

x′(t) = y(t),

y′(t) = − g

L
sin(x(t))− cy(t).

(9)

Undamped Pendulum

The position-velocity differential equations for the undamped pendulum are ob-
tained by setting x(t) = θ(t) and y(t) = θ′(t):

x′(t) = y(t),

y′(t) = − g

L
sin(x(t)).

(10)

Equilibrium points of nonlinear system (10) are at y = 0, x = nπ, n = 0, ±1,
±2, . . . with corresponding linearized system (see the exercises)

x′(t) = y(t),

y′(t) = − g

L
cos(nπ)x(t).

(11)

The characteristic equation of linear system (11) is r2 − g
L(−1)

n = 0, because
cos(nπ) = (−1)n. The roots have different character depending on whether or
not n is odd or even.

Even n = 2m. Then r2 + g/L = 0 and the linearized system (11) is a Center.
The orbits of (11) are concentric circles surrounding x = nπ, y = 0.

Figure 39. Linearized pendulum at
equilibrium x = 2mπ, y = 0.
Orbits are concentric circles.

Odd n = 2m+1. Then r2− g/L = 0 and the linearized system (11) is classified
as a Saddle. The orbits of (11) are hyperbolas with center x = nπ, y = 0.
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10.5 Mechanical Models

Figure 40. Linearized pendulum at x =
(2m+ 1)π, y = 0.
Orbits are hyperbolas.

Drawing the Nonlinear Phase Diagram. The idea of the plot is to paste the
linearized phase diagram onto the local region centered at the equilibrium point,
when possible. The copying is guaranteed to be correct for the saddle case, but
a center must be copied either as a spiral or a center. Extra analysis is needed
to determine the figure to copy in the case of the center. The result appears in
Figure 41.

Figure 41. Nonlinear Pendulum.
Centers at (−2π, 0), (0, 0), (2π, 0). Saddles at
(−3π, 0), (−pi, 0), (π, 0), (3π, 0). Separatrices
are unions of equilibria and conservation law
curves y2 + 4g

L sin2(x/2)=2E, with E = 2 g
L and

g
L = 10.

We document the analysis used to produce Figure 41. The orbits trace an xy-
curve given by integrating the separable equation

dy

dx
=
−g
L

sinx

y
.

Then the conservation law for the mechanical system is

1

2
y2 +

g

L
(1− cosx) = E

where E is a constant of integration. This equation is arranged so that E is
the sum of the kinetic energy y2/2 and the potential energy g(1 − cosx)/L,
therefore E is the total mechanical energy. Using the double angle identity
cos 2ϕ = 1− 2 sin2 ϕ the conservation law can be written in the shorter form

y2 +
4g

L
sin2(x/2) = 2E

When the energy E is small, E < 2g/L, then the pendulum never reaches the ver-
tical position and it undergoes sustained periodic oscillation: the stable equilibria
(0, 2kπ) have a local center structure.

When the energy E is large, E > 2g/L, then the pendulum reaches the vertical
position and goes over the top repeatedly, represented by a saddle structure. The
statement is verified from the two explicit solutions y = ±

√
2E − 4g sin2(x/2)/L.
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10.5 Mechanical Models

The energy equation y2 + 4g
L sin2(x/2) = 4 g

L (equivalent to E = 2g/L) produces
the separatrix curves. Separatrices consist of equilibrium points plus solution
curves which limit to the equilibria as t→ ±∞.

Exercises 10.5 �

Linear Mechanical Models
Consider the unforced linear model mx′′ +
cx′ + kx = 0, where m, c, k are positive
constants: m=mass, c=dashpot constant,
k=Hooke’s constant.

1. (Dynamical System Form) Write the
scalar problem as u⃗ ′ = Au⃗ . Explicit
definitions of u⃗(t) and A are expected.

2. (Attractor to u⃗ = 0⃗ ) Explain why
limt→∞ u⃗(t) = 0⃗ , giving citations to
theorems in this book.

3. (Isolated Equilibrium) Prove that
u⃗ ′ = Au⃗ has a unique equilibrium at
u⃗ = 0⃗ . Then explain why the equilib-
rium is isolated.

4. (Phase Plots) Classify the cases of
over-damped and under-damped as
a stable node or a stable spiral for u⃗ ′ =
Au⃗ at equilibrium u⃗ = 0⃗ . Why are
classifications center and saddle impos-
sible?

Nonlinear Spring-Mass System
Consider the general model x′′ + F (x) = 0
with the assumptions on page 804.

5. (Harmonic Oscillator) Let F (x) =
ω2 x with ω > 0. Show F is odd and
F (0) = 0. Then find the general solu-
tion x(t) for x′′ + F (x) = 0.

6. (Taylor Series) Show that an odd
function F (x) with Maclaurin series∑∞

n=0 an x
n has all even order terms

zero, that is, an = 0 for n even.

Soft and Hard Springs
Classify as a hard or soft spring. Then
write the conservation law for the equation.

7. x′′ + x+ x3 = 0

8. x′′ + x− x3 = 0

Hard spring

9. Prove that a hard spring has exactly one
equilibrium x = y = 0.

10. Substitute x = x(t), y = x′(t) into
z = y2+x2+x4 to obtain z(t). Function
z(t) has a minimum when dz

dt = 0. Re-
duce this equation to x′′ + x+ 2x3 = 0.

Soft Spring
Consider soft spring x′′ + kx − βx3 = 0,
k > 0, β > 0.

11. (Equilibria) Verify the three equilibria
(0, 0), (0,

√
kβ), (0,−

√
kβ).

12. (Saddles) Verify by linearization and
the Paste Theorem that nonlinear
equilibria (0,

√
kβ), (0,−

√
kβ) are sad-

dles.

13. (Center or Spiral) The Paste The-
orem says that equilibrium (0, 0) of
the nonlinear system is a center or spi-
ral. Verify by computer phase portrait
m = k = 1 and β = 2 Figure 37, page
807.

14. (Mass at Rest) Verify that the only
solutions with the mass at rest are the
equilibria. Mass at rest means veloc-
ity zero: u⃗ ′(t0) = 0⃗ for some t0, vector
notation from Exercise 1.

15. (Phase Portrait) Solve for the equilib-
ria of x′′ + 4x − x3 = 0. Draw a phase
portrait similar to Figure 37, page 807.

16. (Separatrix) The energy equation for
x′′+4x−x3 = 0 is 1

2y
2+2x2− 1

4x
4 = E.

Substitute the saddle equilibria to find
E = 4. Plot implicitly the energy equa-
tion curve. A separatrix is the union of
the two saddle equilibria and this im-
plicit curve.
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Damped Nonlinear Pendulum
Consider d2θ(t)

dt2 + cdθdt + g
L sin(θ(t)) =

0, which has vector-matrix form u⃗ ′ =
G⃗(u⃗ (t)).

17. Display both u⃗ and G⃗ .

18. Find the Jacobian matrix of G⃗ with
respect to u⃗ .

Undamped Nonlinear Pendulum
Consider d2θ(t)

dt2 + g
L sin(θ(t)) = 0, having

vector-matrix form u⃗ ′ = F⃗(u⃗ (t)).

19. Find the Jacobian matrix of F⃗ with re-
spect to u⃗ .

20. Solve F⃗(u⃗ ) = 0⃗ for u⃗ , showing all de-
tails.

21. Evaluate the Jacobian matrix at the
roots of F⃗ (u⃗) = 0⃗ .

22. Plot y2 + 4g
L sin2(x/2) = 4 g

L
implicitly for g

L = 10. The separatrix is
this curve plus equilibria.
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11.1 Examples of Systems

Brine Tank Cascade ................. 814

Cascades and Compartment Analysis ................. 815

Recycled Brine Tank Cascade ................. 816

Pond Pollution ................. 817

Home Heating ................. 818
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Nutrient Flow in an Aquarium ................. 823
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Earthquake Effects on Buildings ................. 833

Linear systems

A linear system is a system of differential equations of the form

x′1 = a11x1 + · · · + a1nxn + f1,
x′2 = a21x1 + · · · + a2nxn + f2,

...
... · · ·

...
...

x′m = am1x1 + · · · + amnxn + fm,

(1)

where ′ = d/dt. Given are the functions aij(t) and fj(t) on some interval a < t <
b. The unknowns are the functions x1(t), . . . , xn(t).

The system is called homogeneous if all fj = 0, otherwise it is called non-
homogeneous.
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Matrix Notation for Systems

A non-homogeneous system of linear equations (1) is written as the equivalent
vector-matrix system

x⃗ ′ = A(t)x⃗ + f⃗ (t),

where

x⃗ =

 x1
...
xn

 , f⃗ =

 f1
...
fn

 , A =

 a11 · · · a1n
... · · ·

...
am1 · · · amn

 .

Brine Tank Cascade

Let brine tanks A, B, C be given of volumes 20, 40, 60, respectively, as in Figure
1.
water

C

A

B

Figure 1. Three brine tanks in
cascade.

It is supposed that fluid enters tank A at rate r, drains from A to B at rate r,
drains from B to C at rate r, then drains from tank C at rate r. Hence the
volumes of the tanks remain constant. Let r = 10, to illustrate the ideas.

Uniform stirring of each tank is assumed, which implies uniform salt concen-
tration throughout each tank.

Let x1(t), x2(t), x3(t) denote the amount of salt at time t in each tank. We
suppose water containing no salt is added to tank A . Therefore, the salt in
all the tanks is eventually lost from the drains. The cascade is modeled by the
chemical balance law

rate of change = input rate − output rate.

Application of the balance law, justified below in compartment analysis, results
in the triangular differential system

x′1 = −
1

2
x1,

x′2 =
1

2
x1 −

1

4
x2,

x′3 =
1

4
x2 −

1

6
x3.
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The solution, to be justified later in this chapter, is given by the equations

x1(t) = x1(0)e
−t/2,

x2(t) = −2x1(0)e−t/2 + (x2(0) + 2x1(0))e
−t/4,

x3(t) =
3

2
x1(0)e

−t/2 − 3(x2(0) + 2x1(0))e
−t/4

+ (x3(0)−
3

2
x1(0) + 3(x2(0) + 2x1(0)))e

−t/6.

Cascades and Compartment Analysis

A Linear Cascade is a diagram of compartments in which input and output
rates have been assigned from one or more different compartments. The diagram
is a succinct way to summarize and document the various rates.

The method of compartment analysis translates the diagram into a system of
linear differential equations. The method has been used to derive applied models
in diverse topics like ecology, chemistry, heating and cooling, kinetics, mechanics
and electricity.

The method. Refer to Figure 2. A compartment diagram consists of the
following components.

Variable Names Each compartment is labelled with a variable X.

Arrows Each arrow is labelled with a Flow Rate R.

Input Rate An arrowhead pointing at compartment X documents In-
put Rate R.

Output Rate An arrowhead pointing away from compartment X docu-
ments Output Rate R.

0

x3

x2x1

x3/6

x2/4

x1/2

Figure 2. Compartment analysis
diagram.
The diagram represents the classical
brine tank problem of Figure 1.

Assembly of the single linear differential equation for a diagram compartment X
is done by writing dX/dt for the left side of the differential equation and then
algebraically adding the input and output rates to obtain the right side of the
differential equation, according to the balance law

dX

dt
= sum of input rates− sum of output rates

By convention, a compartment with no arriving arrowhead has input zero, and a
compartment with no exiting arrowhead has output zero. Applying the balance
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law to Figure 2 gives one differential equation for each of the three compartments
x1 , x2 , x3 .

x′1 = 0− 1

2
x1,

x′2 =
1

2
x1 −

1

4
x2,

x′3 =
1

4
x2 −

1

6
x3.

Recycled Brine Tank Cascade

Let brine tanks A, B, C be given of volumes 60, 30, 60, respectively, as in Figure
3.

A

B

C

Figure 3. Three brine tanks in cas-
cade with recycling.

Suppose that fluid drains from tank A to B at rate r, drains from tank B to C at
rate r, then drains from tank C to A at rate r. The tank volumes remain constant
due to constant recycling of fluid. For purposes of illustration, let r = 10.

Uniform stirring of each tank is assumed, which implies uniform salt concen-
tration throughout each tank.

Let x1(t), x2(t), x3(t) denote the amount of salt at time t in each tank. No salt is
lost from the system, due to recycling. Using compartment analysis, the recycled
cascade is modeled by the non-triangular system

x′1 = −1

6
x1 +

1

6
x3,

x′2 =
1

6
x1 − 1

3
x2,

x′3 =
1

3
x2 − 1

6
x3.

The solution is given by the equations

x1(t) = c1 + (c2 − 2c3)e
−t/3 cos(t/6) + (2c2 + c3)e

−t/3 sin(t/6),

x2(t) =
1

2
c1 + (−2c2 − c3)e

−t/3 cos(t/6) + (c2 − 2c3)e
−t/3 sin(t/6),

x3(t) = c1 + (c2 + 3c3)e
−t/3 cos(t/6) + (−3c2 + c3)e

−t/3 sin(t/6).

At infinity, x1 = x3 = c1, x2 = c1/2. The meaning is that the total amount of
salt is uniformly distributed in the tanks, in the ratio 2 : 1 : 2.
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Pond Pollution

Consider three ponds connected by streams, as in Figure 4. The first pond has
a pollution source, which spreads via the connecting streams to the other ponds.
The plan is to determine the amount of pollutant in each pond.

1

23

f(t)
Figure 4. Three ponds 1, 2, 3 of vol-
umes V1, V2, V3 connected by streams.
The pollution source f(t) is in pond 1.

Assume the following.

• Symbol f(t) is the pollutant flow rate into pond 1 (lb/min).

• Symbols f1, f2, f3 denote the pollutant flow rates out of ponds 1, 2, 3,
respectively (gal/min). It is assumed that the pollutant is well-mixed in
each pond.

• The three ponds have volumes V1, V2, V3 (gal), which remain constant.

• Symbols x1(t), x2(t), x3(t) denote the amount (lbs) of pollutant in ponds
1, 2, 3, respectively.

The pollutant flux is the flow rate times the pollutant concentration, e.g., pond
1 is emptied with flux f1 times x1(t)/V1. A compartment analysis is summarized
in the following diagram.

x2

x3

x1
f1x1/V1f(t)

f3x3/V3 f2x2/V2

Figure 5. Pond diagram.
The compartment diagram represents
the three-pond pollution problem of
Figure 4.

The diagram plus compartment analysis gives the following differential equations.

x′1(t) =
f3
V3

x3(t)−
f1
V1

x1(t) + f(t),

x′2(t) =
f1
V1

x1(t)−
f2
V2

x2(t),

x′3(t) =
f2
V2

x2(t)−
f3
V3

x3(t).

For a specific numerical example, take fi/Vi = 0.001, 1 ≤ i ≤ 3, and let f(t) =
0.125 lb/min for the first 48 hours (2880 minutes), thereafter f(t) = 0. We expect
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due to uniform mixing that after a long time there will be (0.125)(2880) = 360
pounds of pollutant uniformly deposited, which is 120 pounds per pond.

Initially, x1(0) = x2(0) = x3(0) = 0, if the ponds were pristine. The specialized
problem for the first 48 hours is

x′1(t) = 0.001x3(t)− 0.001x1(t) + 0.125,
x′2(t) = 0.001x1(t)− 0.001x2(t),
x′3(t) = 0.001x2(t)− 0.001x3(t),
x1(0) = x2(0) = x3(0) = 0.

The solution to this system is

x1(t) = e−
3t

2000

(
125
√
3

9
sin

( √
3t

2000

)
− 125

3
cos

( √
3t

2000

))
+

125

3
+

t

24
,

x2(t) = −
250
√
3

9
e−

3t
2000 sin

( √
3t

2000

)
+

t

24
,

x3(t) = e−
3t

2000

(
125

3
cos

( √
3t

2000

)
+

125
√
3

9
sin

( √
3t

2000

))
+

t

24
− 125

3
.

After 48 hours elapse, the approximate pollutant amounts in pounds are

x1(2880) = 162.30, x2(2880) = 119.61, x3(2880) = 78.08.

It should be remarked that the system above and its solution will require a change
in order to predict the state of the ponds after 48 hours/ The equations change by
replacing constant 0.125 by zero. The corresponding homogeneous system has an
equilibrium solution x1(t) = x2(t) = x3(t) = 120. This constant solution, called
the steady-state, is the limit at infinity of the solution to the homogeneous
system using the initial values x1(0) ≈ 162.30, x2(0) ≈ 119.61, x3(0) ≈ 78.08,
which are values from the forced system at t = 48 hours.

Home Heating

Consider a typical home with attic, basement and insulated main floor.

Attic

Main
Floor

Basement Figure 6. Typical home with
attic and basement. The below-
grade basement and the attic are un-
insulated. Only the main living area is
insulated.
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It is usual to surround the main living area with insulation, but the attic area
has walls and ceiling without insulation. The walls and floor in the basement are
insulated by earth. The basement ceiling is insulated by air space in the joists,
a layer of flooring on the main floor and a layer of drywall in the basement. We
will analyze the changing temperatures in the three levels using Newton’s cooling
law and the variables

z(t) = Temperature in the attic,

y(t) = Temperature in the main living area,

x(t) = Temperature in the basement,

t = Time in hours.

Initial data. Assume it is winter time and the outside temperature in constantly
35◦F during the day. Also assumed is a basement earth temperature of 45◦F.
Initially, the heat is off for several days. The initial values at noon (t = 0) are
then x(0) = 45, y(0) = z(0) = 35.

Portable heater. A small electric heater is turned on at noon, with thermostat
set for 100◦F. When the heater is running, it provides a 20◦F rise per hour,
therefore it takes some time to reach 100◦F (probably never!). Newton’s cooling
law

Temperature rate = k(Temperature difference)

will be applied to five boundary surfaces: (0) the basement walls and floor, (1)
the basement ceiling, (2) the main floor walls, (3) the main floor ceiling, and (4)
the attic walls and ceiling. Newton’s cooling law gives positive cooling constants
k0, k1, k2, k3, k4 and the equations

x′ = k0(45− x) + k1(y − x),
y′ = k1(x− y) + k2(35− y) + k3(z − y) + 20,
z′ = k3(y − z) + k4(35− z).

The insulation constants will be defined as k0 = 1/2, k1 = 1/2, k2 = 1/4, k3 =
1/4, k4 = 3/4 to reflect insulation quality. The reciprocal 1/k is approximately
the amount of time in hours required for 63% of the temperature difference to
be exchanged. For instance, 4 hours elapse for the main floor. The model:

x′ =
1

2
(45− x) +

1

2
(y − x),

y′ =
1

2
(x− y) +

1

4
(35− y) +

1

4
(z − y) + 20,

z′ =
1

4
(y − z) +

3

4
(35− z).

The homogeneous solution in vector form is given in terms of constants a =
1 +
√
5/4, b = 1−

√
5/4, and arbitrary constants c1, c2, c3 by the formula xh(t)

yh(t)
zh(t)

 = c1e
−t

 −10
2

+ c2e
−at

 2√
5
1

+ c3e
−bt

 2

−
√
5
1

 .
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A particular solution is an equilibrium solution xp(t)

yp(t)

zp(t)

 =


620
11

745
11

475
11

 .

The homogeneous solution has limit zero at infinity, hence the temperatures of
the three spaces hover around x = 56.4, y = 67.7, z = 43.2 degrees Fahrenheit.
Specific information can be gathered by solving for c1, c2, c3 according to the
initial data x(0) = 45, y(0) = z(0) = 35. The answers are

c1 = 5, c2 =
25

2
+

7

2

√
5, c3 =

25

2
− 7

2

√
5.

Underpowered heater. To the main floor each hour is added 20◦F, but the
heat escapes at a substantial rate, so that after one hour y ≈ 68◦F. After five
hours, y ≈ 68◦F. The heater in this example is so inadequate that even after
many hours, the main living area is still under 69◦F.

Forced air furnace. Replacing the space heater by a normal furnace adds the
difficulty of switches in the input, namely, the thermostat turns off the furnace
when the main floor temperature reaches 70◦F, and it turns it on again after a
4◦F temperature drop. We will suppose that the furnace has four times the BTU
rating of the space heater, which translates to an 80◦F temperature rise per hour.
The study of the forced air furnace requires two differential equations, one with
20 replaced by 80 (DE 1, furnace on) and the other with 20 replaced by 0 (DE
2, furnace off). The plan is to use the first differential equation on time interval
0 ≤ t ≤ t1, then switch to the second differential equation for time interval
t1 ≤ t ≤ t2. The time intervals are selected so that y(t1) = 70 (the thermostat
setting) and y(t2) = 66 (thermostat setting less 4 degrees). Numerical work gives
the following results.

Time in minutes Main floor temperature Model Furnace

31.6 70 DE 1 on
40.9 66 DE 2 off
45.3 70 DE 1 on
54.6 66 DE 2 off

The reason for the non-uniform times between furnace cycles can be seen from
the model. Each time the furnace cycles, heat enters the main floor, then escapes
through the other two levels. Consequently, the initial conditions on each floor
applied to models 1 and 2 are changing, resulting in different solutions to the
models on each switch.
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Chemostats and Microorganism Culturing

A vessel into which nutrients are pumped, to feed a microorganism, is called
a Chemostat1. Uniform distributions of microorganisms and nutrients are as-
sumed, for example, due to stirring effects. The pumping is matched by draining
to keep the volume constant.

Output EffluentInput Feed

Figure 7. A Basic Chemostat. A
stirred bio-reactor operated as a chemo-
stat, with continuous inflow and outflow.
The flow rates are controlled to maintain a
constant culture volume.

In a typical chemostat, one nutrient is kept in short supply while all others are
abundant. We consider here the question of survival of the organism subject to
the limited resource. The problem is quantified as follows:

x(t) = the concentration of the limited nutrient in the vessel,

y(t) = the concentration of organisms in the vessel.

A special case of the derivation in J.M. Cushing’s text [Cushing] for the organism
E. Coli2 is the set of nonlinear differential equations3

x′ = −0.075x+ (0.075)(0.005)− 1

63
g(x)y,

y′ = −0.075y + g(x)y,
(2)

where g(x) = 0.68x(0.0016+x)−1. Of special interest to the study of this equation
are two linearized equations at equilibria, given by

u′1 = −0.075u1 − 0.008177008175u2,
u′2 = 0.4401515152u2,

(3)

1The October 14, 2004 issue of the journal Nature featured a study of the co-evolution of
a common type of bacteria, Escherichia coli, and a virus that infects it, called bacteriophage
T7. Postdoctoral researcher Samantha Forde set up ”microbial communities of bacteria and
viruses with different nutrient levels in a series of chemostats – glass culture tubes that provide
nutrients and oxygen and siphon off wastes.”

2In a biology Master’s thesis, two strains of Escherichia coli were grown in a glucose-limited
chemostat coupled to a modified Robbins device containing plugs of silicone rubber urinary
catheter material. Reference: Jennifer L. Adams and Robert J. C. McLean, Applied and Envi-
ronmental Microbiology, September 1999, p. 4285-4287, Vol. 65, No. 9.

3More details can be found in The Theory of the Chemostat Dynamics of Microbial Compe-
tition, ISBN-13: 9780521067348, by Hal Smith and Paul Waltman, June 2008.
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v′1 = −1.690372243 v1 − 0.001190476190 v2,
v′2 = 101.7684513 v1.

(4)

Although we cannot solve the nonlinear system explicitly, nevertheless there are
explicit formulas for u1, u2, v1, v2 that complete the picture of how solutions
x(t), y(t) behave at t = ∞. The result of the analysis is that E. Coli survives
indefinitely in this vessel at concentration y ≈ 0.3.

Culture vessel

pump

Effluent reservoir

magnetic stirrer

overflow

Feed Reservoir

stirring bar

heater/cooler
air inlet

air inlet

Figure 8. Laboratory
Chemostat.
The components are the
Feed reservoir, which
contains the nutrients, a
stirred chemical reactor
labeled the Culture
vessel, and the Effluent
reservoir, which holds
the effluent overflow from
the reactor.

Irregular Heartbeats and Lidocaine

The human malady ofVentricular Arrhythmia or irregular heartbeat is treated
clinically using the drug lidocaine.

Figure 9. Xylocaine label, a brand name for the drug
lidocaine.

To be effective, the drug has to be maintained at a bloodstream concentration
of 1.5 milligrams per liter, but concentrations above 6 milligrams per liter are
considered lethal in some patients. The actual dosage depends upon body weight.
The adult dosage maximum for ventricular tachycardia is reported at 3 mg/kg.4

The drug is supplied in 0.5%, 1% and 2% solutions, which are stored at room
temperature.

A differential equation model for the dynamics of the drug therapy uses

4Source: Family Practice Notebook, http://www.fpnotebook.com/. The author is Scott
Moses, MD, who practises in Lino Lakes, Minnesota.
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x(t) = amount of lidocaine in the bloodstream,

y(t) = amount of lidocaine in body tissue.

A typical set of equations, valid for a special body weight only, appears below;
for more detail see J.M. Cushing’s text [Cushing].

x′(t) = −0.09x(t) + 0.038y(t),
y′(t) = 0.066x(t)− 0.038y(t).

(5)

The physically significant initial data is zero drug in the bloodstream x(0) = 0
and injection dosage y(0) = y0. The answers:

x(t) = −0.3367y0e−0.1204t + 0.3367y0e
−0.0076t,

y(t) = 0.2696y0e
−0.1204t + 0.7304y0e

−0.0076t.

The answers can be used to estimate the maximum possible safe dosage y0 and
the duration of time that the drug lidocaine is effective.

Nutrient Flow in an Aquarium

Consider a vessel of water containing a radioactive isotope, to be used as a tracer
for the food chain, which consists of aquatic plankton varieties A and B.

Plankton are aquatic organisms that drift with the currents, typically in an en-
vironment like Chesapeake Bay. Plankton can be divided into two groups, phy-
toplankton and zooplankton. The phytoplankton are plant-like drifters: diatoms
and other alga. Zooplankton are animal-like drifters: copepods, larvae, and small
crustaceans.

Figure 10. Left: Bacillaria paxillif-
era, phytoplankton. Right: Anomura
Galathea zoea, zooplankton.

Let

x(t) = isotope concentration in the water,

y(t) = isotope concentration in A,

z(t) = isotope concentration in B.

Typical differential equations are

x′(t) = −3x(t) + 6y(t) + 5z(t),
y′(t) = 2x(t)− 12y(t),
z′(t) = x(t) + 6y(t)− 5z(t).
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The answers are

x(t) = 6c1 + (1 +
√
6)c2e

(−10+
√
6)t + (1−

√
6)c3e

(−10−
√
6)t,

y(t) = c1 + c2e
(−10+

√
6)t + c3e

(−10−
√
6)t,

z(t) =
12

5
c1 −

(
2 +
√
1.5
)
c2e

(−10+
√
6)t +

(
−2 +

√
1.5
)
c3e

(−10−
√
6)t.

The constants c1, c2, c3 are related to the initial radioactive isotope concentra-
tions x(0) = x0, y(0) = 0, z(0) = 0, by the 3 × 3 system of linear algebraic
equations

6c1 + (1 +
√
6)c2 + (1−

√
6)c3 = x0,

c1 + c2 + c3 = 0,
12

5
c1 −

(
2 +
√
1.5
)
c2 +

(
−2 +

√
1.5
)
c3 = 0.

Biomass Transfer

Consider a European forest having one or two varieties of trees. We select some
of the oldest trees, those expected to die off in the next few years, then follow
the cycle of living trees into dead trees. The dead trees eventually decay and fall
from seasonal and biological events. Finally, the fallen trees become humus.

Figure 11. Forest Biomass. Total biomass is a parameter used to assess atmospheric

carbon that is harvested by trees. Forest management uses biomass subclasses to classify

fire risk.

Let variables x, y, z, t be defined by

x(t) = biomass decayed into humus,

y(t) = biomass of dead trees,

z(t) = biomass of living trees,

t = time in decades (decade = 10 years).
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A typical biological model is

x′(t) = −x(t) + 3y(t),
y′(t) = −3y(t) + 5z(t),
z′(t) = −5z(t).

Suppose there are no dead trees and no humus at t = 0, with initially z0 units of
living tree biomass. These assumptions imply initial conditions x(0) = y(0) = 0,
z(0) = z0. The solution is

x(t) =
15

8
z0
(
e−5t − 2e−3t + e−t

)
,

y(t) =
5

2
z0
(
−e−5t + e−3t

)
,

z(t) = z0e
−5t.

The live tree biomass z(t) = z0e
−5t decreases according to a Malthusian decay

law from its initial size z0. It decays to 60% of its original biomass in one year.
Interesting calculations that can be made from the other formulas include the
future dates when the dead tree biomass and the humus biomass are maximum.
The predicted dates are approximately 2.5 and 8 years hence, respectively.

The predictions made by this model are trends extrapolated from rate observa-
tions in the forest. Like weather prediction, it is a calculated guess that disap-
points on a given day and from the outset has no predictable answer.

Total biomass is considered an important parameter to assess atmospheric carbon
that is harvested by trees. Biomass estimates for forests since 1980 have been
made by satellite remote sensing data with instances of 90% accuracy (Science
87(5), September 2004).

Pesticides in Soil and Trees

A Washington cherry orchard was sprayed with pesticides.

Figure 12. June Cherries.

Assume that a negligible amount of pesticide was sprayed on the soil. Pesticide
applied to the trees has a certain outflow rate to the soil, and conversely, pesticide
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in the soil has a certain uptake rate into the trees. Repeated applications of the
pesticide are required to control the insects, which implies the pesticide levels in
the trees varies with time. Quantize the pesticide spraying as follows.

x(t) = amount of pesticide in the trees,

y(t) = amount of pesticide in the soil,

r(t) = amount of pesticide applied to the trees,

t = time in years.

A typical model is obtained from input-output analysis, similar to the brine tank
models:

x′(t) = 2x(t)− y(t) + r(t),
y′(t) = 2x(t)− 3y(t).

In a pristine orchard, the initial data is x(0) = 0, y(0) = 0, because the trees
and the soil initially harbor no pesticide. The solution of the model obviously
depends on r(t). The nonhomogeneous dependence is treated by the method of
variation of parameters infra. Approximate formulas are

x(t) ≈
∫ t

0

(
1.10e1.6(t−u) − 0.12e−2.6(t−u)

)
r(u)du,

y(t) ≈
∫ t

0

(
0.49e1.6(t−u) − 0.49e−2.6(t−u)

)
r(u)du.

The exponential rates 1.6 and −2.6 represent respectively the accumulation of
the pesticide into the soil and the decay of the pesticide from the trees. The
application rate r(t) is typically a step function equal to a positive constant
over a small interval of time and zero elsewhere, or a sum of such functions,
representing periodic applications of pesticide.

Forecasting Prices

A manufacturer has a marketing policy based upon the price x(t) of its product.

Figure 13. Pricing and Inven-
tory.
Dynamic pricing reflects demand for
the product, predicted by sales data.
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The Production P (t) and the Sales S(t) are given in terms of the Price x(t)
and the Change in Price x′(t) by the equations

P (t) = 4− 3

4
x(t)− 8x′(t) (Production),

S(t) = 15− 4x(t)− 2x′(t) (Sales).

The differential equations for the price x(t) and inventory level I(t) are

x′(t) = k(I(t)− I0),
I ′(t) = P (t)− S(t).

The inventory level I0 = 50 represents the desired level. The equations can be
written in terms of x(t), I(t) as follows.

x′(t) = kI(t) − kI0,

I ′(t) =
13

4
x(t) − 6kI(t) + 6kI0 − 11.

If k = 1, x(0) = 10 and I(0) = 7, then the solution is given by

x(t) =
44

13
+

86

13
e−13t/2,

I(t) = 50− 43e−13t/2.

The Forecast of price x(t) ≈ 3.38 dollars at inventory level I(t) ≈ 50 is based
upon the two limits

lim
t→∞

x(t) =
44

13
, lim

t→∞
I(t) = 50.

Coupled Spring-Mass Systems

Three masses are attached to each other by four springs as in Figure 14.

m1 m3

k2 k3 k4k1

m2

Figure 14. Three masses connected by
springs. The masses slide along a frictionless
horizontal surface.

The analysis uses the following constants, variables and assumptions.

Mass
Constants

The masses m1, m2, m3 are assumed to be point masses con-
centrated at their center of gravity.

Spring
Constants

The mass of each spring is negligible. The springs operate ac-
cording to Hooke’s law: Force = k(elongation). Constants k1,
k2, k3, k4 denote the Hooke’s constants. The springs restore
after compression and extension.

Position
Variables

The symbols x1(t), x2(t), x3(t) denote the mass positions along
the horizontal surface, measured from their equilibrium positions,
plus right and minus left.
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Fixed Ends The first and last spring are attached to fixed walls.

The competition method is used to derive the equations of motion. In this
case, the law is

Newton’s Second Law Force = Sum of the Hooke’s Forces.

The model equations are

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).

(6)

The equations are justified in the case of all positive variables by observing that
the first three springs are elongated by x1, x2 − x1, x3 − x2, respectively. The
last spring is compressed by x3, which accounts for the minus sign.

Another way to justify the equations is through mirror-image symmetry: inter-
change k1 ←→ k4, k2 ←→ k3, x1 ←→ x3, then equation 2 should be unchanged
and equation 3 should become equation 1.

Matrix Formulation. System (6) can be written as a second order vector-
matrix systemm1 0 0

0 m2 0
0 0 m3

x′′1
x′′2
x′′3

 =

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

x1
x2
x3

 .

More succinctly, the system is written as

M x⃗ ′′(t) = Kx⃗ (t)

where the displacement x⃗ , mass matrix M and stiffness matrix K are
defined by the formulas

x⃗=

x1
x2
x3

 , M=

m1 0 0
0 m2 0
0 0 m3

 , K=

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

 .

Numerical example. Let m1 = 1, m2 = 1, m3 = 1, k1 = 2, k2 = 1, k3 = 1,
k4 = 2. Then the system is given by x′′1

x′′2
x′′3

 =

 −3 1 0
1 −2 1
0 1 −3

 x1
x2
x3

 .
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The vector solution is given by the formula x1
x2
x3

 = (a1 cos t+ b1 sin t)

 1
2
1


+
(
a2 cos

√
3t+ b2 sin

√
3t
) 1

0
−1


+(a3 cos 2t+ b3 sin 2t)

 1
−1
1

 ,

where a1, a2, a3, b1, b2, b3 are arbitrary constants.

Railway Cars

A special case of the coupled spring-mass system is three flatbed rail cars on a
level frictionless track connected by springs, as in Figure 15.

k k

m mm

Figure 15. Three identical rail
cars connected by identical
springs.

Except for the springs on fixed ends, this problem is the same as the one in
equation (6), therefore taking k1 = k4 = 0, k2 = k3 = k, m1 = m2 = m3 = m
gives the system m 0 0

0 m 0
0 0 m

x′′1
x′′2
x′′3

 =

−k k 0
k −2k k
0 k −k

x1
x2
x3

 .

Take k/m = 1 to obtain the illustration

x⃗ ′′ =

−1 1 0
1 −2 1
0 1 −1

 x⃗ ,

which has vector solution

x⃗ = (a1 + b1t)

 1
1
1

+ (a2 cos t+ b2 sin t)

 1
0
−1


+
(
a3 cos

√
3t+ b3 sin

√
3t
) 1
−2
1

 ,

where a1, a2, a3, b1, b2, b3 are arbitrary constants.

The solution expression can be used to discover what happens to the rail cars
when the springs act normally upon compression but disengage upon expansion.
An interesting physical situation is when one car moves along the track, contacts
two stationary cars, then transfers its momentum to the other cars, followed by
disengagement.
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Monatomic Crystals

Figure 16. A Crystal Model.

The n crystals are identical masses m assumed connected by equal springs of Hooke’s

constant k. The last mass is connected to the first mass.

The scalar differential equations for Figure 16 are written for mass positions
x1, . . . , xn, with x0 = xn, xn+1 = x1 to account for the ring of identical masses
(periodic boundary condition). Then for k = 1, . . . , n

m
d2xk
dt2

= k(xk+1 − xk) + k(xk−1 − xk) = k(xk−1 − 2xk + xk+1).

These equations represent a system x′′ = Ax, where the symmetric matrix of
coefficients A = M−1K is given for n = 5 and k/m = 1 by

A =


−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

 .

If n = 3 and k/m = 1, then A =

(−2 1 1
1 −2 1
1 1 −2

)
and the solutions x1, x2, x3 are

linear combinations of the functions 1, t, cos
√
3t, sin

√
3t.

Electrical LR–Network no EMF

Consider the LR-network of Figure 17.

R1

i3
R3R2

L3L2

L1i1

i2

Figure 17. An electrical
network.
There are three resistors R1,
R2, R3 and three inductors
L1, L2, L3. The currents i1,
i2, i3 are defined between
nodes (black dots).

The derivation of the differential equations for the loop currents i1, i2, i3 uses
Kirchhoff’s laws and the voltage drop formulas for resistors and inductors. The
black dots in the diagram are the nodes that determine the beginning and end
of each of the currents i1, i2, i3. Currents are defined only on the outer boundary
of the network. Kirchhoff’s node law determines the currents across L2, L3
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(arrowhead right) as i2 − i1 and i3 − i1, respectively. Similarly, i2 − i3 is the
current across R1 (arrowhead down). Using Ohm’s law VR = RI and Faraday’s
law VL = LI ′ plus Kirchhoff’s loop law algebraic sum of the voltage drops is zero
around a closed loop (see the maple code below), we arrive at the model

i′1 = −
(
R2

L1

)
i2 −

(
R3

L1

)
i3,

i′2 = −
(
R2

L2
+

R2

L1

)
i2 +

(
R1

L2
− R3

L1

)
i3,

i′3 =

(
R1

L3
− R2

L1

)
i2 −

(
R1

L3
+

R3

L1
+

R3

L3

)
i3

A computer algebra system is helpful to obtain the differential equations from the
closed loop formulas. Part of the theory is that the number of equations equals
the number of holes in the network, called the connectivity. Here’s some maple
code for determining the equations in scalar and also in vector-matrix form.

loop1:=L1*D(i1)+R3*i3+R2*i2=0;

loop2:=L2*D(i2)-L2*D(i1)+R1*(i2-i3)+R2*i2=0;

loop3:=L3*D(i3)-L3*D(i1)+R3*i3+R1*(i3-i2)=0;

f1:=solve(loop1,D(i1));

f2:=solve(subs(D(i1)=f1,loop2),D(i2));

f3:=solve(subs(D(i1)=f1,loop3),D(i3));

with(linalg):

jacobian([f1,f2,f3],[i1,i2,i3]);

Electrical LR–Network with EMF

Consider the LR-network of Figure 18. This network produces only two differen-
tial equations, even though there are three holes (connectivity 3). The derivation
of the differential equations parallels the previous network, so nothing will be
repeated here.

A computer algebra system is used to obtain the differential equations from the
closed loop formulas. Below is maple code to generate the equations i′1 = f1,
i′2 = f2, i3 = f3.

loop1:=L1*D(i1)+R2*(i1-i2)+R1*(i1-i3)=0;

loop2:=L2*D(i2)+R3*(i2-i3)+R2*(i2-i1)=0;

loop3:=R3*(i3-i2)+R1*(i3-i1)=E;

f3:=solve(loop3,i3);

f1:=solve(subs(i3=f3,loop1),D(i1));

f2:=solve(subs(i3=f3,loop2),D(i2));
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E

R1 R2

i1 L1

R3

i3 i2

L2

Figure 18. An electri-
cal network.
There are three resistors
R1, R2, R3, two inductors
L1, L2 and a battery E.
The currents i1, i2, i3 are
defined between nodes
(black dots).

The model, in the special case L1 = L2 = 1 and R1 = R2 = R3 = R:

i′1 = − 3R

2
i1 +

3R

2
i2 +

E

2
,

i′2 =
3R

2
i1 − 3R

2
i2 +

E

2
,

i3 =
1

2
i1 +

1

2
i2 +

E

2R
.

It is easily justified that the solution of the differential equations for initial con-
ditions i1(0) = i2(0) = 0 is given by

i1(t) =
E

2
t, i2(t) =

E

2
t.

Logging Timber by Helicopter

Certain sections of National Forest in the USA do not have logging access roads.
In order to log the timber in these areas, helicopters are employed to move the
felled trees to a nearby loading area, where they are transported by truck to the
mill. The felled trees are slung beneath the helicopter on cables.

Figure 19. Helicopter logging.
Left: An Erickson helicopter lifts felled trees.
Right: Two trees are attached to the cable to
lower transportation costs.

The payload for two trees approximates a double pendulum, which oscillates dur-
ing flight. The angles of oscillation θ1, θ2 of the two connecting cables, measured
from the gravity vector direction, satisfy the following differential equations, in
which g is the gravitation constant, m1, m2 denote the masses of the two trees
and L1, L2 are the cable lengths.

(m1 +m2)L
2
1θ

′′
1 + m2L1L2θ

′′
2 + (m1 +m2)L1gθ1 = 0,

m2L1L2θ
′′
1 + m2L

2
2θ

′′
2 + m2L2gθ2 = 0.

This model is derived assuming small displacements θ1, θ2, that is, sin θ ≈ θ for
both angles, using the following diagram.
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θ2

L1

L2

m2

m1
θ1

Figure 20. Logging Timber by Helicopter.
The cables have lengths L1, L2. The angles θ1, θ2 are measured
from vertical.

The lengths L1, L2 are adjusted on each trip for the length of the trees, so that the
trees do not collide in flight with each other nor with the helicopter. Sometimes,
three or more smaller trees are bundled together in a package, which is treated
here as identical to a single, very thick tree hanging on the cable.

Vector-matrix model. The angles θ1, θ2 satisfy the second-order vector-matrix
equation(

(m1 +m2)L1 m2L2

L1 L2

)(
θ1
θ2

)′′
= −

(
m1g +m2g 0

0 g

)(
θ1
θ2

)
.

This system is equivalent to the second-order system

(
θ1
θ2

)′′
=

 −
m1g +m2g

L1m1

m2g

L1m1

m1g +m2 g

L2m1
−(m1 +m2) g

L2m1

( θ1
θ2

)
.

Earthquake Effects on Buildings

A horizontal earthquake oscillation F (t) = F0 cosωt affects each floor of a 5-floor
building; see Figure 21. The effect of the earthquake depends upon the natural
frequencies of oscillation of the floors.

In the case of a single-floor building, the center-of-mass position x(t) of the
building satisfies mx′′+kx = E and the natural frequency of oscillation is

√
k/m.

The earthquake force E is given by Newton’s second law: E(t) = −mF ′′(t). If
ω ≈

√
k/m, then the amplitude of x(t) is large compared to the amplitude of the

force E. The amplitude increase in x(t) means that a small-amplitude earthquake
wave can resonant with the building and possibly demolish the structure.

3

F

4

5

1

2
Figure 21. A 5-Floor Building.
A horizontal earthquake wave F affects ev-
ery floor. The actual wave has wavelength
many times larger than the illustration.

The following assumptions and symbols are used to quantize the oscillation of
the 5-floor building.
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• Each floor is considered a point mass located at its center-of-mass. The
floors have masses m1, . . . , m5.

• Each floor is restored to its equilibrium position by a linear restoring force
or Hooke’s force −k(elongation). The Hooke’s constants are k1, . . . , k5.

• The locations of masses representing the 5 floors are x1, . . . , x5. The
equilibrium position is x1 = · · · = x5 = 0.

• Damping effects of the floors are ignored. This is a frictionless system.

The differential equations for the model are obtained by competition: the New-
ton’s second law force is set equal to the sum of the Hooke’s forces and the ex-
ternal force due to the earthquake wave. This results in the following system,
where k6 = 0, Ej = mjF

′′ for j = 1, 2, 3, 4, 5 and F = F0 cosωt.

m1x
′′
1 = −(k1 + k2)x1 + k2x2 + E1,

m2x
′′
2 = k2x1 − (k2 + k3)x2 + k3x3 + E2,

m3x
′′
3 = k3x2 − (k3 + k4)x3 + k4x4 + E3,

m4x
′′
4 = k4x3 − (k4 + k5)x4 + k5x5 + E4,

m5x
′′
5 = k5x4 − (k5 + k6)x5 + E5.

In particular, the equations for a floor depend only upon the neighboring floors.
The bottom floor and the top floor are exceptions: they have just one neighboring
floor.

Vector-matrix second order system. Define

M =


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

 , x⃗ =


x1
x2
x3
x4
x5

 , H⃗ =


E1

E2

E3

E4

E5

 ,

K =


−k1 − k2 k2 0 0 0

k2 −k2 − k3 k3 0 0
0 k3 −k3 − k4 k4 0
0 0 k4 −k4 − k5 k5
0 0 0 k5 −k5 − k6

 .

In the last row, k6 = 0, to reflect the absence of a floor above the fifth. The
second order system is

M x⃗ ′′(t) = Kx⃗ (t) + H⃗ (t).

The matrixM is called themass matrix and the matrixK is called theHooke’s
matrix. The external force H⃗ (t) can be written as a scalar function E(t) =
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−F ′′(t) times a constant vector:

H⃗ (t) = −ω2F0 cosωt


m1

m2

m3

m4

m5

 .

Identical floors. Let us assume that all floors have the same mass m and the
same Hooke’s constant k. Then M = mI and the equation becomes

x⃗ ′′ = m−1


−2k k 0 0 0

k −2k k 0 0
0 k −2k k 0
0 0 k −2k k
0 0 0 k −k

 x⃗ − F0ω
2 cos(ωt)


1
1
1
1
1

 .

The Hooke’s matrix K is symmetric (KT = K) with negative entries only on the
diagonal. The last diagonal entry is −k (a common error is to write −2k).
Particular solution. The method of undetermined coefficients predicts a trial
solution x⃗p(t) = c⃗ cosωt, because each differential equation has nonhomoge-
neous term −F0ω

2 cosωt. The constant vector c⃗ is found by trial solution sub-
stitution. Cancel the common factor cosωt in the substituted equation to obtain
the equation

(
m−1K + ω2 I

)
c⃗ = F0ω

2b⃗ , where b⃗ is column vector of ones in the

preceding display. Let B(ω) = m−1K + ω2 I. Then the formula B−1 =
adj(B)

det(B)
gives

c⃗ = F0ω
2 adj(B(ω))

det(B(ω))
b⃗ .

The constant vector c⃗ can have a large magnitude when det(B(ω)) ≈ 0. This
occurs when −ω2 is nearly an eigenvalue of m−1K.

Homogeneous solution. The theory of this chapter gives the homogeneous
solution x⃗h(t) as the sum

x⃗h(t) =

5∑
j=1

(aj cosωjt+ bj sinωjt)v⃗ j

where r = ωj and v⃗ = v⃗ j ̸= 0⃗ satisfy(
1

m
K + r2 I

)
v⃗ = 0⃗ .
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Special case k/m = 10. Then

1

m
K =



−20 10 0 0 0

10 −20 10 0 0

0 10 −20 10 0

0 0 10 −20 10

0 0 0 10 −10


and the values ω1, . . . , ω5 are found by solving equation det((1/m)K + ω2I) =
0, to obtain the values in Table 1.

Table 1. Natural Frequencies for the Special Case k/m = 10.

Frequency Value

ω1 0.900078068
ω2 2.627315231
ω3 4.141702938
ω4 5.320554507
ω5 6.068366391

General solution. Superposition implies x⃗ (t) = x⃗h(t) + x⃗p(t). Both terms of
the general solution represent bounded oscillations.

Resonance effects. The special solution x⃗p(t) can be used to obtain some
insight into practical resonance effects between the incoming earthquake wave
and the building floors. When ω is close to one of the frequencies ω1, . . . , ω5,
then the amplitude of a component of x⃗p can be very large, causing the floor
to take an excursion that is too large to maintain the structural integrity of the
floor.

The physical interpretation is that an earthquake wave of the proper fre-
quency, having time duration sufficiently long, can demolish a floor and hence
demolish the entire building. The amplitude of the earthquake wave does not
have to be large: a fraction of a centimeter might be enough to start the oscilla-
tion of the floors.

Earthquakes and Tsunamis

Seismic wave shape was studied for first order equations in Chapter 2 Section
8. Recorded here are some historical notes about seismic waves and earthquake
events.

The original Richter scale, with deprecated use in seismology, was invented by
seismologist C. Richter to rank earthquake power.

The moment magnitude scale (MW ) has largely replaced the original Richter
scale and its modified versions. The highest reported magnitude is 9.5 MW by
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the United States Geological Survey for the Concepción, Chile earthquake of May
22, 1960. News reports and the general public still refer to earthquake magnitude
using the term Richter Scale.

The Sumatra earthquake of December 26, 2004 occurred close to a deep-sea
trench, a subduction zone where one tectonic plate slips beneath another. Most
of the earthquake energy is released in these areas as the two plates grind towards
each other. Estimates of magnitude 8.8 MW to 9.3 MW followed the event. The
US Geological Survey estimated 9.2 MW .

The largest earthquake ever recorded was the 1960 Chile earthquake. There
were three earthquakes May 21-22, 1960, estimated magnitudes 9.4 to 9.6. The
tsunami caused by the Chile earthquake has been well-documented by Dr. Gerard
Fryer of the Hawaii Institute of Geophysics and Planetology in Honolulu.

What happened in the earthquake was that a piece of the Pacific seafloor (or
strictly speaking, the Nazca Plate) about the size of California slid fifty feet
beneath the continent of South America. Like a spring, the lower slopes of
the South American continent offshore snapped upwards as much as twenty
feet while land along the Chile coast dropped about ten feet. This change
in the shape of the ocean bottom changed the shape of the sea surface.
Since the sea surface likes to be flat, the pile of excess water at the surface
collapsed to create a series of waves — the tsunami.

The tsunami, together with the coastal subsidence and flooding, caused
tremendous damage along the Chile coast, where about 2,000 people died.
The waves spread outwards across the Pacific. About 15 hours later the
waves flooded Hilo, on the island of Hawaii, where they built up to 30
feet and caused 61 deaths along the waterfront. Seven hours after that, 22
hours after the earthquake, the waves flooded the coastline of Japan where
10-foot waves caused 200 deaths. The waves also caused damage in the
Marquesas, in Samoa, and in New Zealand. Tidal gauges throughout the
Pacific measured anomalous oscillations for about three days as the waves
bounced from one side of the ocean to the other.
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Image Source: Wikipedia 1960 Valdivia Chile Earthquakes

Exercises 11.1 �

There are no exercises for this section of ex-
amples. Later sections use this section for
definitions, equations and key examples.
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11.2 Fundamental System Methods

Solving 2× 2 Systems

It is shown here that any constant linear system

x⃗ ′ = Ax⃗ , A =

(
a b
c d

)
can be solved by one of the following elementary methods.

(a) The integrating factor method for y′ = p(x)y + q(x).

(b) The second order constant coefficient formulas in Chapter 6, The-
orem 6.1.

Triangular 2× 2 Matrix A

Let’s assume b = 0 in matrix A =

(
a b
c d

)
making A lower triangular. The upper

triangular case is handled similarly. Then x⃗ ′ = Ax⃗ has the scalar form

x′1 = ax1,
x′2 = cx1 + dx2.

The first differential equation is solved by the growth/decay formula:

x1(t) = x0e
at.

Then substitute the answer just found into the second differential equation to
give

x′2 = dx2 + cx0e
at.

This is a linear first order equation of the form y′ = p(x)y + q(x), to be solved
by the integrating factor method. Therefore, a triangular system can always be
solved by the first order integrating factor method.

An illustration. Let us solve x⃗ ′ = Ax⃗ for the triangular matrix

A =

(
1 0
2 1

)
, representing

{
x′1 = x1,
x′2 = 2x1 + x2.

The first equation x′1 = x1 has solution x1 = c1e
t. The second equation x′2 =

2x1 + x2 becomes upon substitution of x1 = c1e
t the new equation

x′2 = 2c1e
t + x2,

which is a first order linear differential equation with linear integrating factor
method solution x2 = (2c1t + c2)e

t. The general solution of x⃗ ′ = Ax⃗ in scalar
form is

x1 = c1e
t, x2 = 2c1te

t + c2e
t.
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The General Solution vector form for x⃗ ′ = Ax⃗ is

x⃗ (t) = c1

(
et

2tet

)
+ c2

(
0
et

)
.

A vector basis B for the solution of x⃗ ′ = Ax⃗ is

B =

{(
et

2tet

)
,

(
0
et

)}
.

Non-Triangular 2× 2 Matrix A

In order that A be non-triangular, both b ̸= 0 and c ̸= 0 must be satisfied. The
scalar form of the system x⃗ ′ = Ax⃗ is{

x′1 = ax1 + bx2,
x′2 = cx1 + dx2,

x⃗ (t) =

(
x1(t)
x2(t)

)
, A =

(
a b
c d

)
.

Theorem 11.1 (Solving 2× 2 Non-Triangular
→
x ′ = A

→
x)

Solutions x1, x2 of x⃗ ′ = Ax⃗ are linear combinations of the list of Euler solution
atoms obtained from roots r of det(A−rI) = 0, which is the characteristic equation
of A.

This result is called Cayley-Hamilton-Ziebur (abbreviated CHZ).

Proof: The method: differentiate the first equation, then use the equations to eliminate
x2, x

′
2. The result is a second order differential equation for x1. The same differential

equation is satisfied also for x2. The details:

x′′
1 = ax′

1 + bx′
2 Differentiate the first equation.

= ax′
1 + bcx1 + bdx2 Use equation x′

2 = cx1 + dx2.

= ax′
1 + bcx1 + d(x′

1 − ax1) Use equation x′
1 = ax1 + bx2.

= (a+ d)x′
1 + (bc− ad)x1 Second order equation for x1 found

The characteristic equation of x′′
1 − (a+ d)x′

1 + (ad− bc)x1 = 0 is

r2 − (a+ d)r + (bc− ad) = 0.

Finally, we show the expansion of det(A− rI) is the same characteristic polynomial:

det(A− rI) =

∣∣∣∣ a− r b
c d− r

∣∣∣∣
= (a− r)(d− r)− bc
= r2 − (a+ d)r + ad− bc.

■

Proposition 11.1 (Differential Equation for x1 and x2)

Let A =

(
a b
c d

)
. Then for x⃗ ′ = Ax⃗ :
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det(A− rI) = r2 − trace(A)r + det(A)
u′′ − trace(A)u′ + det(A)u = 0 for u = x1, x2

Proof: The trace of A is a+d and det(A) = ad− bc. Apply proof details from Theorem
11.1. ■

Assume below that A is non-triangular, meaning b ̸= 0 and c ̸= 0.

How to Find x1. Apply Chapter 6 Theorem 6.1 for equation Ay′′+By′+Cy = 0
to solve for x1. This involves writing a list of Euler solution atoms corresponding
to the two roots of the characteristic equation r2−(a+d)r+ad−bc = 0, followed
by expressing x1 as a linear combination of the two Euler atoms.

How to Find x2. Isolate x2 in the first differential equation by division:

x2 =
1

b
(x′1 − ax1).

The two formulas for x1, x2 represent the general solution of the system x⃗ ′ = Ax⃗ ,
when A is 2× 2.

An illustration. Let’s solve x⃗ ′ = Ax⃗ when

A =

(
1 2
2 1

)
, representing

{
x′1 = x1 + 2x2,
x′2 = 2x1 + x2.

The equation det(A−rI) = 0 is (1−r)2−4 = 0 with roots r = −1 and r = 3. The
Euler solution atoms are e−t, e3t. Then x1 = c1e

−t + c2e
3t, a linear combination

of Euler solution atoms. The first equation x′1 = x1+2x2 implies x2 =
1
2(x

′
1−x1)

(we solve the first equation for symbol x2). Insert x1 = c1e
−t+c2e

3t and simplify
to find x2 explicitly. The scalar general solution of x⃗ ′ = Ax⃗ is then

x1 = c1e
−t + c2e

3t, x2 = −c1e−t + c2e
3t.

In vector form, the general solution is

x⃗ = c1

(
e−t

−e−t

)
+ c2

(
e3t

e3t

)
.

History. The fundamental idea in the illustration was developed by Ziebur using
the classical Cayley-Hamilton theorem, which says that a square matrix satisfies
its own characteristic equation. History suggests the name Cayley-Hamilton-Ziebur
(abbreviated CHZ).

The Cayley-Hamilton theorem is the foundation for spectral methods developed in this
chapter. Computer algebra systems provide algorithms for solving any system x⃗ ′(t) =
Ax⃗ (t), possible because of the foundation provided by Cayley-Hamilton.
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Method for n× n Diagonal A

If an n×n matrix A is diagonal, A = diag(a1, . . . , an), then the system x⃗ ′ = Ax⃗
is a set of uncoupled scalar growth/decay equations:

x′1(t) = a1x1(t),
x′2(t) = a2x2(t),

...
x′n(t) = anxn(t).

The solution to the system is given by the formulas

x1(t) = c1e
a1t,

x2(t) = c2e
a2t,

...
xn(t) = cne

ant.

The numbers c1, . . . , cn are arbitrary constants.

Method for n× n Lower Triangular A

Assume a linear system x⃗ ′ = Ax⃗ has a square lower triangular matrix A. The
system can be solved by first order scalar methods. To illustrate the ideas,
consider the 3× 3 lower triangular linear system

x⃗ ′ =

 2 0 0
3 3 0
4 4 4

 x⃗ .

In scalar form, the system is given by the equations

x′1(t) = 2x1(t),
x′2(t) = 3x1(t) + 3x2(t),
x′3(t) = 4x1(t) + 4x2(t) + 4x3(t).

A recursive method. The system is solved recursively by first order scalar
methods only, starting with the first equation x′1(t) = 2x1(t). This growth equa-
tion has general solution x1(t) = c1e

2t. The second equation then becomes the
first order linear equation

x′2(t) = 3x1(t) + 3x2(t)
= 3x2(t) + 3c1e

2t.

The integrating factor method applies: x2(t) = −3c1e2t + c2e
3t is the general

solution. The third and last equation becomes the first order linear equation

x′3(t) = 4x1(t) + 4x2(t) + 4x3(t)
= 4x3(t) + 4c1e

2t + 4(−3c1e2t + c2e
3t).
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The integrating factor method is repeated to find the general solution x3(t) =
4c1e

2t − 4c2e
3t + c3e

4t.

In summary, the scalar general solution to the system is given by the formulas

x1(t) = c1e
2t,

x2(t) = −3c1e2t + c2e
3t,

x3(t) = 4c1e
2t − 4c2e

3t + c3e
4t.

Structure of solutions. A system x⃗ ′ = Ax⃗ for n × n triangular A has com-
ponent solutions x1(t), . . . , xn(t) given as polynomials times exponentials. The
exponential factors ea11t, . . . , eannt are expressed in terms of the diagonal ele-
ments a11, . . . , ann of the matrix A. Fewer than n distinct exponential factors
may appear, due to duplicate diagonal elements. These duplications cause the
polynomial factors to appear. The reader is invited to work out the solution to
the system below, which has duplicate diagonal entries a11 = a22 = a33 = 2.

x′1(t) = 2x1(t),
x′2(t) = 3x1(t) + 2x2(t),
x′3(t) = 4x1(t) + 4x2(t) + 2x3(t).

The solution, given below, has polynomial factors t and t2, appearing because of
the duplicate diagonal entries 2, 2, 2, and only one exponential factor e2t.

x1(t) = c1e
2t,

x2(t) = 3c1te
2t + c2e

2t,
x3(t) = 4c1te

2t + 6c1t
2e2t + 4c2te

2t + c3e
2t.

Method for n× n Upper Triangular A

A matrix differential system y⃗ ′(t) = T y⃗ (t) with T upper triangular splits into
scalar equations which can be solved by elementary methods for first order scalar
differential equations. To illustrate, consider the system

y′1 = 3y1 + y2 + y3,
y′2 = 3y2 + y3,
y′3 = 2y3.

The techniques that apply are the growth-decay formula for u′ = ku and the
integrating factor method for u′ = ku + p(t). Working backwards from the last
equation with back-substitution gives

y3 = c3e
2t,

y2 = c2e
3t − c3e

2t,
y1 = (c1 + c2t)e

3t.
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Jordan’s n× n Variable Change for x⃗′ = Ax⃗

What has been said above applies to any triangular system y⃗ ′(t) = T y⃗ (t), in
order to write an exact formula for the solution y⃗ (t).

If A is an n× n matrix, then Jordan’s theorem gives A = PTP−1 with T upper
triangular and P invertible. The change of variable x⃗ (t) = P y⃗ (t) changes x⃗ ′(t) =
Ax⃗ (t) into the triangular system y⃗ ′(t) = T y⃗ (t).

There is no special condition on A to effect the change of variable x⃗ (t) = P y⃗ (t).
The solution x⃗ (t) of x⃗ ′(t) = Ax⃗ (t) is a product of the invertible matrix P
and a column vector y⃗ (t); the latter is the solution of the triangular system
y⃗ ′(t) = T y⃗ (t), obtained by growth-decay and integrating factor methods.

The importance of this idea is to provide a reliable method for solving any system
x⃗ ′(t) = Ax⃗ (t). Later in this chapter, we outline how to find the matrix P and the
matrix T in Jordan’s theorem A = PTP−1. The additional theory provides both
desktop paper-and-pencil and computer matrix methods for solving any system
x⃗ ′(t) = Ax⃗ (t).

Differential Equation Conversion to x⃗′ = Ax⃗

Considered here are source equations in scalar form or in vector form. The ob-
ject is to define a new vector variable x⃗ (t) and a matrix A which converts the
source equations into the system form x⃗ ′ = Ax⃗ . The ideas apply as well to
systems of nonlinear and/or non-homogeneous equations with higher derivatives,
the converted system having the nonlinear form x⃗ ′ = f⃗ (t, x⃗ ), a form precursor
to applying computer numerical methods. The list of source equations to be
considered:

Scalar linear 2nd order au′′ + bu′ + cu = f

Scalar linear 2nd order system

{
a1x

′′
1 + b1x

′
1 + c1x1 = f1,

a2x
′′
2 + b2x

′
2 + c2x2 = f2.

Coupled spring-mass

m1x
′′
1(t)=− k1x1(t) + k2(x2(t)− x1(t)),

m2x
′′
2(t)=− k2(x2(t)− x1(t)) + k3(u3(t)− x2(t)),

m3u
′′
3(t)=− k3(u3(t)− x2(t))− k4u3(t).

Scalar linear nth order y(n) = p0y + · · ·+ pn−1y
(n−1)

Scalar continuous coefficients yiv = a(x)y + b(x)y′ + c(x)y′′ + d(x)y′′′

Forced higher order yiv = 2y + sin(x)y′ + cos(x)y′′ + x2y′′′ + f(x).

Second order system M x⃗ ′′ = Kx⃗

Forced second order system M x⃗ ′′ = Kx⃗ + F⃗ (t).

Damped Forced system M x⃗ ′′ = Bx⃗ ′ +Kx⃗ + F⃗ (t)
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Convert Scalar Linear 2nd Order to x⃗ ′ = Ax⃗

Consider an equation au′′ + bu′ + cu = f where a ̸= 0, b, c, f are allowed to
depend on t, ′ = d/dt. Define the Position-Velocity substitution

x1(t) = u(t), x2(t) = u′(t).

Then x′1 = u′ = x2 and x′2 = u′′ = (−bu′−cu+f)/a = −(b/a)x2− (c/a)x1+f/a.
The resulting system is equivalent to the second order equation, in the sense
that the position-velocity substitution transforms solutions of one system to the
other: {

x′1(t) = (0)x1(t) + (1)x2(t),

x′2(t) = −
(

c(t)
a(t)

)
x1(t) −

(
b(t)
a(t)

)
x2(t) + f(t)

a(t) .

The case of constant coefficients and f a function of t arises often enough to
isolate the result for further reference.

Theorem 11.2 (Constant-Coefficient 2nd Order Conversion)
Let a ̸= 0, b, c be constants and f(t) continuous. Then au′′ + bu′ + cu = f(t) is
equivalent to the first order system

ax⃗ ′(t) =

(
0 a
−c −b

)
w⃗ (t) +

(
0

f(t)

)
, x⃗ (t) =

(
u(t)
u′(t)

)
.

Convert Second Order Scalar Systems to x⃗ ′ = Ax⃗ + F⃗ (t)

A position-velocity substitution can be carried out on a system of two second
order linear differential equations. Assume{

a1x
′′
1 + b1x

′
1 + c1x1 = f1,

a2x
′′
2 + b2x

′
2 + c2x2 = f2.

Then the preceding methods for the scalar case give the equivalence
a1 0 0 0
0 a1 0 0
0 0 a2 0
0 0 0 a2



x1
x′1
x2
x′2


′

=


0 a1 0 0

−c1 −b1 0 0
0 0 0 a2
0 0 −c2 −b2



x1
x′1
x2
x′2

+


0
f1
0
f2

 .

Convert Coupled Spring-Mass Systems to x⃗ ′ = Ax⃗

Springs connecting undamped coupled masses were considered at the beginning
of this chapter, page 827. Typical equations are

m1x
′′
1(t) = −k1x1(t) + k2(x2(t)− x1(t)),

m2x
′′
2(t) = −k2(x2(t)− x1(t)) + k3(u3(t)− x2(t)),

m3u
′′
3(t) = −k3(u3(t)− x2(t))− k4u3(t).

(1)
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The equations can be represented by a second order linear system of dimension
3 of the form M x⃗ ′′ = Kx⃗ , where the Vector Position x⃗ , the mass matrix M
and the Hooke’s matrix K are given by the equalities

x⃗ (t) =

 x1(t)
x2(t)
u3(t)

 , M =

 m1 0 0
0 m2 0
0 0 m3

 ,

K =

 −(k1 + k2) k2 0
k2 −(k2 + k3) k3
0 −k3 −(k3 + k4)

 .

Conversion to x⃗ ′ = Ax⃗ uses a position-velocity substitution to obtain the block
matrix multiply equation (I = identity matrix, 0 = zero matrix)

x⃗ (t) =

(
x⃗ (t)
x⃗ ′(t)

)
, x⃗ ′(t) =

 0 I

M−1K 0

 x⃗ (t).

Convert Higher Order Linear Equations to x⃗ ′ = Ax⃗

Every homogeneous nth order linear differential equation

y(n) = p0y + · · ·+ pn−1y
(n−1)

with constant coefficients can be converted to a linear homogeneous vector-matrix
system

d

dx


y
y′

y′′

...

y(n−1)

 =


0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
p0 p1 p2 · · · pn−1




y
y′

y′′

...

y(n−1)

 .

This is a linear system x⃗ ′ = Ax⃗ where x⃗ (t) is the n×1 column vector consisting
of y(t) and its successive derivatives, while the n × n matrix A is the classical
Companion Matrix5 of the characteristic polynomial

rn = p0 + p1r + p2r
2 + · · ·+ pn−1r

n−1.

To illustrate, the companion matrix (page 846) for r4 = a+ br + cr2 + dr3 is

A =


0 1 0 0
0 0 1 0
0 0 0 1
a b c d

 .

5The transpose of the companion matrix defined in Wikipedia. The companion matrix or
its transpose appears in advanced topics in linear algebra, e.g. the Frobenius Rational Form.
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The preceding companion matrix has the following block matrix form, which is
representative of all companion matrices.

A =

(
0⃗ I

a b c d

)
.

Convert Scalar Continuous-Coefficient Equations to x⃗ ′ = Ax⃗

. Methods above apply equally to higher order linear differential equations with
continuous coefficients. To illustrate, the fourth order linear equation yiv =
a(x)y + b(x)y′ + c(x)y′′ + d(x)y′′′ has first order system form x⃗ ′ = A(x)x⃗ where
A(x) is the companion matrix (page 846) for the polynomial r4 = a(x)+ b(x)r+
c(x)r2 + d(x)r3, x held fixed:

A(x) =


0 1 0 0
0 0 1 0
0 0 0 1

a(x) b(x) c(x) d(x)

 .

Convert Forced Higher Order Equations to x⃗ ′ = Ax⃗ + F⃗ (t)

All that has been said above applies equally to a forced linear equation like

yiv = 2y + sin(x)y′ + cos(x)y′′ + x2y′′′ + f(x).

It has a conversion to a first order nonhomogeneous linear system

x⃗ ′ =


0 1 0 0
0 0 1 0
0 0 0 1
2 sinx cosx x2

 x⃗ +


0
0
0

f(x)

 , x⃗ =


y
y′

y′′

y′′′

 .

Convert 2nd Order System to x⃗ ′ = Ax⃗ + F⃗ (t)

A second order system M x⃗ ′′ = Kx⃗ + F⃗ (t) is called a forced system and F⃗ is
called the external vector force. Such a system can always be converted to
a second order system where the mass matrix is the identity, by multiplying by
M−1:

x⃗ ′′ = M−1Kx⃗ +M−1F⃗(t).

The benign form x⃗ ′′ = Bx⃗ + G⃗(t), where B = M−1K and G⃗ = M−1F⃗ , admits
a block matrix conversion into a forced first order system of the form x⃗ ′ =
Ax⃗ + f⃗ (t):

x⃗ (t) =

(
x⃗(t)
x⃗ ′(t)

)
,

d

dt
x⃗ (t) =

 0 I

M−1K 0

 x⃗ (t) +

(
0⃗

M−1F⃗ (t)

)
.
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Convert Damped 2nd Order System to x⃗ ′ = Ax⃗ + F⃗ (t)

The addition of a dashpot to each of the masses gives a damped second order
system with forcing term

M x⃗ ′′ = Bx⃗ ′ +Kx⃗ + F⃗(t).

In the case of one scalar equation, the matrices M , B, K are constants m, −c,
−k and the external force is a scalar function f(t), hence the system becomes
the classical damped spring-mass equation

mu′′ + cu′ + ku = f(t).

A standard way to write the first order system u⃗ ′ = Au⃗ + G⃗(t) is to introduce

variable u⃗ = M

(
x⃗
x⃗ ′

)
, in order to obtain

u⃗ ′ = M
d

dt

(
M x⃗
x⃗ ′

)
= M

(
x⃗ ′

x⃗ ′′

)
= M

(
x⃗ ′

Bx⃗ ′ +Kx⃗ + F⃗ (t)

)
Then a first order system in block matrix form is given by(

M 0

0 M

)
d

dt

(
x⃗ (t)
x⃗ ′(t)

)
=

(
0 M

K B

)(
x⃗(t)
x⃗ ′(t)

)
+

(
0⃗

F⃗ (t)

)
.

The benign form x⃗ ′′ = M−1Bx⃗ ′ +M−1Kx⃗ +M−1F⃗(t), which is obtained from
left-multiplication by M−1, can be similarly written as a first order system in
block matrix form.

d

dt

(
x⃗(t)
x⃗ ′(t)

)
=

 0 I

M−1K M−1B

( x⃗ (t)
x⃗ ′(t)

)
+

(
0⃗

M−1F⃗ (t)

)

Exercises 11.2 �

Solving 2× 2 Systems

1. Solve x′
1 = 2x1 + x2, x′

2 = x2. Ans:
x1 = c1 e

2 t − c2 e
t, x2 = c2 e

t

2. Discuss how to solve x⃗ ′ =

(
a b
0 d

)
x⃗ .

Triangular 2× 2 Matrix A

3. Solve x⃗ ′ =

(
2 1
0 3

)
x⃗ .

4. Solve x⃗ ′ =

(
2 0
2 3

)
x⃗ .

Non-Triangular 2× 2 Matrix A

5. Solve x⃗ ′ =

(
1 3
3 1

)
x⃗ .

6. Solve x⃗ ′ =

(
1 3
−3 1

)
x⃗ .

Method for n× n Diagonal A

7. Solve x⃗ ′ =

(
1 0 0
0 3 0
0 0 2

)
x⃗ .
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8. Solve x⃗ ′ =

1 0 0 0
0 3 0 0
0 0 4 0
0 0 0 2

 x⃗ .

Method for n× n Lower Triangular

9. Solve x⃗ ′ =

(
1 0 0
1 3 0
1 0 2

)
x⃗ .

10. Solve x⃗ ′ =

(
1 0 0
0 3 0
1 0 2

)
x⃗ .

Method for n× n Upper Triangular

11. Solve x⃗ ′ =

(
1 0 1
0 3 1
0 0 2

)
x⃗ .

12. Solve x⃗ ′ =

(
1 1 0
0 3 1
0 0 2

)
x⃗ .

Jordan’s n× n Variable Change
Let A = PTP−1 with T upper triangular
and P invertible. Define change of variable
x⃗ (t) = P y⃗ (t). Prove these results:

13. If x⃗ (t) solves x⃗ ′(t) = Ax⃗ (t), then
y⃗ (t) = P−1x⃗ (t) solves y⃗ ′(t) = T y⃗ (t).

14. If y⃗ ′(t) = T y⃗ (t), then x⃗ (t) = P y⃗ (t)
solves x⃗ ′(t) = Ax⃗ (t).

Convert Scalar Linear 2nd Order to
u⃗ ′ = Au⃗ + F⃗ (t)

15. x′′ + 2x′ + x = sin t

16. 2x′′ + 3x′ + 8x = 4 cos t

Convert Second Order Scalar System
to u⃗ ′ = Au⃗

17. x′′ = x+ y, y′′ = x− y

18. x′′ = x+ y + sin t, y′′ + y = x+ cos t

Convert Coupled Spring-Mass System
to u⃗ ′ = Au⃗ + F⃗

19. x⃗ ′′ =

(
−2 1
1 −1

)
x⃗ +

(
0

sin t

)

20. x⃗ ′′ =

(
−2 1 0
1 −2 1
0 −1 −2

)
x⃗

Convert Higher Order Linear Equations
to u⃗ ′ = Au⃗

21. x′′′ = x

22.
d4y

dx4 + 16y = 0

Convert Scalar Continuous-Coefficient
Equation to u⃗ ′ = Au⃗

23. x2y′′ + 3xy′ + 2y = 0

24. y′′′ + xy′′ + x2y + y = 0

Convert Forced Higher Order Equation
to u⃗ ′ = Au⃗ + F⃗ (t)

25.
d4y

dx4 = y′′′ + y + sinx

26.
d6y

dx6 =
d4y

dx4 + y + cos t

Convert 2nd Order System to u⃗ ′ =
Au⃗ + G⃗ (t)

27. x⃗ ′′ =

(
−2 1
1 −1

)
x⃗ +

(
1
−1

)

28. x⃗ ′′=

(
−2 1 0
1 −2 1
0 −1 −2

)
x⃗ + et

1
1
1


Convert Damped 2nd Order System to
u⃗ ′ = Au⃗ + G⃗ (t)

29. x⃗ ′′=

(
−2 1
1 −1

)
x⃗ +

(
0 1
1 0

)
x⃗ ′ +

(
1
−1

)

30. x⃗ ′′ =

(
−2 1 0
1 −2 1
0 −1 −2

)
x⃗ + x⃗ ′ + et

1
1
1


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11.3 Structure of Linear Systems

Notation for Linear Systems

A linear system is a system of differential equations of the form

x′1 = a11x1 + · · · + a1nxn + f1,
x′2 = a21x1 + · · · + a2nxn + f2,

...
... · · ·

...
...

x′m = am1x1 + · · · + amnxn + fm,

(1)

where ′ = d/dt. Given are the functions aij(t) and fj(t) on some interval
a < t < b. The unknowns are the functions x1(t), . . . , xn(t).

The system is called homogeneous if all fj = 0, otherwise it is called non-
homogeneous.

Matrix Notation. A non-homogeneous system of linear equations (1) is written
as the equivalent vector-matrix system

x⃗ ′ = A(t)x⃗ + F⃗ (t)

where

x⃗ =

 x1
...
xn

 , F⃗ =

 f1
...
fn

 , A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 .

Existence-Uniqueness

Special results are isolated to illustrate how Picard-Lindelöf theory is applied to
linear systems. Proofs start on page 859.

Theorem 11.3 (Gronwall’s Lemma)
Let u(t), v(t) be continuous functions with v(t) ≥ 0 on interval t0 ≤ t ≤ t0 + H.

Assume u(t) ≤ c+

∫ t

t0

u(r)v(r)dr for t for t0 ≤ t ≤ t0 +H. Then:

u(t) ≤ c e
−
∫ t
t0

v(r)dr
, t0 ≤ t ≤ t0 +H.

Theorem 11.4 (Unique Zero Solution)
Let A(t) be an m× n matrix with entries continuous on t0 ≤ t ≤ t0 +H. Then the
initial value problem

x⃗ ′ = A(t)x⃗ , x⃗ (t0) = 0⃗

has unique solution x⃗ (t) = 0⃗ on t0 ≤ t ≤ t0 +H.
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Theorem 11.5 (Picard-Lindelöf)
Let n-vector F⃗(t) and n × n matrix A(t) be continuous on interval J : a < t < b.
Let t0 be in J . Let x⃗ 0 be in Rn. Then the initial value problem

x⃗ ′ = A(t)x⃗ + F⃗(t), x⃗ (t0) = x⃗ 0

has a unique solution x⃗ (t) defined on all of J .

Theorem 11.6 (Existence-Uniqueness for Constant Linear Systems)
Let A(t) = A be an m×n matrix with constant entries and let t0 be any real number
and let x⃗ 0 be any n-vector. Then the initial value problem

x⃗ ′ = Ax⃗ , x⃗ (t0) = x⃗ 0

has a unique solution x⃗(t) defined for all values of t.

Theorem 11.7 (Uniqueness and Solution Crossings)
Let A(t) be an m×n matrix with entries continuous on a < t < b and assume F⃗ (t) is

also continuous on a < t < b. If x⃗ 1(t) and x⃗ 2(t) are solutions of x⃗
′ = A(t)x⃗ + F⃗ (t)

on a < t < b and x⃗ 1(t0) = x⃗ 2(t0) for some t0, a < t0 < b, then x⃗ 1(t) = x⃗ 2(t) for
a < t < b.

Linearity and Superposition

Linear homogeneous systems have linear structure and nonhomogeneous sys-
tems obey a Principle of Superposition.

Theorem 11.8 (Linear Structure)
Let x⃗ ′ = A(t)x⃗ have two solutions x⃗ 1(t), x⃗ 2(t). If k1, k2 are constants, then
x⃗(t) = k1 x⃗ 1(t) + k2 x⃗ 2(t) is also a solution of x⃗ ′ = A(t)x⃗ .

Theorem 11.9 (Basis)
The solution set of x⃗ ′ = A(t)x⃗ is an n-dimensional subspace of the vector space of
all vector-valued functions x⃗ (t) on a < t < b.

Let a < t0 < b. A standard basis w⃗ 1(t), . . . , w⃗n(t) is defined by w⃗ ′
j(t) =

A(t)w⃗ j(t), w⃗ j(t0) = e⃗ j = column j of the identity matrix I, 1 ≤ j ≤ n.

Every solution x⃗ (t) of x⃗ ′(t) = A(t)x⃗ (t) has a unique basis expansion:

x⃗ (t) = c1w⃗ 1(t) + c2w⃗ 2(t) + · · ·+ cnw⃗n(t)

Theorem 11.10 (Superposition Principle)
Let x⃗ ′ = A(t)x⃗ + F⃗ (t) have a particular solution x⃗p(t). If x⃗ (t) is any solution of

x⃗ ′ = A(t)x⃗+F⃗(t), then x⃗ (t) can be decomposed as homogeneous plus particular:

x⃗ (t) = x⃗h(t) + x⃗p(t).
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11.3 Structure of Linear Systems

Term x⃗h(t) is a certain solution of the homogeneous differential equation x⃗ ′ =
A(t)x⃗ , which means arbitrary constants c1, c2, . . . have been assigned specific values.
The shortest particular solution x⃗p(t) excludes any term y⃗ (t) satisfying y⃗ ′t() =
A(t)y⃗ (t), such terms being absorbed into x⃗h(t).

Theorem 11.11 (Difference of Solutions)
Let x⃗ ′ = A(t)x⃗ + F⃗(t) have two solutions x⃗ = u⃗(t) and x⃗ = v⃗ (t). Define
y⃗ (t) = u⃗(t)− v⃗ (t). Then y⃗ (t) satisfies the homogeneous equation

y⃗ ′ = A(t)y⃗ .

General Solution

The general solution of x⃗ ′ = A(t)x⃗ + F⃗(t) is an expression involving arbitrary
constants c1, c2, . . . and certain functions. The expression may be given in vector
notation, although scalar expressions are commonplace and perfectly acceptable.
Required is that the expression represents all solutions of the differential equation,
in the following sense:

Definition 11.1 (General Solution of
→
x ′ = A(t)

→
x +

→
F (t))

An expression is called a general solution of system x⃗ ′(t) = A(t)x⃗ (t) + F⃗ (t)
provided:

(a) Every assignment of constants in the expression produces a
solution of the differential equation.

(b) Every possible solution is uniquely obtained from the expression
by specializing the constants.

Superposition Theorem 11.10 implies that the constants in the general solution
are identified as multipliers against solutions of the homogeneous differential
equation. The general solution has recognizable structure:

Theorem 11.12 (General Solution)
Let A(t) be an n × n matrix. Let F⃗(t) be an n × 1 vector. Assume A(t) and

F⃗(t) are continuous on an interval a < t < b. Then linear nonhomogeneous system
x⃗ ′ = A(t)x⃗ + F⃗ (t) has general solution x⃗ given by the expression

x⃗ = x⃗h(t) + x⃗p(t).

1. Term y⃗ = x⃗h(t) is a general solution of the homogeneous equation y⃗ ′ = A(t)y⃗
which contains n arbitrary constants c1, . . . , cn.

2. Term x⃗ = x⃗p(t) is a particular solution of x⃗ ′ = A(t)x⃗ + F⃗(t).
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11.3 Structure of Linear Systems

Recognition of Homogeneous Solution Terms

Assume given an expression x⃗ for the general solution of vector-matrix equation
x⃗ ′(t) = A(t)x⃗(t) + F⃗(t), either in scalar component form or in vector form.
Expression x⃗ contains arbitrary constants c1, . . . , cn. It is possible to isolate
both terms x⃗h and x⃗p by a simple procedure.

Finding x⃗p. The first step: set to zero all arbitrary constants c1, c2, . . . , cn.
The resulting expression is free of unresolved constants. The answer sought for
x⃗p(t) has no term y⃗ (t) with A(t)y⃗ (t) = 0⃗ . If the expression contains such a term
y⃗ , then remove it. Repeat inspection and removal until no such term y⃗ appears.
If the expression x⃗ consists of equations in scalar component form, then assemble
the modified equations into vector x⃗p. Otherwise, the modified x⃗ is vector x⃗p.

Finding x⃗h. The first step: take partial derivatives on the general solution
expression x⃗ with respect to the symbols c1, . . . , cn. The formula:

u⃗k(t) =
∂

∂ck
x⃗ , 1 ≤ k ≤ n.

A vector solution basis for y⃗ ′ = A(t)y⃗ is {u⃗k}nk=1. The technique isolates the
vector components of the homogeneous solution from any form of the general
solution, including scalar formulas for the components of x⃗ . Then:

x⃗h(t) = c1u⃗ 1(t) + c2u⃗ 2(t) + · · ·+ cnu⃗n(t).

Vector General Solution. A general solution x⃗ of the nonhomogeneous linear
system x⃗ ′ = A(t)x⃗ + F⃗ (t) is given by the expression

x⃗ = c1u⃗ 1(t) + c2u⃗ 2(t) + · · ·+ cnu⃗n(t) + x⃗p(t).

In this expression, each assignment of the constants c1, . . . , cn produces a solution
of the nonhomogeneous system, and conversely, each possible solution of the
nonhomogeneous system is obtained by a unique specialization of the constants
c1, . . . , cn.

Independence

Constants c1, . . . , cn in the general solution x⃗ = x⃗h + x⃗p appear exactly in the
expression x⃗h, which has the form

x⃗h = c1u⃗ 1 + c2u⃗ 2 + · · ·+ cnu⃗n.

A solution x⃗ of x⃗ ′(t) = A(t)x⃗ (t) + F⃗ (t) uniquely determines the constants. In
particular, the zero solution of the homogeneous equation is uniquely represented,
which can be stated this way:

c1u⃗ 1 + c2u⃗ 2 + · · ·+ cnu⃗n = 0⃗ implies c1 = c2 = · · · = cn = 0.
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11.3 Structure of Linear Systems

This statement equivalently says that the list of n vector-valued functions u⃗ 1(t),
. . . , u⃗n(t) is Linearly Independent, as defined in linear algebra.

Hand calculations might write down a candidate general solution to some 3 × 3
linear system x⃗ ′ = Ax⃗ , the resulting equations looking like

x1 = c1e
t + c2e

t + c3e
2t,

x2 = c1e
t + c2e

t + 2c3e
2t,

x3 = c1e
t + c2e

t + 4c3e
2t.

The example illustrates a classic mistake made in calculations: it is not a general
solution, even though it satisfies x⃗ ′ = Ax⃗ !

How can we detect the mistake, given only that this expression is supposed to
represent the general solution? A required step is to test that u⃗ 1 = ∂x⃗/∂c1,
u⃗ 2 = ∂x⃗/∂c2, u⃗ 3 = ∂x⃗/∂c3 are indeed solutions. To insure the unique repre-
sentation requirement of a general solution ((b) page 852), the vector func-
tions u⃗ 1, u⃗ 2, u⃗ 3 must be linearly independent. Compute partial derivatives on
symbols c1, c2, c3:

u⃗ 1 =

 et

et

et

 , u⃗ 2 =

 et

et

et

 , u⃗ 3 =

 e2t

2e2t

4e2t

 .

Then u⃗ 1 = u⃗ 2, which implies that the functions u⃗ 1, u⃗ 2, u⃗ 3 fail to be indepen-
dent. While it is possible to test independence by a rudimentary test based upon
the definition of independence, the preferred method uses following tests due to
Norwegian mathematician N. H. Abel (1802-1829).

Definition 11.2 (Wronskian Determinant of Vector Functions)
Let u⃗ j(t) : a < t < b→ Rn be given, 1 ≤ j ≤ n. The Wronskian determinant is
W (t) = det(U), where U is the augmented matrix of u⃗ 1(t), . . . , u⃗n(t). In terms of
components uij of vector u⃗ j , 1 ≤ i, j ≤ n:

W (t) =

∣∣∣∣∣∣∣
u11 · · · u1n

...
. . .

...
un1 · · · unn

∣∣∣∣∣∣∣
Theorem 11.13 (Abel-Liouville Formula)
Let vector functions u⃗ 1(t), . . . , u⃗n(t) be solutions of x⃗ ′ = A(t)x⃗ , a < t < b. Let
W (t) be the Wronskian determinant of these solutions. Assume a < t0 < b. Then
the Abel-Liouville formula holds:

W (t) = e
∫ t
t0
trace(A(s))ds

W (t0).
6

In particular, the Wronskian determinant W (t) is either everywhere nonzero or ev-
erywhere zero, accordingly as W (t0) ̸= 0 or W (t0) = 0.

6The trace of a square matrix is the sum of its diagonal elements.
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11.3 Structure of Linear Systems

Theorem 11.14 (Abel’s Wronskian Independence Test)
Vector solutions x⃗ = u⃗ 1, . . . , u⃗n of x⃗ ′ = A(t)x⃗ are linearly independent on a < t <
b if and only if the Wronskian determinant W (t0) is nonzero for some a < t0 < b.

Initial Value Problems and Reduced Echelon Form

An initial value problem is the problem of solving for x⃗ , given

x⃗ ′ = A(t)x⃗ + F⃗ (t), x⃗ (t0) = x⃗ 0.

Assume general solution

x⃗ = c1u⃗ 1(t) + · · ·+ cnu⃗n(t) + x⃗p(t),

then the problem of finding x⃗ reduces to finding c1, . . . , cn in the relation

c1u⃗ 1(t0) + · · ·+ cnu⃗n(t0) + x⃗p(t0) = x⃗ 0.

This is a matrix equation for the unknown constants c1, . . . , cn of the form
Bc⃗ = d⃗ , where B is the augmented matrix of u⃗ 1(t0), . . . , u⃗n(t0):

B = ⟨u⃗ 1(t0)| · · · |u⃗n(t0)⟩, c⃗ =

 c1
...
cn

 , d⃗ = x⃗ 0 − x⃗p(t0).

The reduced row echelon form or rref provides a method to find c⃗ . The method:
perform swap, combination and multiply operations to the augmented matrix
C = ⟨B|d⃗⟩ until rref(C) = ⟨I |⃗c⟩.

Equilibria of x⃗′ = A(t)x⃗

An equilibrium point x⃗ 0 of a linear system x⃗ ′ = A(t)x⃗ is a constant solution,
x⃗(t) = x⃗ 0 for all t. Equilibria make sense when A(t) is constant, although the
definition applies to continuous systems. For a solution x⃗ to be constant means
x⃗ ′ = 0⃗ , hence all equilibria are determined from the equation

A(t)x⃗ 0 = 0⃗ for all t.

This homogeneous system of linear algebraic equations is to be solved for x⃗ 0. It
is not allowed for the answer x⃗ 0 to depend on t: if it does, then it is not an
equilibrium.

The theory for a constant matrix A(t) ≡ A says that either x⃗ 0 = 0⃗ is the unique
solution or else there are infinitely many nonzero answers for x⃗ 0. Expectations
for any matrix A(t) are similar but an algorithm is lacking for finding nonzero
x⃗ 0.
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Examples and Methods

Example 11.1 (Vector Form of the General Solution)

Consider a 3×3 linear system x⃗ ′ = A(t)x⃗+F⃗(t) with general solution x⃗ (components
x1, x2, x3) given in scalar form by the expressions

x1 = c1e
t + c2e

−t + t,
x2 = (c1 + c2)e

t + c3e
2t,

x3 = (2c2 − c1)e
−t + (4c1 − 2c3)e

2t + 2t.
(2)

Find the vector form of the general solution.

Solution to Example 11.1

Find x⃗p(t). Set c1 = c2 = c3 = 0 in scalar equations (2):

x⃗p(t) =

 t
0
2t

 .

Find x⃗h. Take partial derivatives in scalar equations (2) with respect to the variable

names c1, c2, c3 to determine u⃗k =
∂x⃗

∂ck
:

u⃗1 =

 et

et

−e−t + 4e2t

 , u⃗2 =

 e−t

et

2e−t

 , u⃗3 =

 0
e2t

−2e2t

 .

The homogeneous system vector solution:

x⃗h(t) = c1u⃗1(t) + c2u⃗2(t) + c3u⃗3(t)

The nonhomogeneous system vector general solution:

x⃗ (t) = c1u⃗1(t) + c2u⃗2(t) + c3u⃗3(t) + x⃗p(t)

= c1

 et

et

−e−t + 4e2t

+ c2

 e−t

et

2e−t

+ c3

 0
e2t

−2e2t

+

 t
0
2t

 .

To be a general solution, expression x⃗ = c1u⃗1(t)+c2u⃗2(t)+c3u⃗3(t)+ x⃗p(t) must satisfy
required elements (a) and (b) in the definition of general solution (page 852). Already
(a) is satisfied. Issue (b) is not settled: vectors u⃗1, u⃗2, u⃗3 must be independent, to
be settled by Abel’s formula and the Wronskian test infra, details delayed to a further
example.

Example 11.2 (Dependence by Abel’s Wronskian Test)

Assume a 3 × 3 system x⃗ ′ = Ax⃗ was solved by hand for general solution x⃗ =
c1u⃗ 1 + c2u⃗ 2 + c3u⃗ 3 where

u⃗ 1 =

 et

et

et

 , u⃗ 2 =

 et

et

et

 , u⃗ 3 =

 e2t

2e2t

4e2t

 .
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Choose t0 in Abel’s Wronskian Test to establish dependence. The reported expres-
sion x⃗ is not a general solution.

Details for Example 11.2

Wronskian determinant W (t) is quite complicated, but W (0) is zero because it has two
duplicate columns. Choice t0 = 0 in Abel’s Wronskian test detects dependence of
solutions u⃗1, u⃗2, u⃗3.

Example 11.3 (Abel’s Wronskian Test Detects Independence)

Assume a 3 × 3 system x⃗ ′ = Ax⃗ was solved by hand for general solution x⃗ =
c1u⃗ 1 + c2u⃗ 2 + c3u⃗ 3 where

u⃗ 1 =

 2e−t

−e2t + 2et

4e−t + 2e2t

 , u⃗ 2 =

 e−t

e−t − e2t

2e2t + 2e−t

 , u⃗ 3 =

 et

et

3et

 .

Choose t0 in Abel’s Wronskian Test to establish independence. The expression x⃗ is
the general solution.

Details for Example 11.3

At t = 0 the solutions become the column vectors

u⃗1 =

 2
1
6

 , u⃗2 =

 1
0
4

 , u⃗3 =

 1
1
3

 .

Then W (0) = det
(
⟨u⃗1(0)|u⃗2(0)|u⃗3(0)⟩

)
= −1 is nonzero. Vectors u⃗1, u⃗2, u⃗3 are

independent and x⃗ is the general solution.

Example 11.4 (Find A and
→
F from a General Solution)

Assume a 3 × 3 system x⃗ ′(t) = Ax⃗ (t) + F⃗(t) has general solution x⃗ = c1u⃗ 1 +
c2u⃗ 2 + c3u⃗ 3 + x⃗p where

u⃗ 1=

 2e−t

−e2t + 2et

4e−t + 2e2t

 , u⃗ 2=

 e−t

e−t − e2t

2e2t + 2e−t

 , u⃗ 3=

 et

et

3et

 , x⃗p=

1
t
t2

 .

Find matrix A and vector function F⃗(t).

Solution to Example 11.4

Superposition implies u⃗ ′
k(t) = Au⃗k(t), 1 ≤ k ≤ 3. Let t = 0 in these equations and then

re-assemble the equations into a single matrix equation:

⟨u⃗ ′
1(0)|u⃗ ′

2(0)|u⃗ ′
3(0)⟩ = A⟨u⃗1(0)|u⃗2(0)|u⃗3(0)⟩
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 −2 −1 1
−4 −3 1
0 2 3

 = A

 2 1 1
1 0 1
6 4 3


Solve the matrix equation by inversion:

A =

 −9 4 2
−11 6 2
−18 6 5


Vector F⃗(t) can be found from x⃗ ′

p(t) = Ax⃗p(t) + F⃗(t) by solving for F⃗ :

F⃗(t) =

 −2t2 − 4t+ 9
−2t2 − 6t+ 12
−5t2 − 4t+ 18



Example 11.5 (Solve
→
x ′(t) = A

→
x (t)+

→
F (t) with Initial Conditions)

Assume:

x⃗ ′(t) =

 −3 4 2
−2 6 2
−12 6 7

+

 t
0
2t


x1(0) = 1, x2(0) = 0, x3(0) = −1
x1 = c1e

t + c2e
−t + t

x2 = (c1 + c2)e
t + c3e

2t

x3 = (2c2 − c1)e
−t + (4c1 − 2c3)e

2t + 2t

Solve for c1, c2, c3.

Solution to Example 11.5

The equations for x1, x2, x3 evaluated at t = 0 give the system of linear algebraic equa-
tions

1 = c1e
0 + c2e

0 + 0,
0 = (c1 + c2)e

0 + c3e
0,

−1 = (2c2 − c1)e
0 + (4c1 − 2c3)e

0 + 0.

In standard form it is the 3× 3 linear system

c1 + c2 = 1,
c1 + c2 + c3 = 0,

3c1 + 2c2 − 2c3 = −1.

The augmented matrix C:

C =

 1 1 0 1
1 1 1 0
3 2 −2 −1

 . rref(C) =

 1 0 0 −5
0 1 0 6
0 0 1 −1

 .

Then c1 = −5, c2 = 6, c3 = −1.
The final answer:

x1 = −5et + 6e−t + t,
x2 = et − e2t,
x3 = 17e−t − 18e2t + 2t.
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Example 11.6 (Equilibria for
→
x ′(t) = A(t)

→
x (t))

Find all equilibria for system

x′1 = x1 + x2
x′2 = sin(t)x1 + sin(t)x2

Solution to Example 11.6

Let A(t) =

(
1 1

sin(t) sin(t)

)
. Let vector x⃗0 have components x1, x2. Then A(t)x⃗0 = 0⃗

has scalar form: {
x1 + x2 = 0

sin(t)x1 + sin(t)x2 = 0

The equations must hold for all values of t. Because sin(t) ̸= 0 except for t = nπ, an
equivalent system for x1, x2 is {

x1 + x2 = 0
x1 + x2 = 0

Solve the linear system. Then all constant solutions of x⃗ ′ = A(t)x⃗ are:(
x1

x2

)
= t1

(
1
−1

)
, −∞ < t1 <∞

It is an error to report t = π, x1 = 1, x2 = −1 as an equilibrium solution. Reports of
equilibria are constants for x1, x2 which produce a solution of x⃗ ′ = A(t)x⃗ for all values
of t.

Proofs for Theorems 11.3 to 11.14

Proof of Theorem 11.3: Gronwall’s Lemma

Let w(t) = c+

∫ t

t0

u(r)v(r)dr and F (t) = e
∫ t
t0

v(r)dr
. Then:

w′(t) = u(t)v(t) Fundamental Theorem of calculus.

w′(t) ≤ v(t)w(t) Hypothesis u(t) ≤ w(t).

(F (t)w(t))′

F (t)
≤ 0 Integrating factor identity, for t > t0.

(F (t)w(t))′ ≤ 0 For t in J .

F (t)w(t) ≤ F (t0)w(t0) Integrate across the inequality on J .

F (t)w(t) ≤ c Because F (t0) = 1 and w(t0) = c.

w(t) ≤ c e
−
∫ t
t0

v(r)dr
Divide by F (t).

u(t) ≤ c e
−
∫ t
t0

v(r)dr
Hypothesis u(t) ≤ w(t).

Proof of Theorem 11.4: Unique Zero Solution

Zero is a solution because it satisfies both the differential equation and the initial condi-
tion. It remains to prove that zero is the unique global solution.
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Assume x⃗ (t) is another solution to the initial value problem. Let ∥B∥ denote the Eu-

clidean matrix norm. Then |x⃗ (t)| ≤
∫ t

0
∥A(r)∥|x⃗ (r)|dr for t ≥ t0 . Define u(t) = |x⃗ (t)|

and v(t) = ∥A(t)∥. Then u(t) ≤ c +
∫ t

t0
u(r)v(r)dr for c = 0. Apply Gronwall’s Lemma

11.3. Then u(t) ≤ 0, which implies x⃗ (t) = 0 for t0 ≤ t ≤ t0 +H.

Proof of Theorem 11.5: Picard-Lindelöf

Uniqueness is proved by subtracting two possible solutions: x⃗ (t) = x⃗1(t)− x⃗2(t). Then
x⃗ satisfies the hypotheses of Theorem 11.4, implying x⃗ (t) = 0 and then x⃗1(t) = x⃗2(t)
for all t in J .

Existence is proved by modification of the classical Picard-Lindelöf proof. The Picard
iterates are constructed for the associated integral equation:

x⃗ (t) = x⃗ (t0) +

∫ t

t0

A(r)F⃗ (r) dr

The essential step proves that the iterates converge uniformly to a solution x⃗ (t) on the
entire interval J . Details are in the exercises (Advanced Calculus required).

Proof of Theorem 11.6: Existence-Uniqueness for Constant Linear Systems

Picard-Lindelöf Theorem 11.5 applies to any interval a < t < b. Therefore, the unique
solution is defined for all values of t.

Proof of Theorem 11.7: Uniqueness and Solution Crossings

The crossing theorem restates uniqueness in Picard-Lindelöf Theorem 11.5.

Proof of Theorem 11.8: Linear Structure
Let x⃗ (t) = k1 x⃗1(t) + k2 x⃗2(t). Then:

A(t)x⃗ (t) = k1 A(t)x⃗1(t) + k2 A(t)x⃗2(t) Matrix multiply

= k1 x⃗
′
1(t) + k2 x⃗

′
2(t) Because x⃗1, x⃗2 are solutions.

= x⃗ ′(t) Differential equation verified.

Proof of Theorem 11.9: Basis

Let V be the vector space of all real-valued vector functions x⃗ (t) defined on a < t < b.

Let S be the set of all solutions of x⃗ ′ = Ax⃗ , a subset of V .

Construct a standard basis {w⃗ k}nk=1 for S by applying the Picard-Lindelöf theorem
to initial value problem x⃗ ′ = Ax⃗ , x⃗ (t0) = x⃗0, with x⃗0 successively set equal to the
columns of the n × n identity matrix. This produces n solutions w⃗ 1, . . . , w⃗n to the
equation x⃗ ′ = A(t)x⃗ , all of which exist on the same interval a < t < b.

It will be shown that the span in V of W = {w⃗ + 1, . . . , w⃗n} equals S. Then S has a
basis of n elements, which proves the theorem.

span(W ) ⊂ S: Let linear combination

x⃗ (t) = c1w⃗ 1(t) + c2w⃗ 2(t) + · · ·+ cnw⃗n(t)(3)

belong to span(W ). Theorem 11.8 implies that the linear combination x⃗ (t) is a solution
of x⃗ ′ = A(t)x⃗ . Then x⃗ (t) is in S.

S ⊂ span(W ): if x⃗ (t) is in S, then x⃗ (t0) has components c1, . . . , cn. Function y⃗ (t) =
c1w⃗ 1(t)+ c2w⃗ 2(t)+ · · ·+ cnw⃗n(t) is in span(W ), hence in S, and it has the same initial
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11.3 Structure of Linear Systems

condition: y⃗ (t0) equals x⃗ (t0). The Picard theorem says x⃗ (t) = y⃗ (t), therefore x⃗ (t) is
in span(W ).

Proof of Theorem 11.10: Superposition

Assume x⃗ ′
h(t) = A(t)x⃗h(t) and x⃗ ′

p(t) = A(t)x⃗p(t) + F⃗(t).

Let x⃗ (t) = x⃗h(t)+ x⃗p(t). Let’s prove x⃗ (t) is a solution of the nonhomogeneous equation.

x⃗ ′(t) = x⃗ ′
h(t) + x⃗ ′

p(t) Differential calculus.

= A(t)x⃗h(t) +A(t)x⃗p(t) + F⃗(t) Use the two differential equations.

= A(t) (x⃗h(t) + x⃗p(t)) + F⃗(t) Matrix algebra.

= A(t)x⃗ (t) + F⃗(t) Definition of x⃗ (t).

Let x⃗ (t) denote any solution of x⃗ ′(t) = A(t)x⃗ (t) + F⃗(t). To prove: y⃗ (t) = x⃗ (t)− x⃗p(t)
is a solution of the homogeneous equation y⃗ ′(t) = A(t)y⃗ (t). Then for some assignment
of constants y⃗ (t) equals x⃗h(t) and x⃗ = y⃗ + x⃗p = x⃗h + x⃗p.

y⃗ ′(t) = x⃗ ′(t)− x⃗ ′
p(t) Differential calculus.

= A(t)x⃗ (t) + F⃗(t)− x⃗ ′
p(t) Differential equation for x⃗ (t).

= A(t)x⃗ (t) + F⃗(t)−A(t)x⃗p(t)− F⃗(t) Differential equation for x⃗p(t).

= A(t) (x⃗ (t)− x⃗p(t)) Matrix algebra.

= A(t)y⃗ (t) Definition of y⃗ (t).

Proof of Theorem 11.11: Difference of Solutions

y⃗ ′(t) = u⃗ ′(t)− v⃗ ′(t) Differential calculus.

= A(t)u⃗ (t) + F⃗ (t)− v⃗ ′(t) Differential equation for u⃗(t).

= A(t)u⃗ (t) + F⃗ (t)−A(t)v⃗ (t)− F⃗(t) Differential equation for v⃗ (t).

= A(t) (u⃗(t)− v⃗ (t)) Matrix algebra.

= A(t)y⃗ (t) Definition of y⃗ (t).

Proof of Theorem 11.12: General Solution

Claim 1. Term y⃗ = x⃗h(t) is a general solution of the homogeneous equation y⃗ ′ = A(t)y⃗
which contains n arbitrary constants c1, . . . , cn.

Each solution y⃗ = x⃗h(t) of y⃗
′ = A(t)y⃗ can be expanded uniquely as a linear combination

of basis elements w⃗ 1(t), w⃗ 2(t), . . . , w⃗n(t) because of the Picard-Lindelöf Theorem 11.5
and Theorem 11.9. Then y⃗ (t) = c1w⃗ 1(t)+c2w⃗ 2(t)+ · · ·+cnw⃗n(t) for weights c1, . . . , cn
is a general solution of y⃗ ′ = A(t)y⃗ . The weights c1, . . . , cn are the n arbitrary constants
required in the general solution.

Claim 2. Term x⃗ = x⃗p(t) is a particular solution of x⃗ ′ = A(t)x⃗ + F⃗(t).

Let x⃗ (t) = x⃗h(t)+ x⃗p(t) be a general solution of x⃗ ′ = A(t)x⃗ + F⃗ (t). Then x⃗ ′
h = A(t)x⃗h

implies x⃗ ′
p = x⃗ ′ − x⃗ ′

h = A(t)(x⃗h + x⃗p) + F⃗(t)−A(t)x⃗h = A(t)x⃗p + F⃗ (t). Then x⃗p is a
particular solution.

Proof of Theorem 11.13: Abel’s Formula
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11.3 Structure of Linear Systems

Let determinant Dj(t) equal W (t) with row j replaced by its derivative, 1 ≤ j ≤ n. The
derivative of determinant W (t) is the sum of these determinants:

W ′(t) = D1(t) + · · ·+Dn(t)

Determinant D1(t) = a11W (t), discovered as follows. Element d1j of D1(t) is expressed
as a summation

∑n
i=1 a1i(t)uij(t). The details: u⃗ ′

j(t) = A(t)u⃗ j(t) and u⃗ j(t) has com-
ponents u1j , . . . , unj . Determinant D1(t) has value unchanged by adding to row 1 a
linear combination of rows 2 to n. The selected combination adds −

∑n
i=2 a1i(t)uij(t) to

d1j , effectively replacing d1j by a11u1j . Then a11(t) is a common factor in row 1 of the
modified determinant D1(t). Factor out a11(t) from row 1, leaving determinant W (t).
Then D1(t) = a11(t)W (t).

Proceeding similarly: Dj(t) = ajj(t)W (t) for 2 ≤ j ≤ n. Then:

W ′(t) = D1(t) + · · ·+Dn(t)
= (a11(t) + · · ·+ ann(t))W (t)
= trace(A(t))W (t)

The claimed expression for W (t) is the solution of the first order linear differential
equation W ′ = trace(A(t))W , by the linear integrating factor method.

If W (t0) = 0, then the formula implies W (t) = 0 for all t. Conversely, if W (t0) ̸= 0
for some t0, then the formula implies W (t) is never zero, because exponentials are never
zero.

Proof of Theorem 11.14: Abel’s Wronskian Test Linear combination
∑n

i=1 ciu⃗ i(t)

is the zero function if and only if the matrix equation U(t)⃗c = 0⃗ has only the zero
solution c⃗ = 0⃗ , where U(t) is the augmented matrix of u⃗1(t), . . . , u⃗n((t) and vector
c⃗ has components c1, . . . , cn. The matrix equation has only the zero solution c⃗ = 0⃗
if and only if det(U(t)) ̸= 0. The Abel-Liouville formula completes the proof, because
det(U(t)) = W (t), the Wronskian of the n solutions.

Exercises 11.3 �

Linear Systems
Convert to matrix notation u⃗ ′ = Au⃗ +
F⃗(t).

1. x′
1 = 2x1 + x2 + et,

x′
2 + x1 − 2x2 = sinh(t)

2. x′
1 = x1 + x2 + x3,

x′
2 + x1 − 2x2 + x3 = ln |1 + t2|,

x′
3 = x2 + x3 + cosh(t)

Existence-Uniqueness

3. Apply Gronwall’s inequality to
|y(t)| ≤ 4 +

∫ t

0
(1 + r2)|y(r| dr, t ≥ 0.

4. Solve with x1(0) = x2(0) = 0:
x′
1 = etx+ e−tx2,

x′
2 = ln |1 + sinh2(t)|x1 + x2

5. Find the interval on which the solution
is defined:
x′
1 = tx1 + x2, x

′
2 = x1 + tan(t)x2

6. Let matrix A be 2 × 2 constant. Find
A, given x⃗ ′ = Ax⃗ has general solution
x1 = c1e

t + c2e
2t, x2 = 5c12e

t + 4c2e
2t.

7. Let x⃗ ′ = A(t)x⃗ have two solutions :(
1
2

)
,

(
et

et

)
. Solve x⃗ ′ = A(t)x⃗ .

8. Let A =

(
0 0
0 0

)
. Solve x⃗ ′ = Ax⃗ .

9. Let constant matrix A be 10× 10. Two
solutions of x⃗ ′ = Ax⃗ have equal value
at t = 100. Are they the same solution?
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11.3 Structure of Linear Systems

10. Solutions y1, y2 of y
′+p(x)y = q(x) are

zero at x = −2. What assumptions on
p, q imply y1 ≡ y2?

Superposition

11. Explain: et is a solution of y′′ − y = 0
because cosh(t), sinh(t) are a solution
basis.

12. Explain: et+10 is a solution of y′′−y =
−10, therefore 10 is a particular solu-
tion.

13. The shortest solution of y′+y = 100 is
y = 100. Explain why.

14. Let x′
1 = 2x1, x

′
2 = −x2. Report the

matrix form x⃗ ′ = Ax⃗ and the vector
general solution.

15. Let 2-dimensional x⃗ ′ = Ax⃗ + F⃗(t)
have general solution x1 = c1e

t + c2e
3t,

x2 = (c1 + c2)e
t + 2c2e

3t + cos(t). Find
formulas for vectors x⃗h and x⃗p.

16. Let x⃗ ′ = Ax⃗ + F⃗ (t) have two solu-
tions x1 = et + e3t, x2 = 2et + sin(t)
and x1 = e3t, x2 = e3t + sin(t). Find a
solution of x⃗ ′ = Ax⃗ .

Superposition x⃗ ′ = Ax⃗ + F⃗ (t)

17. Let u⃗1(t), . . . , u⃗k(t) be solutions of
x⃗ ′ = A(t)x⃗ . Let c1, . . . , ck be con-

stants. Prove: u⃗ (t) =
∑k

i=1 ciu⃗ i(t) is
a solution of x⃗ ′ = A(t)x⃗ .

18. Find the standard basis
w⃗ 1(t), w⃗ 2(t):

x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗

19. Let matrix A be 2 × 2. For x⃗ ′ =
Ax⃗ + F⃗(t), find x⃗h(t), x⃗p(t):
x1 = c1 + c2t+ et, x2 = (c1 − c2)t+ e2t

20. Let matrix A(t) be 2 × 2. Let

x⃗ ′ = A(t)x⃗ + F⃗(t) have two solutions(
1 + et

1

)
,

(
1 + e−t

−1

)
. Find a solution

of x⃗ ′ = A(t)x⃗ .

General Solution

21. Assume A is 2 × 2 and x⃗ ′ = Ax⃗ has

solutions et
(
1
1

)
, e−t

(
1
−1

)
. Find the

general solution and explain.

22. Assume x⃗ ′ = Ax⃗ +

(
1
1

)
. Prove that

zero is not a solution.

23. Assume x⃗ ′ = Ax⃗ +

(
1
1

)
and x⃗ (t) =

x⃗0 = constant. Find an equation for
x⃗0.

24. Find the vector general solution:

x⃗ ′ =

(
1 0
0 2

)
x⃗ +

(
1
1

)
.

25. Given 3 x⃗ ′ = A(t)x⃗ with scalar gen-
eral solution x1 = c1 + c2t+ c3t

2, x2 =
c2+c3t, x3 = c3, find the vector general
solution.

26. Given 3 x⃗ ′ = A(t)x⃗ with scalar gen-
eral solution x1 = c1 + c2t+ c3t

2, x2 =
c2 + c3t, x3 = c3, find A(t).

27. Find the vector general solution:

x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗ +

(
1
1
0

)
.

28. Find the vector general solution:

x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗ +

(
0
1
0

)
.

Independence

29. Assume A is 2×2 and x⃗ ′ = Ax⃗ has so-

lutions et
(
1
1

)
, e−t

(
1
−1

)
. Prove they

are independent directly from the defi-
nition.

30. Compute the Wronskian:

et
(
1
1

)
, e−t

(
1
−1

)
.

Abel-Liouville Formula

31. Apply Abel’s Independence Test:

et
(
1
1

)
, e−t

(
1
−1

)
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32. Let Φ(t) an invertible matrix satisfy-
ing Φ′(t) = AΦ(t). Prove that the
columns of Φ(t) are independent solu-
tions of x⃗ ′ = Ax⃗ .

33. Let Φ(t) an invertible matrix satisfy-
ing Φ′(t) = AΦ(t). Prove that the
columns of Φ(t) are independent solu-
tions of x⃗ ′ = Ax⃗ .

34. Let Φ(t) any matrix satisfying Φ′(t) =
AΦ(t). Assume the determinant of
Φ(t0) is nonzero. Prove that the
columns of Φ(t) are independent solu-
tions of x⃗ ′ = Ax⃗ .

35. Let Φ(t) any matrix satisfying Φ′(t) =
AΦ(t). Let C be a constant matrix.
Prove that the columns of Φ(t)C are so-
lutions of x⃗ ′ = Ax⃗ .

36. Assume continuous coefficients:
y(n)+pn−1y

(n−1)+ · · ·+p0y=0
Prove from the Abel-Liouville formula
for the companion system
that the Wronskian W (t) of
solutions y1, . . . , yn satisfies
W ′ + pn−1(t)W = 0.

Initial Value Problem

37. Let matrix A be 3 × 3. Assume x⃗ ′ =
A(t)x⃗ + F⃗(t) has scalar general solu-
tion x1 = c1e

t + c2e
−t + t, x2 =

(c1 + c2)e
t + c3e

2t, x3 = (c1 + c2)e
t −

2c2e
−t + c3e

2t + t. Given initial con-
ditions x1(0) = x2(0) = 0, x3(0) = 1,
solve for c1, c2, c3.

38. Let matrix A be 3 × 3. Assume x⃗ ′ =
A(t)x⃗ + F⃗(t) has scalar general solu-
tion x1 = c1 + c2t + c3t

2 + et, x2 =
c2+ c3t+ e2t, x3 = c3. Find the vector
particular solution x⃗ for initial condi-
tions x1(0) = x2(0) = 0, x3(0) = 1.

Equilibria

39. Find all equilibria:

x⃗ ′ =

(
cos(t) cos(t)
2 2

)
x⃗

40. Find all equilibria:

x⃗ ′ =

(
sin(t) sin2(t)
2 2

)
x⃗
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11.4 Matrix Exponential

11.4 Matrix Exponential

The problem
d

dt
x⃗ (t) = Ax⃗ (t), x⃗ (0) = x⃗ 0

has a unique solution, according to the Picard-Lindelöf theorem. Solve the prob-
lem n times, when x⃗ 0 equals a column of the identity matrix, and write w⃗ 1(t),
. . . , w⃗n(t) for the n solutions so obtained. The solutions form the standard
basis. Define the matrix exponential eAt by packaging these n solutions into
the columns of a matrix:

eAt ≡ ⟨w⃗ 1(t)| . . . |w⃗n(t)⟩.
By construction, any possible solution of d

dt x⃗ = Ax⃗ can be uniquely expressed

in terms of the matrix exponential eAt by the formula

x⃗ (t) = eAtx⃗(0).

Matrix Exponential Identities

Announced here are formulas and identities for eAt, the matrix exponential.
Most details are delayed to page 869.

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A− λ1I) A is 2×2, λ1 ̸= λ2 real, The-

orem page 866.

eAt = eλ1tI + teλ1t(A− λ1I) A is 2× 2, λ1 = λ2 real.

eAt = eat cos bt I +
eat sin bt

b
(A− aI) A is 2× 2, λ1 = λ2 = a+ ib,

b > 0.

eAt = r1(t)P1 + · · ·+ rn(t)Pn Putzer’s n × n spectral for-
mula, Theorem page 868.

d

dt

(
eAt

)
= AeAt Columns of eAt satisfy x⃗ ′ =

Ax⃗ . Page 869.

e0 = I Where 0 is the zero matrix.

BeAt = eAtB If AB = BA.

eAteBt = e(A+B)t If AB = BA.

eAteAs = eA(t+ s) Since At and As commute.(
eAt

)−1
= e−At Equivalently, eAte−At = I.

eAt = P−1eJtP Jordan form J = PAP−1

eAt =

∞∑
n=0

An t
n

n!
Picard series identity, proof
on page 870
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Putzer’s Spectral Formula

The spectral formula of Putzer applies to a system x⃗ ′ = Ax⃗ to find its general
solution. The method uses matrices P1, . . . , Pn constructed from A, the eigenval-
ues λ1, . . . , λn of A, matrix multiplication and the solution r⃗(t) of the first order
n× n initial value problem

r⃗ ′(t) =


λ1 0 0 · · · 0 0
1 λ2 0 · · · 0 0
0 1 λ3 · · · 0 0

...
0 0 0 · · · 1 λn

 r⃗ (t), r⃗ (0) =


1
0
...
0

 .

The system is solved by first order scalar methods and back-substitution. The
formula will be derived separately for the 2 × 2 case (the one used most often)
and the n× n case.

Theorem 11.15 (Putzer’s 2× 2 Spectral Formula)
Let A be a 2 × 2 matrix. Let r = λ1, λ2 be the two real or complex roots of the
characteristic equation det(A− rI) = 0. Let P1 = I, P2 = A− λ1I. Let functions
r1(t), r2(t) be defined by the scalar system{

r′1 = λ1r1, r1(0) = 1,
r′2 = λ2r2 + r1, r2(0) = 0.

Then the 2× 2 system x⃗ ′ = Ax⃗ , x⃗(0) = x⃗ 0 has solution

x⃗ (t) = (r1(t)P1 + r2(t)P2) x⃗ 0

Proof: The Cayley-Hamilton formula (A − λ1I)(A − λ2I) = 0⃗ is valid for any 2 × 2
matrix A, if r = λ1, λ2 are the two roots of the determinant equation det(A − rI) = 0.
See page 721. The Cayley-Hamilton formula is the same as (A − λ2I)P2 = 0⃗ , which
implies the identity AP2 = λ2P2. Compute as follows.

x⃗ ′(t) = (r′1(t)P1 + r′2(t)P2) x⃗0

= (λ1r1(t)P1 + r1(t)P2 + λ2r2(t)P2) x⃗0

= (r1(t)A+ λ2r2(t)P2) x⃗0

= (r1(t)A+ r2(t)AP2) x⃗0

= A (r1(t)I + r2(t)P2) x⃗0

= Ax⃗ (t).

This proves that x⃗ (t) is a solution. Because Φ(t) ≡ r1(t)P1 + r2(t)P2 satisfies Φ(0) = I,
then x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗0 is satisfied. ■

866



11.4 Matrix Exponential

Real Distinct Eigenvalues

Suppose A is 2× 2 having real distinct eigenvalues λ1, λ2 and x⃗ (0) is real. Then

r1 = eλ1t, r2 =
eλ1t − eλ2T

λ1 − λ2

and

x⃗ (t) =

(
eλ1tI +

eλ1t − eλ2t

λ1 − λ2
(A− λ1I)

)
x⃗(0).

The matrix exponential formula for real distinct eigenvalues:

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A− λ1I).

Real Equal Eigenvalues

Suppose A is 2× 2 having real equal eigenvalues λ1 = λ2 and x⃗ (0) is real. Then
r1 = eλ1t, r2 = teλ1t and

x⃗ (t) =
(
eλ1tI + teλ1t(A− λ1I)

)
x⃗ (0).

The matrix exponential formula for real equal eigenvalues:

eAt = eλ1tI + teλ1t(A− λ1I).

Complex Eigenvalues

Suppose A is 2 × 2 having complex eigenvalues λ1 = a + bi with b > 0 and
λ2 = a − bi. If x⃗ (0) is real, then a real solution is obtained by taking the real
part of the spectral formula. This formula is formally identical to the case of real
distinct eigenvalues. Then

Re(x⃗ (t)) = (Re(r1(t))I +Re(r2(t)(A− λ1I))) x⃗ (0)

=

(
Re(e(a+ib)t)I +Re(eat sin bt

b
(A− (a+ ib)I))

)
x⃗ (0)

=

(
eat cos bt I + eat

sin bt

b
(A− aI)

)
x⃗ (0)

The matrix exponential formula for complex conjugate eigenvalues:

eAt = eat
(
cos bt I +

sin bt

b
(A− aI)

)
.
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How to Remember Putzer’s 2× 2 Formula

The expressions

eAt = r1(t)I + r2(t)(A− λ1I),

r1(t) = eλ1t, r2(t) =
eλ1t − eλ2t

λ1 − λ2

(1)

are enough to generate all three formulas. Fraction r2 is the d/dλ-Newton quo-
tient for r1. It has limit teλ1t as λ2 → λ1, therefore the formula includes the
case λ1 = λ2 by limiting. If λ1 = λ2 = a+ ib with b > 0, then the fraction r2 is
already real, because it has for z = eλ1t and w = λ1 the form

r2(t) =
z − z

w − w
=

sin bt

b
.

Taking real parts of expression (1) gives the complex case formula.

Theorem 11.16 (Putzer’s n× n Spectral Formula)
Let A be an n×n matrix. Let λ1, . . . , λn be the eigenvalues of A, the real or complex
roots r of det(A− rI) = 0. Let

P1 = I, Pk = Pk−1(A− λk−1I) = Πk−1
j=1(A− λjI), k = 2, . . . , n.

Let functions r1(t), . . . , rn(t) be defined by the differential system

r′1 = λ1r1, r1(0) = 1,
r′2 = λ2r2 + r1, r2(0) = 0,

...
r′n = λnrn + rn−1, rn(0) = 0.

Then system x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗ 0 has solution

x⃗ (t) = (r1(t)P1 + r2(t)P2 + · · ·+ rn(t)Pn) x⃗ 0,

Proof on page 871

Theorem 11.17 (Compute eJt for J Triangular)
If J is an upper triangular matrix, then a column u⃗(t) of eJt can be computed by
solving the system u⃗ ′(t) = J u⃗(t), u⃗ (0) = v⃗ , where v⃗ is the corresponding column of
the identity matrix. This problem can always be solved by first-order scalar methods
of growth-decay theory and the integrating factor method. Proof on page 872.

Theorem 11.18 (Exponential of a Diagonal Matrix)
For real or complex constants λ1, . . . , λn,

ediag(λ1,...,λn)t = diag
(
eλ1t, . . . , eλnt

)
.

Proof on page 872.
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11.4 Matrix Exponential

Theorem 11.19 (Block Diagonal Matrix)
If A = diag(B1, . . . , Bk) and each of B1, . . . , Bk is a square matrix, then

eAt = diag
(
eB1t, . . . , eBkt

)
.

Proof on page 872.

Theorem 11.20 (Complex Exponential)

Given real a, b, then e

(
a b
−b a

)
t

= eat
(

cos bt sin bt
− sin bt cos bt

)
.

Proof on page 872

Proofs of Matrix Exponential Identities

The 2× 2 Putzer identities have proofs in the text page 866. Proofs of theorems
are on page 871. The remaining proofs are here.

Verify
(
eAt
)′
= AeAt.

Let x⃗0 denote a column of the identity matrix. Define x⃗ (t) = eAtx⃗0. Then(
eAt
)′
x⃗0 = x⃗ ′(t)

= Ax⃗ (t)
= AeAtx⃗0.

Because this identity holds for all columns of the identity matrix, then (eAt)′ and AeAt

have identical columns. Identity
(
eAt
)′

= AeAt is proved. ■

Verify e0 = I.

e0 = ⟨w⃗ 1(0)| . . . |w⃗n(0)⟩ = I. ■

Verify BeAt = eAtB if AB = BA.

Define w⃗ 1(t) = eAtBw⃗ 0 and w⃗ 2(t) = BeAtw⃗ 0. Calculate w⃗
′
1(t) = Aw⃗ 1(t) and w⃗ ′

2(t) =
BAeAtw⃗ 0 = ABeAtw⃗ 0 = Aw⃗ 2(t), due to BA = AB. Because w⃗ 1(0) = w⃗ 2(0) = w⃗ 0,
then the uniqueness assertion of the Picard-Lindelöf theorem implies that w⃗ 1(t) = w⃗ 2(t).
Because w⃗ 0 is any vector, then eAtB = BeAt. ■

Verify eAteBt = e(A+B)t.

Let x⃗0 be a column of the identity matrix. Define x⃗ (t) = eAteBtx⃗0 and y⃗ (t) =
e(A+B)tx⃗0. We must show that x⃗ (t) = y⃗ (t) for all t. Define u⃗(t) = eBtx⃗0. We
will apply the result eAtB = BeAt, valid for BA = AB. The details:

x⃗ ′(t) =
(
eAtu⃗ (t)

)′
= AeAtu⃗(t) + eAtu⃗ ′(t)
= Ax⃗ (t) + eAtBu⃗(t)
= Ax⃗ (t) +BeAtu⃗(t)
= (A+B)x⃗ (t).
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11.4 Matrix Exponential

Also known is that y⃗ ′(t) = (A + B)y⃗ (t) and since x⃗ (0) = y⃗ (0) = x⃗0, then the Picard-
Lindelöf theorem implies that x⃗ (t) = y⃗ (t) for all t. ■

Verify eAteAs = eA(t+s).

Let t be a variable and consider s fixed. Define x⃗ (t) = eAteAsx⃗0 and y⃗ (t) = eA(t+s)x⃗0.
Then x⃗ (0) = y⃗ (0) and both satisfy the differential equation u⃗ ′(t) = Au⃗(t). By the
uniqueness in the Picard-Lindelöf theorem, x⃗ (t) = y⃗ (t), which implies eAteAs = eA(t+s).
■

Verify
(
eAt
)−1

= e−At.

Let s = −t in the preceding identity eAteAs = eA(t+s). The right side is e0 = I. The
inverse test Chapter 5 Section 2, Theorem 5.9, implies that the two matrices eAt and
e−At are inverses of one another. ■

Verify eAt = P−1eJtP if J = PAP−1.

The proof uses the Picard series identity eAt =

∞∑
n=0

An t
n

n!
, which is proved below. The

issue is the simplification of An using A = P−1JP . Induction is used to derive the
following identities, in which Q = P−1 (then QP = PQ = I):

A = P−1JP = QJP
A2 = QJP QJP = QJ2P

...
An = (QJP ) · · · (QJP ) = QJnP

Then the infinite series simplifies:

eAt =

∞∑
n=0

An t
n

n!

=

∞∑
n=0

QJnP
tn

n!

= Q

( ∞∑
n=0

Jn t
n

n!

)
P

= QeJtP

= P−1eJtP

■

Verify eAt =
∞∑
n=0

An t
n

n!
.

The idea of the proof is to apply Picard iteration. By definition, the columns of eAt are
vector solutions w⃗ 1(t), . . . , w⃗n(t) whose values at t = 0 are the corresponding columns
of the n × n identity matrix. According to the theory of Picard iterates, a particular
iterate is defined by

y⃗n+1(t) = y⃗ 0 +

∫ t

0

Ay⃗n(r)dr, n ≥ 0.
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11.4 Matrix Exponential

Vector y⃗ 0 equals some column k of the identity matrix. The Picard iterates can be found
explicitly, as follows.

y⃗ 1(t) = y⃗ 0 +
∫ t

0
Ay⃗ 0dr

= (I +At) y⃗ 0,

y⃗ 2(t) = y⃗ 0 +
∫ t

0
Ay⃗ 1(r)dr

= y⃗ 0 +
∫ t

0
A (I +At) y⃗ 0dr

=
(
I +At+A2t2/2

)
y⃗ 0,

...

y⃗n(t) =
(
I +At+A2 t2

2 + · · ·+An tn

n!

)
y⃗ 0.

The Picard-Lindelöf theorem implies

lim
n→∞

y⃗n(t) = w⃗ k(t).

This being valid for each index k, then the columns of the matrix converge as N → ∞
to w⃗ 1(t), . . . , w⃗n(t). The matrix limit is formally the infinite series

∞∑
m=0

Am tm

m!
= lim

N→∞

N∑
m=0

Am tm

m!
= ⟨w⃗ 1(t)| . . . |w⃗n(t)⟩

but also eAt ≡ ⟨w⃗ 1(t)| . . . |w⃗n(t)⟩. This proves the matrix identity

eAt =

∞∑
n=0

An t
n

n!
. ■

Proofs of Theorems 11.16–11.20

Theorem 11.16, Proof of Putzer’s n× n Formula:

The Cayley-Hamilton formula (A− λ1I) · · · (A− λnI) = 0⃗ is valid for any n× n matrix
A and the n roots r = λ1, . . . , λn of the determinant equality det(A−rI) = 0. Two facts
will be used: (1) The Cayley-Hamilton formula implies APn = λnPn; (2) The definition
of Pk implies λkPk + Pk+1 = APk for 1 ≤ k ≤ n− 1. Compute as follows.

1 x⃗ ′(t) = (r′1(t)P1 + · · ·+ r′n(t)Pn) x⃗ (0)

2 =

(
n∑

k=1

λkrk(t)Pk +

n∑
k=2

rk−1Pk

)
x⃗0

3 =

(
n−1∑
k=1

λkrk(t)Pk + rn(t)λnPn +

n−1∑
k=1

rkPk+1

)
x⃗0

4 =

(
n−1∑
k=1

rk(t)(λkPk + Pk+1) + rn(t)λnPn

)
x⃗0

5 =

(
n−1∑
k=1

rk(t)APk + rn(t)APn

)
x⃗0
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11.4 Matrix Exponential

6 = A

(
n∑

k=1

rk(t)Pk

)
x⃗0

7 = Ax⃗ (t).

Details: 1 Differentiate the formula for x⃗ (t). 2 Use the differential equations for

r1,. . . ,rn. 3 Split off the last term from the first sum, then re-index the last sum.

4 Combine the two sums. 5 Use the recursion for Pk and the Cayley-Hamilton

formula (A − λnI)Pn = 0⃗ . 6 Factor out A on the left. 7 Apply the definition of
x⃗ (t).

Then x⃗ (t) is a solution. Because Φ(t) ≡
∑n

k=1 rk(t)Pk satisfies Φ(0) = I, then x⃗ (t)
satisfies x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗0. ■

Proof of Theorem 11.17, Compute eJt for J Triangular:

The first statement computes the solution of the problem x⃗ ′ = Ax⃗ , x⃗ (0) = column j of
I, 1 ≤ j ≤ n. These are the columns of eAt, by definition.

Each such problem is known to be solvable by linear first order integrating factor meth-
ods, using the variable list in reverse order.

An example for such a scalar system:

x′
1 = 2x1 + x3,

x′
2 = 3x2 + x3,

x′
3 = 4x3,

x1(0) = 1, x2(0) = x3(0) = 0.

The variable list reversed is x3, x2, x1. The solution starts with x′
3 = 4x3, x3(0) = 0.

The solution is x3 = 0. Then the equation for x2 becomes x′
2 = 3x2 + 0, x2(0) = 0.

Again the solution is x2 = 0. The last equation is x′
1 = 2x1 + 0, x1(0) = 1 with solution

x1 = e2t. ■

Proof of Theorem 11.18, Exponential of a Diagonal Matrix:

It suffices to prove that Φ(t) = diag
(
eλ1t, . . . , eλnt

)
satisfies Φ′(t) = AΦ(t), Φ(0) = I.

Because e0t = 1, then Φ(0) = I. The differential equation is satisfied by the following
steps:

Φ′(t) =

 λ1 e
λ1t · · · 0
...

. . .
...

0 · · · λn e
λnt



=

 λ1 · · · 0
...

. . .
...

0 · · · eλnt


 eλ1t · · · 0

...
. . .

...
0 · · · eλnt


= AΦ(t)

■

Proof of Theorem 11.19, Block Diagonal Matrix Exponential:

Let Φ(t) = diag
(
eB1t, . . . , eBkt

)
. To prove Φ(t) equals eAt, it suffices to prove identities

Φ′(t) = AΦ(t), Φ(0) = I, Already Φ(0) = I. Details for identity Φ′(t) = AΦ(t) will use
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11.4 Matrix Exponential

the formula
d

dt
eCt = C eCt. Apply block differentiation to show Φ′(t) = AΦ(t):

Φ′(t) =

 B1 e
B1t · · · 0
...

. . .
...

0 · · · Bk e
Bkt



=

 B1 · · · 0
...

. . .
...

0 · · · Bk


 eB1t · · · 0

...
. . .

...
0 · · · eBkt


= AΦ(t)

■

Proof of Theorem 11.20, Complex Exponential:

Assume A =

(
a b
−b a

)
with b > 0. Then A has eigenvalues a± bi. Putzer’s 2× 2 formula

will be used, page 867:

eAt = eat
(
cos bt I +

sin bt

b
(A− aI))

)
.

Simplify the matrix expression on the right:

eAt = eat
((

cos bt 0
0 cos bt

)
+ sin bt

b

(
0 b
−b 0

))
= eat

(
cos bt sin bt
− sin bt cos bt

)
■

Exercises 11.4 �

Matrix Exponential.

1. (Picard) Let A be real 2×2. Write out
the two initial value problems which de-
fine the columns w⃗ 1(t), w⃗ 2(t) of e

At.

2. (Picard) Let A be real 3×3. Write out
the three initial value problems which
define the columns w⃗ 1(t), w⃗ 2(t), w⃗ 3(t)
of eAt.

3. Let A be real 2 × 2. Show that x⃗ (t) =
eAtu⃗0 satisfies x⃗ ′ = Ax⃗ , x⃗ (0) = u⃗0.

4. Let A be real n× n. Show that x⃗ (t) =
eAtx⃗0 satisfies x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗0.

Matrix Exponential 2×2. Find eAt from

representation eAt = ⟨w⃗ 1|w⃗ 2⟩. Use first-
order scalar methods.

5. A =

(
1 0
0 2

)
.

6. A =

(
−1 0
0 0

)
.

7. A =

(
1 1
0 0

)
.

8. A =

(
−1 1
0 2

)
.

Matrix Exponential Identities. Verify
from exponential identities.

9. eA e−A = I

10. e−A =
(
eA
)−1

11. A =
d

dt
eAt evaluated at t = 0
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11.4 Matrix Exponential

12. If A3 = 0, then eA = I +A+ 1
2A

2.

13. Let A =

(
a 0
0 a

)
and N =

(
0 1
0 0

)
. Ver-

ify N2 = 0 and
eAt+Nt = eAt(I +Nt).

14. Let A be 3 × 3 diagonal and N =(
0 1 0
0 0 1
0 0 0

)
. Prove N3 = 0 and

eAt+Nt = eAt(I +Nt+N2 t
2

2
).

15. e

(
1 1
0 2

)
t

=

(
et e2t − et

0 e2t

)

16. e

(
1 1
0 1

)
t

=

(
et tet

0 et

)
Putzer’s Spectral Formula.

17. Apply Picard-Lindelöf theory to con-
clude that r1, . . . , rn are everywhere de-
fined,

18. Prove that P1, . . . , Pk commute.

Putzer’s Formula 2× 2 .

19. Find a formula for
d

dt
eAt for a 2 × 2

matrix A with eigenvalues 1, 2.

20. Let 2×2 matrix A have duplicate eigen-
values 0, 0. Compute r1, r2 and then re-
port eAt.

Putzer: Real Distinct. Find the matrix
exponential.

21. A =

(
1 2
0 2

)
22. A =

(
1 0
2 3

)
Putzer: Real Equal. Find the matrix ex-
ponential.

23. A =

(
1 0
0 1

)
24. A =

(
1 2
0 1

)

Putzer: Complex Eigenvalues. Find the
matrix exponential.

25. A =

(
1 1
−1 1

)
26. A =

(
0 2
−2 0

)
How to Remember Putzer’s 2× 2 For-
mula.

27. Find limλ→λ1

eλt − eλ1t

λ− λ1
.

28. Let matrix A be 2 × 2 real. Take the

real part: eAt = I +
eit − e−it

2i
A.

Classical n×n Spectral Formula. Find
eAt.

29. A =

(
0 2 0
−2 0 0
0 0 1

)

30. A =

0 0 2 0
0 −2 0 0
0 0 0 1
1 0 0 0


Proofs of Matrix Exponential
Properties.

31. Let Au⃗ = Bu⃗ for all vectors u⃗ . Prove
A = B.

32. Let A =

(
1 2
0 2

)
. Compute the first four

Picard iterates for x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗0.

Special Cases eAt.

33. Show the details to solve
x′
1 = 2x1 + x3,

x′
2 = 3x2 + x3,

x′
3 = 4x3,

x1(0) = 1, x2(0) = x3(0) = 0.

34. Let A = diag(1, 2, 3, 4). Find eAt.

35. Let B =

(
1 1
0 0

)
, A = diag(B,B). Find

eAt.

36. Let B =

(
1 2
−2 1

)
and

A = diag(B,B). Find eAt.
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11.5 Ziebur, Spectral and Eigenanalysis Methods

11.5 Cayley-Hamilton-Ziebur, Spectral and

Eigenanalysis Methods

Established earlier in this chapter:

x⃗ (t) = eAtx⃗ 0 solves x⃗ ′(t) = Ax⃗ (t), x⃗ (0)− x⃗ 0

Matrix eAt is the augmented matrix of solutions w⃗ i(t) to x⃗ ′ = Ax⃗ with w⃗ i(0) =
column i of the identity matrix, 1 ≤ i ≤ n.

Presented in this section are three premier methods for finding eAt:

Eigenanalysis Method
Spectral Method
Cayley-Hamilton-Ziebur (CHZ) Method

Eigenanalysis Method Requirements. The n× n real matrix A is required
to have n independent eigenvectors in its list of eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2),
. . . , (λn, v⃗n). Briefly, matrix A is diagonalizable. It is not required that the
eigenvalues λ1, . . . , λn be distinct and eigenvalues can be real or complex. The
method uses independence of the Euler substitution solutions eλitv⃗ i, 1 ≤ i ≤
n, which are assembled into augmented matrix Φ(t). The general solution is
x⃗ (t) = eAt x⃗(0), using identity eAt = Φ(t) Φ(0)−1. A negative of the method
occurs with complex eigenvalues: real solutions are found with extra effort via
opaque identities. The method works best on diagonalizable matrices with only
real eigenvalues, e.g., symmetric matrices.

Spectral Method Requirements. The method applies to any real n × n
matrix A. Classical spectral theory of A provides a formula for eAt similar to
Putzer’s formula, thereby finding the solution x⃗ = eAt x⃗ (0) of x⃗ ′ = Ax⃗ . Em-
phasis is on theory. Computational details are left to computer algebra systems,
which efficiently implement the formulas. Hand computation is possible for low
dimensions n = 2, 3 with time impact similar to Putzer’s algorithm for eAt.

Cayley-Hamilton-Ziebur Method Requirements. The method applies to
any real n × n matrix A. It provides a basis of n real vector solutions to the
system x⃗ ′ = Ax⃗ , which are found from characteristic equation |A − λI| = 0
and Euler solution atom theory developed for scalar differential equations. The
connection to eAt is direct and simple: eAt = Φ(t) Φ(0)−1 where Φ(t) is the
n × n augmented matrix of the vector solutions. Hand computation is possible
for low dimensional examples (n = 2, 3) with the lowest time impact of the three
methods. A feature of the Cayley-Hamilton-Ziebur method is minimization of
encounters with complex numbers. One important consequence of the method:

Solutions of x⃗ ′ = Ax⃗ are vector linear combinations of Euler solu-
tion atoms.
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Eigenanalysis Method: 2× 2 Matrix

Theorem 11.21 (Eigenanalysis Method 2× 2)
Let matrix A be 2× 2 real with eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2). Assume eigenvectors
v⃗ 1, v⃗ 2 are independent.

Then the general solution of x⃗ ′ = Ax⃗ can be written as

x⃗ (t) = c1e
λ1tv⃗ 1 + c2e

λ2tv⃗ 2.

Proof:

Eigenvalues λ1, λ2 are either both real or a complex conjugate pair λ1 = λ2 = a + ib
with b > 0. Derivatives and calculations below apply in both cases.

x⃗ ′ = c1(e
λ1t)′v⃗ 1 + c2(e

λ2t)′v⃗ 2 Differentiate the formula for x⃗ .

= c1e
λ1tλ1v⃗ 1 + c2e

λ2tλ2v⃗ 2

= c1e
λ1tAv⃗ 1 + c2e

λ2tAv⃗ 2 Use λ1v⃗ 1 = Av⃗ 1, λ2v⃗ 2 = Av⃗ 2.

= A
(
c1e

λ1tv⃗ 1 + c2e
λ2tv⃗ 2

)
Factor A left.

= Ax⃗ Definition of x⃗ .

Re-write the solution x⃗ in the vector-matrix form

x⃗ (t) = ⟨v⃗ 1|v⃗ 2⟩
(

eλ1t 0
0 eλ2t

)(
c1
c2

)
.(1)

Because eigenvectors v⃗ 1, v⃗ 2 are assumed independent, then ⟨v⃗ 1|v⃗ 2⟩ is invertible and
setting t = 0 in (1) gives (

c1
c2

)
= ⟨v⃗ 1|v⃗ 2⟩−1

x⃗ (0).(2)

Because c1, c2 can be chosen to produce any initial condition x⃗ (0), then x⃗ (t) is the
general solution of the system x⃗ ′ = Ax⃗ .

Proposition 11.2 (Exponential Matrix: 2× 2) Let matrix A be 2 × 2 real with
eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2). Assume eigenvectors v⃗ 1, v⃗ 2 are independent.

Then:

eAt = ⟨v⃗ 1|v⃗ 2⟩
(

eλ1t 0
0 eλ2t

)
⟨v⃗ 1|v⃗ 2⟩−1

(3)

Proof: Combine (1) and (2). ■

Formula (3) is immediately useful when the eigenpairs are real. It is problematic
when the eigenvalues are complex. The complex arithmetic inherited by complex
eigenpairs can be minimized by applying results collected into a Proposition.

Proposition 11.3 (Exponential Matrix: Complex λ2 = λ1)
Assume matrix A is 2 × 2 real with eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2). Let eigenvectors
v⃗ 1, v⃗ 2 be independent.
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Assume λ2 = λ1 and λ1 is not real. Define for eigenpair (λ1, v⃗ 1) symbols a, b, P :

λ1 = a+ ib, b > 0, P = ⟨Re(v⃗ 1)| Im(v⃗ 1)⟩
Then

eAt = eatP

(
cos bt sin bt
− sin bt cos bt

)
P−1(4)

Proof on page 886.

Eigenanalysis Method: 3× 3 Matrix

Theorem 11.22 (Eigenanalysis Method: 3× 3)
Let matrix A be 3× 3 real with eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2), (λ3, v⃗ 3). Assume v⃗ 1,
v⃗ 2, v⃗ 3 are independent.

Then the general solution of x⃗ ′ = Ax⃗ is:

x⃗ (t) = c1e
λ1tv⃗ 1 + c2e

λ2tv⃗ 2 + c3e
λ3tv⃗ 3.

Proof on page 887.

Proposition 11.4 (Exponential Matrix: 3× 3 Complex Form)
Let matrix A be 3× 3 real with eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2), (λ3, v⃗ 3). Let v⃗ 1, v⃗ 2,
v⃗ 3 be independent. Then:

eAt = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩
 eλ1t 0 0

0 eλ2t 0
0 0 eλ3t

⟨v⃗ 1|v⃗ 2|v⃗ 3⟩−1
.

The formula applies when the eigenpairs are real and also when the eigenpairs are
complex. Proof on page 887.

Proposition 11.5 (Exponential Matrix: 3× 3 Real Form)
Let matrix A be 3 × 3 real with eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2), (λ3, v⃗ 3). Let v⃗ 1,
v⃗ 2, v⃗ 3 be independent. Assume one eigenvalue λ3 is real and the other eigenvalues
are a complex conjugate pair λ1 = λ2 = a + ib, b > 0. Define matrix P =
⟨Re(v⃗ 1)| Im(v⃗ 1)|v⃗ 3⟩. Then P is invertible and the exponential matrix is:

eAt = P

 eat cos bt eat sin bt 0
−eat sin bt eat cos bt 0

0 0 eλ3t

P−1(5)

Proof on page 887.
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Eigenanalysis Method: n× n Matrix

The general solution formula and the formula for eAt generalize routinely from
the 2× 2 and 3× 3 cases to the general case of an n× n matrix. Proofs are left
as an exercise, guided by the 3× 3 case.

Theorem 11.23 (The Eigenanalysis Method)
Let the n× n real matrix A have eigenpairs

(λ1, v⃗ 1), (λ2, v⃗ 2), . . . , (λn, v⃗n)

with n independent eigenvectors v⃗ 1, . . . , v⃗n. Then the general solution of the linear
system x⃗ ′ = Ax⃗ is given by

x⃗ (t) = c1v⃗ 1e
λ1t + c2v⃗ 2e

λ2t + · · ·+ cnv⃗ne
λnt.(6)

Proposition 11.6 (General Solution: n× n Complex Matrix Form)
General solution (6) can be expressed as a matrix product:

x⃗(t) = ⟨ v⃗ 1| · · · |v⃗n ⟩diag(eλ1t, . . . , eλnt)

 c1
...
cn

 .

Definition 11.3 (Real Diagonal Form)
Assume n× n matrix A is diagonalizable. List all complex eigenvalues of A in pairs

λ1, λ1, . . . , λp, λp. Then list the real eigenvalues r1, . . . , rq, 2p + q = n. List the
eigenpairs as (λi, v⃗ i), (λi, v⃗ i), 1 ≤ i ≤ p and (rj , v⃗ 2p+j), 1 ≤ j ≤ q. Define

P = ⟨ Re(v⃗ 1)| Im(v⃗ 1)| · · · |Re(v⃗ 2p−1)| Im(v⃗ 2p−1)|v⃗ 2p+1| · · · |v⃗n ⟩
Jλ =

(
a b
−b a

)
, λ = a+ ib, b > 0

The real diagonal form:

A = P diag
(
Jλ1 , · · · , Jλp , r1, · · · , rq

)
P−1

Proposition 11.7 (Exponential Matrix: n× n Real Matrix Form)
Define

Rλ(t) = eat
(

cos bt sin bt
− sin bt cos bt

)
, λ+ a+ ib, b > 0.

Let A = P diag
(
Jλ1 , · · · , Jλp , r1, · · · , rq

)
P−1 be the real diagonal form of diag-

onalizable matrix A.

Then:
eAt = P diag(Rλ1(t), . . . , Rλp(t), e

r1t, . . . , erqt)P−1.
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Remark on Euler Solution Atoms. If the characteristic equation is (λ−1)3 =
0 and there are three independent eigenvectors, then the general solution x⃗ (t) =
c1e

λ1tv⃗ 1+c2e
λ2tv⃗ 2+c3e

λ3tv⃗ 3 contains no terms with tet nor t2et. Intuition from
(λ − 1)3 = 0 suggests that solution components should be linear combinations
of et, tet, t2et. How is that possible? The answer is contained in the linear
combination 2et + 0tet + 0t2et: it is indeed a linear combination of Euler atoms
et, tet, t2et.

Classical Spectral Theory Method

The simplicity of Putzer’s spectral method for computing eAt is appreciated, but
we also recognize that the literature has an algorithm to compute eAt, devoid
of differential equations, which is of fundamental importance in linear algebra.
The parallel algorithm computes eAt directly from the eigenvalues λj of A and
certain products of the nilpotent matrices A− λjI. Called spectral formulas,
they can be implemented in a numerical laboratory or computer algebra system,
in order to efficiently compute eAt, even in the case of multiple eigenvalues.

Theorem 11.24 (Spectral Formula for eAt: Simple Eigenvalues)
Let the n × n matrix A have n simple eigenvalues λ1, . . . , λn (possibly complex)
and define constant matrices Q1, . . . , Qn by the formulas

Qj = Πi ̸=j
A− λiI

λj − λi
, j = 1, . . . , n.

Then
eAt = eλ1tQ1 + · · ·+ eλntQn.

Theorem 11.25 (Spectral Formula for eAt: Multiple Eigenvalues)
Let the n × n matrix A have k distinct eigenvalues λ1, . . . , λk of algebraic multi-
plicities m1, . . . , mk. Let p(λ) = det(A − λI) and define polynomials a1(λ), . . . ,
ak(λ) by the partial fraction identity

1

p(λ)
=

a1(λ)

(λ− λ1)m1
+ · · ·+ ak(λ)

(λ− λk)mk
.

Define constant matrices Q1, . . . , Qk by the formulas

Qj = aj(A)Πi ̸=j(A− λiI)
mi , j = 1, . . . , k.

Then

eAt =
k∑

i=1

eλitQi

mi−1∑
j=0

(A− λiI)
j t

j

j!
.(7)

Proof: Let Ni = Qi(A− λiI), 1 ≤ i ≤ k. First:
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Lemma 11.1 (Properties)
1. Q1 + · · ·+Qk = I,
2. QiQj = 0 for i ̸= j,
3. QiQi = Qi,
4. NiNj = 0 for i ̸= j,
5. Nmi

i = 0,

6. A =
∑k

i=1(λiQi +Ni).

To prove exponential formula (7), use Lemma 11.1 as follows:

eAt =
∑k

i=1 Qie
At Lemma 11.1, item 1

=
∑k

i=1 Qie
λiIt+(A−λiI)t

=
∑k

i=1 Qie
λite(A−λiI)t

=
∑k

i=1 Qie
λiteQi(A−λiI)t Lemma 11.1, items 2, 3

=
∑k

i=1 Qie
λiteNit Definition of Ni

=
∑k

i=1 Qie
λit
∑m1−1

j=0 (A− λiI)
j tj

j! Lemma 11.1, item 6

Proof of Lemma 11.1:
Identity 1: Clear fractions in the partial fraction expansion of 1/p(λ):

1 =

k∑
i=1

ai(λ)
p(λ)

(λ− λi)mi
.

Identity 2: Observe that Qi and Qj together contain all the factors of p(A), therefore
QiQj = q(A)p(A) for some polynomial q. The Cayley-Hamilton theorem p(A) = 0
finishes the details.

Identity 3: Multiply identity 1 by Qi and then use 2.

Identity 4: Write NiNj = (A− λiI)(A− λjI)QiQj and apply 3.

Identity 5: Identity 2 implies Qmi
i = Qi, then Nmi

i = (A− λiI)
miQi = p(A) = 0.

Identity 6: Multiply identity 1 by A and rearrange:

A =
∑k

i=1 AQi

=
∑k

i=1 λiQi + (A− λiI)Qi

=
∑k

i=1 λiQi +Ni

■

Cayley-Hamilton-Ziebur for x⃗′(t) = Ax⃗(t)

Given n × n matrix A, determinant |A − rI| is formed by subtracting r from
the diagonal of A. The characteristic polynomial is p(r) = |A − rI| and
|A− rI| = 0 is the characteristic equation.

The famous result of Cayley and Hamilton is restated in Theorem 11.26. An
elementary proof appears in linear algebra Chapter 5, Theorem 5.20, page 357.
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Theorem 11.26 (Cayley-Hamilton)
Every square matrix A satisfies its own characteristic equation.

Let |A− rI| = (−r)n + an−1(−r)n−1 + · · ·+ a0 be the characteristic polynomial of
n× n matrix A. Let I and 0 denote the n× n identity and zero matrix. Then:

(−A)n + an−1(−A)n−1 + · · ·+ a1(−A) + a0I = 0

Theorem 11.27 (Cayley-Hamilton-Ziebur Theorem: Scalar Form)
Let A be an n × n real matrix. Each of the components x1(t), . . . , xn(t) of a real
vector solution x⃗ (t) of system x⃗ ′(t) = Ax⃗ (t) is a solution of an nth order scalar linear
homogeneous constant-coefficient differential equation with characteristic equation
|A − rI| = 0. The result remains true for complex solutions x⃗ (t) and complex A.
Proof on page 888.

Theorem 11.28 (Cayley-Hamilton-Ziebur Theorem: Vector Form)
Let A be an n × n real matrix. Let A1(t), . . . , An(t) be Euler solution atoms con-
structed from the roots of |A − rI| = 0. The solution of system x⃗ ′ = Ax⃗ is a
vector linear combination of A1(t), . . . , An(t):

x⃗ (t) = d⃗ 1A1(t) + · · ·+ d⃗nAn(t).

Constant vectors d⃗ 1, . . . , d⃗n are determined by A and x⃗ (0) (see identity (8) infra).
The result holds for complex A provided d⃗ 1, . . . , d⃗n are complex. Euler atoms may
be replaced by complex exponentials times powers of t. Proof on page 888.

Theorem 11.29 (Cayley-Hamilton-Ziebur Identity: Real)
Let W (t) be the Wronskian matrix of Euler solution atoms {Aj}nj=1 constructed

from the roots of |A − rI| = 0. Let V = W (0)T . Constant vectors d⃗ 1, . . . , d⃗n in
Cayley-Hamilton-Ziebur Theorem 11.28 are determined by:

⟨d⃗ 1| · · · |d⃗n⟩ = ⟨x⃗ (0)|Ax⃗ (0)| · · · |An−1x⃗ (0)⟩V −1.(8)

Proof on page 888.

Theorem 11.30 (Cayley-Hamilton-Ziebur Identity: Complex)
Identity (8) remains valid if set {Aj}nj=1 is replaced by complex independent lin-

ear combinations {Bj}nj=1 of {Aj}nj=1 with {d⃗ j}nj=1 possibly complex and W (t) is
replaced by the Wronskian matrix of {Bj}nj=1. Proof on page 888.

Theorem 11.31 (Vandermonde Matrix and Identity (8))
Assume the results of Theorems 11.29 and 11.30. If roots λ = λ1, . . . , λn of |A −
λI| = 0 are distinct, then matrix V = W (0)T is the Vandermonde matrix of the
roots:

V =


1 λ1 · · · λn−1

1

1 λ2 · · · λn−1
2

...
... · · ·

...
1 λn · · · λn−1

n

 .(9)
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Proof on page 889.

Theorem 11.32 (Eigenvectors and Identity (8))
Assume the results of Theorems 11.29, 11.30. If |A − λI| = 0 has distinct roots

λ1, . . . , λn, then vector d⃗ j is a scalar multiple of eigenvector v⃗ j for eigenvalue λj ,

1 ≤ j ≤ n (Warning: d⃗ j = 0⃗ is possible). Proof on page 889.

Theorem 11.33 (Eigenvectors by Matrix Multiply)
Let A have distinct eigenvalues {λj}nj=1 and define for any n-vector U⃗

V =


1 λ1 · · · λn−1

1
1 λ2 · · · λn−1

2...
... · · ·

...
1 λn · · · λn−1

n

 , P = ⟨U⃗ |AU⃗ | · · · |An−1U⃗⟩V −1.

Then column j of P is either zero or else an eigenvector of A for λj .

Notation: ⟨y⃗ 1| · · · |y⃗n⟩ = augmented matrix of y⃗ 1,. . . ,y⃗n. To determine all eigen-

vectors experimentally, start with all U⃗ -components one, then change some ones in U⃗
to zero or minus one and repeat.

Proof on page 889.

Example 11.7 (Eigenvectors by Matrix Multiply)
Compute by Theorem 11.33 all eigenvectors of matrix A=

(
1 2
−2 1

)
.

Details for Example 11.7:

The matrix of eigenvectors is P = 1
2

(
1− i 1 + i
1 + i 1− i

)
. Solve |A − λI| = 0 for com-

plex eigenvalues λ1, λ2 = 1 ± 2i, then define V =

(
1 λ1
1 λ2

)
, U =

(
1
1

)
. Compute

B = ⟨U |AU⟩ =

(
1 3
−1 1

)
and V −1 = 1

|V | adj(V ) = 1
−4i

(
λ2 −λ1
−1 1

)
. Multiply to find

P = BV −1 = 1
2

(
1− i 1 + i
1 + i 1− i

)
. Maple code to check the computation:

with(LinearAlgebra):A:=<1,2|-2,1>^+;EV:=Eigenvalues(A);

U:=<1,1>;V:=VandermondeMatrix(EV);P:=<U|A.U>.(1/V);

J:=DiagonalMatrix(EV);A.P-P.J; # Check eigenvectors

Inverse of a Vandermonde Matrix

Notation: Symmetric function ek(r1, . . . , rN ) =
∑

1≤i1<···<ik≤N

ri1 · · · rik

Vieta’s formulas7 supply coefficients ak = (−1)N−kek(r1, . . . , rN ) of degree N
polynomial

∑N−1
k=0 aky

k + yN =
∏N

p=1(y − rp) with roots r1, . . . , rN .

7See https://en.wikipedia.org/wiki/Vieta%27s formulas.
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Theorem 11.34 (Vandermode Inverse)

Let A =

1 · · · xn−1
1...

. . .
...

1 · · · xn−1
n

 with x1, . . . , xn distinct. Then A−1 = B = (bi j):

bi j =
(−1)n−jen−j({x1, . . . , xn} \ {xi})

n∏
p=1,p ̸=i

(xj − xp)

, 1 ≤ i, j ≤ n.(10)

Proof on page 890.

Vieta’s Formulas: maple

# Vieta’s formulas, monic polynomial: maple library

n:=3;q:=expand(product((y-x[i]),i=1..n));

ListTools[Reverse]([coeffs(q,y)]);

# Vieta’s formulas: basic algorithm, no library

# Monic polynomial, roots x[1] to x[n]

F:=proc(r) local A,n,i,j;

n:=nops(r);A:=[seq(0,i=1..n+2)];A[n+1]:=1;

for i from 1 to n do for j from n+1-i to n+1 do

A[j]:=A[j]+(-1)*r[i]*A[j+1]; od; od;

return simplify([seq(A[i],i=1..n+1)]); end proc:

F([seq(x[i],i=1..3)]); # Test n=3

Solving Planar Systems x⃗′(t) = Ax⃗(t)

A 2 × 2 real system x⃗ ′(t) = Ax⃗ (t) can be solved in terms of matrix A and the
two roots of the characteristic equation det(A− λI) = 0.

Two distinct methods are explored below, both with minimal use of complex
numbers.

The most-used method on paper is the Cayley-Hamilton-Ziebur Scalar Short-
cut. Implementations for embedded systems might use the formulas obtained
from the Matrix Shortcut. The only requirement on matrix A is that it not
be a diagonal matrix.

Theorem 11.35 (Cayley-Hamilton-Ziebur Scalar 2× 2 Shortcut)

Let b ̸= 0 in the scalar system

x′1 = a x1 + b x2
x′2 = c x1 + d x2

(11)

Define x1(t)=c1y1(t)+ c2y2(t). Solve for x2(t) in the first equation, then replace x1
by c1y1+ c2y2 on the right of bx2 = x′1−ax1 and simplify to find x2 = k1y1+k2y2.
Proof on page 890.
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Theorem 11.36 (Cayley-Hamilton-Ziebur Matrix 2× 2 Shortcut)

Let A =

(
a b
c d

)
with b ̸= 0. Let y1(t), y2(t) be the Euler solution atoms found from

the roots of |A − λI| = 0. Define constant matrix B by identity

(
y′1
y′2

)
= B

(
y1
y2

)
.

Then the general solution of x⃗ ′ = Ax⃗ with arbitrary constants c1, c2 is{
x1(t)=c1y1(t) + c2y2(t),

x2(t)=k1y1(t) + k2y2(t),
where

(
k1
k2

)
=

1

b
(BT − aI)

(
c1
c2

)
.

Proof on page 890.

Remark. Theorems 11.35, 11.36 solve x⃗ ′ = Ax⃗ when A is not a diagonal
matrix (meaning either b ̸= 0 or c ̸= 0). The case b = 0 and c ̸= 0 is treated
by swapping b, c and x1, x2 in both of Theorems 11.35, 11.36.

Example 11.8 ()
(Scalar and Matrix 2× 2 Shortcuts for Real Roots)
Solve the system{

x′1(t) = x1(t) + 2x2(t),
x′2(t) = 2x1(t) + x2(t),

A =

(
1 2
2 1

)
, x⃗ (t) =

(
x1(t)
x2(t)

)
,

verifying the general solution

{
x1(t)= c1e

−t+c2e
3t,

x2(t)=−c1e−t+c2e
3t.

Details Example 11.8:

The characteristic polynomial

∣∣∣∣1− r 2
2 1− r

∣∣∣∣ = (1 − r)2 − 4 = (r + 1)(r − 3) has roots

r = −1, r = 3 and Euler solution atoms e−t, e3t.

Scalar Shortcut Details. To apply Theorem 11.35, define x1 = c1e
−t + c2e

3t. Solve
the first differential equation x′

1 = x1 + 2x2 for 2x2 = x′
1 − x1 = (c1e

−t + c2e
3t)′ − x1 =

−2c1e−t + 2e3t. Then x2 = −e−t + e3t.

Matrix Shortcut Details. To apply Theorem 11.36, first compute matrix B =

(
−1 0
0 3

)
from

d

dt

(
e−t

e3t

)
=

(
−e−t

e3t

)
=

(
−1 0
0 3

)(
e−t

e3t

)
.

Theorem 11.36 implies(
k1
k2

)
=

1

b
(BT − aI)

(
c1
c2

)
=

1

2
(BT − I)

(
c1
c2

)
=

(
−1 0
0 1

)(
c1
c2

)
.

Then x2(t) = −c1y1 + c2y2 = −c1e−t + c2e
3t.

Example 11.9 ()
(Scalar and Matrix 2× 2 Shortcuts for Complex Roots)
Solve the system{

x′1(t) = x1(t) + 2x2(t),
x′2(t) = −2x1(t) + x2(t),

A =

(
1 2
−2 1

)
, x⃗(t) =

(
x1(t)
x2(t)

)
,

verifying the general solution

{
x1(t)=c1e

t cos(2t)+c2e
t sin(2t),

x2(t)=c2e
t cos(2t)−c1et sin(2t).
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Details Example 11.9: Characteristic polynomial

∣∣∣∣ 1− r 2
−2 1− r

∣∣∣∣ = (1− r)2 + 4 has

roots r = 1± 2i and Euler solution atoms et cos(2t), et sin(2t).

Scalar Shortcut Details. To apply Theorem 11.35, let x1 = c1e
t cos(2t)+ c2e

t sin(2t),
then solve the first differential equation x′

1 = x1+2x2 for 2x2 = x′
1−x1 = (c1e

t cos(2t)+
c2e

t sin(2t))′ − x1 = 2c2e
t cos(2t)− 2c1e

t sin(2t). Then x2 = c2e
t cos(2t)− c1e

t sin(2t).

Matrix Shortcut Details. To apply Theorem 11.36, first compute matrix B =(
1 −2
2 1

)
:

d
dt

(
et cos(2t)
et sin(2t)

)
=

(
et cos(2t)− 2et sin(2t)
et sin(2t) + 2et cos(2t)

)
=

(
−2 1
2 1

)(
et cos(2t)
et sin(2t)

)
Theorem 11.36 implies(

k1
k2

)
= 1

b (B
T − aI)

(
c1
c2

)
= 1

2 (B
T − I)

(
c1
c2

)
= 1

2

(
0 2
−2 0

)(
c1
c2

)
.

Then x2(t) = c2y1 − c1y2 = c2e
t cos(2t)− c1e

t sin(2t).

Theorem 11.37 (Putzer’s Spectral Formula: 2× 2)
Consider the real planar system x⃗ ′(t) = Ax⃗ (t). Let λ1, λ2 be the roots of the

characteristic equation det(A−λI) = 0. The real general solution is x⃗ (t) = eAtx⃗ (0)
where the 2× 2 exponential matrix eAt is given by

Real λ1 ̸= λ2 eAt = eλ1tI +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I).

Real λ1 = λ2 eAt = eλ1tI + teλ1t(A− λ1I).

Complex λ1 = λ2,
λ1 = a+ bi, b > 0

eAt = eat cos bt I +
eat sin(bt)

b
(A− aI).

Proof: The formulas are from Putzer’s algorithm page 868 or equivalently from the
spectral formulas with rearranged terms. The complex case is formally the real part of
the distinct root case when λ2 = λ1. The three formulas are analogous to the second
order equation formulas Chapter 6 Section 1, Theorem 6.1. ■

Example 11.10 (Classical and Putzer Spectral Formulas)

Typical cases are represented by the following 2×2 matrices A, which correspond to
roots λ1, λ2 of the characteristic equation det(A− λI) = 0 which are real distinct,
real double or complex conjugate. The solution x⃗ (t) = eAtx⃗ (0) is given here in

two forms, by writing eAt using 1 a classical spectral formula from Theorems

11.24–11.25 and 2 Putzer’s spectral formula from Theorem 11.37.

λ1 = 5, λ2 = 2

A =

(
−1 3
−6 8

) Real distinct roots.

1 eAt =
e5t

3

(
−3 3
−6 6

)
+

e2t

−3

(
−6 3
−6 3

)
2 eAt = e5tI +

e2t − e5t

2− 5

(
−6 3
−6 3

)
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λ1 = λ2 = 3

A =

(
2 1
−1 4

) Real double root.

1 eAt = e3t
(
I + t

(
−1 1
−1 1

))
2 eAt = e3tI + te3t

(
−1 1
−1 1

)
λ1 = λ2 = 2 + 3i

A =

(
2 3
−3 2

) Complex conjugate roots.

1 eAt = 2Re
(
e2t+3it

2(3i)

(
3i 3
−3 3i

))
2 eAt=e2t cos(3t)I+

e2t sin(3t)

3

(
0 3
−3 0

)
The complex eigenvalue example is typical for real n × n matrices A with a
complex conjugate pair of eigenvalues λ1 = λ2. Then Q2 = Q1 for 1 . The
result is that λ2 is not used and a simpler expression results by using the college
algebra equality z + z = 2Re(z):

eλ1tQ1 + eλ2tQ2 = 2Re
(
eλ1tQ1

)
.

This observation explains why eAt is real when A is real, by pairing complex
conjugate eigenvalues in Theorems 11.24–11.25,

Proofs and Methods

Proof of Proposition 11.3:

Eigenpair (λ2, v⃗ 2) is never computed or used, because Av⃗ 1 = λ1v⃗ 1 implies Av⃗ 1 = λ1v⃗ 1,
which implies λ2 (= λ1) has eigenvector v⃗ 2 = v⃗ 1.

If A is real, then eAt is real. Take real parts across the formula for eAt to give a real
formula. Due to the unpleasantness of the complex algebra, we will justify the answer
with minimal use of complex numbers.

The formula is established by showing that the matrix Φ(t) on the right of equation (4)
satisfies Φ(0) = I and Φ′ = AΦ. Then by definition, eAt = Φ(t). For exposition, let

R(t) = eat
(

cos bt sin bt
− sin bt cos bt

)
, Φ(t) = PR(t)P−1.

Identity Φ(0) = I is verified as follows.

Φ(0) = PR(0)P−1

= Pe0
(
1 0
0 1

)
P−1

= I

Express v⃗ 1 = Re(v⃗ 1) + i Im(v⃗ 1). Expand eigenpair relation Av⃗ 1 = λ1v⃗ 1 into real and
imaginary parts:

A (Re(v⃗ 1) + i Im(v⃗ 1)) = (a+ ib) (Re(v⃗ 1) + i Im(v⃗ 1))
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Match real and imaginary parts left and right in this equation to obtain:

AP = P

(
a b
−b a

)
Then:

Φ′(t)Φ−1(t) = PR′(t)P−1PR−1(t)P−1

= PR′(t)R−1(t)P−1

= P

(
aI +

(
0 b
−b 0

))
P−1

= P

(
a b
−b a

)
P−1

= A

Because Φ′(t) = AΦ(t), Φ(0) = I, then Φ(t) = eAt. The general solution is x⃗ (t) =
Φ(t)x⃗ (0). Then

x⃗ (t) = eat⟨Re(v⃗ 1)| Im(v⃗ 1)⟩
(

cos bt sin bt
− sin bt cos bt

)(
c1
c2

)
where values c1, c2 are related to the initial condition x⃗ (0) by identity(

c1
c2

)
= ⟨ Re(v⃗ 1)| Im(v⃗ 1)⟩−1

x⃗ (0)

Proof of Theorem 11.22:

The eigenvalues λ1, λ2, λ3 can be all real or eigenvalue λ3 is real and the other eigenvalues
are complex: λ1 = λ2 = a+ ib with b > 0.

The proposed solution x⃗ can be written in vector-matrix form:

x⃗ (t) = ⟨v⃗ 1|v⃗ 2, v⃗ 3⟩
 eλ1t 0 0

0 eλ2t 0
0 0 eλ3t

 c1
c2
c3


Because the three eigenvectors v⃗ 1, v⃗ 2, v⃗ 3 are assumed independent, then ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩
is invertible. Setting t = 0 in the previous display gives c1

c2
c2

 = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩−1
x⃗ (0).

Constants c1, c2, c3 can be chosen to produce any initial condition x⃗ (0), therefore x⃗ (t)
is the general solution of the 3× 3 system x⃗ ′ = Ax⃗ .

Proofs of Propositions 11.4 and 11.5:

The proof of Theorem 11.22 supplies the proof details for Proposition 11.4.

Proposition 11.5 is proved in two steps: (1) Show P has independent columns, hence P
is invertible; (2) The exponential matrix is given by equation (5).

(1) Let v⃗ 2 = v⃗ 1. Replace the first two column vectors in P by

Re(v⃗ 1) =
1

2
(v⃗ 1 + v⃗ 2), Im(v⃗ 1) = −

i

2
(v⃗ 1 − v⃗ 2).
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Let d1, d2, d3 be constants. Assume dependency relation P

(
d1
d2
d3

)
= 0⃗ . Then:

1

2
d1(v⃗ 1 + v⃗ 2)−

i

2
d2(v⃗ 1 − v⃗ 2) + d3v⃗ 3 = 0⃗ .

Independence of v⃗ 1, v⃗ 2, v⃗ 3 implies all linear combination weights are zero:

1

2
d1 −

i

2
d2 = 0,

1

2
d1 +

i

2
d2 = 0, d3 = 0.

Solve this system to prove d1 = d2 = d3 = 0. Conclude that the columns of P are
independent.

(2) Let B =

(
a b
−b a

)
. Define block matrix J =

(
B 0
0 λ3

)
. Diagonalization

theory for matrices implies AP = PJ . Then:

eJt =

(
eBt 0⃗
0 eλ3t

)
Theorem 11.19, page 869

eBt =

(
eat cos bt eat sin bt
−eat sin bt eat cos bt

)
Theorem 11.20, page 869

eAt = P eJt P−1 Identities page 865

eAt = P

 eat cos bt eat sin bt 0
−eat sin bt eat cos bt 0

0 0 eλ3t

P−1

Proof of Theorem 11.27. Consider first the case n = 2, which has a routine general-
ization to higher dimensions.

r2 + a1r + a0 = 0 Expanded characteristic equation

A2 + a1A+ a0I = 0 Cayley-Hamilton matrix equation, where I and 0 are the
identity and zero matrix.

A2x⃗ + a1Ax⃗ + a0x⃗ = 0⃗ Right-multiply by x⃗ = x⃗ (t)

x⃗ ′′ = Ax⃗ ′ = A2x⃗ Differentiate x⃗ ′ = Ax⃗

x⃗ ′′ + a1x⃗
′ + a0x⃗ = 0⃗ Replace A2x⃗ → x⃗ ′′, Ax⃗ → x⃗ ′

Multiply the vector relation by the rows of the identity matrix to show the components
x1(t), x2(t) of x⃗ (t) satisfy the two differential equations

x′′
1(t) + a1x

′
1(t) + a0x1(t) = 0,

x′′
2(t) + a1x

′
2(t) + a0x2(t) = 0.

This system implies that the components of x⃗ (t) are solutions of the second order dif-
ferential equation with characteristic equation |A− rI| = 0.

The proof remains valid if real solution x⃗ (t) is replaced by a complex solution, no changes
required in the above text. Because the Cayley-Hamilton theorem is valid for complex
A, the proof is complete for n = 2. Details for any n are left to the reader.

Proofs of Theorems 11.27, 11.28, 11.29 and 11.30. The scalar form Theorem
11.27 can be written

xi(t) = ci1A1 + · · ·+ cinAn, i = 1, . . . , n.
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In matrix form:

x⃗ (t) =

 c11 · · · c1,n
...

...
...

c11 · · · c1,n


 A1

...
An

 .

Then d⃗1 is the first column of matrix (cij) above, and so on, which proves

x⃗ (t) = d⃗1 A1 + · · ·+ d⃗n An(12)

Left to prove is that column vectors d⃗1, . . . , d⃗n depend only on A and initial data x⃗ (0).
We proceed as in the theory of Wronskian determinants by differentiation n− 1 times of
equation (12), then replace t by zero to obtain these formulas:

x⃗ (0) = A1(0) d⃗1 + · · · + An(0) d⃗n

x⃗ ′(0) = A′
1(0) d⃗1 + · · · + A′

n(0) d⃗n

...

x⃗ (n−1)(0) = A
(n−1)
1 (0) d⃗1 + · · · + A

(n−1)
n (0) d⃗n

(13)

The derivatives on the left in equation (13) can be cleverly rewritten as x⃗ (0), Ax⃗ (0),
. . . , An−1x⃗ (0) by successive differentiation of x⃗ ′(t) = Xx(t). For instance, x⃗ ′′(t) =
(Ax⃗ (t))′ = Ax⃗ ′(t) = AAx⃗ (t) = A2x⃗ (t), then t = 0 gives x⃗ ′′(0) = A2x⃗ (0). The result in
matrix form:

⟨x⃗ (0)| · · · |An−1x⃗ (0)⟩ = ⟨d⃗1| · · · |d⃗n⟩
A1(0) · · · A(n−1)

1 (0)
... · · ·

...
An(0) · · · A(n−1)

n (0)

(14)

The augmented matrix ⟨d⃗1| · · · |d⃗n⟩ of vectors d⃗1,. . . ,d⃗n is then obtained by matrix

inversion: ⟨d⃗1| · · · |d⃗n⟩ = ⟨x⃗ (0)| · · · |An−1x⃗ (0)⟩ (W (0)T )−1, where W (t) is the Wron-
skian matrix of the n Euler solution atoms.

Suppose Aj is replaced by Bj which are independent linear combinations of atoms
Aj with complex coefficients. Assume given a solution of x⃗ ′ = Ax⃗ , then x⃗ (t) =∑n

j=1 d⃗ j Bj(t) for some column vectors d⃗ j . Let’s differentiate this relation n− 1 times
and substitute t = 0, as before. The same analysis with matrix multiply, Wronskians
and inverses applies, therefore identity (8) remains valid. Related details appear in the
proof of Theorem 11.31.

Proof of Theorem 11.31. If all roots are real distinct, then the Euler solution atoms
are eλ1t, . . . , eλnt. Find the Wronskian matrix of these functions, then let t = 0, which
makes all exponentials equal to one. The first row is all ones, therefore the transpose
matrix has first column all ones. If complex roots a± bi appear, then in affected atoms
cos bt = 1

2 (e
ibt + e−ibt), sin bt = 1

2i (e
ibt− e−ibt). Collect terms into complex exponentials

e(a+ib)t multiplied by vectors (complex entries allowed). Identity (8) is unchanged except
for replacement of atoms by exponentials. Proceed to identify W (t), W (0) and W (0)T

in the same manner as for real roots.

Proofs of Theorems 11.32, 11.33. Assume the CHZ results of previous theorems
and that A has distinct eigenvalues, complex numbers allowed. Let (λj , v⃗ j), 1 ≤ j ≤ n
be a list of eigenpairs of A. Let Aj = eλjt, 1 ≤ j ≤ n: they are independent functions
with invertible Wronskian matrix W (t) (see the Exercises). The Eigenanalysis method
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supplies solution x⃗ (t) =
∑n

j=1 cjv⃗ j Aj(t) whereas CHZ supplies x⃗ (t) =
∑n

j=1 d⃗ j Aj(t).

Independence of list {Aj(t)}nj=1 implies d⃗ j = cjv⃗ j . However, cj = 0 is possible, therefore

d⃗ j = 0⃗ or else d⃗ j is a nonzero multiple of eigenvector v⃗ j , 1 ≤ j ≤ n.

Theorem 11.33 directly applies Theorem 11.32, which implies the columns of augmented

matrix P = ⟨d⃗1| · · · |d⃗n⟩ are either zero or a nonzero multiple of an eigenvector of A.

Examples choose U⃗ initially to be the column vector of ones, then ones are modified to
zero or minus one: then re-apply the formula to find all eigenvectors.

Proof of Theorem 11.34, Vandermonde Inverse:

Case for n = 3. The inverse matrix B =

(
a0 · ·
a1 · ·
a2 · ·

)
of Vandermonde matrix A =(

1 x1 x
2
1

1 x2 x
2
2

1 x3 x
2
3

)
satisfies AB = I. Match column one on both sides of AB = I using matrix

multiply, then for polynomial p1(y) = a0 + a1y + a2y
2 there are three interpolation

equations to be satisfied:

a0 + a1x1 + a2x
2
1 = 1, a0 + a1x2 + a2x

2
2 = 0, a0 + a1x3 + a2x

2
3 = 0.

Degree 2 polynomial q1(y) = 1
y−x1

∏3
i=1(y − xi) constructs the interpolation problem

unique solution p1(y) =
q1(y)
q1(x1)

. Coefficients a0, a1, a2 are found by matching y-coefficients

after expanding equation a0 + a1y + a2y
2 = q1(y)

q1(x1)
. Define q2, q3, p2, p3 analogously and

repeat for columns 2, 3. Then inverse B equals:(
x2x3 x1x3 x1x2

−x2 − x3 −x1 − x3 −x1 − x2

1 1 1

)( 1
(x1−x2)(x1−x3)

0 0
0 1

(x2−x1)(x2−x3)
0

0 0 1
(x3−x1)(x3−x2)

)

Case for General n. For i from 1 to n, define degree n − 1 polynomials qi(y) =
1

y−xi

∏n
p=1(y − xp), then expand qi(y) =

∑n
j=1 qijy

j−1 to obtain

B = (bij) =

q11 · · · qn1
... · · ·

...
q1n · · · qnn




1
q1(x1)

· · · 0
...

. . .
...

0 · · · 1
qn(xn)

.

Formula for qi(xi). Cancel factor y − xi, then qi(xi) =
∏n

p=1,p̸=i(xi − xp).

Formula for qij . Let N = n − 1. Vieta’s formulas applied to degree N polyno-
mial qi(y) =

∑n
j=1 qi jy

j−1 give qi j = (−1)N−j+1eN−j+1({x1, . . . , xn} \ {xi}), for j =

1, . . . , n− 1. Equality bij =
qij

qi(xi)
then establishes equation (10).

Proof of Theorem 11.35. The details are in the proof of Theorem 11.36, which
discusses the application of Theorem 11.27 and solving the first differential equation for
variable x2. This is the preferred shortcut on paper.

Proof of Theorem (11.36). The formula for x1(t) follows directly from Cayley-
Hamilton-Ziebur Theorem 11.27. Equation x2(t)=k1y1(t) + k2y2(t) follows from the
same theorem, for some constants k1, k2. It remains to prove that the constants are(
k1
k2

)
= 1

b (B
T − aI)

(
c1
c2

)
. Details:

x2 = 1
bx

′
1 − a

bx1 Solve x′
1=ax1 + bx2 for x2.
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x2 = 1
b (c1y

′
1 + c2y

′
2)− a

b (c1y1 + c2y2) Replace x1 = c1y1 + c2y2.

x2 = 1
b

(
c1
c2

)T (
y′1
y′2

)
− a

b

(
c1
c2

)T (
y1
y2

)
Rewrite as matrix multiply.

x2 = 1
b

(
c1
c2

)T

B

(
y1
y2

)
− a

b

(
c1
c2

)T (
y1
y2

)
Definition of B.

x2 = 1
b

(
c1
c2

)T

(B − aI)

(
y1
y2

)
Factor out

(
y1
y2

)
right,

(
c1
c2

)T

left.

x2 = 1
b

((
BT − aI

)(c1
c2

))T (
y1
y2

)
Matrix transpose properties (CD)T =
DTCT and (C +D)T = CT +DT .

x2 =

(
k1
k2

)T (
y1
y2

)
Theorem’s definition of k1, k2.

x2 = k1y1 + k2y2 Verification complete.

Exercises 11.5 �

Determinant |A− rI|
Justify these statements.

1. Subtract r from the diagonal of A to
form |A− rI|.

2. If A is 2×2, then |A−rI| is a quadratic.

3. If A is 3× 3, then |A− rI| is a cubic.

4. Expansion of |A − rI| by the cofactor
rule often preserves factorizations.

5. If A is triangular, then |A − rI| is the
product of diagonal entries.

6. The combo, mult and swap rules for
determinants are generally counter-
productive for expansion of |A− rI|.

Characteristic Polynomial
Show expansion details for |A− rI|.

7. A =

(
2 3
0 4

)
.

Ans: (2− r)(4− r)

8. A =

(
2 3 4
0 5 6
0 0 7

)
.

Ans: (2− r)(5− r)(7− r)

Eigenanalysis Method: 2× 2
Solve x⃗ ′ = Ax⃗ .

9. A =

(
1 0
0 2

)
10. A =

(
1 1
2 2

)
Eigenanalysis Method: 3× 3
Solve x⃗ ′ = Ax⃗ .

11. A =

(
1 1 0
2 2 0
0 0 1

)

12. A =

(
1 1 0
2 2 1
0 0 1

)

Eigenanalysis Method: n× n
Solve x⃗ ′ = Ax⃗ .

13. A =

1 1 0 0
2 2 1 0
0 0 1 0
0 0 0 1



14. A =


1 1 0 0 1
2 2 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


eAt for Simple Eigenvalues
Find aAt using classical spectral theory.
Check by computer.

15. A =

(
1 1
2 2

)
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16. A =

(
1 1 0
2 2 1
0 0 1

)

eAt for Multiple Eigenvalues
Find aAt using classical spectral theory.
Check by computer.

17. A =

(
1 1
0 1

)

18. A =

(
1 1 0
0 1 1
0 0 2

)

Cayley-Hamilton Theorem
Prove the identity by applying the Cayley-
Hamilton Theorem.

19. Let A=

(
a b
c d

)
, a0=|A|=ad−bc,

a1=trace(A)=a+d. Then

A2 + a1(−A) + a0

(
1 0
0 1

)
=

(
0 0
0 0

)

20. Let A=

(
2 3 4
0 5 6
0 0 7

)
. Then:

(2I−A)(5I−A)(7I−A)=

(
0 0 0
0 0 0
0 0 0

)

CHZ Theorem: Scalar Form

21. Write Theorem 11.27 proof missing de-
tails for n = 3.

22. Write Theorem 11.27 proof missing de-
tails for any n.

CHZ Theorem: Vector Form

23. Write Theorem 11.28 proof details for
n = 2.

24. Write Theorem 11.28 proof details for
n = 3.

CHZ Identity: Vandermonde
Find matrixD = ⟨ d⃗1| · · · |d⃗n ⟩ using The-

orems 11.29, 11.31, given x⃗ (0)=

c1
...
cn

.

25. A=

(
1 0
2 2

)
. Ans: W (0)T , D=(

1 2
1 1

)
,

(
0 c1

2c1 + c2 −2c1

)

26. A=

(
1 0 0
2 2 0
0 0 3

)
. Ans: W (0)T , D=(

1 1 1
1 2 4
1 3 9

)
,

(
c1 0 0
−2c1 2c1 + c2 0
0 0 c3

)

CHZ and Eigenvectors
Supply details for the following.

27. Find a scalar 3rd order linear differen-
tial equation that has et, e2it, e−2it as
solutions. Apply theorems to conclude
that the Wronskian of the exponentials
is invertible for every t.

28. Assume eλ1t, . . . , eλnt are independent
exponentials . Apply theorems to con-
clude that the Wronskian of the expo-
nentials is invertible for every t.

29. If d⃗1e
t + d⃗2e

−t + d⃗3e
2t =

0
0
0

, then

d⃗1 = d⃗2 = d⃗3 = 0⃗ .

30. Independence of atoms applied to the
n-vector equation d⃗1e

t + d⃗2e
−t =

c1v⃗ 1e
t+c2v⃗ 2e

−t implies d⃗1 = c1v⃗ 1 and
d⃗2 = c2v⃗ 2.

31. There is a 2 × 2 system x⃗ ′ = Ax⃗
for which CHZ vectors d⃗1, d⃗2 are not
eigenvectors of A.

32. Let A be the 3 × 3 identity matrix.
For x⃗ ′ = Ax⃗ , two of the CHZ vectors
d⃗1, d⃗2, d⃗3 are zero.

Eigenvectors by Matrix Multiply Find
the eigenvectors of A by Theorem 11.33.
Report the choice of U⃗ .

33. A=

(
1 2
−2 1

)
. Ans: U⃗=

(
1
1

)
.

34. A=

(
1 0 0
0 2 1
0 0 3

)
. Ans: U⃗=

 1
1
−1

.
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CHZ 2 × 2 Matrix Shortcut Find the
general solution of x⃗ ′ = Ax⃗ using Theo-
rem 11.36.

35. A =

(
1 3
3 1

)
, r = −2, 4

36. A =

(
1 3
−3 1

)
, r = 1± 3i

CHZ Scalar 2×2 Shortcut Find the gen-
eral solution of x⃗ ′ = Ax⃗ using Theorem
11.35.

37. A =

(
1 4
4 1

)
, r = −3, 5

38. A =

(
1 4
−4 1

)
, r = 1± 4i

Putzer’s 2× 2 Spectral Formula Verify
the identity.

39. A =

(
−1 3
−6 8

)
eAt = e5tI +

e5t − e2t

3

(
−6 3
−6 3

)

40. A =

(
0 1
6 1

)
eAt = e−2tI +

e3t − e−2t

5

(
2 1
6 3

)

41. A =

(
0 1

−16 8

)
eAt = e4tI + te4t

(
−4 1
−16 4

)

42. A =

(
3 2
−2 3

)
, eAt =

e3t cos(2t)I + e3t sin(2t)

(
0 2
−2 0

)
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11.6 Jordan Form and Eigenanalysis

Generalized Eigenanalysis

The main result is Jordan’s decomposition

A = PJP−1,

valid for any real or complex square matrix A. Described here is how to com-
pute the invertible matrix P of generalized eigenvectors and the upper triangular
matrix J , called a Jordan form of A.

Jordan Block

An m×m upper triangular matrix B(λ,m) is called a Jordan block provided all
m diagonal elements are the same eigenvalue λ and all super-diagonal elements
are one:

B(λ,m) =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 (m×m matrix)

Jordan Form

Given an n× n matrix A, a Jordan form J for A is a block diagonal matrix

J = diag(B(λ1,m1), B(λ2,m2), . . . , B(λk,mk)),

where λ1, . . . , λk are eigenvalues of A (duplicates possible) andm1+· · ·+mk = n.
The eigenvalues of J are on the diagonal of J and J has exactly k eigenpairs. If
k < n, then J is non-diagonalizable. Relation AP = PJ implies A has exactly k
eigenpairs and A fails to be diagonalizable for k < n.

The relation A = PJP−1 is called a Jordan decomposition of A. The n × n
matrix P is an augmented matrix of column vectors, i.e., P = ⟨v⃗ 1| . . . |v⃗n⟩,
which is called the matrix of generalized eigenvectors of A. It defines a
coordinate system x⃗ = P y⃗ in which the vector function x⃗ → Ax⃗ is transformed
to the simpler vector function y⃗ → J y⃗ .

If equal eigenvalues are adjacent in J , then Jordan blocks with equal diagonal
entries can be adjacent. Zeros can appear on the super-diagonal of J , because
adjacent Jordan blocks join on the super-diagonal with a zero. A complete spec-
ification of how to build J from A appears below.
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Organizing a Jordan Form

One scheme to organize J first lists distinct eigenvalues low to high λ1, . . . , λk.
Then the Jordan blocks appear in J in that order, with block size high to low
for those blocks with the same eigenvalue.

For instance, suppose λ1 = −4, λ1 = 2, λ1 = 7 with respective multiplicities 5, 1
and 3. Then one possible Jordan form is:

J = diag(B(λ1, 3), B(λ1, 2), B(λ2, 1), B(λ3, 3))

=



−4 1 0
0 −4 1
0 0 −4

−4 1
0 −4

2
7 1 0
0 7 1
0 0 7



Decoding a Jordan Decomposition A = PJP−1

If J contains m ×m Jordan block B(λ,m), consuming rows 1 to m of J , then
P = ⟨ v⃗ 1| . . . |v⃗n ⟩ and AP = PJ implies m vector equations:

Av⃗ 1 = λv⃗ 1,
Av⃗ 2 = λv⃗ 2 + v⃗ 1,
...

...
...

Av⃗m = λv⃗m + v⃗m−1.

To justify this, start with AP = PJ . Expand AP = ⟨Av⃗ 1| . . . |Av⃗n ⟩ and match
its first m columns to those of PJ . This exploded view of the relation AP = PJ
according to the Jordan block B(λ,m) is called a Jordan chain. The formulas
can be compacted via matrix N = A− λI into the Jordan chain relations

N v⃗ 1 = 0⃗ , N v⃗ 2 = v⃗ 1, . . . , N v⃗m = v⃗m−1.(1)

The first vector v⃗ 1 is an eigenvector. The remaining vectors v⃗ 2, . . . , v⃗m are not
eigenvectors, they are called generalized eigenvectors. Similar formulas can
be written for each Jordan block in matrix J . A given eigenvalue may appear
multiple times in the chain relations, due to the appearance of two or more
Jordan blocks with the same eigenvalue. It is known that the vectors {v⃗ i}|mi=1

in a Jordan chain are independent from vectors appearing in a different chain.

Theorem 11.38 (Jordan Decomposition)
Every n× n matrix A has a Jordan decomposition A = PJP−1.
Induction proof on page 907.
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Proposition 11.8 (Jordan’s Extension) Any n × n matrix A can be represented
in the block triangular form

A = PTP−1, T = diag(T1, . . . , Tk),

where P is invertible and each matrix Ti is upper triangular with diagonal entries
equal to a single eigenvalue of A.

See also Theorem 9.14 page 720. The theorem is proved from the Jordan de-
composition theorem by defining Ti = Ji, a Jordan Block. A shorter, simpler
induction proof exists for Jordan’s extension, but the structure of the blocks Ti

is unknown with no practical algorithm for their construction.

Geometric and Algebraic Multiplicity

Symbol GeoMult(λ) = dim(kernel(A−λI)) is called the geometric multiplic-
ity. It is defined as the number of basis vectors in a solution to (A− λI)x⃗ = 0⃗ ,
or, equivalently, the number of free variables for this homogeneous problem.

The integer k = AlgMult(λ) is called the algebraic multiplicity, defined by
the condition that (r−λ)k divides the characteristic polynomial det(A−rI), but
larger powers do not.

Eigenvalue λ is called a defective eigenvalue provided inequality GeoMult(λ) <
AlgMult(λ) holds. If matrix A has a defective eigenvalue, then is called a de-
fective matrix. Defective matrices are not diagonalizable, but they do admit a
Jordan decomposition A = PJP−1.

Theorem 11.39 (Algebraic and Geometric Multiplicity)
Let A be a square real or complex matrix. Then

1 ≤ GeoMult(λ) ≤ AlgMult(λ).(2)

In addition, there are the following relationships between the Jordan form J and
algebraic and geometric multiplicities.

GeoMult(λ) Equals the number of Jordan blocks in J with eigenvalue λ,

AlgMult(λ) Equals the number of times λ is repeated along the diagonal
of J .

Proof: Let d = GeoMult(λ0). Construct a basis v1, . . . , vn of Rn such that v1, . . . , vd

is a basis for kernel(A − λ0I). Define S = ⟨v1| . . . |vn⟩ and B = S−1AS. The first d

columns of AS are λ0v1, . . . , λ0vd. Then B =

(
λ0I C
0 D

)
for some matrices C and

D. Cofactor expansion implies some polynomial g satisfies

det(A− λI) = det(S(B − λI)S−1) = det(B − λI) = (λ− λ0)
dg(λ)

and therefore d ≤ AlgMult(λ0). Other details of proof are omitted. ■
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Number of Jordan Blocks

Calculation of generalized eigenvectors of matrix A for eigenvalue λ is organized
by computing only the Jordan chains of a certain size k. The sizes are found by
computing ranks of the powers N j of the nilpotent matrix N = A− λI.

Theorem 11.40 (Number of Jordan Blocks)
Let matrix A have eigenvalue λ. Define N = A − λI. Let p be the least integer
such that Np = Np+1. Then the number M(j) of Jordan blocks B(λ, j) is given by

M(j) = rank(N j+1) + rank(N j−1)− 2 rank(N j), j = 2, . . . , p.

The proof of the theorem8 is in the exercises, where more detail appears for p = 1
and p = 2.

Chains of Generalized Eigenvectors

Given an eigenvalue λ of the matrix A, the topic of generalized eigenanalysis
determines all Jordan blocks B(λ,m) in J and the corresponding columns of P .
The ordering of the blocks in J is not unique. The corresponding columns of P
are not unique.

Let N = A = λI. Suppose an m-chain is known to exist because of Theorem
11.40, m ≤ AlgMult(λ). How exactly do we find v⃗ 1, . . . , v⃗m in Jordan chain
relations (1)?

A first step might be to write the chain relations (1) in reverse order using a new
symbol w⃗ that stands for v⃗m:

v⃗ 1 = Nm−1w⃗ , . . . , v⃗m−1 = Nw⃗ , v⃗m = w⃗(3)

For instance, if m = 3 then the equations are v⃗ 1 = N2w⃗ , v⃗ 2 = Nw⃗ , v⃗ 3 = w⃗ .
The impact of (3) is to change the problem of finding an m-chain into finding a
suitable vector w⃗ . Clearly w⃗ is not unique. Generally, w⃗ is not an eigenvector.

How to Choose Vector w⃗

The requirements on w⃗ are:

(1) Nm−1x⃗ = w⃗ has no solution x⃗ .
(2) Nmw⃗ = 0⃗ or w⃗ ∈ nullspace(Nm)
(3) Nm−1w⃗ ̸= 0⃗ or w⃗ ̸∈ nullspace(Nm−1)

8Jordan matrix. Encyclopedia of Mathematics. URL:
https://encyclopediaofmath.org/index.php?title=Jordan matrix&oldid=17628

An equivalent formula is M(j) = 2nullity(N j)− nullity(N j+1)− nullity(N j−1).
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Proposition 11.9 (Choosing Vector w⃗ )
Let w⃗ ̸= 0⃗ belong to the nullspace of (Nm−1)T . Then Nm−1x⃗ = w⃗ has no
solution x⃗ .

Proof: Assume a solution x⃗ exists. Let B = Nm−1 and S = nullspace(BT ). Given:
w⃗ ∈ S. Equation Bx⃗ = w⃗ implies w⃗ ∈ Image(B). The Fundamental Theorem
of Linear Algebra (FTLA) gives Image(B) = nullspace((BT )⊥ = S⊥. Then w⃗ ∈
S ∩ S⊥. The intersection of S and S⊥ is the zero vector. Then w⃗ ̸= 0⃗ and w⃗ = 0⃗ , a
contradiction. ■

Because of the chain relations of equation (1) the very first vector v⃗ 1 of the
chain is an eigenvector: (A − λI)v⃗ 1 = 0⃗ . The others v⃗ 2, . . . , v⃗ k are not
eigenvectors.

Table 2. Shortcut: How to Choose w⃗

1. Let B = (Nm−1)T . Choose a nonzero vector w⃗ in the nullspace of B
which also satisfies Nmw⃗ = 0⃗ . See Proposition 11.9.

2. Require vector w⃗ to satisfy Bw⃗ ̸= 0⃗ , it is not in the nullspace of
Nm−1.

Jordan Decomposition using maple

The matrix

A =

 4 −2 5
−2 4 −3
0 0 2


has a Jordan decomposition

A = PJP−1 =

 1 4 −7
−1 4 1
0 0 4

 6 0 0
0 2 1
0 0 2

 1
4 1 −7

4
−1

4 1 1
4

0 0 1


# Maple, Find Jordan Form of matrix A

A := Matrix([[4, -2, 5], [-2, 4, -3], [0, 0, 2]]);

factor(LinearAlgebra[CharacteristicPolynomial](A,lambda));

# Answer == (lambda-6)*(lambda-2)^2

J,P:=LinearAlgebra[JordanForm](A,output=[’J’,’Q’]);

zero:=A.P-P.J; # zero matrix expected

The maple algorithm for the Jordan Form employs the Frobenius Normal Form,
which in 2022 differs from Wikipedia and Wolfram references in the ordering of
the diagonal blocks. Expect maple and mathematica to deliver Jordan forms for
a given matrix A with different ordering of Jordan blocks.
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Examples: Jordan Form and m-Chain

Calculation of generalized eigenvectors of matrix A for eigenvalue λ is organized
by computing only the Jordan chains of a certain size k. The sizes are found by
rank computation of the powers N j of the nilpotent matrix N = A− λI.

Example 11.11 (Number of Jordan Blocks)
Let A be the 5 × 5 matrix in equation (4), which has one eigenvalue λ = 2 of
multiplicity 5. Verify that a Jordan form of A has two Jordan blocks, one of size 2
and one of size 3, e.g., J = diag(B(λ, 3), B(λ, 2)).

A =


3 −1 1 0 0
2 0 1 1 0
1 −1 2 1 0
−1 1 0 2 1
−3 3 0 −2 3

(4)

Details.
First form the nilpotent matrix N = A− λI, then compute N2 and N3:

N=


1 −1 1 0 0
2 −2 1 1 0
1 −1 0 1 0
−1 1 0 0 1
−3 3 0 −2 1

 , N2=


0 0 0 0 0
−2 2 0 −1 1
−2 2 0 −1 1
−2 2 0 −1 1
2 −2 0 1 −1

 , N3=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Computer assist finds rank(N) = 3 and rank(N2) = 2. Identity N3 = 0 implies
nilpotency p = 3.

Theorem 11.40 applied to Jordan block B(λ, j) provides the equation M(j) =
rank(N j+1)+rank(N j−1)−2 rank(N j), j = 2, . . . , p. ThenM(1) = 0,M(2) =
1,M(3) = 1,M(4) = M(5) = 0. There are only two Jordan blocks, size 2 and 3.
One possible Jordan form:

J = diag(B(λ, 3), B(λ, 2)) =


2 1 0
0 2 1
0 0 2

0 0
0 0
0 0

0 0 0
0 0 0

2 1
0 2


with(LinearAlgebra):

getBlockCounts:=proc(A,lambda) local m,N,j,r,p,txt;

m:=RowDimension(A);

N:=A-lambda*IdentityMatrix(m);

for j from 1 to m do r[j]:=Rank(N^j); od:

for p from m to 2 by -1 do

if(r[p]<>r[p-1])then break;fi:od;

printf("lambda=%d, nilpotency=p=%d\n",lambda,p);
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txt:=(j,x)-> printf("Blocks B(%a,%d):%d\n",lambda,j,x):

for j from p to 2 by -1 do txt(j,-2*r[j]+r[j-1]+r[j+1]):

od:

end proc:

#

A := Matrix([[3,-1,1,0,0],[2,0,1,1,0],[1,-1,2,1,0],

[-1,1,0,2,1],[-3,3,0,-2,3]]);

getBlockCounts(A,2);

The results: λ = 2, nilpotency=3, Blocks B(2, 3) : 1, Blocks B(2, 2) : 1.

The maple answer for J is obtained by the single line JordanForm(A). Also
possible is JordanForm(A,output=[’J’,’Q’]) to print J and Q for identity
AQ = QJ . The maple answers:

J =


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2

 , Q =
1

2


0 1 2 −1 0
−4 2 2 −2 2
−4 1 1 −1 1
−4 −3 1 −1 1
4 −5 −3 1 −3

(5)

Example 11.12 (Generalized Eigenvectors)
Let A be the 5 × 5 matrix in equation (4), which has one eigenvalue λ = 2 of
multiplicity 5. Find the generalized eigenvectors of A as columns of a matrix P ,
verifying the answer satisfies AP = PJ .

Details: Duplicate matrices A, N = A− 2I and J from the preceding example:

A=


3 −1 1 0 0
2 0 1 1 0
1 −1 2 1 0
−1 1 0 2 1
−3 3 0 −2 3

 , N=


1 −1 1 0 0
2 −2 1 1 0
1 −1 0 1 0
−1 1 0 0 1
−3 3 0 −2 1

 , J=


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2

 .

Jordan form J shows there is a 3-chain and a 2-chain of generalized eigenvectors
for eigenvalue λ = 2. We will find the two chains.

The 3-chain. The plan is to find a vector w⃗ with N3w⃗ = 0⃗ , N2w⃗ ̸= 0⃗ and
N2x⃗ = w⃗ has no solution x⃗ . Then v⃗ 1 = N2w⃗ , v⃗ 2 = Nw⃗ , v⃗ 3 = w⃗ are the
columns of P corresponding to Jordan block B(λ, 3), to wit: columns 1,2,3 of P .
Computer assist provides

N=


1 −1 1 0 0
2 −2 1 1 0
1 −1 0 1 0
−1 1 0 0 1
−3 3 0 −2 1

 , N2=


0 0 0 0 0
−2 2 0 −1 1
−2 2 0 −1 1
−2 2 0 −1 1
2 −2 0 1 −1

 , N3=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


We will choose w⃗ to be a basis element for the nullspace of (N2)T , following
Table 2 and Proposition 11.9. This clever choice works because Nm = 0. We
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still have to check N2w⃗ ̸= 0⃗ , as in Table 2. Employ maple to find the nullspace
basis:

nullspace((N2)T ) = span




0
1
0
0
1

 ,


0
−1
0
1
0

 ,


0
−1
1
0
0

 ,


1
0
0
0
0




Choose vector w⃗ to be the last basis vector above, that is, the vector with
components 1, 0, 0, 0, 0. Then (1) equation N2x⃗ = w⃗ is insolvable for x⃗ , (2)
N2w⃗ ̸= 0⃗ , (3) N3w⃗ = 0⃗ .

Columns 1,2,3 of P will be defined by equations

v⃗ 1=N2w⃗ =


0
−2
−2
−2
2

 , v⃗ 2=Nw⃗ =


1
2
1
−1
−3

 , v⃗ 3=w⃗ =


1
0
0
0
0


The computation means that AP = PJ9 where

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3|0⃗ |0⃗⟩ =


0 1 1 0 0
−2 2 0 0 0
−2 1 0 0 0
−2 −1 0 0 0
2 −3 0 0 0

 ,

 N v⃗ 1 = 0⃗
N v⃗ 2 = v⃗ 1

N v⃗ 3 = v⃗ 2

The 2-chain. Let m = 2 (find a 2-chain). The plan is to find a vector w⃗ with
N2w⃗ = 0⃗ , Nw⃗ ̸= 0⃗ and N x⃗ = w⃗ has no solution x⃗ . Then v⃗ 4 = Nw⃗ , v⃗ 5 = w⃗
are the columns of P corresponding to Jordan block B(λ, 2), to wit: columns 4,5
of P .

We will choose w⃗ ̸= 0⃗ to be a vector in the nullspace of NT , following Table 2
and Proposition 11.9. First, find a basis for the nullspace of NT , as in Proposition
11.9. Then write w⃗ in terms of this basis:

nullspace(NT ) = span




−2
2
0
−1
1

 ,


1
−1
1
0
0


 ,

w⃗ = c1


−2
2
0
−1
1

+ c2


1
−1
1
0
0

 .

9Zero columns in P allow rapid testing of AP = PJ .
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Next, we force w⃗ to belong to the nullspace of Nm = N2. Equation

N2w⃗ =


0

10c1 − 4c2
10c1 − 4c2
10c1 − 4c2
−10c1 + 4c2

 = 0⃗

holds if and only if 5c1 − 2c2 = 0. Choose c1 = 2, c2 = 5 to make it so, then
compute

w⃗ = 2


−2
2
0
−1
1

+ 5


1
−1
1
0
0

 =


1
−1
5
−2
2

 , Nw⃗ =


7
7
0
0
0

 ̸= 0⃗

Conclusions: (1) equation N x⃗ = w⃗ is insolvable for x⃗ , (2) Nw⃗ ̸= 0⃗ and (3)
N2w⃗ = 0⃗ . Define

v⃗ 4 = Nw⃗ =


7
7
0
0
0

 , v⃗ 5 = w⃗ =


1
−1
5
−2
2


Then

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3|v⃗ 4|v⃗ 5⟩ =


0 1 1 7 1
−2 2 0 7 −1
−2 1 0 0 5
−2 −1 0 0 −2
2 3 0 0 2


Matrix multiply verifies AP = PJ , which means P is a matrix of generalized
eigenvectors for A. The answer for P is not unique, as illustrated by maple’s
answer in equation (5). ■

Direct Sum Decomposition

The generalized eigenspace of eigenvalue λ of an n×nmatrix A is the subspace
kernel((A − λI)p) where p = AlgMult(λ). We state without proof the main
result for generalized eigenspace bases, because details appear in the exercises. A
proof is included for the direct sum decomposition, even though Putzer’s spectral
theory independently produces the same decomposition.

Theorem 11.41 (Generalized Eigenspace Basis)
The subspace kernel((A−λI)k), k = AlgMult(λ) has a k-dimensional basis whose
vectors are the columns of P corresponding to blocks B(λ, j) of J , in Jordan de-
composition A = PJP−1.
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Theorem 11.42 (Direct Sum Decomposition)
Given n× n matrix A with distinct eigenvalues λ1, . . . , λk, let n1 = AlgMult(λi),
. . . , nk = AlgMult(λk). Then A induces a direct sum decomposition

Cn = kernel((A− λ1I)
n1 ⊕ · · · ⊕ kernel((A− λkI)

nk .

This equation means that each complex vector x⃗ in Cn can be uniquely written as

x⃗ = x⃗ 1 + · · ·+ x⃗k

where each x⃗ i belongs to kernel ((A− λi)
ni), i = 1, . . . , k.

Proof: The previous theorem implies there is a basis of dimension ni for eigenspace
Ei ≡ kernel((A − λiI)

ni), i = 1, . . . , k. Because n1 + · · · + nk = n, then there are n
vectors in the union of these bases. The independence test for these n vectors amounts
to showing that x⃗1 + · · ·+ x⃗k = 0⃗ with x⃗ i in Ei, i = 1, . . . , k, implies all x⃗ i = 0⃗ . This
will be true provided Ei ∩ Ej = {0⃗} for i ̸= j.

Let’s assume a Jordan decomposition A = PJP−1. If x⃗ is common to both Ei and Ej ,
then basis expansion of x⃗ in both subspaces implies a linear combination of the columns
of P is zero, which by independence of the columns of P implies x⃗ = 0⃗ . ■

Remark. If A is real with real eigenvalues, then generalized eigenspaces have
real bases and the decomposition x⃗ = x⃗ 1 + · · ·+ x⃗k uses real vectors.

The Real Jordan Form of A

Given a real matrix A, generalized eigenanalysis seeks to find a real invertible
matrix P and a real upper triangular block matrix J such that A = PJP−1.

If λ is a real eigenvalue of A, then a real Jordan block is a matrix

B = diag(λ, . . . , λ) +N, N =


0 1 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1
0 0 0 · · · 0

 .

If λ = a+ ib is a complex eigenvalue of A, then symbols λ, 1 and 0 are replaced

respectively by 2 × 2 real matrices Λ =

(
a b
−b a

)
, I = diag(1, 1) and O =

diag(0, 0). The corresponding 2m× 2m real Jordan block matrix is given by the
formula

B = diag(Λ, . . . ,Λ) +N , N =


O I O · · · O O
...

...
...

...
...

...
O O O · · · O I
O O O · · · O O

 .
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Real Jordan Decomposition

The ideas are best communicated by example. Let

A =

 −3 4 1
0 −4 10
0 −5 6

 .

The eigenpairs are−3,
1
0
0

 ,

1 + 5i,

 −i1− i
1

 ,

1− 5i,

 i
1 + i
1

 .

The complex Jordan decomposition of matrix A is AP = PJ where

J =

 1 0 0
0 1 + 5i 0
0 0 1− 5i

 , P =

 1 −i i
0 1− i 1 + i
0 1 1


The Real Jordan Decomposition of matrix A is AP = PJ where

J =

 1 0 0
0 1 5
0 −1 5

 , P =

 1 0 −1
0 1 −1
0 1 0


The rules:

Replace

(
1 + 5i 0

0 1− 5i

)
by

(
1 5
−1 5

)
Replace the pair of complex eigenvector columns by the real and
imaginary parts of the first eigenvector (the second is not used): −i1− i

1

 ,

 i
1 + i
1

 replaced by

0
1
1

 ,

−1−1
0

.

The method for n × n real matrices with n eigenpairs is similar. Each pair of
complex conjugate eigenvalues a + ib, a − ib produces in J a real Jordan block(

a b
−b a

)
. The corresponding complex eigenvector pair u⃗ + iv⃗ , u⃗ − iv⃗ is

accounted for by inserting into P the real and imaginary parts u⃗ , v⃗ . A real
eigenpair (λ, x⃗ ) creates λ on the diagonal of J and real eigenvector x⃗ is copied
to the corresponding column of P .

Computing Real Exponential Matrices

Discussed here are methods for finding a real exponential matrix eAt when A is
real. Two formulas are given, one for a real eigenvalue and one for a complex
eigenvalue. These formulas supplement the spectral formulas given earlier in the
text.
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11.6 Jordan Form and Eigenanalysis

Nilpotent Matrices

A matrix N which satisfies Np = 0 for some integer p is called nilpotent. The
least integer p for which Np = 0 is called the nilpotency of N . A nilpotent
matrix N has a finite exponential series:

eNt = I +Nt+N2 t
2

2!
+ · · ·+Np−1 tp−1

(p− 1)!
.

If N = B(λ, p)− λI, then the finite sum has a splendidly simple expression due
to eλt I+Nt = eλteNt. These remarks motivate the following result.

Theorem 11.43 (Exponential of a Jordan Block Matrix)
If λ is real and

B =


λ 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 (p× p matrix)

then

eBt = eλt


1 t t2

2 · · · tp−2

(p−2)!
tp−1

(p−1)!
...

...
...

...
...

...
0 0 0 · · · 1 t
0 0 0 · · · 0 1

 .

The equality also holds if λ is a complex number, in which case both sides of the
equation are complex.

Proof: Let matrix Φ(t) be either the left side or the right side of the matrix equality.
A computation shows that Φ′(t) = BΦ(t), Φ(0) = I. Apply uniqueness in the Picard-
Lindelöf theorem. ■

Real Exponentials for Complex λ

A Jordan decomposition A = PJP−1 in which A has only real eigenvalues has
real generalized eigenvectors appearing as columns in the matrix P, in the order
matching Jordan blocks in J . When λ = a+ ib is complex, b > 0, then the real
and imaginary parts of each generalized eigenvector are entered pairwise into P;
the conjugate eigenvalue λ = a − ib is skipped. The complex entry along the
diagonal of J and the ones on the superdiagonal of J are each changed into a
2× 2 matrix under the correspondence

a+ ib↔
(

a b
−b a

)
.

The result is a real matrix P and a real block upper triangular matrix J which
satisfy A = PJP−1.
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11.6 Jordan Form and Eigenanalysis

Theorem 11.44 (Real Block Diagonal Matrix, Eigenvalue a+ ib)

Let Λ =

(
a b
−b a

)
, I = diag(1, 1) and O = diag(0, 0). Consider a real Jordan

block matrix of dimension 2m× 2m given by the formula

B =


Λ I O · · · O O
...

...
...

...
...

...
O O O · · · Λ I
O O O · · · O Λ

 .

If R =

(
cos bt sin bt
− sin bt cos bt

)
, then

eBt = eat


R tR t2

2R · · · tm−2

(m−2)!R
tm−1

(m−1)!R
...

...
...

...
...

...
O O O · · · R tR
O O O · · · O R

 .

Proof: Details are similar to the proof of Theorem 11.43. ■

Solving x⃗ ′ = Ax⃗

The solution x⃗ (t) = eAtx⃗ (0) must be real if A is real. The real solution can be
expressed as x⃗ (t) = Py⃗ (t) where y⃗ ′(t) = J y⃗ (t) and J is a real Jordan form of
A, containing real Jordan blocks B1, . . . , Bk down its diagonal. Theorems above
provide explicit formulas for the block matrices eBit in the relation

eJ t = diag
(
eB1t, . . . , eBkt

)
.

The resulting formula
x⃗ (t) = PeJ tP−1x⃗ (0)

contains only real numbers, real exponentials, plus sine and cosine terms, which
are possibly multiplied by polynomials in t.

Numerical Instability

The matrix A =

(
1 1
ε 1

)
has two possible Jordan forms

J(ε) =



(
1 1
0 1

)
ε = 0,

(
1 +
√
ε 0
0 1−

√
ε

)
ε > 0.

When ε ≈ 0, then numerical algorithms become unstable, unable to lock onto
the correct Jordan form. Briefly, limε→0 J(ε) ̸= J(0).

906



11.6 Jordan Form and Eigenanalysis

Details and Proofs

Proof of Theorem 11.38 (Jordan Decomposition) The result holds by default for
1×1 matrices. Assume the result holds for all k×k matrices, k < n. The proof proceeds
by induction on n.

The induction assumes, for any k × k matrix A, that there is a Jordan decomposition
A = PJP−1. Then the columns of P satisfy Jordan chain relations

Ax⃗ j
i = λix⃗

j
i + x⃗ j−1

i , j > 1, Ax⃗1
i = λix⃗

1
i .

Conversely, if the Jordan chain relations are satisfied for k independent vectors {x⃗ j
i},

then the vectors form the columns of an invertible matrix P such that A = PJP−1 with
J in Jordan form. The induction step centers upon producing the chain relations and
proving that the n vectors are independent.

Let B be n× n and λ0 an eigenvalue of B. The Jordan chain relations hold for A = B
if and only if they hold for A = B − λ0I. Without loss of generality, we can assume 0 is
an eigenvalue of B.

Because B has 0 as an eigenvalue, then inequalities p = dim(kernel(B)) > 0 and
k = dim(Image(B)) < n hold, with p+ k = n. If k = 0, then B = 0, which is a Jordan
form, and there is nothing to prove. Assume henceforth p and k positive. Let S =

⟨ col(B, i1)| · · · | col(B, ik)⟩ denote the matrix of pivot columns i1,. . . ,ik ofB. The pivot
columns are known to span Image(B). Let A be the k × k basis representation matrix

defined by the equation BS = SA, or equivalently, B col(S, j) =
∑k

i=1 aij col(S, i). The
induction hypothesis applied to A implies there is a basis of k-vectors satisfying Jordan
chain relations

Ax⃗ j
i = λix⃗

j
i + x⃗ j−1

i , j > 1, Ax⃗1
i = λix⃗

1
i .

The values λi, i = 1, . . . , p, are the distinct eigenvalues of A. Apply S to these equations
to obtain for the n-vectors y⃗ j

i = Sx⃗ j
i the Jordan chain relations

By⃗ j
i = λiy⃗

j
i + y⃗ j−1

i , j > 1, By⃗ 1
i = λiy⃗

1
i .

Because S has independent columns and the k-vectors x⃗ j
i are independent, then the

n-vectors y⃗ j
i are independent.

The plan is to isolate the chains for eigenvalue zero, then extend these chains by one
vector. Then 1-chains will be constructed from eigenpairs for eigenvalue zero to make n
generalized eigenvectors.

Suppose q values of i satisfy λi = 0. We allow q = 0. For simplicity, assume such
values i are i = 1, . . . , q. The key formula y⃗ j

i = Sx⃗ j
i implies y⃗ j

i is in Image(B), while
By⃗ 1

i = λiy⃗
1
i implies y⃗ 1

1,. . . ,y⃗
1
q are in kernel(B). Each eigenvector y⃗ 1

i starts a Jordan

chain ending in y⃗
m(i)
i . Then10 the equation Bu⃗ = y⃗

m(i)
i has an n-vector solution u⃗ .

We label u⃗ = y⃗
m(i)+1
i . Because λi = 0, then Bu⃗ = λiu⃗ + y⃗

m(i)
i results in an extended

Jordan chain
By⃗ 1

i = λiy⃗
1
i

By⃗ 2
i = λiy⃗

2
i + y⃗ 1

i
...

By⃗
m(i)
i = λiy⃗

m(i)
i + y⃗

m(i)−1
i

By⃗
m(i)+1
i = λiy⃗

m(i)+1
i + y⃗

m(i)
i

10The n-vector u⃗ is constructed by setting u⃗ = 0⃗ , then copy components of k-vector x⃗
m(i)
i

into pivot locations: row(u⃗ , ij) = row(x⃗
m(i)
i , j), j = 1, . . . , k.
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Extend the independent set {y⃗ 1
i }

q
i=1 to a basis of kernel(B) by adding s = n − k − q

additional independent vectors v⃗ 1, . . . , v⃗ s. This basis consists of eigenvectors of B for
eigenvalue 0. Then the set of n vectors v⃗ r, y⃗

j
i for 1 ≤ r ≤ s, 1 ≤ i ≤ p, 1 ≤ j ≤ m(i)+1

consists of eigenvectors of B and vectors that satisfy Jordan chain relations. These
vectors are columns of a matrix P that satisfies BP = PJ where J is a Jordan form.

To prove P invertible, assume a linear combination of the columns of P is zero:

p∑
i=q+1

m(i)∑
j=1

bji y⃗
j
i +

q∑
i=1

m(i)+1∑
j=1

bji y⃗
j
i +

s∑
i=1

civ⃗ i = 0⃗ .

Apply B to this equation. Because Bw⃗ = 0⃗ for any w⃗ in kernel(B), then

p∑
i=q+1

m(i)∑
j=1

bjiBy⃗ j
i +

q∑
i=1

m(i)+1∑
j=2

bjiBy⃗ j
i = 0⃗ .

The Jordan chain relations imply that the k vectors By⃗ j
i in the linear combination consist

of λiy⃗
j
i + y⃗ j−1

i , λiy⃗
1
i , i = q + 1, . . . , p, j = 2, . . . ,m(i), plus the vectors y⃗ j

i , 1 ≤ i ≤ q,

1 ≤ j ≤ m(i). Independence of the original k vectors {y⃗ j
i} plus λi ̸= 0 for i > q implies

this new set is independent. Then all coefficients in the linear combination are zero.

The first linear combination then reduces to
∑q

i=1 b
1
i y⃗

1
i +
∑s

i=1 civ⃗ i = 0⃗ . Independence
of the constructed basis for kernel(B) implies b1i = 0 for 1 ≤ i ≤ q and ci = 0 for
1 ≤ i ≤ s. Therefore, the columns of P are independent. The induction is complete. ■

Exercises 11.6 �

Jordan block definition. Write out the
Jordan form matrix explicitly.

1. diag(B(7, 2), B(5, 3))

Answer:


7 1 0 0 0
0 7 0 0 0
0 0 5 1 0
0 0 0 5 1
0 0 0 0 5


2. diag(B(0, 2), B(4, 3))

3. diag(B(−1, 1), B(−1, 2), B(5, 3))

4. diag(B(1, 1), B(5, 2), B(5, 3))

Jordan form definition. Which are Jor-
dan forms and which are not? Explain.

5.


0 1 0 0 0
0 0 0 0 0
0 0 5 1 0
0 0 0 5 1
0 0 0 0 5



6.

5 1 0 0
0 5 0 0
0 0 5 1
0 0 0 5



7.

1 0 0 0
0 7 0 0
0 0 1 0
0 0 5 1



8.


5 1 0 0 0
0 5 0 0 0
0 0 5 1 0
0 0 0 5 0
0 0 0 0 5


Decoding A = PJP−1. Decode A =
PJP−1 in each case, displaying explicitly
the Jordan chain relations and their solu-
tions.

9. A =


4 8 0 0 −8
0 4 0 0 0
2 8 2 0 −8
0 20 0 2 −12
0 8 0 0 −4

,

J = diag(−4, 2, 2, 4, 4)

10. A =


−4 −4 −12 12 4
0 0 0 0 0
−8 4 −12 16 0
−8 4 −16 20 0
0 0 −4 4 0

,
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J = diag(−4, 4, 4, 0, 0)

Geometric and algebraic multiplicity.
Determine GeoMult(λ) and AlgMult(λ).

11. A =


4 8 0 0 −8
0 4 0 0 0
2 8 2 0 −8
0 20 0 2 −12
0 8 0 0 −4

, λ = 4

12. A =


−4 −4 −12 12 4
0 0 0 0 0
−8 4 −12 16 0
−8 4 −16 20 0
0 0 −4 4 0

, λ = 4

Generalized eigenvectors. Find all gen-
eralized eigenvectors and represent A =
PJP−1. Check the answer in a computer
algebra system.

13. A =


4 8 0 0 −8
0 4 0 0 0
2 8 2 0 −8
0 20 0 2 −12
0 8 0 0 −4

,

Answer: J = diag(−4, 4, 4, 2, 2),

P =


1 0 0 1 0
0 0 0 0 1
1 0 1 1 0
2 1 0 0 4
1 0 0 0 1



14. A =


−4 −4 −12 12 4
0 0 0 0 0
−8 4 −12 16 0
−8 4 −16 20 0
0 0 −4 4 0

,

Answer: J = diag(−4, 4, 4, 0, 0),

P =


1 2 0 1 1
0 0 0 2 −1
1 −1 1 0 3
1 0 1 0 3
0 2 0 3 0



15. A =

0 2 −2 −2
2 0 −2 −4
2 2 −4 −2
0 0 0 −4

,

Ans: J = diag(0,−4,−2,−2),

P =

1 0 1 −1
1 1 −4 0
1 0 −3 −1
0 1 0 0



16. A =


−2 2 −1 −1 0
0 1 0 0 0
0 1 1 0 0
0 0 0 2 1
0 0 0 0 2

,

Ans: J = diag(2, 2, B(2, 3)),

P =


1 1 1 −2 3
0 1 0 0 0
1 2 0 0 0
0 0 0 1 −2
0 0 0 0 1



17. A =


2 1 0 1 0
0 2 0 0 0
0 1 2 0 0
0 0 0 2 1
0 0 0 0 2

,

Ans: J = diag(B(2, 3), B(2, 2)),

P =


1 2 1 2 1
0 0 2 0 2
0 2 1 2 1
0 1 0 0 0
0 0 1 0 0



18. A =


2 0 0 1 0
1 3 −1 0 0
1 1 1 0 0
0 0 0 2 1
0 0 0 0 2

,

Ans: J = diag(B(2, 4), 2),

P =


0 1 0 1 1
1 0 0 0 0
1 0 0 1 1
0 0 1 0 0
0 0 0 1 0


Number of Jordan Blocks. Outlined
here is the derivation of

s(j) = 2k(j − 1)− k(j − 2)− k(j).

Definitions:

• s(j)= number of blocks B(λ, j)

• N = A− λI

• k(j) = dim(kernel(N j))

• Lj = kernel(N j−1)⊥ relative to
kernel(N j)

• ℓ(j) = dim(Lj)

• p minimizes
kernel(Np) = kernel(Np+1)

19. Verify k(j) ≤ k(j + 1) from

kernel(N j) ⊂ kernel(N j+1).
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20. Verify the direct sum formula

kernel(N j) = kernel(N j−1)⊕ Lj .

Then k(j) = k(j − 1) + ℓ(j).

21. Given Nmw⃗ = 0⃗ , Nm−1w⃗ ̸= 0⃗ , de-
fine v⃗ i = Nm−iw⃗ , i = 1, . . . ,m. Prove
{v⃗ 1, . . . , v⃗m} is independent and they
satisfy Jordan chain relationsN v⃗ 1 = 0⃗ ,
N v⃗ i+i = v⃗ i.

22. A block B(λ, p) corresponds to a Jor-
dan chain v⃗ 1, . . . , v⃗ p constructed
from the Jordan decomposition. Use
Np−1v⃗ p = v⃗ 1 and kernel(Np) =
kernel(Np+1) to show that the num-
ber of such blocks B(λ, p) is ℓ(p). Then
for p > 1, s(p) = k(p)− k(p− 1).

23. Show that ℓ(j−1)−ℓ(j) is the number
of blocks B(λ, j) for 2 < j < p. Then

s(j) = 2k(j − 1)− k(j)− k(j − 2).

24. Test the formulas above on the special
matrices

A=diag(B(λ, 1), B(λ, 1), B(λ, 1)),

A=diag(B(λ, 1), B(λ, 2), B(λ, 3)),

A=diag(B(λ, 1), B(λ, 3), B(λ, 3)),

A=diag(B(λ, 1), B(λ, 1), B(λ, 3)),

Computing Jordan m-chains. Find the
Jordan m-chain formulas for the given
eigenvalue. Then solve them to find the
generalized eigenvectors.

25. A =


1 0 1 0 1
0 1 0 1 1
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1



26. A =


2 0 0 1 0
1 3 −1 0 0
1 1 1 0 0
0 0 0 2 1
0 0 0 0 2

, λ = 2

Generalized Eigenspace Basis.

Let A be n×n with distinct eigenvalues λi,
ni = AlgMult(λi) and Ei = kernel((A −
λiI)

ni), i = 1, . . . , k. Assume a Jordan de-
composition A = PJP−1.

27. Let Jordan block B(λ,m) appear in J .
Prove that a Jordan chain correspond-
ing to this block is a set of m indepen-
dent columns of P .

28. Let Bλ be the union of all columns of P
originating from Jordan chains associ-
ated with Jordan blocks B(λ, j). Prove
that Bλ is an independent set.

29. Verify that Bλ has AlgMult(λ) basis
elements.

30. Prove that Ei = span (Bλi) and
dim(Ei) = ni, i = 1, . . . , k.

Direct Sum Decomposition.

31. Let A =

(
2 1 0
0 2 1
0 0 2

)
. Let λ = 2. Com-

pute k = AlgMult(λ) and a basis of gen-
eralized eigenvectors for the subspace
kernel((A− λI)k).

32. Let A =

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 4

, y⃗ =

2
0
1
9

.

Find x⃗1, x⃗2 in decomposition y⃗ = x⃗1+
x⃗2 in Theorem 11.42.

Exponential Matrices. Compute the ex-
ponential matrix eAt on paper. Check the
answer using maple.

33. A =

(
2 0 0
0 3 0
0 0 0

)

34. A =

(
2 1 0
0 2 0
0 0 4

)

Nilpotent matrices. Find the nilpotency
of N .

35. N =

(
0 1 0
0 0 0
0 0 0

)

36. N =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


910



11.6 Jordan Form and Eigenanalysis

Real Jordan Decomposition
Find Jordan decomposition A = PJP−1

where J and P are real matrices.

37. A =

(
−2 6 −1
0 4 1
0 1 4

)
. Answer:

λ = −2, 4± i,

J =

(
−2 0 0
0 4 1
0 −1 4

)
, P =

(
1 0 1
0 0 1
0 1 0

)

38. A =

(
−31 −10 18
−15 −5 10
−54 −20 32

)
. Answer:

λ = −4,±5i

J =

(
−4 0 0
0 0 5
0 −5 0

)
, P =

(
2 2 0
0 1 −1
3 4 0

)

Solving x⃗ ′ = Ax⃗

Solve for x⃗ in the differential equation.

39. x⃗ ′ =

(
−2 6 −1
0 4 1
0 1 4

)
x⃗ .

40. x⃗ ′ =

(
−31 −10 18
−15 −5 10
−54 −20 32

)
x⃗ .

Numerical Instability
Show directly that Jordan form J of A sat-
isfies limϵ→0+ J(ϵ) ̸= J(0).

41. A =

(
1 1
ϵ 1

)

42. A =

(
0 1 1
0 ϵ 1
0 0 0

)

911



11.7 Nonhomogeneous Linear Systems

11.7 Nonhomogeneous Linear Systems

Variation of Parameters

The Method of Variation of Parameters solves a linear nonhomogeneous
system

x⃗ ′ = Ax⃗ + F⃗ (t).

Historically, it is substitution method which solves the nonhomogeneous system
using a trial solution of the form

x⃗(t) = eAt x⃗ 0(t).

The vector function x⃗ 0(t) is to be determined. The method is imagined to origi-
nate by varying x⃗ 0 in the general solution x⃗ (t) = eAt x⃗ 0 of the linear homogenous
system x⃗ ′ = Ax⃗ . The names coined from this idea are variation of parameters
and variation of constants.

Modern use of variation of parameters is through a formula, memorized for rou-
tine use.

Theorem 11.45 (Variation of Parameters: Constant Linear System)
Let A be a constant n× n matrix and F⃗ (t) a continuous function near t = t0. The
unique solution x⃗ (t) of the matrix initial value problem

x⃗ ′(t) = Ax⃗ (t) + F⃗ (t), x⃗ (t0) = x⃗ 0,

is given by the Variation of Parameters formula

x⃗ (t) = eAtx⃗ 0 + eAt

∫ t

t0

e−sAF⃗(s)ds.(1)

Proof of Theorem 11.45. Define

u⃗ (t) = x⃗0 +

∫ t

t0

e−sAF⃗ (s)ds.

To show (1) holds, we must verify x⃗ (t) = eAtu⃗(t). First, the function u⃗ (t) is differ-

entiable with continuous derivative e−tAF⃗(t), by the fundamental theorem of calculus
applied to each of its components. The product rule of calculus applies to give

x⃗ ′(t) =
(
eAt
)′
u⃗(t) + eAtu⃗ ′(t)

= AeAtu⃗(t) + eAte−AtF⃗(t)

= Ax⃗ (t) + F⃗(t).

Therefore, x⃗ (t) satisfies the differential equation x⃗ ′ = Ax⃗ + F⃗(t). Because u⃗ (t0) = x⃗0,
then x⃗ (t0) = x⃗0, which shows the initial condition is also satisfied. ■

912



11.7 Nonhomogeneous Linear Systems

Theorem 11.46 (Variation of Parameters: General Linear System)
Let A(t) be an n×n matrix and F⃗ (t) a vector function, both with continuous entries
near t = t0. Let Φ(t) be the n× n matrix solution of Φ′(t) = A(t)Φ(t), Φ(t0) = I,
established by the Picard-Lindelöf Theorem.

Then the unique solution x⃗ (t) of the matrix initial value problem

x⃗ ′(t) = A(t)x⃗(t) + F⃗ (t), x⃗ (t0) = x⃗ 0

is given by

x⃗ (t) = Φ(t)x⃗ 0 +Φ(t)

∫ t

t0

Φ−1(s)F⃗(s)ds.(2)

Proof of Theorem 11.46. Define

u⃗(t) = x⃗0 +

∫ t

t0

Φ−1(s)F⃗(s)ds.

Equation (2) holds provided x⃗ (t) = Φ(t)u⃗(t). First, the function u⃗(t) is differentiable

with continuous derivative Φ(t)F⃗(t), by the fundamental theorem of calculus applied to
each of its components. The product rule of calculus implies

x⃗ ′(t) = (Φ(t))
′
u⃗(t) + Φ(t)u⃗ ′(t)

= A(t)Φ(t)u⃗(t) + Φ(t)Φ−1(t)F⃗ (t)

= A(t)x⃗ (t) + F⃗(t).

Therefore, x⃗ (t) satisfies the differential equation x⃗ ′ = A(t)x⃗+F⃗(t). Because u⃗(t0) = x⃗0,
then x⃗ (t0) = x⃗0 and the initial condition is satisfied. ■

Example 11.13 (Variation of Parameters: 2× 2 System)

Let A =

(
4 0
0 5

)
and F⃗(t) = et

(
2
1

)
. Solve x⃗ ′ = Ax⃗ + F⃗(t) using the formula

x⃗p =
∫ t
0 e

A(t−s)F⃗ (s)ds and find the shortest expression

x⃗p(t) =

(
−2

3 e
t

−1
4 e

t

)

Details for Example 11.13: Because A is diagonal, then eAt =

(
e4t 0
0 e5t

)
. The

integration problem:

x⃗p(t) =

∫ t

0

eA(t−s)F⃗ (s)ds

=

∫ t

0

(
e4t−4s 0

0 e5t−5s

) (
2
1

)
es ds

=

(
2
3 e

4 t − 2
3 e

t

1
4 e

5 t − 1
4 e

t

)
The integration was by CAS maple:
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11.7 Nonhomogeneous Linear Systems

with(LinearAlgebra):A:=Matrix([[4,0],[0,5]]);

V:=t->MatrixExponential(A,t);

F:=t->Vector([2*exp(t),1*exp(t)]);

k:=(t,s)->V(t). V(s)^(-1) . F(s);# integrand=k(t,s)

w:=map(u->int(u,s=0..t),k(t,s));

Shortening the expression depends on superposition: x⃗ = x⃗h + x⃗p. The homogeneous
terms for removal have the form

x⃗h(t) =

(
e4t 0
0 e5t

)(
c1
c2

)
=

(
c1e

4t

c2e
5t

)
Choose c1 = − 2

3 , c2 = − 1
4 , then add this x⃗h(t) to the integration result:

x⃗p(t) =

(
− 2

3 e
t

− 1
4 e

t

)

Theorem 11.47 (Variation of Parameters: Scalar 2nd Order)

Let a ̸= 0, b, c, f be continuous functions defined near t = t0. Let x1(t), x2(t) be two
linearly independent solutions of the homogeneous differential equation a(t)x′′(t) +
b(t)x′(t) + c(t)x(t) = 0. Then the unique solution xp(t) of the second order initial
value problem

a(t)x′′(t) + b(t)x′(t) + c(t)x(t) = f(t), x(t0) = 0, x′(t0) = 0(3)

is given by the Variation of Parameters formula

xp(t) =

∫ t

t0

k(t, s)
f(s)

a(s)
ds, k(t, r) =

∣∣∣∣ x1(s) x2(s)
x1(t) x2(t)

∣∣∣∣∣∣∣∣ x1(s) x2(s)
x′1(s) x′2(s)

∣∣∣∣(4)

Proof of Theorem 11.47. Formula (4) is discovered via Theorem 11.46 using the

companion matrix for scalar equation (3) on 846, which is A(t) =
1

a(t)

(
0 1
−c(t) −b(t)

)
,

and F⃗(t) =
1

a(t)

(
0

f(t)

)
. This proof path is pursued in the exercises. A direct proof will

be given which requires fewer background topics.

Verify Solution. To begin, expand k(t, s) = u1(s)x1(t) + u2(t)x)2(t) where u1(s) =

−x2(s)/W (s), u2(s) = x1(s)/W (s) and W (s) =

∣∣∣∣x1(s) x2(s)
x′
1(s) x

′
2(s)

∣∣∣∣. Then
xp(t) = x1(t)

∫ t

t0

u1(s)
f(s)

a(s)
ds+ x2(t)

∫ t

t0

u2(s)
f(s)

a(s)
ds.

Expression xp(t) is expected to satisfy the differential equation, verified by the following
steps.
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1 LHS = ax′′
p + bx′

p + cxp Define xp by (4)

2 =
∫ t

t0
(a(t)x′′

1 + b(t)x′
1 + c(t)x1)

f(s)

a(s)
ds+

∫ t

t0
(a(t)x′′

2 + b(t)x′
2 + c(t)x2)

f(s)

a(s)
ds+

a(t)
f(t)

a(t)

3 = 0 + 0 + f(t) Solution xp verified.

1 : Symbol LHS is the left hand side of (3).

2 : Product rule of calculus and the Fundamental Theorem of Calculus. In particular,
due to cancellations:

x′
p(t) = x′

1(t)
∫ t

t0
u1(s)

f(s)

a(s)
ds+ x′

2(t)
∫ t

t0
u2(s)

f(s)

a(s)
ds,

x′′
p(t) = x′′

1(t)
∫ t

t0
u1(s)

f(s)

a(s)
ds+ x′′

2(t)
∫ t

t0
u2(s)

f(s)

a(s)
ds+ a(t)

f(t)

a(t)
.

3 : The homogeneous equation has solutions x1, x2.

Initial Conditions. Equation xp(t0) = 0 follows because the integral is taken over a

zero-length interval. Equation x′
p(t0) = 0 follows from 2 details.

Example 11.14 (Scalar 2nd Order Euler Differential Equation)

Solve for the general solution:

x2y′′ + 3xy′ + y = ln(x2), x > 0

Details for Example 11.14:
The answer: yp(x) = ln(x2)− 4, yh(t) = c1x

−1 + c2x
−1 ln |x|, details below.

Undetermined Coefficients is applied after a change of variables x = et into the
forced constant equation:

d2y(et)

dt2
+ 2

dy(et)

dt
+ y(et) = 2t

It’s characteristic equation is r2 + 2r + 1 = 0. Then undetermined coefficient solution
2t− 4 implies

y(et) = c1e
−t + c2te

−t + 2t− 4

y(x) = c1
1

x
+ c2

ln |x|
x

+ 2 ln |x| − 4

Variation of Parameters directly finds y(x) by integration. To use the formulas,
change symbols: x→ t and y → x. Then the original differential equation becomes:

t2x′′(t) + 3tx′(t) + x(t) = ln(t2)
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11.7 Nonhomogeneous Linear Systems

Euler differential equation theory finds a basis x1(t) =
1
t , x2(t) =

ln |t|
t for the homoge-

neous problem t2x′′(t) + 3tx′(t) + x(t) = 0. Then
f(s)

a(s)
= s−2 ln(s2) and

k(t, s) =

∣∣∣∣∣∣∣
1

s

ln |s|
s

1

t

ln |t|
t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1

s

ln |s|
s

−1
s2

1

s2
− ln |s|

s2

∣∣∣∣∣∣∣
=

s2 ln |t/s|
t

Choose t0 = 1 in the variation of parameters formula. Then for t > 0:

xp(t) =

∫ t

1

k(t, s)
f(s)

a(s)
ds

=

∫ t

1

(
ln |t/s| ln |s2|

t

)
ds

= ln(t2)− 4 +
2 ln |t|

t
+

4

t

The last two terms of xp are homogeneous solutions, discarded to give the shortest
particular solution xp(t) = ln(t2)− 4.

Example 11.15 (Nonhomogeneous 2× 2 System in CAS maple)

Solve x′ = 2x+ y + t2, y′ = 2x+ y, x(0) = y(0) = 0 by computer algebra.

Details for Example 11.15:

f:=(x,y)->2*x+y; g:=(x,y)->2*x+y;

F:=t->t^2; G:=t->0;

des:=diff(x(t),t)=f(x(t),y(t))+F(t),

diff(y(t),t)=g(x(t),y(t))+G(t);

dsolve({des,x(0)=0,y(0)=0},[x(t),y(t)]);

The reported answer:

x (t) = −2

9
t2 − 4 t

27
+

4 e3 t

81
− 4

81
+ 1/9 t3

y (t) = −2

9
t3 − 2/9 t2 +

4 e3 t

81
− 4 t

27
− 4

81

Undetermined Coefficients

The trial solution method known as the method of undetermined coefficients can
be applied to vector-matrix systems x⃗ ′ = Ax⃗ + F⃗ (t) when the components of F⃗
are linear combinations of terms of the form

tkeat cos(bt) or tkeat sin(bt),
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called Euler solution atoms. It is efficient for exposition to write F⃗ in terms
of the columns e⃗ 1, . . . , e⃗n of the n× n identity matrix I:

F⃗(t) =
n∑

j=1

Fj(t)⃗e j .

Then a particular solution of x⃗ ′ = Ax⃗ + F⃗(t) is given by

x⃗ (t) =
n∑

j=1

x⃗ j(t)

where x⃗ j(t) for 1 ≤ j ≤ n is a particular solution of the simpler equation

x⃗ ′(t) = Ax⃗ (t) + f(t)⃗c , f = Fj , c⃗ = e⃗ j .

A trial solution x⃗ (t) for non-homogeneous equation x⃗ ′(t) = Ax⃗ (t) + f(t)⃗c can
be determined from the following Initial Trial Solution Rule:

Let f(t) be a linear combination of Euler solution atoms. Iden-
tify independent Euler atoms Aj(t) whose linear combinations in-
clude all derivatives of f(t). The initial trial solution is expression

x⃗ (t) =
∑

j Aj(t)d⃗ j, a linear combination of atoms with undeter-

mined vector coefficients
{
d⃗ j

}
.

In the scalar case, the trial solution must be modified if it has an Euler solution
atom which is a solution to the homogeneous equation. In the vector case, if f(t)
is a polynomial, then this correction rule for the initial trial solution is avoided
by assuming the matrix A is invertible. This assumption means that r = 0 is not
a root of det(A− rI) = 0, which prevents the homogenous solution from having
any polynomial terms.

The method substitutes the initial vector trial solution into the differential equa-

tion to find the undetermined coefficients
{
d⃗ j

}
. The answers

{
d⃗ j

}
replaced in

the trial solution determine a particular solution to the non-homogeneous vector
differential equation.

Example 11.16 (Undetermined Coefficients: Polynomial Solution)

Solve by undetermined coefficients:

dx⃗

dt
=

(
1 2
0 −1

)
x⃗ +

(
1 + t
t2

)
Details Example 11.16:

Solution x⃗h:

Let A =

(
1 2
0 −1

)
. Find eAt:
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eAt = eλ1tI +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I) Putzer’s formula page 885.

= etI +
e−t − et

−1− 1
(A− I) Because λ1 = 1, λ2 = −1.

= et
(
1 0
0 1

)
+

et − e−t

2

(
0 2
0 −2

)
Because A =

(
1 2
0 −1

)
.

=

(
et et − e−t

0 e−t

)
Verified in maple.

Then

x⃗h(t) = eAt

(
c1
c2

)
= (c1 + c2)e

t

(
1
0

)
+ c2e

−t

(
−1
1

)
The constant vectors in x⃗h(t) are eigenvectors of A. The eigenanalysis method produces
an equivalent formula.

Solution x⃗p:

The desired shortest particular solution is x⃗p(t) =

(
−2t2 − t− 6
t2 − 2t+ 2

)
, obtained by the

method of undetermined coefficients.

The forcing term is a vector linear combination of Euler atoms 1, t, t2:

F⃗ (t) =

(
1 + t
t2

)
=

(
1
0

)
+ t

(
1
0

)
+ t2

(
0
1

)
Select trial solution11 x⃗ (t) = d⃗1 + td⃗2 + t2d⃗3. Substitute it into x⃗ ′ = Ax⃗ + F⃗(t):

d⃗2 + 2td⃗3 = Ad⃗1 + tAd⃗2 + t2Ad⃗3 + F⃗(t)

d⃗2 + 2td⃗3 = Ad⃗1 + tAd⃗2 + t2Ad⃗3 +

(
1
0

)
+ t

(
1
0

)
+ t2

(
0
1

)
Collect left on Euler atoms 1, t, t2:

(1)

(
d⃗2 −Ad⃗1 −

(
1
0

))
+ (t)

(
2d⃗3 −Ad⃗2 −

(
1
0

))
+ (t2)

(
−Ad⃗3 −

(
0
1

))
= 0⃗

Independence of Euler atoms implies the vector coefficients are zero:

d⃗2 −Ad⃗1 −
(
1
0

)
= 0⃗

2d⃗3 −Ad⃗2 −
(
1
0

)
= 0⃗

−Ad⃗3 −
(
0
1

)
= 0⃗

11Derivatives of 1, t, t2 are spanned by 1, t, t2.
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Let B = A−1. Solve as a triangular system, variables reversed:

d⃗3 = −B
(
0
1

)
=

(
−2
1

)
d⃗2 = B

(
2d⃗3 −

(
1
0

))
=

(
−1
−2

)
d⃗1 = B

(
d⃗2 −

(
1
0

))
=

(
−6
2

)
Replace answers d⃗1, d⃗2, d⃗3 in the trial solution to find particular solution:

x⃗p(t) =

(
−6
2

)
+ t

(
−1
−2

)
+ t2

(
−2
1

)

Example 11.17 (Undetermined Coefficients: Polynomial-Exponential)

Solve by undetermined coefficients:

dx⃗

dt
=

(
1 2
0 −1

)
x⃗ + e2t

(
t
3

)
Details Example 11.17:

Solution x⃗h:

Let A =

(
1 2
0 −1

)
. The homogenous solution from Example 11.16:

x⃗h(t) = eAt

(
c1
c2

)
= (c1 + c2)e

t

(
1
0

)
+ c2e

−t

(
−1
1

)
Solution x⃗p:

The desired shortest particular solution is x⃗p(t) =

(
e2t + te2t

e2t

)
, obtained by the method

of undetermined coefficients.

The forcing term is a vector linear combination of Euler atoms e2t, te2t:

F⃗(t) =

(
te2t

3e2t

)
= e2t

(
0
3

)
+ te2t

(
1
0

)
Select trial solution x⃗ (t) = e2td⃗1 + te2td⃗2.

12 Substitute it into x⃗ ′ = Ax⃗ + F⃗ (t):

2e2td⃗1 + e2td⃗2 + 2te2td⃗2 = e2tAd⃗1 + te2tAd⃗2 + e2t
(
0
3

)
+ te2t

(
1
0

)
Cancel e2t. Then collect left on Euler atoms 1, t:

(1)

(
2d⃗1 −Ad⃗1 −

(
0
3

)
+ d⃗2

)
+ (t)

(
2d⃗2 −Ad⃗2 −

(
1
0

))
= 0⃗

12Derivatives of e2t, te2t are spanned by e2t, te2t.
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Independence of Euler atoms implies the vector coefficients are zero:

2d⃗1 −Ad⃗1 −
(
0
3

)
+ d⃗2 = 0⃗

2d⃗2 −Ad⃗2 −
(
1
0

)
= 0⃗

Factor 2I − A from each equation. Let B = (2I − A)−1. Solve as a triangular system,
variables reversed:

d⃗2 = B

(
1
0

)
=

(
1
0

)
d⃗1 = B

((
0
3

)
− d⃗2

)
=

(
1
1

)
Replace d⃗1, d⃗2 in the trial solution to find particular solution

x⃗p(t) = e2t
(
1
1

)
+ te2t

(
1
0

)
=

(
e2t + te2t

e2t

)

There are nuances in the algorithm not revealed in the preceding two examples.
Two theorems formalize the methods.

Theorem 11.48 (Polynomial Solutions)
Let f(t) =

∑k
j=0 pj

tj

j! be a polynomial of degree k. Assume A is an n×n constant in-

vertible matrix. Then u⃗ ′ = Au⃗+f(t)⃗c has a polynomial solution u⃗(t) =
∑k

j=0 d⃗ j
tj

j!

of degree k with vector coefficients
{
d⃗ j

}
given by the relations

d⃗ j = −
k∑

i=j

piA
j−i−1c⃗ , 0 ≤ j ≤ k.

Theorem 11.49 (Polynomial × Exponential Solutions)
Let g(t) =

∑k
j=0 pj

tj

j! be a polynomial of degree k. Assume A is an n× n constant

matrix and B = A − aI is invertible. Then u⃗ ′ = Au⃗ + eatg(t)⃗c has a polynomial-

exponential solution u⃗ (t) = eat
∑k

j=0 d⃗ j
tj

j! with vector coefficients
{
d⃗ j

}
given by

the relations

d⃗ j = −
k∑

i=j

piB
j−i−1c⃗ , 0 ≤ j ≤ k.

Proof of Theorem 11.48. Substitute u⃗ (t) =
∑k

j=0 d⃗ j
tj

j! into the differential equation,
then

k−1∑
j=0

d⃗ j+1
tj

j!
= A

k∑
j=0

d⃗ j
tj

j!
+

k∑
j=0

pj
tj

j!
c⃗ .

Terms on the right for j = k must add to zero and the others must match the left side
coefficients of tj/j!, giving the relations

Ad⃗k + pkc⃗ = 0⃗ , d⃗ j+1 = Ad⃗ j + pj c⃗ .
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Solve the relations recursively to give the formulas

d⃗k = −pkA−1c⃗ ,

d⃗k−1 = −
(
pk−1A

−1 + pkA
−2
)
c⃗ ,

...

d⃗0 = −
(
p0A

−1 + · · ·+ pkA
−k−1

)
c⃗ .

The relations above can be summarized by the formula

d⃗ j = −
k∑

i=j

piA
j−i−1c⃗ , 0 ≤ j ≤ k.

The calculation shows that if u⃗(t) =
∑k

j=0 d⃗ j
tj

j! and d⃗ j is given by the last formula,

then u⃗(t) substituted into the differential equation gives matching LHS and RHS. ■

Proof of Theorem 11.49. Let u⃗ (t) = eatv⃗ (t). Then u⃗ ′ = Au⃗ + eatg(t)⃗c implies
v⃗ ′ = (A− aI)v⃗ + g(t)⃗c . Apply Theorem 11.48 to v⃗ ′ = Bv⃗ + g(t)⃗c . ■

Exercises 11.7 �

Variation of Parameters

Let A(t) =

(
0 1

−c(t)/a(t) −b(t)/a(t)

)
,

F⃗(t) =
1

a(t)

(
0

f(t)

)
, x⃗=

(
u(t)
u′(t)

)
.

1. Verify equivalence of a(t)u′′ + b(t)u′ +

c(t)u = f(t) and x⃗ ′ = A(t)x⃗ + F⃗(t).

2. For u′′ + 100u = sin(t), find A(t) and

F⃗(t).

3. For u′′ = f(t), find A(t) and F⃗(t).

4. For u′′ = f(t), let u1 = 1, u2 = t,

Φ(t) =

(
u1 u2
u′
1 u

′
2

)
. Verify |Φ(t)| = 1,

then find A(t) = Φ′(t)Φ−1(t).

5. State Theorem 11.46 for n = 2, then ex-
plain how it applies to this special case.

6. Prove Theorem 11.47 using the previous
exercise.

Variation of Parameters:
Scalar 2nd Order
Let a(t)u′′ + b(t)u′ + c(t)u = 0 have
two independent solutions u1, u2.

Define Ψ(t) =

(
u1 u2
u′
1 u

′
2

)
. Then:

7. Matrix Ψ(t) has an inverse.

8. Matrix Φ(t) = Ψ(t)Ψ−1(t0) is invertible
and Φ(t0) = I.

9. Let Ψ(t) =

(
1 t
0 1

)
. Define(

u
v

)
= Ψ(t)

∫ t

0
Ψ−1(s)f(s)ds.

Then u is a particular solution of u′′ =
f(t).

10. Let Ψ(t) =

(
et e−t

et −e−t

)
. Define(

u
v

)
= Ψ(t)

∫ t

0
Ψ−1(s)f(s)ds.

Then u is a particular solution of u′′ −
u = f(t).

Variation of Parameters

Let A =

(
2 0
0 3

)
. Solve x⃗ ′ = Ax⃗ + F⃗(t) us-

ing x⃗p =
∫ t

0
eA(t−s)F⃗(s)ds and computer

assist.

11. F⃗(t) = et
(
1
2

)
, x⃗p =

(
e2t − et

e3t − et

)

12. F⃗(t) =

(
et

e−t

)
,

x⃗p=

(
e2t − et

1
4e

3t − 1
4e

−t

)
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Undetermined Coefficients

Let A =

(
1 2
0 −1

)
. Solve x⃗ ′=Ax⃗+F⃗(t) by

undetermined coefficients. Assume

x⃗h(t)=c1e
t

(
1
0

)
+c2e

−t

(
−1
1

)
13. F⃗ (t) = et

(
1
2

)
,

x⃗p=

(
e−t+3tet−et

et−e−t

)
14. F⃗ (t) = 2

(
cos t
et

)
,

x⃗p =

(
2tet+sin(t)− cos(t)+e−t

et−e−t

)
Undetermined Coefficients

Let A =

(
2 0
0 3

)
. Solve x⃗ ′ = Ax⃗ +

F⃗ (t) by undetermined coefficients. Assume

x⃗h(t) =

(
c1e

2t

c2e
3t

)
.

15. F⃗(t) = et
(
1
2

)
, x⃗p = et

(
−1
−1

)

16. F⃗(t) = 4

(
et

e−t

)
, x⃗p = e−t

(
−4
−1

)

17. F⃗(t) = 10

(
cos t
et

)
,

x⃗p =

(
−4 cos(t) + 2 sin(t)

−5et
)

18. F⃗(t) = 2et
(
cos t
1

)
,

x⃗p = et
(
− cos(t) + sin(t)

−1

)
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11.8 Second-order Systems

A model problem for second order systems is the system of three masses coupled
by springs studied in section 11.1, equation (6):

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).

(1)

m1 m3

k2 k3 k4k1

m2

Figure 22. Three masses connected by
springs. The masses slide on a frictionless sur-
face.

In vector-matrix form, this system is a second order system

M x⃗ ′′(t) = Kx⃗ (t)

where the displacement x⃗ , mass matrix M and stiffness matrix K are
defined by the formulas

x⃗=

x1
x2
x3

 , M=

m1 0 0
0 m2 0
0 0 m3

 , K=

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

 .

Because M is invertible, the system can always be written as

x⃗ ′′ = Ax⃗ , A = M−1K.

Euler’s Substitution x⃗ = eλtv⃗

Fundamental substitution x⃗ = eλtv⃗ due to L. Euler applies to any vector-matrix
differential system.

Euler’s substitution x⃗ = eλtv⃗ is perhaps the premier method for remembering
the identities

|A− λ2I| = 0 Characteristic equation of x⃗ ′′ = Ax⃗(
A− r2I

)
v⃗ = 0⃗ , v⃗ ̸= 0⃗ Eigenpair equation

Theorem 11.50 (Properties of Euler’s Substitution
→
x= eλt

→
v)

Equation x⃗ = ertv⃗ defines a nonzero solution of x⃗ ′′ = Ax⃗ if and only if (r2, v⃗ ) is
an eigenpair of matrix A.

Proof: Assume x⃗ = ertv⃗ is a solution of x⃗ ′′ = Ax⃗ . Substitution gives r2ertv⃗ =
Av⃗ert. Cancel the exponential, then r2v⃗ = Av⃗ . Linear algebraic homogeneous system(
A− r2I

)
v⃗ = 0⃗ has a nonzero solution v⃗ if and only if the determinant of coefficients

vanishes: |A− r2I| = 0.

Assume (r2, v⃗ ) is an eigenpair of A. The eigenpair equation: r2v⃗ = Av⃗ . Multiply by
ert: r2ertv⃗ = Av⃗ert. Then x⃗ = ertv⃗ ̸= 0⃗ is a solution of x⃗ ′′ = Ax⃗ .
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Negative Eigenvalues of A

Suppose (λ2, v⃗ ) is an eigenpair of real n×n matrix A but λ2 is negative or zero.
What is the Euler solution x⃗ = eλtv⃗ in this case?

For instance, if λ2 = −4, then λ = ±2i. Nonzero eigenvector v⃗ has real com-
ponents, therefore Euler solution x⃗ (t) = eλtv⃗ is a vector with complex entries:
x⃗ (t) = e2itv⃗ = cos(2t)v⃗ + i sin(2t)v⃗ . If A is real, then cos(2t)v⃗ and sin(2t)v⃗ are
independent real solutions of x⃗ ′′ = Ax⃗ . Formally, they are n-vectors times Euler
solution atoms.

To each negative root λ = −ω2 of |A − λI| = 0 with associ-
ated eigenpair (λ, v⃗ ) corresponds two independent real solutions
cos(ωt)v⃗ and sin(ωt)v⃗ to the equation x⃗ ′′ = Ax⃗ .

Cayley-Hamilton-Ziebur Method for x⃗′′ = Ax⃗

The theory of Euler solution atoms impacts intuition for second order systems in
an essential way. Acronym CHZ abbreviates Cayley-Hamilton-Ziebur. See page
841 for the history.

Theorem 11.51 (Cayley-Hamilton-Ziebur Structure for
→
x ′′ = A

→
x)

The solution x⃗ (t) of second order equation x⃗ ′′(t) = Ax⃗(t) is a vector linear combina-
tion of Euler solution atoms corresponding to roots of the equation det(A−r2I) = 0.

Remarks. The equation |A − r2I| = 0 is formed by substitution of λ = r2

into the eigenanalysis characteristic equation |A − λI| = 0. In symbols, the
structure theorem says x⃗ = d⃗ 1A1 + · · · + d⃗kA2n, where A1, . . . , A2n are Euler
solution atoms corresponding to roots r of the determining equation |A−r2I| = 0.
Because Euler solution atoms are real, then all vectors in the relation have real
entries. However, only 2n arbitrary real constants appear in the 2n2 components
of d⃗ 1, . . . , d⃗ 2n, the remaining components being dependent on them.

Proof of the CHZ Structure Theorem. Consider the case when A is 2× 2 (n = 2),
because the proof details are similar in higher dimensions. Expand |A− λI| = 0 to find
the characteristic equation λ2+cλ+d = 0, for some constants c, d. The Cayley-Hamilton

theorem says that A2 + cA + d

(
1 0
0 1

)
=

(
0 0
0 0

)
. Let x⃗ be a solution of x⃗ ′′(t) = Ax⃗ (t).

Multiply the Cayley-Hamilton identity by vector x⃗ and simplify to obtain

A2x⃗ + cAx⃗ + dx⃗ = 0⃗ .

Using equation x⃗ ′′(t) = Ax⃗ (t) backwards, we compute A2x⃗ = Ax⃗ ′′ = x⃗ ′′′′. Replace the
terms of the displayed equation to obtain the relation

x⃗ ′′′′ + cx⃗ ′′ + dx⃗ = 0⃗ .

Each component y of vector x⃗ (t) then satisfies the 4th order linear homogeneous equation
y(4)+ cy(2)+dy = 0, which has characteristic equation r4+ cr2+d = 0. This equation is
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the expansion of determinant equation |A−r2I| = 0. Therefore y is a linear combination
of the Euler solution atoms found from the roots of this equation. It follows then that
x⃗ (t) is a vector linear combination of the Euler solution atoms so identified. ■

Theorem 11.52 (CHZ Method and Negative Eigenvalues)
Assume n×n matrix A has only negative eigenvalues. Then solution x⃗ (t) of second
order equation x⃗ ′′(t) = Ax⃗ (t) is a vector linear combination of Euler solution atoms
of the form cos(ωt), sin(ωt), where |A− ω2I| = 0.

Proof: The result follows from Theorem 11.51, because negative roots of equation |A−
rI| = 0 have the form r = −ω2 for some positive number ω, which implies the Euler
solution atoms for A are of the form cos(ωt), sin(ωt). ■

Euler Substitution and Solution Atoms

Euler’s substitution x⃗ = ektv⃗ has limited use for solving x⃗ ′′ = Ax⃗ . Advantages
of the CHZ method will be illustrated.

Illustration 1. Assume A is 2 × 2 and |A − λI| = 0 has roots λ = −4,−16.
Then |A − r2I| = 0 has four complex roots ±2i,±4i and Euler solution atom
list cos(2t), cos(4t), sin(2t), sin(4t). Because eigenvectors v⃗ are real, then Euler
substitutions are complex: e2itv⃗ , e−2itv⃗ , e4itv⃗ and e−4itv⃗ .

The CHZ method is free of complex numbers. In the 2 × 2 example we have
x⃗ = d⃗ 1 cos(2t) + d⃗ 2 cos(4t) + d⃗ 3 sin(2t) + d⃗ 4 sin(4t), where d⃗ 1 to d⃗ 4 are real
vectors.

Euler’s Formula eiθ = cos θ+ i sin θ allows the switch between complex solutions
and real solutions. Euler’s substitution x⃗ = e2itv⃗ is a solution of x⃗ ′′ = Ax⃗
provided ((2i)2, v⃗ ) is an eigenpair of A. This means v⃗ is a real eigenvector for
eigenvalue −4 ( Av⃗ = −4v⃗ is required) and therefore x⃗ = e2itv⃗ is a complex
solution of x⃗ ′′ = Ax⃗ .

Illustration 2. Assume A is 2× 2 and |A− λI| = 0 has roots λ = 4, 16. Then
|A− r2I| = 0 has four real roots 2, 2, 4, 4 and Euler atom list e2t, te2t, e4t, te4t.

The CHZ method implies the general solution of x⃗ ′′ = Ax⃗ has the real form
d⃗ 1e

2t + d⃗ 2te
2t + d⃗ 3e

4t + d⃗ 4te
4t.

Euler’s substitution produces only two atoms e2t, e4t and we are left with the
mystery of how atoms te2t, te4t were discovered to be part of the solution.

Converting x⃗′′ = Ax⃗ to u⃗′ = Cu⃗

Given a second order n × n system x⃗ ′′ = Ax⃗ , define the variable u⃗ and the
2n× 2n block matrix C as follows.

u⃗ =

(
x⃗
x⃗ ′

)
, C =

(
0 I

A 0

)
.(2)
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Then each solution x⃗ of the second order system x⃗ ′′ = Ax⃗ produces a corre-
sponding solution u⃗ of the first order system u⃗ ′ = Cu⃗ . Similarly, each solution
u⃗ of u⃗ ′ = Cu⃗ gives a solution x⃗ of x⃗ ′′ = Ax⃗ by the formula x⃗ = ⟨I|0⟩u⃗ .

Characteristic Equation for x⃗′′ = Ax⃗

The characteristic equation for the n × n second order system x⃗ ′′ = Ax⃗ will be
derived anew from the corresponding 2n× 2n first order system u⃗ ′ = Cu⃗ .

Theorem 11.53 (Characteristic Equation)
Let x⃗ ′′ = Ax⃗ be given with n× n constant matrix A. Let

u⃗ =

(
x⃗s
x⃗ ′

)
, C =

(
0 I

A 0

)
.

The first order system for x⃗ ′′ = Ax⃗ is u⃗ ′ = Cu⃗ . Then:

det(C − λI) = (−1)n det(A− λ2I).(3)

Proof: The method of proof is to verify the product formula(
−λI I

A −λI

)(
I 0

λI I

)
=

(
0 I

A− λ2I −λI

)
.

Then the determinant product formula applies to give

det(C − λI) det

(
I 0

λI I

)
= det

(
0 I

A− λ2I −λI

)
.(4)

Cofactor expansion is applied to give the two identities

det

(
I 0

λI I

)
= 1, det

(
0 I

A− λ2I −λI

)
= (−1)n det(A− λ2I).

Then (4) implies (3). ■

Solving u⃗′ = Cu⃗ and x⃗′′ = Ax⃗

Theorem 11.54 (Eigenanalysis of A and C)
Consider the n × n second order system x⃗ ′′ = Ax⃗ and its corresponding 2n × 2n
first order system u⃗ ′ = Cu⃗ defined by

C =

(
0 I

A 0

)
, u⃗ =

(
x⃗
x⃗ ′

)
.(5)

Then (λ, y⃗ ) is an eigenpair of C if and only if (λ2, w⃗ ) is an eigenpair of A and

y⃗ =

(
w⃗

λw⃗

)
.
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Proof: The equivalent statement

(C − λI)

(
w⃗
z⃗

)
= 0⃗ if and only if

{
Aw⃗ = λ2w⃗ ,

z⃗ = λw⃗ .
(6)

is proved from C − λI =

(
−λI I
A −λI

)
and block multiply. ■

Theorem 11.55 (General Solutions of
→
u ′ = C

→
u and

→
x ′′ = A

→
x)

Let A be a given n×n constant matrix and define the corresponding 2n×2n system
by

u⃗ ′ = Cu⃗ , C =

(
0 I

A 0

)
, u⃗ =

(
x⃗
x⃗ ′

)
.

Assume C has eigenpairs {(λj , y⃗ j)}2nj=1 and y⃗ 1, . . . , y⃗ 2n are independent. Let I and

0 denote the n× n identity and zero matrix. Define w⃗ j = ⟨I|0⟩y⃗ j , j = 1, . . . , 2n.
Then u⃗ ′ = Cu⃗ and x⃗ ′′ = Ax⃗ have general solutions

u⃗(t) = c1e
λ1ty⃗ 1 + · · ·+ c2ne

λ2nty⃗ 2n (2n× 1),
x⃗ (t) = c1e

λ1tw⃗ 1 + · · ·+ c2ne
λ2ntw⃗ 2n (n× 1).

Proof:
General solution of u⃗ ′ = Cu⃗ . Independence of vector Euler solutions eλ1ty⃗ 1, . . . ,
eλ2nty⃗ 2n will be verified. Assume a linear combination of these solutions is zero, then
at t = 0 the exponentials equal 1, which reduces to a linear combination of y⃗ 1, . . . ,
y⃗ 2n. By independence of the latter, then all weights are zero: the Euler solutions are
independent. Hence u⃗(t) is a general solution of u⃗ ′ = Cu⃗ .

General solution of x⃗ ′′ = Ax⃗ . Independence of vector Euler solution eλ1tw⃗ 1, . . . ,
eλ2ntw⃗ 2n will be verified. Suppose constants a1, . . . , a2n are given with

∑2n
j=1 aje

λjtw⃗ j =

0⃗ . Replace t = 0 in this relation to give (1)
∑2n

j=1 ajw⃗ j = 0⃗ . Differentiate this relation

on variable t to give
∑2n

j=1 ajλj e
λjtw⃗ j = 0⃗ for all t, then set t = 0 to obtain (2)∑2n

j=1 ajλj w⃗ j = 0⃗ . Combine (1) and (2) using y⃗ j =

(
w⃗ j

λjw⃗ j

)
from Theorem 11.54

into the vector equation
∑2n

j=1 ajy⃗ j = 0⃗ . Independence of y⃗ 1, . . . , y⃗ 2n implies that the
weights are zero: a1 = · · · = a2n = 0. ■

Eigenanalysis for Non-positive Eigenvalues

Assume all eigenvalues µ of A are negative or zero. Eigenvalue µ of A is related
to an eigenvalue λ of C by the relation µ = −ω2 = λ2 for some real ω ≥ 0. Then
λ = ±ωi and ω =

√
|µ|.

Lemma 11.2 (Cosine and Sine Solutions)
Let (−ω2, v⃗ ) be an eigenpair of the real n× n matrix A with ω ≥ 0. Define

u(t) =

{
c1 cosωt+ c2 sinωt ω > 0,
c1 + c2t ω = 0.

Then x⃗ (t) = u(t)v⃗ satisfies x⃗ ′′(t) = Ax⃗ (t).
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Proof:
Then u′′(t) = −ω2u(t) (both sides are zero for ω = 0). Vector function x⃗ (t) = u(t)v⃗
satisfies x⃗ ′′(t) = −ω2x⃗ (t). Also, Ax⃗ (t) = u(t)Av⃗ = −ω2x⃗ (t). This proves x⃗ (t) = u(t)v⃗
satisfies x⃗ ′′(t) = Ax⃗ (t). ■

Theorem 11.56 (Eigenanalysis Solution of
→
x ′′ = A

→
x)

Let real n × n matrix A have eigenpairs {(µj , v⃗ j)}nj=1. Assume A has distinct

eigenvalues µj = −ω2
j with ωj ≥ 0, j = 1, . . . , n and that v⃗ 1, . . . , v⃗n are linearly

independent. Then the general solution of x⃗ ′′(t) = Ax⃗ (t) is given in terms of 2n
arbitrary constants a1, . . . , an, b1, . . . , bn by the formula

x⃗ (t) =

n∑
j=1

(
aj cosωjt+ bj

sinωjt

ωj

)
v⃗ j(7)

This expression uses the limit convention
sinωt

ω

∣∣∣∣
ω=0

= t.

Proof:
Lemma 11.2 and superposition establish that x⃗ (t) is a solution. It only remains to prove
that it is the general solution, meaning that the arbitrary constants can be assigned
to allow any possible initial condition x⃗ (0) = x⃗0, x⃗

′(0) = y⃗ 0. Define the constants
uniquely by the relations

x⃗0 =
∑n

j=1 ajv⃗ j ,

y⃗ 0 =
∑n

j=1 bjv⃗ j ,

which is possible by the assumed independence of the vectors {v⃗ j}nj=1. Then equation

(7) implies x⃗ (0) =
∑n

j=1 ajv⃗ j = x⃗0 and x⃗ ′(0) =
∑n

j=1 bjv⃗ j = y⃗ 0. ■

Why doesn’t equation (7) work for duplicate eigenvalues?

Consider A =

(
−4 0
0 −4

)
for which the characteristic equation |A − r2I| = 0 has du-

plicate complex roots ±2i,±2i. Then CHZ predicts real solution x⃗ = d⃗1 cos(2t) +

d⃗2t cos(2t) + d⃗3 sin(2t) + d⃗4t sin(2t) whereas incorrect application of equation (7) would
report x⃗ = a1v⃗ 1 cos(2t)+a2v⃗ 2 cos(2t)+ b1v⃗ 1 sin(2t)+ b2v⃗ 2 sin(2t), the symbols v⃗ j being
real eigenvectors of A for eigenvalues −4,−4.
Euler solution atoms t cos(2t), t sin(2t) are missing in equation (7), but maybe the equation
is correct anyway? The answer is NO, because differentiation across equation (7) on symbols
a1, a2, b1, b2 reveals there are only two independent vector solutions represented, instead of
the required four. The conclusion: equation (7) doesn’t work for multiple eigenvalues.

Theorem 11.57 (CHZ and Eigenvectors:
→
x ′′ = A

→
x )

If the hypothesis of Theorem 11.56 holds, then in CHZ solution x⃗ =
∑2n

j=1 d⃗ jAj(t)

each d⃗ j is a scalar multiple of an eigenvector of A.13

Proof. Let x⃗ be a solution of x⃗ ′′ = Ax⃗ and represent it in two ways, first by CHZ and
second by eigenanalysis:

x⃗ =

2n∑
j=1

d⃗ jAj(t) =

n∑
j=1

(
aj cosωjt+ bj

sinωjt

ωj

)
v⃗ j

13Warning: A vector d⃗ j can be zero: 0v⃗ is a linear combination of eigenvector v⃗ .
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Assume by re-labeling that the Euler atoms are Aj(t) = cos(ωjt) and Aj+n(t) =
sinωjt

ωj
,

1 ≤ j ≤ n. Then
∑2n

j=1 d⃗ jAj(t) =
∑n

j=1 ajv⃗ jAj(t) + bjv⃗ jAj+n(t). Independence

of {Aj}2nj=1 implies vector coefficients of the atoms on each side of the equation must

match: each d⃗ j is a scalar multiple of an eigenvector of A. ■

Earthquakes

Reproduced here are earthquake modeling formulas from page 833. The formulas
are applied to 5-story buildings using the solution methods of this section.

A horizontal earthquake oscillation F (t) = F0 cosωt affects each floor of a 5-floor
building; see Figure 23. The effect of the earthquake depends upon the natural
frequencies of oscillation of the floors.

3

F

4

5

1

2
Figure 23. A 5-Floor Building.
A horizontal earthquake wave F affects ev-
ery floor. A typical wave has wavelength
many times larger than the illustration.

Assumptions and Symbols for a 5-Floor Building

• Each floor is considered a point mass located at its center-of-mass. The
floors have masses m1, . . . , m5.

• Each floor is restored to its equilibrium position by a linear restoring force
or Hooke’s force −k(elongation). The Hooke’s constants are k1, . . . , k5.

• The locations of masses representing the 5 floors are x1, . . . , x5. The
equilibrium position is x1 = · · · = x5 = 0.

• Damping effects of the floors are ignored: it is a frictionless system.

Derivation Details
The differential equations for the model are obtained by competition: the New-
ton’s second law force is set equal to the sum of the Hooke’s forces and the ex-
ternal force due to the earthquake wave. This results in the following system,
where k6 = 0, Ej = mjF

′′ for j = 1, 2, 3, 4, 5 and F = F0 cosωt.

m1x
′′
1 = −(k1 + k2)x1 + k2x2 + E1,

m2x
′′
2 = k2x1 − (k2 + k3)x2 + k3x3 + E2,

m3x
′′
3 = k3x2 − (k3 + k4)x3 + k4x4 + E3,

m4x
′′
4 = k4x3 − (k4 + k5)x4 + k5x5 + E4,

m5x
′′
5 = k5x4 − (k5 + k6)x5 + E5.
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In particular, the equations for a floor depend only upon the neighboring floors.
The bottom floor and the top floor are exceptions: they have just one neighboring
floor.

Vector-Matrix 2nd Order System
Let:

M =


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

 , x⃗ =


x1
x2
x3
x4
x5

 , H⃗ =


E1

E2

E3

E4

E5

 ,

K =


−k1 − k2 k2 0 0 0

k2 −k2 − k3 k3 0 0
0 k3 −k3 − k4 k4 0
0 0 k4 −k4 − k5 k5
0 0 0 k5 −k5 − k6


In the last row, k6 = 0 reflects the absence of a floor above the fifth floor. The
second order system:

M x⃗ ′′(t) = Kx⃗ (t) + H⃗ (t)

Matrix M is called the mass matrix and matrix K is called the Hooke’s
matrix. The external force H⃗ (t) can be written as a scalar function E(t) =
−F ′′(t) times a constant vector:

H⃗ (t) = −ω2F0 cosωt


m1

m2

m3

m4

m5

 .

Identical Floors
Assume that all floors have the same mass m and the same Hooke’s constant k.
Then M = mI and M x⃗ ′′(t) = Kx⃗ (t) + H⃗ (t) becomes:

x⃗ ′′=
1

m


−2k k 0 0 0

k −2k k 0 0
0 k −2k k 0
0 0 k −2k k
0 0 0 k −k

 x⃗−F0ω
2 cos(ωt)


1
1
1
1
1

(8)

Hooke’s matrix K is symmetric (KT = K) with negative entries only on the
diagonal. The last diagonal entry is −k (a error to write −2k).
Particular Solution: Identical Floors
The method of undetermined coefficients predicts a trial solution x⃗ (t) = c⃗ cosωt.
Terms sinωt cannot appear in the trial solution because the x⃗ ′ term is absent in
equation (8).
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Constant vector c⃗ will be found by trial solution substitution. Let b⃗ equal
the column vector of ones in equation (8). Substitute the trial solution x⃗ (t) =
c⃗ cosωt into (8). Cancel the common factor cosωt. Then

(
m−1K + ω2 I

)
c⃗ =

F0ω
2b⃗ . Let B = m−1K + ω2 I. Determinant formula B−1 =

adj(B)

det(B)
gives:

c⃗ = F0ω
2 adj(B)

det(B)
b⃗

Homogeneous Solution
Theorem 11.56 provides:

x⃗h(t) =
5∑

j=1

(aj cosωjt+ bj sinωjt)v⃗ j

where r = ωj and v⃗ = v⃗ j ̸= 0⃗ satisfy the eigenpair equation:(
1

m
K + r2 I

)
v⃗ = 0⃗

Identical Floors k/m = 10
Then:

1

m
K =



−20 10 0 0 0

10 −20 10 0 0

0 10 −20 10 0

0 0 10 −20 10

0 0 0 10 −10


Let B(ω, k/m) = (1/m)K +ω2I. Natural frequency values ω1, . . . , ω5 are found
by solving for ω in determinant equation |B(ω, 10)| = 0 to obtain Table 3.

Table 3. Natural Frequencies ω for the Special Case k/m = 10.

Frequency Value

ω1 0.900078068
ω2 2.627315231
ω3 4.141702938
ω4 5.320554507
ω5 6.068366391

Identical Floors: General Solution
Superposition provides the general solution x⃗ (t) = x⃗h(t) + x⃗p(t). If the floors
are at rest, then x⃗h = 0⃗ . Term x⃗p measures bounded oscillations of the center
of mass of each floor due to the incoming earthquake wave.
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Identical Floors: Resonance Effects for k/m = 10
Special solution x⃗p(t) can be used to obtain some insight into practical resonance
effects between the incoming earthquake wave and movement of the building
floors.

Let ω be the incoming wave natural frequency. Solution x⃗p has components
A1 cos(ωt), . . . , A5 cos(ωt). Let I have columns e1, . . . , e5. The amplitude formula
for 1 ≤ j ≤ 5:

Aj = eTj c⃗ cos(0) =
F0ω

2

|B(ω, 10)|
eTj adj(B(ω, 10))b⃗

The fraction has bounded numerator. Determinant |B(ω, 10)| in the denominator
can be near zero when ω is close to one of the natural frequencies ω1, . . . , ω5.
Then the amplitude of a component of x⃗p can be very large, which means the
floor takes an excursion that is too large to maintain structural integrity.

Physical Interpretation: An earthquake wave of proper frequency, lasting suf-
ficiently long, can demolish a floor and hence demolish the entire building. Small
amplitude earthquake waves can initiate destructive oscillation of structures hav-
ing unlucky natural frequencies.

Coupled Spring-Mass Systems: Derivations

Reproduced here from page 813 are notation and assumptions for three masses
attached to each other by four springs as in Figure 14.

m1 m3

k2 k3 k4k1

m2

Figure 24. Three masses connected by
springs. The masses slide along a frictionless
track.

The analysis uses the following constants, variables and assumptions.

Mass
Constants

The boxcar masses m1, m2, m3 are assumed to be point masses
concentrated at their center of gravity.

Spring
Constants

The mass of each spring is negligible. The springs obey Hooke’s
law: Force = k(elongation). The Hooke’s constants are denoted
k1, k2, k3, k4. The springs restore after compression and exten-
sion.

Position
Variables

Symbols x1(t), x2(t), x3(t) denote the mass positions along the
horizontal surface, measured from their equilibrium positions,
plus right and minus left.

Fixed Ends The first and last spring are attached to fixed walls.

The competition method is used to derive the equations of motion, using:

Newton’s Second Law Force = Sum of the Hooke’s Forces.
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The model equations are

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).

(9)

The equations are justified in the case of all positive variables by observing that
the first three springs are elongated by x1, x2 − x1, x3 − x2, respectively. The
last spring is compressed by x3, which accounts for the minus sign.

Another way to justify the equations is through mirror-image symmetry: inter-
change k1 ←→ k4, k2 ←→ k3, x1 ←→ x3, then equation 2 should be unchanged
and equation 3 should become equation 1.

Matrix Formulation. System (9) can be written as a second order vector-
matrix systemm1 0 0

0 m2 0
0 0 m3

x′′1
x′′2
x′′3

 =

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

x1
x2
x3

 .

More succinctly, the system is written as

M x⃗ ′′(t) = Kx⃗ (t)

where the displacement x⃗ , mass matrix M and stiffness matrix K are
defined by the formulas

x⃗=

x1
x2
x3

 , M=

m1 0 0
0 m2 0
0 0 m3

 , K=

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

 .

Two Masses

Modeling of two masses connected by springs uses ideas and methods from three-
mass modeling equation (9).

Two Masses, Right End Free

k1 k2

m1 m2

Figure 25. Two masses anchored left and
connected by springs.

The model equations:

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)]

m2x
′′
2(t) = −k2[x2(t)− x1(t)]

(10)
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Two Masses, Both Ends Free

Equations (10) modified with k1 = 0 gives model equations:

m1x
′′
1(t) = k2[x2(t)− x1(t)]

m2x
′′
2(t) = −k2[x2(t)− x1(t)]

(11)

k2

m1 m2

Figure 26. Two masses connected by one
spring.

Example 11.18 (Two Masses with Free Right End)

Consider equation (10) with m1 = 2m2,
k1
m1

=
k2
m2

= 50:

x⃗ ′′ =

(
−75 25
50 −50

)
x⃗

Then the vector solution in terms of arbitrary constants a1, a2, b1, b2 is given by:

x⃗ = (a1 cos 5t+ b1 sin 5t)

(
1
2

)
+ (a2 cos 10t+ b2 sin 10t)

(
1
−1

)
Details Example 11.18:

Eigenpairs of A =

(
−75 25
50 −50

)
are

(
−25,

(
1
2

))
,

(
−100,

(
1
−1

))
. The example is

completed by Theorem 11.56.

Three Rail Cars

A special case of the coupled spring-mass system is three rail cars on a level
frictionless track connected by springs, as in Figure 28.14

k k

m mm

Figure 28. Three identical flatbed
cars connected by identical
springs.

Except for the springs on fixed ends, this problem is the same as the one in Figure
22. Let k1 = k4 = 0, k2 = k3 = k, m1 = m2 = m3 = m to give the systemm 0 0

0 m 0
0 0 m

x′′1
x′′2
x′′3

 =

−k k 0
k −2k k
0 k −k

x1
x2
x3

 .(12)

14The cars are custom flatbed utility cars, not boxcars. Railway cars such as tankers,
hoppers and boxcars are equipped with automatic Janney couplers, compression only dash-
pots/bumpers and safety lanyards.

Figure 27. Railroad Boxcar Silhouette.
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Example 11.19 (Identical Cars with k = m)

Consider equation (12) for k = m:

x⃗ ′′ =

−1 1 0
1 −2 1
0 1 −1

 x⃗

Then the vector solution in terms of arbitrary constants a1, a2, a3, b1, b2, b3 is given
by:

x⃗ = (a1 + b1t)

1
1
1

+ (a2 cos t+ b2 sin t)

 1
0
−1


+
(
a3 cos

√
3t+ b3 sin

√
3t
) 1
−2
1

(13)

Boxcars and Buffer Springs. Boxcars have buffer-spring shock absorbers
which exert a force only under compression. Suppose one car moves along the
track, then contacts two stationary cars, then transfers its momentum to the
other cars, followed by disengagement. This situation could have a matrix model
x⃗ ′′ = Ax⃗ +Bx⃗ ′. Matrix A contains Hooke’s constants depending on x⃗ . Matrix
B contains dashpot constants depending on x⃗ and x⃗ ′. The complexity seems
suited for computer simulation.

Assume the dashpot constants are zero. The shock absorber springs act nor-
mally upon compression; the cars disengage upon full spring expansion. Model
x⃗ ′′ = Ax⃗ has Hooke’s constants in 3 × 3 matrix A. Solution expression (13)
applies until a car disengages, measured by the first time t = t1 > 0 at which
x2(t) = x1(t) or x3(t) = x2(t). When a car contacts another car then the shock
assembly compresses slightly but does not engage: the car making contact trans-
fers momentum.

Analysis of one car moving into contact with two stationary cars uses equation
(13) on 0 ≤ t ≤ t1. For t > t1, model x⃗ ′′ = Ax⃗ is discarded. One example is
the first car transfers momentum and stops, while the other two cars travel at
fixed speed. The model applies to determine both the time t1 and the speed of
the other two cars after t = t1.

Dynamic Dashpot

A dynamic dashpot is a variable shock absorber, a component of active sus-
pension.
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Figure 29. Active Suspension Components.

Bose Corporation (1980) designed variable shock absorbers for truck seats, es-
pecially 18-wheelers. Active suspension solutions for vehicles were designed by
Toyota (1994), General Motors (2002), Volvo (2002), Range-Rover (2004) and
Mercedes-Benz (2013). Camera and road-sensor devices have been implemented
by Mercedes-Benz (2014).

An instance of Figure 29 is one wheel suspension with spring and shock absorber.
Assumptions will fit the system to a damped spring-mass model.

Dashpot

Road

Spring

Wheel

Body

d1X
′

mbY
′′

Y

msX
′′

k2(Y −X)

mb

ms

d2(Y
′ −X ′) X

k1X

F (t)

Figure 30. One wheel suspension with spring and shock absorber.

Assumptions for Figure 30.

Y = body mass displacement from equilibrium Y = 0
mb = body mass
ms = suspension system mass
X = suspension system mass displacement from equilibrium X = 0
k1 = wheel and tire Hooke’s constant
k2 = suspension Hooke’s constant
d1 = wheel and tire dashpot constant
d2 = suspension dashpot constant
F (t) = roadway force on the wheel-suspension-body unit{

msX
′′ = −k1X − d1X

′ − k2(Y −X)− d2(Y
′ −X ′) + F (t),

mbY
′′ = k2(Y −X) + d2(Y

′ −X ′)
(14)
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Ideal Suspension

Industrial solutions have used a tunable shock absorber, which means c2(t) is a
function of time t defined in response to road data F (t) and the current states
X(t), Y (t). Is it realistic to expect nearly motionless body vibration Y ≈ 0
with suitable real-time changes in suspension dashpot constant c2(t)? Manu-
facturers report yes, given suitably benign roadway data. Simulation uses the
electrical-mechanical analogy to design an electrical circuit for model (14). Road-
way data F (t) from cameras and sensors is modeled by a variable input (emf)
in the electrical circuit while mechanical displacements X,Y appear as electrical
currents. Figure 31 shows an equivalent electrical network for computer simula-
tion, extracted from a 2009 undergraduate Bachelor’s Thesis project at Worcester
Polytechnic Institute.15

1/k1

E(t)

1/k2

ms

mb

Y ′(t)

X ′(t)

d1

d2

Figure 31. Dynamic shock absorber simulator circuit (2009)

Active Suspension Regulator

Added to Figure 30 is a regulator, which can be imagined as a linear electromag-
netic motor that turns a shaft, one voltage input providing an upward force and
the other input a downward force. Electrical supply voltages adjust the forces
dynamically with sensor feedback. Standard suspension is F (t) = 0. Symbol
F (t) in Figures 30, 31 is a force, but each instance has a different meaning.

15Pashaj, B., Bermejo Calle, M. J., and Sebuwufu, P. (2009), Dynamic Shock Absorber,
https://digitalcommons.wpi.edu/mqp-all/2634.
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F(t)

Road

Body

Wheel

Shock
Absorber

Spring

y

x

m2

m1

m1x
′′

m2y
′′

u(t)
k1(x− u)

b(y′ − x′)

k2(y − x)

F (t)

Figure 32. One wheel suspension with spring, shock absorber and regulator

F (t). Variables and forces are defined in the force diagram on the right. All

units MKS.

Assumptions for Figure 32.

m2 = body mass
y = body mass displacement from equilibrium y = 0
m1 = suspension system mass
x = suspension system mass displacement from equilibrium x = 0
k1 = wheel and tire Hooke’s constant
k2 = suspension Hooke’s constant
b = shock absorber dashpot constant
F (t) = regulator force between body and suspension system
u(t) = roadway vertical displacement on the wheel-suspension-body unit

Equations (15) are derived from the force diagram in Figure 32.{
m1x

′′ = k2(y − x) + b(y′ − x′)− k1(x− u)− F (t),
m2y

′′ = −k2(y − x)− b(y′ − x′) + F (t)
(15)

Regulator. Assume system parameters in MKS units:

k1 = 135000 k2 = 5700
m1 = 50 m2 = 465
b = 290 u(t) = 0.015 sin(t),
x(0) = x′(0) = 0 (suspension m1 at rest)
y(t) = 0 (body m2 motionless)

The vertical roadway displacement u(t) = 0.015 sin(t) fits a railroad track, zero
to 1.5 cm deviation from perfectly flat. It is not suited for a highway. Period
2π is selected for simplicity. Equation (15) with values inserted implies equation
(16): 

50x′′=5700y − 140700x+ 290y′ − 290x′ + 2025 sin(t)−F (t),
465 y′′=− 5700y + 5700x− 290y′ + 290x′+F (t),
x(0) = x′(0) = y(0) = y′(0) = 0

(16)
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Let’s verify the ideal suspension regulator force:
F (t) =

2565
√
3

2699
sin
(
30
√
3t
)
− 230850

2699
sin (t)

+
11745

2699
cos
(
30
√
3t
)
− 11745

2699
cos (t)

(17)

if y(t) = 0, then x(t) and F (t) are determined by:
50x′′ = −140700x− 290x′ + 2025 sin(t)− F (t),
0 = 5700x+ 290x′ + F (t),
x(0) = x′(0) = 0

(18)

Add equations (18):

50x′′ = −135000x+ 2025 sin(t), x(0) = x′(0) = 0.

Then x(t) = − 9
√
3

53980
sin(30

√
3t) +

81

5398
sin(t). Solve for F (t) from the second

equation in (18). Then equation (17) holds with approximation

F (t) ≈ 4.35 cos (51.9 t) + 1.64 sin (51.9 t)− 4.35 cos (t)− 85.5 sin (t)

Figure 33. Suspension displace-
ment

Solution x(t) for a motionless body
y(t) = 0 with roadway displacement
u(t) = 0.015 sin(t).

Figure 34. Regulator force

Force F (t) for a motionless body y(t) =
0 with roadway displacement u(t) =
0.015 sin(t).

Jagged edges in Figure 33 are caused by the high frequency term in x(t) =

− 9
√
3

53980
sin(30

√
3t) +

81

5398
sin(t). Similarly for Figure 34.
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Exercises 11.8 �

Euler’s Substitution: u⃗ ′ = Cu⃗

1. Change variables: u⃗ = ertw⃗ . Answer:
w⃗ ′ = (C − rI)w⃗

2. Prove: (λ, v⃗ ) is an eigenpair of C if and
only if (0, v⃗ ) is an eigenpair of C − λI.

3. Let |C − λI| have factor λ2. Let u⃗ ′ =

Cu⃗ have solution u⃗ = d⃗1+ td⃗2. Prove:
Cd⃗2 = 0⃗ , Cd⃗1 = d⃗2. Are d⃗1, d⃗2

eigenvectors of C? Discuss.

4. Let C=

(
0 1
0 0

)
, u⃗ = d⃗1 + td⃗2. Let u⃗

solve u⃗ ′ = Cu⃗ . Find d⃗1, d⃗2 in terms of
arbitrary constants c1, c2.

Euler’s Substitution: x⃗ ′′ = Ax⃗

5. Change variables: x⃗ = erty⃗ . Answer:
y⃗ ′′ + 2ry⃗ ′ = (A− r2I)y⃗

6. Prove: x⃗ = ertv⃗ is a nonzero solution
of x⃗ ′′ = Ax⃗ if and only if (r2, v⃗ ) is an
eigenpair of A.

Repeated Root: x⃗ ′′ = Ax⃗

Let A =

(
0 1
0 0

)
, eigenvalues 0, 0.

7. Verify: Matrix A is a Jordan block with
generalized eigenvectors the columns of
I.

8. Prove: x1 = c1 + c2t + c3
t2

2
+ c4

t3

6
,

x2 = c3 + c4t for arbitrary constants
c1 to c4.

9. Prove: The solution of x⃗ ′′ = Ax⃗ is
a vector linear combination of atoms
1, t, t2, t3.

10. Let x⃗ = d⃗1 + d⃗2t + d⃗3
t2

2
+ d⃗4

t3

6
.

Assume x⃗ solves x⃗ ′′ = Ax⃗ . Prove:
Ad⃗3 = Ad⃗4 = 0⃗ , Ad⃗1 = d⃗3, Ad⃗2 =
d⃗4. These are generalized eigenvector
chains for eigenvalue zero.

CHZ Method

11. Given a 3 × 3 matrix A, supply proof
details for the Cayley-Hamilton-Ziebur
structure theorem.

12. Invent a non-diagonal 3 × 3 example
x⃗ ′′ = Ax⃗ and solve it by CHZ.

13. Solve x⃗ ′′ = Ax⃗ by CHZ for any 2 × 2
diagonal matrix with negative diagonal
elements.

14. Solve x⃗ ′′ = Ax⃗ by CHZ for any 3 × 3
diagonal matrix with negative diagonal
elements.

Conversion

Given x⃗ ′′ = Ax⃗ , let u⃗ =

(
x⃗
x⃗ ′

)
. Display

system u⃗ ′ = Cu⃗ .

15. A =

(
1 3
−1 2

)

16. A =

(
1 1 0
0 1 1
2 −1 2

)

Eigenanalysis λ ≤ 0
Display the general solution of x⃗ ′′ = Ax⃗ .

17. A =

(
−3 3
1 −1

)

18. A =

(
−3 3 0
1 −1 0
5 0 −1

)

Earthquakes
Apply formulas from the Earthquakes sub-
section page 929 to find particular solution
x⃗p, the natural frequencies ωj and the am-
plitudes of x⃗p(t) near the largest natural
frequency. Assume F (t) = F0 cos(ωt).

19. Three-floor problem, k/m = 10.

20. Four-floor problem, k/m = 10.

Two Masses
Assume MKS units. Let m1 = 2, m2 = 0.5,
k1 = 75, k2 = 25 in system:

m1x
′′
1=− k1x1 + k2[x2 − x1]

m2x
′′
2=− k2[x2 − x1]
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21. Convert the system to the form x⃗ ′′ =
Ax⃗ .

22. Show details for finding the vector so-
lution x⃗ (t).

Three Rail Cars: k=2m
Assume MKS units. Consider

x⃗ ′′ =

(
−2 2 0
2 −4 2
0 2 −2

)
x⃗

23. Show eigenpair details for the 3×3 ma-
trix.

24. Find the vector solution x⃗ (t).

Three Rail Cars: Disengagement
For x⃗ ′′ = Ax⃗ , assume FPS units and

A =

(
−4 4 0
6 −12 6
0 4 −4

)

Suppose the springs disengage upon full ex-
pansion. Let the cars engage at t = 0 with
x1 = x2 = x3 = 0.

25. Verify A has eigenvalues λ =
−16, 0,−4 and corresponding eigenvec-
tors 1
−3
1

 ,

1
1
1

 ,

−10
1



26. For x1=x2=x3=0 at t=0, verify:
x1(t)=c1t+c2 sin(2t)−c3 sin(4t),
x2(t) = c1t+ 3c3 sin(4t),
x3(t)=c1t−c2 sin(2t)−c3 sin(4t)

27. Let x′
1 = 48, x′

2 = 0, x′
3 = 0 at t = 0.

Verify disengagement time t1 = π/2
and determine the car velocities there-
after.

28. Let x′
1(0) = 144, x′

2(0) = 48, x′
3(0) =

48. Verify disengagement time t1 = π/2
and determine the car velocities there-
after.
Answer: Velocities 144, 48, 48 at t = t1.

Dynamic Dashpot
Assume conventions for Figure 26 and dy-
namic dashpot system

msX
′′ = −k1X − d1X

′ − k2(Y −X)
− d2(Y

′ −X ′) + F (t),
mbY

′′ = k2(Y −X) + d2(Y
′ −X ′)

See page 936.

29. Assume Y = 0, ideal suspension. De-
rive:

msX
′′ = −k1X − d1X

′ + F (t),
d2X

′ + k2X = 0

30. Assume Y = 0, ideal suspension and
X(0) = 0.015 meters. Find X(t) and
F (t).
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11.9 Numerical Methods for Systems

An initial value problem for a system of two differential equations is given by the
equations

x′(t) = f(t, x(t), y(t)),
y′(t) = g(t, x(t), y(t)),
x(t0) = x0,
y(t0) = y0.

(1)

A numerical method for (1) is an algorithm that computes an approximation
table with first line t0, x0, y0. Generally, the table has equally spaced t-values,
two consecutive t-values differing by a constant value h ̸= 0, called the step size.
To illustrate, if t0 = 2, x0 = 5, y0 = 100, then a typical approximation table for
step size h = 0.1 might look like

t x y

2.0 5.00 100.00
2.1 5.57 103.07
2.2 5.62 104.10
2.3 5.77 102.15
2.4 5.82 101.88
2.5 5.96 100.55

Graphics

The approximation table represents the data needed to plot a solution curve to
system (1) in three dimensions (t, x, y) or in two dimensions, using a tx-scene or
a ty-scene. In all cases, the plot is a simple connect-the-dots graphic.

3D-plot

2 2.5
5

2.522.52

100

104

5.8104

100
ty-scene tx-scene

Figure 35. Dot table plots.
The three dimensional plot is a space curve made directly from the dot table. The tx-
scene and the ty-scene are made from the same approximation table using corresponding
data columns.

Near-Sighted Algorithms

All of the popular algorithms for numerical generation of an approximation table
for system (1) are near-sighted algorithm, because they predict the next line
in the table from the current table line, ignoring effects and errors for all other
preceding table lines. Among such algorithms are Euler’s method, Heun’s
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method and the RK4 method, which are showcased here for learning pur-
poses. Computer production algorithms are available in maple, mathematica
and matlab.

Numerical Algorithms: Planar Case

Stated here without proof are three numerical algorithms for solving planar initial
value problems (1). Justification of the formulas is obtained from the vector
relations in the next subsection.

Notation. Let t0, x0, y0 denote the entries of the approximation table on a
particular line. Let h be the increment for the table and let t0 + h, x, y denote
the table entries on the next line.

Planar Euler Method

x = x0 + hf(t0, x0, y0),
y = y0 + hg(t0, x0, y0).

Planar Heun Method

x1 = x0 + hf(t0, x0, y0),
y1 = y0 + hg(t0, x0, y0),
x = x0 + h(f(t0, x0, y0) + f(t0 + h, x1, y1))/2
y = y0 + h(g(t0, x0, y0) + g(t0 + h, x1, y1))/2.

Planar RK4 Method

k1 = hf(t0, x0, y0),
m1 = hg(t0, x0, y0),
k2 = hf(t0 + h/2, x0 + k1/2, y0 +m1/2),
m2 = hg(t0 + h/2, x0 + k1/2, y0 +m1/2),
k3 = hf(t0 + h/2, x0 + k2/2, y0 +m2/2),
m3 = hg(t0 + h/2, x0 + k2/2, y0 +m2/2),
k4 = hf(t0 + h, x0 + k3, y0 +m3),
m4 = hg(t0 + h, x0 + k3, y0 +m3),

x = x0 +
1

6
(k1 + 2k2 + 2k3 + k4) ,

y = y0 +
1

6
(m1 + 2m2 + 2m3 +m4) .
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Example 11.20 (Planar Methods)
Solve x′ = x, y′ = −2y, x(0) = y(0) = 2 with step size h = 0.1 for 10 steps, using
methods Euler, Heun and RK4 in computer algebra system MAPLE.

Details
Computer code for the three algorithms can be found in the solution to Exercise 1. Newer
MAPLE versions have the algorithms available as documented below.

des:=diff(x(t),t)=x(t),diff(y(t),t)=-2*y(t);ics:=x(0)=2,y(0)=2;

args:=[des,ics],numeric,stepsize=0.1,output=listprocedure;

p:=dsolve(args,method=classical[foreuler]);# or: heunform, rk4

X:=eval(x(t),p); Y:=eval(y(t),p);

printf("Euler\n t X(t) Y(t)\n");

seq(printf("%f %f %f\n",0.1*j,X(0.1*j),Y(0.1*j)),j=0..10);

The expected results are 1, 2, 4 digits of accuracy respectively for the computed values.
At t = 1 the maple code for step size 0.1 computes y(t) for Euler, Heun, RK4 as 0.214748,
0.274896, 0.270679 compared to exact value y(1) = 2e−2 = 0.2706705664.

Numerical Algorithms: General Case

Consider a vector initial value problem

u⃗ ′(t) = F⃗ (t, u⃗(t)), u⃗(t0) = u⃗ 0.

Stated here are the vector formulas for Euler, Heun and RK4 methods. These
myopic algorithms predict the next table entry t0 + h, u⃗ from the current entry
t0, u⃗ 0. The number of scalar values in a table row is 1 + n, where n is the
dimension of the vectors u⃗ and F⃗ .

Vector Euler Method

u⃗ = u⃗ 0 + hF⃗ (t0, u⃗ 0)

Vector Heun Method

w⃗ = u⃗ 0 + hF⃗ (t0, u⃗ 0), u⃗ = u⃗ 0 +
h

2

(
F⃗(t0, u⃗ 0) + F⃗ (t0 + h, w⃗ )

)
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Vector RK4 Method

k⃗ 1 = hF⃗(t0, u⃗ 0),

k⃗ 1 = hF⃗(t0 + h/2, u⃗ 0 + k⃗ 1/2),

k⃗ 1 = hF⃗ (t0 + h/2, u⃗ 0 + k⃗ 2/2),

k⃗ 1 = hF⃗ (t0 + h, u⃗ 0 + k⃗ 3),

u⃗ = u⃗ 0 +
1

6

(
k⃗ 1 + 2k⃗ 2 + 2k⃗ 3 + k⃗ 4

)
.

Example 11.21 (Exact Solution
→
u ′ = A

→
u +

→
F (t))

Let A =

(
1 −1 0
1 1 0
0 0 2

)
, F⃗(t) =

1
1
0

. Solve u⃗ ′ = Au⃗ + F⃗(t).

Details
Handwritten method: find a fundamental matrix Φ(t) and then eAt = Φ(t)Φ(0)−1.
The homogeneous solution is uh(t) = eAtc⃗ for constant vector c⃗ . A particular solution
u⃗p(t) is computed from the variation of parameters formula page 912.

CAS method: One possible method uses MAPLE library DEtools:

A:=Matrix([[1, -1 , 0],[1 , 1 , 0],[0 , 0 , 2]]);

F:=Vector([1,1,0]);Sol:=DEtools[matrixDE](A,F,t);

Xh:=Sol[1].Vector([c1,c2,c3]);Xp:=Vector(convert(Sol[2],list));

U:=unapply(Xh+Xp,t);U(t);# General solution of u’=Au+F(t)

simplify(A.U(t)+F-map(diff,U(t),t));# Answer check

u⃗(t) =


et cos (t) c1 + et sin (t) c2 − 1

et sin (t) c1 − et cos (t) c2

e2 tc3



Example 11.22 (Vector Euler Method)

Let A =

(
1 −1 0
1 1 0
0 0 2

)
. F⃗(t) =

et

1
0

. Solve u⃗ ′ = Au⃗ + F⃗ (t), u⃗(0) =

1
0
0

 with step

size h = 0.1 for 10 steps, using the vector Euler method implemented in computer
algebra system MAPLE.

Details
The vector algorithm uses MAPLE functions and basic vector-matrix algebra.
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# Euler’s method with vector notation

A:=Matrix([[1, -1 , 0],[1 , 1 , 0],[0 , 0 , 2]]);

F0:=unapply(A.<x,y,z>+Vector([exp(t),1,0]),(t,x,y,z)):

F0(t,x,y,z);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2],X[3]);# Vector variables

U0:=<1,0,0>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

U:=U0+h*F(t0,U0);U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsEuler:=Vals[n+1];

ValsEuler =


3.1116983042

4.4649291918

0.0



Example 11.23 (Vector Heun Method)

Let A =

(
1 −1 0
1 1 0
0 0 2

)
. F⃗(t) =

et

1
0

. Solve u⃗ ′ = Au⃗ + F⃗ (t), u⃗(0) =

1
0
0

 with step

size h = 0.1 for 10 steps, using the vector Heun method implemented in computer
algebra system MAPLE.

Details

# Heun’s method with vector notation

A:=Matrix([[1, -1 , 0],[1 , 1 , 0],[0 , 0 , 2]]);

F0:=unapply(A.<x,y,z>+Vector([exp(t),1,0]),(t,x,y,z)):

F0(t,x,y,z);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2],X[3]);# Vector variables

U0:=<1,0,0>;n:=10;h:=0.1;t0:=0:Vals:=U0; # Initialize

for j from 1 to n do

w:=U0+h*F(t0,U0);

U:=U0+0.5*h*(F(t0,U0)+F(t0+h,w));U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsHeun:=Vals[n+1];

ValsHeun =


2.8724813157

4.9105494201

0.0


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Example 11.24 (Vector RK4 Method)

Let A =

(
1 −1 0
1 1 0
0 0 2

)
. F⃗(t) =

et

1
0

. Solve u⃗ ′ = Au⃗ + F⃗ (t), u⃗(0) =

1
0
0

 with step

size h = 0.1 for 10 steps, using the vector RK4 method implemented in computer
algebra system MAPLE.

Details

# RK4 method with vector notation

A:=Matrix([[1, -1 , 0],[1 , 1 , 0],[0 , 0 , 2]]);

F0:=unapply(A.<x,y,z>+Vector([exp(t),1,0]),(t,x,y,z)):

F0(t,x,y,z);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2],X[3]);# Vector variables

U0:=<1,0,0>;n:=10;h:=0.1;t0:=0:Vals:=U0; # Initialize

for j from 1 to n do

k1:=h*F(t0,U0);

k2:=h*F(t0+h/2,U0+k1/2);

k3:=h*F(t0+h/2,U0+k2/2);

k4:=h*F(t0+h,U0+k3);

U:=U0+(k1+2*k2+2*k3+k4)/6;U0:=U;t0:=t0+h;Vals:=Vals,U0;od:

ValsRK4:=Vals[n+1];

ValsRK4 =


2.8467234249

4.9149919169

0.0



Example 11.25 (Compare Vector Methods Euler, Heun and RK4)

Let A =

(
1 −1 0
1 1 0
0 0 2

)
, F⃗ (t) =

et

1
0

. Solve u⃗ ′ = Au⃗ + F⃗(t), u⃗(0) =

1
0
0

 with

step size h = 0.1 for 10 steps, using the vector methods Euler, Heun and RK4 in
computer algebra system MAPLE. Compare to 6 digits computed values at t = 1 for
the three methods.

Details
Refer to the previous three examples for maple values ValsEuler, ValsHeun, ValsRK4,

Exact. 
2.872481

4.910549

0.0

 ,


2.872481

4.910549

0.0

 ,


2.846723

4.914992

0.0

 ,


2.846719

4.914968

0.0

 .
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Exercises 11.9 �

Planar Methods
Apply the Euler, Heun and RK4 methods.
Compare with the exact solution in a table.

1. x′ = x, y′ = −y, x(0) = 2, y(0) = 2.
h = 0.1, 10 steps

2. x′ = −3x + y, y′ = x − 3y, x(0) = 2,
y(0) = 0, h = 0.1, 10 steps

3. x′ = −x + y, y′ = −x − y, x(0) = 0,
y(0) = 3, h = 0.2, 5 steps

4. x′ = 2x − 4y, y′ = x − 3y, x(0) = 4,
y(0) = 0, h = 0.1, 10 steps

Vector Methods u⃗ ′ = Au⃗ , 2× 2
Apply vector Euler, Heun and RK4 meth-
ods for 10 steps with h = 0.1.

5. u⃗ ′ =

(
u1 + u2

−u1 + u2

)
, u⃗(0) =

(
2
2

)
.

6. u⃗ ′ =

(
−3u1 + u2

u1 − 3u2

)
, u⃗ (0) =

(
2
0

)
.

Vector Methods u⃗ ′ = Au⃗ + F⃗ (t)
Apply vector Euler, Heun and RK4 meth-
ods for 10 steps with t0 = 0, h = 0.1. Com-
pare results for the last step.

7. A =

(
1 2
−2 1

)
, F⃗ =

(
et

0

)
,

u⃗ (0) =

(
1
1

)
.

Ans Euler: 3.81,−5.33

8. A =

(
1 2 0
−2 1 0
0 0 5

)
, F⃗ =

et

0
0

,

u⃗ (0) =

1
1
0


Ans RK4: 2.576,−5.528, 0.0

Vector Methods u⃗ ′ = Au⃗ , 3× 3
Apply vector Euler, Heun and RK4 meth-
ods for 10 steps with h = 0.1.

9. A =

(
1 2 0
−2 1 0
0 0 5

)
, u⃗(0) =

1
1
0


Ans Heun: 1.36,−3.67, 0.00

10. A =

(
1 3 0
−3 1 0
0 0 1

)
, u⃗(0) =

1
1
0


Ans RK4: −2.307,−3.075, 0.00
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Chapter 12

Series Methods
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Introduction

The differential equation

(1 + x2)y′′ + (1 + x+ x2 + x3)y′ + (x3 − 1)y = 0(1)

has polynomial coefficients. It will be shown in this chapter that the solution
y(x) is approximately a polynomial, that is, the general solution y has an
approximation formula

y(x) ≈ c1f1(x) + c2f2(x),

where f1 and f2 are polynomials. Graphically, the polynomials depend on the
graph window, the pixel resolution and a maximum value for |c1|+ |c2|.
The approximation means that solution graphs can be made with a graphing hand
calculator, a computer algebra system or a numerical laboratory by entering two
polynomials f1, f2. For (1), the polynomials

f1(x) = 1 +
1

2
x2 − 1

6
x3 − 1

12
x4 − 1

60
x5,

f2(x) = x− 1

2
x2 +

1

6
x3 − 1

15
x5
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12.1 Review of Calculus Topics

can be used to plot solutions within a reasonable range of initial conditions.

The theory will show that (1) has a basis of solutions y1(x), y2(x), each repre-
sented as a convergent power series

y(x) =
∞∑
n=0

anx
n.

Truncation of power series y1 to a polynomial f1 and power series y2 to a poly-
nomial f2 provide approximate solutions suitable for graphing and calculation.

12.1 Review of Calculus Topics

A power series in the variable x is a formal sum

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · · .(2)

It is called a convergent series at x provided the limit below exists:

lim
N→∞

N∑
n=0

cnx
n = L.

The value L is a finite number called the sum of the series, written usually as
L =

∑∞
n=0 cnx

n. Otherwise, the power series is called divergent. Convergence
of the power series for every x in some interval J is called convergence on J .
Similarly, divergence on J means the power series fails to have a limit at each
point x of J . The series is said to converge absolutely if the series of absolute
values

∑∞
n=0 |cn||x|n converges.

Given a power series
∑∞

n=0 cnx
n, define the radius of convergence R by the

equation

R = lim
n→∞

∣∣∣∣ cn
cn+1

∣∣∣∣ .(3)

The radius of convergence R is undefined if the limit does not exist. Radius
R =∞ is common (it does not mean undefined).

Theorem 12.1 (Maclaurin Expansion)
If f(x) =

∑∞
n=0 cnx

n converges for |x| < R, and R > 0, then f has infinitely many
derivatives on |x| < R and its coefficients {cn} are given by the Maclaurin formula

cn =
f (n)(0)

n!
.(4)

The example f(x) = e−1/x2
shows the theorem has no converse. The following

basic result summarizes what typically appears in calculus texts.
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Theorem 12.2 (Convergence of power series)
Let the power series

∑∞
n=0 cnx

n have radius of convergence R. If R = 0, then the
series converges for x = 0 only. If R = ∞, then the series converges for all x. If
0 < R <∞, then

1. The series
∑∞

n=0 cnx
n converges absolutely if |x| < R.

2. The series
∑∞

n=0 cnx
n diverges if |x| > R.

3. The series
∑∞

n=0 cnx
n may converge or diverge if |x| = R. The interval of

convergence may be of the form −R < x < R, −R ≤ x < R, −R < x ≤ R
or −R ≤ x ≤ R.

Library of Maclaurin Series

The key Maclaurin series formulas used in applications are recorded below.

Geometric Series:
1

1− x
=

∞∑
n=0

xn Converges for
−1 < x < 1.

Log Series: ln(1 + x) =
∞∑
n=1

(−1)n+1xn

n
Converges for
−1 < x ≤ 1.

Exponential Series: ex =

∞∑
n=0

xn

n!
Converges for all x.

Cosine Series: cosx =
∞∑
n=0

(−1)nx2n

(2n)!
Converges for all x.

Sine Series: sinx =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
Converges for all x.

Theorem 12.3 (Properties of power series)
Given two power series

∑∞
n=0 bnx

n and
∑∞

n=0 cnx
n with radii of convergence R1,

R2, respectively, define R = min(R1, R2), so that both series converge for |x| < R.
The power series have these properties:

1.
∑∞

n=0 bnx
n =

∑∞
n=0 cnx

n for |x| < R implies bn = cn for all n.

3.
∑∞

n=0 bnx
n +

∑∞
n=0 cnx

n =
∑∞

n=0(bn + cn)x
n for |x| < R.

4. k
∑∞

n=0 bnx
n =

∑∞
n=0 kbnx

n for all constants k, |x| < R1.

5. d
dx

∑∞
n=0 bnx

n =
∑∞

n=1 nbnx
n−1 for |x| < R1.

6.
∫ b
a (
∑∞

n=0 bnx
n) dx =

∑∞
n=0 bn

∫ b
a xndx for −R1 < a < b < R1.
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Taylor Series

A series expansion of the form

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)

n

is called a Taylor series expansion of f(x) about x = x0. If valid, then the
series converges and represents f(x) for an interval of convergence |x− x0| < R.
Taylor expansions are general-use extensions of Maclaurin expansions, obtained
by translation x → x − x0. If a Taylor series exists, then f(x) has infinitely
many derivatives. Therefore, the examples |x| and xα (0 < α < 1) fail to have
Taylor expansions about x = 0. On the other hand, e−1/x2

has infinitely many
derivatives, but no Taylor expansion at x = 0.

Exercises 12.1 �

Series Convergence
Find R, the radius of convergence.

1.
∑∞

k=2
xk

k ln(k)

2.
∑∞

k=1 ak x
k, a2n = 2, a2n+1 = 4.

Series Properties
Compute the series given by the indicated
operation(s).

3. d
dx

∑∞
k=2

xk

k ln(k)

4. 4
∑∞

k=1
1

1+k xk +
∑∞

k=2
1

1+k2 x
k

Maclaurin Series
Find the Maclaurin series expansion.

5. f(x) = 1
1+x3 for |x| < 1.

6. f(x) = arctan(x), using
d
dx arctan(x) = 1

1+x2 .

7. f(x) =
(
3
2

)x
for all x.

8. f(x) =
∫ x

0
sin t
t dt, called the Sine In-

tegral.

9. f(x) is the solution of f ′ = 1 + xf ,
f(0) = 0.

10. The first 4 terms, f(x) = tanx.

Taylor Series
Find the series expansion about the given
point.

11. f(x) = ln |1− x|, at x = 0.

12. f(x) = 1
x2 , at x = 1.
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12.2 Algebraic Techniques

Derivative Formulas

Differential equations are solved with series techniques by assuming a trial so-
lution of the form

y(x) =

∞∑
n=0

cn(x− x0)
n.

The trial solution is thought to have undetermined coefficients {cn}, to be
found explicitly by the method of undetermined coefficients, i.e., substitute the
trial solution and its derivatives into the differential equation and resolve the
constants. The various derivatives of y(x) can be written as power series. Below
are the mostly commonly used derivative formulas.

y(x) =

∞∑
n=0

cn(x− x0)
n,

y′(x) =
∞∑
n=1

ncn(x− x0)
n−1,

y′′(x) =

∞∑
n=2

n(n− 1)cn(x− x0)
n−2,

y′′′(x) =
∞∑
n=3

n(n− 1)(n− 2)cn(x− x0)
n−3.

The summations are over a different subscript range in each case, because differ-
entiation eliminates the constant term each time it is applied.

Changing Subscripts

A change of variable t = x−a changes an integral
∫∞
a f(x)dx into

∫∞
0 f(t+a)dt.

This change of variable is indicated when several integrals are added, because
then the interval of integration is [0,∞), allowing the various integrals to be
collected on one integral sign. For instance,∫ ∞

2
f(x)dx+

∫ ∞

π
g(x)dx =

∫ ∞

0
(f(t+ 2) + g(t+ π))dt.

A similar change of variable technique is possible for summations, allowing several
summation signs with different limits of summation to be collected under one
summation sign. The rule:

n=a+h∑
n=a

xn =

h∑
k=0

xk+a.
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It is remembered via the change of variable k = n− a, which is formally applied
to the summation just as it is applied in integration theory. If h = ∞, then the
rule reads as follows:

∞∑
n=a

xn =
∞∑
k=0

xk+a.

An illustration, in which LHS refers to the substitution of a trial solution into
the left hand side of some differential equation:

LHS =
∑∞

n=2 n(n− 1)cnx
n−2 + 2x

∑∞
n=0 cnx

n 1

=
∑∞

k=0(k + 2)(k + 1)ck+2x
k +

∑∞
n=0 2cnx

n+1 2

= 2c0 +
∑∞

k=1(k + 2)(k + 1)ck+2x
k +

∑∞
k=1 2ck−1x

k 3

= 2c0 +
∑∞

k=1((k + 2)(k + 1)ck+2 + 2ck−1)x
k. 4

Step details:
1 is the result of substitution of the trial solution into the differential equation
y′′ + 2xy;

2 makes a change of index variable k = n− 2;

3 makes a change of index variable k = n+ 1;

4 adds the two series, which now have the same range of summation and equal
powers of x.

The change of index variable in each case was dictated by attempting to match
the powers of x, e.g., xn−2 = xk in 2 and xn+1 = xk in 3 .

The formulas for derivatives of a trial solution y(x) can all be written with the
same index of summation, if desired:

y(x) =
∞∑
n=0

cn(x− x0)
n,

y′(x) =

∞∑
n=0

(n+ 1)cn+1(x− x0)
n,

y′′(x) =

∞∑
n=0

(n+ 2)(n+ 1)cn+2(x− x0)
n,

y′′′(x) =

∞∑
n=0

(n+ 3)(n+ 2)(n+ 1)cn+3(x− x0)
n.

Linearity and Power Series

The set of all power series convergent for |x| < R forms a vector space under
function addition and scalar multiplication. This means:

1. The sum of two power series is a power series.

2. A scalar multiple of a power series is a power series.
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3. The zero power series is the zero function: all coefficients are zero.

4. The negative of a power series is (−1) times the power series.

Cauchy Product

Multiplication and division of power series is possible and the result is again a
power series convergent on some interval |x| < R. The Cauchy product of two
series is defined by the relations( ∞∑

n=0

anx
n

)( ∞∑
m=0

bmxm

)
=

∞∑
k=0

ckx
k, ck =

k∑
n=0

anbk−n.

Division of two series can be defined by its equivalent Cauchy product formula,
which determines the coefficients of the quotient series.

To illustrate, we compute the coefficients {cn} in the formula

∞∑
n=0

cnx
n =

( ∞∑
k=0

xk

k + 1

)
/

( ∞∑
m=0

xm

)
.

Limitations exist: the division is allowed only when the denominator is nonzero.
In the present example, the denominator sums to 1/(1− x), which is never zero.
The equivalent Cauchy product relation is( ∞∑

n=0

cnx
n

)( ∞∑
m=0

xm

)
=

∞∑
k=0

xk

k + 1
.

This relation implies the formula

k∑
n=0

(cn)(1) =
1

k + 1
.

Therefore, back-substitution implies c0 = 1, c1 = −1/2, c2 = −1/6. More
coefficients can be found and perhaps also a general formula can be written for
cn. A general formula is needed infrequently, so we spend no time discussing how
to find it.

Power Series Expansions of Rational Functions

A rational function f(x) is a quotient of two polynomials, therefore it is a quotient
of two power series, hence also a power series. Sometimes the easiest method
known to find the coefficients cn of the power series of f is to apply Maclaurin’s
formula

cn =
f (n)(0)

n!
.
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12.2 Algebraic Techniques

In a number of limited cases, in which the polynomials have low degree, it is
possible to use Cauchy’s product formula to find {cn}. An illustration:

x+ 1

x2 + 1
=

∞∑
n=0

cnx
n, c2k+1 = c2k = (−1)k.

To derive this formula, write the quotient as a Cauchy product:

x+ 1 = (1 + x2)
∞∑
n=0

cnx
n

=

∞∑
n=0

cnx
n +

∞∑
m=0

cmxm+2

= c0 + c1x+
∞∑
n=2

cnx
n +

∞∑
k=2

ck−2x
k

= c0 + c1x+

∞∑
k=2

(ck + ck−2)x
k

The third step uses variable change k = m + 2. The terms on the right then
have the same index range, allowing the addition of the final step. To match
coefficients on each side of the equation, we require c0 = 1, c1 = 1, ck+ ck−2 = 0.
Solving, c2 = −c0, c3 = −c1, c4 = −c2 = (−1)2c0, c5 = −c3 = (−1)2c1. By
induction, c2k = (−1)k and c2k+1 = (−1)k. This gives the series reported earlier.

The same series expansion can be obtained in a more intuitive manner, as fol-
lows. The idea depends upon substitution of r = −x2 into the geometric series
expansion (1− r)−1 = 1 + r + r2 + · · ·, which is valid for |r| < 1.

x+ 1

x2 + 1
= (1 + x)

∞∑
n=0

rn where r = −x2

=
∞∑
n=0

(−x2)n + x
∞∑
n=0

(−x2)n

=

∞∑
n=0

(−1)nx2n +
∞∑
n=0

(−1)nx2n+1

=

∞∑
k=0

ckx
k,

where c2k = (−1)k and c2k+1 = (−1)k. The latter method is preferred to discover
a useful formula. The method is a shortcut to the expansion of 1/(x2 + 1) as
a Maclaurin series, followed by series properties to write the indicated Cauchy
product as a single power series.

Instances exist where neither the Cauchy product method nor other methods are
easy, for instance, the expansion of f(x) = 1/(x2 + x+1). Here, we might find a
formula from cn = f (n)(0)/n!, or equally unpleasant, find {cn} from the formula
1 = (x2 + x+ 1)

∑∞
n=0 cnx

n.
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Recursion Relations

The relations
c0 = 1, c1 = 1, ck + ck−2 = 0 for k ≥ 2

are called recursion relations. They are often solved by ad hoc algebraic
methods. Developed here is a systematic method for solving such recursions.

First order recursions. Given x0 and sequences of constants {an}∞n=0, {bn}∞n=0,
consider the abstract problem of finding a formula for xk in the recursion relation

xk+1 = akxk + bk, k ≥ 0.

For k = 0 the formula gives x1 = a0x0 + b0. Similarly, x2 = a1x1 + b1 =
a1a0x0+a1b0+ b1, x3 = a2x2+ b2 = a2a1a0x0+a2a1b0+a2b1+ b2. By induction,
the unique solution is

xk+1 =
(
Πk

r=0ar

)
x0 +

k∑
n=0

(
Πk

r=n+1ar

)
bn.

Two-termed second order recursions. Given c0, c1 and sequences {ak}∞k=0,
{bk}∞k=0, consider the problem of solving for ck+2 in the two-termed second order
recursion

ck+2 = akck + bk, k ≥ 0.

The idea to solve it comes from splitting the problem into even and odd sub-
scripts. For even subscripts, let k = 2n. For odd subscripts, let k = 2n+1. Then
the two-termed second order recursion splits into two first order recursions

c2n+2 = a2nc2n + b2n, n ≥ 0,
c2n+3 = a2n+1c2n+1 + b2n+1, n ≥ 0.

Define xn = c2n or xn = c2n+1 and apply the general theory for first order
recursions to solve the above recursions:

c2n+2 = (Πn
r=0a2r) c0 +

n∑
k=0

(
Πn

r=k+1a2r
)
b2r, n ≥ 0,

c2n+3 = (Πn
r=0a2r+1) c1 +

n∑
k=0

(
Πn

r=k+1a2r+1

)
b2r+1, n ≥ 0.

Two-termed third order recursions. Given c0, c1, c2, {ak}∞k=0, {bk}∞k=0,
consider the problem of solving for ck+3 in the two-termed third order recursion

ck+3 = akck + bk, k ≥ 0.

The subscripts are split into three groups by the equations k = 3n, k = 3n + 1,
k = 3n+2. Then the third order recursion splits into three first order recursions,

957



12.2 Algebraic Techniques

each of which is solved by the theory of first order recursions. The solution for
n ≥ 0:

c3n+3 = (Πn
r=0a3r) c0 +

n∑
k=0

(
Πn

r=k+1a3r
)
b3r,

c3n+4 = (Πn
r=0a3r+1) c1 +

n∑
k=0

(
Πn

r=k+1a3r+1

)
b3r+1,

c3n+5 = (Πn
r=0a3r+2) c2 +

n∑
k=0

(
Πn

r=k+1a3r+2

)
b3r+2.

Exercises 12.2 �

Differentiation
Verify using term–by–term differentiation.
Document all series and calculus steps.

1. d
dx

∑∞
n=1

1
n xn =

∑∞
n=0 x

n.
Is this valid for x = −1?

2. d
dx

∑∞
n=0(−1)n x2n+1=∑∞

n=0(−1)n x2n.

Subscripts
Perform a change of variables to verify the
identity.

3.
∑∞

n=0 cnx
n+2=

∑∞
k=2 ck−2 x

k

4.
∑∞

n=2 n(n− 1)cn(x− x0)
n−2=∑∞

k=0(k + 2)(k + 1)ck+2 (x− x0)
k

5. −1+x+
∑∞

n=2(−1)n+1 xn=∑∞
k=0(−1)k+1 xk

6.
∑∞

n=0
1

n+1 x
n+
∑∞

m=1
1

m+2 x
m=

1 +
∑∞

k=1
2k+1

(k+1)(k+2) x
k

Linearity
Find the power series of the given function.

7. cos(x) + 2 sin(x)

8. ex + sin(x)

Cauchy Product
Find the power series.

9. (1 + x) sin(x)

10. sin(x)
ex

Recursion Relations
Solve the given recursion.

11. xk+1 = 2xk

12. xk+1 = 2xk + 1

13. xk+2 = 2xk + 1

14. xk+3 = 2xk + 1
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12.3 Power Series Methods

Detailed below are trial solution methods for first and second order differential
equations. A trial solution is an infinite series, a Maclaurin expansion or a
Taylor series expansion about x = x0. Techniques for trial solution methods
involve series methods, undetermined coefficients and algebraic results to solve
recursions. The Taylor series method employs the calculus Taylor polynomial
formula and requires only a calculus background.

A Series Method for First Order

Illustrated here is a method to solve the differential equation y′ − 2y = 0 for a
power series solution. Assume a power series trial solution

y(x) =
∞∑
n=0

cnx
n.

Let LHS stand for the left hand side of y′ − 2y = 0. Substitute the trial series
solution into LHS to obtain:

LHS = y′ − 2y(1)

=

∞∑
n=1

ncnx
n−1 − 2

∞∑
n=0

cnx
n

=
∞∑
k=0

(k + 1)ck+1x
k +

∞∑
n=0

(−2)cnxn 1

=
∞∑
k=0

((k + 1)ck+1 − 2ck)x
k 2

(2)

The change of variable k = n−1 was used in 1 , the objective being to add on like

powers of x in 2 . Assume LHS = 0. The zero function is uniquely represented
by the power series with all zero coefficients. By uniqueness, all coefficients in
the series for LHS must be zero, which gives the recursion relation

(k + 1)ck+1 − 2ck = 0, k ≥ 0.

This first order two-termed recursion is solved by back-substitution or by using
the general theory for first order recursions which is in the preceding section,
page 957. Using the results, then

ck+1 =

(
Πk

r=0

2

r + 1

)
c0

=
2k+1

(k + 1)!
c0.
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The trial solution becomes a power series solution:

y(x) = c0 +

∞∑
k=0

ck+1x
k+1 Re-index the trial solution.

= c0 +

∞∑
k=0

2k+1

(k + 1)!
c0 x

k+1 Substitute the recursion answer.

= c0 +

( ∞∑
n=1

2n

(n)!
xn

)
c0 Change index n = k + 1.

=

( ∞∑
n=0

(2x)n

(n)!

)
c0 Factor out c0, then reindex.

= e2xc0. Maclaurin expansion library.

The solution y(x) = c0e
2x agrees with the growth-decay theory formula for the

first order differential equation y′ = ky (k = 2 in this case).

A Series Method for Second Order

Shown here are the details for finding two independent power series solutions

y1(x) = 1 +
1

6
x3 +

1

180
x6 +

1

12960
x9 +

1

1710720
x12 + · · ·

y2(x) = x+
1

12
x4 +

1

504
x7 +

1

45360
x10 +

1

7076160
x13 + · · ·

for Airy’s airfoil differential equation

y′′ = xy.

The two independent solutions give the general solution as

y(x) = c1y1(x) + c2y2(x).

The solutions are related to the classical Airy wave functions, denoted AiryAi

and AiryBi in the literature, and documented for example in the computer alge-
bra system maple. The wave functions AiryAi, AiryBi are special linear combi-
nations of y1, y2.

The trial solution in the second order power series method is generally a Taylor
series. In this case, it is a Maclaurin series

y(x) =

∞∑
n=0

cnx
n.

Write Airy’s differential equation in standard form y′′−xy = 0 and let LHS stand
for the left hand side of this equation. Then substitution of the trial solution
into LHS gives:
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LHS = y′′ − xy

=
∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n − x

∞∑
k=0

ckx
k 1

=
∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n −

∞∑
k=0

ckx
k+1 2

= 2c2 +

∞∑
n=1

(n+ 2)(n+ 1)cn+2x
n −

∞∑
n=1

cn−1x
n 3

= 2c2 +
∞∑
n=1

((n+ 2)(n+ 1)cn+2 − cn−1)x
n 4

The steps: 1 Substitute the trial solution into LHS using derivative formulas;

2 Move x inside the summation by linearity; 3 Index change n = k + 1 to

match powers of x; 4 Match summation index ranges and collect on powers of
x.

Because LHS = 0 = RHS and the power series for the zero function has zero
coefficients, all coefficients in the series LHS must be zero. This implies the
relations

c2 = 0, (n+ 2)(n+ 1)cn+2 − cn−1 = 0, n ≥ 1.

Replace n by k+1. Then the relations above become the two-termed third order
recursion

ck+3 =
1

(k + 2)(k + 3)
ck, k ≥ 0.

The answers are obtained from page 957, with appropriate definitions of ak and
bk:

c3n+3 =

(
Πn

r=0

1

(3r + 2)(3r + 3)

)
c0,

c3n+4 =

(
Πn

r=0

1

(3r + 3)(3r + 4)

)
c1,

c3n+5 =

(
Πn

r=0

1

(3r + 4)(3r + 5)

)
c2

= 0 (because c2 = 0).

Taking c0 = 1, c1 = 0 gives one solution

y1(x) = 1 +
∞∑
n=0

(
Πn

r=0

1

(3r + 2)(3r + 3)

)
x3n+3.

Taking c0 = 0, c1 = 1 gives a second independent solution

y2(x) = x+
∞∑
n=0

(
Πn

r=0

1

(3r + 3)(3r + 4)

)
x3n+4

= x

(
1 +

∞∑
n=0

(
Πn

r=0

1

(3r + 3)(3r + 4)

)
x3n+3

)
.
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Power Series Maple Code

It is possible to reproduce the first few terms (below, up to x20) of the power
series solutions y1, y2 using the computer algebra system maple. Here’s how:

de1:=diff(y1(x),x,x)-x*y1(x)=0; Order:=20;

dsolve({de1,y1(0)=1,D(y1)(0)=0},y1(x),type=series);

de2:=diff(y2(x),x,x)-x*y2(x)=0;

dsolve({de2,y2(0)=0,D(y2)(0)=1},y2(x),type=series);

The maple global variable Order assigns the number of terms to compute in the
series method for dsolve().

The Airy wave functions are defined so that

√
3 AiryAi(0) = AiryBi(0) ≈ 0.6149266276,

−
√
3 AiryAi′(0) = AiryBAi′(0) ≈ 0.4482883572.

A warning: the Airy wave functions are not identical to y1, y2.

A Simple Taylor Polynomial Method

The first power series solution

y(x) = 1 +
1

6
x3 +

1

180
x6 +

1

12960
x9 +

1

1710720
x12 + · · ·

for Airy’s airfoil differential equation y′′ = xy can be found without knowing
anything about recursion relations or properties of infinite series. Detailed here
is a Taylor polynomial method which requires only a calculus background. The
computation reproduces by hand the answer given by the maple code below.

de:=diff(y(x),x,x)-x*y(x)=0; Order:=10;

dsolve([de,y(0)=1,D(y)(0)=0],y(x),type=series);

The calculus background:

Theorem 12.4 (Taylor Polynomials)
Let f(x) have n + 1 continuous derivatives on a < x < b and assume given x0,
a < x0 < b. Then

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)
(x− x0)

n

n!
+Rn(3)

where the remainder Rn has the form

Rn = f (n+1)(x1)
(x− x0)

n+1

(n+ 1)!

for some point x1 between a and b.
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The polynomial on the right in (3) is called the Taylor polynomial of degree n
for f(x) at x = x0. If f is infinitely differentiable, then it has Taylor polynomials
of all orders. The Taylor series of f is the infinite series obtained formally by
letting n =∞ and Rn = 0.

For the Airy differential equation problem, x0 = 0. Let’s assume that y(x) is
determined by initial conditions y(0) = 1, y′(0) = 0. The method is a simple
one:

Differentiate the differential equation formally several times, then set
x = x0 in all these equations. Resolve from the several equations
the values of y′′(x0), y

′′′(x0), y
iv(x0), . . . and then write out the

Taylor polynomial approximation

y(x) ≈ y(x0) + y′(x0)(x− x0) + y′′(x0)
(x− x0)

2

2
+ · · ·

The successive derivatives of Airy’s differential equation are

y′′ = xy,
y′′′ = y + xy′,
yiv = 2y′ + xy′′,
yv = 3y′′ + xy′′′,

...

Set x = x0 = 0 in the above equations. Then

y(0) = 1 Given.

y′(0) = 0 Given.

y′′(0) = xy|x=0

= 0
Use Airy’s equation y′′ = xy.

y′′′(0) = (y + xy′)|x=0

= 1
Use y′′′ = y + xy′.

yiv(0) = (2y′ + xy′′)|x=0

= 0
Use yiv = 2y′ + xy′′.

yv(0) = (3y′′ + xy′′′)|x=0

= 0
Use yv = 3y′′ + xy′′′.

yvi(0) = (4y′′′ + xyiv)|x=0

= 4
Use yvi = 4y′′′ + xyiv.

Finally, we write out the Taylor polynomial approximation of y:

y(x) ≈ y(0) + y′(0)x+ y′′(0)
x2

2
+ · · ·

= 1 + 0 + 0 +
x3

6
+ 0 + 0 +

4x6

6!
+ · · ·

= 1 +
x3

6
+

x6

180
+ · · ·
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Computer algebra systems can replace the hand details, finding the Taylor poly-
nomial directly.

Exercises 12.3 �

First Order Series Method
Solve by power series.

1. y′ − 4y = 0

2. y′ − xy = 0

Second Order Series Method
Solve by power series using the Airy equa-
tion example.

3. y′′ = 4y

4. y′′ + y = 0

Taylor Series Method
Solve by Taylor series about x = 0, finding
the first 8 terms.

5. y′ = 16y

6. y′′ = y

7. y′ = (1 + x)y

8. y′′ = (2 + x)y
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12.4 Ordinary Points

Developed here is the mathematical theory for 2nd order differential equations
and their Taylor series solutions. Assume a differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0, a(x) ̸= 0.(1)

Such an equation can always be converted by division of a(x) ̸= 0 to the stan-
dard form

y′′ + p(x)y′ + q(x)y = 0,(2)

using formulas
p(x) = b(x)/a(x), q(x) = c(x)/a(x).

A point x = x0 is called an Ordinary Point of equation (2) provided both p(x)
and q(x) have Taylor series expansions valid in an interval |x− x0| < R, R > 0.
Any point that is not an ordinary point is called a Singular Point. For equation
(1), x = x0 is an ordinary point provided a(x) ̸= 0 at x = x0 and each of a(x),
b(x), c(x) has a Taylor series expansion valid in some interval about x = x0.

Theorem 12.5 (Power series solutions)
Let a(x)y′′ + b(x)y′ + c(x)y = 0, a(x) ̸= 0, be given and assume that x = x0 is an
ordinary point. If the Taylor series of both p(x) = b(x)/a(x) and q(x) = c(x)/a(x)
are convergent in |x − x0| < R, then the differential equation has two independent
Taylor series solutions

y1(x) =
∞∑
n=0

an(x− x0)
n, y2(x) =

∞∑
n=0

bn(x− x0)
n,

convergent in |x−x0| < R. Any solution y(x) defined in |x−x0| < R can be written
as y(x) = c1y1(x) + c2y2(x) for a unique set of constants c2, c2.

A proof of this result can be found in Birkhoff-Rota [BirkRota]. The maximum
allowed value of R is the distance from x0 to the nearest singular point.

Ordinary Point Illustration

Two independent solutions y1, y2 of Theorem 12.5 will be determined for the
second order differential equation

y′′ − 2xy′ + y = 0.

Let LHS stand for the left side of the differential equation. Assume a trial solution
y =

∑∞
n=0 cnx

n. Then formulas on pages 953 and 954 imply

LHS = y′′ − 2xy′ + y
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=
∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n − 2x

∞∑
n=1

ncnx
n−1 +

∞∑
n=0

cnx
n

=

∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n +

∞∑
n=1

(−2)ncnxn +

∞∑
n=0

cnx
n

= 2c2 + c0 +
∞∑
n=1

((n+ 1)(n+ 2)cn+2 − 2ncn + cn)x
n

= 2c2 + c0 +
∞∑
n=1

((n+ 1)(n+ 2)cn+2 − (2n− 1)cn)x
n

The power series LHS equals the zero power series, which gives rise to the recur-
sion relations 2c2 + c0 = 0, (n+ 1)(n+ 2)cn+2 − (2n− 1)cn = 0, n ≥ 1, or more
succinctly the two-termed second order recursion

cn+2 =
2n− 1

(n+ 1)(n+ 2)
cn, n ≥ 0.

Using the formulas on page 957, we obtain the recursion answers

c2k+2 =

(
Πk

r=0

4r − 1

(2r + 1)(2r + 2)

)
c0,

c2k+3 =

(
Πk

r=0

4r + 1

(2r + 2)(2r + 3)

)
c1.

Taking c0 = 1, c1 = 0 gives y1 and taking c0 = 0, c1 = 1 gives y2:

y1(x) = 1 +
∞∑
k=0

(
Πk

r=0

4r − 1

(2r + 1)(2r + 2)

)
x2k+2,

y2(x) = x+

∞∑
k=0

(
Πk

r=0

4r + 1

(2r + 2)(2r + 3)

)
x2k+3.

These solutions have Wronskian 1 at x = 0, hence they are independent and they
form a basis for the solution space of the differential equation.

Plots and Computation in maple

It is possible to directly program the basis y1, y2 in maple, ready for plotting
and computation of solutions to initial value problems. At the same time, we
can check the series formulas against the maple engine, which is able to solve for
the series solutions y1, y2 to any order of accuracy.

f:=t->(2*t-1)/((t+1)*(t+2)):

c1:=k->product(f(2*r),r=0..k):

c2:=k->product(f(2*r+1),r=0..k):
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y1:=(x,N)->1+sum(c1(k)*x^(2*k+2),k=0..N);

y2:=(x,N)->x+sum(c2(k)*x^(2*k+3),k=0..N);

de:=diff(y(x),x,x)-2*x*diff(y(x),x)+y(x)=0: Order:=10:

dsolve({de,y(0)=1,D(y)(0)=0},y(x),type=series); # find y1

’y1’=y1(x,5);

dsolve({de,y(0)=0,D(y)(0)=1},y(x),type=series); # find y2

’y2’=y2(x,5);

opts:=font=[courier,18],axes=boxed,thickness=3;

plot(2*y1(x,infinity)+3*y2(x,infinity),x=0..3);

plot([y1(x,infinity),y2(x,infinity)],x=0..1.5,opts);

The maple dsolve formulas are

y1(x) = 1− 1

2
x2 − 1

8
x4 − 7

240
x6 − 11

1920
x8 + · · ·

y2(x) = x+
1

6
x3 +

1

24
x5 +

1

112
x7 +

13

8064
x9 + · · ·

Approximation of 2y1+3y2 to order 20 agrees with the exact solution for the first
8 digits. Often the N =infinity required for the exact solution can be replaced
by integer N = 10 to produce exactly the same plot.

Exercises 12.4 �

Standard Form
Convert to form y′′ + p(x)y′ + q(x)y =
0. Find the singular points and ordinary
points.

1. (x+ 1)y′′ + xy′ + y = 0

2. x2y′′ + 3xy′ + 4y = 0

3. x(1 + x)y′′ + xy′ + (1 + x)y = 0

4. xy′′ = (1 + x)y′ + exy

Ordinary Point Method
Find a power series solution, following the
method in the text for y′′ − 2xy′ + y = 0.
Use a CAS or mathematical workbench to
check the answer.

5. y′′ + xy′ = 0

6. y′′ + x2y′ + y = 0
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12.5 Regular Singular Points

The model differential equation for Frobenius singular point theory is the 2nd
order Cauchy-Euler differential equation

ax2y′′ + bxy′ + cy = 0.(1)

The Frobenius theory treats a perturbation of the Cauchy-Euler equation ob-
tained by replacement of the constants a, b, c by Maclaurin power series. A
Frobenius differential equation has the special form

x2a(x)y′′ + xb(x)y′ + c(x)y = 0

where a(x) ̸= 0, b(x), c(x) have Maclaurin series expansions.

Intuition from the Cauchy-Euler Equation

The Cauchy-Euler differential equation (1) provides intuition about the possible
kinds of solutions for Frobenius equations. It is known that equation (1) can be
transformed to a constant-coefficient differential equation

a
d2z

dt2
+ (b− a)

dz

dt
+ cz = 0(2)

via the change of variables

z(t) = y(et), x = et.

By constant-coefficient formulas from Chapter 6, Theorem 6.1 page 431, a Cauchy-
Euler equation (1) has three kinds of possible solutions, organized by the char-
acter of the roots r1, r2 of the characteristic equation ar2 + (b − a)r + c = 0 of
(2). The three kinds are

Case 1:
Discriminant positive
Real r1 ̸= r2

y = c1x
r1 + c2x

r2

Case 2:
Discriminant zero
Real r1 = r2

y = c1x
r1 + c2x

r1 ln |x|

Case 3:
Discriminant negative
Complex r1 = r2 = α+ iβ

y = c1x
α cos(β ln |x|)

+ c2x
α sin(β ln |x|)

The last solution is Singular at x = 0, the location where the leading coefficient
ax2 in (1) is zero. The second solution is singular at x = 0 when c2 ̸= 0. The
other solutions involve powers xr; they can be singular solutions at x = 0 if r < 0.
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Cauchy-Euler Conjecture

The conjecture about solutions of Frobenius equations is often made by differen-
tial equation rookies:

Isn’t it true that a Frobenius differential equation has a general
solution obtained from the general solution of the Cauchy-Euler dif-
ferential equation

x2a(0)y′′ + xb(0)y′ + c(0)y = 0

by replacement of the constants c1, c2 by Maclaurin power series?

As a tribute to this intuitive conjecture, we can say in hindsight that theCauchy-
Euler conjecture is almost correct! Perhaps it is a good way to remember the
results of the Frobenius theory which follows.

Frobenius theory

A Frobenius differential equation singular at x = x0 has the form

(x− x0)
2A(x)y′′ + (x− x0)B(x)y′ + C(x)y = 0(3)

where A(x0) ̸= 0 and A(x), B(x), C(x) have Taylor series expansions at x = x0
valid in an interval |x− x0| < R, R > 0. Such a point x = x0 is called a regular
singular point of (3). Any other point x = x0 is called an irregular singular
point.

A Frobenius regular singular point differential equation generalizes the Cauchy-
Euler differential equation, because if the Taylor series are constants and the
translation x→ x−x0 is made, then the Frobenius equation reduces to a Cauchy-
Euler equation.

The Indicial Equation of (3) is defined to be the quadratic equation

A(x0)r
2 + (B(x0)−A(x0))r + C(x0) = 0.

Technically, the definition is a useful shortcut, because the indicial equation is
obtained by calculation in two steps:

(1) Transform the Cauchy-Euler differential equation

(x− x0)
2A(x0)y

′′ + (x− x0)B(x0)y
′ + C(x0)y = 0

by the change of variables x − x0 = et, z(t) = y(x0 + et) to obtain the
constant-coefficient differential operator form

A(x0)(D − 1)Dz +B(x0)Dz + C(x0)z = 0, D =
d

dt
.

The expanded constant-coefficient equation is

A(x0)
d2z

dt2
+ (B(x0)−A(x0))

dz

dt
+ C(x0)z = 0
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(2) The indicial equation is the characteristic equation of the constant-coefficient
differential equation.

The indicial equation can be used to directly solve Cauchy-Euler differential equa-
tions. The roots of the indicial equation plus the constant-coefficient formulas
in Theorem 6.1 provide answers which directly transcribe the general solution of
the Cauchy-Euler equation.

The Frobenius theory analyzes the Frobenius differential equation only in the
case when the roots of the indicial equation are real, which corresponds to the
discriminant positive or zero in the discriminant table, page 968.

The cases in which the discriminant is non-negative have their own complications.
Expected from the Cauchy-Euler conjecture is a so-called Frobenius solution

y(x) = (x− x0)
r
(
c0 + c1(x− x0) + c2(x− x0)

2 + · · ·
)
,

in which r is a root of the indicial equation. Two independent Frobenius solutions
may or may not exist, therefore the Cauchy-Euler conjecture turns out to be
partly true, but false in general.

The last case, in which the discriminant of the indicial equation is negative, is
not treated here.

Theorem 12.6 (Frobenius Solutions)
Let x = x0 be a regular singular point of the Frobenius equation

(x− x0)
2A(x)y′′ + (x− x0)B(x)y′ + C(x)y = 0.(4)

Let the indicial equation A(x0)r
2 + (B(x0)− A(x0))r + C(x0) = 0 have real roots

r1, r2 with r1 ≥ r2. Then equation (4) always has one Frobenius series solution y1
of the form

y1(x) = (x− x0)
r1

∞∑
n=0

cn(x− x0)
n, c0 ̸= 0.

The root r1 has to be the larger root: the equation can fail for the smaller root r2.

Equation (4) has a second independent solution y2 in the following cases.

(a) If r1 ̸= r2 and r1 − r2 is not an integer, then, for some coefficients {dn} with
d0 ̸= 0,

y2(x) = (x− x0)
r2

∞∑
n=0

dn(x− x0)
n.

(b) If r1 ̸= r2 and r1 − r2 is a positive integer, then, for some coefficients {dn}
with d0 ̸= 0 and either C = 0 or C = 1,

y2(x) = Cy1(x) ln |x− x0|+ (x− x0)
r2

∞∑
n=0

dn(x− x0)
n.

970



12.5 Regular Singular Points

(c) If r1 = r2, then, for some coefficients {dn} with d0 = 0,

y2(x) = y1(x) ln |x− x0|+ (x− x0)
r1

∞∑
n=0

dn(x− x0)
n.

Proof: A Frobenius theorem proof can be found in Birkhoff-Rota [BirkRota] 4th edition
page 282. The method of proof, due to Frobenius, is a generalization of Cauchy’s Method
of Majorants [BirkRota] page 113. ■

Independence tests for y1, y2 plus calculation details for y1, y2 appear below in the
examples. In part (b) of the theorem, the formula compresses two trial solutions
into one, but the intent is that they be tried separately, in order C = 0, then
C = 1. Sometimes it is possible to combine the two trials into one complicated
computation, but that is not for the faint of heart.

The examples use symbol L(y), defined by

L(y) = (x− x0)
2A(x)y′′ + (x− x0)B(x)y′ + C(x)y,

which is the left hand side of the Frobenius equation (4). Implicit use is made of
the linearity property L(c1y1 + c2y2) = c1L(y1) + c2L(y2).

Example 12.1 (Frobenius Theorem Case (a))

Use the Frobenius theory to solve for y1, y2 in the differential equation 2x2y′′+xy′+
xy = 0.

Solution: The indicial equation is 2r2 + (1 − 2)r + 0 = 0 with roots r1 = 1/2, r2 = 0.
The roots do not differ by an integer, therefore two independent Frobenius solutions y1,
y2 exist, according to Theorem 12.6(a). The answers are

y1(x) = x1/2

(
1− 1

3
x+

1

30
x2 − 1

630
x3 +

1

22680
x4 + · · ·

)
,

y2(x) = x0

(
1− x+

1

6
x2 − 1

90
x3 +

1

2520
x4 + · · ·

)
.

The method. Let r be a variable, to eventually be set to either root r = r1 or r = r2.
We expect to compute two solutions y1 = y(x, r1), y2 = y(x, r2) from

y(x, r) = xr
∞∑

n=0

c(n, r)xn.

The symbol c(n, r) plays the role of cn during the computation, but emphasizes the
dependence of the coefficient on the root r.

Independence of y1, y2. Assume k1y1(x) + k2y2(x) = 0 for all x. Proving k1 = k2 = 0
implies y1, y2 are independent. Divide the equation k1y1 + k2y2 = 0 by xr2 . The
series representations of y1, y2 contain factors xr2 , xr2 . The division by xr2 leaves two
Maclaurin series and a factor of xr1−r2 on the y1-series. This factor equals zero at x = 0,
because r1 − r2 > 0. Substitute x = 0 to show that k2 = 0. Then k1y1(x) + k2y2(x) = 0
gives k1 = 0 because y1 ̸= 0. The test of independence is complete.
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A formula for c(n, r). The method applied is substitution of the series y(x, r) into the
differential equation in order to resolve the coefficients. At certain steps, series indexed
from zero to infinity are split into the n = 0 term plus the rest of the series, in order to
match summation ranges. Index changes are used to match powers of x. The details:

x2A(x)y′′ = 2x2y′′(x, r)

= 2x2
∞∑

n=0

(n+ r)(n+ r − 1)c(n, r)xn+r−2

= 2r(r − 1)c(0, r)xr +

∞∑
n=1

2(n+ r)(n+ r − 1)c(n, r)xn+r,

xB(x)y′ = xy′(x, r)

=

∞∑
n=0

(n+ r)c(n, r)xn+r

= rc(0, r)xr +

∞∑
n=1

(n+ r)c(n, r)xn+r

C(x)y = xy(x, r)

=

∞∑
n=0

c(n, r)xn+r+1

=

∞∑
n=1

c(n− 1, r)xn+r.

Recursion. Let p(r) = 2r(r − 1) + r + 0 be the indicial polynomial. Let LHS stand for
the left hand side of the Frobenius differential equation. Add the preceding equations.
Then

LHS = 2x2y′′(x, r) + xy′(x, r) + xy(x, r)

= p(r)c(0, r)xr +

∞∑
n=1

(p(n+ r)c(n, r) + c(n− 1, r))xn+r.

Because LHS equals the zero series, all coefficients are zero, which implies p(r) = 0,
c(0, r) ̸= 0, and the recursion relation

p(n+ r)c(n, r) + c(n− 1, r) = 0, n ≥ 1.

Solution of the recursion. The recursion answers on page 957 imply for c0 = c(0, r) =
1 the relations

c(n+ 1, r) = (−1)n+1

(
Πn

k=0

1

p(k + 1 + r)

)
c(n+ 1, r1) = (−1)n+1

(
Πn

k=0

1

p(k + 3/2)

)
c(n+ 1, r2) = (−1)n+1

(
Πn

k=0

1

p(k + 1)

)
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Then y1(x) = y(x, r1), y2(x) = y(x, r2) imply

y1(x) = x1/2

(
1 +

∞∑
n=0

(−1)n+1

(
Πn

k=0

1

(2k + 3)(k + 1)

)
xn+1

)

= x1/2

(
1 +

∞∑
n=0

(−1)n+1 2n+1

(2n+ 3)!
xn+1

)
,

y2(x) = x0

(
1 +

∞∑
n=0

(−1)n+1

(
Πn

k=0

1

(k + 1)(2k + 1)

)
xn+1

)

= x0

(
1 +

∞∑
n=0

(−1)n+1 2n

(n+ 1)(2n+ 1)!
xn+1

)
.

Answer checks. It is possible to verify the answers using maple, as follows.

c:=n->(-1)^(n+1)*product(1/((2*k+3)*(k+1)),k=0..n);

d:=n->(-1)^(n+1)*product(1/((2*k+1)*(k+1)),k=0..n);

N:=6;1+sum(c(n)*x^(n+1),n=0..N);

1+sum((-1)^(n+1)*2^(n+1)/((2*n+3)!)*x^(n+1),n=0..N);

1+sum(d(n)*x^(n+1),n=0..N);

1+sum((-1)^(n+1)*2^(n)/((n+1)*(2*n+1)!)*x^(n+1),n=0..N);

Verified by maple is exact solution formula y(x) = c1 cos(
√
2x)+ c2 sin(

√
2x) in terms of

elementary functions. Details:

de:=2*x^2*diff(y(x),x,x)+x*diff(y(x),x)+x*y(x)=0;

dsolve(de,y(x));

Example 12.2 (Frobenius Theorem Case (b))
Use the Frobenius theory to solve for y1, y2 in the differential equation x2y′′+x(3+
x)y′ − 3y = 0.

Solution: The indicial equation is r2 + (3 − 1)r − 3 = 0 with roots r1 = 1 (the larger
root) and r2 = −3. The roots differ by an integer, therefore one Frobenius solution y1
exists and the second independent solution y2 must be computed according to Theorem
12.6 part (b). The answers are

y1(x) = x

(
1− 1

5
x+

1

30
x2 − 1

210
x3 +

1

1680
x4 + · · ·

)
,

y2(x) = x−3

(
1− x+

1

2
x2 − 1

6
x3

)
.

Let r denote either root r1 or r2. We expect to compute solutions y1, y2 by the following
scheme.

y(x, r) = xr
∞∑

n=0

c(n, r)xn,

y1(x) = y(x, r1),

y2(x) = Cy1(x) ln(x) + xr2

∞∑
n=0

dnx
n.
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The constant C is either zero or one, but the value cannot be decided until the end of
the computation. Likewise, d0 ̸= 0 is known, but little else about the sequence {dn} is
known.

Find a formula for c(n, r). The method substitutes the series y(x, r) into the differ-
ential equation and then solves for the undetermined coefficients. The details:

x2A(x)y′′ = x2y′′(x, r)

= x2
∞∑

n=0

(n+ r)(n+ r − 1)c(n, r)xn+r−2

= r(r − 1)c(0, r)xr +

∞∑
n=1

(n+ r)(n+ r − 1)c(n, r)xn+r

xB(x)y′ = (3 + x)xy′(x, r)

= (3 + x)xy′(x, r)

= (3 + x)x

∞∑
n=0

(n+ r)c(n, r)xn+r−1

=

∞∑
n=0

3(n+ r)c(n, r)xn+r +

∞∑
n=0

(n+ r)c(n, r)xn+r+1

= 3rc(0, r)xr +

∞∑
n=1

3(n+ r)c(n, r)xn+r

= +

∞∑
n=1

(n+ r − 1)c(n− 1, r)xn+r

C(x)y = −3y(x, r)

= −3c(0, r)xr +

∞∑
n=1

−3c(n, r)xn+r.

Find the recursions. Let p(r) = r(r− 1)+3r− 3 be the indicial polynomial. Let LHS
denote the left hand side of x2y′′ + x(3 + x)y′ − 3y = 0. Add the three equations above.
Then

LHS = x2y′′(x, r) + (3 + x)xy′(x, r)− 3y(x, r)

= p(r)c(0, r)xr +

∞∑
n=1

(p(n+ r)c(n, r) + (n+ r − 1)c(n− 1, r))xn+r.

Symbol LHS equals the zero series, therefore all the coefficients are zero. Given c(0, r) ̸=
0, then p(r) = 0 and we have the recursion relation

p(n+ r)c(n, r) + (n+ r − 1)c(n− 1, r) = 0, n ≥ 1.

Solve the recursion. Using c(0, r) = 1 and the recursion answers on page 957 gives

c(n+ 1, r) = (−1)n+1

(
Πn

k=0

k + r

p(k + 1 + r)

)
c(n+ 1, 1) = (−1)n+1

(
Πn

k=0

k + 1

(k + 1)(k + 5)

)
= (−1)n+1 24

(n+ 5)!
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Therefore, the first few coefficients cn = c(n, 1) of y1 are given by

c0 = 1, c1 =
−1
5

, c2 =
1

30
, c3 =

−1
210

, c4 =
1

1680
.

This agrees with the reported solution y1, whose general definition is

y1(x) = 1 +

∞∑
n=0

(−1)n+1 24

(n+ 5)!
xn+1.

Find the second solution y2. Assume that C = 0 in the trial solution y2. Let
dn = c(n, r2). Then the preceding formulas give the recursion relations

p(r2)d0 = 0, p(n+ r2)dn + (n+ r2 − 1)dn−1 = 0, n ≥ 1.

We require r2 = −3 and d0 ̸= 0. The recursions reduce to

p(n− 3)dn + (n− 4)dn−1 = 0, n ≥ 1.

The solution for 0 ≤ n ≤ 3 is found from dn = − n− 4

p(n− 3)
dn−1:

d0 ̸= 0, d1 = −d0, d2 =
1

2
d0, d3 = −1

6
d0.

There is no condition at n = 4, leaving d4 arbitrary. This gives the recursion

p(n+ 2)dn+5 + (n+ 1)dn+4 = 0, n ≥ 0.

The solution of this recursion is

dn+5 = (−1)n+1

(
Πn

k=0

k + 1

p(k + 2)

)
d4

= (−1)n+1

(
Πn

k=0

k + 1

(k + 1)(k + 5)

)
d4

= (−1)n+1 24

(n+ 5)!
d4.

For the moment let d4 = 1. Then

d4 = 1, d5 = −1

5
, d6 =

1

30
, d7 = − 1

210
,

and then the series terms for n = 4 and higher equal

x−3

(
x4 − 1

5
x5 +

1

30
x6 − 1

210
x7 + · · ·

)
= y1(x).

This implies
y2(x) = x−3

(
d0 + d1x+ d2x

2 + d3x
3
)
+ d4y1(x)

= x−3

(
1− x+

1

2
x2 − 1

6
x3

)
d0 + d4y1(x).

By superposition, y1 can be dropped from the formula for y2. The conclusion for case
C = 0 is

y2(x) = x−3

(
1− x+

1

2
x2 − 1

6
x3

)
.

975



12.5 Regular Singular Points

False path for C = 1. We take C = 1 and repeat the derivation of y2, just to see why
this path leads to no solution with a ln(x)-term. We have a 50% chance in Frobenius
series problems of taking the wrong path to the solution. We will see details for success
and also the signal for failure.

Let L(y) = x2y′′ + x(3+ x)y′− 3y denote the left hand side of the Frobenius differential
equation.

Decompose y2 = A+B where A = y1(x) ln(x) and B = xr2
∑∞

n=1 dnx
n. Then L(y2) = 0

becomes L(B) = −L(A).

Compute L(B). The substitution of B into the differential equation to obtain LHS
has been done above. Let dn = c(n, r2), r2 = −3. The equation p(r2) = 0 eliminates
the extra term p(r2)c(0, r2)x

r2 . Split the summation into 1 ≤ n ≤ 4 and 5 ≤ n < ∞.
Change index n = m+ 4 to obtain:

L(B) =

∞∑
n=1

(p(n+ r2)c(n, r2) + (n+ r2 − 1)c(n− 1, r2))x
n+r2

=

3∑
n=1

(p(n− 3)dn + (n− 4)dn−1)x
n−3 + (p(1)d4 + (0)d3)x

+

∞∑
m=1

(p(m+ 1)dm+4 + (m)dm+3)x
m+1.

Compute L(A). Use L(y1) = 0 in the third step and r1 = 1 in the last step, below.

L(A) = x2(y′′1 ln(x) + 2x−1y′1 − x−2y1)
+(3 + x)x(y′1 ln(x) + x−1y1)− 3y1 ln(x)

= L(y1) ln(x) + (2 + x)y1 + 2xy′1
= (2 + x)y1 + 2xy′1

=

∞∑
n=0

2cnx
n+r1 +

∞∑
n=1

cn−1x
n+r1 +

∞∑
n=0

2(n+ r1)cnx
n+r1

= 4c0x+

∞∑
n=1

((2n+ 4)cn + cn−1)x
n+1.

Find {dn}. The equation L(B) = −L(A) produces recursion relations by matching
corresponding powers of x on each side of the equality. We are given d0 ̸= 0. For
1 ≤ n ≤ 3, the left side matches zero coefficients on the right side, therefore as we saw
in the case C = 0,

d0 ̸= 0, d1 = −d0, d2 =
1

2
d0, d3 = −1

6
d0.

The term for n = 4 on the left is (p(1)d4 + (0)d3)x, which is always zero, regardless of
the values of d3, d4. On the other hand, there is the nonzero term 4c0x on the right.
We can never match terms, therefore there is no solution with C = 1. This is the only
signal for failure.

Independence of y1, y2. Two functions y1, y2 are called independent provided k1y1(x)+
k2y2(x) = 0 for all x implies k1 = k2 = 0. For the given solutions, test independence by
solving for k1, k2 in the equation

k1x

(
1− 1

5
x+

1

30
x2 − 1

210
x3 + · · ·

)
+ k2x

−3

(
1− x+

1

2
x2 − 1

6
x3

)
= 0.
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Divide the equation by xr2 , then set x = 0. We get k2 = 0. Substitute k2 = 0 in the
above equation. Divide by xr1 , then set x = 0 to obtain k1 = 0. Therefore, k1 = k2 = 0
and the independence test is complete.

Answer checks. The simplest check uses maple as follows. It is interesting that both
y1 and y2 are expressible in terms of elementary functions, seen by executing the code
below, and detected as a matter of course by maple dsolve().

de:=x^2*diff(y(x),x,x)+x*(3+x)*diff(y(x),x)+(-3)*y(x)=0;

Order:=5;dsolve({de},y(x),type=series);

c:=n->(-1)^(n+1)*product((k+1)/((k+5)*(k+1)),k=0..n);

y1:=x+sum(c(n)*x^(n+2),n=0..5);

x+sum(c(n)*x^(n+2),n=0..infinity);

y2:=x->x^(-3)*( 1-x + x^2/2 -(1/6)*x^3);

simplify(subs(y(x)=y2(x),de));

dsolve(de,y(x));

Example 12.3 (Frobenius Theorem Case (c))
Use the Frobenius theory to solve for y1, y2 in the differential equation x2y′′+x(3+
x)y′ + y = 0.

Solution: The indicial equation is r2+(3−1)r+1 = 0 with roots r1 = −1, r2 = −1. The
roots are equal, therefore one Frobenius solution y1 exists and the second independent
solution y2 must be computed according to Theorem 12.6. The answers:

y1(x) = x−1(1 + x),

y2(x) = x−1

(
−3x− 1

4
x2 +

1

36
x3 − 1

288
x4 +

1

2400
x5 + · · ·

)
Trial solution formulas for y1, y2. Based upon statement (c) of the Frobenius
theorem page 970, we expect to compute the two solutions as follows.

y(x, r) = xr
∞∑

n=0

c(n, r)xn,

y1(x) = y(x, r1),

y2(x) =
∂y(x, r)

∂r

∣∣∣∣
r=r1

=

(
y(x, r) ln(x) + xr

∞∑
n=0

∂c(n, r)

∂r
xn

)∣∣∣∣∣
r=r1

= y(x, r1) ln(x) + xr1

∞∑
n=1

dnx
n

for some constants d1, d2, d3, . . . . In some applications, it seems easier to use the partial
derivative formula, in others, the final expression in symbols {dn} is more tractable.
Finally, we might reject both methods in favor of the reduction of order formula for y2.

Independence of y1, y2. To test independence, let k1y1(x) + k2y2(x) = 0 for all x.
Proving k1 = k2 = 0 implies y1, y2 are independent. Divide the equation k1y1+k2y2 = 0
by xr1 . The series representations of y1, y2 contain a factor xr1 which divides out, leaving
two Maclaurin series and a ln(x)-term. Then ln(0) = −∞ and assumption c(0, r1) ̸= 0
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together with finiteness of the series shows that k2 = 0. Hence also k1 = 0. This
completes the independence test.

Find a formula for c(n, r). The method is to substitute the series y(x, r) into the
differential equation and then resolve the coefficients. The details:

x2A(x)y′′ = x2y′′(x, r)

= x2
∞∑

n=0

(n+ r)(n+ r − 1)c(n, r)xn+r−2

= r(r − 1)c(0, r)xr +

∞∑
n=1

(n+ r)(n+ r − 1)c(n, r)xn+r

xB(x)y′ = (3 + x)xy′(x, r)

= (3 + x)x

∞∑
n=0

(n+ r)c(n, r)xn+r−1

=

∞∑
n=0

3(n+ r)c(n, r)xn+r +

∞∑
n=0

(n+ r)c(n, r)xn+r+1

= 3rc(0, r)xr +

∞∑
n=1

3(n+ r)c(n, r)xn+r

= +

∞∑
n=1

(n+ r − 1)c(n− 1, r)xn+r

C(x)y = y(x, r)

= c(0, r)xr +

∞∑
n=1

c(n, r)xn+r.

Find the recursions. Let p(r) = r(r − 1) + 3r + 1 be the indicial polynomial. Let
LHS stand for the left hand side of the Frobenius differential equation. Add the above
equations. Then

LHS = x2y′′(x, r) + (3 + x)xy′(x, r) + y(x, r)

= p(r)c(0, r)xr +

∞∑
n=1

(p(n+ r)c(n, r) + (n+ r − 1)c(n− 1, r))xn+r.

Because LHS equals the zero series, all coefficients are zero, which implies p(r) = 0 for
c(0, r) ̸= 0, plus the recursion relation

p(n+ r)c(n, r) + (n+ r − 1)c(n− 1, r) = 0, n ≥ 1.

Solve the recursions. Using the recursion answers on page 957 gives

c(n+ 1, r) = (−1)n+1

(
Πn

k=0

k + r

p(k + 1 + r)

)
c(0, r)

c(n+ 1,−1) = (−1)n+1

(
Πn

k=0

k − 1

(k + 1)2

)
c(0, r).

Therefore, c(0,−1) ̸= 0, c(1,−1) = c(0,−1), c(n+ 1,−1) = 0 for n ≥ 1.

A formula for y1. Choose c(0,−1) = 1. Then the formula for y(x, r) and the require-
ment y1(x) = y(x, r1) gives

y1(x) = x−1(1 + x).
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A formula for y2. Of the various expressions for the solution, we choose

y2(x) = y1(x) ln(x) + xr1

∞∑
n=1

dnx
n.

Let us put the trial solution y2 into the differential equation left hand side L(y) =
x2y′′+x(3+x)y′+ y in order to determine the undetermined coefficients {dn}. Arrange
the computation as y2 = A + B where A = y1(x) ln(x) and B = xr1

∑∞
n=1 dnx

n. Then
L(y2) = L(A)+L(B) = 0, or L(B) = −L(A). The work has already been done for series
B, because of the work with y(x, r) and LHS. We define d0 = c(0, r1) = 0, dn = c(n, r1)
for n ≥ 1. Then

L(B) = 0 +

∞∑
n=1

(p(n+ r)dn + (n+ r − 1)dn−1)x
n+r1 .

A direct computation, tedious and routine, gives

L(A) = 3 + x.

Comparing terms in the equation L(B) = −L(A) results in the recursion relations

d1 = −3, d2 = −1

4
, dn+1 = − n− 1

(n+ 1)2
dn (n ≥ 2).

Solving for the first few terms duplicates the coefficients reported earlier:

d1 = −3, d2 = −1

4
, d3 =

1

36
, d4 =

−1
288

, d5 =
1

2400
.

A complete formula:

y2(x) = x−1

(
(1 + x) ln(x)− 3x− 1

4
x2 +

1

4

∞∑
n=2

(−1)n
(
Πn

k=2

k − 1

p(k)

)
xn+1

)

= x−1

(
(1 + x) ln(x)− 3x− 1

4
x2 +

∞∑
n=2

(−1)n (n− 1)!

((n+ 1)!)2
xn+1

)

= x−1

(
(1 + x) ln(x)− 3x− 1

4
x2 +

∞∑
n=2

(−1)n

n(n+ 1)

xn+1

(n+ 1)!

)
.

Answer check. The solutions displayed here can be checked in maple as follows.

de:=x^2*diff(y(x),x,x)+x*(3+x)*diff(y(x),x)+y(x);

y1:=((1+x)/x)*ln(x);

eqA:=simplify(subs(y(x)=y1,de));

dsolve(de=0,y(x),series);

d:=n->(-1)^(n-1)/((n-1)*n*(n!));

y2:=x^(-1)*((1+x)*ln(x)-3*x-x^2/4+sum(d(n+1)*x^(n+1),n=2..6));
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Exercises 12.5 �

Regular Singular Point
Test the equation for regular singular
points.

1. x2y′′ + xy′ + y = 0

2. x2(x− 1)y′′ + sin(x)y′ + y = 0

3. x3(x2−1)y′′−x(x+1)y′+(1−x)y = 0

4. x3(x− 1)y′′ + (x− 1)y′ + 2xy = 0

Indicial Equation
Each equation is an Euler differential equa-
tion ax2y′′ + bxy′ + cy = 0 with a, b, c re-
placed by power series. Find the Euler dif-
ferential equation and the indicial equation.

5. x2y′′ − 2x(x+ 1)y′ + (x− 1)y = 0
Ans: x2y′′ − 2xy′ − y = 0, r(r − 1) −
2r − 1 = 0.

6. x2y′′ − 2xy′ + y = 0
Ans: The same equation, r(r−1)−2r+
1 = 0.

7. xy′′ + (1− x)y′ + 2y = 0

8. x2y′′ − 2xy′ + (2 + sinx)y = 0

Frobenius Solutions
Find two linearly independent solutions.
Follow Examples 1, 2, 3 for cases (a), (b),
(c) in the Frobenius Theorem page 970.
Examples: (a) page 971, (b) page 973, (c)
page 977.

9. 2x2y′′ + xy′ − y = 0

10. 4x2y′′ + (2x− 7)y′ + 6y = 0

11. 4x2(x+ 1)y′′ + x(3x− 1)y′ + y = 0

12. 3x2y′′ + xy′ − (1 + x)y = 0

13. x2y′′ + 3xy′ + (1 + x)y = 0

14. xy′′ + (1− x)y′ + 3y = 0

15. x2y′′ + x(x− 1)y′ + (1− x)y = 0

16. xy′′ + (2x+ 3)y′ + 4y = 0
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12.6 Bessel Functions

The work of Friedrich W. Bessel (1784-1846) on planetary orbits led to his 1824
derivation of the equation known in this century as the Bessel differential
equation or order p:

x2y′′ + xy′ + (x2 − p2)y = 0.

This equation appears in a 1733 work on hanging cables by Daniel Bernoulli
(1700-1782). A particular solution y is called a Bessel function. While any
real or complex value of p may be considered, we restrict the case here to p ≥ 0
an integer.

Frobenius theory page 970 applies directly to Bessel’s equation, which has a
regular singular point at x = 0. The indicial equation is r2 − p2 = 0 with
roots r1 = p and r2 = −p. The assumptions imply that cases (b) and (c) of
the Frobenius theorem apply: either r1 − r2 = positive integer [case (b)] or else
r1 = r2 = 0 and p = 0 [case (c)]. In both cases there is a Frobenius series
solution for the larger root. This solution is referenced as Jp(x) in the literature,
and called a Bessel function of nonnegative integral order p. The formulas
most often used appear below.

Jp(x) =
∞∑
n=0

(−1)n(x/2)p+2n

n!(p+ n)!
,

J0(x) = 1− (x/2)2 +
(x/2)4

42
− (x/2)6

62
+ · · ·

J1(x) =
x

2
− (x/2)3

(1)(2)
+

(x/2)5

(2)(6)
− (x/2)7

(6)(24)
+ · · ·

The derivation of the formula for Jp is obtained by substitution of the trial
solution y = xr

∑∞
n=0 cnx

n into Bessel’s equation. Let Q(r) = r(r − 1) − p2 be
the indicial polynomial. The result is

∞∑
n=0

Q(n+ r)cnx
n+r +

∞∑
n=0

cnx
n+p+2 = 0.

Matching terms on the left to the zero coefficients on the right gives the recursion
relations

Q(r)c0 = 0, Q(r + 1)c1 = 0, Q(n+ r)cn + cn−2 = 0, n ≥ 2.

To resolve the relations, let r = p (the larger root), c0 = 1, c1 = 0 (because
Q(p+ 1) ̸= 0), and

cn+2 =
−1

Q(n+ 2 + p)
cn.
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12.6 Bessel Functions

This is a two-termed second order recursion which can be solved with formulas
developed on page 957 to give

c2n+2 = (−1)n+1

(
n∏

k=0

1

(2k + 2 + p)2 − p2

)
c0

= (−1)n+1
n∏

k=0

1

4(k + 1)(k + 1 + p)

=
(−1)n+1

4n+1

1

(n+ 1)!

p!

(n+ 1 + p)!

= (2pp!)
(−1)n+1

22n+2+p

1

(n+ 1)!

1

(n+ 1 + p)!

c2n+3 = (−1)n+1

(
n∏

k=0

1

(2k + 3 + p)2 − p2

)
c1

= 0.

The common factor (2pp!)xp can be factored out from each term except the first,
which is c0x

p or xp. Dividing the answer so obtained by (2pp!) gives the series
reported for Jp.

Properties of Bessel Functions

Sine and cosine identities from trigonometry have direct analogs for Bessel func-
tions. We would like to say that cos(x) ↔ J0(x), and sin(x) ↔ J1(x), but that
is not exactly correct. There are asymptotic formulas

J0(x) ≈
√

2
πx cos

(
x− π

4

)
,

J1(x) ≈
√

2
πx sin

(
x− π

4

)
.

See the reference by G.N. Watson [Watson] for details about these asymptotic
formulas. At a basic level, based upon the series expressions for J0 and J1, the
following identities can be quickly checked.

Bessel Functions Trig Functions

J0(0) = 1 cos(0) = 1
J ′
0(0) = 0 (cos(x))′

∣∣
x=0

= 0

J1(0) = 0 sin(0) = 0
J ′
1(0) = 1/2 (sin(x))′

∣∣
x=0

= 1

J0(−x) = J0(x) cos(−x) = cos(x)
J1(−x) = −J1(x) sin(−x) = − sin(x)

Some deeper relations exist, obtained by series expansion of both sides of the
identities. Suggestions for the derivations are in the exercises. Watson’s basic
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12.6 Bessel Functions

reference [Watson] can be consulted to find complete details.

J ′
0(x) = −J1(x)

J ′
1(x) = J0(x)−

1

x
J1(x)

(xpJp(x))
′ = xpJp−1(x), p ≥ 1,(

x−pJp(x)
)′

= −x−pJp+1(x), p ≥ 0,

Jp+1 =
2p

x
Jp+1(x)− Jp−1(x), p ≥ 1,

Jp+1(x) = −2J ′
p(x) + Jp−1(x), p ≥ 1.

The Zeros of Bessel Functions

It is a consequence of the second order differential equation for Bessel functions
that these functions have infinitely many zeros on the positive x-axis. As seen
from asymptotic expansions, the zeros of J0 satisfy x − π/4 ≈ (2n − 1)π/2 and
the zeros of J1 satisfy x− π/4 ≈ nπ. These approximations are already accurate
to one decimal digit for the first five zeros, as seen from the following table.

The positive zeros of J0 and J1

n J0(x) J1(x)

(
2n− 1

2
+

1

4

)
π nπ +

π

4
1 2.40482556 3.83170597 2.35619449 3.92699082
2 5.52007811 7.01558667 5.49778714 7.06858347
3 8.65372791 10.17346813 8.63937980 10.21017613
4 11.79153444 13.32369194 11.78097245 13.35176878
5 14.93091771 16.47063005 14.92256511 16.49336143

The values are conveniently obtained by the following maple code.

seq(evalf(BesselJZeros(0,n)),n=1..5);

seq(evalf(BesselJZeros(1,n)),n=1..5);

seq(evalf((2*n-1)*Pi/2+Pi/4),n=1..5);

seq(evalf((n)*Pi+Pi/4),n=1..5);

The Sturm theory of oscillations of second order differential equations provides
the theory which shows that Bessel functions oscillate on the positive x-axis.
Part of that theory translates to the following theorem about the interlaced
zero property. Trigonometric graphs verify the interlaced zero property for sine
and cosine. The theorem for p = 0 says that the zeros of J0(x) ↔ cos(x) and
J1(x)↔ sin(x) are interlaced.

Theorem 12.7 (Interlaced Zeros)
Between pairs of zeros of Jp there is a zero of Jp+1 and between zeros of Jp+1 there
is a zero of Jp. In short, the zeros of Jp and Jp+1 are interlaced.

Proof: A complete proof including the basic Sturm theory can be found in the text by
Kreider, Kuller, Ostberg and Perkins (1966), [KKOP] page 234. ■
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Exercises 12.6 �

Values of J0 and J1
Use series representations and identities to
find an identity for values of the following
functions. Use a computer algebra system
to compute the answers.

1. J0(1)

2. J1(1)

3. J0(1/2)

4. J1(1/2)

Bessel Function Properties
Prove the following relations by expanding
LHS and RHS in series.

5. J ′
0(x) = −J1(x)

6. J ′
1(x) = J0(x)−

1

x
J1(x)

7. (xpJp(x))
′
= xpJp−1(x),

p ≥ 1

8.
(
x−pJp(x)

)′
= −x−pJp+1(x),

p ≥ 0

Bessel Function Recursion Proofs
Add and subtract the expanded equations
of the previous exercises.

9. Jp+1 =
2p

x
Jp(x)− Jp−1(x),

p ≥ 1

10. Jp+1(x) = −2J ′
p(x) + Jp−1(x),

p ≥ 1

Recurrence Relations
Use results of the previous exercises.

11. Express J3 and J4 in terms of J0 and
J1.

12. Prove by induction that Jp(x) =
c1(1/x)J0(x) + c2(1/x)J1(x) where c1
and c2 are polynomials.

Laplace Transform
Assume Laplace identity L(Jn(t)) =
(
√
s2+1−s)

n

√
s2+1

holds for s ≥ 0. Prove the fol-

lowing results.

13.
∫∞
0

Jn+1(x)dx =
∫∞
0

Jn−1(x)dx

for integers n > 0.

14.

∫ ∞

0

Jn(x)dx

x
=

1

n

for integers n > 0

Bessel Function Bounds
Assume L. J. Landau’s result Jp(x) ≤
c|x|−1/3 for all x and p > 0, where c =
0.78574687 . . . is the best possible constant.
Prove the following results.

15. limx→∞ J1(x) = 0

16. limx→∞ J ′
0(x) = 0
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12.7 Legendre Polynomials

The differential equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

is called the Legendre differential equation of order n, after the French math-
ematician Adrien Marie Legendre (1752-1833), because of his work on gravita-
tion.1 The value of n is a nonnegative integer. For each n, the corresponding
Legendre equation is known to have a polynomial solution Pn(x) of degree n,
called the nth Legendre polynomial. The first few of these are recorded be-
low.

P0(x) = 1

P1(x) = x

P2(x) =
3

2
x2 − 1

2

P3(x) =
5

2
x3 − 3

2
x

P4(x) =
35

8
x4 − 15

4
x2 +

3

8

P5(x) =
63

8
x5 − 35

4
x3 +

15

8
x,

P6(x) =
231

16
x6 − 315

16
x4 +

105

16
x2 − 5

16
.

The general formula for Pn(x) is obtained by using ordinary point theory on
Legendre’s differential equation. The polynomial is normalized to satisfy Pn(1) =
1. The Legendre polynomial of order n is defined by

Pn(x) =
1

2n

N∑
k=0

(−1)k(2n− 2k)!

k!(n− 2k)!(n− k)!
xn−2k,(1)

according to n = 2N even or n = 2N + 1 odd. Proof on page 989.

There are alternative formulas available from which to compute Pn. The most
famous one is Rodrigues’ formula, after the French economist and mathemati-
cian Olinde Rodrigues (1794-1851),

Pn(x) =
1

2n n!

dn

dxn
(
x2 − 1

)n
,

proof on page 993. The classical generating function derivation is in Exercise 5.
Equally famous is Bonnet’s recursion

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x),

which was used to produce the table of Legendre polynomials above. Bonnet’s
recursion is derived from Rodrigues’ formula on page 993.

1Legendre is recognized more often for his 40 years of work on elliptic integrals.
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Properties of Legendre Polynomials

The main relations known for Legendre polynomials Pn are recorded here.

Pn(1) = 1

Pn(−1) = (−1)n

P2n+1(0) = 0

P ′
2n(0) = 0

Pn(−x) = (−1)nPn(x)

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

P ′
n+1(x)− P ′

n−1(x) = (2n+ 1)Pn(x)

P ′
n+1(x)− xP ′

n(x) = (n+ 1)Pn(x)

(1− 2xt+ t2)−1/2 =
∞∑
n=0

Pn(x)t
n

∫ 1

−1
|Pn(x)|2dx =

2

2n+ 1∫ 1

−1
Pn(x)Pm(x)dx = 0 (n ̸= m)

Example 12.4 (Boundary Data for Pn)
The polynomial solution Pn(x) of Legendre’s equation (1−x2)y′′−2xy′+n(n+1)y =

0 satisfies Pn(1) = 1 and P ′
n(1) =

n(n+ 1)

2
.

Details for Example 12.4
Identity Pn(1) = 1 is derived in the proof of the Legendre polynomial formula page 989.

Used in calculations below are identities from algebra and calculus:

(1) (a+ b)k =

k∑
r=0

(
k

r

)
arbk−r Binomial theorem

(2) (uv)(n) =

n∑
r=0

(
n

r

)
u(r)v(n−r) Product theorem

Identity P ′
n(1) =

n(n+ 1)

2
for n > 1 will be derived from Rodrigues’ formula and

identities (1), (2). For n = 0, 1, the identity follows from P0(x) = 1, P1(x) = x. Assume

n ≥ 1. Let c =
1

2nn!
. Then Rodrigues’ formula implies

P ′
n(x) = c

d

dx

(
(x2 − 1)n

)(n)
= c

(
d

dx

(
x2 − 1)n

))(n)

= c
(
2nx(x2 − 1)n−1

)(n)
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= 2nc (uv)
(n) where u = x, v = (x2 − 1)n−1

= 2nc

n∑
r=0

(
n

r

)
u(r)v(n−r) by identity (2)

Let x = 1 in the last display. Because u(x) = x, then u(1) = u′(1) = 1 and u(r) = 0 for
r ≥ 2. The sum reduces to two terms:

P ′
n(1) = 2nc

(
n

0

)
v(n)(1) + 2nc

(
n

1

)
v(n−1)(1)

Insert

(
n

0

)
= 1 and

(
n

1

)
= n, then:

P ′
n(1) = 2ncv(n)(1) + 2n2cv(n−1)(1)

Calculus with mathematical induction on formula v = (x2 − 1)n−1 gives these results:

v(n−1)(1) = 2n−1(n− 1)!, v(n)(1) = 2n−2(n− 1)n!

The details are aided by substitution y = x− 1. Then v = (y2 + 2y)n−1 is a polynomial

in y obtained explicitly by expansion (1). Then 2n−1 n! =
1

2c
implies:

P ′
n(1) = 2ncv(n)(1) + 2ncn v(n−1)(1)

= c(2n−2(2)(n!)(n)(n− 1)) + c(2n−1(2n)(n)(n− 1)!)

=
n(n+ 1)

2

Gaussian Quadrature

A high-speed low overhead numerical procedure Gaussian quadrature is de-
fined in terms of the zeros {xk}nk=1 of Pn(x) = 0 in −1 < x < 1 and certain
constants {ak}nk=1 by the approximation formula∫ 1

−1
f(x)dx ≈

n∑
k=1

akf(xk).

The approximation is exact when f is a polynomial of degree less than 2n. This
fact is enough to evaluate the sequence of numbers {ak}nk=1, because we can
replace f by the basis functions 1, x, . . . , xn−1 to get an n × n system for the
variables a1, . . . , an. The last critical element: the sequence {xk}nk=1 is the set
of n distinct roots of Pn(x) = 0 in −1 < x < 1. Here we need some theory, that
says that these roots number n and are all real.

Theorem 12.8 (Roots of Legendre Polynomials)
The Legendre polynomial Pn has exactly n distinct real roots x1, . . . , xn located in
the interval −1 < x < 1.
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The importance of the Gaussian quadrature formula lies in the ability to make
a table of values that generates the approximation, except for the evaluations
f(xk). This makes Gaussian quadrature a very high speed method, because it is
based upon function evaluation and a dot product for a fixed number of vector
entries. Vector parallel computers are able to perform these operations at high
speed.

A question: How is Gaussian quadrature different than the rectangular rule?
They are similar methods in the arithmetic requirements of function evaluation
and dot product. The answer: the rectangular rule has less accuracy than Gaus-
sian quadrature.

Gaussian quadrature can be compared with Simpson’s rule. For n = 3, which
uses three function evaluations, Gaussian quadrature becomes∫ 1

−1
f(x)dx ≈ 5f(

√
.6) + 8f(0) + 5f(−

√
.6)

9
,

whereas Simpson’s rule with one interval is∫ 1

−1
f(x)dx ≈ 1

3
f(−1) + 4

3
f(0) +

1

3
f(1).

Left as a puzzle is comparison of the two approximations using polynomials f of
degree higher than 4, or perhaps a smooth positive function f on −1 < x < 1,
say f(x) = cos(x).

Table generation. The pairs (xj , aj), 1 ≤ j ≤ n, required for the right side of
the Gaussian quadrature formula, can be generated just once for a given n by
the following maple procedure.

GaussQuadPairs:=proc(n)

local a,x,xx,ans,p,eqs;

xx:=fsolve(orthopoly[P](n,x)=0,x);

x:=array(1..n,[xx]);

eqs:=seq(sum(a[j]*x[j]^k,j=1..n)=int(t^k,t=-1..1),

k=0..n-1);

ans:=solve({eqs},{seq(a[j],j=1..n)});

assign(ans);

p:=[seq([x[j],a[j]],j=1..n)];

end proc;

For simple applications, the maple code above can be attached to the application
to generate the table on-the-fly. To generate tables, such as the one below, run
the procedure for a given n, e.g., to generate the table for n = 5, insert the above
procedure, then use the command GaussQuadPairs(5); .
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12.7 Legendre Polynomials

Table 1. Gaussian Quadrature Pairs for n = 5

j xj aj
1 −0.9061798459 0.2369268851
2 −0.5384693101 0.4786286705
3 0.0000000000 0.5688888887
4 0.5384693101 0.4786286705
5 0.9061798459 0.2369268851

Derivation: Legendre Polynomial Formula

Let’s start with the differential equation

(1− x2)y′′ − 2xy′ + λy = 0

where λ is a real constant. It will be shown that the differential equation has a
polynomial solution if and only if λ = n(n + 1) for some nonnegative integer n,
in which case the polynomial solution is a scalar multiple of Pn, which is given
by equation (1) page 985.

Proof: The trial solution is a Maclaurin series y =
∑∞

n=0 cnx
n. We will find two

independent solutions y1, y2, a basis of solutions on an interval about x = 0. The
background required is the theory of ordinary points. 2

Substitute the trial solution into Legendre’s equation:

(1− x2)y′′ =

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
n=2

n(n− 1)cnx
n,

−2xy′ =

∞∑
n=1

−2ncnxn,

λy =

∞∑
n=0

λcnx
n.

Let L(y) = (1− x2)y′′ − 2xy′ + λy, then, adding the above equations,

L(y) = (1− x2)y′′ − 2xy′ + λy
= (2c2 + λc0) + (6c3 − 2c1 + λc1)x

+

∞∑
n=2

((n+ 2)(n+ 1)cn+2 + (−n(n− 1)− 2n+ λ)cn)x
n.

The requirement L(y) = 0 makes the right side coefficients equal the coefficients of the
zero series, giving the relations

2c2 + λc0 = 0,
6c3 − 2c1 + λc1 = 0,
(n+ 2)(n+ 1)cn+2 + (−n(n− 1)− 2n+ λ)cn = 0 (n ≥ 2).

2Legendre polynomials Pn are solutions of Legendre’s equation for n ≥ 0 an integer, known
to be orthogonal on [−1, 1]. Legendre’s equation has regular singular points at x = ±1 and
x = ∞. Frobenius theory applies to find solutions when n in the factor n(n + 1) is a real
number (not an integer). The solutions are called a Legendre function of the first kind and
a Legendre function of the second kind, denoted LegendreP(n,x) and LegendreQ(n,x) in
both maple and mathematica languages.
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12.7 Legendre Polynomials

These compress to a single two-termed second order recursion

cn+2 =
n2 + n− λ

(n+ 2)(n+ 1)
cn = 0, (n ≥ 0),

whose solution is

c2n+2 =

(
Πn

k=0

2k(2k + 1)− λ

(2k + 1)(2k + 2)

)
c0,

c2n+3 =

(
Πn

k=0

(2k + 1)(2k + 2)− λ

(2k + 2)(2k + 3)

)
c1.

Let y1 be the series solution using c0 = 1, c1 = 0 and let y2 be the series solution using
c0 = 0, c1 = 1. Then

y1 = 1 +
∑∞

n=0 a2n+2x
2n+2, a2n+2 =

∏n
k=0

2k(2k + 1)− λ

(2k + 1)(2k + 2)

y2 = x+
∑∞

n=0 b2n+3x
2n+3, b2n+3 =

∏n
k=0

(2k + 1)(2k + 2)− λ

(2k + 2)(2k + 3)

The radius of convergence of y1 and y2 is 1, by the ratio test. They form a basis of
solutions to Legendre’s equation defined on −1 < x < 1.

Lemma A. If λ = m(m+1) for some integer m ≥ 0, then one of the two series solutions
y1, y2 is a polynomial.

Proof of Lemma A: For m = 2n + 2 (m even), there is a zero factor in the product
equation for a2n+2, causing a2j+2 = 0 for j ≥ n, which means y1 is a polynomial.
Similarly, if m = 2n + 3 (m is odd), then b2j+3 = 0 for j ≥ n: y2 is a polynomial. If
m = 0, then c2 = 0 from the recursion relations, giving polynomial solution y1 = 1. If
m = 1, then c0 = c2k+2 = 0, c1 = 1,c2k+3 = 0 for k ≥ 0, giving polynomial solution
y2 = x. The proof of Lemma B is complete. ■

Lemma B. If some solution y is a nonzero polynomial, then λ = n(n + 1) for some
integer n ≥ 0.

Proof of Lemma B: Assume some solution y is a nonzero polynomial. Assume the
contrary, that λ does not equal n(n+1) for any integer n ≥ 0. Let’s seek a contradiction
to complete the proof.

Because y1, y2 are a basis of solutions, then y = d1y1 + d2y2 for some |d1|+ |d2| > 0 and
the derivative y(m) is identically zero for m equal to one plus the degree of polynomial
y.

Differentiate y = d1y1 + d2y2 to obtain the two equations

d1y
m
1 (0) + d2y

m
2 (0) = 0,

d1y
m+1
1 (0) + d2y

m+1
2 (0) = 0

Then d1, d2 satisfy the 2× 2 linear system(
y
(m)
1 (0) y

(m)
2 (0)

y
(m+1)
1 (0) y

(m+1)
2 (0)

)(
d1
d2

)
=

(
0
0

)
.

Because |d1| + |d2| > 0 , then the 2 × 2 linear system has a nonzero solution, implying
the determinant of coefficients must vanish:

D =

∣∣∣∣∣ y
(m)
1 (0) y

(m)
2 (0)

y
(m+1)
1 (0) y

(m+1)
2 (0)

∣∣∣∣∣ = 0
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12.7 Legendre Polynomials

Series y1 and y2 are Maclaurin expansions. The four derivatives in determinant D appear

in the series expansions of y1 and y2. For instance, y
(m)
1 (0)/m! is the coefficient of xm

in series y1. Assume m > 1 and m = 2n+ 2 (m is even).

The odd case m > 1 and m = 2n+ 3 is treated similarly, details omitted.

Then y
(m)
1 (0)/m! = a2n+2 by the definition of y1, giving relation

D =

∣∣∣∣ (2n+ 2)!a2n+2 y2(2n+ 2)(0)

(2n+ 3)!a2n+3 y
(2n+3)
2 (0)

∣∣∣∣ = 0

Even terms of y2 are zero, therefore y(2n+2)(0) = 0 and the determinant evaluates to

D = (2n+ 2)!a2n+2y
(2n+3)
2 (0). If λ is not the product of two consecutive integers, then

product a2n+2 ̸= 0, and y
(2n+3)
2 (0) ̸= 0 by a similar analysis, using the recursion product

formulas for a2n+2 and b2n+3, which contain nonzero factors of the form j(j+1)−λ. So
D ̸= 0. The contradiction: D = 0 and D ̸= 0.

Two cases remain: (1) m = 0, (2) m = 1. Consider case (1), then

D =

∣∣∣∣∣ y
(m)
1 (0) y

(m)
2 (0)

y
(m+1)
1 (0) y

(m+1)
2 (0)

∣∣∣∣∣
=

∣∣∣∣ y1(0) y2(0)
y′1(0) y′2(0)

∣∣∣∣
=

∣∣∣∣ 1 0
0 1

∣∣∣∣ ̸= 0.

Consider case (2), then

D =

∣∣∣∣∣ y
(m)
1 (0) y

(m)
2 (0)

y
(m+1)
1 (0) y

(m+1)
2 (0)

∣∣∣∣∣
=

∣∣∣∣ y′1(0) y′2(0)
y′′1 (0) y′′2 (0)

∣∣∣∣
=

∣∣∣∣ 0 1
a2 y′′2 (0)

∣∣∣∣
= −a2 = −(−λ/2)

Because λ is not of the form n(n+ 1) then λ ̸= 0 and again a contradiction: D is both
zero and nonzero. The proof of Lemma B is complete. ■

Simplification of Coefficients.
Let Pn = y1 for n even and Pn = y2 for n odd. Only the case of n even, n = 2N , will
be verified. The odd case is left as an easily-solved puzzle. The equation 2r(2r + 1) −
n(n+ 1) = (2r − n)(n+ 2r + 1) implies the following relation for the coefficients of y1:

c2p+2 = c0Π
p
r=0

2r(2r + 1)− n(n+ 1)

(2r + 1)(2r + 2)

= c0Π
p
r=0

(2r − n)(n+ 2r + 1)

(2r + 1)(2r + 2)
.

Choose

c0 =
(−1)N

2n(N !)2
(n = 2N even).
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12.7 Legendre Polynomials

Let’s match coefficients in the reported formula for Pn against the series solution. The
constant terms match by the choice of c0. To match powers xn−2k and x2p+2, we require
n− 2k = 2p+ 2. To match coefficients, we must prove

c2p+2 =
1

2n
(−1)r(2n− 2k)!

k!(n− 2k)!(n− k)!
.

Solving n− 2k = 2p+ 2 for p when n = 2N gives p = N − k − 1 and then

c2p+2 = c0Π
p
r=0

(−1)(n− 2r)(n+ 2r + 1)

(2r + 1)(2r + 2)

=
(−1)2N−k

2n(N !)2
ΠN−k−1

r=0

(n− 2r)(n+ 2r + 1)

(2r + 1)(2r + 2)
.

The product factor will be converted to powers and factorials.

1 = ΠN−k−1
r=0 (n− 2r)

= (2N)(2N − 2) · · · (2k + 2)

= 2N−k(N)(N − 1) · · · (k + 1)

= 2N−kN !

k!
.

2 = ΠN−k−1
r=0 (n+ 2r + 1)

= (2N + 1)(2N + 3) · · · (4N − 2k − 1)

=
(2N + 1)(2N + 2) · · · (4N − 2k − 1)(4N − 2k)

(2N + 2)(2N + 4) · · · (4N − 2k)

=
(4N − 2k)!

(2N)!(2N)(4N) · · · (4N − 2k)

=
(4N − 2k)!

(2N)!2N−k(N + 1)(N + 2) · · · (2N − k)

=
(4N − 2k)!N !

(2N)!2N−k(2N − k)!

=
(2n− 2k)!N !

(n)!2N−k(n− k)!
because n = 2N .

3 = ΠN−k−1
r=0 (2r + 1)(2r + 2)

= [1 · 2][3 · 4] · · · [(2N − 2k − 1)(2N − 2k)]

= (n− 2k)! because n = 2N .

Then

c2p+2 =
(−1)2N−k

2n(N !)2
1 2

3

=
(−1)2N−k

2n(N !)2

2N−kN !

k!

(2n− 2k)!N !

(n)!2N−k(n− k)!

(n− 2k)!

=
(−1)k

2nk!(n− 2k)!(n− k)!
.

This completes the derivation of the Legendre polynomial formula. ■
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Derivation of Rodrigues’ Formula

It must be shown that Legendre’s polynomial formula

Pn(x) =
1

2n

N∑
k=0

(−1)k(2n− 2k)!

k!(n− 2k)!(n− k)!
xn−2k,

derived above from ordinary point theory applied to Legendre’s differential equa-
tion, is also given by Rodrigues’ formula

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
.

Proof: Start with the binomial expansion (a + b)n =
∑n

k=0

(
n
k

)
ak bn−k. Substitute

a = −1, b = x2,

(
n
k

)
=

n!

k! (n− k)!
to obtain

(−1 + x2)n =

n∑
k=0

(−1)kn!
k!(n− k)!

x2n−2k.

The plan is to differentiate this equation n times. Calculus derivative (d/du)num can be

written as
m!

(m− n)!
um−n. Each differentiation annihilates the constant term. Therefore,

there are N = n/2 terms for n even and N = (n− 1)/2 terms for n odd, and we have

dn

dxn

(
(−1 + x2)n

)
=

N∑
k=0

(−1)kn!(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k

= n! 2n
1

2n

N∑
k=0

(−1)k(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k

= 2nn!Pn(x).

■

Derivation of Bonnet’s Recursion

Proof: Rodrigues’ formula will be used to define Pn:

Pn(x) = cnD
n(un), u = x2 − 1, D =

d

dx
, cn =

1

n!2n

To be proved is Bonnet’s recursion:

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x)

Lemma A. cm = 2(m+ 1)cm+1

Lemma B. Bonnet’s recursion is equivalent to the identity

Dn+1un+1 = 2(2n+ 1)xDnun − 4n2Dn−1un−1(2)
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12.7 Legendre Polynomials

Lemma C. Dn+1un+1 = 2(n+ 1)(2n+ 1)Dn−1un + 4n(n+ 1)Dn−1un−1

Lemma D. (n+ 1)Dn−1un = xDnun − 2nDn−1un−1

Proof of Bonnet’s recursion: Let’s verify that equation (2) in Lemma B is satisfied:

LHS = Dn+1un+1 Left side of (2).

=

{
2(n+ 1)(2n+ 1)Dn−1un

+4n(n+ 1)Dn−1un−1 By Lemma C.

=

{
2(2n+ 1)

(
xDnun − 2nDn−1un−1

)
+4n(n+ 1)Dn−1un−1 By Lemma D.

=

{
2(2n+ 1)xDnun

+4n (−(2n+ 1) + (n+ 1))Dn−1un−1 Expand.

= 2(2n+ 1)xDnun − 4n2Dn−1un−1 Which equals the RHS of (2) in
Lemma B.

This completes the proof of Bonnet’s recursion, except for proofs of the lemmas.

Proof of Lemma A: See the Exercise 3 solution. ■

Proof of Lemma B: Replace Pk(x) by ckD
kuk in Bonnet’s recursion:

(n+ 1)cn+1D
n+1un+1 = (2n+ 1)xDnun − ncn−1D

n−1un−1

Divide by (n+ 1)cn+1 and simplify using Lemma A:

Dn+1un+1 =
2n+ 1

(n+ 1)cn+1
xDnun − ncn−1

(n+ 1)cn+1
Dn−1un−1

= 2(n+ 1)xDnun − 2n(n)(2)(n+ 1)cn+1

(n+ 1)cn+1
Dn−1un−1

= 2(n+ 1)xDnun − 4n2Dn−1un−1

All steps are reversible, so Bonnet’s recursion is equivalent to equation (2). ■

Proof of Lemma C: Let’s write x2 = (x2 − 1) + 1 = u+ 1 to strip symbol x from the
expansion. The calculus product rule and definition u = x2 − 1 gives

Dn+1un+1 = Dn−1
(
D
(
Dun+1

))
= Dn−1 (D (2(n+ 1)xun))

= Dn−1
(
2n(n+ 1)un + 4n(n+ 1)x2un−1

)
= Dn−1

(
2n(n+ 1)un + 4n(n+ 1)(u+ 1)un−1

)
= Dn−1

(
2n(n+ 1)(2n+ 1)un + 4n(n+ 1)un−1

)
= 2n(n+ 1)(2n+ 1)Dn−1un + 4n(n+ 1)Dn−1un−1

■

Proof of Lemma D: The Leibitz Rule for differentiation of a power (fg)k gives

Dn(xun) = xDnun − 2nDn−1un(3)

because there are only two nonzero terms

(
n
r

)
Dr(x)Dn−r(un) in the Leibnitz identity.

The calculus product rule gives

Dn(xun) = (2n+ 1)Dn−1un + 2nDn−1un−1(4)
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12.7 Legendre Polynomials

because
Dn(Dn(xun) = Dn−1(D(xun))

= Dn−1(un + 2nx2un−1

= Dn−1un + 2nDn−1((u+ 1)un−1)

= (2n+ 1)Dn−1un + 2nDn−1un−1

Subtract equation (4) from equation (3).

0 = xDnun + nDn−1un − (2n+ 1)Dn−1un − 2nDn−1un − 2nDn−1un−1

= xDnun − (n+ 1)Dn−1un − 2nDn−1un−1

Rearrange this equation to

(n+ 1)Dn−1un = xDnun − 2nDn−1un−1

■

Exercises 12.7 �

Equivalent Legendre Equations
Prove the following are equivalent to
(1−x2)y′′−2xy′+n(n+1)y=0

1. ((1− x2)y′)′ + n(n+ 1)y = 0

2. Let x = cos θ, ′ = d
dθ , then

sin θy′′+cos θy′+n(n+1) sin θy=0.

Proof of Bonnet’s Recursion

3. Define cn = 1
n!2n .

Prove cm = 2(m+ 1)cm+1.

4. Let D = d
dx , u = x2 − 1. Verify

D2u2 = 12x2− 4 using D and the bino-
mial theorem.

5. Prove Bonnet’s recursion from the gen-
erating function equation

1√
1− 2xt+ t2

=

∞∑
n=0

Pn(x)t
n

6. Prove that Pn(1) = 1 directly from Ro-
drigues’ formula.

Boundary Data at x = ±1
Use these identities:

(1) (a+ b)k=
∑k

r=0

(
k
r

)
arbk−r

(2) (uv)(n)=
∑n

r=0

(
n
r

)
u(r)v(n−r)

7. In Rodrigues’ formula, let Let y = x−1
to prove

Pn(y + 1)= 1
n!2n

(
d

dy

)n (
y2 + 2y

)n
8. Verify from identity (1):(

y2+2y
)n

=
∑n

r=0

(
n
r

)
2ry2n−r

9. Prove Pn(1) = 1 from Bonnet’s recur-
sion.

10. Assume Pn(−x)=(−1)nPn(x) and

P ′
n(1) =

n(n+ 1)

2
. Prove

Pn(−1) = (−1)n and

P ′
n(−1) = (−1)nn(n+ 1)

2
.

Legendre Integrals
Use Legendre properties page 986.

11. Use (2n+1)Pn = P ′
n+1−P ′

n−1 to prove∫ 1

0
Pn(x)dx = 0 for n > 0 even.

12. Use Bonnet’s recursion to show that∫ 1

0
Pn(x)dx = Pn−1(0)

n+1 for n > 0.
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12.8 Orthogonality

12.8 Orthogonality

The notion of orthogonality originates in R3, where nonzero vectors v⃗ 1, v⃗ 2 are
defined to be orthogonal, written v⃗ 1 ⊥ v⃗ 2, provided v⃗ 1 · v⃗ 2 = 0. The dot
product in R3 is defined by

x⃗ · y⃗ =

 x1
x2
x3

 ·
 y1

y2
y3

 = x1y1 + x2y2 + x3y3.

Similarly, x⃗ · y⃗ = x1y1 + x2y2 + · · · + xnyn defines the dot product in Rn.
Literature uses the notation (x⃗ , y⃗ ) as well as x⃗ · y⃗ . Modern terminology uses
Inner Product instead of dot product, to emphasize the use of functions and
abstract properties. The inner product (x⃗ , y⃗ ) satisfies the following properties.

(x⃗ , x⃗) ≥ 0 Non-negativity.

(x⃗ , x⃗) = 0 implies x⃗ = 0⃗ Uniqueness.

(x⃗ , y⃗ ) = (y⃗ , x⃗ ) Symmetry.

k(x⃗ , y⃗ ) = (kx⃗ , y⃗ ) Homogeneity.

(x⃗ + y⃗ , z⃗) = (x⃗ , z⃗) + (y⃗ , z⃗) Additivity.

The storage system of choice for answers to differential equations is a real vector
space V of functions f . A real inner product space is a vector space V with
real-valued inner product function (x⃗ , y⃗ ) defined for each x⃗ , y⃗ in V , satisfying
the preceding rules.

Dot Product for Functions

The extension of the notion of dot product to functions replaces x⃗ · y⃗ by average
value. Insight can be gained from the approximation

1

b− a

∫ b

a
F (x)dx ≈ F (x1) + F (x2) + · · ·+ F (xn)

n

where b− a = nh and xk = a+ kh. The left side of this approximation is called
the average value of F on [a, b]. The right side is the classical average of F
at n equally spaced values in [a, b]. If we replace F by a product fg, then the

average value formula reveals that
∫ b
a fgdx acts like a dot product:

1

b− a

∫ b

a
f(x)g(x)dx ≈ x⃗ · y⃗

n
, x⃗ =

f(x1)
...

f(xn)

 , y⃗ =

g(x1)
...

g(xn)

 .

The formula says that
∫ b
a f(x)g(x)dx is approximately a constant multiple of the

dot product of samples of f , g at n points of [a, b].
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Given functions f and g integrable on [a, b], the formula

(f, g) =

∫ b

a
f(x)g(x)dx

defines a dot product satisfying the abstract properties cited above. When dealing
with solutions to differential equations, this dot product, along with the abstract
properties of a dot product, provide the notions of distance and orthogonality
analogous to those in R3.

Orthogonality, Norm and Distance

Define nonzero functions f and g to be orthogonal on [a, b] provided (f, g) = 0.
Define the norm or the distance from f to 0 to be the number ∥f∥ =

√
(f, f)

and the distance from f to g to be ∥f − g∥. The basic properties of the norm
∥ · ∥ are as follows.

∥f∥ ≥ 0 Non-negativity.

∥f∥ = 0 implies f = 0 Uniqueness.

∥cf∥ = |c|∥f∥ Homogeneity.

∥f∥ =
√
(f, f) Norm and the inner product.

∥f + g∥ ≤ ∥f∥+ ∥g∥ The triangle inequality.

|(f, g)| ≤ ∥f∥ ∥g∥ Cauchy-Schwartz inequality.

Weighted Dot Product

In applications of Bessel functions, use is made of the weighted dot product

(f, g) =

∫ b

a
f(x)g(x)ρ(x)dx,

where ρ(x) > 0 on a < x < b.

The possibility that ρ(x) = 0 at some set of points in (a, b) has been considered
by researchers, as well as the possibility of a singularity at x = a or x = b, or
a = −∞ and/or b =∞. Properties advertised here mostly hold in these extended
cases, provided appropriate additional assumptions are invoked.

Theorem 12.9 (Orthogonality of Legendre Polynomials)
The Legendre polynomials {Pn}∞n=0 satisfy the orthogonality relation∫ 1

−1
Pn(x)Pm(x)dx = 0, n ̸= m.

The relation means that Pn and Pm (n ̸= m) are orthogonal on [−1, 1] relative to
the dot product (f, g) =

∫ 1
−1 f(x)g(x)dx.

997



12.8 Orthogonality

Proof: The details use only the Legendre differential equation (1−x2)y′′−2xy′+n(n+
1)y = 0 in the form ((1− x2)y′)′ + n(n+ 1)y = 0 and the fact that a(x) = 1− x2 is zero
at x = ±1. From the definition of the Legendre polynomials, the following differential
equations are satisfied:

(aP ′
n)

′ + n(n+ 1)Pn = 0,

(aP ′
m)′ +m(m+ 1)Pm = 0.

Multiply the first by Pm and the second by Pn, then subtract to obtain

(m(m+ 1)− n(n+ 1))PnPm = (aP ′
n)

′Pm − (aP ′
m)′Pn.

Re-write the right side of this equation as (aP ′
nPm − aP ′

mPn)
′. Then integrate over

−1 < x < 1 to obtain

LHS = (m(m+ 1)− n(n+ 1))

∫ 1

−1

Pn(x)Pm(x)dx

= (a(x)P ′
n(x)Pm(x)− a(x)P ′

m(x)Pn(x))|
x=1
x=−1

= 0.

The result is zero because a(x) = 1− x2 is zero at x = 1 and x = −1. The dot product
of Pn and Pm is zero, because m(m+ 1)− n(n+ 1) ̸= 0. ■

Theorem 12.10 (Orthogonality of Bessel Functions)
Let the Bessel function Jn have positive zeros {bmn}∞m=1. Given R > 0, define
fm(r) = Jn(bmnr/R). Then the following weighted orthogonality relation holds.∫ R

0
fi(r)fj(r)rdr = 0, i ̸= j.

The relation means that fi and fj (i ̸= j) are orthogonal on [0, R] relative to the

weighted dot product (f, g) =
∫ R
0 f(r)g(r)ρ(r)dr, where ρ(r) = r.

Proof: The details depend entirely upon the Bessel differential equation of order n,
x2y′′ + xy′ + (x2 − n2)y = 0, and the condition y(bmn) = 0, valid when y = Jn. Let λ =
bmn/R and change variables by x = λr, w(r) = y(λr). Then w satisfies dw/dr = y′(x)λ,
d2w/dr2 = y′′(x)λ2 and the differential equation for y implies the equation

r2
d2w

dr2
(r) + r

dw

dr
(r) + (λ2r2 − n2)w(r) = 0.

Apply this change of variables to Bessel’s equation of orders i and j. Then

r2f ′′
i (r) + rf ′

i(r) + (b2inr
2R−2 − n2)fi(r) = 0,

r2f ′′
j (r) + rf ′

j(r) + (b2jnr
2R−2 − n2)fj(r) = 0.

Multiply the first equation by fj(r) and the second by fi(r), then subtract and divide
by r to obtain

rf ′′
i fj − rf ′′

j fi + f ′
ifj − f ′

jfi + (b2in − b2jn)rR
−2fifj = 0.
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12.8 Orthogonality

Because of the calculus identities rw′′+w′ = (rw′)′ and (rw′
1w2− rw′

2w2)
′ = (rw′

1)
′w2−

(rw′
2)

′w1, this equation can be re-written in the form

(b2jn − b2in)R
−2rfifj = (rf ′

ifj − rf ′
jfi)

′.

Integrate this equation over 0 < r < R. Then the right side evaluates to zero, because
of the conditions fi(R) = fj(R) = 0. The left side evaluates to a nonzero multiple of∫ R

0
fi(r)fj(r)rdr. Therefore, the weighted dot product of fi and fj is zero. ■

Series of Orthogonal Functions

Let (f, g) denote a dot product defined for functions f , g. Especially, we include

(f, g) =
∫ b
a fgdx and a weighted dot product (f, g) =

∫ b
a fgρdx. Let {fn} be a

sequence of nonzero functions orthogonal with respect to the dot product (f, g),
that is, a system {fn}∞n=1 satisfying the orthogonality relations

(fi, fj) = 0, i ̸= j, (fi, fi) > 0, i = 1, 2, . . . .

A Generalized Fourier series is a convergent series of such orthogonal func-
tions

F (x) =
∞∑
n=1

cnfn(x).

The coefficients {cn} are called the Generalized Fourier Coefficients of F .
Convergence is taken in the sense of the norm ∥g∥ =

√
(g, g), defined as follows:

F =
∞∑
n=1

cnfn means lim
N→∞

∥∥∥∥∥
N∑

n=1

cnfn − F

∥∥∥∥∥ = 0.

For example, when ∥g∥ =
√
(g, g) and (f, g) =

∫ b
a fgdx, then series convergence

is called Mean-Square convergence, defined by

lim
N→∞

√√√√∫ b

a

∣∣∣∣∣
N∑

n=1

cnfn(x)− F (x)

∣∣∣∣∣
2

dx = 0.

Orthogonal Series Method. The coefficients {cn} in an orthogonal series are
determined by a technique called the Orthogonal series method, described in
words as follows.

The coefficient cn in an orthogonal series is found by taking the dot
product of the equation with the orthogonal function that multiplies
cn.

The details of the method:

(F, fn) =

( ∞∑
k=1

ckfk, fn

)
Dot product the equation with fn.
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12.8 Orthogonality

(F, fn) =
∞∑
k=1

ck(fk, fn) Apply dot product properties.

(F, fn) = cn(fn, fn) By orthogonality, just one term re-
mains from the series on the right.

Division after the last step leads to the Fourier Coefficient Formula

cn =
(F, fn)

(fn, fn)
.

Orthogonal Projection

The shadow projection of vector X⃗ onto the direction of vector Y⃗ is the number
d defined by

d =
X⃗ · Y⃗
|Y⃗ |

.

The triangle determined by X⃗ and d
Y⃗

|Y⃗ |
is a right triangle.

d

X⃗

Y⃗
Figure 1. Shadow projection d of vector X⃗
onto the direction of vector Y⃗ .

The vector shadow projection of X⃗ onto the line L through the origin in the
direction of Y⃗ is defined by

projY⃗ (X⃗) = d
Y⃗

|Y⃗ |
=

X⃗ · Y⃗
Y⃗ · Y⃗

Y⃗ .

Shadow Projection and Fourier Coefficients

The term cnfn in a generalized Fourier series can be expanded as

cnfn =
(F, fn)

(fn, fn)
fn = Shadow projection of F onto fn.

This formula appears in Gram-Schmidt formulas and in Least Squares formulas,
because those formulas also involve orthogonal projections. The complexity of
such formulas is removed by thinking of the results as sums of shadow projections
or as subtractions of shadow projections.
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12.8 Orthogonality

Bessel inequality and Parseval equality

Assume given a dot product (f, g) for an orthogonal series expansion

F (x) =

∞∑
n=1

cnfn(x).

Bessel’s inequality
N∑

n=1

|(F, fn)|2

∥fn∥2
≤ ∥F∥2

is proved as follows. Let N ≥ 1 be given and let SN =
∑N

n=1 cnfn. Then

(SN , SN ) =

(
N∑

n=1

cnfn,
N∑
k=1

ckfk

)
Definition of SN .

=

N∑
n=1

N∑
k=1

cnck(fn, fk) Linearity properties of the dot
product.

=
N∑

n=1

cncn(fn, fn) Because (fn, fk) = 0 for n ̸= k.

=
N∑

n=1

|cn|2∥fn∥2 Because ∥g∥2 = (g, g).

(F, SN ) =
N∑

n=1

cn(F, fn) Linearity of the dot product.

=
N∑

n=1

|cn|2∥fn∥2 Fourier coefficient formula.

Then

0 ≤ ∥F − SN∥2 The norm is non-negative.

= (F − SN , F − SN ) Use ∥g∥2 = (g, g).

= (F, F ) + (SN , SN )− 2(F, SN ) Dot product properties.

= (F, F )−
∑N

n=1 |cn|2∥fn∥2 Apply previous formulas.

This proves
N∑

n=1

|cn|2∥fn∥2 ≤ (F, F ),

or what is the same, because of the Fourier coefficient formula,

N∑
n=1

|(F, fn)|2

∥fn∥2
≤ (F, F ).
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12.8 Orthogonality

Letting N →∞ gives Bessel’s inequality
∑∞

n=1
|(F,fn)|2
∥fn∥2 ≤ (F, F ).

Parseval’s equality is equality in Bessel’s inequality:

∥F∥2 =
N∑

n=1

|(F, fn)|2

∥fn∥2
.

There is a fundamental relationship between Parseval’s equality and the possi-
bility to expand a function F as an infinite orthogonal series in the functions
{fn}. In literature, the relationship is known as completeness of the orthogo-
nal sequence {fn}. The definition: {fn} is complete if and only if each function
F has a series expansion F =

∑∞
n=1 cnfn for some set of coefficients {cn}. When

equality holds, the coefficients cn are given by Fourier’s coefficient formula.

Theorem 12.11 (Parseval)
A sequence {fn} is a complete orthogonal sequence if and only if Parseval’s equality
holds.

Therefore, the equation F =
∑∞

n=1
(F,fn)
(fn,fn)

fn holds for every F if and only if Parse-
val’s equality holds for every F .

Legendre series

A convergent series of the form

F (x) =

∞∑
n=0

cnPn(x)

is called a Legendre series. The orthogonal system {Pn} on [−1, 1] under the
dot product (f, g) =

∫ 1
−1 f(x)g(x)dx together with Fourier’s coefficient formula

gives

cn =

∫ 1
−1 F (x)Pn(x)dx∫ 1
−1 |Pn(x)|2dx

.

The denominator in this fraction can be evaluated for all values of n:∫ 1

−1
|Pn(x)|2dx =

2

2n+ 1
.

Theorem 12.12 (Legendre expansion)
Let F be defined on −1 ≤ x ≤ 1 and assume F and F ′ are piecewise continuous.
Then the Legendre series expansion of F converges and equals F (x) at each point
of continuity of F . At other points, the series converges to 1

2(F (x+) + F (x−)).
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12.8 Orthogonality

Bessel series

A convergent infinite series of the form

F (r) =
∞∑
n=1

cnJm(bnmr/R), 0 < r < R,

is called a Bessel series. The index m, assumed here to be a non-negative
integer, is fixed throughout the series terms. The sequence {bnm}∞n=1 is an ordered
list of the positive zeros of Jm.

The weighted dot product (f, g) =
∫ R
0 f(r)g(r)rdr is used. It is known that the

sequence of functions fn(r) = Jm(bnmr/R) is orthogonal relative to the weighted
dot product (·, ·). Then Fourier’s coefficient formula implies

cn =

∫ R
0 F (r)Jm(bnmr/R)rdr∫ R
0 |Jm(bnmr/R)|2rdr

.

To evaluate the denominator of the above fraction, let’s denote ′ = d/dr, y(r) =
fn(r) = Jm(bnmr/R). Use r(ry′)′ + (b2nmr2R−2 − n2)y = 0, the equation used to
prove orthogonality of Bessel functions. Multiply this equation by 2y′. Re-write
the resulting equation as

[(ry′)2]′ + (b2nmr2R−2 − n2)[y2]′ = 0.

Integrate this last equation over [0, R]. Use parts on the term involving r2[y2]′.
Then use Jm(0) = 0, y′ = (bnm/R)J ′

m(bnmr/R) and xJ ′
m(x) = mJm(x) −

xJm+1(x) to obtain∫ R

0
|Jm(bnmr/R)|2rdr =

R2

2
|Jm+1(bnm)|2.

Theorem 12.13 (Bessel expansion)
Let F be defined on 0 ≤ x ≤ R and assume F and F ′ are piecewise continuous.

Then the Bessel series expansion of F converges and equals F (x) at each point of
continuity of F . At other points, the series converges to the average 1

2(F (x+) +
F (x−)) of left-hand and right-hand limits.

Exercises 12.8 �

Legendre series. Establish the following
results.

1. Prove using orthogonality that∫ 1

−1
Pn(x)F (x)dx = 0 for any polyno-

mial F (x) of degree less than n.

2. Use identity
xP ′

n(x)− P ′
n−1(x) = nPn(x)

to prove
∫ 1

−1
|Pn(x)|2dx = 2

2n+1 .

3. Let ⟨f, g⟩ =
∫ π

0
f(x)g(x) sin(x)dx.

Show that the sequence {Pn(cosx)} is
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12.8 Orthogonality

orthogonal on 0 ≤ x ≤ π with respect

to inner product ⟨f, g⟩.
4. Let F (x) = sin3(x)− sin(x) cos(x). Ex-

pand F as a Legendre series
F (x) =

∑∞
n=0 cnPn(cosx).

Chebyshev Series. The Cheby-
shev polynomials are Tn(x) =
cos(n arccos(x)) with inner product

(f, g) =
∫ 1

−1
f(x)g(x)(1− x2)−1/2dx.

5. Show that T0(x) = 1, T1(x) = x,
T2(x) = 2x2 − 1.

6. Show that T3(x) = 4x3 − 3x.

7. Prove that (f, g) satisfies the abstract
properties of an inner product.

8. Show that Tn is a solution of the
Chebyshev equation
(1− x2)y′′ − xy′ + n2y = 0.

9. Prove that {Tn} is orthogonal relative
to the weighted inner product (f, g).

10. Prove: Tn(x) is an even function for n
even and an odd function for n odd.

Hermite Polynomials. Define the Her-
mite polynomials by H0(x) = 1,

Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
.

Define the inner product
(f, g) =

∫∞
−∞ f(x)g(x)e−x2

dx.

11. Verify: H1(x) = 2x, H2(x) = 4x2 − 2,
H3(x) = 8x3 − 12x, H4(x) = 16x4 −
48x2 + 12.

12. Prove: Hn(−x) = (−1)nHn(x).

13. Prove H ′
n(x)=2xHn(x)−Hn+1(x).

Then use recursion Hn+1(x) =
2xHn(x) − 2nHn−1(x) to show
H ′

n(x) = 2nHn−1(x).

14. Let y = H5 = 32x5 − 160x3 + 120x.
Show y satisfies Hermite’s equation
y′′ − 2xy′ + 2ny = 0 with n = 5.

15. Prove recursion
Hn+1(x) = 2xHn(x)− 2nHn−1(x).

16. Show that the sequence {Hn(x)} is or-
thogonal with respect to (f, g).

Alternate Laguerre Polynomials. De-
fine the alternate Laguerre polynomials by
Ln(x) = ex dn

dxn (xne−x). Define (f, g) =∫∞
0

f(x)g(x)e−xdx. A warning: Laguerre

polynomials in the literature are 1
n!Ln.

17. Prove: L1(x) = 1− x and
L2(x) = 2− 4x+ x2.

18. Prove:
L3(x) = 6− 18x+ 9x2 − x3.

19. Prove that (f, g) satisfies the abstract
properties for an inner product.

20. Show that L0, L1, L2, L3 are orthog-
onal with respect to the inner product
(f, g), using direct integration methods.

21. Prove:
Ln(x) =

∑n
k=0

(−1)k (n!)2

(n−k)!(k!)2x
k.

22. Show that {Ln} is an orthogonal se-
quence with respect to (f, g).

23. Find an expression for a polynomial so-
lution to Laguerre’s equation xy′′ +
(1− x)y′ + ny = 0 using Frobenius the-
ory.

24. Show that y = ex dn

dxn (x
ne−x) satisfies

Laguerre’s equation: xy′′+(1−x)y′+
ny = 0.

25. Verify by computer the Laguerre for-
mulas

L0(x)=1
L1(x)=− x+ 1
L2(x)=x2 − 4x+ 2
L3(x)=− x3 + 9x2 − 18x+ 6

26. Find to 6 digits by computer the roots
of L4(x).

27. Prove: Up to a constant, Ln is the only
polynomial solution of xy′′+(1−x)y′+
ny = 0, n ≥ 0 an integer.

28. Assume standard Laguerre polynomi-
als {Ln} satisfy recurrence
(n+1)Ln+1(x)=(2n+1−x)Ln(x)

−nLn−1(x).
Prove: The alternate Laguerre poly-
nomials {Ln} satisfy recurrence
Ln+1(x)=(2n+1−x)Ln(x)

−n2Ln−1(x).
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Chapter A

Background Topics

Introduction

The appendices to follow contain a short list of topics extracted from pre-calculus
and calculus courses.

Contents

A.1 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 1005

A.2 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . 1015

A.3 Explicit and Implicit Answers . . . . . . . . . . . . 1024

A.4 Numerical and Graphical Answers . . . . . . . . . 1029

A.5 Implicit Functions . . . . . . . . . . . . . . . . . . . 1041

A.1 Calculus

The selected topics from differential and integral calculus are used in differential
equations. The special notation of differential equations is introduced, along with
some ideas of Isaac Newton concerning the elementary kinetics formula D = RT ,
which has the physical interpretation Distance = Rate × Time.

Derivative

The calculus derivative f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
makes sense provided

the indicated limit exists. Implicit in the formula is the assumption that f is
defined in an open interval of the form |x − x0| < H. Differential equations use
this standard notation, plus the Leibniz notation

df

dx
= f ′(x).
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A.1 Calculus

Variable names used in science and engineering often follow this standard:

y = dependent variable,
x = independent variable.

Within certain disciplines, such as kinetics, the variable names change, and the
following standard exists:

x = displacement, dependent variable,
t = time, independent variable,

dx

dt
= velocity

= x′(t)

= ẋ(t)

= Dx(t),

d2x

dt2
= acceleration

= x′′(t)

= ẍ(t)

= D2x(t).

The functional notation y(x) means y is a dependent variable which depends on
the independent variable x. For example, x(t) means displacement x depends
on time t. In a graphic, it is expected that x is the vertical axis and t is the
horizontal axis. The dot-notation ẋ(t) and ẍ(t), instead of x′(t) and x′′(t), is
common in literature on statics and dynamics. Operator notation Dx, D2x
appears in differential equations literature and in computer algebra systems, e.g.,
maple and mathematica.

Slope, Rates and Averages

The derivative can be interpreted geometrically as the slope of the line tangent
to a curve at a point; see Figure 1.

slope m = f ′(x0)

y

x

(x0, y0)

Figure 1. Slope of the tangent line.

The tangent line itself can be viewed as the linearization of the curve. For
example, if the curve is the path of an automobile which at speedometer reading
v instantly skids off the road, then the car follows the tangent line with constant
speed v. Travel along the tangent line is linear motion at constant speed.

The line equation tangent to y = f(x) at x = x0 is given by the point-slope
form of a line

y − y0 = m(x− x0),

y0 = f(x0), m = f ′(x0).
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A.1 Calculus

The notation y(x), usual in differential equations, conflicts with the notation from
geometry. In handwritten and blackboard work it is recommended to change x
and y to capital letters X and Y , then replace f by y, as follows:

Y − y0 = m(X − x0),
y0 = y(x0), m = y′(x0).

Other forms of a straight line in coordinate geometry are the slope-intercept
form y = mx + b, the standard form Ax + By + C = 0 and the parametric
form {

x = x0 + at,
y = y0 + bt, −∞ < t <∞.

In the parametric form, the vector a⃗i + b⃗j is tangent to the line. For example,
a = 0 and b = 1 gives a vertical line through (x0, y0).

Applied sciences interpret the derivative f ′(x) as the rate of change of y = f(x)
with respect to x. Typical interpretations appear below.

ẋ(t) ≈ change in displacement x for a unit change in t
dQ

dt
≈ change in charge Q for a unit change in t

Q̈(t) ≈ change in current I = Q̇ for a unit change in t

A′(t) ≈ expected decrease in the amount A of radioac-
tive material for time interval [t, t+ 1]

The average of n samples y1, . . . , yn is defined to be

y1 + y2 + · · ·+ yn
n

.

The term simple average is sometimes used. The average value f of a con-
tinuous function f(x) on [a, b] is defined by

f =

∫ b
a f(x)dx

b− a
.

This abstract notion has connections with the simple average. The theory of
the integral

∫ b
a f(x)dx includes the rectangular rule for numerical integration.

For step size h = (b − a)/n and sample values y1 = f(a), y2 = f(a + h), . . . ,
yn = f(a+ nh− h) it gives the approximation formula∫ b

a
f(x)dx ≈ h(y1 + y2 + · · ·+ yn).

Multiply this relation by 1/(b− a) and replace the left side by the average value
f . Then

f ≈ y1 + y2 + · · ·+ yn
n

,

or in words,
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A.1 Calculus

The average value f is approximately a simple average of n samples
of f , taken at equi-spaced points in [a, b].

In the language of kinetics, f is velocity and f is the average velocity or the
speed.

The language of kinetics agrees with common public notions of speed. For exam-
ple, the average of various speedometer reading samples during an automobile
trip give a good indication of the average speed of the car on the trip. The av-
erage speed R = f is related to the trip time T = b − a and the trip mileage D
by the classical formula D = RT , which is taught in elementary school.

The expression for the trip mileage D in terms of the instantaneous velocity f ,

D =

∫ b

a
f(x)dx,

is due to the creative genius of Isaac Newton. This relation of Newton today
appears in texts as the fundamental theorem of calculus.

Fundamental Theorem of Calculus

The foundations of the study of differential equations rests with Newton’s discov-
ery of a way to state the relation D = RT using instantaneous velocities instead
of speed averages.

Theorem A.1 (Fundamental theorem of calculus)
Let G be continuous and let F be continuously differentiable on [a, b]. Then

(a) F (b)− F (a) =

∫ b

a
F ′(x)dx,

(b)
d

dx

∫ x

a
G(t)dt = G(x).

Part (a) of the fundamental theorem is used by calculus students to evaluate
integrals. In differential equations, it is applied to find solutions.

Part (b) of the fundamental theorem computes the instantaneous rate of an aver-
aging process. Calculus students use it to check answers to integration problems.
In differential equations it is used to verify solutions.

The justification of D = RT for instantaneous rates f(x) = F ′(x) is contained
in part (a): divide both sides by b− a and interpret the right side as the average
velocity or speed to get the formula D/T = R.

Example A.1 (Leibniz Notation)
Change y′′(x) + y(x) into Leibniz notation.

Solution:
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y′′(x) =
d

dx
y′(x) Definition of second derivative.

=
d

dx

dy

dx
Leibniz notation for the first derivative.

=
d2y

dx2
Leibniz notation.

Therefore, the converted expression is
d2y

dx2
+ y.

Example A.2 (Notation Conversion)
Convert the equation

du

dt
= u+ et sin t to dot notation.

Solution: By convention,
du

dt
= u̇(t) and u = u(t). Therefore, the converted equation is

u̇(t) = u(t) + et sin t.

Example A.3 (Slope of the Tangent Line)
Compute the slope m of the line tangent to y = x sinx at x = π/2.

Solution:

m = y′ Definition of slope and derivative.

= (x sinx)′ Definition of y.

= sinx+ x cosx Product rule and derivative tables.
Variable x to be replaced by π/2.

= sin(π/2) +
1

2
π cos(π/2) Replacement x = π/2.

= 1 Identities cos(π/2) = 0, sin(π/2) = 1
applied.

Example A.4 (Tangent Line Equation)
Find the tangent line equation at x = π/2 for y = x sinx in point-slope form and in
slope-intercept form.

Solution: The point-slope equation in an XY -system is Y − y0 = m(X − x0). In this
formula, x0 = π/2, y0 = x0 sinx0 = π/2. Example A.3 gives m = 1. The tangent
line equation in point-slope form is Y − π/2 = (1)(X − π/2), which simplifies to the
slope-intercept form Y = X.

Example A.5 (Line Equations)
Convert the line equation y− 2 = 5(x− 3) to slope-intercept and parametric forms.

Solution: The slope-intercept form y = 5x − 13 is found by expansion to an explicit
equation for y. A parametric form can be found by setting x = t and then y = 5x−13 =
5t− 13. The vector form is(

x
y

)
=

(
t

5t− 13

)
, −∞ < t <∞.
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Example A.6 (Decay Law Derivation)
Derive the decay law

dA

dt
= kA(t) from the sentence

Radioactive material decays at a rate proportional to the amount
present.

Solution: The sentence is first dissected into English phrases 1 to 4.

1: Radioactive material The phrase causes the invention of a symbol A for the
amount present at time t.

2: decays at a rate It means A undergoes decay. Then A changes. Calculus
conventions imply the rate of change is dA/dt.

3: proportional to Literally, it means equal to a constant multiple of. Let k
be the proportionality constant.

4: the amount present The amount of radioactive material present is A(t).

The four phrases are translated into mathematical notation as follows.

Phrases 1 and 2 Symbol dA/dt.

Phrase 3 Equal sign ‘=’ and a constant k.

Phrase 4 Symbol A(t).

Let A(t) be the amount present at time t. The translation is
dA

dt
= kA(t).

Example A.7 (Average Value)
Given f(x) = xex + sin2(πx), find the average value on 0 ≤ x ≤ 2.

Solution: The value is 1
2e

2 + 1. The details:

f =
1

2

∫ 2

0

f(x)dx Definition of average value, page 1007.

=
1

2

∫ 2

0

[xex + sin2(πx)]dx Substitute for f(x).

=
1

2
(x− 1)ex

∣∣∣∣x=2

x=0

Integral tables.

+
1

4π
(− cosπx sinπx+ πx)

∣∣∣∣x=2

x=0

=
1

2
e2 + 1 Use sin(nπ) = 0.

Example A.8 (Speed)
Find the speed for a car trip of 2 hours, given the velocity profile

ẋ(t) =

{
1200t 0 ≤ t ≤ 0.05,
60 0.05 ≤ t ≤ 2.

Solution: The speed R is given by
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R =
1

2

∫ 2

0

ẋ(t)dt Average value of ẋ, page 1007.

=
1

2

(∫ 0.05

0

1200tdt+

∫ 2

0.05

60dt

)
Use

∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

=
1

2

(
600(0.05)2 + 60(2− 0.05)

)
Evaluate integrals.

=
237

4
. About 59.25 mph.

The unrealistic 3-minute acceleration to 60 mph can be replaced by a more realistic
18-second acceleration to give 59.925 mph.

Example A.9 (Speed Estimation)
Estimate the average speed of a car which accelerates from 0 to 65 miles per hour
in 12 seconds.

Solution: The purpose of this example is to explain the layman’s answer of 65/2 mph.
The answer must be justified in the context of calculus.

If the acceleration is constant, then ẍ(t) = a = constant. Therefore, ẋ(t) = at, since
ẋ(0) = 0. Let t0 = 12/3600 hours. The average speed R for time interval 0 ≤ t ≤ t0 is

R =
1

t0

∫ t0

0

ẋ(t)dt Definition of average speed, page 1007.

=
a

t0

t20
2

Evaluate integral with ẋ = at.

=
65

2
Because 65 = ẋ(t0) = at0.

It can be argued on physical grounds that no car has constant acceleration, so the answer
65/2 is merely an estimate. The layman’s answer can be obtained by averaging the two
speeds 0 and 65.

Example A.10 (Integral Identity)
Verify the integral evaluation

∫ 1

0
xexdx = 1.

Solution:

I =

∫ 1

0

xexdx Integral I to be evaluated.

=

∫ 1

0

(xex − ex)
′
dx Identity xex = (xex − ex)

′ derived below.

= (xex − ex)|x=1
x=0 Apply the fundamental theorem of calcu-

lus, part (a). See page 1008.

= 1 Use e0 = 1.

The identity xex = (xex − ex)
′
applied in the solution above is obtained by experiment,

as follows.

(xex)
′
= (1)ex + xex Product rule (uv)′ = u′v + uv′.
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= (ex)
′
+ xex Term xex isolated on the right.

Solving the last equation for xex gives the identity xex = (xex − ex)
′
. A more systematic

method for finding such identities is integration by parts.

Example A.11 (Integral Answer Check)
Verify the identity∫ x

0
t ln(1 + t)dt =

1

2

(
x2 − 1

)
ln(1 + x) +

x

2
− x2

4
.

Solution: Both sides evaluate to zero at x = 0, because ln(1) = 0. According to the
fundamental theorem of calculus, part (b), page 1008, it is sufficient to differentiate the
answer on the right and verify that the derivative so obtained matches the integrand on
the left. Let RHS denote the right hand side. Then

RHS′ =

(
x2 − 1

2
ln(1 + x) +

x

2
− x2

4

)′

The Right Hand Side of the identity, to be
differentiated.

= x ln(1 + x) +
x2 − 1

2x+ 2
+

1

2
− x

2
Product rule, power rule and the identity
(ln(u))′ = u′/u.

= x ln(1 + x). Simplified derivative of the RHS.

The derivative of RHS matches the integrand of the left side, which completes the veri-
fication.

Example A.12 (Distance Estimate)
Estimate the distance D traveled by an automobile in two hours, and its average
speed R, given that for t = 20 to t = 120 the speedometer readings every 20
minutes are 55, 70, 66, 71, 72, 65 miles per hour.

Solution: The answers are 133 miles and 66.5 mph. To estimate the values of R and D,
it will be assumed that the speed was constant during the 20-minute period before the
reading. The actual velocity ẋ(t) of the automobile is related to the average velocity R
by the formula

R =
1

120

∫ 120

0

ẋ(t)dt.

The samples are used to find the average R as follows.

R ≈ 55 + 70 + 66 + 71 + 72 + 65

6
Used f ≈ y1 + · · ·+ yn

n
, page 1007.

=
399

6
About 66.5 miles per hour.

Then D = RT implies D ≈ 399
6

120
60 = 133 miles.
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Exercises A.1 �

Derivative notation Convert from the
given notation, prime, dot, Leibniz or op-
erator, to the other three forms.

1.
du

dt

2. u̇(t0)

3. ü(1 + t)

4.
dx

dt
= 1 + x(t)

5. D2w(x) = 1 + w(x) + x

6. Dy(x) = y−2(x)

7. ln(w(r)) =
dw

dr

8. e−y(x) = y′(x)

9. ẏ(t) = 1 + t

10. ẋ(t) = e−2x(t)

Slope Compute the slope of the line tan-
gent to the curve at the given point.

11. y = x2 − 3x+ 1, x = 0.

12. y = x5 − x+ 2, x = 2.

13. y = sinx+ x, x = π/4.

14. y = cosx− x, x = π/4.

15. y = tan−1 x+ e−x ln(1 + x), x = 1.

16. y = sin−1 x+ ex ln(2 + x), x = 1.

Tangent line equation Find the tangent
line equation in the three possible forms,
point-slope, slope-intercept and paramet-
ric.

17. y = x3 − x, x = 1.

18. y = x3 + x+ 1, x = 0.

19. y = sin−1(x), x = 1/2.

20. y = tan−1(x), x = 1.

21. y = e−x, x = ln(2).

22. y = ln(1 + x), x = 0.

23. y =
1 + x

1− x
, x = 0.

24. y =
1− x2

1 + x2
, x = 0.

Rates Model as a rate of change equation.

25. The expected change in charge Q is
equal to the electromotive force sin(ωt).

26. The damping force F is proportional
to the instantaneous change in x(t).

27. The angular rate of change is propor-
tional to the external force cos(ωt).

28. The amount in a bank account changes
at a rate proportional to the current
balance.

29. The expected population change is pro-
portional to the present population P .

30. The temperature flux and the temper-
ature difference from the surrounding
medium are proportional.

Average value Find the average value of
f on [a, b],

f =
1

b− a

∫ b

a

f(x)dx.

31. xe−x, 0 ≤ x ≤ 1.

32.
1

2
ex − 1

2
e−x, 0 ≤ x ≤ 2.

33. lnx, 1 ≤ x ≤ 3.

34. secx, 0 ≤ x ≤ π/4.

35. x3 − x, 0 ≤ x ≤ 2.

36.
x− 1

x+ 1
, 0 ≤ x ≤ 1.

37.
sinx

1 + cosx
, 0 ≤ x ≤ π/4.

38. sin3 x cosx, 0 ≤ x ≤ π.
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39.
1

1 + x2
on 0 ≤ x ≤ 1/2, 4/5 on 1/2 ≤

x ≤ 1.

40.
1

x
on 1 ≤ x ≤ 2,

5

8

x2

1 + x2
on 2 ≤ x ≤

3.

41. tanx on 0 ≤ x ≤ π/4, and 1+(x−π/4)
on π/4 ≤ π/3.

42. cotx on π/4 ≤ x ≤ π/2, and x − π/2
on π/2 ≤ x ≤ π.

Integral identities Verify the given inte-
gration identity by applying the fundamen-
tal theorem of calculus.

43.

∫ 1

0

1 + t

2 + t
dt = 1 + ln

2

3
.

44.

∫ 1

0

1 + t2

2 + t
dt = 5 ln

3

2
− 3

2
.

45.

∫ π

0

t sin(2t)dt =
π − 2

4
.

46.

∫ π/2

0

t cos(2t)dt = −1

2
.

47.

∫ 1

0

te−tdt = 1− 2

e
.

48.

∫ 1

0

t2e−tdt = 2− 5

e
.

49.

∫ x

0

sin4(t) cos(t)dt =
sin5(x)

5
.

50.

∫ x

0

tan(t)dt = − ln(cosx).

Car trip Estimate the average speed R and
the distance traveled D on a car trip, given
the velocity samples.

51. Every 10 minutes from t = 10 to t =
120 minutes, 51, 62, 55, 53, 60, 67, 61,
67, 55, 70, 71, 66 miles per hour.

52. Every 15 minutes from t = 15 to t =
225 minutes, 90, 92, 110, 112, 120, 113,
109, 90, 95, 97, 60, 90, 100, 105, 103
kilometers per hour.

53. Every 5 minutes from t = 5 to t = 75
minutes, 45, 60, 61, 63, 60, 58, 61, 65,
25, 40, 45, 60, 65, 59, 60 miles per hour.

54. Every 5 minutes from t = 5 to t = 100
minutes, 50, 90, 100, 120, 110, 112, 130,
120, 110, 40, 60, 100, 90, 80, 20, 55, 130,
130, 120, 125 kilometers per hour.
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A.2 Graphics

Engineers and scientists prefer a computer approach to graphing solutions to
differential equations y′ = f(x, y). In special cases, the fastest graph generation
is by hand or by calculator. Experience with hand calculations and calculators
is useful for judging the accuracy of a computer graphic.

Small numeric data sets may be graphed by hand using graph paper or en-
gineering paper. Large data sets are best graphed using a computer spread-
sheet program, e.g., Microsoft Excel, a computer algebra system, e.g., maple or
mathematica, a numerical laboratory, e.g., matlab, octave or scilab, or a freely
available graphing program, e.g., gnuplot.

The Standard Curve Library

Feasibility for hand graphing of equations in explicit form is tested using the
standard curve library, which includes the following equation types.

y = mx+ b Equation of a line in slope-intercept form. Includes constant
equations. Increases for m > 0, decreases for m < 0.

y = xn,

y =
1

xn

Power curves. Even for n even, odd for n odd. Reciprocal
powers have asymptote at x = 0. Special cases y = x2, y = 1/x
occur often.

y = sinx,
y = tanx

The sine is 2π-periodic and the cosine graph is a translation by
π/2. The tangent is a π-periodic curve with asymptotes at odd
multiples of π/2.

y = ex,
y = lnx

All exponential and logarithmic curves are obtained from these
basic graphs.

Four Transformations

The standard curve library is modified for use by allowing four transformations.
The first two transformations are rigid motions, that is, the shape is unchanged.
The last two are not rigid motions.

(1) Replace x by x − x0 and y by y − y0. The effect is to change the origin of
coordinates in the graph from (0, 0) to (x0, y0).

(2) Replace y by −y. The effect on a paper graphic is to turn the paper over,
swapping horizontal edges. Examples are y = x2 and y = −x2.

(3) Replace y by 1/y. The effect is to swap the roles of 0 and ∞ in the original
graph. Examples are y = x2 and y = 1/x2.

(4) Replace y by ky with k > 0. The effect is to change the y-axis scale. Examples
are y = x2 and y = 4x2 (k = 1/4).
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Special Equations

The standard curve library includes some special equations in implicit form
F (x, y) = c. Recognized from the subject of analytic geometry are the follow-
ing.

(x− x0)
2 + (y − y0)

2 = r2 Circle. Radius r and center (x0, y0).

(x− x0)
2

a2
+

(y − y0)
2

b2
= 1 Ellipse. Semiaxes a, b and center (x0, y0).

(x− x0)
2

a2
− (y − y0)

2

b2
= 1 Hyperbola. Center (x0, y0).

Polynomial Quotients

Rough graphs of polynomials and rational functions can be made with curve
library methods. The graphs are accurate for the sign of y and the general shape.
The following equation types are suited for use with the library.

y = (x− a1)
n1 · · · (x− ak)

nk Factored polynomial curves. Roots at a1,
. . . , ak.

y =
(x− a1)

n1 · · · (x− ak)
nk

(x− b1)m1 · · · (x− bℓ)mℓ
Factored rational curve. The roots are at
a1, . . . , ak and the vertical asymptotes are
at b1, . . . , bℓ.

The curve graphic at each root looks like a power curve Y = Xn and at each
vertical asymptote it looks like an inverse power curve Y = 1/Xn, subject to the
four transformations on page 1015.

Example A.13 (Curve Library Graphing Methods)
Apply curve library methods to graph on one set of axes for −2 ≤ x ≤ 2 the equations

y = 2x− 1, y = (x− 1)2, y = −(x+ 1)4, y = −1/x.

Solution: The curve library templates for the given graphs are

Y = X, Y = X2, Y = −X4, Y = −1/X.

Transformation of the four types described on page 1015 are applied to change the
templates into the correct figures. They are:

Y = X Replace X by 2x and Y by y+1 to obtain y = 2x− 1.

Y = X2 Replace X by x−1 and Y by y to obtain y = (x−1)2.

Y = −X4 Replace X by x+ 1 and Y by y to get y = −(x+ 1)4.

Y = −1/X Replace X by x and Y by −y to obtain y = −1/x.
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The transformations amount to changing the origin and/or flipping the curve compared
to the template graphic from the curve library. The graphics to be assembled onto one
set of axes appear in Figure 2.

y = (x− 1)2

.
y = −(x+ 1)4

.

y = −1/x

.

y = 2x− 1

.

Figure 2. Transformed template graphics
with centers (0,−1), (1, 0), (−1, 0), (0, 0).
The final graphic is completed by assembling the transformed template graphics onto a
single set of axes, locating each template onto its center. In the intermediate stage of
completion, Figure 3, some portions of the graphic are left incomplete. The final graphic
is Figure 4.

. . .
−1 1

.

0

−1 Figure 3. Combined graphic
made from the four templates.

−2 2 Figure 4. Combined graphic on
−2 ≤ x ≤ 2 for curves y = 2x − 1,
y = (x−1)2, y = −(x+1)4 and y = −1/x.

Example A.14 (Factored Polynomial Graphs)
Apply curve library methods to make a rough graph of the factored polynomial

y = −3x(x− 1)2(x− 2)3(x− 3), 0 ≤ x ≤ 4.

Solution: The distinct factors correspond to the template graphics to be used in the
assembly of the final graphic:

y = c1x, y = c2(x− 1)2, y = c3(x− 2)3, y = c3(x− 3).

The constants c1, c2, c3, c4 are evaluated from the original curve equation y = −3x(x−
1)2(x−2)3(x−3) by arguing that, for (x, y) close to the center of each template graphic,
the template and the original should be graphically the same. For example, if x is close
to x = 2, then

y = −3x(x− 1)2(x− 2)3(x− 3) Original equation. Analysis near x = 2.

=
(
−3x(x− 1)2(x− 3)

)
(x− 2)3 Isolate all factors not containing the factor

(x− 2).

≈
[
−3x(x− 1)2(x− 3)

∣∣
x=2

]
(x− 2)3 Isolated factors are nearly constant close to

x = 2.

= 6(x− 2)3 Found template y = 6(x− 3)3.
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By this process, y = −3x(x− 1)2(x− 2)3(x− 3) has template equations

y = −72x, y = −3(x− 1)2, y = 6(x− 2)3, y = −36(x− 3).

As will be seen, the equalities c1 = −72, c2 = −3, c3 = 6, c4 = −36 are not actually
used, only the signs matter. Therefore, knowing c1 < 0, c2 < 0, c3 > 0, c4 < 0 is enough
for a rough graphic. This information is rapidly obtained by counting signs of the factors
involved. The graphics for the templates, taken from the standard curve library, appear
in Figure 5.

.
.

. .

y = −3(x− 1)2y = −72x y = 6(x+ 1)3 y = −36(x− 3)

Figure 5. Template graphics for y = −3x(x− 1)2(x− 2)3(x− 3).

To make the final graphic in Figure 6, the templates are located at their respective
centers on one set of axes, then they are connected with a smooth curve (boldface). The
connections stay either in the upper or the lower half-plane, because all zeros of y are
accounted for by the template graphics.

y

x
−2 1 2 3 Figure 6. Final graph for the

polynomial y = −3x(x − 1)2(x −
2)3(x− 3).

The graphic is accurate for the sign of y. The general shape is correct, but details like
maxima, minima and slopes are flawed. Nevertheless, the hand graphic is perhaps more
useful than a computer graphic.

Polynomial graphs exit the paper at x = ±∞ in the same way as their leading term,
which could be called the horizontal asymptote. In the present example, the leading
term is y = −3x7, which is a curve from the standard curve library. This information
can be used to detect fundamental graphing errors.

Example A.15 (Graphing Polynomial Fractions)
Apply curve library methods to make a rough graph of the rational function

y =
−3x(x− 1)2(x− 4)

(x+ 1)2(x− 2)(x− 3)
.

Solution: The rational function is a the quotient of two quadrics. By long division of
the polynomials it follows that y = −3+r/q where the degree of r is less than the degree
of q. Therefore, r/q ≈ 0 at ±∞, and this means y = −3 is the horizontal asymptote.

The effect of these remarks about asymptotes is to declare that the graph exits the paper
left and right along the line y = −3.
The vertical asymptotes x = −1, x = 2, x = 3 similarly cause the graph to exit the
paper top and/or bottom. The curve library method uses this information implicitly.
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A rough graphic can be drawn immediately from this basic information. The portions of
the graph that appear in Figure 7 are approximate only, valid for values of x very close
to x = −∞ or x = ∞. In Figure 7, vertical asymptotes are shown, even though they
already appear in library templates. It is a matter of taste to add vertical asymptotes
to this figure. If added, then just portions of the vertical lines near |y| =∞ are valid.

y = −3 Figure 7. Rough graphic near x = ±∞
and y = ±∞.

The remainder of the graphic is obtained from the assembly of curve library templates.
The distinct factors of the numerator and denominator of the rational function become
the templates:

y = c1x, y = c2(x− 1)2, y = c3(x− 4),

y =
d1

(x+ 1)2
, y =

d2
x− 2

, y =
d3

x− 3
.

Calculation of the constants c1, c2, c3, d1, d2, d3 is unnecessary, only the signs matter
for template selection. For example, to compute d1:

y =
−3x(x− 1)2(x− 4)

(x+ 1)2(x− 2)(x− 3)
Given rational function. Analysis near
x = −1.

=

[
−3x(x− 1)2(x− 4)

(x− 2)(x− 3)

]
1

(x+ 1)2
Isolate all factors not containing (x+ 1).

≈ −3(−1)(−1− 1)2(−1− 4)

(−1− 2)(−1− 3)

1

(x+ 1)2
Substitute x = −1 into the isolated fac-
tors.

= −5 1

(x+ 1)2
Template equation found.

The logic of the substitution x = −1 into the isolated factors is that they are nearly
constant for x ≈ −1. The template equation y = −5/(x + 1)2 at center (−1, 0) will be
used to plot the final graphic. Just the sign of d1 = −5 is needed, which can be obtained
by counting signs, the actual value 5 being irrelevant for the graphic.

By similar methods, the signs of the constants are found to be c1 > 0, c2 > 0, c3 < 0,
d1 < 0, d2 < 0, d3 > 0. The six templates arise from four different library curves.

The six templates are placed at their centers and joined by a smooth curve (boldface)
to produce the final graphic. See Figure 8. The plot needs some explanation. First,
nothing is to scale, although the signs are correct for y and the general shape is valid.
The curve goes off the paper left and right at |x| =∞, the exit curve being y = −3. The
curve also goes off the paper on the bottom edge at x = −1, 2, 3 and on the top edge
at x = 2, 3, in the manner shown. The maxima and minima of the curve have not been
computed, so this information is not to scale either.

−1 1 2 3
4 x

y

Figure 8. Graphic for y =
−3x(x− 1)2(x− 4)

(x+ 1)2(x− 2)(x− 3)
.
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Computer algebra systems like maple and mathematica can produce similar plots, with
limitations. Below is the maple code for the resulting plot in Figure 9. The unwanted and
incorrect vertical lines in the plot are an artifact of the discontinuities. It is especially
difficult to see some of the fine features, e.g., the double zero of y at x = 1 and the
horizontal asymptote values.

# Maple V 5.1

F:=x-> -3*x*(x-1)^2*(x-4)/((x+1)^2*(x-2)*(x-3));

plot(F(x),x=-infinity..infinity);

−∞ ∞

∞

−∞

Figure 9. Graphic by maple for y =
−3x(x− 1)2(x− 4)

(x+ 1)2(x− 2)(x− 3)
.

Example A.16 (Computer Graphing)
Graph the 20 data points generated by the approximation formula

y(x+ 0.05) ≈ y(x) + 0.05(x+ y(x)), y(0) = 1,

from x = 0 to x = 1 in uniform steps of 0.05, using a computer.

Solution: The formula is applied as a recursion formula, which details how to generate
from a given table pair x, y the next table pair X, Y via the formulas

X = x+ 0.05, Y = y + 0.05(x+ y).

Mathematical translation includes elimination of the approximation symbol (≈) and the
use of equal signs (=) in the final formulas.

The first step is to generate a table of values. Then the table is plotted by a standard
method. The process of determining the data pairs can be done by hand as follows.

x = 0, y = 1 The first data pair arises from y(0) = 1, which
means y = 1 at x = 0.

X = x+ 0.05 The next x-value is the old one plus 0.05.

Y = y + 0.05(x+ y) Approximation formula for the next y-value.

= 1 + 0.05(0 + 1) Use x = 0, y = 1.

= 1.05. The second data pair is X = 0.05, Y = 1.05.

The first three pairs of values are verified to be

(0.00, 1.000), (0.05, 1.050), (0.10, 1.105).

A maple plot of the data uses the following code, resulting in Figure 10. Similar mech-
anisms for plotting data points are available in matlab, mathematica, gnuplot and
scilab. Libreoffice CALC and Microsoft Excel can be used for such graphics.
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x
0 1

1

3
y

Figure 10. Sample computer graphic for the ap-
proximation formula
y(x+ 0.05) ≈ y(x) + 0.05(x+ y(x)), y(0) = 1.

# Maple V, plot data points in list L

L:=[0.00,1.000],[0.05,1.050],[0.10,1.105],

[0.15,1.165],[0.20,1.231],[0.25,1.303],

[0.30,1.380],[0.35,1.464],[0.40,1.555],

[0.45,1.653],[0.50,1.758],[0.55,1.870],

[0.60,1.992],[0.65,2.121],[0.70,2.260],

[0.75,2.408],[0.80,2.566],[0.85,2.734],

[0.90,2.913],[0.95,3.104],[1.00,3.307]:

plot([L]);

In computer algebra systems, it is possible to avoid typing the numeric data, because of
the formulas X = x+0.05, Y = y+0.05(x+ y). To generate the list L in maple, execute
the two code groups below.

# Execute the first group once

X:=0:Y:=1:L:=[X,Y]:

# Execute the second group 20 times

Y:=Y+0.05*(X+Y):X:=X+0.05:L:=L,[X,Y]:

Example A.17 (Computer Plotting)
Graph by computer the explicit equation y = e−x sin(x) on 0 ≤ x ≤ 2π.

Solution: Plot commands for five plotting systems are given below. The graphic in
Figure 11 represents the maple output.

plot(exp(-x)*sin(x),x=0..2*Pi); maple

Plot[{exp(-x) sin(x)}, {x,0,2 Pi} ]; mathematica

plot [0:2*pi] exp(-x)*sin(x) gnuplot

x=0:0.1:2*PI; y=exp(-x).*sin(x); plot(x,y) matlab and scilab

y

0 2π

x
0.00

0.32

−0.02
Figure 11. Computer plot of y =
e−x sin(x) on 0 ≤ x ≤ 2π.

Example A.18 (Computer Plotting)
Plot by computer the implicit equation x2 + 2y2 + xy = 10.
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Solution: Some background will be reviewed, which provides the source of intuition for
plotting similar implicit equations. Quadratic forms Ax2+2Bxy+Cy2 = D are studied
in analytic geometry, and it is known how to classify the graphic based upon the sign of
B2 − AC. A change of variables to eliminate the cross term xy would result in a hand
solution to this example, an ellipse with semiaxes a ≈ 3.55 and b ≈ 2.13 rotated about
−22.5 degrees with major axis along the line y = (1−

√
2)x. The exact semiaxis lengths

are given by
1

a2
=

3−
√
2

20
,

1

b2
=

3 +
√
2

20
.

The graphic in Figure 12 is the result of the maple code below. Plots of implicit equations
require tweaking of the domain and various plot parameters. The feature is not available
in some programs, e.g., gnuplot.

# Maple V

with(plots):

eq:=x^2+2*y^2 + x*y = 10:

opt:=scaling=constrained,grid=[40,40]:

implicitplot(eq,x=-4..4,y=-4..4,opt);

0

y

x

Figure 12. Implicit plot of x2 + 2y2 + xy = 10.

Exercises A.2 �

Curve library graphics Apply the curve
library method to construct by hand a
graphic of the given equations on one set
of axes.

1. y = 2x+ 1, y = 3(x+ 1)2

2. y =
−1

x+ 1
, y = −2x− 1

3. y =
2

(x+ 1)2

4. y =
−1

(x+ 1)3

5. y = x2, y = (x− 1)4, y = (x− 2)6

6. y =
1

x+ 1
, y =

1

(x− 1)2

Factored polynomial graphics Apply the
curve library method to construct by hand
a graphic of the given factored polynomial
on one set of axes.

7. y = −2x(x− 1)2

8. y = 2x(x+ 1)3

9. y = −(x+ 1)2(x− 1)3

10. y = (x+ 1)3(x− 1)4

11. y = (x+ 1)(x− 1)3(x+ 2)

12. y = −x3(1− x)(1 + x)

13. y = π(x+ 1)(x− 1)(x+ 2)2

14. y = π2(x+ 1)(x− 1)(x+ 2)3
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Factored rational graphics Apply the
curve library method to construct by hand
a graphic of the given factored rational
function on one set of axes.

15. y =
x− 1

x+ 1

16. y =
2x+ 1

x+ 2

17. y =
x(x+ 1)

(x+ 2)(x− 2)

18. y =
x(2x+ 1)

(x+ 2)(x− 2)

19. y =
−x(1− x)

(x+ 1)(x− 2)

20. y =
5x(x+ 1)

(x− 1)(x− 2)

Computer plotting of tables Make a ta-
ble of values x = 0 to x = 1 in steps
of 0.05 for the given approximate equation
and plot the table of values. Cite the re-
cursion formulas applied to obtain the next
table pair from the previous table pair.

21. y(x + 0.05) ≈ y(x) + 0.05(1 − y(x)),
y(0) = 1

22. y(x + 0.05) ≈ y(x) + 0.05(1 + y(x)),
y(0) = 1

23. y(x + 0.05) ≈ y(x) + 0.05(x − y(x)),
y(0) = 0

24. y(x + 0.05) ≈ y(x) + 0.05(2x + y(x)),
y(0) = 0

25. y(x+0.05) ≈ y(x)+0.05(sinx+xy(x)),
y(0) = 2

26. y(x + 0.05) ≈ y(x) + 0.05(sinx −
x2y(x)), y(0) = 2

Computer plots of explicit equations
Plot by computer the given explicit equa-
tion over 0 ≤ x ≤ 1.

27. y = e−x sinπx

28. y = e−x cosπx

29. y = e−x ln(1 + x)

30. y = e−x ln(1 + x2)

31. y = sin(πx) sin2(2πx)

32. y = sin(πx) cos2(πx)

Implicit plots Plot by computer or by
hand the given implicit equation.

33. x2 + y2 + 3xy = 10

34. x2 + y2 − 3xy = 10

35. x2 − (y + 1)2 = 1

36. x2 − y2 + xy = 10

37. x(x− 1)y = 5

38. xy(1 + y2) = 10
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A.3 Explicit and Implicit Answers

Important to engineers and scientists are methods by which an existing answer
can be tested for correctness. Given here are tests for explicit and implicit equa-
tions, as applied to the initial value problem{

y′ = f(x, y),
y(x0) = y0.

(1)

It is possible to test mathematical equations of the form y = y(x) and F (x, y) = 0,
to see if they represent a solution to the problem (1). Both methods rely upon
the expansion of the left side (LHS) and the right side (RHS) of equations. The
two sides are compared for equality, either symbolically or else as constants. A
proposed answer passes the test if the two sides are equal, that is, LHS = RHS.

Explicit Equations

An explicit equation y = y(x) represents a solution of (1) provided checkpoints
(a), (b) hold below.

(a) The equation y′ = f(x, y) is expanded using y = y(x) to produce a LHS
and a RHS that depend on x. The expressions LHS and RHS are tested
for symbolic equality at each x in the domain of y(x).

(b) The equation y(x0) = y0 has a constant LHS, evaluated using the given
expression for y(x) and the value x = x0. The constant RHS is y0. The
expressions LHS and RHS are tested for numerical equality.

Implicit Equations

A given implicit equation F (x, y) = 0 represents a solution of (1) provided check-
points (c), (d) hold below.

(c) Briefly, implicit differentiation of F (x, y) = 0 reproduces (1).

Technically, the equation f(x, y) = −Fx(x, y)/Fy(x, y) is expanded us-
ing the formulas for F and its partial derivatives Fx and Fy, to pro-
duce a LHS and a RHS which are expressions in the two symbols x, y.
The symbolic equality LHS = RHS must hold for all (x, y) satisfying
F (x, y) = 0.

(d) Initial condition y(x0) = y0 is tested by expansion of the equation
F (x0, y0) = 0 into LHS and RHS. The constant expressions must be
equal, LHS = RHS.

The equation F (x, y) = 0 can be viewed as a conservation law, e.g., if F is
energy, then F = 0 says the energy is constant along the path of a particle.
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Implicit differentiation results in the dynamical equation for the conservation
law. This equation describes the dynamics or change, hence it is expressed in
terms of the rate of change dy/dx.

The formal verification of (c) depends upon the chain rule for 2 variables

dF (x, y)

dt
=

∂F

∂x

dx

dt
+

∂F

∂y

dy

dt
.

Technical assumptions which allow y to be found as a function of x in the equation
F (x, y) = 0 appear in the implicit function theorem, page 1041, where the critical
assumption Fy(x0, y0) ̸= 0 is made.

The chain rule is applied to the equation F (x, y) = 0, setting x = t, y = y(t), to
give

Fx(t, y(t))(1) + Fy(t, y(t))
dy(t)

dt
= 0.

Substitution of t = x and y′ = f(x, y) into this equation justifies Part (c) of the
test.

Computer Algebra Methods

The ideas outlined above for checking an explicit or implicit equation can be
implemented in most computer algebra systems (abbreviation CAS). It suffices
to create the two CAS symbols LHS and RHS and then test for equality of LHS
and RHS in all the relevant variables.

It sometimes transparent that LHS and RHS are equal, due to automatic CAS

simplifications. There are instances where equality is completely opaque, because
of insufficient CAS simplifications. To the rescue comes this idea: define ZERO to
be the difference of LHS and RHS. The CAS symbol ZERO should reduce to zero,
after simplifications are performed. See Examples A.21, A.22, page 1026 for
details.

Realistically, engineers and scientists will migrate to CAS verifications, after in-
tuition has been gained from many hand computations. Even in the simplest
applications, something can go wrong, so experts advise: verify the results by
hand and by machine, verify it more than once, and check it from different view-
points.1

Example A.19 (Verify an Explicit Solution)
Verify the explicit solution y = x− 1 + 2e−x for y′ = x− y, y(0) = 1.

Solution: The initial condition y(0) = 1 is verified as follows.

y(0) =
(
x− 1 + 2e−x

)∣∣
x=0

Compute the left side of y(0) = 1 where y(x) = x −
1 + 2e−x.

= 0− 1 + 2e0 Evaluate.

1Picture a person walking in the rain, dripping wet, holding in one hand a closed umbrella.
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= 1. Therefore, the two sides of y(0) = 1 are equal.

The differential equation is verified in a slightly different way, by independent expansion
of the left and right sides.

LHS = y′ The left side of y′ = x− y is y′.

= (x− 1 + 2e−x)′ Insert y(x) = x− 1 + 2e−x.

= 1− 2e−x, Apply derivative rules.

RHS = x− y The right side of y′ = x− y is x− y.

= x− (x− 1 + 2e−x) Insert y(x) = x− 1 + 2e−x.

= 1− 2e−x. Simplified RHS.

Therefore, LHS=RHS.

Example A.20 (Verify an Implicit Solution)
Verify the implicit solution 3x2 + y2 = c for the equation y′ = −3x/y.

Solution:

f(x, y) = −3x/y The right side of y′ = −3x/y is called f(x, y).

F (x, y) = 3x2 + y2 The level curve F (x, y) = c duplicates the proposed
solution 3x2 + y2 = c.

Fx(x, y) = 6x Partial derivative in x.

Fy(x, y) = 2y Partial derivative in y.

Z = Fx(x, y) + Fy(x, y)f(x, y) Test the differential equation. Expect Z to be zero.

= 6x+ 2y(−3x/y) Substitute partials and f(x, y) = −3x/y.
= 0. Simplify.

Therefore, implicit differentiation of F (x, y) = c reproduces the differential equation
y′ = −3x/y; see page 1025.

Example A.21 (Verify Explicit Solution by Computer)
Verify the explicit solution y = e−x for y′ = −y, y(0) = 1 using a computer algebra
system.

Solution: The illustration will be for maple.

y:=x->exp(-x): The maple code for solution y = e−x.

LHS:=diff(y(x),x): The left side of y′ = −y is y′(x).

RHS:=-y(x): The right side of y′ = −y is −y(x).
ZERO:=LHS-RHS; The expression ZERO depends symbolically on x.

Z:=y(0)-1; Write Z as the difference of the left and right sides of the
equation y(0) = 1.

Evaluation of ZERO should give the symbolic answer 0, because LHS = RHS is equivalent
to LHS − RHS = 0. Evaluation of the constant Z should give constant 0. This verifies
the differential equation and initial condition by computer algebra methods. In unusual
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cases, it may be necessary to force simplifications or to interpret the answers. Simpli-
fication is forced by the maple command simplify(ZERO) while interpretation may be
required to conclude that an expression, e.g., sin(n*Pi), evaluates to zero.

Since maple V 5.1, there is a special function odetest, designed to do the above test.
It is valuable because it eliminates errors made by re-typing formulas.

Example A.22 (Verify Implicit Solution by Computer)
Verify the implicit solution x2+y2 = c for the equation y′ = −x/y using a computer
algebra system.

Solution: The illustration will be for maple.

F:=(x,y)->x*x+y*y-c Write x2 + y2 = c as F = 0 where F = x2 +
y2 − c.

f:=(x,y)->-x/y The right side of y′ = −x/y is f(x, y).

Fx:=(x,y)->diff(F(x,y),x) Partial derivative in x.

Fy:=(x,y)->diff(F(x,y),y) Partial derivative in y.

ZERO:=Fx(x,y)+f(x,y)*Fy(x,y) Variable ZERO is the left side of Fx + Fyy
′ = 0

with y′ = f(x, y).

Evaluation of ZERO should give the answer 0. This verifies the implicit solution of the
differential equation by computer algebra methods.

In maple V 5.1, the function odetest will test implicit solutions.

Exercises A.3 �

Verify an Explicit Solution Apply the
methods in Example A.19, page 1025, to
verify the given solution of the initial value
problem.

1. I(t) = I0e
−2t,

I ′ + 2I = 0, I(0) = I0.

2. Q(t) = Q0e
−0.2t,

Q′ = −0.2Q, Q(0) = Q0.

3. A(t) = 100ekt,
A′ = kA, A(0) = 100.

4. P (t) = 1000eht,
P ′ = hP , P (0) = 1000.

5. y(x) = −1 +
√
(4 + x2 − 2x),

y′ =
x− 1

y + 1
, y(0) = 1.

6. y(x) = −1 +
√
2 + 2ex − 2x,

y′ =
ex − 1

y + 1
, y(0) = 1.

7. y(x) = ex
2/2,

y′ = xy, y(0) = 1.

8. y(x) = ex
3/3,

y′ = x2y, y(0) = 1.

9. y(x) = e1−cos(x),
y′ = sin(x)y, y(0) = 1.

10. y(x) = esin(x),
y′ = cos(x)y, y(0) = 1.

Verify an Implicit Solution Apply the
methods in Example A.20, page 1026, to
verify the given implicit solution of the dif-
ferential equation. If an initial condition is
given, then verify it also.

11. xy2 + x2y + xy = c,

y′ = −y (y + 2x+ 1)

x (2 y + x+ 1)
.

12. x2y2 + x3y + xy2 = c,

y′ = −
y
(
2xy + 3x2 + y

)
x (2xy + x2 + 2 y)

.
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13. x sin y + cos(xy) = c,

y′ = − − sin(y) + sin(xy)y

x (− cos(y) + sin(xy))
.

14. x2 cos(y) + sin(xy2) = c,

y′ =
2x cos(y) + cos(xy2)y2

x (x sin(y)− 2 cos(xy2)y)
.

15. x2ey + ex−y = 1 + e,

y′ = −2xey + ex−y

x2ey − ex−y
, y(1) = 0.

16. x3e−y + xe2x−y = 1 + e2,

y′ =
3x2 + e2 x + 2xe2 x

x (x2 + e2 x)
,

y(1) = 0.

Verify an Explicit Solution by Com-
puter Apply the methods in Example A.21,
page 1026, to verify the given solution of
the initial value problem.

17. y(x) =
3
√
3x,

y′ = 1/y2, y(1/3) = 1.

18. y(x) =
4
√
4x,

y′ = 1/y3, y(1/4) = 1.

19. y(x) = e−x2/2,
y′ = −xy, y(0) = 1.

20. y(x) = πe−x3/3,
y′ = −x2y, y(0) = π.

21. y(x) = xecos(x)−1,
y′ = (1/x− sin(x))y,
y(2π) = 2π.

22. y(x) = tanx+ esin(x),
y′ = sec2 x− sinx+ y cos(x),
y(0) = 1.

Verify Implicit Solution by Computer
Apply the methods in Example A.22, page
1027, to verify the given implicit solution of
the differential equation. If an initial con-
dition is given, then verify it also.

23. xy = 2, y′ = −y/x, y(2) = 1.

24. x2y = 2, y′ = −2y/x, y(1) = 2.

25. xey + yex = c, y′ = − ey + yex

xey + ex
.

26. xe−y + ye−x = c,

y′ =
e−y − y2e−x

xe−y − 2 ye−x
.

27. x sin y + cos(xy) = c,

y′ =
sin(y)− sin(xy)y

x (sin(xy)− cos(y))
.

28. x2 cos(y) + sin(xy2) = c,

y′ =
2x cos(y) + cos(xy2)y2

x (−x sin(y) + 2 cos(xy2)y)
.
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A.4 Numerical and Graphical Answers

Given here are tests for numeric tables and graphics, as applied to the initial
value problem

y′ = f(x, y),
y(x0) = y0.

(1)

The numerical tests are based upon numerical integration methods from calculus.
The ideas lead to the numerical methods of Euler, Heun and Runge-Kutta, which
are studied in the text.

Numerical Integration Approximations

Reproduced here for future reference are calculus topics: the rectangular rule
, the trapezoidal rule and Simpson’s rule for the numerical approximation
of an integral

∫ b
a F (x)dx. The approximations are valid for b − a small. Larger

intervals must be subdivided, then the rule applies to the small subdivisions.

Rectangular Rule. The approximation uses Euler’s idea of
replacing the integrand by a constant. The value of the integral
is approximately the area of a rectangle of width b − a and
height F (a).

F

x
a b

y

∫ b

a
F (x)dx ≈ (b− a)F (a).(2)

Trapezoidal Rule. The rule replaces the integrand F (x)
by a linear function L(x) which connects the planar points
(a, F (a)), (b, F (b)). The value of the integral is approximately
the area under the curve L, which is the area of a trapezoid.

F

x
a b

y

L

∫ b

a
F (x)dx ≈ b− a

2
(F (a) + F (b)) .(3)

Simpson’s Rule. The rule replaces the integrand F (x) by
a quadratic polynomial Q(x) which connects the planar points
(a, F (a)), ((a + b)/2, F ((a + b)/2)), (b, F (b)). The value of the
integral is approximately the area under the quadratic curve Q.

F

x

y

a b

Q

∫ b

a
F (x)dx ≈ b− a

6
(F (a) + 4F ((a+ b)/2) + F (b)) .(4)
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Simpson’s Polynomial Rule. If Q(x) is a linear, quadratic or cubic poly-
nomial, then (proof on page 1036)∫ b

a
Q(x)dx =

b− a

6
(Q(a) + 4Q((a+ b)/2) +Q(b)) .(5)

Integrals of linear, quadratic and cubic polynomials can be evaluated exactly
using Simpson’s polynomial rule (5); see Example A.26, page 1035.

Remarks on Simpson’s Rule. The right side of (4) is exactly the integral
of Q(x), which is evaluated by equation (5). The appearance of F instead of Q
on the right in equation (4) is due to the relations Q(a) = F (a), Q((a+ b)/2) =
F ((a + b)/2), Q(b) = F (b), which arise from the requirement that Q connect
three points along curve F .

The quadratic interpolation polynomial Q(x) is determined uniquely from the
three data points; see page 1037 for a formula for Q and a derivation. It is
interesting that Simpson’s rule depends only upon the uniqueness and not upon
the actual formula for Q!

Graphic and Numeric Table Test

Studied here is a general problem:

Find a test which verifies a given graphic or numeric table, given
only the xy-pairs and y′ = f(x, y).

The test should work with a hand calculator, a spreadsheet or a computer algebra
system. Important to the test is the ability to spot-check the graphic or table,
testing just one or two data items.

To be presented here are the Euler, trapezoidal and Simpson tests. They detect
errors in graphics by pixel criteria; see page 1032 for details. All tests have
limitations and flaws. If the data items are far apart, then the approximation is
poor and the test fails. Use is limited to detection of gross errors.

Equivalent Integral Equation. Fundamental to understanding the tests
is the equivalent integral equation

y(x) = y(x0) +

∫ x

x0

f(t, y(t))dt(6)

for the first order initial value problem y′ = f(x, y), y(x0) = y0. Equation (6) is
justified on page 1036.
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Raw Data. Graphics produced in computer algebra systems or in computer
spreadsheets require raw plot data, either implicitly or explicitly supplied. It will
be assumed that this data is available as a table of xy-values, or equivalently, as
a list of pairs

(X0, Y0), (X1, Y1), . . . , (Xn, Yn).

It is necessary in the tests to evaluate f(x, y) at the points of this list. No other
evaluations of f are used, for the simple tests.

A linear connection (“connect-the-dots”) of the data points is used by many
computer programs; many points are required for a smooth result. Typical detail
is shown in Figure 13.

y

(X0, Y0) (Xn, Yn)

x

Figure 13. Linear connection of raw
data points (X0, Y0), (X1, Y1), . . ., (Xn, Yn)
in a computer graphic.

Euler’s Test. The test applies to one pair of consecutive
points from the raw plot data list. Euler’s test is related to
Euler’s numerical method, which is the oldest and sim-
plest numerical method for first order differential equations.

y
(x1, y1)

(x1, Y )
(x0, y0) x

The test is named after Leonhard Euler2 (1707-1783), Swiss physicist and math-
ematician. The test is justified on page 1037.

Step 1. Let (x0, y0) and (x1, y1) denote consecutive pairs from the raw plot
data list (X0, Y0), (X1, Y1), . . . , (Xn, Yn).

Step 2. Compute h = x1 − x0 and Y = y0 + hf(x0, y0).

Step 3. Test equality of y1 and Y .

Trapezoidal Test. The tests applies to a consecutive
pair of points from the raw plot data list. The trapezoidal
test is related to the modified Euler numerical method ,
or Heun’s method. The justification appears on page 1037.

y

(x0, y0)

(x1, y1)
(x1, Y )

x

Step 1. Let (x0, y0) and (x1, y1) denote consecutive pairs from the raw plot
data list (X0, Y0), (X1, Y1), . . . , (Xn, Yn).

Step 2. Compute h = x1 − x0 and Y = y0 +
h

2
(f(x0, y0) + f(x1, y1)).

Step 3. Test equality of y1 and Y .

2His name is pronounced Oiler, and not Yuler.
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Simpson’s Test. The test is applied to three consecu-
tive pairs from the raw plot data list. Assume uniformly-
spaced X-data. The Simpson test is related to the
Runge-Kutta numerical method for first order dif-
ferential equations. Justification is on page 1037.

(x0, y0)

(x2, Y )

y (x2, y2)
(x1, y1)

x

Step 1. Let (x0, y0), (x1, y1) and (x2, y2) denote three consecutive pairs from
the raw plot data list. It is assumed that x1 = (x0 + x2)/2.

Step 2. Let Y = y0 +
x2 − x0

6
(f(x0, y0) + 4f(x1, y1) + f(x2, y2)).

Step 3. Test equality of y2 and Y .

Pass and Fail. A given test can pass or fail according to how the resulting
approximation is judged. A graph passes the test if the ideal data point (x, y)
and the approximate data point (x, Y ) land on the same pixel, that is, the dots
cannot be distinguished in the graphic. Arithmetically, the test is an inequality

|y − Y |
|d− c|

<
1

M
,

where M is the number of y-pixels in the graphic on c ≤ y ≤ d. Otherwise, the
graph fails.

Exercises in this text use the standard graphic , a 31
4 -inch square graphic at

300 dots per inch, which is about 1000×1000 pixels. The same graphic displayed
on a video monitor uses considerably fewer pixels.

There are two standard ways to measure the approximations:

Absolute Error. The absolute error is E = |y − Y |. The standard graphic
of 1000 pixels on c ≤ y ≤ d will pass the test if E < d−c

1000 .

Relative Error. The relative error is E = |y − Y |/|y|. Since Y = (1 ± E)y,
it measures the percentage error.

Mostly, it is used for y-ranges c ≤ y ≤ d where c > 0 or d < 0 (division by
zero is problematic). The standard graphic of 1000 pixels on 0 < c ≤ y ≤ d
will pass the test if E < d−c

1000d .

To distinguish the two measurements, apply the definitions to y = 1000 and
Y = 1001: the absolute error is 1 and the relative error is 1/1000.

Uniformly-Spaced and Adaptive Data. In computer workbenches like
matlab or scilab, the x-values will be uniformly spaced. In other systems,
uniform spacing can be arranged, but the default may be non-uniform data or
adaptive data , e.g., maple. Graphics systems normally document how to print
out the plot data used for the graphic, even if the plot was done by implicit or
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automatic means. To get uniformly spaced data in maple, some preparation is
required, as the following illustration shows. Uniformly spaced data is required
in the Simpson test, page 1032.

y:=x->20*exp(-3*x):a:=0.0: b:=1.0:

# Adaptive plot saved in variable P

P:=plot(y(x),x=a..b);

# Uniform x-data plot saved in Q. Maple V 5.1

Q:=plot(y(x),x=a..b,adaptive=false,

sample=[seq(i*h,i=0..(b-a)/h)]);

Example A.23 (Spot Check)
A graphic for the differential equation y′ = x+y has window 0 ≤ x ≤ 0.5, 1 ≤ y ≤ 2
and uses 1000 × 1000 pixels. Two adjacent plot data entries are (0.180, 1.21443)
and (0.195, 1.23562). Spot-check these entries with Euler’s test.

Solution: The plot data passes Euler’s test, page 1031, because the target value 1.23562
is close to the Euler approximation 1.2353464, with less than one pixel difference in the
plot. The steps of the justification appear below.

x0 = 0.180, y0 = 1.21443 The first data point (0.180, 1.21443).

x1 = 0.195, y1 = 1.23562 The second data point (0.195, 1.23562).

h = x1 − x0 = 0.015 Define the step size.

Y = y0 + h(x0 + y0) Apply Euler’s test, page 1031.

= 1.21443
+ 0.015(0.18 + 1.21443)

Substitute x0, y0, h.

= 1.2353464. Expected to be close to y1 = 1.23562.

The absolute error is E = 0.0002736, which is less than the cutoff value of E∗ = (d −
c)/1000 = 0.001. The data passes Euler’s test.

Example A.24 (Trapezoidal Test)
A graphic for the differential equation y′ = x+y has window 0 ≤ x ≤ 0.5, 1 ≤ y ≤ 2
and uses 1000× 1000 pixels. Find the worst absolute error |y1 − Y | made according
to the trapezoidal test for the associated plot data below and report pass or fail.

(0.180, 1.21443), (0.195, 1.23562), (0.210, 1.25736),

(0.225, 1.27965), (0.240, 1.30250), (0.255, 1.32592).

Solution: The cutoff value for the absolute error is (d − c)/1000 = 0.001. It will
be justified below that the worst absolute error according to the Trapezoidal test is
0.0000057. In short, the data passes the test.

The first pair of points in the plot data passes the Trapezoidal test, page 1031, because
the target value y1 = 1.23562 is close to the test’s value Y = 1.2356179, with absolute
error |y1 − Y | = 0.0000021. The steps of the justification appear below.
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x0 = 0.180, y0 = 1.21443 Initial point (0.180, 1.21443).

x1 = 0.195, y1 = 1.23562 Next point (0.195, 1.23562).

h = 0.015 The value h = x1 − x0 should be small.

f(x, y) = x+ y Right side of the differential equation.

Y = y0 +
h

2
(f(x0, y0) + f(x1, y1)) Trapezoidal test, page 1031.

= y0 +
h

2
(x0 + y0 + x1 + y1) Expand functional expressions.

= 1.21443 +
0.015

2
(2.82505) Expand expressions.

= 1.2356179. Calculator result. The absolute error E = |y1−Y |
is 0.0000021.

This process can be carried out on the other four pairs of points, in a similar way, to find
the five absolute errors

0.0000021, 0.0000052, 0.000000075, 0.0000036, 0.0000057.

The largest error is 0.0000057.

Details of a maple implementation appear below. The errors made with its ten-digit
exact arithmetic may differ from those of a calculator.

# Execute the first group once.

f:=(x,y)->x+y:

L:=[[.180, 1.21443],[.195, 1.23562],

[.210, 1.25736],[.225, 1.27965],

[.240, 1.30250],[.255, 1.32592]]:

n:=1:

# Execute the second group 5 times.

x0:=L[n][1]:y0:=L[n][2]:

x1:=L[n+1][1]:y1:=L[n+1][2]:

Y:=y0+(x1-x0)*0.5*(f(x0,y0)+f(x1,y1)):

n:=n+1: ABSerror:=abs(y1-Y);

New to the maple code is the list L of pairs of points. The syntax L[n] refers to item n
of the 6 items in the list, a pair. Syntax L[n][1] means the first entry of that pair.

Example A.25 (Simpson Test)
A graphic for the differential equation y′ = x+y has window 0 ≤ x ≤ 0.5, 1 ≤ y ≤ 2
and uses 1000 × 1000 pixels. Given the data set below, compute the Simpson test
prediction for each triple of data points. Report the four absolute errors and judge
pass or fail.

(0.180, 1.21443), (0.195, 1.23562), (0.210, 1.25736),

(0.225, 1.27965), (0.240, 1.30250), (0.255, 1.32592).
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Solution: The cutoff value for the absolute error is (d − c)/1000 = 0.001. It will be
justified below that the four absolute errors according to the Simpson test are 0.0000087,
0.0000065, 0.0000023 and 0.0000079. The data passes Simpson’s test.

The first three pairs of points in the plot data pass the Simpson test, page 1032, because
the target value y1 = 1.25736 is close to the test’s value Y = 1.257351350, with absolute
error |y1 − Y | = 0.0000087. The steps of the justification are below.

x0 = 0.180, y0 = 1.21443 Initial point (0.180, 1.21443).

x1 = 0.195, y1 = 1.23562 Second point (0.195, 1.23562).

x2 = 0.210, y2 = 1.25736 Third point (0.210, 1.23562).

f(x, y) = x+ y The right side of the differential equation.

Y = y0 +
x2 − x0

6
(f(x0, y0)

+4f(x1, y1) + f(x2, y2))

Simpson test, page 1032.

= y0 + 0.005 (x0 + y0
+4(x1 + y1) + x2 + y2)

Expand functional expressions.

= 1.21443 + 0.005 (8.58427) Substitute constants.

= 1.2573513. Absolute error E = |y2 − Y | = 0.0000087.

This process can be carried out in a similar way on the other triples of points:

Second: (0.195, 1.23562), (0.210, 1.25736), (0.225, 1.27965),

Third: (0.210, 1.25736), (0.225, 1.27965), (0.240, 1.30250),

Fourth: (0.225, 1.27965), (0.240, 1.30250), (0.255, 1.32592).

The absolute errors for these last three cases are 0.0000065, 0.0000023 and 0.0000079.

Details of a maple implementation appear below.

# Execute the first group once.

f:=(x,y)->x+y:

L:=[[.180, 1.21443],[.195, 1.23562],

[.210, 1.25736],[.225, 1.27965],

[.240, 1.30250],[.255, 1.32592]]:

n:=1:

# Execute the second group 4 times.

x0:=L[n][1]:y0:=L[n][2]:

x1:=L[n+1][1]:y1:=L[n+1][2]:

x2:=L[n+2][1]:y2:=L[n+2][2]:

Y:=y0+(x2-x0)*(f(x0,y0)+

4*f(x1,y1)+f(x2,y2))/6:

n:=n+1: ABSerror:=abs(y2-Y);

Example A.26 (Polynomial Quadrature)
Apply Simpson’s polynomial rule (5) to verify

∫ 2
1 (x

3 − 16x2 + 4)dx = −355/12.

Solution: The application proceeds as follows:

I =
∫ 2

1
Q(x)dx Evaluate integral I usingQ(x) = x3−16x2+4.
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=
2− 1

6
(Q(1) + 4Q(3/2) +Q(2)) Apply Simpson’s polynomial rule (5).

=
1

6
(−11 + 4(−229/8)− 52) Use Q(x) = x3 − 16x2 + 4.

= −355

12
. Equality verified.

Integral Equation Justification. Let f(x, y) be continuous for a < x < b, −∞ < y <
∞. Assume (x0, y0) is in the domain. It will be justified that the initial value problem
y′ = f(x, y), y(x0) = y0 is equivalent to the integral equation

y(x) = y0 +

∫ x

x0

f(t, y(t))dt.

The case x ≥ x0 will be considered, the other case x ≤ x0 being similar. Equivalence
means a solution of the initial value problem is a solution of the integral equation, and
conversely.

The integral equation is obtained from the initial value problem as follows: details.

y′(t) = f(t, y(t)) The given equation with x replaced by t.∫ x

x0
y′(t)dt =

∫ x

x0
f(t, y(t))dt Integrate both sides on x0 ≤ t ≤ x. It is assumed that

y, y′, f are continuous, which insures both integrals
are defined.

y(x)− y(x0) =
∫ x

x0
f(t, y(t))dt Apply the fundamental theorem of calculus, page 1008,

part (a).

Conversely, if the integral equation is assumed, then y(x) is differentiable by the funda-
mental theorem of calculus, page 1008, part (b). Differentiate across both sides of the
integral equation to obtain y′ = f(x, y). Finally, substitute x = x0 into the integral
equation to obtain the initial condition y(x0) = y0.

Simpson’s Polynomial Rule Proof. Let Q(x) be a linear, quadratic or cubic polyno-
mial. It will be verified that∫ b

a

Q(x)dx =
b− a

6
(Q(a) + 4Q((a+ b)/2) +Q(b)) .(7)

If the formula holds for polynomial Q and c is a constant, then the formula also holds
for the polynomial cQ. Similarly, if the formula holds for polynomials Q1 and Q2, then
it also holds for Q1 + Q2. Consequently, it suffices to show that the formula is true
for the special polynomials 1, x, x2 and x3, because then it holds for all combinations
Q(x) = c0 + c1x+ c2x

2 + c3x
3.

Only the special case Q(x) = x3 will be treated here. The other cases are left to the
exercises. The details:

RHS =
b− a

6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
Evaluate the right side of equation
(7).

=
b− a

6

(
a3 +

1

2
(a+ b)3 + b3

)
Substitute Q(x) = x3.

=
b− a

6

3

2

(
a3 + a2b+ ab2 + b3

)
Expand (a+b)3 = a3+3a2b+3ab2+
b3 and simplify.
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=
3

12

(
b4 − a4

)
Multiply and simplify.

LHS =
∫ b

a
Q(x)dx Evaluate the left hand side (LHS) of

equation (7).

=
∫ b

a
x3dx Substitute Q(x) = x3.

= (b4 − a4)/4 Evaluate.

= RHS. Compare with the RHS.

Euler Test Proof: To justify Euler’s test, page 1031, apply the equivalent integral
equation (6) and the rectangular rule (2) with F (t) = f(t, y(t)), a = x0 and b = x0+h =
x1. This gives a first approximation

y(x0 + h) ≈ y(x0) + hF (x0).(8)

Then apply approximation y(x0) ≈ y0 to the right side of (8) to give the approximation
Y = y0 + hf(x0, y0).

Trapezoidal Test Proof: To justify the trapezoidal test, page 1031, begin with the
equivalent integral equation (6) and approximate the integral using the trapezoidal rule
(3), with F (t) = f(t, y(t)), a = x0 and b = x0 +h = x1. This gives a first approximation

y(x0 + h) ≈ y(x0) +
h

2
(F (x0) + F (x1))(9)

Then apply approximations y(x0) ≈ y0 and y(x1) ≈ y1 to the right side of (9) to give

the approximation Y = y0 +
h

2
(f(x0, y0) + f(x1, y1)).

Simpson Test Proof: To justify the Simpson test, page 1032, begin with the equivalent
integral equation (6) and approximate the integral using Simpson’s rule (4), with F (t) =
f(t, y(t)), a = x0 and b = x2. This gives a first approximation

y(x0 + h) ≈ y(x0) +
x2 − x0

6
(F (x0) + 4F (x1) + F (x2))(10)

Then apply approximations y(x0) ≈ y0, y(x1) ≈ y1 and y(x2) ≈ y2 to the right side of
(10) to give the approximation

Y = y0 +
x2 − x0

6
(f(x0, y0) + 4f(x1, y1) + f(x2, y2)).

Quadratic Interpolation Proof: Given a < b and the three data points (a, Y0), ((a+
b)/2, Y1)), (b, Y2)), it will be verified that the quadratic curve Q(X) which connects the
points is given by

Q(X) = Y0 + (4Y1 − Y2 − 3Y0)
X − a

b− a

+ (2Y2 + 2Y0 − 4Y1)
(X − a)2

(b− a)2
.

The term quadratic is meant loosely: it can be a constant or linear function as well. The
solution is presented as two lemmas.3 The first lemma contains the essential ideas. The
second simply translates the variables.

3What’s a lemma? It’s a helper theorem, used to dissect long proofs into short pieces.
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Lemma A.1 Given y1 and y2, define A = y2 − y1, B = 2y1 − y2. Then the quadratic
y = x(Ax+B) fits the data items (0, 0), (1, y1), (2, 2y2).

Lemma A.2 Given Y0, Y1 and Y2, define y1 = Y1 − Y0, y2 = 1
2 (Y2 − Y0), A = y2 − y1,

B = 2y1 − y2 and x = 2(X − a)/(b− a). Then quadratic Y (X) = Y0 + x(Ax+B) fits the
data items (a, Y0), ((a+ b)/2, Y1), (b, Y2).

To verify the first lemma, the formula y = x(Ax+ B) is tested to go through the given
data points (0, 0), (1, y1) and (2, 2y2). For example, the last pair is tested by the steps

y(2) = 2(2A+B) Apply y = x(Ax+B) with x = 2.

= 4y2 − 4y1 + 4y1 − 2y2 Use A = y2 − y1 and B = 2y1 − y2.

= 2y2. Therefore, the quadratic fits data item (2, 2y2).

The other two data items are tested similarly, details omitted here.

To verify the second lemma, observe that it is just a change of variables in the first
lemma, Y = Y0 + y. The data fit is checked as follows:

Y (b) = Y0 + y(2) Apply formulas Y (X) = Y0+y(x), y(x) = x(Ax+B)
with X = b and x = 2.

= Y0 + 2y2 Apply data fit y(2) = 2y2.

= Y2. The quadratic fits the data item (b, Y2).

The other two items are checked similarly, details omitted here. This completes the
proof of the two lemmas. The formula for Q is obtained from the second lemma as
Q = Y0 + Bx + Ax2 with substitutions for A, B and x performed to obtain the given
equation for Q in terms of Y0, Y1, Y2, a, b and X.
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Exercises A.4 �

Euler Test: Spot Check Apply the meth-
ods of Example A.23, page 1033, to com-
pute for the given differential equation the
absolute error made by Euler’s test for the
given data. Report pass or fail for each ex-
ercise. Assume absolute error cutoff value
(d− c)/1000 = 0.001.

1. y′ = 2y + sin(x),
(0.1, 0.005346),
(0.2, 0.022884),
(0.3, 0.055148).

2. y′ = −y + cos(x),
(0.1, 0.095000),
(0.2, 0.180003),
(0.3, 0.255019).

3. y′ = y(1− y) + 5,
(0.400, 1.877093),
(0.405, 1.893746),
(0.410, 1.910168).

4. y′ = y(2− y) + 10,
(0.400, 3.547216),
(0.405, 3.569489),
(0.410, 3.591196).

5. y′ = 1 + y2,
(0.100, 0.100335),
(0.105, 0.105388),
(0.110, 0.110446).

6. y′ = 4 + 4y2,
(0.100, 0.422793),
(0.105, 0.446573),
(0.110, 0.470781).

Trapezoidal Test Apply the methods of
Example A.24, page 1033, to compute for
the given differential equation the relative
error E = |y1−Y |/|y1| made by the Trape-
zoidal test for the given data. Report for
each exercise pass or fail and the three er-
ror values. Assume the given relative error
cutoff value E∗.

7. y′ = 2y + sin(x), E∗ = 0.001,
(0.1, 0.005346), (0.2, 0.022884),
(0.3, 0.055148), (0.4, 0.105129).

8. y′ = −y + cos(x), E∗ = 0.00009,
(0.1, 0.095000), (0.2, 0.180003),
(0.3, 0.255019), (0.4, 0.320080).

9. y′ = y(1− y) + 5, E∗ = 0.00024,
(0.100, 0.516828),
(0.125, 0.647873),
(0.150, 0.777953),
(0.175, 0.621714).

10. y′ = y(2− y) + 10, E∗ = 0.0013,
(0.100, 1.067919),
(0.125, 1.341712),
(0.150, 1.610877),
(0.175, 1.871962).

11. y′ =
1− x

1 + y
, E∗ = 0.0004,

(0.100, 0.090871),
(0.125, 0.111024),
(0.150, 0.130265),
(0.175, 0.148641).

12. y′ =
1 + x

1− y
, E∗ = 0.00047,

(0.100, 0.111181),
(0.125, 0.143043),
(0.150, 0.176896),
(0.175, 0.212996).

Simpson Test Apply the ideas in Exam-
ple A.25, page 1034, to compute for the
given differential equation the relative er-
ror E = |y2−Y |/|y2| made by the Simpson
test for the given data. Report for each ex-
ercise pass or fail and the three error values.
Assume the given relative error cutoff value
E∗.

13. y′ = 2y + sin(x), E∗ = 0.0008,
(0.2, 0.022884), (0.3, 0.055148),
(0.4, 0.105129).

14. y′ = −y + cos(x), E∗ = 0.00044,
(0.2, 0.180003), (0.3, 0.255019),
(0.4, 0.320080).

15. y′ = y(1− y) + 5, E∗ = 0.000451,
(0.2, 1.031950), (0.3, 1.495883),
(0.4, 1.877093).
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16. y′ = y(2− y) + 10, E∗ = 0.0004,
(0.2, 2.121932), (0.3, 2.970036),
(0.4, 3.547216).

17. y′ =
1− x

1 + y
, E∗ = 0.0004,

(0.2, 0.166190), (0.3, 0.228821),
(0.4, 0.280625).

18. y′ =
1 + x

1− y
, E∗ = 0.00068,

(0.2, 0.251669), (0.3, 0.443224),
(0.4, 0.800000).

Simpson’s Rule The following exercises
use formulas and techniques found in the
proof on page 1036 and in Example A.26,
page 1035.

19. Verify with Simpson’s rule (5) for cubic

polynomials the equality
∫ 2

1
(x3+16x2+

4)dx = 541/12.

20. Verify with Simpson’s rule (5) for cu-

bic polynomials the equality
∫ 2

1
(x3+x+

14)dx = 77/4.

21. Let f(x) satisfy f(0) = 1, f(1/2) =
6/5, f(1) = 3/4. Apply Simpson’s
rule with one division to verify that∫ 1

0
f(x)dx ≈ 131/120.

22. Let f(x) satisfy f(0) = −1, f(1/2) =
1, f(1) = 2. Apply Simpson’s rule with

one division to verify that
∫ 1

0
f(x)dx ≈

5/6.

23. Verify Simpson’s equality (5), assum-
ing Q(x) = 1 and Q(x) = x.

24. Verify Simpson’s equality (5), assum-
ing Q(x) = x2.

Quadratic Interpolation The following
exercises use formulas and techniques from
the proof on page 1037.

25. Verify directly that the quadratic poly-
nomial y = x(7 − 4x) goes through the
points (0, 0), (1, 3), (2,−2).

26. Verify directly that the quadratic poly-
nomial y = x(8 − 5x) goes through the
points (0, 0), (1, 3), (2,−4).

27. Compute the quadratic interpolation
polynomial Q(x) which goes through
the points (0, 1), (0.5, 1.2), (1, 0.75).

28. Compute the quadratic interpolation
polynomial Q(x) which goes through
the points (0,−1), (0.5, 1), (1, 2).

29. Verify the remaining cases in Lemma
A.1, page 1038.

30. Verify the remaining cases in Lemma
A.2, page 1038.
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A.5 Implicit Functions

The subject of implicit function theory treats the problem of solving an equa-
tion F (x, y) = 0 for y in terms of x. In differential equations, it is the theoretical
basis for extracting an explicit solution y(x) from an implicit solution F (x, y) = 0.

Theorem A.2 (Implicit Function Theorem)
Let F (x, y), Fx(x, y), Fy(x, y) be defined and continuous in an open region D in
the plane. Assume (x0, y0) is the center of a disk contained entirely in D and
Fy(x0, y0) ̸= 0. Then there is a number H > 0 and a function y = y(x) such that

[1] y(x0) = y0,

[2] y is continuous on |x− x0| < H,

[3] (x, y(x)) is in D for |x− x0| < H,

[4] F (x, y(x)) = 0 for |x− x0| < H.

Further, if another function y = Y (x) satisfies [1]–[4] on |x− x0| < H, then y(x) =
Y (x) for |x− x0| < H.

The proof of Theorem A.2 appears in various references, for example, see Taylor-
Mann [Taylor-M] and Marsden-Tromba [Marsden]. Results of this type are the-
oretical, that is, devoid of a method for finding the function y(x).

Practical Numerical Methods

Item [4] in Theorem A.2 together with the chain rule d
dtF (x(t), y(t)) = Fxx

′(t)+
Fyy

′(t) implies that y(x) satisfies the initial value problem

y′ = −Fx(x, y)

Fy(x, y)
, y(x0) = y0.(1)

Problem (1) is the basis for practical numerical methods which are used in
applications to calculate and graph the implicit solution y(x) of the equation
F (x, y) = 0. See Example A.27, page 1042.

Computer Algebra Methods

Computer algebra systems maple and mathematica have facilities for solving an
equation F (x, y) = 0 for y in terms of x. Limited support exists for making
graphics directly from the implicit equation F (x, y) = 0. See Example A.28,
page 1042.

Work-alike systems such as matlab, octave and scilab can be applied to solve
implicit equations, although the work involved is always more tedious. One idea
of merit is to model the implicit equation F (x, y) = 0 as several initial value
problems, then apply differential equation numerical solution methods to graph
the solutions. See Example A.29, page 1043.
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Example A.27 (Modeling an Implicit Function Problem)
Model the implicit equation x2+4y4 = 4 at x = 0, y = 1 as an initial value problem
for a function y(x) defined near x = 0.

Solution: Let F (x, y) = x2+4y4. Then x2+4y4 = 4 can be written as F (x, y) = 4. We
verify F (0, 1) = 4. The chain rule (d/dt)F (x(t), y(t)) = Fxx

′(t)+Fyy
′(t) with x = t and

y = y(t) gives from F (x, y) = 4 the equation
dy

dt
= −Fx(t, y(t))/Fy(t, y(t)). Compute

Fx = 2x and Fy = 16y3. The initial value problem is

dy

dt
= − t

8y3
, y(0) = 1.

Example A.28 (Solving F(x,y) = 0 Symbolically)
Solve symbolically for y as a function of x in the implicit equation x2 + 4y4 = 4 at
x = 0, y = 1 both by hand and by computer.

Solution: College algebra methods apply to solve x2 + 4y4 = 4 for y in terms of x,
giving y(x) = 4

√
1− x2/4. The graph is defined on −2 ≤ x ≤ 2; see Figure 14. The

college algebra details:

4y4 = 4− x2 Start with x2 + 4y4 = 4 and isolate y on the left.

|y| = 4
√

1− x2/4 Divide by 4 and take the fourth root of both sides.

y = 4
√
1− x2/4 Replace |y| by ±y and resolve the sign with y = 1 at x = 0.

x

y

−2 0 2
Figure 14. Implicit solution y(x) of
x2 + 4y4 = 4 at x = 0, y = 1.

The computer algebra system maple partially solves the problem with the command

solve(x^2+4*y^4=4,y));

Reported are four answers:

1

2
4
√
−4x2 + 16,

1

2

√
−1 4
√
−4x2 + 16,

−1

2
4
√
−4x2 + 16, −1

2

√
−1 4
√
−4x2 + 16.

Only one satisfies y = 1 at x = 0, namely the first. It is typical in computer algebra
systems to spend time sorting out the system’s answer.

Remark on Algebraic Complexity. The more complicated implicit equation x2 +
4y4+xy = 4 does not have a useful or simple college algebra solution. To understand the
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A.5 Implicit Functions

complications, execute the following maple code, which displays several pages of answers
involving cube roots of sixth degree polynomials. None of the answers are useful, it being
easier to employ the ideas of Example A.27, page 1042.

allvalues([solve(x^2+4*y^4+x*y=4,y)]);

Example A.29 (Solving F (x, y) = 0 Numerically)
Solve numerically by computer for y as a function of x in the implicit equation
x2 + 4y4 = 4 at x = 0, y = 1. Plot y(x) on 0 ≤ x ≤ 2.

Solution: It was shown in Example A.27, page 1042, that the problem is equivalent to
the differential equation problem

dy

dx
= − x

8y3
, y(0) = 1.

The plot on 0 ≤ x ≤ 2 will look like the right half of Figure 14. The maple code:

with(DEtools):

de:=diff(y(x),x)=-x/(8*y(x)^3):

DEplot(de,y(x),x=0..2,[[y(0)=1]],arrows=NONE);

A more simplistic approach, which is also capable of direct computation of values of
y(x), is to use the maple function dsolve.

# Maple V 5.1

de:=diff(y(x),x)=-x/(8*y(x)^3):ic:=y(0)=1:

p:=dsolve({de,ic},y(x),numeric);

Y:=x->rhs(p(x)[2]);

plot(Y,0..2);
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Exercises A.5 �

Modeling an Implicit Function Prob-
lem
Apply the ideas in Example A.27, page
1042 to model the given implicit equation
as an initial value problem for a function
y(x) defined near x = 0.

1. x2 + xy4 + y = 1,
x = 0, y = 1.

2. x+ xy4 + y = 1,
x = 0, y = 1.

3. x+ y2 ln(x+ 1) + y = 2,
x = 0, y = 2.

4. ex + y2 ln(x+ 1) + y = 1,
x = 0, y = 2.

5. sinx+ y3 cosx+ y2 = 2,
x = 0, y = 1.

6. tanx+ y2 secx+ y3 = 2,
x = 0, y = 1.

7. ex + y2x2 + xy + 2y = 3,
x = 0, y = 1.

8. e−x +−y2x2 + xy + 2y = 3,
x = 0, y = 1.

Solve F(x,y) = 0 Symbolically
Solve symbolically for y as a function of x
in the given implicit equation both by hand
and by computer. Apply the methods of
Example A.28, page 1042.

9. x2 + 5y4 = 5,
x = 0, y = 1.

10. x2 + 5y2 = 5,
x = 0, y = 1.

11. x2 + y2 + 2y = 3,
x = 0, y = 1.

12. x2 + 4y2 − 2y = 2,
x = 0, y = 1.

13. sinx+ y4 = 1,
x = 0, y = 1.

14. sinx+ y4 + 2y2 = 3,
x = 0, y = 1.

15. − sinx+ cos y = 1,
x = 0, y = 0.

16. sinx+ cos y = 1,
x = 0, y = 0.

Solve F (x, y) = 0 Numerically
Solve numerically by computer for y as a
function of x in the given implicit equa-
tion. Plot y(x) on an interesting interval.
See Example A.29, page 1043 for methods.

17. x2 + x+ 4 + cos y = 5,
x = 0, y = 0.

18. x2 + x+ 6− cos(y) = 5,
x = 0, y = 0.

19. x2 + y3 + 2y = 3,
x = 0, y = 1.

20. x2 + 4y3 − 2y = 2,
x = 0, y = 1.

21. sinx+ y4 + y = 2,
x = 0, y = 1.

22. sinx+ y4 + 2y = 3,
x = 0, y = 1.

23. − sinx+ y + cos y = 1,
x = 0, y = 0.

24. sinx− y + cos y = 1,
x = 0, y = 0.
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Solutions to Exercises

Solutions are organized by chapter, eg., Appendix 5 contains the solutions for
Chapter 5.

Chapter 5 solutions in the Table of Contents look like this:

5 § Linear Algebra

The section sign § is used to mark the solution chapters, due to possible con-
fusion because of identical chapter titles.

How does navigation work between textbook exercises and so-
lution manual exercises?

Textbook exercise set 5.2 (Chapter 5, Section 2) has a blue hyperlink

� to Appendix 5, solutions 5.2.

Appendix 5 solutions 5.2 has a red hyperlink � to textbook exer-
cises 5.2.
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Appendix 1

§ Fundamentals

Contents

1.1 Exponential Modeling . . . . . . . . . . . . . . . . . 1046

1.2 Exponential Application Library . . . . . . . . . . 1053

1.3 Differential Equations of First Order . . . . . . . . 1060

1.4 Direction Fields . . . . . . . . . . . . . . . . . . . . 1065

1.5 Phase Line Diagrams . . . . . . . . . . . . . . . . . 1072

1.6 Computing and Existence . . . . . . . . . . . . . . 1077

1.1 Exponential Modeling

Exercises 1.1 � Growth-Decay Model
Solve the given initial value problem using the growth-decay formula; see page 3
and Example 1.1 page 7.

1. y′ = −3y, y(0) = 20

Solution:y(x) = 20 e−3x by the growth-decay formula page 3.

2. y′ = 3y, y(0) = 1

Solution:y(x) = e3x

3. 3A′ = A, A(0) = 1

Solution:A(t) = et/3

4. 4A′ +A = 0, A(0) = 3

5. 3P ′ − P = 0, P (0) = 10

Solution:P (t) = 10 et/3
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6. 4P ′ + 3P = 0, P (0) = 11

7. I ′ = 0.005I, I(t0) = I0

Solution:I(t) = I0 e
(t−t0)/200

8. I ′ = −0.015I, I(t0) = I0

9. y′ = αy, y(t0) = 1

Solution:y(t) = eα(t−t0)

10. y′ = −αy, y(t0) = y0

Growth-decay Theory

11. Graph without a computer y = 10(2x) on −3 ≤ x ≤ 3.

Solution:The graph is made by graphics methods in Appendix A.2. The curve in-
creases and passes through the points (−3, 10/8), (0, 10), (3, 80).

12. Graph without a computer y = 10(2−x) on −3 ≤ x ≤ 3.

13. Find the doubling time for the growth model P = 100e0.015t.

Solution:Solve P (t) = 2P (0) for t: this is the time t required to double the pop-
ulation size. The equation is 100e0.015t = 200. Solve it by applying ln across the
equation: ln

(
e0.015t

)
= ln 2. Simplify using ln(eu) = u. Then 0.015t = ln 2 gives

t = 46.20981204.

14. Find the doubling time for the growth model P = 1000e0.0195t.

15. Find the elapsed time for the decay model A = 1000e−0.11237t until |A(t)| < 0.00001.

Solution:Solve A(t) = 0.00001 for t = 163.9288132. A sane answer is 164, but no
unique answer exists.

16. Find the elapsed time for the decay model A = 5000e−0.01247t until |A(t)| < 0.00005.

Newton Cooling Recipe
Solve the given cooling model. Follow Example 1.2 on page 8.

17. u′ = −10(u− 4), u(0) = 5

Solution:u = 4 + ce−10t, c = 1

18. y′ = −5(y − 2), y(0) = 10

19. u′ = 1 + u, u(0) = 100

Solution:u = −1 + cet, c = 101
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20. y′ = −1− 2y, y(0) = 4

21. u′ = −10 + 4u, u(0) = 10

Solution:Let v = u − 10/4. Then v′ = u′ = −10 + 4u = 4v and v = ce4t. Back-
substitute: u = 10/4 + v = 5/2 + ce4t and c = 15/2.

22. y′ = 10 + 3y, y(0) = 1

23. 2u′ + 3 = 6u, u(0) = 8

Solution:u =
1

2
+

15

2
e3t

24. 4y′ + y = 10, y(0) = 5

25. u′ + 3(u+ 1) = 0, u(0) = −2
Solution:u = −1− e−3t

26. u′ + 5(u+ 2) = 0, u(0) = −1

27. α′ = −2(α− 3), α(0) = 10

Solution:α(t) = 3 + 7e−2t

28. α′ = −3(α− 4), α(0) = 12

Newton Cooling Model
The cooling model u(t) = u0 + A0e

−ht is applied; see page 4. Methods parallel
those in the flask cooling example, page 9, and the baking example, page 10.

29. (Ingot Cooling) A metal ingot cools in the air at temperature 20C from 130C to
75C in one hour. Predict the cooling time to 23C.

Solution:Given: u(t) = u1 + (u0 − u1)e
−kt, u(0) = 130, u(1) = 75, u1 = 20, time t in

hours. Then u1 = 20, u0 = u(0) = 130 and u(t) = 20 + (130− 20)e−kt with k as yet
unknown. Let t = 1 in the equation for u(t) and use u(1) = 75 to obtain an equation
for k: 75 = 20 + 110e−k. Solve for k = ln 2. The time t when u(t) = 23 is called the
cooling time. Find The value of t by solving the equation 23 = 20+110e− ln(2)t. The
cooling time is 5 hours and 12 minutes, approximately.

30. (Rod Cooling) A plastic rod cools in a large vat of 12-degree Celsius water from
75C to 20C in 4 minutes. Predict the cooling time to 15C.

Solution:Given: u(t) = u1 + (u0 − u1)e
−kt, u(0) = 75, u(4) = 20, u1 = 12, time t in

minutes. Proceed as in the ingot problem above to find k = −(1/4) ln(8/63) and the
cooling time 5 minutes and 54 seconds, approximately.
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31. (Murder Mystery) A body discovered at 1:00 in the afternoon, March 1, 1929, had
temperature 80F. Assume outdoor temperature 50F from 9am. Over the next hour
the body’s temperature dropped to 76F. Estimate the date and time of the murder.

Solution:Given: u(t) = u1 + (u0 − u1)e
−kt, u(0) = 80, u(1) = 76, u1 = 50, time t

in hours. Then u1 = 50, u0 = u(0) = 80 and u(t) = 50 + (80 − 50)e−kt with k as
yet unknown. Let t = 1 in the equation for u(t) and use u(1) = 76 to obtain an
equation for k: 76 = 50 + 30e−k. Proceed as in the ingot problem above to find
k = −(1/4) ln(8/63) and the cooling time 5 minutes and 54 seconds, approximately.

32. (Time of Death) A dead body found in a 40F river had body temperature 70F. The
coroner requested that the body be left in the river for 45 minutes, whereupon the
body’s temperature was 63F. Estimate the time of death, relative to the discovery of
the body.

Verhulst Model
Solve the given Verhulst logistic equation using formula (8). Follow Example 1.3
on page 8.

33. P ′ = P (2− P ), P (0) = 1

Solution:The formula is P (t) = aP (0)
bP (0)+(a−bP (0))e−at with a = 1, b = 2. Then P (t) =

1
2−e−t .

34. P ′ = P (4− P ), P (0) = 5

35. y′ = y(y − 1), y(0) = 2

Solution:The formula is y(t) = ay(0)
by(0)+(a−by(0))e−at with a = −1, b = 1. Then y(t) =

2
2−3et .

36. y′ = y(y − 2), y(0) = 1

Solution:y(t) = 1/(2− et)

37. A′ = A− 2A2, A(0) = 3

Solution:A(t) = 3/(6− et)

38. A′ = 2A− 5A2, A(0) = 1

39. F ′ = 2F (3− F ), F (0) = 2

Solution:F (t) = 2/(6− 4e−2t)

40. F ′ = 3F (2− F ), F (0) = 1

Inverse Modeling
Given the model, find the differential equation and initial condition.

1049



1.1 Exponential Modeling

41. A = A0e
4t

Solution:A′ = 4A, A(0) = A0

42. A = A0e
−3t

43. P = 1000e−0.115t

Solution:P ′(t) = −0.115P (t), P (0) = 1000

44. P = 2000e−7t/5

45. u = 1 + e−3t

Solution:First, u(0) = 2. Second, u′(t) = −3e−3t = −3(u(t) − 1). Answer: u′ =
3(1− u), u(0) = 2

46. u = 10− 2e−2t

47. P =
10

10− 8e−2t

Solution:First, P (0) = 10.Define a, b by the equations bP (0) = 10, a − bP (0) = −8.
Solve: a = 2, b = 1. Answer: P ′ = 2P (1− P ), P (0) = 10.

48. P =
5

15− 14e−t

49. P =
1

5− 4e−t

Solution:First, P (0) = 1.Define a, b by the equations bP (0) = 5, a − bP (0) = −4.
Solve: a = 1, b = 5. Answer: P ′ = P (5− P , P (0) = 1.

50. P =
2

4− 3e−t

Populations
Use Malthusian population theory page 6 and Malthusian model P (t) = P0e

kt.
Methods appear in Examples 1.4 and 1.5 page 8.

51. (World Population) The world population of 5, 500, 000, 000 people was increasing
at a rate of 250, 000 people per day in June of 1993. Predict the date when the
population reaches 10 billion.

Solution:Population 10 billion is reached in June or July in 2029, approximately
36 years later. Model: P (t) = kP (t), P (0) = 5.5 billion with t in days. Then
P (1) = P (0)ekt = 5500250000/1000000000 determines k = 0.00004545396695 and
P (t) = 10 after t = 13152.71293 days.

52. (World Population) Suppose the world population at time t = 0 is 5.5 billion
and increases at rate 250, 000 people per day. How many years before that was the
population one billion?

Solution:About 103 years earlier, according to the Malthusian model in the previous
exercise.
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53. (Population Doubling) A population of rabbits increases by 10% per year. In how
many years does the population double?

Solution:About 7.3 years, because of the model: P (t) = P (0)ekt. Use P (1) = 1.1P (0)
to find k = 0.09531017980, then solve P (t) = 2P (0) for t = 7.272540898.

54. (Population Tripling) A population of bacteria increases by 15% per day. In how
many days does the population triple?

55. (Population Growth) Trout in a river are increasing by 15% in 5 years. To what
population size does 500 trout grow in 15 years?

Solution:About 1006 after 15 years, because of the model: P (t) = P (0)ekt, P (0) =
500 with t in years. Use P (5) = 1.15P (0) to find k = 0.02795238848, then evaluate
P (15) = P (0)e15k = 1005.678594.

56. (Population Growth) A region of 400 acres contains 1000 forest mushrooms per
acre. The population is decreasing by 150 mushrooms per acre every 2 years. Find
the population size for the 400-acre region in 15 years.

Verhulst Equation
Write out the solution to the given differential equation and report the carrying
capacity M = lim

t→∞
P (t).

57. P ′ = (1− P )P

Solution:P (t) =
P (0)

P (0) + (1− P (0))e−t , M = a/b = 1.

58. P ′ = (2− P )P

59. P ′ = 0.1(3− 2P )P

Solution:P ′ = 0.2(1.5− P )P ,

P (t) =
0.2P (0)

1.5P (0) + (0.2− 1.5P (0))e−0.2t , M = a/b = 2/15.

Check answers in maple:
y:=unapply(a*y0/(b*y0+(a-b*y0)*exp(-a*t)),(t,a,b,y0));

evalf(simplify(y(t,0.2,1.5,y0))); evalf(0.2/1.5);

limit(y(t,0.2,1.5,y0),t=infinity);

60. P ′ = 0.1(4− 3P )P

61. P ′ = 0.1(3 + 2P )P

Solution:P ′ = −0.2(−1.5− P )P ,

P (t) =
−0.2P (0)

−1.5P (0) + (−0.2 + 1.5P (0))e0.2t
, M = 0.

62. P ′ = 0.1(4 + 3P )P
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63. P ′ = 0.2(5− 4P )P

64. P ′ = 0.2(6− 5P )P

65. P ′ = 11P − 17P 2

66. P ′ = 51P − 13P 2

Logistic Equation
The following exercises use the Verhulst logistic equation P ′ = (a− bP )P , page
6. Some methods appear on page 11.

67. (Protozoa) Experiments on the protozoa Paramecium determined growth rate a =
2.309 and carrying capacity a/b = 375 using initial population P (0) = 5. Establish

the formula P (t) =
375

1 + 74e−2.309t
.

68. (World Population) Demographers projected the world population in the year 2000
as 6.5 billion, which was corrected by census to 6.1 billion. Use P (1965) = 3.358×109,
a = 0.029 and carrying capacity a/b = 1.0760668 × 1010 to compute the logistic
equation projection for year 2000.

69. (Harvesting) A fish population satisfying P ′ = (a−bP )P is subjected to harvesting,
the new model being P ′ = (a−bP )P −H. Assume a = 0.04, a/b = 5000 and H = 10.
Using algebra, rewrite it as P ′ = a(α − P )(P − β) in terms of the roots α, β of
ay − by2 −H = 0. Apply the change of variables u = P − β to solve it.

Solution:The equation for u is u′ = bu(α − β − u) where α = 263.9320225, β =

4736.067977. Then P (t) = u(t) + β =
αu(0)

βu(0) + (α− βu(0))e−αt + β.

70. (Extinction) Let an endangered species satisfy P ′ = bP 2−aP for a > 0, b > 0. The
term bP 2 represents births due to chance encounters of males and females, while the
term aP represents deaths. Use the change of variable u = P/(bP − a) to solve it.
Show from the answer that initial population sizes P (0) below a/b become extinct.

Solution:The model equation is P ′ = P (P−1) with change of variables u = P/(P−1).
Solve the simpler equation first, then generalize to P ′ = P (bP − a).

71. (Logistic Answer Check) Let P = au/(1+bu), u = u0e
at, u0 = P0/(a−bP0). Verify

that P (t) is a solution the differential equation P ′ = (a− bP )P and P (0) = P0.

Solution:Extract the details from the Logistic Solution Verification, located immedi-
ately above the exercises for this section.

72. (Logistic Equation) Let k, α, β be positive constants, α < β. Solve w′ = k(α −
w)(β − w), w(0) = w0 by the substitution u = (α − w)/(β − w), showing that
w = (α − βu)/(1 − u), u = u0e

(α−β)kt, u0 = (α − w0)/(β − w0). This equation is a
special case of the harvesting equation P ′ = (a− bP )P +H.

Growth-Decay Uniqueness Proof
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73. State precisely and give a calculus text reference for Rolle’s Theorem, which says
that a function vanishing at x = a and x = b must have slope zero at some point in
a < x < b.

Solution:Rolle’s Theorem can be found in most college level calculus textbooks. The
hypothesis is f(x) is differentiable on a < x < b and f(a) = f(b) = 0. The conclusion:
f ′(x) = 0 for some point x between a, b.

74. Apply Rolle’s Theorem to prove that a differentiable function v(x) with v′(x) = 0
on a < x < b must be constant.

1.2 Exponential Application Library

Exercises 1.2 �
Light Intensity
The following exercises apply the theory of light intensity on page 16, using the
model I(t) = I0e

−kx with x in meters. Methods parallel Example 1.8 on page
21.

1. The light intensity is I(x) = I0e
−1.4x in a certain swimming pool. At what depth x

does the light intensity fall off by 50%?

Solution:Solve I(x) = 0.5I0 for x = 0.4951051290 using logarithms.

2. The light intensity in a swimming pool falls off by 50% at a depth of 2.5 meters. Find
the depletion constant k in the exponential model.

3. Plastic film is used to cover window glass, which reduces the interior light intensity
by 10%. By what percentage is the intensity reduced, if two layers are used?

Solution:Let the plastic film have thickness X. Model I(x) = I0e
−kx will be used

where I0 is the light intensity on the surface of the glass (x = 0). Given is I(X) =
0.9I0. The task is to find I(2X) as a percentage of I0. Using logarithms on e−kX = 0.9
gives kX = 0.1053605157, then e−2kX = 0.8099999999. The answer: 81% for two
layers. Misgivings: Should x = 0 be the surface of the glass or the surface of the
plastic film or the surface of the glass where the materials are sandwiched together?

4. Double-thickness colored window glass is supposed to reduce the interior light inten-
sity by 20%. What is the reduction for single-thickness colored glass?

RC-Electric Circuits
In the exercises below, solve for Q(t) when Q0 = 10 and graph Q(t) on 0 ≤ t ≤ 5.

5. R = 1, C = 0.01.

Solution:Model: RQ′ + Q/C = 0 with solution Q(t) = Q0e
−kt, k = 1/(RC). Then

k = 100, Q0 = 10, Q(t) = 10e−10t. The graph is a strictly decreasing curve joining
points (0, 10), (1, 0.06737947) and (5, 0). Maple computed Q(5) ≈ 1.9/1021. See
Appendix A for hand graphing of exponentials.
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6. R = 0.05, C = 0.001.

7. R = 0.05, C = 0.01.

Solution:Q(t) = 10e−2000t

8. R = 5, C = 0.1.

9. R = 2, C = 0.01.

Solution:Q(t) = 10e−50t

10. R = 4, C = 0.15.

11. R = 4, C = 0.02.

Solution:Q(t) = 10e−12.5t

12. R = 50, C = 0.001.

LR-Electric Circuits
In the exercises below, solve for I(t) when I0 = 5 and graph I(t) on 0 ≤ t ≤ 5.

13. L = 1, R = 0.5.

Solution:Model: LI ′ + RI = 0, I0 = 5, I(t) = I0e
−Rt/L. Then R/L = 1/2 and

I(t) = 5e−t/5.

14. L = 0.1, R = 0.5.

15. L = 0.1, R = 0.05.

Solution:I(t) = 5e−t/5

16. L = 0.01, R = 0.05.

17. L = 0.2, R = 0.01.

Solution:I(t) = 5e−t/20

18. L = 0.03, R = 0.01.

19. L = 0.05, R = 0.005.

Solution:I(t) = 5e−t/10

20. L = 0.04, R = 0.005.

Interest and Continuous Interest
Financial formulas which appear on page 18 are applied below, following the
ideas in Examples 1.11, 1.12 and 1.13, pages 22 and 24.

1054



1.2 Exponential Application Library

21. (Total Interest) Compute the total daily interest and also the total continuous
interest for a 10-year loan of 5, 000 dollars at 5% per annum.

Solution:Answer: 1366.889426 for daily interest and 1366.990456 for continuous in-
terest. The difference is 10 cents.
Part (a): Daily Interest
The Auto Loan example in this section contains the formulas and ideas. Assume a
month is 30 days and a year is 360 days. The problem can be viewed as follows: the
$5000 loan is a checking account with $5000 deposit that accrues interest at 5% per
annum compounded daily. The twist: a check of amount P is subtracted from the
account every 30 days. The problem can then be phrased as follows:
(1) Find the amount P to be written as a monthly check so that the account balance
is zero after 3600 days;
(2) Report the total interest added to the checking account over the 3600 days (10
years).
Let the daily simple interest rate be R = 0.05/360. Let B(n) be the checking account
balance after n days. Define B(0) = 5000, Z = (1 + R)30. The monthly check of
amount P is posted at the end of day 30. Then B(30) = B(0)Z − P .
Similarly, B(60) = B(30)Z − P , B(90) = B(60)Z − P . Induction is used to obtain
the formula B(30k) = B(0)Zk − P

(
1 + · · ·+ Zk−1

)
. The geometric sum formula

1 + u+ · · ·+ un =
un+1 − 1

u− 1
implies B(30k) = B(0)Zk − P

Zk − 1

Z − 1
.

The checking account has zero balance after 3600 days (10 years) provided the pay-
ment P satisfies the equation B(30k) = 0 for k = 120. Then 0 = B(0)Z120 −

P
Z120 − 1

Z − 1
. Solve for

P = B(0)Z120 Z − 1

Z120 − 1
.

Substitute B(0) = 5000 and Z = (1 + R)30. Then P = 53.05741190, 120P =
6366.889426 which implies the total interest paid over ten years would be that amount
less $5000: interest paid = 1366.889426.
Part (b): Continuous Interest
Following the Auto Loan example, the part (a) formulas are correct provided Z =
e30R = 1.004175359. The remaining details are unchanged from the computation
above, which implies

P = B(0)Z120 Z − 1

Z120 − 1
, Z = e30R = 1.004175359.

Then P = 53.05825380 and the interest paid = 1366.990456.

22. (Total Interest) Compute the total daily interest and also the total continuous
interest for a 15-year loan of 7, 000 dollars at 5 1

4% per annum.

23. (Monthly Payment) Find the monthly payment for a 3-year loan of 8, 000 dollars
at 7% per annum compounded continuously.

Solution:Payment = 216.2051540.

24. (Monthly Payment) Find the monthly payment for a 4-year loan of 7, 000 dollars
at 6 1

3% per annum compounded continuously.
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25. (Effective Yield) Determine the effective annual yield for a certificate of deposit at
7 1
4% interest per annum, compounded continuously.

Solution:Follow the Effective Annual Yield example. The answer for one year
is 100(e0.0725 − 1) = 7.5192806% based on 360 days and 100(e365(0.0725)/360 − 1) =
7.6276011% for 365 days.

26. (Effective Yield) Determine the effective annual yield for a certificate of deposit at
5 3
4% interest per annum, compounded continuously.

27. (Retirement Funds) Assume a starting salary of 35, 000 dollars per year, which is
expected to increase 3% per year. Retirement contributions are 10 1

2% of salary, de-
posited monthly, growing at 5 1

2% continuous interest per annum. Find the retirement
amount after 30 years.

Solution:Answer: 396, 588.1407. Follow the Retirement Funds example. Maple
code:

s:=0.055/12;P:=n->(35000/12)*(1.03)^(n-1);

R:=n->0.105*P(n);

X:=0;for j from 1 to 30 do

X:=X*exp(12*s)+R(j)*(exp(12*s)-1)/(1-exp(-s));end do:

X;

28. (Retirement Funds) Assume a starting salary of 45, 000 dollars per year, which is
expected to increase 3% per year. Retirement contributions are 9 1

2% of salary, de-
posited monthly, growing at 6 1

4% continuous interest per annum. Find the retirement
amount after 30 years.

29. (Actual Cost) A van is purchased for 18, 000 dollars with no money down. Monthly
payments are spread over 8 years at 12 1

2% interest per annum, compounded contin-
uously. What is the actual cost of the van?

Solution:Answer: Cost = $28, 624.40733, payment = $298.1709097. Maple code:

R:=0.125/360;Z:=exp(30*R);T:=12*8;

P:=18000*(Z-1)*Z^T/(Z^T - 1);T*P;T*P-18000;

30. (Actual Cost) Furniture is purchased for 15, 000 dollars with no money down.
Monthly payments are spread over 5 years at 11 1

8% interest per annum, compounded
continuously. What is the actual cost of the furniture?

Radioactive Decay
Assume the decay model A′ = −kA from page 19. Below, A(T ) = 0.5A(0) defines
the half-life T . Methods parallel Examples 1.14– 1.17 on pages 25– 26.

31. (Half-Life) Determine the half-life of a radium sample which decays by 5.5% in 13
years.

Solution:Answer: About 159 years. Follow the Half–life of Radium example.
Solve for k = −0.004351565499 in e13k = 0.945. Then solve for t = 159.2868545 in
e−0.004351565499 t = 0.5.
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32. (Half-Life) Determine the half-life of a radium sample which decays by 4.5% in 10
years.

33. (Half-Life) Assume a radioactive isotope has half-life 1800 years. Determine the
percentage decayed after 150 years.

Solution:Answer: 5.6%. Follow the Radium Disintegration example. Solve
e1800 k = 0.5 for k = −0.0003850817670. Evaluate e−0.0003850817670(150) =
0.9438743127.

34. (Half-Life) Assume a radioactive isotope has half-life 1650 years. Determine the
percentage decayed after 99 years.

35. (Disintegration Constant) Determine the constant k in the model A′ = −kA for
radioactive material that disintegrates by 5.5% in 13 years.

Solution:Answer: k = −0.3498922950. Follow the Radium Disintegration exam-
ple. Solve e−13k = 94.5 for k = −0.3498922950.

36. (Disintegration Constant) Determine the constant k in the model A′ = −kA for
radioactive material that disintegrates by 4.5% in 10 years.

37. (Radiocarbon Dating) A fossil found near the town of Dinosaur, Utah contains
carbon-14 at a ratio of 6.21% to the atmospheric value. Determine its approximate
age according to Libby’s method.

Solution:Answer: 22, 323.576 years. Follow the Radiocarbon Dating example,
assuming model A(t) = A(0)e−kt, the half-life of carbon-14 is 5568 years and k =
ln(2)/5568. Known is A(0) = 0.0621A(t) for some time t in the past. Solve A(0) =
0.0621A(0)e−kt for t = ln(0.0621)/k = −22323.576.

38. (Radiocarbon Dating) A fossil found in Colorado contains carbon-14 at a ratio of
5.73% to the atmospheric value. Determine its approximate age according to Libby’s
method.

39. (Radiocarbon Dating) In 1950, the Lascaux Cave in France contained charcoal with
14.52% of the carbon-14 present in living wood samples nearby. Estimate by Libby’s
method the age of the charcoal sample.

Solution:Answer: 15500.68 years.

40. (Radiocarbon Dating) At an excavation in 1960, charcoal from building material
had 61% of the carbon-14 present in living wood nearby. Estimate the age of the
building.

41. (Percentage of an Isotope) A radioactive isotope disintegrates by 5% in 12 years.
By what percentage is it reduced in 99 years?

Solution:Answer: 34.5%. Follow the Percentage of an Isotope example. Model
A(t) = A(0)e−kt. Solve 0.95 = e−12k for k = 0.004274441199. Evaluate e−99k =
0.6549674897.
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42. (Percentage of an Isotope) A radioactive isotope disintegrates by 6.5% in 1, 000
years. By what percentage is it reduced in 5, 000 years?

Chemical Reactions
Assume below the model A′ = kA for a first-order reaction. See page 21 and
Example 1.18, page 27.

43. (First-Order A+B −→ C) A chemical reaction produces X(t) grams of product C
from 50 grams of chemical A and 32 grams of catalyst B. The reaction uses 1 gram
of A to 4 grams of B. Variable t is in minutes. Justify for some constant K the model
dX

dt
= K

(
50− 1

5X
) (

32− 4
5X
)
and calculate limt→∞ X(t) = 40.

Solution: The rate of change of X(t) is proportional to the product of the amounts
present of A and B. These amounts are 50− 1

5X and 32− 4
5X. Fractions 1

5 ,
4
5 mean

that from 5 grams of C there is 1 gram of A used (supply=50) and 4 grams of B used
(supply=32). Proportionality constant K times the product of the two amounts of A
and B then equals dX

dt . Factor out the two fractions from the two amounts to obtain

the new form
dX

dt
= 4

25K (40−X) (250−X) and define α = 40, β = 250, k = 4K
25

(re-arranged to insure α < β). Follow the subsection on Chemical Reactions. The
amount X(t) of product C satisfies

X(t) =
α− βu(t)

1− u(t)
, u(t) = u0e

(α−β)kt, u0 =
α−X0

β −X0
.(1)

Then

X(t) =
40− 250 u0 e−210 t

1− u0 e−210 t

and limt→∞ X(t) = 40, because limt→∞ ect = 0 for c negative.

44. (First-Order A+B −→ C) A first order reaction produces product C from chemical
A and catalyst B. Model the production of C using a grams of A and b grams of B,
assuming initial amounts M of A and N of B, M < N .

45. (Law of Mass-Action) Consider a second-order chemical reaction X(t) with k =
0.14, α = 1, β = 1.75, X(0) = 0. Find an explicit formula for X(t) and graph it on
t = 0 to t = 2.

Solution:Follow the Chemical Reaction example. The amount X(t) of product C
satisfies

X(t) =
α− βu(t)

1− u(t)
, u(t) = u0e

(α−β)kt, u0 =
α−X0

β −X0
.(2)

Substitute k = 0.14 = 14
100 , α = 1, β = 1.75 = 7

4 , X(0) = 0. Then u0 = α/β = 4
7 ,

u(t) = 4
7e

−3kt/4 and

X(t) =
1− 7

4
u(t)

1− u(t)
=

1− e−21t/200

1− 4

7
e−21t/200

The plot on 0 ≤ t ≤ 2 is a strictly increasing curve from (0, 0) to (2, 0.353).
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46. (Law of Mass-Action) Consider a second-order chemical reaction X(t) with k =
0.015, α = 1, β = 1.35, X(0) = 0. Find an explicit formula for X(t) and graph it on
t = 0 to t = 10.

47. (Mass-Action Derivation) Let k, α, β be positive constants, α < β. Solve X ′ =
k(α−X)(β−X), X(0) = X0 by the substitution u = (α−X)/(β−X), showing that
X = (α− βu)/(1− u), u = u0e

(α−β)kt, u0 = (α−X0)/(β −X0).

Solution:Algebra on u = (α − X)/(β − X) gives X = (α − βu)/(1 − u). Compute

u′ =
−X ′(β −X) + (α−X)X ′

(β −X)2
by the quotient rule in calculus. Used is α′ = β′ = 0

by the constant rule in calculus. Simplify the fraction:

u′ =
(α− β)X ′

(β −X)2

= (α− β)X ′ X

(β −X)2

= (α− β)k(α−X)(β −X)
X

(β −X)2

= (α− β)k
α−X

β −X
= (α− β)ku

Exponential modeling for u′ = cu gives u = u0e
ct = u0e

(α−β)kt. ■

48. (Mass-Action Derivation) Let k, α, β be positive constants, α < β. Define X =
(α − βu)/(1 − u), where u = u0e

(α−β)kt and u0 = (α − X0)/(β − X0). Verify by
calculus computation that (1) X ′ = k(α−X)(β −X) and (2) X(0) = X0.

Drug Dosage
Employ the drug dosage model D(t) = D0e

−ht given on page 21. Apply the
techniques of Example 1.19, page 27.

49. (Injection Dosage) Bloodstream injection of a drug into an animal requires a mini-
mum of 20 milligrams per pound of body weight. Predict the dosage for a 12-pound
animal which will maintain a drug level 3% higher than the minimum for two hours.
Assume half-life 3 hours.

Solution:Answer: 393 milligrams. Follow the Drug Dosage example. The drug
model is D(t) = D0e

−ht, where D0 is the initial dosage and h is the elimina-
tion constant. A half-life of three hours means D0e

−3h = 1
2D0, which determines

h = 1
3 ln(2) = 0.2310490602. Constant D0 is unknown. The requirement on D0 is

inequality D(t) > 1.03(12)(20), valid for t = 0 to t = 2 hours. Depletion of the drug
in the bloodstream means the drug levels are always decreasing, so it is enough to
require that the level at 2 hours exceeds 1.03(12)(20). The critical value of dosage
D0 then occurs when D(2) = 1.03(12)(20) = 247.20 or D0e

−2h = 247.20. Then
D0 = 247.20e2h = 392.4055401 milligrams.

50. (Injection Dosage) Bloodstream injection of an antihistamine into an animal re-
quires a minimum of 4 milligrams per pound of body weight. Predict the dosage for
a 40-pound animal which will maintain an antihistamine level 5% higher than the
minimum for twelve hours. Assume half-life 3 hours.
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51. (Oral Dosage) An oral drug with half-life 2 hours is fully absorbed into the blood-
stream in 45 minutes, blood level 63% of the dose. Assume 500 milligrams in the
first dose is fully absorbed at t = 0. A second dose is taken 1 hour later to maintain
a blood level of at least 180 milligrams for 2.5 hours. Explain why 1 hour might be
reasonable.

Solution: Follow the Drug Dosage example. A typical drug brand is Tylenol, 500
milligrams per tablet. A 45-minute absorption means the blood level is (0.63)500 =
315 milligrams at time t = 0 hours. Then the body starts to eliminate the drug
according to drug model D(t) = 315e−ht, where h is the elimination constant. The
half-life information implies e−2h = 0.5 and then h = ln(2)/2 = 0.3465735903. The
problem: predict the time T in hours at which the second dose of 500 milligrams
should be ingested. A guess for the answer T is provided by the blood level 315
depleting to 180, which happens when D(t) = 180. Equation 315e−hT = 180 has
solution T = 1.614709844 hours. When the second dose is taken, about 45 minutes is
required for the blood level to return to 315. In 45 minutes after dose two (taken at the
one hour mark), the blood level from dose one falls to D(1.075) = 315e−(1+0.75)h =
171.7549679. This contribution from dose one is slightly below 180, while contribu-
tions from dose two have maximized the blood level to 315. If 1.6 hours is used instead
of one hour for dose two, then D(1.6+0.75) = 315e−(1.6+0.75)h = 139.5083842, which
means the blood level can drop below 180 for some time interval after dose two was
ingested. The absorption rate of the drug affects blood levels significantly, but all
that is known is 45 minutes to full absorption. Once the blood level is 315, then the
previous analysis applies: D(1.5) = 315e−(1.5)h = 187.3001206 insures blood level
180 for 2.5 hours.

52. (Oral Dosage) An oral drug with half-life 2 hours is fully absorbed into the blood-
stream in 45 minutes, blood level 63% of the dose. Determine three (small) dosage
amounts, and their administration time, which keep the blood level above 180 mil-
ligrams but below 280 milligrams over three hours.

1.3 Differential Equations of First Order

Exercises 1.3 �
Solution Verification
Given the differential equation, initial condition and proposed solution y, verify
that y is a solution. Don’t try to solve the equation!

1.
dy

dx
= y, y(0) = 2, y = 2ex

Solution: The details are an answer check with two panels.
Panel 1: Test DE.

LHS =
dy

dx
Left side of DE dy

dx = y

=
d

dx
(2ex) Substitute expected answer y = 2ex.

= 2ex Calculus constant rule and exponential rule.

= y Definition y = 2ex.
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= RHS Equal left and right side expressions for all symbols. DE verified.

Panel 2: Test IC.

LHS = y(0) Left side of IC y(0) = 2

= 2ex|x=0 Substitute expected answer y = 2ex.

= 2e0 Substitute x = 0.

= 2 · 1 Use e0 = 1.

= RHS Left and right side of y(0) = 2 match for all symbols. IC verified.

2. y′ = 2y, y(0) = 1, y = e2x

3. y′ = y2, y(0) = 1, y = (1− x)−1

Solution:Follow Exercise 1. In panel 1, dy/dx is found by the calculus power rule
(un)′ = nun−1u′ as y′ = ((1−x)−1)′ = (−1)(1−x)−2(−1). The RHS = y2 = (1−x)−2.

4.
dy

dx
= y3, y(0) = 1,

y = (1− 2x)−1/2

5. D2y(x) = y(x), y(0) = 2,
Dy(0) = 2, y = 2ex

Solution:Follow Exercise 1.

6. D2y(x) = −y(x), y(0) = 0,
Dy(0) = 1, y = sinx

7. y′ = sec2 x, y(0) = 0, y = tanx

Solution:Follow Exercise 1. Needed in panel 1 is calculus identity (tan(x))′ = sec2(x)
and trig identities tanx = sinx/ cosx, sin 0 = 0, cos 0 = 1.

8. y′ = − csc2 x, y(π/2) = 0,
y = cotx

9. y′ = e−x, y(0) = −1, y = −e−x

Solution:Follow Exercise 1. Needed in panel 1 is calculus identity (eu)′ = eu u′. In
panels 1,2 use pre-calculus identity e0 = 1.

10. y′ = 1/x, y(1) = 1, y = lnx

Explicit and Implicit Solutions
Identify the given solution as implicit or explicit. If implicit, then solve for y in
terms of x by college algebra methods.

11. y = x+ sinx

Solution:Explicit. The test: y isolated left, right side independent of symbol y.
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12. y = x+ sinx

Solution:Explicit.

13. 2y + x2 + x+ 1 = 0

Solution:Implicit. Left side is not y alone.

14. x− 2y + sinx+ cosx = 0

Solution:Implicit.

15. y = eπ

Solution:Explicit. The test: y isolated left, right side independent of symbol y.

16. ey = π

Solution:Implicit.

17. e2y = ln(1 + x)

Solution:Implicit. Left side is not y alone but a composition involving y.

18. ln |1 + y2| = ex

Solution:Implicit.

19. tan y = 1 + x

Solution:Implicit. Left side is not y alone but a composition involving y.

20. sin y = (x− 1)2

Solution:Explicit.

Tables and Explicit Equations
For the given explicit equation, make a table of values x = 0 to x = 1 in steps of
0.2.

21. y = x2 − 2x

Solution:
x y
0. 0.
0.2 -0.36
0.4 -0.64
0.6 -0.84
0.8 -0.96
1.0 -1.00

# Maple code

Y:=x->x^2-2*x;

seq([0+n*0.2,Y(0+n*0.2)],n=0..5);
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22. y = x2 − 3x+ 1

23. y = sinπx

Solution:Follow exercise 21.

24. y = cosπx

25. y = e2x

Solution:Follow exercise 21.

26. y = e−x

27. y = ln(1 + x)

Solution:Follow exercise 21.

28. y = x ln(1 + x)

Tables and Approximate Equations
Make a table of values x = 0 to x = 1 in steps of 0.2 for the given approximate
equation. Identify precisely the recursion formulas applied to obtain the next
table pair from the previous table pair.

29. y(x+ 0.2) ≈ y(x) + 0.2(1− y(x)), y(0) = 1

Solution:The idea is to replace ≈ by =, then replace x by 0.2n, for n = 0, . . . , 5 in
order for x to exhaust x = 0 to 1 in steps of 0.2. Define yn = y(0.2n). Then the
recursion is yn+1 = yn + 0.2(1− yn), y0 = 1.

30. y(x+ 0.2) ≈ y(x) + 0.2(1 + y(x)), y(0) = 1

31. y(x+ 0.2) ≈ y(x) + 0.2(x− y(x)), y(0) = 0

Solution:yn+1 = yn + 0.2(0.2n− yn), y0 = 0.

32. y(x+ 0.2) ≈ y(x) + 0.2(2x+ y(x)), y(0) = 0

33. y(x+ 0.2) ≈ y(x) + 0.2(sinx+ xy(x)), y(0) = 2

Solution:yn+1 = yn + 0.2(sin(0.2n) + 0.2nyn), y0 = 2.

34. y(x+ 0.2) ≈ y(x) + 0.2(sinx− x2y(x)), y(0) = 2

35. y(x+ 0.2) ≈ y(x) + 0.2(ex − 7y(x)), y(0) = −1
Solution:yn+1 = yn + 0.2(e0.2n − 7yn), y0 = −1.

36. y(x+ 0.2) ≈ y(x) + 0.2(e−x − 5y(x)), y(0) = −1
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37. y(x+ 0.2) ≈ y(x) + 0.1(e−2x − 3y(x)), y(0) = 2

Solution:yn+1 = yn + 0.1(e−0.4n − 3yn), y0 = 2.

38. y(x+ 0.2) ≈ y(x) + 0.2(sin 2x− 2y(x)), y(0) = 2

Hand Graphing
Make a graphic by hand on engineering paper, using 6 data points. Cite the
divisions assigned horizontally and vertically. Label the axes and the center
of coordinates. Supply one sample hand computation per graph. Employ a
computer program or calculator to obtain the data points.

39. y = 5x3, x = 0 to x = 1.

Solution: Maple:

Y:=x->5*x^3;L:=seq([0+n*0.2,Y(0+n*0.2)],n=0..5);

# [0., 0.], [0.2, 0.040], [0.4, 0.320], [0.6, 1.080],

# [0.8, 2.560], [1.0, 5.000]

plot([L],font=[times,bold,20],symbolsize=20,

style=pointline,thickness=3);

x y
0.0 0.0

0.2 0.04

0.4 0.32

0.6 1.08

0.8 2.56

1.0 5.0

A hand-drawn graphic is expected, using the methods in Appendix A.

40. y = 3x, x = 0 to x = 1.

41. y = 2x5, x = 0 to x = 1.

Solution:Follow exercise 39.
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42. y = 3x7, x = 0 to x = 1/2.

43. y = 2x4, x = 0 to x = 1.

Solution:Follow exercise 39.

44. y = 3x6, x = 0 to x = 1.

45. y = sinx, x = 0 to x = π/4.

Solution:Follow exercise 39.

46. y = cosx, x = 0 to x = π/4.

47. y =
x+ 1

x+ 2
, x = 0 to x = 1.

Solution:Follow exercise 39.

48. y =
x− 1

x+ 1
, x = 0 to x = 1.

49. y = ln(1 + x), x = 0 to x = 1.

Solution:Follow exercise 39.

50. y = ln(1 + 2x), x = 0 to x = 1.

1.4 Direction Fields

Exercises 1.4 �
Window and Grid
Find the equilibrium solutions, then determine a graph window which includes
them and construct a 5× 5 uniform grid. Follow Example 1.25.

1. y′ = 2y

Solution:Equilibrium solution: y = 0.
Equilibrium solutions are found by substitution into the DE (y′ = 2y in the present
case) using substitution y = c. The same substitution is used for every DE, where
c is a constant. Then (c)′ = 2c determines c. There is just one value c = 0 that
satisfies the equation (c)′ = 2c, because (c)′ = 0 for any constant c. It is possible for
some DE that no value of c exists or that multiple values of c exist. In the present
case: y = 0 results from y = c after substitution of the answer(s) for c. Equilibrium
solution y = 0 is reported.

The graph window could be −0.2 ≤ x ≤ 1.2, −5 ≤ y ≤ 5. It contains edge-to-edge
curve y = 0, the equilibrium solution. There is no unique graph window to report:
there are infinitely many choices, all correct.
The grid points are then selected for a 5 × 5 uniform grid (25 grid points). For
instance, xk = 0.2k, k = 1, . . . , 5 and yk = k(−1)k for k = 1, . . . , 5. The grid point
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pairs (x, y) are:
(0.2, -1), (0.4, -1), (0.6, -1), (0.8, -1), (1.0, -1),

(0.2, 2), (0.4, 2), (0.6, 2), (0.8, 2), (1.0, 2),

(0.2, -3), (0.4, -3), (0.6, -3), (0.8, -3), (1.0, -3),

(0.2, 4), (0.4, 4), (0.6, 4), (0.8, 4), (1.0, 4),

(0.2, -5), (0.4, -5), (0.6, -5), (0.8, -5), (1.0, -5)

# Maple code

L:=seq(seq( [0.2*k,j*(-1)^j ],k=1..5),j=1..5);

plot([L],style=point,font=[courier,bold,20],

view=[0 ..1.2,-6..6]);

2. y′ = 3y

3. y′ = 2y + 2

Solution:Follow Exercise 1. Equilibrium solution y = −1.

4. y′ = 3y − 2

5. y′ = y(1− y)

Solution:Follow Exercise 1. Equilibrium solutions y = 0 and y = 1.

6. y′ = 2y(3− y)

7. y′ = y(1− y)(2− y)

Solution:Follow Exercise 1. Equilibrium solutions y = 0, y = 1 and y = 2. Suitable
graph window: −1 ≤ x ≤ 1, −0.2 ≤ y ≤ 2.2.

8. y′ = 2y(1− y)(1 + y)

9. y′ = 2(y − 1)(y + 1)2

Solution:Follow Exercise 1. Equilibrium solutions y = 1 and y = −1.

10. y′ = 2y2(y − 1)2
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11. y′ = (x+ 1)(y + 1)(y − 1)y

Solution:Follow Exercise 1. Equilibrium solutions y = −1 and y = 1. The factor
(x + 1) is canceled from the solution process for c, because the equation (c)′ =
(x+1)(c+1)(c−1) is valid for all x. For instance, at x = 0 it says 0 = (c+1)(c−1),
which results in the two answers c = −1 and c = 1.

12. y′ = 2(x+ 1)y2(y + 1)(y − 1)2

13. y′ = (x+ 2)y(y − 3)(y + 2)

Solution:Follow Exercise 1. Equilibrium solutions y = 0, y = 3 and y = −2. Factor
(x+ 2) cancels from the solution process for c; see Exercise 11.

14. y′ = (x+ 1)y(y − 2)(y + 3)

Threading Solutions
Each direction field below has window 0 ≤ x ≤ 3, 0 ≤ y ≤ 3. Start each threaded
solution at a black dot and continue it left and right across the field. Dotted
horizontal lines are equilibrium solutions. See Example 1.26.

15.

1

2

0

Solution:A computer-generated plot is not expected, just a hand-sketched drawing
made over a paper print of the figure in Exercise 15. Drawing details expected: the
curve has to go through the solid black dot; the curve’s slope must match the slope
of each arrow it passes.

The computer plot:
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with(DEtools): # maple

phaseportrait((D(y))(x) = y(x)*(2-y(x))*(1-y(x)), y(x),

x = 0 .. 3, [[y(0) = 0], [y(0) = 1], [y(0) = 2],

[y(1.5) = 0.5], [y(1.5) = 1.4], [y(1.5) = 2.5]]);

Phase portrait packages make it possible to efficiently generate threaded curves by
mouse-click.

16.

1

2

0

17.

1

2

0

18.

1

2

0

19.

1

2

0

20.
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1

2

0

21.

1

2

0
.5

22.

1

2

0
.5

23.

1

2

0

24.

1

2

0

1069



1.4 Direction Fields

Uniform Grid Method
Apply the uniform grid method as in Example 1.27, page 45 to make a direction
field of 11 × 11 grid points for the given differential equation on −1 ≤ x ≤ 1,
−2 ≤ y ≤ 2. If using a computer program, then use about 20× 20 grid points.

25. y′ = 2y

Solution:The computer plot:

with(DEtools): # maple

dfieldplot(diff(y(x),x) = 2*y(x), y(x), x = 0 .. 2,

y = 0..2,color=black,dirfield=[11,11],

arrows=THICK,axes=none);

26. y′ = 3y

27. y′ = 1 + y

28. y′ = 2 + 3y

29. y′ = x+ y(2− y)

30. y′ = x+ y(1− 2y)

31. y′ = 1 + y(2− y)

32. y′ = 1 + 2y(2− y)

33. y′ = x− y

34. y′ = x+ y

35. y′ = y − sin(x)

36. y′ = y + sin(x)
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Isocline Method
Apply the isocline method as in Example 1.28, page 47 to make a direction field
of about 11×11 points for the given differential equation on 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.
Computer programs are used on these kinds of problems to find grid points as
intersections of isoclines and horizontal lines. Graphics are expected to be done
by hand. Extra isoclines can fill large white spaces.

37. y′ = x− y2

Solution: Needed are 11 or more isoclines x− y2 = M that remain mostly inside the
graph window. Values of M are chosen by successive trial and error. Isoclines curves
are standard curve library parabolas y− y0 = x2 which can be drawn by tracing and
vertex translation. The five figures below show:
(1) a set of isoclines
(2) a 3D interpretation of the contours (z equals M),
(3) computer-generated direction field,
(4) isoclines plus lineal elements,
(5) lineal elements only.

A lineal element drawn in the direction field has constant value M along an isocline
x − y2 = M . There are only 14 different slopes to draw. The clumsy part of the
effort is matching the lineal element slope M to the correct isocline in the figure, the
plan being to duplicate the lineal element along the isocline curve by rigid translation
(easel and T-square work on paper).
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# Maple isocline plot

MM:=[seq(0.9-k/10,k=0..18)]:evalf(MM,1);

plots[implicitplot]([seq(x-y*y=M,M in MM)],x=0..1,y=0..2,

thickness=4,color=black,axes=none,scaling=constrained);

# Maple contour plot of isoclines

plot3d(x-y*y,x=0..1,y=0..2,style=contour,

thickness=4,color=black,font=[courier,bold,16],

labelfont=[courier,bold,24]);

# Maple direction field plot

DEtools[dfieldplot](diff(y(x),x) = x-y(x)*y(x), y(x),

x = 0 .. 1, y = 0..2,color=black,dirfield=[7,11],

arrows=THICK,axes=none,scaling=constrained);

38. y′ = 2x− y2

39. y′ = 2y/(x+ 1)

40. y′ = −y2/(x+ 1)2

41. y′ = sin(x− y)

42. y′ = cos(x− y)

43. y′ = xy

44. y′ = x2y

45. y′ = xy + 2x

46. y′ = x2y + 2x2

1.5 Phase Line Diagrams

Exercises 1.5 �
Stability-Instability Test
Find all equilibria for the given differential equation and then apply Theorem
1.3, page 55, to obtain a classification of each equilibrium as a source, sink or
node. Do not draw a phase line diagram.

1. P ′ = (2− P )P

Solution:Equilibria P = 0, P = 2. Let f(y) = (2− y)y. Then samples f(−1) = −3,
f(1) = 1, f(3) = −3 show that f changes from minus to plus at y = 0 and from plus
to minus at y = 2. Theorem 1.3 applies: y = 0 is a source and y = 2 is a sink.

2. P ′ = (1− P )(P − 1)

3. y′ = y(2− 3y)

Solution:y = 0 is a source and y = 2/3 is a sink
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4. y′ = y(1− 5y)

5. A′ = A(A− 1)(A− 2)

Solution:A = 0 is a source, A = 1 is a sink, A = 2 is a source.

6. A′ = (A− 1)(A− 2)2

7. w′ =
w(1− w)

1 + w2

Solution:The sign of f(y) = y(1− y)/(1+ y2) alternates from minus to plus to minus
crossing the equilibria y = 0, 1. Then w = 0 is a source and w = 1 is a sink.

8. w′ =
w(2− w)

1 + w4

9. v′ =
v(1 + v)

4 + v2

Solution:Sink v = 0, source v = −1.

10. v′ =
(1− v)(1 + v)

2 + v2

Phase Line Diagram
Draw a phase line diagram, with detail similar to Figure 20.

11. y′ = y(2− y)

Solution:

− + −
y

0 2

12. y′ = (y + 1)(1− y)

13. y′ = (y − 1)(y − 2)

Solution:

+ − +
y

1 2

14. y′ = (y − 2)(y + 3)

15. y′ = y(y − 2)(y − 1)

Solution:

− + − +
y

0 1 2

16. y′ = y(2− y)(y − 1)
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17. y′ =
(y − 2)(y − 1)

1 + y2

Solution:

+ − +
y

1 2

18. y′ =
(2− y)(y − 1)

1 + y2

19. y′ =
(y − 2)2(y − 1)

1 + y2

Solution:

− + +
y

1 2

20. y′ =
(y − 2)(y − 1)2

1 + y2

Phase Portrait
Draw a phase portrait of threaded curves, using the phase line diagram con-
structed in the previous ten exercises.

21. y′ = y(2− y)

Solution:

− + −
y

0 2
The curves drawn by hand should be either increasing or decreasing. The phase
portrait contains horizontal lines y = 0 and y = 2. A threaded curve started at
x = 0, y < 0 is decreasing and exits the bottom edge of the graphic. A threaded
curve started at x = 0 with 0 < y < 1 will increase and be trapped between the lines
y = 0 and y = 1, limiting at infinity to the line y = 1. A threaded curve started at
x = 0 with y > 1 will decrease and limit at infinity to the line y = 1. SPOUT: y = 0,
FUNNEL: y = 1. Duplicate labels are SOURCE and SINK. The expected figure is
drawn from the phase line diagram above using the three rules for constructing a
phase portrait:

1. Equilibrium solutions are horizontal lines.
Plotted equilibria are y = 2, y = 0, RED in the graphic.

2. Threaded solutions of y′ = f(y) don’t cross.
These are the BLACK curves in the graphic.

3. A threaded non-equilibrium solution that starts at x = 0 at a point y0 must be
increasing if f(y0) > 0, and decreasing if f(y0) < 0.
Initial values used: y(0) = −1/2, y(0) = 1.7, y(0) = 2.3.
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with(DEtools): # maple

phaseportrait((D(y))(x) = y(x)*(2-y(x)), y(x),

x = 0 .. 0.6, [[y(0) = -0.5], [y(0) = 0],

[y(0)=1.7],[y(0)=2],[y(0)=2.3]],arrows=none,

linecolor=[black,red,black,red,black],

thickness=5,font=[courier,bold,18],labels=["",""]);

22. y′ = (y + 1)(1− y)

23. y′ = (y − 1)(y − 2)

24. y′ = (y − 2)(y + 3)

25. y′ = y(y − 2)(y − 1)

26. y′ = y(2− y)(y − 1)

27. y′ =
(y − 2)(y − 1)

1 + y2

28. y′ =
(2− y)(y − 1)

1 + y2

29. y′ =
(y − 2)2(y − 1)

1 + y2

30. y′ =
(y − 2)(y − 1)2

1 + y2

Bifurcation Diagram
Draw a stack of phase line diagrams and construct from it a succinct bifurcation
diagram with abscissa k and ordinate y(0). Don’t justify details at a bifurcation
point.

31. y′ = (2− y)y − k

Solution:Follow the Bifurcation Diagram example. Exercise 23 below will be
solved as a second distinct example.
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32. y′ = (3− y)y − k

33. y′ = (2− y)(y − 1)− k

Solution:Follow the Bifurcation Diagram example. The change of variables u =
y−1 changes the y-equation into u′ = (1−u)u−k, which is an autonomous differential
equation similar to Exercise 21. Let f(u) = (1−u)u−k, where k is a parameter that
controls the harvesting rate per annum. A phase line diagram will be made for each
relevant value of k. First, the equilibria are computed as the roots u = a(k), u = b(k)
of f(u) = 0 by the quadratic formula in college algebra:

a(k) =
1

2
+

1

2

√
1− 4 k, b(k) =

1

2
− 1

2

√
1− 4 k

The roots are real only in case 1 − 4k ≥ 0 or k ≤ 0.25. A double root occurs at
k = 0.25.

− + −
u, k = 0.05

0.053 0.947

u, k = 0.1

0.113 0.887

u, k = 0.15

0.184 0.816

u, k = 0.2

0.276 0.724

The phase line diagrams are rotated counter-clockwise 90 degrees and assembled into
a bifurcation diagram with connect-the-dots applied to the equilibria. The bifurcation
point is at k = 0.25.

1076



1.6 Computing and Existence

f:=u->u*(1-u)-k;

w:=unapply([solve(f(y)=0,y)],k);w(0.05),w(0.1),w(0.15),w(0.2);

with(plots):

eqs := [y=1/2 + sqrt(1 - 4*k)/2, y=1/2 - sqrt(1 - 4*k)/2]

Plot1:=implicitplot(eqs,k=0..0.25,y=0..2,font=[courier,bold,18],

thickness=5,color=[red,green],labelfont=[courier,bold,24]);

Plot2:=pointplot([[0.25,1/2],[0.05, 0.95], [.1, 0.89],

[0.15, 0.82], [0.2, 0.72], [0.05,0.053], [0.1,.11],

[0.15,0.18], [0.2,0.28]],symbol=solidcircle,symbolsize=30)

display(Plot1,Plot2,labels=[k,u])

The bifurcation diagram for the original equation y′ = (2− y)(y− 1)− k is obtained
by translation y = u+ 1.

34. y′ = (3− y)(y − 2)− k

35. y′ = y(0.5− 0.001y)− k

Solution:Factor out 0.001. Then follow the Bifurcation Diagram example.

36. y′ = y(0.4− 0.045y)− k

Details and Proofs
Supply details for the following statements.

37. (Stability Test)

Verify (b) of Theorem 1.3, page 55, by altering the proof given in the text for (a).

Solution:Replace f by −f in the proof of part (a) to discover the proof for part (b).

38. (Stability Test)

Verify (b) of Theorem 1.3, page 55, by means of the change of variable x→ −x.

39. (Autonomous Equations)

Let y′ = f(y) have solution y(x) on a < x < b. Then for any c, a < c < b, the
function z(x) = y(x+ c) is a solution of z′ = f(z).

Solution:The chain rule gives z′(x) = y′(x+ c)(x+ c)′ = y′(x+ c) 1 = f(y(x+ c)) =
f(z(x)). Therefore, z is a solution if y is a solution.

40. (Autonomous Equations)

The method of isoclines can be applied to an autonomous equation y′ = f(y) by
choosing equally spaced horizontal lines y = ci, i = 1, . . . , k. Along each horizontal
line y = ci the slope is a constant Mi = f(ci), and this determines the set of invented
slopes {Mi}ki=1 for the method of isoclines.

1.6 Computing and Existence

Exercises 1.6 �
Multiple Solution Example
Define f(x, y) = 3(y − 1)2/3. Consider y′ = f(x, y), y(0) = 1.
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1. Do an answer check for y(x) = 1. Do a second answer check for y(x) = 1 + x3.

Solution: A formal 2-panel answer check will be given for both solutions. It is
expected that everyone will abbreviate the answer check, but essential details are
expected.

Define f(x, y) = 3(y − 1)2/3 and
y(x) = 1.
Panel 1: Verify DE.

LHS = y′

= (1)′

= 0

RHS = f(x, y)

= f(x, 1)

= 3(0)2/3

= 0 DE verified.

Panel 2: Verify IC.

LHS = y(0)

= (1) |x=0

= 1 IC verified.

Define f(x, y) = 3(y − 1)2/3 and
y(x) = 1 + x3.
Panel 1: Verify DE.

LHS = y′

= (1 + x3)′

= 3x2

RHS = f(x, y)

= f(x, 1 + x3)

= 3(x3)2/3

= 3x2 DE verified.

Panel 2: Verify IC.

LHS = y(0)

= (1 + x3)
∣∣
x=0

= 1 IC verified.

2. Let y(x) = 1 on 0 ≤ x ≤ 1 and y(x) = 1 + (x − 1)3 for x ≥ 1. Do an answer check
for y(x).

3. Does fy(x, y) exist for all (x, y)?

Solution:Let f(x, y) = 3(y − 1)2/3. Then fy(x, y) = 2(y − 1)−1/3. There is a divide
by zero error at y = 1. Answer: No, it does not exist for all (x.y).

4. Verify that Picard’s theorem does not apply to y′ = f(x, y), y(0) = 1, due to discon-
tinuity of fy.

5. Verify that Picard’s theorem applies to y′ = f(x, y), y(0) = 2.

Solution:Let f(x, y) = 3(y − 1)2/3, y(0) = 2. Then f is everywhere continuous and
fy(x, y) = 2(y − 1)−1/3 is continuous near y = 2 (the initial condition is y(0) = 2).
The hypotheses of Picard’s theorem are satisfied. The theorem applies.

Be advised that a theorem applies just means that the theorem’s hypotheses should
be checked for validity. This particular question has been often misinterpreted, the
question left unanswered while providing details for a closed-form solution found with
calculus and differential equations methods. Such details do not check hypotheses,
instead they find a formula for the solution, a question not asked.

6. Let y(x) = 1+ (x+1)3. Do an answer check for y′ = f(x, y), y(0) = 2. Does another
solution exist?
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Discontinuous Equation Example

Consider y′ =
2y

x− 1
, y(0) = 1. Define y1(x) = (x − 1)2 and y2(x) = c(x − 1)2.

Define y(x) = y1(x) on −∞ < x < 1 and y(x) = y2(x) on 1 < x < ∞. Define
y(1) = 0.

7. Do an answer check for y1(x) on −∞ < x < 1. Do an answer check for y2(x) on
1 < x <∞. Skip condition y(0) = 1.

Solution: Define f(x, y) =
2y

x− 1
, y(x) = (x− 1)2.

Panel 1: Verify DE.

LHS = y′

= ((x− 1)2)′

= 2(x− 1) Chain rule and power rule.

RHS = f(x, y)

= f(x, (x− 1)2)

=
2(x− 1)2

x− 1
= 2(x− 1) DE verified.

Define f(x, y) =
2y

x− 1
, y(x) = c(x− 1)2.

LHS = y′

= (c(x− 1)2)′

= 2c(x− 1) Chain rule and constant rule.

RHS = f(x, y)

= f(x, c(x− 1)2)

=
2c(x− 1)2

x− 1
= 2c(x− 1) DE verified.

8. Justify one-sided limits y(1+) = y(1−) = 0. The functions y1 and y2 join continuously
at x = 1 with common value zero and the formula for y(x) gives one continuous formal
solution for each value of c (∞-many solutions).

9. (a) For which values of c does y′2(1) exist? (b) For which values of c is y2(x) contin-
uously differentiable?

Solution:Define y2(x) = c(x − 1)2. Then y′2(x) = 2c(x − 1), which is continuous.
Answer: For all values of constant c.

10. Find all values of c such that y2(x) is a continuously differentiable function that
satisfies the differential equation and the initial condition.

Finite Blowup Example
Consider y′ = 1 + y2, y(0) = 0. Let y(x) = tanx.

1079



1.6 Computing and Existence

11. Do an answer check for y(x).

Solution: Let f(x, y = 1 + y2, y(x) = tanx.
Panel 1: Verify DE.

LHS = y′

= (tanx)′

= sec2 x Derivative table, calculus.

RHS = f(x, y)

= f(x, tanx)

= 1 + tan2 x

= sec2 x Trig identity. DE verified.

Panel 2: Verify IC.

LHS = y(0)

= (tanx) |x=0

= tan 0

= 0 Trig identity. IC verified.

12. Find the partial derivative fy for f(x, y) = 1 + y2. Justify that f and fy are
everywhere continuous.

13. Justify that Picard’s theorem applies, hence y(x) is the only possible solution to the
initial value problem.

Solution:Both f(x, y) = 1 + y2 and its derivative fy(x, y) = 2y are everywhere con-
tinuous. The hypotheses of Picard’s theorem are satisfied.

14. Justify for a = −π/2 and b = π/2 that y(a+) = −∞, y(b−) =∞. Hence y(x) blows
up for finite values of x.

Numerical Instability Example
Let f(x, y) = y − 2e−x.

15. Do an answer check for y(x) = e−x as a solution of the initial value problem y′ =
f(x, y), y(0) = 1.

Solution: Let f(x, y) = y − 2e−x, y(x) = e−x.
Panel 1: Verify DE.

LHS = y′

= (e−x)′

= −e−x Chain rule (eu)′ = u′eu.

RHS = f(x, y)

= f(x, e−x)

= e−x − 2e−x

= −e−x DE verified.

Panel 2: Verify IC.
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LHS = y(0)

= (e−x) |x=0

= e0

= 1 Exponential identity. IC verified.

16. Do an answer check for y(x) = cex + e−x as a solution of y′ = f(x, y).

Multiple Solutions
Consider the initial value problem y′ = 5(y − 2)4/5, y(0) = 2.

17. Do an answer check for y(x) = 2. Do a second answer check for y(x) = 2 + x5.

Solution:The answer check for y(x) = 2 will be skipped, because it parallels the one
supplied below.
Let f(x, y) = 5(y − 2)4/5, y(x) = 2 + x5.
Panel 1: Verify DE y′ = 5(y − 2)4/5.

LHS = y′

= (2 + x5)′

= 5x4 Power rule.

RHS = f(x, y)

= f(x, 2 + x5)

= 5(2 + x5 − 2)4/5

= 5x4 DE verified.

Panel 2: Verify IC y(0) = 2.

LHS = y(0)

= (2 + x5) |x=0

= 2 IC verified.

18. Verify that the hypotheses of Picard’s theorem fail to apply.

19. Find a formula which displays infinitely many solutions to y′ = f(x, y), y(0) = 2.

Solution:The initial value problem is y′ = 5(y − 2)4/5, y(0) = 2. Define y = 2 on
−1 ≤ x ≤ c and y = 2 + (x− c)5 for x > c > 0. By definition, y(0) = 2. Let’s focus
on verifying the DE. For −1 ≤ x ≤ c with c > 0 the answer check is identical to
exercise 17. For x > c, the details are:
Panel 1: Verify DE y′ = 5(y − 2)4/5.

LHS = y′

= (2 + (x− c)5)′

= 5(x− c)4 Power rule.

RHS = f(x, y)

= f(x, 2 + (x− c)5)

= 5(2 + (x− c)5 − 2)4/5

= 5(x− c)4 DE verified.
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20. Verify that the hypotheses of Peano’s theorem apply.

Solution:Suggestion: Use continuity of compositions of continuous functions.

Discontinuous Equation

Consider y′ =
y

x− 1
, y(0) = 1. Define y(x) piecewise by y(x) = −(x − 1) on

−∞ < x < 1 and y(x) = c(x− 1) on 1 < x <∞. Leave y(1) undefined.

21. Do an answer check for y(x). The initial condition y(0) = 1 applies only to the
domain −∞ < x < 1.

Solution:To be checked: y′ =
y

x− 1
, y(0) = 1.

Part I.
Let y(x) = −(x− 1) on −∞ < x < 1. Because y(0) = −(0− 1) = 1, just the DE will
be verified.

Panel 1: Verify DE y′ =
y

x− 1
for y(x) = −(x− 1).

LHS = y′

= (−(x− 1))′

= −1 Constant rule.

RHS = f(x, y)

= f(x,−(x− 1))

=
−(x− 1)

x− 1
= −1 DE verified.

Part II.
Let y(x) = c(x− 1) on 1 < x <∞. Because x = 0 is not in the domain, just the DE
will be verified.

Panel 1: Verify DE y′ =
y

x− 1
for y(x) = c(x− 1).

LHS = y′

= (c(x− 1))′

= c Constant rule.

RHS = f(x, y)

= f(x, c(x− 1))

=
c(x− 1)

x− 1
= c DE verified.

22. Justify one-sided limits y(1+) = y(1−) = 0. The piecewise definitions of y(x) join
continuously at x = 1 with common value zero and the formula for y(x) gives one
continuous formal solution for each value of c (∞-many solutions).

23. (a) For which values of c does y′(1) exist? (b) For which values of c is y(x) continu-
ously differentiable?

Solution:(a) All x ̸= 1. (b) All x ̸= 1.
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24. Find all values of c such that y(x) is a continuously differentiable function that
satisfies the differential equation and the initial condition.

Picard Iteration
Find the Picard iterates y0, y1, y2, y3.

25. y′ = y + 1, y(0) = 2

Solution:Answer:
y0 = 2,
y1 = 2 + 3x,
y2 = 2 + 3x+ 3/2x2,
y3 = 2 + 3x+ 3/2x2 + 1/2x3

y0:=2:f:=(x,y)->y+1:# Maple

y1:=x->y0+int(f(t,y0),t=0..x):

y2:=x->y0+int(f(t,y1(t)),t=0..x):

y3:=x->y0+int(f(t,y2(t)),t=0..x):

u[0]:=y0;u[1]:=y1(x);u[2]:=y2(x);u[3]:=y3(x);

ANS:=seq(y[i]=u[i],i=0..3);# List of iterates

SOL:=u[0]+sum(u[i]-u[i-1],i=1..3);# approximates y(x)

#

# Test series solution against iterate SOL

de:=diff(y(x),x)=f(x,y(x)): ic:=y(0)=y0:

dsolve({de,ic},y(x)); dsolve({de,ic},y(x),series);

26. y′ = 2y + 1, y(0) = 0

27. y′ = y2, y(0) = 1

Solution:Answer:
y0 = 1,
y1 = x+ 1,
y2 = 2/3 + 1/3 (x+ 1)

3
,

y3 = 1 + x+ x7

63 + 1/9x6 + 1/3x5 + 2/3x4 + x3 + x2

The exact solution is 1/(1 − x) = 1 + x + x2 + x3 + · · ·. Picard iteration performs
poorly on this example, requiring many iterations to obtain 1 + x+ x2 + x3 + x4 in
the expansion SOL.

y0:=1:f:=(x,y)->y^2:# Maple

y1:=x->y0+int(f(t,y0),t=0..x):

y2:=x->y0+int(f(t,y1(t)),t=0..x):

y3:=x->y0+int(f(t,y2(t)),t=0..x):

u[0]:=y0;u[1]:=y1(x);u[2]:=y2(x);u[3]:=y3(x);

ANS:=seq(y[i]=u[i],i=0..3);# List of iterates

SOL:=u[0]+sum(u[i]-u[i-1],i=1..3);# approximates y(x)

28. y′ = y2, y(0) = 2

29. y′ = y2 + 1, y(0) = 0

Solution:Answer: The exact solution is y(x) = tanx. Iterates:
y0 = 0,
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1.6 Computing and Existence

y1 = x,
y2 = 1/3x3 + x,

y3 = x+ x7

63 + 2/15x5 + 1/3x3

y0:=0:f:=(x,y)->y^2+1:# Maple

y1:=x->y0+int(f(t,y0),t=0..x):

y2:=x->y0+int(f(t,y1(t)),t=0..x):

y3:=x->y0+int(f(t,y2(t)),t=0..x):

u[0]:=y0;u[1]:=y1(x);u[2]:=y2(x);u[3]:=y3(x);

ANS:=seq(y[i]=u[i],i=0..3);# List of iterates

SOL:=u[0]+sum(u[i]-u[i-1],i=1..3);# approximates y(x)

30. y′ = 4y2 + 4, y(0) = 0

31. y′ = y + x, y(0) = 0

Solution:Answer:
y0 = 0,
y1 = 1/2x2,
y2 = 1/2x2 + 1/6x3,
y3 = 1/2x2 + 1/24x4 + 1/6x3

y0:=0:f:=(x,y)->y+x:# Maple

y1:=x->y0+int(f(t,y0),t=0..x):

y2:=x->y0+int(f(t,y1(t)),t=0..x):

y3:=x->y0+int(f(t,y2(t)),t=0..x):

u[0]:=y0;u[1]:=y1(x);u[2]:=y2(x);u[3]:=y3(x);

ANS:=seq(y[i]=u[i],i=0..3);# List of iterates

SOL:=u[0]+sum(u[i]-u[i-1],i=1..3);# approximates y(x)

32. y′ = y + 2x, y(0) = 0

Picard Iteration and Taylor Series
Find the Taylor polynomial Pn(x) = y(0)+y′(0)x+· · ·+y(n)(0)xn/n! and compare
with the Picard iterates. Use a computer algebra system, if possible.

33. y′ = y, y(0) = 1, n = 4,
y(x) = ex

Solution:Answer: Taylor polynomial (1/2)x2+(1/6)x3+(1/24)x4+(1/120)x5+O(x6)

Solution from the iterates 1/6x3 + x5

120 +1/24x4 +1/2x2, which matches the Taylor
polynomial except for ordering of terms.

y0:=1:f:=(x,y)->y:# Maple

y1:=x->y0+int(f(t,y0),t=0..x):

y2:=x->y0+int(f(t,y1(t)),t=0..x):

y3:=x->y0+int(f(t,y2(t)),t=0..x):

u[0]:=y0;u[1]:=y1(x);u[2]:=y2(x);u[3]:=y3(x);

ANS:=seq(y[i]=u[i],i=0..3);# List of iterates

SOL:=u[0]+sum(u[i]-u[i-1],i=1..3);# approximates y(x)

taylor(exp(x),x=0,4);
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1.6 Computing and Existence

34. y′ = 2y, y(0) = 1, n = 4,
y(x) = e2x

35. y′ = x− y, y(0) = 1, n = 4,
y(x) = −1 + x+ 2e−x

Solution:Answer: Taylor polynomial 1− x+ x2 − (1/3)x3 +O(x4)
Solution from the iterates 1+x2−x−(1/3)x3+(1/24)∗x4, which matches the Taylor
polynomial except for ordering of terms.

y0:=1:f:=(x,y)->x-y:# Maple

y1:=x->y0+int(f(t,y0),t=0..x):

y2:=x->y0+int(f(t,y1(t)),t=0..x):

y3:=x->y0+int(f(t,y2(t)),t=0..x):

u[0]:=y0;u[1]:=y1(x);u[2]:=y2(x);u[3]:=y3(x);

ANS:=seq(y[i]=u[i],i=0..3);# List of iterates

SOL:=u[0]+sum(u[i]-u[i-1],i=1..3);# approximates y(x)

taylor(-1 + x + 2*exp(-x),x=0,4);

36. y′ = 2x− y, y(0) = 1, n = 4,
y(x) = −2 + 2x+ 3e−x

Numerical Instability
Use a computer algebra system or numerical laboratory. Let f(x, y) = y− 2e−x.

37. Solve y′ = f(x, y), y(0) = 1 numerically for y(30).

Solution:Answer: At x = 30, y(x) = −1533016.91678766, which is about 1.5 million.

y0:=1:f:=(x,y)->y-2*exp(-x):# Maple

de:=diff(y(x),x)=f(x,y(x)): ic:=y(0)=y0:

Y:=dsolve({de,ic},y(x),numeric): Y(30);

38. Solve y′ = f(x, y), y(0) = 1 + 0.0000001 numerically for y(30).

Solution:At x = 30, y(x) = −464432.443214007, which is about 0.5 million.

Closed–Form Existence
Solve these initial value problems using a computer algebra system.

39. y′ = y, y(0) = 1

Solution: Answer: y = ex.

de:=diff(y(x),x)=y(x);ic:=y(0)=1;# Maple

dsolve([de,ic],y(x));

40. y′ = 2y, y(0) = 2

41. y′ = 2y + 1, y(0) = 1

Solution:Answer: y = − 1
2 + 3

2e
2x.

de:=diff(y(x),x)=2*y(x)+1;ic:=y(0)=1;# Maple

dsolve([de,ic],y(x));
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42. y′ = 3y + 2, y(0) = 1

43. y′ = y(y − 1), y(0) = 2

Solution:Answer: y =
2

2− ex
.

de:=diff(y(x),x)=y(x)*(y(x)-1);ic:=y(0)=2;# Maple

dsolve([de,ic],y(x));

44. y′ = y(1− y), y(0) = 2

45. y′ = (y − 1)(y − 2), y(0) = 3

Solution:Answer: y =
ex − 4

ex − 2
.

de:=diff(y(x),x)=(y(x)-1)*(y(x)-2);ic:=y(0)=3;# Maple

dsolve([de,ic],y(x));

46. y′ = (y − 2)(y − 3), y(0) = 1

47. y′ = −10(1− y), y(0) = 0

Solution:Answer: y = 1− e10x.

de:=diff(y(x),x)=(-10)*(1-y(x));ic:=y(0)=0;# Maple

dsolve([de,ic],y(x));

48. y′ = −10(2− 3y), y(0) = 0

Lipschitz Condition
Justify the following results.

49. The function f(x, y) = x − 10(2 − 3y) satisfies a Lipschitz condition on the whole
plane.

Solution:f(x, y1) − f(x, y2) = 30(y1 − y2) implies |f(x, y1) − f(x, y2)| ≤ M |y1 − y2|
for M = 30.

50. The function f(x, y) = ax+ by+ c satisfies a Lipschitz condition on the whole plane.

51. The function f(x, y) = xy(1 − y) satisfies a Lipschitz condition on D = {(x, y) :
|x| ≤ 1, |y| ≤ 1}.
Solution:Details using the triangle inequality:
|f(x, y1)− f(x, y2)| = |x||(y2 − y1)(y2 + y1)− (y2 − y1)|

≤ |x|(|y2|+ |y1|+ 1)|y2 − y1)|
≤ 1 · (1 + 1 + 1)|y2 − y1)|
= M |y2 − y1)| for M = 3.

52. The function f(x, y) = x2y(a − by) satisfies a Lipschitz condition on D = {(x, y) :
x2 + y2 ≤ R2}.
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53. If fy is continuous on D and the line segment from (x, y1) to (x, y2) is in D, then
f(x, y1)− f(x, y2) =

∫ y2

y1
fy(x, u)du.

Solution:Let G(y) = fy(x, y) for this fixed value of x, y1 ≤ y ≤ y2. Then G is a
continuous function of y and the integral

∫ y2

y1
G(y)dy is defined. Further, G(y) = F ′(y)

where F (y) = f(x, y). Apply the fundamental theorem of calculus:
∫ y2

y1
F ′(y)dy =

F (y1)− F (y1) = f(x, y1)− f(x, y1). ■

54. If f and fy are continuous on a disk D, then f is Lipschitz with M =
maxD{|fy(x, u)|}.
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Appendix 2

§ First Order Differential
Equations

Contents

2.1 Quadrature Method . . . . . . . . . . . . . . . . . . 1088

2.2 Separable Equations . . . . . . . . . . . . . . . . . . 1099

2.3 Linear Equations . . . . . . . . . . . . . . . . . . . . 1106

2.4 Undetermined Coefficients . . . . . . . . . . . . . . 1113

2.5 Linear Applications . . . . . . . . . . . . . . . . . . 1122

2.6 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . 1138

2.7 Logistic Equation . . . . . . . . . . . . . . . . . . . 1157

2.8 Science and Engineering Applications . . . . . . . 1164

2.9 Exact Equations and Level Curves . . . . . . . . . 1173

2.10 Special equations . . . . . . . . . . . . . . . . . . . . 1176

2.1 Quadrature Method

Exercises 2.1 �
Quadrature
Find a candidate solution for each initial value problem and verify the solution.
See Example 2.1 and Example 2.2, page 76.

1. y′ = 4e2x, y(0) = 0.

Solution:Answer: y(x) = −2 + 2 e2 x.
Solution steps:

y′ = 4e2x Given DE.
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2.1 Quadrature Method

∫
y′dx =

∫
4e2xdx Method of quadrature: Multiply by dx across the DE and

integrate.

y(x) + c1 =
∫
4e2xdx FTC left, c1=constant.

y(x) + c1 = 4
∫
e2xdx Constant rule.

y(x) + c1 =
4e2x

2
+ c2 Integral table, c2=constant.

y(x) = 2e2x + c Isolate y left, c=c2 − c1=constant.

0 = y(0) = 2e0 + c Substitute x = 0. Solve for c = −2.
y(x) = 2e2x − 2 Isolate y left, c=c2 − c1=constant. Candidate solution.

It remains to do an answer check. For illustration, maple will be used to verify the
solution instead of a handwritten 2-panel answer check.

y0:=0;F:=x->4*exp(2*x); y=y0+int(F(t),t=0..x);

# ANS := -2+2*exp(2*x)

2. y′ = 2e4x, y(0) = 0.

3. (1 + x)y′ = x, y(0) = 0.

Solution: Answer: y(x) = x− ln (x+ 1)

y0:=0;F:=x->x/(1+x);

ANS:=y0+int(F(t),t=0..x) assuming x > -1;

# ANS := x - ln(x + 1)

4. (1− x)y′ = x, y(0) = 0.

5. y′ = sin 2x, y(0) = 1.

Solution: Answer: y(x) = 3/2− 1/2 cos (2x)

y0:=1;F:=x->sin(2*x); ANS:=y0+int(F(t),t=0..x);

# ANS := 3/2-(1/2)*cos(2*x)

6. y′ = cos 2x, y(0) = 1.

7. y′ = xex, y(0) = 0.

Solution: Answer: y(x) = exx− ex + 1

y0:=0;F:=x->x*exp(x); ANS:=y0+int(F(t),t=0..x);

# ANS := exp(x)*x-exp(x)+1

8. y′ = xe−x2

, y(0) = 0.

9. y′ = tanx, y(0) = 0.

Solution: Answer: y(x) = − ln (cos (x))

y0:=0;F:=x->tan(x);

ANS:=y0+int(F(t),t=0..x) assuming x>0 and x < Pi/2;

# ANS := -ln(cos(x))
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2.1 Quadrature Method

10. y′ = 1 + tan2 x, y(0) = 0.

11. (1 + x2)y′ = 1, y(0) = 0.

Solution: Answer: y(x) = arctan (x)

y0:=0;F:=x->1/(1+x^2); ANS:=y0+int(F(t),t=0..x);

# ANS := arctan(x)

12. (1 + 4x2)y′ = 1, y(0) = 0.

13. y′ = sin3 x, y(0) = 0.

Solution: Answer: y(x) = 2/3− 1/3 (sin (x))
2
cos (x)− 2/3 cos (x)

Integration uses the trig identity sin3(x) = sin(x)(1 − cos2(x)), obtained from
cos2(x) + sin2(x) = 1.

y0:=0;F:=x->sin(x)^3; ANS:=y0+int(F(t),t=0..x);

# ANS := 2/3-(1/3)*sin(x)^2*cos(x)-(2/3)*cos(x)

14. y′ = cos3 x, y(0) = 0.

15. (1 + x)y′ = 1, y(0) = 0.

Solution: Answer: y(x) = ln (x+ 1)

y0:=0;F:=x->1/(1+x); ANS:=y0+int(F(t),t=0..x) assuming 1+x>0;

# ANS := ln(x+1)

16. (2 + x)y′ = 2, y(0) = 0.

17. (2 + x)(1 + x)y′ = 2, y(0) = 0.

Solution: Answer: y(x) = 2 ln (2)− 2 ln (2 + x) + 2 ln (x+ 1)

y0:=0;F:=x->2/(1+x)/(2+x);

ANS:=y0+int(F(t),t=0..x) assuming 1+x>0 and 2+x > 0;

# ANS := 2*ln(2)-2*ln(2+x)+2*ln(x+1)

18. (2 + x)(3 + x)y′ = 3, y(0) = 0.

19. y′ = sinx cos 2x, y(0) = 0.

Solution: Answer: y(x) = −1/3− 1/6 cos (3x) + 1/2 cos (x)

y0:=0;F:=x->sin(x)*cos(2*x); ANS:=y0+int(F(t),t=0..x);

# ANS := -1/3-(1/6)*cos(3*x)+(1/2)*cos(x)

20. y′ = (1 + cos 2x) sin 2x, y(0) = 0.

River Crossing
A boat crosses a river of width w miles at vb miles per hour with power applied
perpendicular to the shoreline. The river’s midstream velocity is vc miles per
hour. Find the transit time and the downstream drift to the opposite shore. See
Example 2.3, page 78, and the details for (6).

1090



2.1 Quadrature Method

21. w = 1, vb = 4, vc = 12

Solution:The simplest solution uses the equation in Example 2.3:

y(x) =
4vc
vbw2

(
−1

3
x3 +

1

2
wx2

)
.(1)

Then

y(x) =
4(12)

4(12)

(
−1

3
x3 +

1

2
4x2

)
.

The transit time is 1/vb hours or 15 minutes.

The downstream drift is y(1/vb) = y(0.25) =
4(12)

4(12)

(
−1

3

1

43
+

1

2

4

42

)
= 0.3125 miles.

Y:=(x,w,vb,vc) -> (4*vc)/(vb* w^2)*(-1/3* x^3+ 1/2* w*x^2 );

# DRIFT := Y(0.25,1,4,12) = 0.3125000000 or 1650 feet

22. w = 1, vb = 5, vc = 15

23. w = 1.2, vb = 3, vc = 13

Solution: The transit time is 1/vb hours or 20 minutes.
The downstream drift is y(1/vb) = y(1/3) = 0.65386374 miles or 3452.40 feet.

Y:=(x,w,vb,vc) -> (4*vc)/(vb*w^2)*(-1/3*x^3+1/2*w*x^2 );

# TRANSIT := 1/3.0; DRIFT := Y(1/3.0,1.2,3,13);

24. w = 1.2, vb = 5, vc = 9

25. w = 1.5, vb = 7, vc = 16

Solution: The transit time is 1/vb hours or 8.57 minutes.
The downstream drift is y(1/vb) = y(1/7) = 0.05824733528 miles or 307.55 feet.

Y:=(x,w,vb,vc) -> (4*vc)/(vb* w^2)*(-1/3* x^3+ 1/2* w*x^2 );

# TRANSIT := 1/7.0; DRIFT := Y(1/7.0,1.5,7,16);

26. w = 2, vb = 7, vc = 10

27. w = 1.6, vb = 4.5, vc = 14.7

Solution: The transit time is 1/vb hours or 13.33 minutes.
The downstream drift is y(1/vb) = y(1/4.5) = 0.1176268861 miles or 621.07 feet.

Y:=(x,w,vb,vc) -> (4*vc)/(vb* w^2)*(-1/3* x^3+ 1/2* w*x^2 );

# TRANSIT := 1/4.5; DRIFT := Y(1/4.5,1.6,7,14.7);

28. w = 1.6, vb = 5.5, vc = 17

Fundamental Theorem I
Verify the identity. Use the fundamental theorem of calculus part (b), page 75.
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2.1 Quadrature Method

29.
∫ x

0
(1 + t)3dt = 1

4

(
(1 + x)4 − 1

)
.

Solution:Let F (x) = 1
4

(
(1 + x)4 − 1

)
. It is enough to verify F ′(x) = (1+x)3, because

the FTC gives
∫ x

0
F ′(t) = F (x)−F (0), which equals F (x) because F (0) = 0. Details:

F ′(x) = d
dx

(
1
4

(
(1 + x)4 − 1

))
= 1

4

(
4(1 + x)3 − 0

)
= (1 + x)3.

30.
∫ x

0
(1 + t)4dt = 1

5

(
(1 + x)5 − 1

)
.

31.
∫ x

0
te−tdt = −xe−x − e−x + 1.

Solution:As in exercise 29, it suffices to show that (RHS)′ = integrand.

32.
∫ x

0
tetdt = xex − ex + 1.

Fundamental Theorem II
Differentiate. Use the fundamental theorem of calculus part (b), page 75.

33.
∫ 2x

0
t2 tan(t3)dt.

Solution:The chain rule is required. Define G(u) =
∫ u

0
t2 tan(t3)dt and u = 2x. Then

the integral I = G(2x) and
dI
dx = dG

du
du
dx

= u2 tan(u)(2x)′

= 4x2 tan(2x)(2) = 8x2 tan(2x).

34.
∫ 3x

0
t3 tan(t2)dt.

35.
∫ sin x

0
tet+t2dt.

Solution:cosx
(
tet+t2

)
|t=sin x = (cosx sinx)esin x+sin2 x

36.
∫ sin x

0
ln(1 + t3)dt.

Fundamental Theorem III
Integrate

∫ 1
0 f(x)dx. Use the fundamental theorem of calculus part (a), page

75. Check answers with computer or calculator assist. Some require a clever
u-substitution or an integral table.

37. f(x) = x(x− 1)

Solution:Expand f(x) = x2 − x, then f ′(x) = 2x− 1.

38. f(x) = x2(x+ 1)

39. f(x) = cos(3πx/4)

Solution:The chain rule applies: f ′(x) = − sin(3πx/4)
3π

4
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2.1 Quadrature Method

40. f(x) = sin(5πx/6)

41. f(x) =
1

1 + x2

Solution:Power and chain rules apply:

f ′(x) =
(
(1 + x2)−1

)′
= (−1)(1 + x2)−2(1 + x2)′

= (−2x)(1 + x2)−2

42. f(x) =
2x

1 + x4

43. f(x) = x2ex
3

Solution:Power rule, product rule, exponential rule, chain rule.
f ′(x) = 2xex

3

+ 3x4ex
3

F:=x->x^2*exp(x^3);# Maple

ANS:=diff(F(x),x);

# ANS := 2*x*exp(x^3)+3*x^4*exp(x^3)

44. f(x) = x(sin(x2) + ex
2

)

45. f(x) =
1√

−1 + x2

Solution:Power rule, quotient rule, chain rule.

f ′(x) = − x(
x2 − 1

)3/2
F:=x->1/sqrt(x^2 - 1);# Maple

ANS:=diff(F(x),x);

# ANS := -x/(x^2-1)^(3/2)

46. f(x) =
1√

1− x2

47. f(x) =
1√

1 + x2

Solution:Power rule, chain rule.

f ′(x) = − x(
x2 + 1

)3/2
F:=x->1/sqrt(x^2 + 1);# Maple

ANS:=diff(F(x),x);

# ANS := -x/(x^2+1)^(3/2)

48. f(x) =
1√

1 + 4x2

49. f(x) =
x√

1 + x2
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2.1 Quadrature Method

Solution:Power rule, quotient rule, chain rule.

f ′(x) =
1√

x2 + 1
− x2(

x2 + 1
)3/2

F:=x->x/sqrt(x^2 + 1);# Maple

ANS:=diff(F(x),x);

# ANS := 1/sqrt(x^2+1)-x^2/(x^2+1)^(3/2)

50. f(x) =
4x√

1− 4x2

51. f(x) =
cosx

sinx

Solution:Because f(x) = cotx, then f ′(x) = − csc2 x from integral tables. Computer

algebra systems give −1− cos2 x

sin2 x
which equals −1− cot2 x. Trig identity 1+cot2 x =

csc2 x explains the form of the answer from integral tables.

52. f(x) =
cosx

sin3 x

53. f(x) =
ex

1 + ex

Solution:Exponential rule, quotient rule.

f ′(x) =
ex

(1 + ex)
2

F:=x->F:=x->exp(x)/(1+exp(x));# Maple

ANS:=diff(F(x),x);

# ANS := exp(x)/(1+exp(x))-(exp(x))^2/(1+exp(x))^2

54. f(x) =
ln |x|
x

55. f(x) = sec2 x

Solution:Power rule, chain rule.
f ′(x) = 2 sec(x) sec(x) tan(x)

56. f(x) = sec2 x− tan2 x

57. f(x) = csc2 x

Solution:Power rule, chain rule.
f ′(x) = −2 csc(x) csc(x) cot(x)

58. f(x) = csc2 x− cot2 x

59. f(x) = cscx cotx

Solution:Product rule.
f ′(x) = − cscx cotx cotx− cscx csc2 x
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2.1 Quadrature Method

60. f(x) = secx tanx

Integration by Parts
Integrate

∫ 1
0 f(x)dx by parts,

∫
udv = uv−

∫
vdu. Check answers with computer

or calculator assist.

61. f(x) = xex

Solution:Let u = x, dv = exdx. Then du = dx, v = −e−x. Parts gives∫
xexdx =

∫
udv

= uv −
∫
vdu

= −xe−x −
∫
−e−xdx

= −xe−x − e−x + c
The answer is checked by differentiation:
(−xe−x − e−x + c)′ = −e−x + xe−x + e−x = xe−x

62. f(x) = xe−x

63. f(x) = ln |x|
Solution:Let u = lnx, dv = dx.∫
f(x)dx = x ln(x)− x

64. f(x) = x ln |x|

65. f(x) = x2e2x

Solution:Let u = x2, dv = e2xdx.∫
f(x)dx = 1

4 (2x
2 − 2x+ 1)e2x

66. f(x) = (1 + 2x)e2x

67. f(x) = x coshx

Solution:Let u = x, dv = cosh(x)dx. Then v = sinhx.∫
f(x)dx = x sinh(x)− cosh(x)

68. f(x) = x sinhx

69. f(x) = x arctan(x)

Solution:Let u = x, dv = arctan(x)dx. Then v =
1

1 + x2 .∫
f(x)dx = 1

2x
2 arctan(x)− 1

2x+ 1
2 arctan(x)

70. f(x) = x arcsin(x)

Partial Fractions
Integrate f by partial fractions. Check answers with computer or calculator
assist.

1095



2.1 Quadrature Method

71. f(x) =
x+ 4

x+ 5

Solution:Long division applies: f(x) = 1 +
−4

x+ 5
. Then integration is from tables:∫

f(x)dx = x− 4 ln |x+ 5|+ c.

72. f(x) =
x− 2

x− 4

73. f(x) =
x2 + 4

(x+ 1)(x+ 2)

Solution:Long division and partial fractions applies:
f(x) = 1− 8/(x+ 2) + 5/(x+ 1), then from integral tables∫
f(x)dx = x+ 5 ln (x+ 1)− 8 ln (x+ 2) + c

The partial fraction steps:
1. Expand the denominator (x + 1)(x + 2) into x2 + 3x + 2 and then perform long
division:

f(x) = QUO +
REM

DENOM
= 1 +

2− 3x

(x+ 1)(x+ 2))

2. Expand REM/DENOM in partial fractions:

2− 3x

(x+ 1)(x+ 2))
=

a

x+ 1
+

b

x+ 2

3. Clear fractions: multiply by DENOM.

4. Match coefficients to get equations for a, b, then solve for a = 5, b = −8.
F:=x->(x^2 + 4)/((x+1)*(x+2));# Maple

ANS:=int(F(x),x);

FRACTIONS:=convert(F(x),parfrac);

bot:=denom(F(x));top:=numer(F(x));

QUO:=quo(top,bot,x);REM:=rem(top,bot,x);

# QUO := 1, REM := 2-3*x

# ANS := x+5*ln(x+1)-8*ln(x+2)

# FRACTIONS := 1-8/(x+2)+5/(x+1)

74. f(x) =
x(x− 1)

(x+ 1)(x+ 2)

75. f(x) =
x+ 4

(x+ 1)(x+ 2)

Solution:Partial fractions applies:
f(x) = −2/(x+ 2) + 3/(x+ 1), then from integral tables∫
f(x)dx = 3 ln (x+ 1)− 2 ln (x+ 2) + c

F:=x->(x+4)/((x+1)*(x+2));# Maple

ANS:=int(F(x),x);

FRACTIONS:=convert(F(x),parfrac);

# ANS := 3*ln(x+1)-2*ln(x+2)

# FRACTIONS := -2/(x+2)+3/(x+1)
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2.1 Quadrature Method

76. f(x) =
x− 1

(x+ 1)(x+ 2))

77. f(x) =
x+ 4

(x+ 1)(x+ 2)(x+ 5)

Solution:Partial fractions applies:

f(x) =
−2/3
x+ 2

+
−1/12
x+ 5

+
3/4

x+ 1
, then from integral tables∫

f(x)dx = 3/4 ln (x+ 1)− 2/3 ln (x+ 2)− 1/12 ln (x+ 5) + c

F:=x->(x+4)/((x+1)*(x+2)*(x+5));# Maple

ANS:=int(F(x),x);

FRACTIONS:=convert(F(x),parfrac);

# ANS := (3/4)*ln(x+1)-(2/3)*ln(x+2)-(1/12)*ln(x+5)

# FRACTIONS := -2/(3*(x+2))-1/(12*(x+5))+3/(4*(x+1))

78. f(x) =
x(x− 1)

(x+ 1)(x+ 2)(x+ 3)

79. f(x) =
x+ 4

(x+ 1)(x+ 2)(x− 1)

Solution:Partial fractions applies:

f(x) =
2/3

x+ 2
+

5/6

x− 1
+
−3/2
x+ 1

, then from integral tables∫
f(x)dx = 2/3 ln (x+ 2) + 5/6 ln (x− 1)− 3/2 ln (x+ 1) + c

F:=x->(x+4)/((x+1)*(x+2)*(x-1));# Maple

ANS:=int(F(x),x);

FRACTIONS:=convert(F(x),parfrac);

# ANS := (5/6)*ln(x-1)-(3/2)*ln(x+1)+(2/3)*ln(x+2)

# FRACTIONS := 2/(3*(x+2))-3/(2*(x+1))+5/(6*(x-1))

80. f(x) =
x(x− 1)

(x+ 1)(x+ 2)(x− 1)

Special Methods
Integrate f by using the suggested u-substitution or method. Check answers
with computer or calculator assist.

81. f(x) =
x2 + 2

(x+ 1)2
, u = x+ 1.

Solution:Answer:
∫
f(x)dx = x− 2 ln (x+ 1)− 3 (x+ 1)

−1

Let u = x+ 1. Then x = u− 1 and

f(x) =
(u− 1)2 + 2

(u)2

=
u2 − 2u+ 3

u2

= 1− 2u−1 + 3u−2
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∫
f(x)dx =

∫
(1− 2u−1 + 3u−2)du

= u− 2 ln |u| − 3u−1 + c

= x+ 1− 2 ln |x+ 1| − 3/(x+ 1) + c

F:=x->(x^2+2)/(x+1)^2;# Maple

ANS:=int(F(x),x);

# ANS := (5/6)*ln(x-1)-(3/2)*ln(x+1)+(2/3)*ln(x+2)

82. f(x) =
x2 + 2

(x− 1)2
, u = x− 1.

Solution:
∫
f(x)dx = x+ 2 ln (x− 1)− 3 (x− 1)

−1
+ c

83. f(x) =
2x

(x2 + 1)3
, u = x2 + 1.

Solution:Let u = x2 + 1. Then du = 2xdx:

f(x) =
du

u3

= u−3du∫
f(x)dx =

∫
u−3du

= u−2/(−2) + c

= −1

2

1

(x2 + 1)2
+ c

F:=x->(2*x)/(x^2+1)^3;# Maple

ANS:=int(F(x),x);

# ANS := -1/(2*(x^2+1)^2)

84. f(x) =
3x2

(x3 + 1)2
, u = x3 + 1.

85. f(x) =
x3 + 1

x2 + 1
, use long division.

Solution:Long division:

f(x) =
x3 + 1

x2 + 1

= x+
1− x

x2 + 1

= x+
1

x2 + 1
+
−x

x2 + 1

= x+
1

x2 + 1
+
−du/2

u
, where u = x2 + 1∫

f(x) =

∫
xdx+

∫
dx

x2 + 1
+
−1
2

∫
du

u

= x2/2 + arctan(x) +
−1
2

ln |u|+ c
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2.2 Separable Equations

= x2/2 + arctan(x) +
−1
2

ln |x2 + 1|+ c

F:=x->(x^3+ 1)/(x^2 + 1);# Maple

ANS:=int(F(x),x);

FRACTIONS:=convert(F(x),parfrac);

bot:=denom(F(x));top:=numer(F(x));

QUO:=quo(top,bot,x);REM:=rem(top,bot,x);

# ANS := (1/2)*x^2-(1/2)*ln(x^2+1)+arctan(x)

# FRACTIONS := x+(1-x)/(x^2+1)

86. f(x) =
x4 + 2

x2 + 1
, use long division.

2.2 Separable Equations

Exercises 2.2 �
Separated Form Test
Test the given equation by the separated form test on page 83.

Report whether or not the equation passes or fails, as written. In this test,
algebraic operations on the equation are disallowed. See Examples 2.4 and 2.5,
page 86.

1. y′ = 2

Solution:Passes. The left side has x absent and y′ is a factor. The right side has y
and y′ absent.

2. y′ = x

3. y′ + y = 2

Solution:Fails. Left side fails to have factor y′.

4. y′ + 2y = x

5. yy′ = 2− x

Solution:Passes.

6. 2yy′ = x+ x2

7. yy′ + sin(y′) = 2− x

Solution:Fails. Left side fails to have factor y′.

8. 2yy′ + cos(y) = x

9. 2yy′ = y′ cos(y) + x

Solution:Fails. The right side contains y (and also y′).
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2.2 Separable Equations

10. (2y + tan(y))y′ = x

Separated Equation
Determine the separated form y′/G(y) = F (x) for the given separable equation.
See Example 2.6, page 86.

11. (1 + x)y′ = 2 + y

Solution:
y′

2 + y
=

1

1 + x

12. (1 + y)y′ = xy

13. y′ =
x+ xy

(x+ 1)2 − 1

Solution:
y′

1 + y
=

x

(x+ 1)2 − 1

14. y′ = sin(x)
1 + y

(x+ 2)2 − 4

15. xy′ = y sin(y) cos(x)

Solution:
y′

y sin(y)
=

cos(x)

x

16. x2y′ = y cos(y) tan(x)

17. y2(x− y)y′ =
x2 − y2

x+ y

Solution:Factor:
x2 − y2

x+ y
=

(x− y)(x+ y)2

x+ y
. Cancel like factors on the right. Then

divide to get separated form y2y′ = 1.

18. xy2(x+ y)y′ =
y2 − x2

x− y

19. xy2y′ =
y − x

x− y

Solution:Cancel like factors on the right, then divide by x to get separated form

y2y′ =
−1
x

20. xy2y′ =
x2 − xy

x− y

Equilibrium solutions
Determine the equilibria for the given equation. See Examples 2.7 and 2.9.
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21. y′ = xy(1 + y)

Solution:Let f(x, y) = xy(1 + y). Substitute y = c in equation f(x, y) = 0 to get
xc(1 + c) = 0. Cancel x, legal because x can be any number, e.g., x = 1. Solve for
c = 0, c = −1. Substitute the answers for c back into the substitution y = c. Report
the equilibria as y = 0 and y = −1

22. xy′ = y(1− y)

23. y′ =
1 + y

1− y

Solution:Let f(x, y) = 1+y
1−y . Equilibria: y = 1. The often-reported answer y = −1 is

a singular value, not an equilibrium: y = −1 makes f(x, y) = infinity, not zero.

24. xy′ =
y(1− y)

1 + y

25. y′ = (1 + x) tan(y)

Solution:Equilibria: y = nπ for n = any integer. The often-reported expression
x = −1 is not an equilibrium. All equilibria have form y = constant. Equation y = c
is required to be a solution, that is, y = c passes a formal answer check. In the answer
check, x is allowed to be any value.

26. y′ = y(1 + ln y)

27. y′ = xey(1 + y)

Solution:Equilibria: y = −1. Because e0 = 1, then y = 0 is not an equilibrium.

28. xy′ = ey(1− y)

29. xy′ = ey(1− y2)(1 + y)3

Solution:Equilibria: y = −1, y = 1. Let f(x, y) = ey(1 − y2)(1 + y)3. In equation
f(x, c) = 0, factor ec cancels leaving (1− y)(1 + y)(1 + y)3 = 0.

30. xy′ = ey(1− y3)(1 + y3)

Non-Equilibrium Solutions
Find the non-equilibrium solutions for the given separable equation. See Exam-
ples 2.8 and 2.10 for details.

31. y′ = (xy)1/3, y(0) = y0.

Solution:The separated form is y−1/3y′ = x1/3. Apply quadrature:∫
y−1/3(x)y′(x)dx =

∫
x1/3dx

Non-equilibrium solution:
y2/3(x)

2/3
=

x4/3

4/3
+ c

Equilibria: y = 0

Value c is determined by substitution of x = 0, y = y0:
y
2/3
0

2/3
=

04/3

4/3
+ c.

Then c =
y
2/3
0

2/3
.
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2.2 Separable Equations

32. y′ = (xy)1/5, y(0) = y0.

33. y′ = 1 + x− y − xy, y(0) = y0.

Solution:Factor 1 + x− y − xy = (1 + x)(1− y).

Separated form:
y′

1− y
= 1 + x

Non-equilibrium solution: − ln |1− y(x)| = x+ x2/2 + c

Equilibria: y = 1

Value c = − ln |1− y(0)| because − ln |1− y(0)| = 0 + 02/2 + c.

34. y′ = 1 + x+ 2y + 2xy, y(0) = y0.

35. y′ =
(x+ 1)y3

x2(y3 − y)
, y(1) = y0 ̸= 0.

Solution:Factor y3 − y = y(y2 − 1). Cancel factor y. Divide.

Separated form:
(y2 − 1)y′

y2
=

1 + x

x2

Ready to integrate: (1− y−2)y′ = x−2 + x−1

Non-equilibrium solution: y +
1

y
=
−1
x

+ ln |x|+ c

Equilibria: y = 1

Initial value: y(1) +
1

y(1)
=
−1
1

+ ln |1|+ c

c = y0 +
1

y0
+ 1

36. y′ =
(x− 1)y2

x3(y3 + y)
, y(0) = y0.

37. 2yy′ = x(1− y2)

Solution:Divide.

Separated form:
2yy′

1− y2
= x

Substitution: u = y2 − 1, du = 2yy′

Ready to integrate:
du

u
= x

Non-equilibrium solution:

ln |u| = x2/2 + c
ln |y2 − 1| = x2/2 + c

Equilibria: y = 1, y = −1 from f(x, y) = x
1− y2

2y

38. 2yy′ = x(1 + y2)
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39. (1 + x)y′ = 1− y

Solution:Divide.

Separated form:
y′

1− y
=

1

1 + x

Substitution: u = 1− y, du = −dy

Ready to integrate:
−du
u

=
1

1 + x

Non-equilibrium solution:

− ln |u| = ln |1 + x|+ c
− ln |1− y| = ln |1 + x|+ c

Equilibria: y = 1, from f(x, y) =
1− y

1 + x

40. (1− x)y′ = 1 + y, y(0) = y0.

41. tan(x)y′ = y, y(π/2) = y0.

Solution:Trig identity tanx = sinx/ cosx.

Separated form:
y′

y
=

cosx

sinx

Substitution: u = sinx, du = cos(x)dx

Ready to integrate:
dy

y
=

du

u

Non-equilibrium solution:

ln |y| = ln |u|+ c
ln |y| = ln | sin(x)|+ c

Equilibria: y = 0, from f(x, y) =
y

tanx
Initial value: ln |y(π/2)| = ln | sin(π/2)|+ c

ln |y0| = ln |1|+ c
c = ln |y0|

42. tan(x)y′ = 1 + y, y(π/2) = y0.

43.
√
xy′ = cos2(y), y(1) = y0.

Solution: Trig identity: sec2(y) = 1/ cos2(y)

Separated form: sec2(y)y′ = x−1/2

Substitution: (tan y)′dy = sec2(y)y′dx

Ready to integrate: (tan(y))′dy = x−1/2dx

Non-equilibrium solution:

tan(y) = 2x1/2 + c

Equilibria: y = (2n+ 1)π/2, n = any integer, from f(x, y) =
cos2 y√

x
Initial value: tan(y0) = 2 + c
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44.
√
1− xy′ = sin2(y), y(0) = y0.

45.
√
x2 − 16yy′ = x, y(5) = y0.

Solution:Separated form: yy′ =
x√

x2 − 16

Substitution: u = x2 − 16, du = 2xdx

yy′ =
du/2√

u

Ready to integrate: ydy = 1
2u

−1/2du

Non-equilibrium solution:

y2/2 = 2u1/2 + c
y2/2 = 2

√
x2 − 16 + c

Equilibria: none, from f(x, y) =
x

y
√
x2 − 16

Initial value: y20/2 = 2
√
25− 16 + c or c = −6 + y20/2

46.
√

x2 − 1yy′ = x, y(2) = y0.

47. y′ = x2(1 + y2), y(0) = 1.

Solution:Separated form:
y′

1 + y2
= x2

Identity: (arctan(y))′dy =
y′dx

1 + y2

Ready to integrate: (arctan(y))′dy = x2dx

Non-equilibrium solution: arctan(y) = x3/3 + c

Equilibria: none, from f(x, y) = x2(1 + y2)

Initial value: arctan(y(0)) = 03/3 + c or c = arctan(1)

48. (1− x)y′ = x(1 + y2), y(0) = 1.

Independent of x
Solve the given equation, finding all solutions. See Example 2.11.

49. y′ = sin y, y(0) = y0.

Solution:Separated form: csc(y)y′ = 1
Answer: − csc(y) cot(y) = x+ c, with c = − csc(y0) cot(y0)

50. y′ = cos y, y(0) = y0.

51. y′ = y(1 + ln y), y(0) = y0.

Solution:Separated form:
y′

y(1 + lny)
= 1, which makes sense for y > 0.

Answer: ln(1 + ln(y) = x+ c, with c = ln(1 + ln(y0))
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52. y′ = y(2 + ln y), y(0) = y0.

53. y′ = y(y − 1)(y − 2), y(0) = y0.

Solution:Separated form:
y′

y(y − 1)(y − 2)
= 1

Answer: − ln |y − 1|+ (1/2) ln |y|+ (1/2) ln |y − 2| = x+ c
Initial Value: c = − ln |y0 − 1|+ (1/2) ln |y0|+ (1/2) ln |y0 − 2|

54. y′ = y(y − 1)(y + 1), y(0) = y0.

55. y′ = y2 + 2y + 5, y(0) = y0.

Solution:Separated form:
y′

y2 + 2y + 5
= 1

Factor: y2 + 2y + 5 = 4((y + 1)2/4 + 1), college algebra complete-the-square.
Substitution: u = (y + 1)/2, 2du = dy

2du

4(u2 + 1)
= dx∫ 2du

4(u2 + 1)
=
∫
dx

1
2 arctan(u) = x+ c1
arctan((y + 1)/2) = 2x+ 2c1

Answer: arctan((y + 1)/2) = 2x+ c
Initial Value: c = arctan((y0 + 1)/2)

56. y′ = y2 + 2y + 7, y(0) = y0.

Details in the Examples
Collected here are verifications for details in the examples.

57. (Example 2.7) The equation x(1 − y)(1 + y) = 0 was solved in the example, but
x = 0 was ignored, and only y = −1 and y = 1 were reported. Why?

Solution:Symbol x is the independent variable, which means it is allowed to assume
all values. For instance, x = 1. Equation x(1− y)(1 + y) = 0 specializes at x = 1 to
(1− y)(1 + y) = 0 with exactly two roots y = 1 and y = −1.

58. (Example 2.8) An absolute value equation |u| = w was replaced by u = kw where
k = ±1. Justify the replacement using the definition |u| = u for u ≥ 0, |u| = −u for
u < 0.

59. (Example 2.8) Verify directly that y = (1 + y0)e
x3/3 − 1 solves the initial value

problem y′ = x2(1 + y), y(0) = y0.

Solution:At x = 0, equation y = (1+ y0)e
x3/3− 1 reduces to y = (1+ y0)e

0− 1 = y0,
because e0 = 1. The IC is verified.
Panel 1: DE Answer Check
LHS = y′

=
(
(1 + y0)e

x3/3 − 1
)′
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= x2(1 + y0)e
x3/3.

RHS = y′

= x2(1 + y)

= x2 + x2
(
(1 + y0)e

x3/3 − 1
)

= x2(1 + y0)e
x3/3

Then LHS = RHS, which verifies the DE.

60. (Example 2.9) The relation y = 1+nπ, n = 0,±1,±2, . . . describes the list . . . , 1−
π, 1, 1 + π, . . .. Write the list for the relation y = −1 + (2n+ 1)π2 .

61. (Example 2.9) Solve sin(u) = 0 and cos(v) = 0 for u and v. Supply graphs which
show why there are infinity many solutions.

Solution:u = nπ and v = (2n + 1)π/2, n = any integer. Graphs omitted, found in
any trig reference, show infinitely many crossings of the two trig functions and the
x-axis y = 0.

62. (Example 2.10) Explain why y0/2 does not equal Arctan(tan(y0/2)). Give a calcu-
lator example.

63. (Example 2.10) Establish the identity tan(y/2) = csc y − cot y.

Solution:Let y = 2u.

csc y − cot y =
1

sin y
− cos y

sin y

=
1− cos(y)

sin(y)

=
1− cos(2u)

sin(2u)

Double angle trig formulas:
sin(2u) = 2 sin(u) cos(u), cos(2u) = 2 cos2(u)− 1

csc y − cot y =
1− cos(2u)

sin(2u)

=
2− 2 cos2(u)

2 sin(u) cos(u)

=
sin2(u)

sin(u) cos(u)
, used cos2(θ) + sin2(θ) = 1

= tan(u)

= tan(y/2)

64. (Example 2.11) Let y0 > 0. Verify that y = e1− (1− ln y0)e
−x

solves

y′ = y(1− ln y), y(0) = y0.

2.3 Linear Equations

Exercises 2.3 �
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Integrating Factor Method
Apply the integrating factor method, page 96, to solve the given linear equation.
See the examples starting on page 99 for details.

1. y′ + y = e−x

Solution: Standard Form y′ + py = r: p = 1, r = e−x

Integrating Factor: W (x) = e
∫
p(x)dx = ex

Integrating Factor Identity:
(Wy)

′

W
= y′ + py

(exy)
′

ex
= e−x

(exy)
′
= e−xex, Multiply by ex∫

(exy)
′
dx =

∫
e−xexdx, Quadrature

exy = x+ c, Fund. Thm. Calc.
y = xe−x + ce−x, Candidate solution

Answer check:

# Maple

de:=diff(y(x),x)+y(x)=exp(-x); dsolve(de,y(x));

# y(x) = (x+_C1)*exp(-x)

2. y′ + y = e−2x

3. 2y′ + y = e−x

Solution:y (x) = −e−x + e−x/2c

4. 2y′ + y = e−2x

5. 2y′ + y = 1

Solution:y (x) = 1 + e−x/2c

6. 3y′ + 2y = 2

7. 2xy′ + y = x

Solution:y (x) = x/3 +
c√
x

8. 3xy′ + y = 3x

9. y′ + 2y = e2x

Solution:y (x) =
(
1/4 e4 x + c

)
e−2 x

10. 2y′ + y = 2ex/2

11. y′ + 2y = e−2x

Solution:y (x) = (x+ c) e−2 x
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12. y′ + 4y = e−4x

13. 2y′ + y = e−x

Solution:y (x) = −e−x + e−x/2c

14. 2y′ + y = e−2x

15. 4y′ + y = 1

Solution:y (x) = 1 + e−x/4c

16. 4y′ + 2y = 3

17. 2xy′ + y = 2x

Solution:y (x) = 2/3x+ c√
x

18. 3xy′ + y = 4x

19. y′ + 2y = e−x

Solution:y (x) = (ex + c) e−2 x

20. 2y′ + y = 2e−x

Superposition
Find a particular solution with fewest terms. See Example 2.15, page 99.

21. 3y′ = x

Solution:Quadrature applies: y(x) = x2/6 + c
Specialize c = 0 to find a particular solution with fewest terms.
Then yp(x) = x2/6.
This linear equation has non-constant coefficients. No shortcut is available.

22. 3y′ = 2x

23. y′ + y = 1

Solution:yp(x) = 1
The equation has constant coefficients, therefore a shortcut applies: yp = equilibrium
solution = 1.
To find an equilibrium solution, formally replace y′ by zero and solve for y. It only
works if the coefficients are constant!

24. y′ + 2y = 2

25. 2y′ + y = 1

Solution:yp(x) = 1
The equation has constant coefficients, therefore a shortcut applies: yp = equilibrium
solution = 1.
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26. 3y′ + 2y = 1

27. y′ − y = ex

Solution:y = xex.
This linear equation has non-constant coefficients. No shortcut is available. Solve by
the linear integrating factor method: y (x) = (x+ c) ex then let c = 0.

28. y′ − y = xex

29. xy′ + y = sinx (x > 0)

Solution:y =
− cosx

x
This linear equation has non-constant coefficients. No shortcut is available. Solve by

the linear integrating factor method: y (x) =
− cos (x) + c

x
then let c = 0.

30. xy′ + y = cosx (x > 0)

31. y′ + y = x− x2

Solution:y = −x2 + 3x− 3
This linear equation has non-constant coefficients. No shortcut is available. Solve by
the linear integrating factor method: y (x) = −x2 + 3x− 3 + e−xc then let c = 0.

32. y′ + y = x+ x2

General Solution
Find yh and a particular solution yp. Report the general solution y = yh + yp.
See Example 2.17, page 100.

33. y′ + y = 1

Solution:The answers: yh = ce−x, yp = 1

To find yh, solve the homogeneous DE: y′ + y = 0. The answer is y = c/W where
W is the integrating factor. See Special Equations in this textbook section. The
details:

Standard Homogeneous Form y′ + py = 0: p = 1
Integrating Factor: W = e

∫
pdx = e

∫
(1)dx = ex+c

As explained in the textbook, take c = 0 to simplify the computation,
then
W = ex, yh =

c

W
= ce−x

Method 1: Equilibrium shortcut to find yp = 1.

The equation y′+y = 1 has constant coefficients. The method applies, which replaces
y′ by zero in the equation y′ + y = 1 to find y = 1, the equilibrium solution. In
applications, y = 1 would be the limit at x = ∞ of y(x), referred to as the steady-
state solution.

Method 2: Find yh and yp simultaneously.

The Integrating Factor Method will be applied.
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2.3 Linear Equations

Integrating Factor Identity:
(Wy)′

W
replaced y′ + py

In the present case:
(Wy)′

W
replaces y′ + y in y′ + y = 1

(Wy)′

W
= 1

(Wy)′ = 1()W Clear fractions.

Quadrature: Integrate across the replacement equation on variable x:∫
(Wy)′dx =

∫
(1)Wdx

Wy =
∫
(1)exdx FTC and equality W = ex.

y =
1

W

∫
(1)exdx Divide by W .

y = e−x
∫
(1)exdx Use W = ex.

y = e−x(ex + c) Integral table.

y = 1 + ce−x Candidate solution.

Isolate yp = 1 by letting c = 0. The remaining terms with factor c assemble the
homogeneous solution yh = ce−x.

It remains to check the answer. A simple option is a CAS like maple, mathematica
or Wolfram Alpha.

p:=1; r:=1;# MAPLE

de:=(1)*diff(y(x),x)+(p)*y(x)=r; ANS:=dsolve(de,y(x));

# ANS := y(x) = 1+exp(-x)*_C1

34. xy′ + y = 2

35. y′ + y = x

Solution:y (x) = x− 1 + ce−x, yh(x) = ce−x, yp(x) = x− 1

The equilibrium shortcut does not apply. The homogeneous shortcut always applies:
yh = c/W , W = the integrating factor. However, it saves no time to use it, because
the full integrating factor method computation is required.

36. xy′ + y = 2x

37. y′ − y = x+ 1

Solution:y (x) = −x− 2 + cex, yh (x) = cex, yp (x) = −x− 2

38. xy′ − y = 2x− 1

39. 2xy′ + y = 2x2 (x > 0)

Solution:y (x) = 2/5x2 +
c√
x
, yh (x) =

c√
x
, yp (x) = 2/5x2

40. xy′ + y = 2x2 (x > 0)
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2.3 Linear Equations

Classification
Classify as linear or non-linear. Use the test f(x, y) = f(x, 0) + fy(x, 0)y and
a computer algebra system, when available, to check the answer. See Example
2.18, page 101.

41. y′ = 1 + 2y2

Solution:Nonlinear.
f:=(x,y)->1+2*y^2; # MAPLE

a:=f(x,0); b:=subs(y=0,diff(f(x,y),y));

LHS:=f(x,y);RHS:=a+b*y;

ZERO:=LHS-RHS; # zero for linear DE

42. y′ = 1 + 2y3

43. yy′ = (1 + x) ln ey

Solution:Linear when the equation makes sense.
For y = 0 there is no differential equation defined.
Equation yy′ = (1 + x) ln ey is identical to y′ = 1 + x for y ̸= 0, because ln(ey) = y
for all y, and then y cancels. The equation causes issues for any CAS, because of

division by zero with definition f(x, y) = (1 + x)
ey

y
.

44. yy′ = (1 + x) (ln ey)
2

45. y′ sec2 y = 1 + tan2 y

Solution:Linear. Equation y′ sec2 y = 1 + tan2 y is identical to y′ = 1 because 1 +
tan2(y) = sec2(y). A quadrature equation is always linear, in this case y′ = 1, no
test required.

46. y′ = cos2(xy) + sin2(xy)

47. y′(1 + y) = xy

Solution:Nonlinear. Write it as y′ = f(x, y) =
xy

1 + y
. The a = f(x, 0) = 0, b =

fy(x, 0) =

f:=(x,y)->(x*y)/(1+y); # MAPLE

g:=unapply(diff(f(x,y),y),x);

a:=f(x,0); b:=g(0);

LHS:=f(x,y);RHS:=a+b*y; ZERO:=LHS-RHS; # zero for linear DE

# ZERO := x*y/(y+1) # Must be zero to be linear

48. y′ = y(1 + y)

49. xy′ = (x+ 1)y − xeln y

Solution:Linear. The equation is undefined for x = 0. For x ̸= 0 the equation is
the same as xy′ = (x + 1)y − xy which reduces to y′ = y/x. This is a homogeneous
equation of the form y′ + p(x)y = 0, all such known to be linear. No test required.
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2.3 Linear Equations

50. 2xy′ = (2x+ 1)y − xye− ln y

Shortcuts
Apply theorems for the homogeneous equation y′ + p(x)y = 0 or for constant
coefficient equations y′ + py = r. Solutions should be done without paper or
pencil, then write the answer and check it.

51. y′ − 5y = −1
Solution:yp = 1/5, yh = ce5x

Equilibrium solution: yp = 1/5, obtained formally by letting y′ = 0, then solve for y.
Homogeneous solution y′ − 5y = 0:
y = c/W , W = integrating factor = e

∫
p(x)dx = e−5x.

yh = ce5x

de:=(1)*diff(y(x),x)+(-5)*y(x) = -1;

ANS:=dsolve(de,y(x));# MAPLE

# ANS := y(x) = 1/5+exp(5*x)*_C1

52. 3y′ − 5y = −1

53. 2y′ + xy = 0

Solution:yh = ce−x2/4, yp = 0.

Homogeneous shortcut: y = c/W , W = e
∫
(x/2)dx = ex

2/4

yh = ce−x2/4

yp = 0 because the equation is homogeneous

54. 3y′ − x2y = 0

55. y′ = 3x4y

Solution:yh = ce3x
5/5, yp = 0

Homogeneous shortcut: y = c/W , W = e
∫
(−3x4)dx = e−3x5/5

yh = ce3x
5/5

yp = 0 because the equation is homogeneous

56. y′ = (1 + x2)y

57. πy′ − π2y = −e2

Solution:yh = ceπx, yp = e2/π2

Homogeneous shortcut: y = c/W , W = e
∫
(−π)dx = e−πx

yh = ceπx

yp = −e2/(−π2) by formally letting y′ = 0

58. e2y′ + e3y = π2
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2.4 Undetermined Coefficients

59. xy′ = (1 + x2)y

Solution:yh =
cex

2/2

x
, yp = 0

Homogeneous shortcut: y = c1/W ,

W = e
∫
(−x−1−x)dx = e− ln |x|−x2/2 = |x|e−x2/2

yh =
c1

|x|e−x2/2
=

c

xe−x2/2
=

cex
2/2

x

where c = ±c1 to eliminate absolute values on |x|.
yp = 0 because the equation is homogeneous

60. exy′ = (1 + e2x)y

Proofs and Details

61. Prove directly without appeal to Theorem 2.6 that the difference of two solutions of
y′ + p(x)y = r(x) is a solution of the homogeneous equation y′ + p(x)y = 0.

Solution:Let y′1 + p(x)y1 = r(x), y′2 + p(x)y2 = r(x). Define y = y1 − y2. To be
proved: y′ + p(x)y = 0.

y′ + p(x)y = y′1 − y′2 − p(x)(y1 − y2)
= y′1 − y′2 + p(x)y1 − p(x)y2
= (y′1 + p(x)y1)− (y′2 + p(x)y2)
= (r(x))− (r(x)) = 0 ■

62. Prove that y∗p given by equation (2) and yp = W−1
∫
r(x)W (x)dx given in the

integrating factor method are related by yp = y∗p + yh for some solution yh of the
homogeneous equation.

63. The equation y′ = r with r constant can be solved by quadrature, without pencil
and paper. Find y.

Solution:y = rx+ c by integrating mentally across the DE.
Then yh = c and yp = rx.

64. The equation y′ = r(x) with r(x) continuous can be solved by quadrature. Find a
formula for y.

2.4 Undetermined Coefficients

Exercises 2.4 �
Variation of Parameters I
Report the shortest particular solution given by the formula

yp(x) =

∫
rW

W
, W = e

∫
p(x)dx
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2.4 Undetermined Coefficients

1. y′ = x+ 1

Solution:yp = x2/2 + x

Method 1: Integrate across the equation to obtain y = x2/2 + x + c, then choose
c = 0 to find the shortest solution. A number of solutions have used this method: it
is not wrong, because the exercise does not require use of the Variation of Parameters
formula.

Method 2: This is the expected method. Define p = 0. r(x) = x + 1. Then
W = e

∫
pdx = e0 = 1. The formula produces

yp =
1

W

∫
rW dx =

1

1

∫
(x+ 1)(1)dx = x2/2 + x+ c

The shortest solution is with c = 0. A no-paper-and-pencil answer check is provided
by Method 1.

2. y′ = 2x− 1

3. y′ + y = e−x

Solution:yp (x) = xe−x

Follow exercise 1. Use the formula with
p(x) = 1,
r(x) = e−x

W (x) = e
∫
p(x)dx = ex

Then yh = ce−x, rW = e−xex = 1 and yp = xe−x

4. y′ + y = e−2x

5. y′ − 2y = 1

Solution:yp (x) = −1/2
Follow exercise 1. Use the formula with
p(x) = −2,
r(x) = 1
W (x) = e

∫
p(x)dx = e−2x

Then yh = ce2x, rW = e−2x and

yp =
−1

2
e−2x + c

e−2x = 1/2 for c = 0.

Alternative Method:
The DE has constant coefficients, therefore yp = the equilibrium solution, which
means yp = 1/(−2) = −1/2.

6. y′ − y = 1

7. 2y′ + y = ex

Solution:yp (x) = 1/3 ex

Divide by 2 to obtain the standard form

y′ +
1

2
y =

1

2
ex.

Define p(x) = 1/2, r(x) = 1
2e

x. Apply the formula.
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2.4 Undetermined Coefficients

8. 2y′ + y = e−x

9. xy′ = x+ 1

Solution:yp (x) = ln |x|+ x
The statement requires x ̸= 0 to make sense. Assume x > 0.
The details for x < 0 are omitted below, but similar.
Divide by x to obtain the standard form

y′ = 1 +
1

x
.

Method 1: Solve by quadrature.
Method 2: Define p(x) = 0, r(x) = 1 + 1/x. Apply the formula.

10. xy′ = 1− x2

Variation of Parameters II

Define W (t) = e
∫ t
x0

p(x)dx
. Compute

y∗p(x) =

∫ x
x0

r(t)W (t) dt

W (x)

11. y′ = x+ 1, y(0) = 0

Solution:y∗ (x) = 1/2x2 + x
Exercises 11-20 were solved as exercises 1-10. The exercises evaluate constant c in
solution y∗p(x) from values x0 and y0 = 0 in initial condition y∗(x0) = 0.
An answer check:

a:=1;b:=0;f:=x->x+1;x0:=0;y0:=0; # Maple

de:=a*diff(y(x),x) + b*y(x) = f(x);

ANS:=dsolve([de,y(x0)=y0],y(x));

# ANS := y(x) = (1/2)*x^2+x

12. y′ = 2x− 1, x0 = 0

13. y′ + y = e−x, x0 = 0

Solution:y∗(x) = xe−x

14. y′ + y = e−2x, x0 = 0

15. y′ − 2y = 1, x0 = 0

Solution:y∗ (x) = −1/2 + 1/2 e2 x

16. y′ − y = 1, x0 = 0

17. 2y′ + y = ex, x0 = 0

Solution:y∗ (x) = 1/3 ex − 1/3 e−x/2

18. 2y′ + y = e−x, x0 = 0
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2.4 Undetermined Coefficients

19. xy′ = x+ 2, x0 = 1

Solution:y∗ (x) = x+ 2 ln |x| − 1

20. xy′ = 1− x2, x0 = 1

Euler Solution Atoms
Report the list L of distinct Euler solution atoms found in function f(x). Then
f(x) is a sum of constants times the Euler atoms from L.

21. x+ ex

Solution:x, ex

1, x, x2, . . . are Euler solution atoms
eax is an Euler solution atom

22. 1 + 2x+ 5ex

23. x(1 + x+ 2ex)

Solution:x, x2, xex

Constants and signs are stripped because Euler solution atoms have coefficient one.

24. x2(2 + x2) + x2e−x

25. sinx cosx+ ex sin 2x

Solution:sin 2x, ex sin 2x
Term sinx cosx is a product of two Euler atoms, which is generally not an Euler atom.
Trig identity 2 sinx cosx = sin 2x allows the product to be rewritten as 1

2 sin 2x, then
the constant 1

2 is stripped to expose the Euler solution atom sin 2x.

26. cos2 x− sin2 x+ x2ex cos 2x

27. (1 + 2x+ 4x5)exe−3xex/2

Solution:eax, xeax, x5eax where a = 1− 3 + 1/2 = −3/2

28. (1 + 2x+ 4x5 + ex sin 2x)e−3x/4ex/2

29.
x+ ex

e−2x
sin 3x+ e3x cos 3x

Solution:xe2x sin 3x, e3x sin 3x, e3x cos 3x

Expand the expression as
(x+ ex)e2x sin 3x+ e3x cos 3x, or
xe2x sin 3x+ e3x sin 3x+ e3x cos 3x

30.
x+ ex sin 2x+ x3

e−2x
sin 5x
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2.4 Undetermined Coefficients

Initial Trial Solution
Differentiate repeatedly f(x) and report the list M of distinct Euler solution
atoms which appear in f and all its derivatives. Then each of f, f ′, . . . is a sum
of constants times Euler atoms in M .

31. 12 + 5x2 + 6x7

Solution:1, x, x2, x3, x4, x5, x46, x7

The first two terms 12, 5x2 merely duplicate Euler atoms found from term 6x7.

32. x6/x−4 + 10x4/x−6

33. x2 + ex

Solution:1, x, x2, ex

34. x3 + 5e2x

35. (1 + x+ x3)ex + cos 2x

Solution:1, x, x2, x3, cosx, sinx

36. (x+ ex) sinx+ (x− e−x) cos 2x

37. (x+ ex + sin 3x+ cos 2x)e−2x

Solution:e−2x, xe−2x, e−x, e−2x cos 3x, e−2x sin 3x, e−2x cos 2x, e−2x sin 2x

38. (x2e−x + 4 cos 3x+ 5 sin 2x)e−3x

39. (1 + x2)(sinx cosx− sin 2x)e−x

Solution:e−x sin(2x), e−x cos(2x), xe−x sin(2x), xe−x cos(2x), x2e−x sin(2x),
x2e−x cos(2x)

Change sinx cosx into 1
2 sin 2x, then

f = − 1
2e

−x sin 2x− 1
2x

2e−x sin 2x
f ′ = −1/2 e−x sin (2x) + e−x cos (2x)− xe−x sin (2x)
+1/2x2e−x sin (2x)− x2e−x cos (2x)

Derivative f ′′ introduces one more Euler atom.
Derivatives f ′′′, . . . do not generate more Euler atoms.

# Maple

F:=x->1/2)exp(-x)*sin (2*x)-1/2* x^2*exp(-x)* sin (2*x);

diff(F(x),x,x);

diff(F(x),x,x,x);

diff(F(x),x,x,x,x);

diff(F(x),x,x,x,x,x);

40. (8− x3)(cos2 x− sin2 x)e3x

Correction Rule
Given the homogeneous solution yh and an initial trial solution y, determine the
final trial solution according to the correction rule.
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2.4 Undetermined Coefficients

41. yh(x) = ce2x, y = d1 + d2x+ d3e
2x

Solution:y = d1 + d2x+ d3xe
2x

Break trial solution y into two Euler atom groups:
Group 1: 1, x
Group 2: e2x

Solution yh has only one Euler atom: e2x.
Group 1 is unchanged. Group 2 requires multiplication by x. Then
Group 1: 1, x
New Group 2: xe2x

Check: the Euler atoms found in the last two groups do not repeat any Euler atom
found in yh = ce2x. The corrected trial solution is a linear combination of the Euler
atoms found in Group 1 and New Group 2:

y = d1 + d2x+ d3xe
2x

42. yh(x) = ce2x, y = d1 + d2e
2x + d3xe

2x

43. yh(x) = ce0x, y = d1 + d2x+ d3x
2

Solution:y = d1x+ d2x
2 + d3x

3

The Euler atom found in yh is 1 (same as e0). There is one group of Euler atoms in
y: 1, x, x2. Multiply the group by x and test for a conflict with yh. The new group
is x, x2, x3 and the corrected trial solution is a linear combination of the Euler atoms
in the new group.

44. yh(x) = cex, y = d1 + d2x+ d3x
2

45. yh(x) = cex, y = d1 cosx+ d2 sinx+ d3e
x

Solution:y = d1 cosx+ d2 sinx+ d3xe
x

46. yh(x) = ce2x, y = d1e
2x cosx+ d2e

2x sinx

47. yh(x) = ce2x, y = d1e
2x + d2xe

2x + d3x
2e2x

Solution:y = d1xe
2x + d2x

2e2x + d3x
3e2x

48. yh(x) = ce−2x, y = d1e
−2x + d2xe

−2x + d3e
2x + d4xe

2x

49. yh(x) = cx2, y = d1 + d2x+ d3x
2

Solution:y = d1x
3 + d2x

4 + d3x
5

The group for y is 1, x, x2. Three multiplications by x across the group will eliminate
conflict with Euler atom x2 found in yh.

50. yh(x) = cx3, y = d1 + d2x+ d3x
2

Trial Solution
Find the form of the corrected trial solution y but do not evaluate the undeter-
mined coefficients.
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2.4 Undetermined Coefficients

51. y′ = x3 + 5 + x2ex(3 + 2x+ sin 2x)

Solution:y = a linear combination of

x, x2, x3, x4,
ex, xex, x2ex, x3ex,
ex cos 2x, xex cos 2x, x2ex cos 2x,
ex sin 2x, xex sin 2x, x2ex sin 2x

The homogeneous equation is y′ = 0 and yh = c with Euler atom 1. The Euler atoms
found from RHS f(x) = x3 + 5 + x2ex(3 + 2x+ sin 2x) are in four groups:

Group 1: 1, x, x2, x3

Group 2: ex, xex, x2ex, x3ex

Group 3: ex cos 2x, xex cos 2x, x2ex cos 2x
Group 4: ex sin 2x, xex sin 2x, x2ex sin 2x

The Euler atom in yh conflicts only with Group 1.
Fix Group 1 by multiplying by x:
New Group 1: x, x2, x3, x4

Then the corrected trial solution is a linear combination of New Group 1 and Groups
2,3,4.

52. y′ = x2 + 5x+ 2 + x3ex(2 + 3x+ 5 cos 4x)

53. y′ − y = x3 + 2x+ 5 + x4ex(2 + 4x+ 7 cos 2x)

Solution:y = a linear combination of

1, x, x2, x3

xex, x2ex, x3ex , x4ex, x5ex, x6ex

ex cos 2x, xex cos 2x, x2ex cos 2x, x3ex cos 2x, x4ex cos 2x
ex sin 2x, xex sin 2x, x2ex sin 2x, x3ex sin 2x, x4ex sin 2x

The homogeneous equation is y′ − y = 0. Then yh = cex with Euler atom ex. The
Euler atoms found from RHS f(x) = x3 + 2x+ 5+ 2x4ex + 4x5ex + 7x4ex cos 2x are
in four groups:

Group 1: 1, x, x2, x3

Group 2: ex, xex, x2ex, x3ex , x4ex, x5ex

Group 3: ex cos 2x, xex cos 2x, x2ex cos 2x, x3ex cos 2x, x4ex cos 2x
Group 4: ex sin 2x, xex sin 2x, x2ex sin 2x, x3ex sin 2x, x4ex sin 2x

The Euler atom in yh conflicts only with Group 2.
Multiply by x across Group 2:
New Group 2: xex, x2ex, x3ex , x4ex, x5ex, x6ex

Then the corrected trial solution is a linear combination of New Group 2 and Groups
1,3,4.

54. y′ − y = x4 + 5x+ 2 + x3ex(2 + 3x+ 5 cos 4x)

55. y′ − 2y = x3 + x2 + x3ex(2ex + 3x+ 5 sin 4x)

Solution:y = a linear combination of

1, x, x2, x3

e2x, xe2x, x2e2x, x3e2x

ex, xex, x2ex, x3ex , x4ex

1119



2.4 Undetermined Coefficients

ex cos 4x, xex cos 4x, x2ex cos 4x, x3ex cos 4x
ex sin 4x, xex sin 4x, x2ex sin 4x, x3ex sin 4x

The homogeneous equation is y′− 2y = 0. Then yh = ce2x with Euler atom e2x. The
Euler atoms found from RHS f(x) = x3 + x2 + 2x3e2x + 3x4ex + 5x3ex sin 4x are in
five groups:

Group 1: 1, x, x2, x3

Group 2: e2x, xe2x, x2e2x, x3e2x

Group 3: ex, xex, x2ex, x3ex , x4ex

Group 4: ex cos 4x, xex cos 4x, x2ex cos 4x, x3ex cos 4x
Group 5: ex sin 4x, xex sin 4x, x2ex sin 4x, x3ex sin 4x

The Euler atom in yh conflicts only with Group 2.
Multiply by x across Group 2:
New Group 2: xe2x, x2e2x, x3e2x, x4e2x

Then the corrected trial solution is a linear combination of New Group 2 and Groups
1,3,4,5.

56. y′ − 2y = x3e2x + x2ex(3 + 4ex + 2 cos 2x)

57. y′ + y = x2 + 5x+ 2 + x3e−x(6x+ 3 sinx+ 2 cosx)

Solution:y = a linear combination of

1, x, x2

e2x, xe2x, x2e2x

xe−x, x2e−x, x3e−x , x4e−x, x4e−x

ex cosx, xex cosx, x2ex cosx, x3ex cosx
ex sinx, xex sinx, x2ex sinx, x3ex sinx

58. y′ − 2y = x5 + 5x3 + 14 + x3ex(5 + 7xe−3x)

59. 2y′ + 4y = x4 + 5x5 + 2x8 + x3ex(7 + 5xex + 5 sin 11x)

Solution:y = a linear combination of

1, x, x2, x3, x5, x5, x6, x7, x8

ex, xex, x2ex, x3ex

e2x, xe2x, x2e2x, x3e2x, x4e2x

ex cos 11x, xex cos 11x, x2ex cos 11x, x3ex cos 11x
ex sin 11x, xex sin 11x, x2ex sin 11x, x3ex sin 11x

There is no Euler atom conflict between the homogeneous equation 2y′ + 4y = 0
(Euler atom e−2x) and the Euler atoms found from the RHS of the non-homogeneous
equation. No correction rule used.

60. 5y′ + y = x2 + 5x+ 2ex/5 + x3ex/5(7 + 9x+ 2 sin(9x/2))

Undetermined Coefficients
Compute a particular solution yp according to the method of undetermined co-
efficients. Expected details include:
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2.4 Undetermined Coefficients

(1) Initial trial solution
(2) Corrected trial solution
(3) Undetermined coefficient algebraic equations and solution
(4) Formula for yp, coefficients evaluated

61. y′ + y = x+ 1

Solution:yp − x. The answer can be checked by inspection. Experienced solvers
would try to guess the answer first, finding quickly the solution y = x. In such simple
examples there is no need for the method of undetermined coefficients.

Details:
The homogeneous equation is y′ + y = 0 with Euler atom e−x.
Euler atoms 1, x are found from the RHS = x+ 1.
(1) yp = d1 + d2x

(2) No correction rule needed, e−2x does not appear in the list 1, x.

(3) Equations for the undetermined coefficients:
(d1 + d2x)

′ + (d1 + d2x) = x+ 1 Substitute y = d1 + d2x
d2 + (d1 + d2x) = x+ 1
(d2 + d1) + d2x = 1 + x Prepare to match coefficients
d2 + d1 = 1, d2 = 1 Linear algebraic equations found.
d1 = 0, d2 = 1 Solved by back-substitution.

(4) Report yp = d1 + d2x = x

62. y′ + y = 2x− 1

63. y′ − y = ex + e−x

Solution:yp (x) = x− 1/2 e−2 x

# Maple answer check

de:=diff(y(x),x)+(-1)*y(x)=exp(x)+exp(-x);

ANS:=dsolve(de,y(x));

# ANS := y(x) = (x-(1/2)*exp(-2*x)+_C1)*exp(x)

64. y′ − y = xex + e−x

65. y′ − 2y = 1 + x+ e2x + sinx

Solution:yp (x) = −3/4− x/2 + e2 xx− 1/5 cos (x)− 2/5 sin (x)

Compute yh = ce2x from y′ − 2y = 0. Euler atoms 1, x, e2x, sinx, cosx are found
from the RHS = 1 + x+ e2x + sinx. The correction rule is applied to replace e2x by
xe2x, then corrected trial solution y is a linear combination of 1, x, xe2x, sinx, cosx.
Computer algebra system maple is a useful tool to discover algebra and calculus
errors on paper.

# Maple answer check

de:=de:=diff(y(x),x)+(-2)*y(x)=1+x+exp(2*x)+sin(x);

ANS:=dsolve(de,y(x));

# ANS := -3/4-(1/2)*x+exp(2*x)*x-(1/5)*cos(x)

-(2/5)*sin(x)+exp(2*x)*_C1

# Discovery of calculus and algebra errors on paper

Trial:=x-> d[1] + d[2]*x+d[3]*exp(2*x)*x+

d[4]*cos(x)+d[5]*sin(x);

eq1:=diff(Trial(x),x)+(-2)*Trial(x)=1+x+exp(2*x)+sin(x);
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66. y′ − 2y = 1 + x+ xe2x + cosx

67. y′ + 2y = xe−2x + x3

Solution:yp (x) = 1/2x3 − 3/4x2 + 3/4x− 3/8 + 1/2 e−2 xx2

# Maple answer check

de:=diff(y(x),x)+(2)*y(x)=x*exp(-2*x)+x^3;

# ANS := (1/2)*x^3-(3/4)*x^2+(3/4)*x

-3/8+(1/2)*exp(-2*x)*x^2+exp(-2*x)*_C1

68. y′ + 2y = (2 + x)e−2x + xex

69. y′ = x2 + 4 + xex(3 + cosx)

Solution:yp (x) = 1/2 exx cos (x)− (−x/2 + 1/2) ex sin (x)+3 exx−3 ex+1/3x3+4x

# Maple answer check

de:=diff(y(x),x)+(0)*y(x)=x^2+4+x*exp(x)*(3+cos(x));

ANS:=dsolve(de,y(x));

# ANS := (1/2)*exp(x)*x*cos(x)-(-(1/2)*x

+1/2)*exp(x)*sin(x)+3*exp(x)*x-3*exp(x)

+(1/3)*x^3+4*x+_C1

70. y′ = x2 + 5 + xex(2 + sinx)

2.5 Linear Applications

Exercises 2.5 �
Concentration
A lab assistant collects a volume of brine, boils it until only salt crystals remain,
then uses a scale to determine the crystal mass or weight.

Find the salt concentration of the brine in kilograms per liter.

1. One liter of brine, crystal mass 0.2275 kg

Solution:Answer=0.2275 kg/l.

Concentration is amount/volume. The units are mass: kilograms, volume: liters.
This exercise is a check on the definition and the use of proper units.

2. Two liters, crystal mass 0.32665 kg

3. Two liters, crystal mass 15.5 grams

Solution:(15.5/1000)/2 = 0.00775 kilograms per liter

4. Five pints, crystals weigh 1/4 lb
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5. Eighty cups, crystals weigh 5 lb

Solution:8.344906553 kilograms per liter

One liter = 4.227 cups. One kilogram is 2.20462 pounds. Let
vol=80(1/4.227) = 18.92595221 liters, amt=5/2.20462 = 2.267964547 kilograms.
Then amt/vol=18.92595221/2.267964547 = 8.344906553 kilograms per liter.

6. Five gallons, crystals weigh 200 ounces

One-Tank Mixing
Assume one inlet and one outlet. Determine the amount x(t) of salt in the tank
at time t. Use the text notation for equation (1).

7. The inlet adds 10 liters per minute with concentration C1 = 0.023 kilograms per liter.
The tank contains 110 liters of distilled water. The outlet drains 10 liters per minute.

Solution:x(t) = 2.53
(
1− e−t/11

)
.

Follow the Pollution example. Use equation

dx

dt
= a(t)C1 − b(t)

x(t)

V (t)

Let a(t) = 10 liters per minute, C1 = 0.023 kilograms per liter, b(t) = 10 liters per
minute. The volume is constant: V (t) = 110 liters. Because the tank initially has no
salt, then x(0) = 0. The initial value problem:

dx

dt
= 10(0.023)− 10

x(t)

110
. x(0) = 0

Convert to linear DE standard form using symbols x, y: y′ +
10

110
y = 0.23, y(0) = 0.

The constant-equation shortcut solution is y = yp + yh where yp = equilibrium solu-

tion, yh = c/W , W = integrating factor for y′ +
10

110
y = 0. Then W = e

∫
(1/11)dx =

ex/11. The equilibrium solution is found from y′ +
10

110
y = 0.23 by replacing y′ by

zero, then yp = 11(0.23) = 2.53. The solution is y = yp + yh = 2.53 + c e−x/11. Use
y(0) = 0 to find c = −2.53, then y = 2.53

(
1− e−x/11

)
.

Change symbols x, y → t, x. The solution: x(t) = 2.53
(
1− e−t/11

)
.

de:=diff(x(t),t)=10*(0.023) - 10 *x(t)/110;# Maple

ic:=x(0)=0;

dsolve([de,ic],x(t));

# x(t) = 253/100-(253/100)*exp(-(1/11)*t)

8. The inlet adds 12 liters per minute with concentration C1 = 0.0205 kilograms per
liter. The tank contains 200 liters of distilled water. The outlet drains 12 liters per
minute.

9. The inlet adds 10 liters per minute with concentration C1 = 0.0375 kilograms per
liter. The tank contains 200 liters of brine in which 3 kilograms of salt is dissolved.
The outlet drains 10 liters per minute.
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Solution:x(t) =
15

2
− 9

2
e−t/20.

Follow exercise 1 above. The initial value problem:

dx

dt
= 10(0.0375)− 10

x(t)

200
, x(0) = 3

de:=diff(x(t),t)=10*(0.0375) - 10 *x(t)/200;# Maple

ic:=x(0)=3;

dsolve([de,ic],x(t));

# x(t) = 15/2-(9/2)*exp(-(1/20)*t)

10. The inlet adds 12 liters per minute with concentration C1 = 0.0375 kilograms per
liter. The tank contains 500 liters of brine in which 7 kilograms of salt is dissolved.
The outlet drains 12 liters per minute.

11. The inlet adds 10 liters per minute with concentration C1 = 0.1075 kilograms per
liter. The tank contains 1000 liters of brine in which k kilograms of salt is dissolved.
The outlet drains 10 liters per minute.

Solution:x(t) =
215

2
−
(
k − 215

2

)
e−t/100.

Follow exercise 1 above. The initial value problem:

dx

dt
= 10(0.10755)− 10

x(t)

1000
, x(0) = k

de:=diff(x(t),t)=10*(0.1075) - 10 *x(t)/1000;# Maple

ic:=x(0)=k;

dsolve([de,ic],x(t));

# x(t) = 215/2+exp(-(1/100)*t)*(k-215/2)

12. The inlet adds 14 liters per minute with concentration C1 = 0.1124 kilograms per
liter. The tank contains 2000 liters of brine in which k kilograms of salt is dissolved.
The outlet drains 14 liters per minute.

13. The inlet adds 10 liters per minute with concentration C1 = 0.104 kilograms per liter.
The tank contains 100 liters of brine in which 0.25 kilograms of salt is dissolved. The
outlet drains 11 liters per minute. Determine additionally the time when the tank is
empty.

Solution:xp =
52

5
− 13

125
t, xh = c (100− t)11, c = −203

20
100−11

The tank drains at time t = 100, because the tank drains faster than it fills, drain
rate = 1 liters per minute.

Follow exercise 1 above. Let a(t) = 10, b(t) = 11, C1 = 0.104, V (t) = 100 − t. The
initial value problem:

dx

dt
= 10(0.104)− 11

x(t)

100− t
, x(0) = 0.25
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Solution requires the linear integrating factor method, due to non-constant coeffi-
cients. No shortcut applies.

Let p(t) =
11

100− t
Let r(t) = 1.04
Standard linear DE form x′ + px = r is verified.
Let W (t) = e

∫
p(t)dt = e−11 ln |100−t|+c1 , then select

W = (100− t)−11 for t = 0 to 100.

Find xh and xp:

xp = 1
W

∫
rWdt =

52

5
− 13

125
t

xh = c/W = c (100− t)11

It remains to determine c from x(0) = 0.25.

0.25 = xh(0) + xp(0) = c 10011 +
52

5
− 13

125
(0)

c =

(
1

4
− 52

5

)
100−11 = − 203

200000000000000000000000

V:=t->100-t; # Tank volume after t minutes

de:=diff(x(t),t)=10*(0.104) - 11 *x(t)/V(t);# Maple

ic:=x(0)=0.25;

dsolve([de,ic],x(t));

# x(t) = 52/5-(13/125)*t

+(203/200000000000000000000000)*(-100+t)^11

The graphic shows that the amount of salt x(t) is zero at time t = 100.

14. The inlet adds 16 liters per minute with concentration C1 = 0.01114 kilograms per
liter. The tank contains 1000 liters of brine in which 4 kilograms of salt is dissolved.
The outlet drains 20 liters per minute. Determine additionally the time when the
tank is empty.

15. The inlet adds 10 liters per minute with concentration C1 = 0.1 kilograms per liter.
The tank contains 500 liters of brine in which k kilograms of salt is dissolved. The
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outlet drains 12 liters per minute. Determine additionally the time when the tank is
empty.

Solution:xp = 1
W

∫
rWdt = 50− 1

5 t, xh = c (250− t)6, c = (k − 50) /2506

The tank drains at time t = 250, because the tank drains faster than it fills, drain
rate = 2 liters per minute.

Follow exercise 1 above. Let a(t) = 10, b(t) = 12, C1 = 0.1, V (t) = 500 − 2t. The
initial value problem:

dx

dt
= 10(0.1)− 12

x(t)

500− 2t
, x(0) = k

Solution requires the linear integrating factor method, due to non-constant coeffi-
cients. No shortcut applies.

Let p(t) =
12

500− 2t
=

6

250− t
Let r(t) = (10)(0.1) = 1
Standard linear DE form x′ + px = r is verified.
Let W (t) = e

∫
p(t)dt = e−6 ln |250−t|+c1 , then select

W = (250− t)−6 for t = 0 to 250.

Find xh and xp:

xp = 1
W

∫
rWdt = 50− 1

5 t

xh = c/W = c (250− t)6

It remains to determine c from x(0) = k.

k = xh(0) + xp(0) = c 2506 + 50− 1
5 (0)

c = (k − 50) /2506

V:=t->500-2*t; # Tank volume after t minutes

de:=diff(x(t),t)=10*(0.1) - 12 *x(t)/V(t);# Maple

ic:=x(0)=k;

dsolve([de,ic],x(t));

# x(t) = 50-(1/5)*t+(-250+t)^6*(k-1/2)/250^6

16. The inlet adds 11 liters per minute with concentration C1 = 0.0156 kilograms per
liter. The tank contains 700 liters of brine in which k kilograms of salt is dissolved.
The outlet drains 12 liters per minute. Determine additionally the time when the
tank is empty.

Two-Tank Mixing
Assume brine tanks A and B in Figure 4 have volumes 100 and 200 gallons,
respectively. Let x(t) and y(t) denote the number of pounds of salt at time t,
respectively, in tanks A and B. Distilled water flows into tank A, then brine flows
out of tank A and into tank B, then out of tank B. All flows are at r gallons per
minute. Given rate r and initial salt amounts x(0) and y(0), find x(t) and y(t).

17. r = 4, x(0) = 40, y(0) = 20.
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Solution:x(t) = 40 e−4t/100, y(t) = −80 e−4t/100 + 100 e−4t/200

The model:

dx

dt
= a(t)C1 − b(t)

x(t)

VA(t)
,

dy

dt
= b(t)

x(t)

VA(t)
− c(t)

y(t)

VB(t)
.

Define tank volumes A0 = 100, B0 = 200. Flow rates are defined by a(t) = b(t) =
c(t) = r. Given: VA = A0 = 100, VB = B0 = 200. Distilled water has no salt:
C1 = 0. The initial value problem:

dx

dt
= (r)(0) − r

x(t)

A0
, x(0) = 40,

dy

dt
= r

x(t)

A0
− r

y(t)

B0
, y(0) = 20

After substitutions and simplifications:

dx

dt
= − r

x(t)

100
, x(0) = 40,

dy

dt
= r

x(t)

100
− r

y(t)

200
, y(0) = 20

The first equation is homogeneous first order with solution

x(t) = x(0)e−rt/100 = 40e−4t/100

The second equation then becomes

dy

dt
=

r

100
x(0)e−rt/100 − r

y(t)

200
where r = 4 and x(0) = 40

The classification is linear first order non-homogeneous with non-constant coefficients.
The linear integrating factor method is required to solve it:

y(t) = −80 e−4t/100 + 100 e−4t/200

de:=diff(y(t),t)=(r/100)*x[0]*exp(-r*t/100) - r*y(t)/200;

ic:=y(0)=y[0];

dsolve([de,ic],y(t));

# y(t) = -2*x[0]*exp(-r*t/100)+(y[0]+2*x[0])*exp(-r*t/200)

18. r = 3, x(0) = 10, y(0) = 15.

19. r = 5, x(0) = 20, y(0) = 40.

Solution:y(t) = −40e−t/20 + 80e−t/40

r:=5;x0:=20;y0:=40;

de:=diff(y(t),t)=(r/100)*x0*exp(-r*t/100) - r*y(t)/200;

ic:=y(0)=y0;

dsolve([de,ic],y(t));

# y(t) = -40*exp(-t/20)+80*exp(-t/40)

20. r = 5, x(0) = 40, y(0) = 30.

21. r = 8, x(0) = 10, y(0) = 12.

Solution:y(t) = −20e−2t/25 + 32e−t/25
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r:=8;x0:=10;y0:=12;

de:=diff(y(t),t)=(r/100)*x0*exp(-r*t/100) - r*y(t)/200;

ic:=y(0)=y0;

dsolve([de,ic],y(t));

# y(t) = -20*exp(-2*t/25)+32*exp(-t/25)

22. r = 8, x(0) = 30, y(0) = 12.

23. r = 9, x(0) = 16, y(0) = 14.

Solution:y(t) = −32e−9t/100 + 46e−9t/200

r:=9;x0:=16;y0:=14;

de:=diff(y(t),t)=(r/100)*x0*exp(-r*t/100) - r*y(t)/200;

ic:=y(0)=y0;

dsolve([de,ic],y(t));

# y(t) = (-32*exp(-(9/200)*t)+46)*exp(-(9/200)*t)

24. r = 9, x(0) = 22, y(0) = 10.

25. r = 7, x(0) = 6, y(0) = 5.

Solution:y(t) = −12e−7t/100 + 17e−7t/200

r:=7;x0:=6;y0:=5;

de:=diff(y(t),t)=(r/100)*x0*exp(-r*t/100) - r*y(t)/200;

ic:=y(0)=y0;

dsolve([de,ic],y(t));

# y(t) = (-12*exp(-(7/200)*t)+17)*exp(-(7/200)*t)

26. r = 7, x(0) = 13, y(0) = 26

Residential Heating
Assume the Newton cooling model for heating and insulation values 1/4 ≤ k ≤
1/2. Follow Example 2.23, page 116.

27. The office heat goes off at 7PM. It’s 74◦F inside and 58◦F outside overnight. Esti-
mate the office temperature at 10PM, 1AM and 6AM.

Solution:The ranges for 10PM, 1AM and 6AM (t = 3, 6, 11):

t = 3: 61.57008256 ≤ k ≤ 65.55786484,
t = 6: 58.79659309 ≤ k ≤ 61.57008256,
t = 11: 58.06538834 ≤ k ≤ 59.02284578

Follow the Office Heating example. Newton’s law of cooling for linear convection
is used:

du

dt
= k(a(t)− u(t)) + s(t) + f(t)

There are no sources, s(t) = f(t) = 0. Supplied are values a(t) = a0 = 58 and
u(0) = 74. Unknown constant k is expected to be in the range of normal insulation:
1
2 ≤ k ≤ 1

2 . Then

u′(t) + ku(t) = 58k, u(0) = 74
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The constant-coefficient shortcut u = equilibrium + c/W applies, W = integrating
factor = ekt. Then

u(t) = 58 + (74− 58)e−kt

The question is answered by finding the max and min of u(t) when t = 3, t = 6
and t = 11 hours, corresponding to times 10PM, 1AM and 6AM. Possible ways to
solve the max-min problem are graphing, hand calculation and CAS. The quantities
to apply max-min methods are:

u(3) = 58 + 16 e−3k,
u(6) = 58 + 16 e−6k,
u(11) = 58 + 16 e−11k

Computed max-min ranges:

t = 3: 61.57008256 ≤ k ≤ 65.55786484,
t = 6: 58.79659309 ≤ k ≤ 61.57008256,
t = 11: 58.06538834 ≤ k ≤ 59.02284578

Hand computation can use the monotonicity of e−kt to deduce that the max-min is
at the endpoint. A calculator will provide the decimal values.

u:=t->58+(74-58)*exp(-k*t);# Maple

Krange:=k=1/4 .. 1/2;

F:=t->evalf([minimize(u(t),Krange),maximize(u(t),Krange)]);

F(3);F(6);F(11);

# [61.57008256, 65.55786484]

# [58.79659309, 61.57008256]

# [58.06538834, 59.02284578]

28. The office heat goes off at 6:30PM. It’s 73◦F inside and 55◦F outside overnight.
Estimate the office temperature at 9PM, 3AM and 7AM.

29. The radiator goes off at 9PM. It’s 74◦F inside and 58◦F outside overnight. Estimate
the room temperature at 11PM, 2AM and 6AM.

Solution:The ranges for 10PM, 1AM and 6AM (t = 3, 6, 11):

t = 2: 63.88607106 ≤ k ≤ 67.70449056,
t = 5: 59.31335998 ≤ k ≤ 62.58407675,
t = 9: 58.17774394 ≤ k ≤ 59.6863875

The solution from exercise 27 applies directly.

u:=t->58+(74-58)*exp(-k*t);# Maple

Krange:=k=1/4 .. 1/2;

F:=t->evalf([minimize(u(t),Krange),maximize(u(t),Krange)]);

F(2);F(5);F(9);

# [63.88607106, 67.70449056]

# [59.31335998, 62.58407675]

# [58.17774394, 59.68638759]

30. The radiator goes off at 10PM. It’s 72◦F inside and 55◦F outside overnight. Estimate
the room temperature at 2AM, 5AM and 7AM.

31. The office heat goes on in the morning at 6:30AM. It’s 57◦F inside and 40◦ to
55◦F outside until 11AM. Estimate the office temperature at 8AM, 9AM and 10AM.
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Assume the furnace provides a five degree temperature rise in 30 minutes with perfect
insulation and the thermostat is set for 76◦F.

Solution:Estimates:
54 to 65 at 8:00AM,
54 to 66 at 9:00 AM,
54 to 66 at 10:00 AM.

Model:
du

dt
= k(a(t)− u(t)) + s(t) + k1(T0 − u(t))

Assumptions: No sources: s(t) = 0. Thermostat setting: T0 = 76. Assume
0.5 ≤ k ≤ 1, good to poor insulation. Assume 40 ≤ a(t) ≤ 55 for the duration
of the analysis. Let t = 0 hours correspond to 6:30 AM.

Estimates required: u(1.5), u(2.5), u(3.5) which are temperatures for 8:00, 9:00
and 10:00 AM.

Refined model:
du

dt
= k(a(t)− u(t)) + k1(76− u(t)), u(0) = 57

Determine constant k1 = 0.611: Assume a five degree temperature rise in 30
minutes with perfect insulation. The refined model uses k = 0 to give Newton’s
cooling equation w′(t) = k1(76 − w(t)), w(0) = 57, w(0.5) = w(0) + 5 = 62. The
constant-coefficient shortcut for standard form y′ + py = q gives w(t) = 76 + ce−k1t.
Let t = 0 in this equation: 57 = 76+ c. Solve for c = −19, then w(t) = 76− 19e−k1t.
Substitute t = 0.5 and w(0.5) = 62. Solve 62 = 76−19e−k1/2 for k1 = −2 ln |14/19| =
0.6107632991.

Final model:
du

dt
= k(a(t)− u(t)) + 0.611(76− u(t)), u(0) = 57

0.5 ≤ k ≤ 1, 40 ≤ a(t) ≤ 55

Estimates for u(1.5), u(2.5), u(3.5):
The worst-case scenarios are a(t) = 40 and a(t) = 55. Two solution formulas are
obtained:

Case a(t) = 40:

u(t) = e−(k+0.611)t

(
57− 4

10 k + 11.609

k + 0.611

)
+ 4

10 k + 11.609

k + 0.611

The max and min for 0.5 ≤ k ≤ 1 and
t = 1.5: 53.95 ≤ u ≤ 59.27
t = 2.5: 53.71 ≤ u ≤ 59.62
t = 3.5: 53.67 ≤ u ≤ 59.74

Case a(t) = 55:

u(t) = e−(k+0.611)t

(
57− 4

13.750 k + 11.609

k + 0.611

)
+ 4

13.750 k + 11.609

k + 0.611

The max and min for 0.5 ≤ k ≤ 1 and
t = 1.5: 62.43 ≤ u ≤ 64.75
t = 2.5: 62.86 ≤ u ≤ 65.96
t = 3.5: 62.94 ≤ u ≤ 66.35
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# Assume u0:=57 F inside, heater R=5 F rise after

# RT:=30/60 hours, no sources,

# outside a1:=40 to a2:=55 F, thermostat T0:=76 F

u0:=57;R:=5;RT:=0.5;

a1:=40;a2:=55;T0:=76;

# Estimate k1 from first RT hours

# Assume perfect insulation k=0, outside a1 degrees

# Assume u(RT)=u(0)+R

kk:=0;a:=t->a1;

de:=diff(u(t),t)=kk*(a(t)-u(t))+k1*(T0-u(t));

ic:=u(0)=u0;

ANS:=dsolve([de,ic],u(t));

X:=unapply(rhs(ANS),(t,k1));

kk1:=solve(X(RT,k1)=u0+R,k1);

# Assume hereafter k1 equals kk1 = 0.6107632991

# === worst-case a==a1.

a:=t->a1;

de1:=diff(u(t),t)=k*(a(t)-u(t))+kk1*(T0-u(t));

ic:=u(0)=u0;

ANS:=dsolve([de1,ic],u(t));

X1:=unapply(rhs(ANS),(t,k));

with(Optimization):

# 6:30am is t=0 hours, 8am is T1:=1.5 hours

# 9am is T2:=2.5 hours, 10am is T3:=3.5 hours

# Assume insulation constants k = 0.5 to 1.0

T1:=1.5;T2:=2.5;T3:=3.5;

Minimize(X1(T1,k),k=0.5..1);Maximize(X1(T1,k),k=0.5..1);

Minimize(X1(T2,k),k=0.5..1);Maximize(X1(T2,k),k=0.5..1);

Minimize(X1(T3,k),k=0.5..1);Maximize(X1(T3,k),k=0.5..1);

# T1: 53.949354482610886 to 59.26675808435088

# T2: 53.71006968557396 to 59.62099708075318

# T3: 53.66227611314616 to 59.73765063938258

#plot3d(X1(t,k),t=0..4,k=0.5 .. 1);

# worst-case a==a2.

a:=t->a2;

de2:=diff(u(t),t)=k*(a(t)-u(t))+kk1*(T0-u(t));

ANS:=dsolve([de2,ic],u(t));

X2:=unapply(rhs(ANS),(t,k));

T1:=1.5;T2:=2.5;T3:=3.5;

Minimize(X2(T1,k),k=0.5..1);Maximize(X2(T1,k),k=0.5..1);

Minimize(X2(T2,k),k=0.5..1);Maximize(X2(T2,k),k=0.5..1);

Minimize(X2(T3,k),k=0.5..1);Maximize(X2(T3,k),k=0.5..1);

# T1: 62.430441592457164 to 64.74289674260832

# T2: 62.85639147974006 to 65.9529226338951

# T3: 62.94146862229387 to 66.35139323618871

32. The office heat goes on at 6AM. It’s 55◦F inside and 43◦ to 53◦F outside until
10AM. Estimate the office temperature at 7AM, 8AM and 9AM. Assume the furnace
provides a seven degree temperature rise in 45 minutes with perfect insulation and
the thermostat is set for 78◦F.

33. The hot water heating goes on at 6AM. It’s 55◦F inside and 50◦ to 60◦F outside until
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10AM. Estimate the room temperature at 7:30AM. Assume the radiator provides a
four degree temperature rise in 45 minutes with perfect insulation and the thermostat
is set for 74◦F.

Solution:Estimate: 56 to 62 F. Follow the solution of Exercise 31. Ans check:

# Assume u0:=55 F inside, heater R=4 F

# rise after RT:=45/60 hours, no sources,

# outside a1:=50 to a2:=60 F, thermostat T0:=74 F

u0:=55;R:=4;RT:=0.75;a1:=50;a2:=60;T0:=74;

# Estimate k1 from first RT hours

# Assume perfect insulation k=0, outside constant a1 degrees

# Assume u(RT)=u(0)+R

kk:=0;a:=t->a1;

de:=diff(u(t),t)=kk*(a(t)-u(t))+k1*(T0-u(t));

ic:=u(0)=u0;

ANS:=dsolve([de,ic],u(t));

X:=unapply(rhs(ANS),(t,k1));

kk1:=solve(X(RT,k1)=u0+R,k1);

# Assume hereafter k1 equals kk1 = 0.3151850374

a:=t->a1;# worst-case a==a1.

de1:=diff(u(t),t)=k*(a(t)-u(t))+kk1*(T0-u(t));

ic:=u(0)=u0;ANS:=dsolve([de1,ic],u(t));

X1:=unapply(rhs(ANS),(t,k));

with(Optimization):

# 6:00am is t=0 hours, 7:30am is T1:=1.5 hours

# Assume insulation constants k = 0.5 to 1.0

T1:=1.5;

Minimize(X1(T1,k),k=0.5 .. 1);

Maximize(X1(T1,k),k=0.5 .. 1);

# T1: 55.6470897741918 to 58.0195074023563

#plot3d(X1(t,k),t=0..4,k=0.5 .. 1);

a:=t->a2;# worst-case a==a2.

de2:=diff(u(t),t)=k*(a(t)-u(t))+kk1*(T0-u(t));

ANS:=dsolve([de2,ic],u(t));

X2:=unapply(rhs(ANS),(t,k));T1:=1.5;

Minimize(X2(T1,k),k=0.5 .. 1);

Maximize(X2(T1,k),k=0.5 .. 1);

# T1: 62.1931645171822 to 62.3472900101369

34. The hot water heating goes on at 5:30AM. It’s 54◦F inside and 48◦ to 58◦F outside
until 9AM. Estimate the room temperature at 7AM. Assume the radiator provides a
five degree temperature rise in 45 minutes with perfect insulation and the thermostat
is set for 74◦F.

35. A portable heater goes on at 7AM. It’s 45◦F inside and 40◦ to 46◦F outside until
11AM. Estimate the room temperature at 9AM. Assume the heater provides a two
degree temperature rise in 30 minutes with perfect insulation and the thermostat is
set for 90◦F.

Solution:At 9 am it is about 56 F to 62 F.
Follow the solution to Exercise 33.
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36. A portable heater goes on at 8AM. It’s 40◦F inside and 40◦ to 45◦F outside until
11AM. Estimate the room temperature at 10AM. Assume the heater provides a two
degree temperature rise in 20 minutes with perfect insulation and the thermostat is
set for 90◦F.

Evaporative Cooling
Define outside temperature (see Figure 3)

a(t) =



75− 2 t 0 ≤ t ≤ 6
39 + 4 t 6 < t ≤ 9
30 + 5 t 9 < t ≤ 12
54 + 3 t 12 < t ≤ 15

129− 2 t 15 < t ≤ 21
170− 4 t 21 < t ≤ 23
147− 3 t 23 < t ≤ 24

.

Given k, k1, P (t) = wa(t) and u(0) = 69, then plot u(t), P (t) and a(t) on one
graphic.

u(t) = u(0)e−kt−k1t+

(k + wk1)
∫ t
0 a(r)e

(k+k1)(r−t)dr.

37. k = 1/4, k1 = 2, w = 0.85

Solution:It is necessary to use a computing workbench or CAS with graphics. The
code for maple appears below.

w:=0.85;k:=1/4;k1:=2;

F:=< 75-2*t, 39+4*t, 30+5*t, 54+3*t,

129-2*t, 170-4*t, 147-3*t>;

V:=<0,6,9,12,15,21,23,24>;

N:=ArrayNumElems(F);

for i from 1 to N do

W[i] := piecewise(V[i] <t and t <= V[i+1],F[i],0);

od;

a:=unapply(sum(W[j],j=1..N),t);

P:=t->w*a(t);

u:=unapply( 69*exp(-k*t-k1*t)+

(k+w*k1)*int(a(r)*exp((k+k1)*(r-t)),r=0..t),t);

opts:=thickness=4,font=[Courier,bold,20],

color=[red,blue,yellow],legend=[a,P,u];

plot([a(t),P(t),u(t)],t=0..24,50..100,opts);
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38. k = 1/4, k1 = 1.8, w = 0.85

39. k = 3/8, k1 = 2, w = 0.85

Solution: A computing workbench or CAS with graphics is required. The maple

code in Exercise 37 is used, changes are below.

# Minor change to Exercise 37

w:=0.85;k:=3/8;k1:=2;

40. k = 3/8, k1 = 2.4, w = 0.85

41. k = 1/4, k1 = 3, w = 0.80

Solution:A computing workbench or CAS with graphics is required. The maple code

in Exercise 37 is used, changes are below.

# Minor change to Exercise 37

w:=0.80;k:=1/4;k1:=3;

42. k = 1/4, k1 = 4, w = 0.80

43. k = 1/2, k1 = 4, w = 0.80

Solution:A computing workbench or CAS with graphics is required. The maple code

in Exercise 37 is used, changes are below.

# Minor change to Exercise 37

w:=0.80;k:=1/2;k1:=4;
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44. k = 1/2, k1 = 5, w = 0.80

45. k = 3/8, k1 = 3, w = 0.80

Solution:A computing workbench or CAS with graphics is required. The maple code

in Exercise 37 is used, changes are below.

# Minor change to Exercise 37

w:=0.80;k:=3/8;k1:=3;

46. k = 3/8, k1 = 4, w = 0.80

Radioactive Chain
Let A, B and C be the amounts of three radioactive isotopes. Assume A decays
into B at rate a, then B decays into C at rate b. Given a, b, A(0) = A0 and
B(0) = B0, find formulas for A and B.

47. a = 2, b = 3, A0 = 100, B0 = 10

Solution:The Radioactive Chain Example 2.26, page 119 will be used. Formulas
for A and B:

A(t) = A0e
−at, B(t) = B0e

−bt + aA0
e−at − e−bt

b− a
.

Then:

A(t) = 100e−2t, B(t) = 200e−3t + 200
e−2t − e−3t

3− 2
.

The solution for B(t) is B(t) = homogeneous + particular. The homogeneous solution
of B′ = aA− bB is the solution Bh = Ce−bt of equation B′

h = −bBh. The particular
solution is extracted from the Example.

48. a = 2, b = 3, A0 = 100, B0 = 100

49. a = 1, b = 4, A0 = 100, B0 = 200

Solution:Use Exercise 47:

A(t) = 100e−t, B(t) = 200e−4t + 1(100)
e−t − e−4t

4− 1
.

50. a = 1, b = 4, A0 = 300, B0 = 100
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51. a = 4, b = 3, A0 = 100, B0 = 100

Solution:Use Exercise 47:

A(t) = 100e−4t, B(t) = 100e−3t + 4(100)
e−4t − e−3t

3− 4
.

52. a = 4, b = 3, A0 = 100, B0 = 200

53. a = 6, b = 1, A0 = 600, B0 = 100

Solution:Use Exercise 47:

A(t) = 600e−6t, B(t) = 100e−3t + 6(600)
e−6t − e−t

1− 6
.

54. a = 6, b = 1, A0 = 500, B0 = 400

55. a = 3, b = 1, A0 = 100, B0 = 200

Solution:Use Exercise 47:

A(t) = 100e−3t, B(t) = 200e−t + 3(100)
e−3t − e−t

1− 3
.

56. a = 3, b = 1, A0 = 400, B0 = 700

Electric Circuits
In the LR-circuit of Figure 5, assume E(t) = A coswt and I(0) = 0. Solve for
I(t).

57. A = 100, w = 2π, R = 1, L = 2

Solution:The answer:

I(t) = C e−t/2 + 100
4π sin (2π t) + cos (2π t)

16π2 + 1

Electric Circuits Example 2.27 will be used. The current is found from I(t) =
homogeneous + particular. The homogeneous solution is the transient current Itr =
Ce−Rt/L for some constant C. Let’s use the linear integrating factor method, which
finds both the homogeneous solution and a particular solution in one computation.

The Model: LI ′(t) +RI(t) = A coswt

I ′(t) + R
L I(t) =

A
L coswt Standard Form

W = eRt/L Integrating Factor

(W (t)I(t))′

W (t)
= A

LW (t) coswt Quadrature Form

(W (t)I(t))′ = A
LW (t) cos(wt) Clear Fraction Left∫

(W (t)I(t))′dt = A
L

∫
W (t) cos(wt)dt Quadrature Step

W (t)I(t) = C + A
L

∫
e−Rt/L cos(wt)dt Fund. Theorem of Calculus
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Integral Table:

W (t)I(t) = C + 2
et/2 (4π sin (2π t) + cos (2π t))

16π2 + 1

# Maple integration

int(exp(R*t/L)*cos(w*t),t);simplify(%);

# Answer check for L I’(t) + R I(t) = A cos wt

A:=100;w:=2*Pi;R:=1;L:=2;

de:=L*diff(u(t),t) + R*u(t) = A * cos(w*t);

dsolve(de,u(t));

58. A = 100, w = 4π, R = 1, L = 2

59. A = 100, w = 2π, R = 10, L = 1

Solution:Use the methods in Exercise 57.

I (t) = C e−10 t + 50
π sin (2π t) + 5 cos (2π t)

π2 + 25

A:=100;w:=2*Pi;R:=10;L:=1;

60. A = 100, w = 2π, R = 10, L = 2

61. A = 5, w = 10, R = 2, L = 3

Solution:Use the methods in Exercise 57.

I (t) = C + e−2/3 t +
5 cos (10 t)

452
+

75 sin (10 t)

452

A:=5;w:=10;R:=2;L:=3;

62. A = 5, w = 4, R = 3, L = 2

63. A = 15, w = 2, R = 1, L = 4

Solution:Use the methods in Exercise 57.

I (t) = C e−t/4 +
3

13
cos (2 t) +

24 sin (2 t)

13

A:=15;w:=2;R:=1;L:=4;

64. A = 20, w = 2, R = 1, L = 3

65. A = 25, w = 100, R = 5, L = 15

Solution:Use the methods in Exercise 57.

I (t) = C e−t/3 +
5 cos (100 t)

90001
+

1500 sin (100 t)

90001

A:=25;w:=100;R:=5;L:=15;

66. A = 25, w = 50, R = 5, L = 5
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2.6 Kinetics

Exercises 2.6 �
Newton’s Laws
Review of units and conversions.

1. An object weighs 100 pounds. Find its mass in slugs and kilograms.

Solution: Confusion exists for lb, libre and lbf (pound-force not foot-pound). The
pound-force lbf is the product of one avoirdupois pound (exactly 0.45359237 kg) and
the standard sea level acceleration due to gravity, g = 9.80665 m/sec/sec, briefly 1 lbf
= 4.448221615 Newtons. Newton’s Law F = ma at sea level in a vacuum then gives
4.448221615 = m(9.80665) for mass m = 0.4535923700 kg. On a kitchen scale with a
kg/lb switch some package marked 453 grams will read 453 g or 1 lb, depending on
the switch position. This information explains why consumer courses say 1 kg=2.2
lb: it is valid in a vacuum at sea level as a quick way to interpret kg scale values as
lb scale values. Most people find an approximate answer: 100 lb on a scale has mass
100/2.2 = 45.45 kg. Other answers close to 45.45 are also acceptable, one not being
better than the other, because the value of g depends on the unknown location on
the earth.

The mass in slugs is found directly from Newton’s Law F = ma using F = 100 lbf and
g = 9.80665 m/sec/sec or g = 32.17404856 ft/sec/sec. Then 100 = 32.17404856m
gives m = 3.108095017 slugs.

2. An object has mass 50 kilograms. Find its mass in slugs and its weight in pounds.

3. Convert from fps to mks systems: position 1000, velocity 10, acceleration 2.

Solution:Answers:
Position = 1000 ft = 1000 ∗ 30.48 cm = 304.8 m.
Velocity = 10 ft/sec = 10 ∗ 30.48 cm/sec = 10 ∗ 30.48/100 m/sec = 3.048 m/sec.
Acceleration = 2 ft/sec/sec = 2 ∗ 30.48 cm/sec/sec = 2 ∗ 30.48/100 cm/sec/sec =
0.6096 m/sec/sec.

4. Derive g =
Gm

R2 , where m is the mass of the earth and R is its radius.

Velocity and Acceleration
Find the velocity x′ and acceleration x′′.

5. x(t) = 16t2 + 100

Solution:Answer:
Velocity = x′(t) = 32t,
Acceleration = x′′(t) = 32.

6. x(t) = 16t2 + 10t+ 100

7. x(t) = t3 + t+ 1

Solution:Answer:
Velocity = x′(t) = 3t2 + 1,
Acceleration = x′′(t) = 6t.
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8. x(t) = t(t− 1)(t− 2)

Free Fall with Constant Gravity
Solve using the model x′′(t) = −g, x(0) = x0, x

′(0) = v0.

9. A brick falls from a tall building, straight down. Find the distance it fell and its
speed at three seconds.

Solution: It fell 144 feet and reached 288 ft/sec in 3 seconds.

Model: x′′(t) = −g, x(0) = x0, x
′(0) = v0

Choose coordinates x = 0 for the top of the building. Define v0 = 0, the brick falls
from rest. Let g = 32 ft/sec/sec instead of g = 32.088 in system fps, because other
physical factors have been ignored. Coordinates cause the model to change signs
−g to +g because the position vector is x(t)⃗j, which aligns with the gravity vector
gj⃗. Effectively, x has been replaced by −x in the original model. Then the model
becomes

x′′(t) = 32, x(0) = 0, x′(0) = 0

A quadrature finds x(t) = 16t2. Then x(3) = 16(9) = 144, which means the brick fell
144 feet. The speed at 3 seconds is x′(3) = (gt)|t=3 = 288 ft/sec.

10. An iron ingot falls from a tall building, straight down. Find the distance it fell and
its speed at four seconds.

11. A ball is thrown straight up from the ground with initial velocity 66 feet per second.
Find its maximum height.

Solution: It reached 2.0625 feet and then fell back to the ground.

Model: x′′(t) = −g, x(0) = x0, x
′(0) = v0

Choose coordinates x = 0 for the ground. Define v0 = 66 ft/sec, the starting velocity.
Let g = 32 ft/sec/sec instead of g = 32.088 in system fps, because other physical
factors have been ignored. Then the model becomes

x′′(t) = −32, x(0) = 0, x′(0) = 66

A quadrature finds x(t) = −16t2 + at + b for some constants a, b. Initial conditions
x(0) = 0, x′(0) = 66 evaluate a = 66, b = 0. The maximum height is x(T ) =
maxt≥0 x(t), the value T guaranteed by continuity of x(t). Find T from x′(T ) = 0:
−32T + a = 0 or T = a/32 = 66/32 = 2.0625 feet.

12. A ball is thrown straight up from the ground with initial velocity 88 feet per second.
Find its maximum height.

13. An arrow is shot straight up from the ground with initial velocity 23 meters per
second. Find the flight time back to the ground.

Solution: The flight time is T = 0.2 sec.

Model: x′′(t) = −g, x(0) = x0, x
′(0) = v0

Choose coordinates x = 0 for the ground. Define v0 = 23 m/sec, the starting velocity.
Let g = 9.8 ft/sec/sec, because other physical factors have been ignored. Then the
model becomes
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x′′(t) = −9.8, x(0) = 0, x′(0) = 23

A quadrature finds x(t) = −4.6t2 + at+ b for some constants a, b. Initial conditions
x(0) = 0, x′(0) = 23 evaluate a = 23, b = 0. The flight time is the first value T > 0
with x(T ) = 0. The equation for T is 0 = −4.6T 2 + 23T . Then T = 4.6/23 = 0.2 =
1/5.

14. An arrow is shot straight up from the ground with initial velocity 44 meters per
second. Find the flight time back to the ground.

15. A car travels 140 kilometers per hour. Brakes are applied, with deceleration 10
meters per second per second. Find the distance the car travels before stopping.

Solution:Answer: 75.62 meters.

Assume the car is on a level road traveling with constant velocity 140 km/h. At
t = 0 the brakes are applied with acceleration a = −10 m/sec/sec. Then x′′(t) =
−10 for t > 0 and x′(0) = 140 km/h. Data units must be changed to meters
and seconds. Then x′(0) = 140 ∗ 1000/3600 = 350/9 m/sec. Solve by quadrature:
x′(t) = −10t + 350/9 and x(t) = −5t2 + 350t/9 + x(0). The car stops when the
velocity is zero: 0 = −10t + 350/9. Then the distance traveled is x(t) − x(0) =
−5t2 + 350t/9 = −5(35/9)2 + (350/9)(35/9) = 6125/81 = 75.62 m.

16. A car travels 120 kilometers per hour. Brakes are applied, with deceleration 40 feet
per second per second. Find the distance the car travels before stopping.

17. An arrow is shot straight down from a height of 500 feet, with initial velocity 44 feet
per second. Find the flight time to the ground and its impact speed.

Solution:Answer: Flight time 7.13 seconds, impact speed −184.22 ft/sec.

Assume no air resistance. The distance x(t) of the arrow center of mass to the ground
has model x′′(t) = −32 (position vector ground to arrow has direction opposite the
gravity vector). Also known is x(0) = 500, x′(0) = 44 in fps units. Solve by
quadrature: x′(t) = −32t + 44, x(t) = −16t2 + 44t + 500. The arrow impacts
the ground at time t satisfying x(t) = 0. Solve −16t2 + 44t + 500 = 0 for t =
1
8 (11 ±

√
2121) = −4.381789470, 7.131789470. The positive time is relevant: impact

at t = 7.131789470 seconds. The impact speed is x′(7.131789470) = −4
√
2121 =

−184.2172630 ft/sec.

18. An arrow is shot straight down from a height of 200 meters, with initial velocity 13
meters per second. Find the flight time to the ground and its impact speed.

Linear Air Resistance
Solve using the linear air resistance model mx′′(t) = −kx′(t)−mg. An equivalent
model is x′′ = −ρx′ − g, where ρ = k/m is the drag factor.

19. An arrow is shot straight up from the ground with initial velocity 23 meters per
second. Find the flight time back to the ground. Assume ρ = 0.035.

Solution:Answer: 4.57 seconds.
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Assume model x′′ = −ρx′ − g with drag factor ρ = 0.035. The velocity model is
v′ = −0.035v − 9.8, v(0) = 23 with solution given by (see equation 9)

v(t) = −g

ρ
+

(
v(0) +

g

ρ

)
e−ρt,

x(t) = x(0)− g

ρ
t+

1

ρ

(
v(0) +

g

ρ

)(
1− e−ρt

)
.

The flight time to return to the ground is time T > 0 with x(T ) = 0. Because
x(0) = 0 (launch from the ground), then

0 = −g

ρ
T +

1

ρ

(
v(0) +

g

ρ

)(
1− e−ρT

)
This nonlinear equation is solved graphically for T by plotting two curves on the

same xy-axes: y = g
ρx and y = 1

ρ

(
v(0) + g

ρ

)
(1− e−ρx). Alternatively, a CAS can

find T . Both methods require numbers in the equation:

0 = −280T +
1

0.035
(23 + 280)

(
1− e−0.035T

)
Maple answer: T=4.571994605 seconds.

EQ:=-280 *x+(1/0.035)*(23+280)*( 1 - exp(-0.035* x) );

solve(EQ=0,x);

20. An arrow is shot straight up from the ground with initial velocity 27 meters per
second. Find the maximum height. Assume ρ = 0.04.

21. A parcel is dropped from an aircraft at 32, 000 feet. It has a parachute that opens
automatically after 25 seconds. Assume drag factor ρ = 0.16 without the parachute
and ρ = 1.45 with it. Find the descent time to the ground.

Solution:The descent time to the ground is 1298.59 seconds, about 22 minutes.

The problem requires two models, switching from Model 1 to Model 2 at time
t = 25 seconds. Let x(t) be the distance in feet from the parcel to the ground,
x(0) = 32000. Let y(0) = x(25), which is the distance in feet to the ground when the
parachute opens. For t > 0, value y(t) is the parcel distance in feet to the ground.
Technical issues: the parcel falls from rest, x′(0) = 0, but y′(0) is not zero: it is the
speed of the parcel at t = 25 seconds.

Flight Time: Let T > 0 be the first root of y(T ) = 0. The flight time to the ground
is 25 + T .

Model 0: u′′ = −0.00u′ − 32, u(0) = 32000, u′(0) = 0
Assume zero drag force, then compute terminal velocity and flight time: it is used
for comparison.

Model 1: x′′ = −0.16x′ − 32, x(0) = 32000, x′(0) = 0

Model 2: y′′ = −1.45y′ − 32, y(0) = x(25), y′(0) = x′(25)

Solve Model 0: u(t) = −16t2 + 32000
The parcel flight time is T0 = 44.72 seconds and the impact speed is |u′(T0)| = 1431.1
ft/sec = 975.75 miles/hour. Unrealistic.
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Solve Model 1: x(t) = −1250 e− 4 t
25 − 200 t+ 33250

Then x(25) = 28227.10545 and x′(25) = −196.3368722.

Solve Model 2: y(t) = 120.1847632⃗e−1.45 t − 22.06896552 t+ 28106.92069
Then y(T ) = 0 when T = 1273.594844 seconds. Flight time 25 + T = 1298.594844
seconds, about 22 minutes, terminal velocity y′(T ) = −22.06896552 ft/sec, about 15
mph. This speed is reached for practical purposes after about 5 seconds into flight.
The parcel falls from 28, 000 feet at 15 mph, taking about 21 minutes.

de:=diff(x(t),t,t)=-rho*diff(x(t),t)-g;

de0:=subs(rho=0,g=32,de);

de1:=subs(rho=0.16,g=32,de);

de2:=subs(rho=1.45,g=32,de);

ans0:=dsolve([de0,x(0)=32000,D(x)(0)=0],x(t));

X0:=unapply(rhs(ans0),t);solve(X0(t)=0,t);

T0:=20*sqrt(5); X0(T0);

"X0 terminal velocity"=evalf(D(X0)(T0));

"X0 flight time"=evalf(T0);

ans1:=dsolve([de1,x(0)=32000,D(x)(0)=0],x(t));

X:=unapply(evalf(rhs(ans1)),t);

y0:=X(25);y1:=D(X)(25);

ans2:=dsolve([de2,x(0)=y0,D(x)(0)=y1],x(t));

Y:=unapply(evalf(rhs(ans2)),t);

"Y Time to ground" = solve(Y(t)=0,t);# 1273.594844 sec

"Flight Time" = 25+1273.594844; # 1298.594844 sec

22. A first aid kit is dropped from a helicopter at 12, 000 feet. It has a parachute that
opens automatically after 15 seconds. Assume drag factor ρ = 0.12 without the
parachute and ρ = 1.55 with it. Find the impact speed with the ground.

23. A motorboat has velocity v satisfying 1100v′(t) = 6000 − 110v, v(0) = 0. Find the
maximum speed of the boat.

Solution:The maximum speed should be the maximum of v(t). However, the calculus
theory applies to a finite interval and not to interval 0 ≤ t < ∞. There is an
equilibrium solution found from formally setting v′(t) = 0: 0 = 6000− 110v(t) gives
v(t) = 6000/110 = 54.55. A maximum speed report of about 54 or 55 is a good
answer: the boat never travels faster than 54.55.

24. A motorboat has velocity v satisfying 1000v′(t) = 4000 − 90v, v(0) = 0. Find the
maximum speed of the boat.

25. A parachutist falls until his speed is 65 miles per hour. He opens the parachute.
Assume parachute drag factor ρ = 1.57. About how many seconds must elapse
before his speed is reduced to within 1% of terminal velocity?

Solution:It takes about 3.76 seconds to reach within 1% of terminal velocity
−20.38216561 fps.

Details: Use ρ = 1.57 and assume x(0) = x0 is unknown, x′(0) = −65 mph. Units
must be converted to match g = 32, which is in fps units. Then x′(0) = −95.3333
fps.
Model: x′′ = −1.57x′ − 32, x(0) = x0, x

′(0) = −95.3333
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Solve the Model: Solve first for v(t) = x′(t) in v′ = −1.57v− 32, then use quadra-
ture to find

v(t) = −74.95113440 e−1.57 t − 20.38216561
x(t) = 47.73957605 e−1.57 t − 20.38216561 t+ x0 − 47.73957605

Solve the equation v(t) = 1.01 v(∞) which is the equation

−74.95113440 e−1.57 t − 20.38216561 = 1.01(−20.38216561)
Then t = 3.762640919 seconds.

Why use 1.01 instead of 0.99? Answer: The velocity is negative with magnitude
always larger than |v(∞)|.

de:=diff(x(t),t,t)=-32-1.57*diff(x(t),t);

ans1:=dsolve([de,x(0)=x0,D(x)(0)=-95.3333],x(t));

X:=unapply(evalf(rhs(ans1)),t);

solve(D(X)(t)=1.01*(-20.38216561),t);

26. A parachutist falls until his speed is 120 kilometers per hour. He opens the parachute.
Assume drag factor ρ = 1.51. About how many seconds must elapse before his speed
is reduced to within 2% of terminal velocity?

27. A ball is thrown straight up with initial velocity 35 miles per hour. Find the ascent
time and the descent time. Assume drag factor 0.042

Solution:Answers: Rise time = 1.55 seconds, fall time = 1.69 seconds.

Let x(t) be the distance from the ground in feet. Then x(0) = 0 and x′(0) = 35 mph
= 51.3333 ft/sec. The rise time T is the first T > 0 such that x′(T ) = 0. The fall
time is the second solution S to x(S) = 0.

Model: x′′ = −0.042x′ − 32, x(0) = 0, x′(0) = 51.3333
Then

v(t) = 813.238062 e−0.042 t − 761.9047619
x(t) = −19362.811 e−0.042 t − 761.9047619 t+ 19362.811

Solve v(T ) = 0 for T = 1.552436247 seconds. Then solve x(S) = 0 for S =
3.139362078 seconds. The rise time is T = 1.552436247 and the fall time is
S − T = 1.586925831.

de:=diff(x(t),t,t)=-32-0.042*diff(x(t),t)

ans1:=dsolve([de,x(0)=0,D(x)(0)=51.3333],x(t));

X:=unapply(evalf(rhs(ans1)),t);

solve(D(X)(T)=0,T); # T = 1.552436247

solve(X(S)=0,S); # S = 3.139362078

S,S-T; # 1.552436247, 1.586925831

28. A ball is thrown straight up with initial velocity 60 kilometers per hour. Find the
ascent time and the descent time. Assume drag factor 0.042

Linear Ascent and Descent Times
Find the ascent time t1 and the descent time t2 for the linear model x′′ = −ρx′−g,
x(0) = 0, x′(0) = v0 where ρ = k/m is the drag factor. Unit system fps.
Computer algebra system expected.
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29. ρ = 0.01, v0 = 50

Solution:t1 = −100 ln(64/65), t2 = 1.558472345.

v0:=50;rho:=1/100;de:=diff(x(t),t,t)=-32-rho*diff(x(t),t);

ans1:=dsolve([de,x(0)=0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=solve(diff(X1(t),t)=0,t);

# t1 = -100*ln(64/65)

ans2:=dsolve([de,x(0)=X1(t1),D(x)(0)=0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=solve(X2(t)=0,t);

evalf(t2); # t2 = 1.558472345

30. ρ = 0.015, v0 = 30

31. ρ = 0.02, v0 = 50

Solution:t1 = −50 ln(32/33), t2 = 1.554528027.

32. ρ = 0.018, v0 = 30

33. ρ = 0.022, v0 = 50

Solution:t1 = −(500/11) ln(320/331), t2 = 1.553748824.

34. ρ = 0.025, v0 = 30

35. ρ = 1.5, v0 = 50

Solution:t1 = −(2/3) ln(32/107), t2 = 1.334352324.

36. ρ = 1.55, v0 = 30

37. ρ = 1.6, v0 = 50

Solution:t1 = −(5/8) ln(2/7), t2 = 1.330114810.

38. ρ = 1.65, v0 = 30

39. ρ = 1.45, v0 = 50

Solution:t1 = −(20/29) ln(64/209), t2 = 1.336698502.

40. ρ = 1.48, v0 = 30

Nonlinear Air Resistance
Assume ascent velocity v1 satisfies v′1 = −ρv21 − g. Assume descent velocity v2
satisfies v′2 = ρv22−g. Motion from the ground x = 0. Let t1 and t2 be the ascent
and descent times, so that t1 + t2 is the flight time. Let g = 9.8, v1(0) = v0,
v1(t1) = v2(t1) = 0, units mks. Define M = maximum height and vf = impact
velocity. Computer algebra system expected.
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41. Let ρ = 0.0012, v0 = 50. Find t1, t2.

Solution:Answers:

t1 =
50

21

√
15 arctan(

1

7

√
15) = 4.6601258,

t2 =
−200

√
15

21
ln

(
1

7

4

√
2744− 343

√
15

)
= 4.872170

Methods follow previous exercises on rise and fall times, the models being replaced
by quadratic drag models. The work can be completed by hand using the equations
for downward and upward launch in the section on nonlinear air resistance. Some
details of the hand calculation:

Rise Time: Solve for t = t1 in the equation

0 = v(t) =

√
mg

k
tan

(√
kg

m
(c− t)

)
,

which means c− t = 0 and then t1 = c. By the same equation

50 = v0

=

√
mg

k
tan

(√
kg

m
(c− 0)

)
=

√
9.8

0.0012
tan

(
c
√

(9.8)(0.0012)
)

Then 0.1084435337 c = arctan
(
50/
√

9.8
0.0012

)
gives t1 = c = 4.660125809.

Maximum Height: The height reached on the upward launch is x(t1). To find the
height requires the quadrature result for x(t) obtained from x′(t) = v(t), x(0) = 0
(ground launch):

x(t) = d+
m

k
ln

∣∣∣∣∣cos
(√

kg

m
(c− t)

)∣∣∣∣∣ ,
where c = t1 = 4.660125809 and d is a constant. Initial data x(0) = 0 determines

d = −m

k
ln

∣∣∣∣∣cos
(√

kg

m
(c− 0)

)∣∣∣∣∣
= − 1

0.0012
ln
∣∣∣cos(√(0.0012)(9.8)(4.660125809)

)∣∣∣
= 111.2761605

The maximum height of the upward launch is

x(t1) = x(c)
= 111.2761605 + 1

0.0012 ln |cos (0)|
= 111.2761605 + 1

0.0012 ln |1|
= 111.2761605

Fall Time: Let y(t) be the distance to the ground at time t for the downward motion,
differential equation y′′ = −g + ρ (y′)2. Initial data: y(0) = x(t1) = 111.2761605,

1145



2.6 Kinetics

y′(0) = x′(t1) = 0 (at rest). The textbook solution for y(t) will be used below. Let’s
solve for t = t2 in the equation

0 = y(t)

= D − m
k ln

∣∣∣∣cosh(√kg
m (C − t)

)∣∣∣∣
= D − 1

0.0012 ln
∣∣cosh (√ρ g(C − t)

)∣∣
where uppercase symbols C and D are constants to be determined from physical data
in the problem. Constants C, D are found from equations

111.2761605 = y(0)

= D − 1

0.0012
ln |cosh (√ρ g(C − 0))|

0 = y′(0)

=
1

0.0012
tanh (

√
ρ g(C − 0)) ,

Because tanh(u) = 0 at u = 0, then C = 0. Because cosh(u) = 1 at u = 0 and
ln(1) = 0, then 111.2761605 = D. The problem simplifies to solving for t = t2 in
equation

0 = D − 1

0.0012
ln |cosh (√ρ g(C − t))|

Then

D =
1

0.0012
ln |cosh (√ρ g(0− t))|

Because cosh(−u) = cosh(u), then

(D)(0.0012) = ln |cosh (√ρ g(t))|
(111.2761605)(0.0012) = ln |cosh (√ρ g(t))|
0.1335313926 = ln |cosh (√ρ g(t))|
e0.1335313926 = cosh (

√
ρ g(t))

1.142857143 = cosh (
√
ρ g(t))

arccosh(1.142857143) =
√
(0.0012)(9.8) t

0.5283553632 = 0.1084435337 t

t =
0.5283553632

0.1084435337

t2 = 4.872170292

v0:=50;g:=9.8;rho:=0.0012;

de1:=diff(x(t),t,t)=-g-rho*diff(x(t),t)^2;

ans1:=dsolve([de1,x(0)=0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=solve(diff(X1(t),t)=0,t);

evalf(t1); # t1 = 4.660125812

de2:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans2:=dsolve([de2,x(0)=X1(t1),D(x)(0)=0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=solve(X2(t)=0,t);

evalf(t2); # t2 = 4.872170280
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42. Let ρ = 0.0012, v0 = 30. Find t1, t2.

43. Let ρ = 0.0015, v0 = 50. Find t1, t2.

Solution:Answers:

t1 =
100 arctan(3/14

√
3)

√
3

21 = 2.931243230

t2 =

(
100 ln

(
1/14+ 3

√
669

3122

)
+50 ln(223)

)√
3

21 = 2.994971288

v0:=30;g:=9.8;rho:=0.0015;

de1:=diff(x(t),t,t)=-g-rho*diff(x(t),t)^2;

ans1:=dsolve([de1,x(0)=0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=solve(diff(X1(t),t)=0,t);

evalf(t1); # t1 = 2.931243230$

de2:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans2:=dsolve([de2,x(0)=X1(t1),D(x)(0)=0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=solve(X2(t)=0,t);

evalf(t2); # t2 = 2.994971288

44. Let ρ = 0.0015, v0 = 30. Find t1, t2.

45. Let ρ = 0.001, v0 = 50. Find M , vf .

Solution:Answers:

M = 500 ln(123/98) = 113.6084384 meters

vf = −44.63036986 meters per second

v0:=50;g:=9.8;rho:=0.001;

de1:=diff(x(t),t,t)=-g-rho*diff(x(t),t)^2;

ans1:=dsolve([de1,x(0)=0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=solve(diff(X1(t),t)=0,t);

evalf(t1); # t1 = 4.724487241

M:=X1(t1); evalf(M);# M = 113.6084384

de2:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans2:=dsolve([de2,x(0)=X1(t1),D(x)(0)=0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=solve(X2(t)=0,t);

evalf(t2); # t2 = 4.872170280

vf:=D(X2)(t2);evalf(vf);# vf = -44.63036986

46. Let ρ = 0.001, v0 = 30. Find M , vf .

47. Let ρ = 0.0014, v0 = 50. Find M , vf .

Solution:Answers:

M = (2500/7) ln(19/14) = 109.0648748 meters

vf = −42.91975375 meters per second
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v0:=50;g:=9.8;rho:=0.0014;

de1:=diff(x(t),t,t)=-g-rho*diff(x(t),t)^2;

ans1:=dsolve([de1,x(0)=0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=solve(diff(X1(t),t)=0,t);

evalf(t1); # t1 = 4.598757038

M:=X1(t1); evalf(M);# M = 109.0648748

de2:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans2:=dsolve([de2,x(0)=X1(t1),D(x)(0)=0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=solve(X2(t)=0,t);

evalf(t2); # t2 = 4.838781478,

vf:=D(X2)(t2);evalf(vf);# vf = -42.91975375

48. Let ρ = 0.0014, v0 = 30. Find M , vf .

49. Find t1, t2, M and vf for ρ = 0.00152, v0 = 60.

Solution:Answers:

t1 = (250/133)
√
19 arctan((6/35)

√
10) = 5.257981263 seconds

t2 = 5.661141086 seconds

M = (6250/19) ln(1909/1225) = 145.9337831 meters

vf = −48.06360384 meters per second

v0:=60;g:=9.8;rho:=0.00152;

de1:=diff(x(t),t,t)=-g-rho*diff(x(t),t)^2;

ans1:=dsolve([de1,x(0)=0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=solve(diff(X1(t),t)=0,t);

evalf(t1); # t1 = 5.257981263

M:=X1(t1); evalf(M);# M = 145.9337831

de2:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans2:=dsolve([de2,x(0)=X1(t1),D(x)(0)=0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=solve(X2(t)=0,t);

evalf(t2); # t2 = 5.661141086,

vf:=D(X2)(t2);evalf(vf);# vf = -48.06360384

50. Find t1, t2, M and vf for ρ = 0.00152, v0 = 40.

Terminal Velocity
Find the terminal velocity for (a) a linear air resistance a(t) = ρv(t) and (b) a
nonlinear air resistance a(t) = ρv2(t). Use the model equation v′ = a(t)− g and
the given drag factor ρ, mks units.

51. ρ = 0.15

Solution:Answers:

(a) vf = 9.8/0.15 = 65.33333333 meters per second

(b) vf =
√
9.8/0.15 = 8.082903768 meters per second
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Models:

(a) v′ = −g − ρ v. g = 9.8, ρ = 0.15, vf = g/ρ

(b) v′ = −g − ρ v2. g = 9.8, ρ = 0.15, vf =
√
g/ρ

rho:=0.15;g:=9.8;g/rho;sqrt(g/rho);

52. ρ = 0.155

53. ρ = 0.015

Solution:Answers:

(a) vf = 9.8/0.015 = 653.3333333 meters per second

(b) vf =
√
9.8/0.015 = 25.56038602 meters per second

54. ρ = 0.017

55. ρ = 1.5

Solution:Answers:

(a) vf = 9.8/1.5 = 6.533333333 meters per second

(b) vf =
√
9.8/1.5 = 2.556038602 meters per second

56. ρ = 1.55

57. ρ = 2.0

Solution:Answers:

(a) vf = 9.8/2.0 = 4.9 meters per second

(b) vf =
√
9.8/2.0 = 2.213594362 meters per second

58. ρ = 1.89

59. ρ = 0.001

Solution:Answers:

(a) vf = 9.8/0.001 = 9800 meters per second

(b) vf =
√
9.8/0.001 = 98.99494937 meters per second

60. ρ = 0.0015

Parachutes
A skydiver has velocity v0 and height 5, 500 feet when the parachute opens.
Velocity v(t) is given by (a) linear resistance model v′ = −ρv−g or (b) nonlinear
resistance downward model v′ = ρv2 − g. Given the drag factor ρ and the
parachute-open velocity v0, compute the elapsed time until the parachutist slows
to within 2% of terminal velocity. Then find the flight time from parachute open
to the ground. Report two values for (a) and two values for (b).
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61. ρ = 1.446, v0 = −116 ft/sec.

Solution:Answers:
(a) About 3.7 seconds to reach within 2% of terminal velocity −22.13001383 fps.
Flight time 4.1 min.

(b) About 0.33 seconds to reach within 2% of terminal velocity −4.704254864 fps.
Flight time 19.5 min.

Sanity Check: The linear model applies below Mach 1 (1115 ft/sec) and the nonlin-
ear model above Mach 1. The skydiver flight is below Mach 1: the nonlinear model
is the wrong model to use. Skydivers usually ride the parachute for 4-5 min.

Model 1: x′′ = −ρx′ − g, x(0) = x0, x
′(0) = v0

Terminal Velocity Model 1:
vf = g/m = 22.13001383 feet per second.

Time to 2% error Model 1:
Solve the equation v(t) = −1.02 vf for t = 3.704701879 seconds.

Why use 1.02 instead of 0.98? Answer: The velocity is negative with magnitude
always larger than |vf |.

Flight Time Model 1: Solve x(t) = 0 for t = 245.5978129 sec, 4.1 min.

Model 2: y′′ = ρ|y′|2 − g, y(0) = x0, y
′(0) = v0

Terminal Velocity Model 2:
vf =

√
g/m = 4.704254864 feet per second.

Time to 2% error Model 2:
Solve the equation y′(t) = −1.02 vf for t = 0.3332647152 seconds.

Flight Time Model 2:
Solve y(t) = 0 for t = 1168.779217 sec, 19.8 min.

rho:=1.446;v0:=-116;g:=32;x0:=5500;

de1:=diff(x(t),t,t)=-g-rho*diff(x(t),t);

ans1:=dsolve([de1,x(0)=x0,D(x)(0)=v0],x(t));

X1:=unapply(evalf(rhs(ans1)),t);

vf1:=g/rho; # 22.13001383

de2:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans2:=dsolve([de2,x(0)=x0,D(x)(0)=v0],x(t));

X2:=unapply(evalf(rhs(ans2)),t);

vf2:=sqrt(g/rho); # 4.704254864

solve(D(X1)(t)= -1.02*vf1,t); # 3.704701879 sec

solve(X1(t)=0,t); # 245.5978129 sec, 4.1 min

solve(D(X2)(t)= -1.02*vf2,t); # 0.3332647152 sec

fsolve(X2(t)= 0,t=0..1200); # 1168.779217 sec, 19.48 min

62. ρ = 1.446, v0 = −84 ft/sec.

63. ρ = 1.2, v0 = −116 ft/sec.

Solution:Answers:
(a) About 4.3 seconds to reach within 2% of terminal velocity −26.66666667 fps.
Flight time 3.4 min.

1150



2.6 Kinetics

(b) About 0.37 seconds to reach within 2% of terminal velocity −5.163977795 fps.
Flight time 17.7 min.

64. ρ = 1.2, v0 = −84 ft/sec.

65. ρ = 1.01, v0 = −120 ft/sec.

Solution:Answers:
(a) About 4.9 seconds to reach within 2% of terminal velocity −31.68316832 fps.
Flight time 2.85 min.

(b) About 0.4 seconds to reach within 2% of terminal velocity −5.628780358 fps.
Flight time 16.3 min.

66. ρ = 1.01, v0 = −60 ft/sec.

67. ρ = 0.95, v0 = −10 ft/sec.

Solution:Answers:
(a) About 3.75 seconds to reach within 2% of terminal velocity −33.68421053 fps.
Flight time 2.7 min.

(b) About 0.3 seconds to reach within 2% of terminal velocity −5.803810001 fps.
Flight time 15.8 min.

68. ρ = 0.95, v0 = −5 ft/sec.

69. ρ = 0.8, v0 = −66 ft/sec.

Solution:Answers:
(a) About 4.4 seconds to reach within 2% of terminal velocity −40 fps. Flight time
2.8 min.

(b) About 0.4 seconds to reach within 2% of terminal velocity −6.324555320 fps.
Flight time 14.4 min.

70. ρ = 0.8, v0 = −33 ft/sec.

Lunar Lander
A lunar lander falls to the moon’s surface at v0 miles per hour. The retrorockets
in free space provide a deceleration effect on the lander of a miles per hour per
hour. Estimate the retrorocket activation height above the surface which will
give the lander zero touch-down velocity. Follow Example 2.30, page 133.

71. v0 = −1000, a = 18000

Solution:Answers:
Constant field:
t0 = 729.13 seconds = 12.15 minutes, retrorocket activation height r(0) = 162.98
kilometers = 101.27 miles.
Variable field:
retrorocket activation height r(0) ≈ 136.65 kilometers or 84.91 miles.

Conversions: Let’s use 1 meter = 3.280839895 feet, 1 mile = 1.609344 kilometers,
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a = 18000 mi/h/h = 2.2352 m/s/s, v0 = −1000 m/h = −447.04 m/s.

Constant Field Model:

r′(t) = (a− G)t+ v0,
r(t) = (a− G)t2/2 + v0t+ r(0).

Requirements r′(t0) = 0 and r(t0) = 0 give the equations

(a− G)t0 + v0 = 0, r(0) = −v0t0 − (a− G)t20/2.

Evaluation uses mks units: a = 2.2352, v0 = −447.04, G = 1.621942132. Solving
simultaneously provides the numerical answers

t0 = 728.13 seconds = 12.15 minutes,

r(0) = 162975.73 meters = 101.27 miles.

Variable Field Model:

mr′′(t) = ma− Gmm1

(R+ r(t))2
, r(t0) = 0, r′(t0) = 0, r′(0) = v0.

Multiply the differential equation by r′(t)/m and integrate. Then

(r′(t))2

2
= ar(t) +

Gm1

R+ r(t)
+ c, c ≡ −Gm1

R
.

We will find r(0), the height above the moon. The equation to solve for r(0) is found
by substitution of t = 0 into the previous equation:

(r′(0))2

2
= a r(0) +

Gm1

R+ r(0)
− Gm1

R
.

After substitution of known values, the quadratic equation for x = r(0) is given by

92088.46615 = 2.2352x+
4.9110336× 1012

x+ 1740000
− 2.822433103× 106

Solving for the positive root gives r(0) ≈ 136.65 kilometers or 84.91 miles.

# Constant field model

V0:=-1000;A:=18000;

R:=1740*1000;m1:=7.36*10^(22);G:=6.6726*10^(-11);

miles2meters:=(5280*12*2.54/100);meter2feet:=3.280839895;

a:=A*miles2meters/3600/3600;

v0:=(V0*miles2meters)/3600; gm:=G*m1/R^2;

ans1:=dsolve({diff(r(t),t,t)=a-gm,r(0)=r0,D(r)(0)=v0},r(t)):

r1:=unapply(rhs(ans1),t);

t0:=fsolve(diff(r1(t),t)=0,t);

retroHt1:=fsolve(r1(t0)=0,r0=0..infinity);

printf("Constant field: %f minutes, %f miles",

t0/60,(retroHt1*meter2feet/5280) );

# Variable field model

eq:=(v0)^2/2 = a*x+G*m1/(R+x)-G*m1/R;

retroHt2:=fsolve(eq,x=0..infinity);

printf("Variable field: %f kilometers, %f miles",

(retroHt2/1000),(retroHt2*meter2feet/5280) );
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72. v0 = −980, a = 18000

73. v0 = −1000, a = 20000

Solution:Answers:
Constant field:
t0 = 518.93 seconds = 8.65 minutes, retrorocket activation height r(0) = 115.99
kilometers = 72.07 miles.
Variable field:
retrorocket activation height r(0) ≈ 104.78 kilometers or 65.11 miles.

74. v0 = −1000, a = 19000

75. v0 = −900, a = 18000

Solution:Answers:
Constant field:
t0 = 656.22 seconds = 10.94 minutes, retrorocket activation height r(0) = 132.01
kilometers = 82.03 miles.
Variable field:
retrorocket activation height r(0) ≈ 113.59 kilometers or 70.58 miles.

76. v0 = −900, a = 20000

77. v0 = −1100, a = 22000

Solution:Answers:
Constant field:
t0 = 443.08 seconds = 7.38 minutes, retrorocket activation height r(0) = 108.94
kilometers = 67.69 miles.
Variable field:
retrorocket activation height r(0) ≈ 100.86 kilometers or 62.67 miles.

78. v0 = −1100, a = 21000

79. v0 = −800, a = 18000

Solution:Answers:
Constant field:
t0 = 498.91 seconds = 8.32 minutes, retrorocket activation height r(0) = 122.67
kilometers = 76.22 miles.
Variable field:
retrorocket activation height r(0) ≈ 111.6 kilometers or 69.34 miles.

80. v0 = −800, a = 21000

Escape velocity
Find the escape velocity of the given planet, given the planet’s mass m and radius
R.
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81. (Planet A) m = 3.1× 1023 kilograms, R = 2.4× 107 meters.

Solution:Answer: v0 = 1312.918505 meters/sec = 4726.5 kilometers/hour.

Model: v0 =
√
2gR, gR2 = Gm, G = 6.6726× 10−11

# Escape velocity

m:=3.1*10^(23); # kilograms

R:=2.4*10^7; # meters

G:=6.6726*10^(-11);g:=G*m/R^2;v0:=sqrt(2*g*R);

printf("Escape velocity = %f meters/sec = %f kilometers/hour",

v0,v0*3.6);

82. (Mercury) m = 3.18× 1023 kilograms, R = 2.43× 106 meters.

83. (Venus) m = 4.88× 1024 kilograms, R = 6.06× 106 meters.

Solution:Answer: v0 = 10366.595250 meters/sec = 37319.7 kilometers/hour.

m:=4.88*10^(24); # kilograms

R:=6.06*10^6; # meters

G:=6.6726*10^(-11);g:=G*m/R^2;v0:=sqrt(2*g*R);

printf("Escape velocity = %f meters/sec = %f kilometers/hour",

v0,v0*3.6);

84. (Mars) m = 6.42× 1023 kilograms, R = 3.37× 106 meters.

85. (Neptune) m = 1.03× 1026 kilograms, R = 2.21× 107 meters.

Solution:Answer: v0 = 24939.343610 meters/sec = 89781.6 kilometers/hour.

86. (Jupiter) m = 1.90× 1027 kilograms, R = 6.99× 107 meters.

87. (Uranus) m = 8.68× 1025 kilograms, R = 2.33× 107 meters.

Solution:Answer: v0 = 22296.897920 meters/sec = 80268.8 kilometers/hour.

88. (Saturn) m = 5.68× 1026 kilograms, R = 5.85× 107 meters.

Lunar Lander Experiments

89. (Lunar Lander) Verify that the variable field model for Example 2.30 gives a soft
landing flight model in MKS units

u′′(t)=2.2352− c1
(c2 + u(t))2

,

u(0) =127254.1306,
u′(0)=−429.1584,

where c1 = 4911033599000 and c2 = 1740000.

Solution:The model was developed in the text. It remains to evaluate symbols and
verify the constants reported. Computer assist is expected.

The flight time calculation uses graphing of a numerical solution on t = 0 to t = 12
minutes, because the constant field model reported about 12 minutes flight time.
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The graph then suggests the flight time is between 580 and 650 seconds. A numerical
solver finds a flight time of about 625 seconds.

# Variable field model

V0:=-960;A:=18000;

R:=1740*1000;m1:=7.36*10^(22);G:=6.6726*10^(-11);

miles2meters:=(5280*12*2.54/100);meter2feet:=3.280839895;

a:=A*miles2meters/3600/3600;

v0:=(V0*miles2meters)/3600;

gm:=G*m1/R^2;

u0:=1.272541306*10^5;# activation height in meters

de:=diff(u(t),t,t)=a-gm*R^2/(R+u(t))^2;

ic:=u(0)=u0,D(u)(0)=v0;

# Find the flight time

ans:=dsolve({de,ic},numeric,output=listprocedure);

uu:=rhs(ans[2]);vv:=rhs(ans[3]);# position, velocity

plot(uu(t),t=0..12*60);

ftime:=fsolve(uu(t)=0,t=590..650);

uu(ftime);# error < 1/10^8

90. (Lunar Lander: Numerical Experiment) Using a computer, solve the flight model
of the previous exercise. Determine the flight time t0 ≈ 625.6 seconds by solving
u(t) = 0 for t.

Details and Proofs

91. (Linear Rise Time) Using the inequality eu > 1+u for u > 0, show that the ascent
time t1 in equation (17) satisfies

g(1 + ρt1) < geρt1 = v0ρ+ g.

Conclude that t1 < v0/g, proving Lemma 2.2.

Solution:Let u = ρt1 in the inequality eu > 1+u. All symbols are positive, so u > 0.
Then eu > 1 + u implies eρt1 > 1 + ρt1. Multiply this inequality by g to prove the
result g(1 + ρt1) < geρt1 .

Equality geρt1 = v0ρ+ g is established using t1(ρ, v0) =
1

ρ
ln

∣∣∣∣v0ρ+ g

g

∣∣∣∣. The absolute

value can be erased: all symbols are positive. Then

eρt1 = e
ln

(
v0ρ+ g

g

)
=

v0ρ+ g

g
,

which completes the proof.

92. (Linear Maximum) Verify that Lemma 2.2 plus the inequality x(t) < −gt2/2 + v0t
imply x(t1) < gv20/2. Conclude that the maximum for ρ > 0 is less than the maximum
for ρ = 0.

93. (Linear Rise Time) Consider the ascent time t1(ρ, v0) given by equation (17). Prove
that

dt1
dρ

=
ln g

v0ρ+g

ρ2
+

v0

ρ(v0ρ+ g)
.
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Solution:Arrange equation

t1(ρ, v0) =
1

ρ
ln

∣∣∣∣v0ρ+ g

g

∣∣∣∣
in the form

ρt1 = ln |v0ρ+ g| − ln |g|

Differentiate across this equation on symbol ρ using d
du ln |u| = 1/u and the chain

rule of calculus. Then

t1 + ρ
d t1
dρ

=
v0

v0ρ+ g
− 0

Use identity ln(1/u) = − ln(u) and fraction algebra to arrive at the claimed identity.

94. (Linear Rise Time) Consider dt1(ρ, v0)/dρ given in the previous exercise. Let ρ =
gx/v0. Show that dt1/dρ < 0 by considering properties of the function −(x+1) ln(x+
1) + x. Then prove Lemma 2.2.

95. (Compare Rise Times) The ascent time for nonlinear model v′ = −g − ρv2 is less
than the ascent time for linear model u′ = −g−ρu. Verify for ρ = 1, g = 32 ft/sec/sec
and initial velocity 50 ft/sec.

Solution:Let t1, t2 be the rise times for the linear and nonlinear drag models,
respectively. To be shown: t2 < t1.
The models:

Linear drag: u′ = −32− u, u(0) = 50

Nonlinear drag: v′ = −32− v2, v(0) = 50

The solutions:

u(t) = −g

ρ
+

(
v0 +

g

ρ

)
e−ρt = −32 + (50 + 32) e−ρt

v(t) =

√
g

ρ
tan (

√
ρg(c− t)) =

√
32 tan

(√
32(c− t)

)
Rise times are found by solving u(t1) = 0, v(t2) = 0 for t1 = 0.9409833446 and
t2 = 0.2577648674. This verifies t2 < t1.

rho:=1;v0:=50;g:=32;

de1:=diff(v(t),t)=-g-rho*v(t)^2;

ans1:=dsolve([de1,v(0)=v0],v(t));

V1:=unapply(rhs(ans1),t);

t1:=fsolve(V1(t)=0,t=0..1);

de2:=diff(v(t),t)=-g-rho*v(t);

ans2:=dsolve([de2,v(0)=v0],v(t));

V2:=unapply(rhs(ans2),t);

t2:=fsolve(V2(t)=0,t=0..0.5);

96. (Compare Fall Times) The descent time for nonlinear model v′ = ρv2− g, v(0) = 0
is greater than the descent time for linear model u′ = −ρu− g, u(0) = 0. Verify for
ρ = 1, g = 32 ft/sec/sec and maximum heights both 100 feet.
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Solution:Let t1, t2 be the fall times for the nonlinear and linear drag models, re-
spectively. Each falls at t = 0 from maximum height h0 = 100 feet and velocity
v0 = 0 feet/second. The maple code below finds t1 = 17.80020180 seconds and
t2 = 4.108568725 seconds.

v0:=0;g:=32;rho:=1;h0:=100;

de1:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans1:=dsolve([de1,x(0)=h0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=fsolve(X1(t)=0,t=0..20);

de2:=diff(x(t),t,t)=-g-rho*diff(x(t),t);

ans2:=dsolve([de2,x(0)=h0,D(x)(0)=v0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=fsolve(X2(t)=0,t=0..5);

2.7 Logistic Equation

Exercises 2.7 �
Limited Environment
Find the equilibrium solutions and the carrying capacity for each logistic equa-
tion.

1. P ′ = 0.01(2− 3P )P

Solution:Solve 0 = 0.01(2− 3P )P for P = 0 and P = 2/3. These are the equilibrium
solutions. Symbols are a = 2, b = 3. The carrying capacity is M = 2/3.

2. P ′ = 0.2P − 3.5P 2

3. y′ = 0.01(−3− 2y)y

Solution:Equilibria y = 0 and y = −3/2. The symbols in the solution model are
a = −3(0.01), b = 2(0.01). Then M = a/b = −3/2. A negative number for M has
no population interpretation. The limit at infinity of the solution

y(t) =
ay(0)

by(0) + (a− by(0))e−at

=
−3y(0)

2y(0) + (−3− 2y(0))e3t

is zero, which means the carrying capacity is zero. Every positive population size
y(0) gives limt→∞ y(t) = 0, the extinction state.

4. y′ = −0.3y − 4y2

5. u′ = 30u+ 4u2

Solution:Factor as 30u+4u2 = (30+4u)u, then equilibria are u = 0 and u = −15/2.
Symbols are a = 30, b = −4. Because a/b = −15/2 is negative, the carrying capacity
is M = 0, extinction.
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6. u′ = 10u+ 3u2

7. w′ = 2(2− 5w)w

Solution:Factor as 2(2−5w)w = (4−10w)w, then equilibria are w = 0 and w = 4/10.
Symbols are a = 4, b = 10. Because a/b = 4/10 is positive, then the carrying capacity
is M = 0.4.

8. w′ = −2(3− 7w)w

9. Q′ = Q2 − 3(Q− 2)Q

Solution:Expand as Q2−3Q2+6Q = −2Q2+6Q = (6−2Q)Q. Equilibria are Q = 0
and Q = 3. Symbols are a = 6, b = 2. Because a/b = 6/2 is positive, then the
carrying capacity is M = 3.

10. Q′ = −Q2 − 2(Q− 3)Q

Spread of a Disease
In each model, find the number of infectives and then the number of susceptibles
at t = 2 months. Follow Example 2.34, page 143. A calculator is required for
approximations.

11. y′ = (5/10− 3y/100000)y, y(0) = 100.

Solution:Define a = 5/10, b = 3/100000. Let M = a/b = 50000/3 = 16666.66667.
We will find the number of infectives y(2) and the number of susceptibles M − y(2).

The logistic formula with a = 5, b = 2 and y(0) = 100 gives

y(t) =
50000

3 + 497e−t/2
.

The number of infectives is y(2) = 269.0543160. The number of susceptibles is
M − y(2) = 16397.61235.

12. y′ = (13/10− 3y/100000)y, y(0) = 200.

13. y′ = (1/2− 12y/100000)y, y(0) = 200.

Solution:Let a = 1/2, b = 12/100000, M = a/b = 4166.666667. The number of infec-
tives is y(2) = 502.2333968. The number of susceptibles is M − y(2) = 3664.433270.

14. y′ = (15/10− 4y/100000)y, y(0) = 100.

15. P ′ = (1/5− 3P/100000)P , P (0) = 500.

Solution:Let a = 1/5, b = 3/100000, M = a/b = 6666.666667. The number of infec-
tives is y(2) = 719.3768030. The number of susceptibles is M − y(2) = 5947.289864.

16. P ′ = (5/10− 3P/100000)P , P (0) = 600.
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17. 10P ′ = 2P − 5P 2/10000, P (0) = 500.

Solution:Let a = 1/5, b = 5/100000, M = a/b = 4000. The number of infectives is
y(2) = 702.7110198. The number of susceptibles is M − y(2) = 3297.288980.

18. P ′ = 3P − 8P 2, P (0) = 10.

Explosion–Extinction
Classify the model as explosion or extinction.

19. y′ = 2(y − 100)y, y(0) = 200

Solution:Let M = 100. Then y = 0 and y = M are equilibrium solutions. The sign
of y′(0) detects explosion, because y′(0) = 2(y(0) −M)y(0) = 2(200 −M)(200) is
positive, meaning y(t) increases without bound to infinity.

20. y′ = 2(y − 200)y, y(0) = 300

21. y′ = −100y + 250y2, y(0) = 200

Solution:Explosion, because y′(0) = 200(−100 + 250(200)) > 0.

22. y′ = −50y + 3y2, y(0) = 25

23. y′ = −60y + 70y2, y(0) = 30

Solution:Explosion, because y′(0) = 30(−60 + 70(30)) > 0.

24. y′ = −540y + 70y2, y(0) = 30

25. y′ = −16y + 12y2, y(0) = 1

Solution:Extinction, because y′(0) = 1(−16 + 12(1)) < 0.

26. y′ = −8y + 12y2, y(0) = 1/2

Constant Harvesting
Find the carrying capacity N and the threshold population M .

27. P ′ = (3− 2P )P − 1

Solution:The carrying capacity is M = 1 and the threshold population is N = 1/2.

Let f(P ) = (3 − 2P )P − 1. Solve f(P ) = 0 for P = 1/2, P = 1. A shortcut after
finding the roots is to declare the larger root to be the carrying capacity and declare
the smaller root to be the threshold population. A careful solution can be modeled
after the Constant Harvesting Example 2.36 page 144. The shortcut works for
quadratic f(P ) with two distinct real positive roots.
The carrying capacity M = limt→∞ P (t) is the expected population size found by a
biologist estimating or counting the population at some random time. Units could be
billions, e.g., expected population size 1 billion and threshold population 1/2 billion.

# stability test calculations

F:=P->(3-2*P)*P-1;

L:=[solve(F(P)=0,P)];# L:=[1/2,1], array of roots

D(F)(L[1]);D(F)(L[2]);# find F’(1/2), F’(1)

# M=1 is a funnel/sink by the stability test
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28. P ′ = (4− 3P )P − 1

29. P ′ = (5− 4P )P − 1

Solution:Carrying capacity M = 1, threshold population N = 1/4.

30. P ′ = (6− 5P )P − 1

31. P ′ = (6− 3P )P − 1

Solution:Carrying capacity M = 1.816496581, threshold population N =
0.1835034191. The roots are P = 1± 1

3

√
6.

32. P ′ = (6− 4P )P − 1

33. P ′ = (8− 5P )P − 2

Solution:Carrying capacity M = 1.289897949, threshold population N =
0.3101020514. The roots are P = 4

5 ±
1
5

√
6.

34. P ′ = (8− 3P )P − 2

35. P ′ = (9− 4P )P − 2

Solution:Carrying capacity M = 2, threshold population N = 1/4.

36. P ′ = (10− P )P − 2

Variable Harvesting
Re-model the variable harvesting equation as y′ = (a−by)y and solve the equation
by logistic solution (2) on page 142.

37. P ′ = (3− 2P )P − P

Solution: The equation is rewritten as P ′ = (3− 2P )P − P = (2− 2P )P . This has
the form of y′ = (a−by)y where a = b = 2. Then equation (2) page 142 gives formula

P (t) =
2P0

2P0 + (2− 2P0)e−2t

which simplifies to

P (t) =
P0

P0 + (1− P0)e−2t
.

38. P ′ = (4− 3P )P − P

39. P ′ = (5− 4P )P − P

Solution: The equation is rewritten as P ′ = (5 − 4P )P − P = (4 − 2P )P , which
has the form of y′ = (a − by)y with a = 4, b = 2. Then equation (2) page 142 gives
formula

P (t) =
4P0

2P0 + (4− 2P0)e−4t
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40. P ′ = (6− 5P )P − P

41. P ′ = (6− 3P )P − P

Solution: Because P ′ = (6− 3P )P − P = (5− 3P )P has the form of y′ = (a− by)y
with a = 5, b = 3, then equation (2) page 142 gives formula

P (t) =
5P0

3P0 + (5− 3P0)e−5t

42. P ′ = (6− 4P )P − P

43. P ′ = (8− 5P )P − 2P

Solution: P (t) = 6P0

5P0+(6−5P0)e−6t

44. P ′ = (8− 3P )P − 2P

45. P ′ = (9− 4P )P − 2P

Solution: P (t) =
7P0

4P0 + (7− 4P0)e
−7t

46. P ′ = (10− P )P − 2P

Restocking
Make a direction field graphic by computer following Example 2.38. Using the
graphic, report (a) an estimate for the carrying capacity C and (b) approxima-
tions for the amplitude A and period T of a periodic solution which oscillates
about P = C.

47. P ′ = (2− P )P − sin(πt/3)

Solution:Answers: The period is about 5.5, the amplitude is about 0.9 and the
oscillation is approximately about line P = 1.9.
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The graphic is a computer experiment which selects 15 initial values −7 to 7 and
plots the 15 solution curves on one graphic. The plan is to locate a periodic curve
and guess its initial value.

The graphic uses guess P (0) = 2 to make a single graphic, then extract a section from
the graphic to find the amplitude, period and median line P = C. The amplitude is
decided by cursor probe of maxima and minima. The period is about 5.5 by cursor
probe of two adjacent maxima. The median line is P = 1.9 by computation from the
minima and amplitude.

# maple2021

f:=(t,P) -> (2-P)*P-1*sin(1*Pi*t/3);

de:=diff(P(t),t)=f(t,P(t));H:=1;HH:=0.01;

vals:=[seq(H*(i-7),i=0..14)];

a:=-10;b:=50;c:=-5;d:=5;# graph window by experiment

ics:=[seq([P(0)=vals[i]],i=1..nops(vals))];

opts:=font=[courier,16,bold],labelfont=[courier,16,bold],

thickness=3,axes=framed,labels=[t,P(t)]:

pts1:=stepsize=HH,arrows=none,opts,title="Experimental plot";

# First plot to find P(0)=2 initial value

DEtools[DEplot](de,P(t),t=a..b,P=c..d,ics,opts1);

# second plot to determine periodic solution

ans:=dsolve([de,P(0)=2],numeric,output=operator);

PP:=rhs(ans[2]);# DE solution P(t)

opts2:=opts,title="Periodic curve from P(0)=2":

plot(PP(x),x=40..50,opts2);

MM:=Optimization[Maximize](PP(x),x=45 .. 49);

# MM := [2.38568114929172, [x = 46.8843119054944]]

mm:=Optimization[Minimize](PP(x),x=43 .. 45);

# mm := [1.45203158538608, [x = 44.1213517742313]]

period:=(rhs(MM[2][1])-rhs(mm[2][1]) )*2;# 5.52592026252636

amplitude:=MM[1]-mm[1];# 0.933649563905633

C:=mm[1]+amplitude/2;# 1.91885636733890

48. P ′ = (2− P )P − sin(πt/5)
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49. P ′ = (2− P )P − sin(πt/7)

Solution:Answers: The period is about 12.8, the amplitude is about 1.1 and the
oscillation is approximately about line P = 1.9.

Details follow Exercise 47 using modified computer code. Initial value P (0) = 0.5
is selected to make an eventually periodic curve. The curve section to study is on
20 ≤ t ≤ 50. Modified code sections from Exercise 47 are below.

MM:=Optimization[Maximize](PP(x),x=30 .. 50);

# MM := [2.40962353216826, [x = 38.8591015537082]]

mm:=Optimization[Minimize](PP(x),x=30 .. 40);

# mm := [1.30118248632842, [x = 32.4563671060699]]

# period := 12.8054688952765

# amplitude := 1.10844104583984

# C := 1.85540300924834

50. P ′ = (2− P )P − sin(πt/8)

Richard Function
Ideas of L. von Bertalanffy (1934), A. Pütter (1920) and Verhulst were used by
F. J. Richards (1957) to define a sigmoid function Y (t) which generalizes the
logistic function. It is suited for data-fitting models, for example forestry, tumor
growth and stock-production problems. The Richard function is

Y (t) = A+
K −A

(1 +Qe−B(t−M))1/ν
,

where Y = weight, height, size, amount, etc., and t = time.

51. Differentiate for α > 0, ν > 0, the specialized Richard function

Y (t) =
K

(1 +Qe−αν(t−t0))1/ν

to obtain the sigmoid differential equation

Y ′(t) = α

(
1−

(
Y

K

)ν)
Y.

The relation Y (t0) =
K

(1+Q)1/ν
implies Q = −1 +

(
K

Y (t0)

)ν
.

Solution:The details expand the left side LHS and right side RHS of the equivalent
differential equation

Y ′

αY
= 1−

(
Y

K

)ν

Computer algebra is used to check the computation of Y ′: see the maple code below.
Then

LHS =
Q e−αν (t−t0)

1 +Q e−αν (t−t0)

Define Z = 1 +Q e−αν(t−t0). Then Y = K/Z1/ν and

RHS = 1− 1

Z1/ν

ν

= 1− 1

Z
, LHS =

Q e−αν (t−t0)

1 +Q e−αν (t−t0)
=

Z − 1

Z
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Conclusion: LHS = RHS, which verifies the Richard differential equation.

Y:=t->K/(1+Q*exp( -alpha*nu*(t-t0) ) )^(1/nu);

LHS:=simplify(diff(Y(t),t)/Y(t)/alpha);

#LHS:=Q*exp(-alpha*nu*(t-t0))/(1+Q*exp(-alpha*nu*(t-t0)))

52. Solve the differential equation Y ′(t) = α
(
1−

(
Y
K

)ν)
Y by means of the substitution

w = (Y/K)ν , which gives a familiar logistic equation w′ = αν(1− w)w.

2.8 Science and Engineering Applications

Exercises 2.8 �
Tank Draining

1. A cylindrical tank 6 feet high with 6-foot diameter is filled with gasoline. In 15
seconds, 5 gallons drain out. Find the drain times for the next 20 gallons and the
half-volume.

Solution: The answers are approximately 60.299 seconds and 2227.95 seconds or
37.13 minutes. Why not exactly 1 minute more to drain the next 20 gallons? Because
Torricelli’s Lemma says droplets fall to the orifice at changing speeds. The fraction
25/1270 of the tank drained in 75 seconds is about 2% of the tank. The half-volume
time 37.13 minutes is 5 minutes longer than the guess (1270/2)/20 = 31.75 minutes.

Formulas. A USA gallon is defined to be 231 cubic inches, which is 0.133681 cubic
feet or 3.785411784 liters. The volume V of a cylindrical tank of radius R and height
H is V = π R2 H. The area A of a cross-section of this tank at any height y is
A(y) = π R2. The half-volume of the tank is 1

2 V = 1
2 π R2 H.

Parameters. Time variable t is in seconds, fluid height variable y is in feet, tank
radius R = 6/2 feet, tank cross-sectional area A = 9π, tank height H = 6 feet,
tank volume V = πR2H = 54π = 169.6460033 cubic feet, tank volume at t = 15
is V0 = V − 5(0.133681) = 168.9775983 cubic feet, tank height at t = 15 is y0 =
V0/A(15) = 5.976360008 feet.

Torricelli’s Equation.

y′(t) = −k
√
y(t)

A(y(t))
= −k

√
y(t)

πR2
, y(0) = H.

The implicit solution: √
y(t) +

k t

18π
− c = 0

Find constant c. Let t = 0 and height y(0) = 6 in the implicit solution to find
c =
√
6. Then the implicit solution is√

y(t) +
k t

18π
−
√
6 = 0
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Find k. Height y(15) = 5.976360008 and time t = 15 seconds are used in the implicit
solution to find k = 0.01820963530:

√
5.976360008 +

15 k

18π
−
√
6 = 0

Drain Time after 20 more Gallons. Let V1 = V −25(0.133681) be the tank volume
after 25 gallons drain. The tank height is then H1 = V1/(9π). Let y(T1) = H1.
Because the first 5 gallons drained in 15 seconds, then T1 − 15 seconds is the drain
time for the next 20 gallons. The implicit solution for t = T1 gives equation√

H1 +
k T1

18π
−
√
6 = 0

with answer T1 = 75.29873845 seconds. Then T1 − 15 = 60.29873845 seconds is the
requested drain time.

Drain Time for Half-Volume. Let V2 = 1
2V , the half-volume. The half-volume

height H2 satisfies πR2H2 = V2, therefore H2 = V2/(9π) = 3. The implicit solution
at the half-volume drain time t = T2 gives equation

√
H2 +

k T2

18π −
√
6 = 0

√
3 + 0.0003220170522T2 −

√
6 = 0

Solve for time T2 = 2227.953242 seconds = 37.13 minutes.

# Torricelli drain cylindrical tank

R:=6/2;H:=6;V:=Pi*R^2*H;A:=unapply(Pi*R^2,y);

gallons2CubicFeet:=0.133681;

V0:=V-5*gallons2CubicFeet;# Tank vol at 15 sec

H0:=V0/A(15);# Tank height at 15 sec

f:=unapply(-k*sqrt(y)/A(y),y);

de:=diff(y(t),t) = f(y(t));

ans:=dsolve(de,y(t));# implicit solution

c:=solve(subs(t=0,y(0)=H,ans),_C1);

ans1:=subs( _C1=c,ans);

equk:=subs(t=15,y(15)=H0,ans1);

kk:=solve(equk,k);

# Drain time on next 20 gallons

V1:=V-25*0.133681; H1:=V1/9/Pi;

T1:=solve(subs(k=kk,y(t)=H1,ans1),t);

Drain20:=T1-15;

# half-volume time

V2:=V/2;H2:=V2/Pi/R^2;

equT2:=sqrt(H2)+kk*t/18/Pi - sqrt(6)=0;

T2:=solve(equT2,t);T2min:=T2/60;

2. A cylindrical tank 4 feet high with 5-foot diameter is filled with gasoline. The half-
volume drain time is 11 minutes. Find the drain time for the full volume.

3. A conical tank is filled with water. The tank geometry is a solid of revolution formed
from y = 2x, 0 ≤ x ≤ 5. The units are in feet. Find the drain time for the tank,
given the first 5 gallons drain out in 12 seconds.
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Solution:The answer is approximately 703.8 seconds = 11.73 minutes.

The details follow the book’s example for a conical tank. The maple code is a modi-
fication of Exercise 1.

# Torricelli drain conical tank

a:=0;b:=5;

A:=y->Pi*(y/2)^2;# y=2x, a <= x <= b

gallons2CubicFeet:=0.133681;

V:=int(A(y),y=a..b);# V = tank volume 32.72492349 ft^3

f:=unapply(-k*sqrt(y)/A(y),y);

de:=diff(y(t),t) = f(y(t));

H:=2*b;# tank height is y=2x at x=b

ans:=dsolve([de,y(0)=H],y(t));# implicit solution

V0:=V-5*gallons2CubicFeet;# Tank vol at 12 sec

solve(int(A(y),y=a..x)=V0,x);# find x0,y0

x0:=4.965723981;# x-value for integral=V0

y0:=2*x0;# y=2x fluid height = 9.931447962

ansk:=subs(t=12,y(12)=y0,ans);

kk:=solve(ansk,k);# kk = 0.1411539155

# Drain time for the whole tank

Y:=unapply(rhs(subs(k=kk,ans)),t);

solve(Y(t)=0,t);# t = 703.8124469 seconds

4. A conical tank is filled with oil. The tank geometry is a solid of revolution formed
from y = 3x, 0 ≤ x ≤ 5. The units are in meters. Find the half-volume drain time
for the tank, given the first 5 liters drain out in 10 seconds.

5. A spherical tank of diameter 12 feet is filled with water. Find the drain time for the
tank, given the first 5 gallons drain out in 20 seconds.

Solution:A layman guess for the answer is 7.5 hours to drain the tank. The correct
answer is about 11.97 hours. The difference in the two times is explained by Torri-
celli’s Lemma: the speed of a droplet through the orifice decreases with decreasing
water surface height.

The tank is a solid whose spherical boundary is formed by rotation of a half circle
around the y-axis. The orifice is assumed at the origin x = y = 0. The tank has diam-
eterD = 12 feet and radius R = 6 feet. The full circle has equation x2+(y−R)2 = R2.
Along the half-circle in the right half-plane x ≥ 0, variable x is defined by equation
x =

√
R2 − (R− y)2 for 0 ≤ y ≤ 2R. The cross-sectional area A(y) at height y is

A(y) = πx2 = π(R2 − (R− y)2), 0 ≤ y ≤ 2R

and the tank volume V (y) at height y is

V (y) =

∫ y

0

A(z)dz =
1

3
πy3 + 6πy2

The differential equation is y′(t) = f(y(t)), f(y) = −k√y/A(y), with implicit solution

t− 2π

5k
y3/2(y − 20) + c = 0

Substitute y(0) = 12 to find c = − 192π
√
12

5k . Then the implicit solution is

t− 2π

5k
y3/2(y − 20)− 192π

√
12

5k
= 0
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After 20 seconds, 5 gallons drained. Conversion of gallons to cubic feet gives tank
volume V1 = V (D) − 5(0.133681) = 904.1102794 cubic feet. Solve V (y) = V1 for
y = 11.81069370, 12.18733587, −5.998029570. Select y1 = 11.81069370, because the
others are outside 0 ≤ y ≤ 12. Check V (y1) = V1.

Substitute t = 20, y(20) = y1 into the implicit solution:

20 k + 417.7053992− (192/5)
√
12π = 0

Then k = 0.009698715978 and the implicit solution becomes

t− 129.5673639 y(t)3/2(y(t)− 20)− 12438.46693
√
12 = 0

Substitute y(t) = 0 to find the drain time:

t− 12438.46693
√
12 = 0, t = 43088.11338 seconds.

# Torricelli drain spherical tank

DD:=12;R:=DD/2;A:=unapply(Pi*(R^2 - (R-y)^2),y);

V:=unapply(int(A(z),z=0..y),y);

V0:=V(2*R);# Full tank volume in cubic feet

gallons2CubicFeet:=0.133681;

capacity:=V0/gallons2CubicFeet;# gallons in the tank

laymanDrainTimeSecs:=(capacity/5)*20;# Estimate in secs

laymanTimeMin:=laymanDrainTimeSecs/60;# Estimate in minutes

V1:=V(2*R)-5*gallons2CubicFeet;# Tank vol at 20 sec

f:=unapply(-k*sqrt(y)/A(y),y);# RHS of the DE

de:=diff(y(t),t) = f(y(t));

ans:=dsolve(de,y(t));# implicit solution

c:=solve(subs(t=0,y(0)=DD,ans),_C1);

ans1:=subs( _C1=c,ans);

solve(V(y)=V1,y);# Height y=y1 after 20 secs

y1:=11.81069370;# range 0 to 12 required

V(y1)-V1;# Check if zero

equk:=subs(t=20,y(20)=y1,ans1);

kk:=solve(equk,k);

subs(k=kk,ans1);

# Drain time whole tank in seconds

ans2:=subs(y(t)=0,k=kk,ans1);

T:=solve(ans2,t);

6. A spherical tank of diameter 9 feet is filled with solvent. Find the half-volume drain
time for the tank, given the first gallon drains out in 3 seconds.

7. A hemispherical tank of diameter 16 feet is filled with water. Find the drain time for
the tank, given the first 5 gallons drain out in 25 seconds.

Solution:A layman guess for the answer is 11.14 hours to drain the tank. The correct
answer is about 15.6 hours.

Details parallel Exercise 5, restricting the range of y to 0 ≤ y ≤ R. The maple code
in Exercise 5 applies, suitably modified.

8. A hemispherical tank of diameter 10 feet is filled with solvent. Find the half-volume
drain time for the tank, given the first gallon drains out in 4 seconds.

1167



2.8 Science and Engineering Applications

9. A parabolic tank is filled with water. The tank geometry is a solid of revolution
formed from y = 2x2, 0 ≤ x ≤ 2. The units are in feet. Find the drain time for the
tank, given the first 5 gallons drain out in 12 seconds.

Solution:A layman guess for the answer is 15.04 minutes to drain the tank. The
correct answer is about 13.34 minutes. A similar tank shape is a saline drip bag in a
hospital.

Details use A(y) = πy/2, V (y) = πy2/4, 0 ≤ y ≤ H ≡ 8. The tank capacity is 376
gallons, from which the layman answer is (376/5)(12) seconds. Following Exercise 5,
k = 0.02961387652 and the drain time is T = 800.1443397 seconds.

# Torricelli drain parabolic tank

# y=2x^2 on 0 \le x \le 2

A:=unapply(Pi*y/2,y);

H:=2*(2)^2;# y=2x^2 at x=2, tank height

V:=unapply(int(A(z),z=0..y),y);

V0:=V(H);gallons2CubicFeet:=0.133681;

capacity:=V0/gallons2CubicFeet;# gallons in the tank

laymanDrainTimeSecs:=(capacity/5)*12;# Estimate drain time

laymanTimeMin:=laymanDrainTimeSecs/60;

V1:=V(R)-5*gallons2CubicFeet;# Tank vol at 12 sec

f:=unapply(-k*sqrt(y)/A(y),y);

de:=diff(y(t),t) = f(y(t));

ans:=dsolve(de,y(t));# implicit solution

c:=solve(subs(t=0,y(0)=R,ans),_C1);

ans1:=subs( _C1=c,ans);

solve(V(y)=V1,y);H1:=7.919813160;# range 0 to H required

equk:=subs(t=12,y(12)=H1,ans1);

kk:=solve(equk,k);# k = 0.02961387652

ans2:=subs(y(t)=0,k=kk,ans1);# Drain time t for whole tank

T:=solve(ans2,t);

10. A parabolic tank is filled with oil. The tank geometry is a solid of revolution formed
from y = 3x2, 0 ≤ x ≤ 2. The units are in meters. Find the half-volume drain time
for the tank, given the first 4 liters drain out in 16 seconds.

Torricelli’s Law and Uniqueness
It it known that Torricelli’s law gives a differential equation for which Picard’s
existence-uniqueness theorem is inapplicable for initial data y(0) = 0.

11. Explain why Torricelli’s equation y′ = k
√
y plus initial condition y(0) = 0 fails to

satisfy the hypotheses in Picard’s theorem. Cite all failed hypotheses.

Solution:The partial derivative of the RHS of the differential equation in variable y
fails to be continuous at y = 0. All other hypotheses are satisfied.

12. Consider a typical Torricelli’s law equation y′ = k
√
y with initial condition y(0) = 0.

Argue physically that the depth y(t) of the tank for t < 0 can be zero for an arbitrary
duration of time t near t = 0, even though y(t) is not zero for all t.

13. Display infinitely many solutions y(t) on −5 ≤ t ≤ 5 of Torricelli’s equation y′ = k
√
y

such that y(t) is not identically zero but y(t) = 0 for 0 ≤ t ≤ 1.
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Solution:The solutions correspond to a full tank at an earlier time t = t0 < 0, followed
by the tank emptying at time t = 0. The tank cross-sectional area in this example is
constant. We’ll discuss the case k = 1 to give the idea of the construction.

One solution y(t) = (t/2)2 of y′ =
√
y can be found by separation of variables, valid

for t > 0. The differential equation is autonomous, therefore a horizontal translate
z(t) = y(t − d) = (t − d)2/4 is a solution of z′ =

√
z with z(d) = 0. Define for

−5 < d < 0 function

yd(t) =

{
0 d ≤ t ≤ 5,
(t− d)2/4 −5 ≤ t < d.

Then y′d(t) =
√

yd(t) for −5 < t < 5. Each function yd models a tank of height
yd(−5) = (−5− d)2/4 which empties at t = d < 0 and the tank remains empty until
t = 5. There are infinitely many functions yd.

# exercise 13

k:=1;f:=unapply(k*sqrt(y)/1,y);

de:=diff(y(t),t) = f(y(t));

ans:=dsolve(de,y(t));# implicit solution

# ans := sqrt(y(t))-(1/2)*t-_C1 = 0

Y:=unapply((t/2)^2,t);# explicit solution

14. Does Torricelli’s equation y′ = k
√
y plus initial condition y(0) = 0 have a solution

y(t) defined for t ≥ 0? Is it unique? Apply Picard’s theorem and Peano’s theorem, if
possible.

Clepsydra: Water Clock Design
A surface of revolution is used to make a container of height h feet for a water
clock. An increasing curve y = f(x) on 0 ≤ x ≤ 1 is revolved around the y-axis
to make the container shape, e.g., y = x makes a conical tank. Water drains
by gravity out of diameter d orifice at (0, 0). The tank water level must fall at
a constant rate of r inches per hour, important for marking a time scale on the
tank. Find d and f(x), given h and r.

15. h = 5 feet, r = 4 inches/hour. Answers: f(x) = 5x4, d = 0.05460241726 ≈ 3/64
inch.

Solution:Answers: f(x) = 5x4, d ≈ 1/16 inch.

Known is f(x) = cx4 for some constant c. Below is a derivation of this fact from

Torricelli’s Lemma. Constant c =

(
π r

π(d/2)2
√

2g

)2

is in terms of g, h and r. Units

are second, foot, pound. Let g = 32 ft/sec/sec.

Define A(y) = πx2 where y = f(x) is the curve revolved around the y-axis, x = 0
to x = 1 feet. Value h = 5 = f(1) is the tank height in feet. Value r = 4 is in
inches/hour. Let R = 1 inch/hour = 1

12 feet / 3600 seconds = 1/43200 ft/sec. Then
r equals 4R feet/sec. Orifice diameter d feet is to be determined, a small decimal

value. Apply Torricelli’s model: A(y)y′ = −a
√
2gy, a = π(d/2)2 = orifice area.

Symbol a is defined in the Torricelli Equation proof, technical details page 148.
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Let A(y) = πx2, y′ = −rR, y = f(x) in Torricelli’s model to obtain the equation

−π (r)x2 = −π(d/2)2
√

2g
√
f(x). Solve for f(x) = cx4 where

c =

(
π (r)

π(d/2)2
√
2g

)2

Because h = f(1) = c, then d is determined by the equation

r2

2g(d/2)4
= h, or (d/2)4 =

r2

2gh

Conclusion:
f(x) = cx4 = hx4 = 5x4,

d = 2

(
r2

2gh

) 1
4

= 0.00455 ft = 0.0546 in ≈ 3/64 in.

# Exercise 15 Clepsydra

AA:=Pi*x^2; # Area of a cross-section

R:=1/12/3600;# unit change inch/hour => ft/sec

a:=Pi*(d/2)^2; # orifice area

DE:=AA*diff(y(t),t)=-a*sqrt(2*g)*sqrt(y(t));

DE1:=subs(diff(y(t),t)=-r,y(t)=Y,g=32,DE);

ff:=unapply(solve(DE1,Y),x);

h:=5;r:=4*R;

d_roots:=solve(ff(1)=h,d);# 4 roots, choose d>0

dd:=evalf(d_roots[1]);# diameter dd feet

dd*12*16;# sixteenths, about 7/128 inch

solve( (d/2)^4=r^2/(2*32.0*h), d);# Equation check

16. h = 4, r = 4

17. h = 3, r = 6

Solution:Answers: f(x) = 3x4, d = 0.07598356858 ≈ 5/64 inch.

Follow Exercise 15.

18. h = 4, r = 3

19. h = 3, r = 2

Solution:Answers: f(x) = 3x4, d = 0.04386913378 ≈ 3/64 inch.

Follow Exercise 15.

20. h = 4, r = 1

Stefan’s Law
An unclothed prison inmate is handcuffed to a chair. The inmate’s skin temper-
ature is 33◦ Celsius. Find the number of Joules of heat lost by the inmate’s skin
after t0 minutes, given skin area A in square meters, Kelvin room temperature
T0(r) = C(r/60) + 273.15 and Celsius room temperature C(t). Variables: t min-
utes, r seconds. Use equation dQ

dt = k(T 4 − T0(t)
4) page 149. Assume emissivity

σ = 5.6696× 10−8K−4 Watts per square meter, K=degrees Kelvin.
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21. E = 0.9, A = 1.5, t0 = 10, C(t) = 24 + 7t/t0

Solution: The theory implies that the answer is Q(t1) where t1 = (10)(60) is in
seconds and Q′ = kT 4 − kT 4

0 . Value k = 7.65396× 10−8, T = 33 + 273.15 degrees K
and T0(t) = C(t/60) + 273.15 degrees K. Then

Q(t1) = k

∫ t1

0

(T 4 − (T0(t))
4)dt = 28117.35641 ≈ 28, 117 joules.

# Exercise 21 Stefan’s Law

t0:=10;t1:=t0*60;T:=33+273.15;

A:=1.5:EE:=0.9:sigma:=5.6696*10^(-8):k:=sigma*A*EE;r:=’r’;

C:=t->24+(7*t)/t0;# t minutes

T0:=r->C(r/60)+273.15;

dQ:=unapply(k*T^4-k*T0(r)^4,r);

Q1:=int(dQ(t),t=0..t1);# 28117.35641

22. E = 0.9, A = 1.7, t0 = 12, C(t) = 21 + 10t/12

23. E = 0.9, A = 1.4, t0 = 10, C(t) = 15 + 15t/t0

Solution:Q1 = 48637.89027 joules

24. E = 0.9, A = 1.5, t0 = 12, C(t) = 15 + 14t/t0

On the next two exercises, use a computer algebra system (CAS). Same
assumptions as Exercise 21.

25. E = 0.8, A = 1.4, t0 = 15, C(t) = 15 + 15 sinπ(t− t0)/12

Solution:Q1 = 108329.3834 joules.

# Exercise 25 Stefan’s Law

t0:=15;t1:=t0*60;T:=33+273.15;

A:=1.4:EE:=0.8:sigma:=5.6696*10^(-8):k:=sigma*A*EE;r:=’r’;

C:=t->15+15*sin(Pi*(t-t0))/12;# t minutes

T0:=r->C(r/60)+273.15;

dQ:=unapply(k*T^4-k*T0(r)^4,r);

Q1:=int(dQ(t),t=0..t1);# 108329.3834

26. E = 0.8, A = 1.4, t0 = 20, C(t) = 15 + 14 sinπ(t− t0)/12

Tsunami Wave Shape
Plot the piecewise solution

y(x) = 2−
{

2 tanh2(x− x0) x>x0,
0 x≤x0.

(2)

See Figure 12 page 155.
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27. x0 = 2, |x− x0| ≤ 2

Solution:

# Exercise 27 Tsunami plot

g:=x->2-2*tanh((x-x0))^2;

opts:=thickness=3,font=[courier,18,bold];

f:=x->piecewise(x<x0,2,g(x));

plot(f,x0-2..x0+2,opts);

28. x0 = 3, |x− x0| ≤ 4.

Tsunami Wavefront
Find non-equilibrium solutions for the given differential equation.

29. (y′)2 = 12y2 − 10y3.

Solution:Factor 12y2 − 10y3 = y2(12 − 10y) to find the equilibrium solutions y = 0
(sea level) and y = 12/10 (water wall). A solution with y′ ≥ 0 satisfies the first order
differential equation y′ = y

√
16− 10y which can be solved by separation of variables:

3x+
√
3 arctanh(

1

6

√
36− 30y) + c1 = 0. < y < 12/10

Solve for y:

y = −6

5
tanh2(

√
3(x+ c)) +

6

5

f:=y->y*sqrt(12-10*y);

de:=diff(y(x),x)=f(y(x));

ans:=dsolve(de,y(x));

ans1:=4*subs(y(x)=u,ans);

ans2:=solve(subs(_C1=c,ans1),u);

30. (y′)2 = 13y2 − 12y3.

31. (y′)2 = 8y2 − 2y3.

Solution:y = −4 tanh2(
√
2(x+ c)) + 4

32. (y′)2 = 7y2 − 4y3.

Gompertz Tumor Equation
Solve the Gompertz tumor equation y′ = (a− b ln y)y.
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33. a = 1, b = 1

Solution:y(x) = ee
−c−x+1

34. a = 1, b = 2

35. a = −1, b = 1

Solution:y(x) = ee
−c−x−1

36. a = −1, b = 2

37. a = 4, b = 1

Solution:y(x) = ee
−c−x+4

38. a = 5, b = 1

2.9 Exact Equations and Level Curves

Exercises 2.9 �
Exactness Test
Test the equality My = Nx for the given equation, as written, and report exact
when true. Do not try to solve the differential equation. See Example 2.43, page
163.

1. (y − x)dx+ (y + x)dy = 0

Solution:Exact: My −Nx = 1− 1 = 0.

2. (y + x)dx+ (x− y)dy = 0

3. (y +
√
xy)dx+ (−y)dy = 0

Solution:Not exact: My −Nx = 1 + (1/2)x/
√
x y.

4. (y +
√
xy)dx+ xydy = 0

5. (x2 + 3y2)dx+ 6xydy = 0

Solution:Exact: My −Nx = 6y − 6y = 0.

6. (y2 + 3x2)dx+ 2xydy = 0

7. (y3 + x3)dx+ 3xy2dy = 0

Solution:Not exact: My −Nx = 3y2 − 2y2 = y2.

8. (y3 + x3)dx+ 2xy2dy = 0
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9. 2xydx+ (x2 − y2)dy = 0

Solution:Exact: My −Nx = 2x− 2x = 0.

10. 2xydx+ (x2 + y2)dy = 0

Conservation Law Test
Test conservation law U(x, y) = c for a solution to Mdx+Ndy = 0. See Example
2.44, page 163.

11. 2xydx+ (x2 + 3y2)dy = 0,
x2y + y3 = c

Solution:Let U = x2y + y3, M = 2xy, N = x2 + 3y2. Then Ux = 2xy = M , Uy =
x2 + 3y2 = N . Differentiate across U(x, y) = c implicitly: Uxdx + Uydy = (c)′ = 0.
Then Mdx+Ndt = 0 and U − c is a solution.

12. 2xydx+ (x2 − 3y2)dy = 0,
x2y − y3 = c

13. (3x2 + 3y2)dx+ 6xydy = 0,
x3 + 3xy2 = c

Solution:Let U = x3 + 3xy2, M = 3x2 + 3y2, N = 6xy. Then Ux = 3x2 + 3y2 = M ,
Uy = 6xy = N . Therefore, U = c is a solution.

14. (x2 + 3y2)dx+ 6xydy = 0,
x3 + 3xy2 = c

15. (y − 2x)dx+ (2y + x)dy = 0,
xy − x2 + y2 = c

Solution:Let U = xy − x2 + y2, M = y − 2x, N = 2y + x. Then Ux = y − 2xy = M ,
Uy = x+ 2y = N . Therefore, U = c is a solution.

16. (y + 2x)dx+ (−2y + x)dy = 0,
xy + x2 − y2 = c

Exactness Theorem
Find an implicit solution U(x, y) = c. See Examples 2.45-2.46, page 163.

17. (y − 4x)dx+ (4y + x)dy = 0

Solution: The equation has the form Mdx + Ndy = 0 where M = y − 4x and
N = 4y + x. It is exact, by Theorem 2.10, because My = 1 and Nx = 1 are equal.

The method of potentials applies to find the potential U = x2y+xy3+xy as follows.

U =
∫ x

0
M(x, y)dx+

∫ y

0
N(0, y)dy Formula for U , Theorem 2.10.

=
∫ x

0
(y − 4x) dx+

∫ y

0
(4y + 0)dy Insert M and N .

= xy − 2x2 + 2y2 Evaluate integrals.
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Answer check: Ux = y − 4x+ 0 = M , Uy = x− 0 + 4y = N .

# Exercise 17 Method of Potentials

M:=(x,y)->y-4*x;N:=(x,y)-> 4*y+x;

A:=diff(M(x,y),y);B:=diff(N(x,y),x);A-B;# Check Exact

M(0,0);N(0,0);# Check (0,0) in domain of M and N

U:=int(M(t,y),t=0..x)+int(N(0,s),s=0..y);

# U := -2*x^2+x*y+2*y^2

18. (y + 4x)dx+ (4y + x)dy = 0

19. (ey + ex)dx+ (xey)dy = 0

Solution:U = −1 + xey + ex

20. (e2y + ex)dx+ (2xe2y)dy = 0

21. (1 + yexy)dx+ (2y + xexy)dy = 0

Solution:U = −1 + x+ exy + y2

22. (1 + ye−xy)dx+ (xe−xy − 4y)dy = 0

23. (2x+ arctan y)dx+
x

1 + y2
dy = 0

Solution:U = x2 + x arctan(y)

24. (2x+ arctan y)dx+
x+ 2y

1 + y2
dy = 0

25.
2x5 + 3y3

x4y
dx− 2y3 + x5

x3y2
dy = 0

Solution:U =
x5 − y3

yx3

# Exercise 25 Method of Potentials

# Cannot use (0,0) in the formulas

M:=(x,y)-> (2*x^5+3*y^3)/(x^4*y);

N:=(x,y)-> -(2*y^3+x^5)/(x^3*y^2);

A:=diff(M(x,y),y);B:=diff(N(x,y),x);

simplify(A-B);# Check Exact

a:=1;b:=1;M(a,b);N(a,b);# Domain check

U:=int(M(t,y),t=a..x)+int(N(a,s),s=b..y)

assuming x::positive, y::positive;

# U := (x^5-y^3)/(y*x^3)

26.
2x4 + y2

x3y
dx− 2x4 + y2

2x2y2
dy = 0

27. Mdx+Ndy = 0, M = ex sin y + tan y, N = ex cos y + x sec2 y

Solution:U = ex sin(y) + x tan(y)
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28. Mdx+Ndy = 0, M = ex cos y + tan y, N = −ex sin y + x sec2 y

29.
(
x2 + ln y

)
dx+

(
y3 + x/y

)
dy = 0

Solution:U := (1/3)x3 + x ln(y) + (1/4)y4 − 1/4

30.
(
x3 + ln y

)
dx+

(
y3 + x/y

)
dy = 0

2.10 Special equations

Exercises 2.10 �
Homogeneous-A Equations
Find f such that the equation can be written in the form y′ = f(y/x). Solve for
y using a computer algebra system.

1. xy′ = y2/x

Solution:Answer: f(u) = u2, y = x/(cx+ 1).

Let f(u) = u2, then f(y/x) = y2/x2 = y′. Change variable y → u by equation
u(x) = y(x)/x. The new equation is xu′ + u = f(u) = u2, which is separable:
u′ = F (x)G(u) with F (x) = 1/x, G(u) = u2 − u. Solve by the variables separable
method: u(x) = 1/(cx+ 1), y(x) = xu(x) = x/(cx+ 1).

2. x2y′ = x2 + y2

3. yy′ =
xy2

x2 + y2

Solution:f(u) = −u3/(u2 + 1), y(x) =
√
x/W (c x2) where W is the Lambert W

function.

# Exercise 3, Lambert W function

F:=(x,y)->x*y/(x^2+y^2);

de1:=diff(y(x),x)=F(x,y(x));

dsolve(de1,y(x));

f:=(x,u)->simplify(F(x,x*u)-u);

de2:=x*diff(u(x),x)=f(x,u(x));

dsolve(de2,u(x));

?LambertW

4. yy′ = 2xy2

x2+y2

5. y′ =
1

x+ y

Solution:f(u) = u2/(1+u), y(x) = eW (ec x)− c where W is the Lambert W function.

6. y′ = y/x+ x/y
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7. y′ = (1 + y/x)2

Solution:f(u) = u2 + u+ 1,
y (x) = 1

6 x
(
−
√
3 + 3 tan

(
1
2 (ln (x) + c)

√
3
))√

3

8. y′ = 2y/x+ x/y

9. y′ = 3y/x+ x/y

Solution:f(u) = 3u+ 1/u, y(x) = ± 1
2 x
√
4cx4 − 2

10. y′ = 4y/x+ x/y

Homogeneous-C Equations
Given y′ = f(x, y), decompose f(x, y) = G(R(x, y)) where R(x, y) = a1x+b1y+c1

a2x+b2y+c2
,

then convert to Homogeneous-A. Investigate solving y′ = f(x, y) by computer.

11. y′ = − (y+1)x
y2+2 y+1+x2

Solution:Answers: G(u) = −u/(1 + u2), R(x, y) = x/(1 + y), then let X = x, Y =
y + 1. The Homogeneous-A equation is dY

dX = G(X/Y ). Computer solution:

y (x) = −1 +

√
c2x4 − cx2

√
c2x4 + 1

c2x3 − cx
√
c2x4 + 1

Factor y2 + 2 y + 1 + x2 = (y + 1)2 + x2, then divide by (y + 1)2 to arrive at
G(u) = −u/(1 + u2), R(x, y) = x/(1 + y). Change variables: X = x, Y = y + 1.
Then f(x, y) = G(R(x, y)) = G(R(X,Y − 1)) = G(X/Y ) and dy

dx = dY
dX . The new

Homogeneous-A equation is dY
dX = G(X/Y ).

# Exercise 11, Homogeneous C

infolevel[dsolve]:= 3;# Get classification info

# ?dsolve,algorithms

G:=u->-u/(1+u^2);R:=(x,y)->x/(1+y);

de:=diff(y(x),x)=G(R(x,y(x)));

dsolve(de);# infolevel: homogeneous

# y(x) = -1+sqrt(-(-_C1*x^2+

# sqrt(_C1^2*x^4+1))*x^2*_C1)/

# (x*(_C1*x^2-sqrt(_C1^2*x^4+1))*_C1)

dsolve(diff(u(X),X)=G(u(X)));# infolevel: separable

# u(X) = exp(-(1/2)*LambertW(exp(-2*X-2*_C1))-X-_C1)

12. y′ = 2
(1 + y)x

x2 + y2 + 2 y + 1

Solution:y(x) = −1− 1
2c

(
1 +
√
4 c2 x2 + 1

)
13. y′ =

(1 + x) y

x2 + 4 y2 + 2x+ 1
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Solution:Answers: G(u) = u/(4+u2), R(x, y) = (1+x)/y, then let X = x+1, Y = y.
The Homogeneous-A equation is dY

dX = G(X/Y ). Computer solution in terms of W =
Lambert W function:

y(x) = −e 1
2W ( 1

4 e
2c(1+x)2)−c

# Exercise 13, Homogeneous C

G:=u->u/(4+u^2);

R:=(x,y)->(1+x)/y;

de:=diff(y(x),x)=G(R(x,y(x)));

dsolve(de);

# y(x) = -exp((1/2)*LambertW((1/4)*(exp(_C1))^2*(1+x)^2)-_C1)

14. y′ =
1 + x

y + 1 + x

Solution:

−1

2
ln

(
− (x+ 1)

2 − (x+ 1) y (x)− (y (x))
2

(x+ 1)
2

)

+
1

5

√
5 arctanh

(
1

5

(x+ 1 + 2 y (x))
√
5

x+ 1

)
− ln (x+ 1)− c = 0

15. y′ =
1 + y

x+ y + 1

Solution:G(u) = u/(u+ 1), R(x, y) = (1 + y)/x, Computer solution:

y (x) = eW(xec)−c − 1 where W is the Lambert W function.

# Exercise 15, Homogeneous C

G:=u->u/(1+u);

R:=(x,y)->(1+y)/x;

de:=diff(y(x),x)=G(R(x,y(x)));

dsolve(de);# infolevel: homogeneous

# implicit solution returned

16. x(y + 1)y′ = x2 + y2 + 2y + 1

Solution:y (x) = −1 +
√
2 ln (x) + 2 cx

17. y′ =
x2 − y2 − 2 y − 1

(1 + y)x

Solution:G(u) = u− 1/u, R(x, y) = x/(1 + y), Computer solution:

y(x) = −1− c

2x

√
2 + 2x4/c2

18. y′ =
(y + 2x)

2

x2

Solution:y (x) =
−3x
2

+
x
√
7

2
tan

(√
7

2
ln |x|+ c

√
7

2

)
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19. y′ =
x2 + xy + y2 + 5x+ 4 y + 7

(x+ 2) (3 + y + x)

Solution:G(u) = u+ 1/(u+ 1), R(x, y) = (y + 1)/(x+ 2), Computer solution:

y(x) = −1− (x+ 2) (1 +
√
1 + 2 ln(x+ 2) + 2c)

20. y′ = −x2 − xy − y2 + 5x− 5 y + 5

(3 + x) (4 + y + x)

Solution: y(x) = −1− (3 + x)(1 +
√
1− 2 ln(3 + x)− 2c)

Bernoulli’s Equation
Identify the exponent n in Bernoulli’s equation y′+ p(x)y = q(x)yn and solve for
y(x).

21. y−2y′ = 1 + x

Solution:n = 2, p = 0, q = 1 + x, y (x) = 1/
(
−x− x2/2 + c

)
.

Substitution u = y/yn = y−1 gives u′ = −y−2y′ = −q = −1 − x. Quadrature:
u = −x− x2/2 + c, y = 1/u = 1/(−x− x2/2 + c).

# Exercise 21, Bernoulli DE

p:=unapply(0,x);

q:=unapply(1+x,x);

n:=2;

de:=diff(y(x),x)=-p(x)*y(x)+q(x)*y(x)^n;

dsolve(de,y(x));

22. yy′ = 1 + x

23. y−2y′ + y−1 = 1 + x

Solution:n = 2, p = 1, q = 1 + x, y (x) = 1/ (2 + x+ cex).

Substitution u = y/yn = y−1 gives u′ = −y−2y′ and then −u′ + pu = q. The
linear integrating factor method applies to −u′ + pu = q: u(x) = 2 + x+ cex. Then
y = 1/u = 1/(2 + x+ cex).

# Exercise 23, Bernoulli DE

p:=unapply(1,x);

q:=unapply(1+x,x);

n:=2;

de:=diff(y(x),x)=-p(x)*y(x)+q(x)*y(x)^n;

dsolve(de,y(x));

# Check substitution u=1/y

dsolve(-diff(u(x),x)+p(x)*u(x)=q(x),u(x));

24. yy′ + y2 = 1 + x

25. y′ + y = y1/3

Solution:n = 1/3, p = 1, q = 1, (y (x))
2/3 − 1− ce−2x/3 = 0.
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Substitution u = y/yn = y2/3 gives u′ = (2/3)y−1/3y′ and then u′/(2/3) + pu = q.
The linear integrating factor method applies to 3u′/2 + pu = q: u (x) = 1 + ce−2x/3.
Then u = y2/3 implies y2/3 = 1 + ce−2x/3.

# Exercise 25, Bernoulli DE

p:=unapply(1,x);

q:=unapply(1,x);

n:=1/3;

de:=diff(y(x),x)=-p(x)*y(x)+q(x)*y(x)^n;

dsolve(de,y(x));

# Check substitution u=y/y^(1/3)=y^(2/3)

dsolve(diff(u(x),x)/(2/3)+p(x)*u(x)=q(x),u(x));

26. y′ + y = y1/5

27. y′ − y = y−1/2

Solution:n = 1/3, p = 1, q = 1, (y (x))
3/2

+ 1− c e3x/2 = 0.

Substitution u = y/yn = y3/2 gives u′ = (3/2)y1/2y′ and then u′/(3/2) + pu = q.
The linear integrating factor method applies to 2u′/3 + pu = q: u (x) = −1 + ce3x/2.
Then u = y3/2 implies y3/2 = −1 + ce3x/2.

# Exercise 27, Bernoulli DE

p:=unapply(-1,x);

q:=unapply(1,x);

n:=-1/2;

de:=diff(y(x),x)=-p(x)*y(x)+q(x)*y(x)^n;

dsolve(de,y(x));

# Check substitution u=y/y^(-1/2)=y^(3/2)

dsolve(diff(u(x),x)/(3/2)+p(x)*u(x)=q(x),u(x));

28. y′ − y = y−1/3

29. yy′ + y2 = ex

Solution: Isolate y′: y′ + y = exy−1. Then n = −1, p = 1, q = ex. The substitution
is u = y/y−1 = y2. Then u (x) = c e−2 x + 2

3 e
x and y2 = c e−2 x + 2

3 e
x.

# Exercise 29, Bernoulli DE

p:=unapply(1,x);

q:=unapply(exp(x),x);

n:=-1;

de:=diff(y(x),x)=-p(x)*y(x)+q(x)*y(x)^n;

dsolve(de,y(x));

# Check substitution u=y/y^(-1)=y^2

dsolve(diff(u(x),x)/(2)+p(x)*u(x)=q(x),u(x));

30. y′ + y = e2xy2

Integrating Factor xayb

Report an implicit solution for the given equation Mdx + Ndy = 0, using an
integrating factor Q = xayb. Follow Example 2.50, page 169. Computer assist
expected.
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31. M = 3xy − 6y2, N = 4x2 − 15xy

Solution:Integrating factor xy3, y4(x3 − 1) − 3y5(x2 − 1) − 3y5 + y4 = c, Details
follow the example: solve xy(My −Nx)− (ayN − bxM) = xy(−5x+ 3y)− ay(4x2 −
15xy) + bx(3xy − 6y2) = 0 for a = 1, b = 3 by coefficients of xiyj equal to zero. Let
M1 = Mxayb, N1 = Nxayb and solve M1dx+N1dy = 0 by the Exactness Theorem.

# Exercise 31, Integrating factor x^a*y^b

findIntFactor:=proc(M1,N1)

local p,q,a,b,Test;

Test:=(M,N)->x*y*(diff(M,y)-diff(N,x)) - (a*y*N-b*x*M);

p:=expand(Test(M1,N1));printf("%a",p);

q:=solve({coeffs(p,[x,y])},{a,b});

RETURN (q);

end proc;

M1:=3*x*y-6*y^2;N1:=4*x^2-15*x*y;

findIntFactor(M1,N1);# {a = 1, b = 3}

IF:=x^1 * y^3;

M:=unapply(M1*IF,(x,y));

N:=unapply(N1*IF,(x,y));

A:=diff(M(x,y),y);B:=diff(N(x,y),x);

"Exact if zero" = simplify(A-B);# Check Exact

x0:=1;y0:=1;M(x0,y0);N(x0,y0);# Domain check

# Solve Mdx + Ndy=0

U:=int(M(t,y),t=x0..x)+int(N(x0,s),s=y0..y)

assuming x::positive, y::positive;

# U := y^4*(x^3-1)-3*y^5*(x^2-1)-3*y^5+y^4+2

32. M = 3xy − 10y2, N = 4x2 − 25xy

33. M = 2 y − 12xy2, N = 4x− 20x2y

Solution:Integrating factor x1y3, solution −4y5(x3 − 1) + y4(x2 − 1)− 4y5 + y4 = c

34. M = 2 y − 21xy2, N = 4x− 35x2y

35. M = 3 y − 32xy2, N = 4x− 40x2y

Solution:Integrating factor xy3, solution

−(32/3)y5(x3 − 1) + (3/2)y4(x2 − 1)− 8y5 + y4 = c

36. M = 3 y − 20xy2, N = 4x− 25x2y

37. M = 12 y − 30x2y2,
N = 12x− 25x3y

Solution:Integrating factor x3y3, solution

−(15/2)y5(x4 − 1) + 6y4(x2 − 1)− 5y5 + 3y4 = c

38. M = 12 y + 90x2y2,
N = 12x+ 75x3y
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39. M = 15 y + 90xy2,
N = 12x+ 75x2y

Solution:Integrating factor x4y3, solution

30y5(x3 − 1) + (15/2)y4(x2 − 1) + 15y5 + 3y4 = c

40. M = 35 y + 30xy2,
N = 28x+ 25x2y.

Integrating Factor eax+by

Report an implicit solution U(x, y) = c for the given equation Mdx +Ndy = 0
using an integrating factor Q = eax+by. Follow Example 2.51, page 170.

41. M = ex + 2e2y, N = ex + 5e2y

Solution:Integrating factor e3 y+2 x, solution e3 x+3 y + 3 e2 x+5 y = c.

The test for integrating factor eax+by is

My −Nx − aN + bM = 0

The plan is to expand the left side and obtain two equations in unknowns a, b by
the sampling method: substitute values x = y = 0 in the above equation to get
3− 6a+3b = 0, then substitute x = y = 1 to get 4e2− e− ae− 5ae2 + be+2be2 = 0.
Solve the two equations in two unknowns to find a = 2, b = 3. Then the integrating
factor is e2x+3y. Multiply Mdx + Ndy by the integrating factor and solve by the
Method of Potentials: U = (1/3)e3x+3y + e2x+5y − 4/3. A simplified solution is
e3x+3y + 3e2x+5y = c.

# Exercise 41, Integrating factor exp(a*x+b*y)

findIntFactorExp:=proc(M1,N1)

local p,q,a,b,Test,eq1,eq2;

Test:=(M,N)->diff(M,y)-diff(N,x) - a*N+b*M;

p:=expand(Test(M1,N1));

eq1:=simplify(subs(x=0,y=0,p));

eq2:=simplify(subs(x=1,y=1,p));

q:=solve([eq1,eq2],[a,b]);p:=q[1];

RETURN (rhs(p[1]),rhs(p[2]);

end proc;

M1:=exp(x)+2*exp(2*y);N1:=exp(x)+5*exp(2*y);

A,B:=findIntFactorExp(M1,N1);# Failed? Modify samples in proc

IF:=subs(a=A,b=B,exp(a*x+b*y));

M:=unapply(simplify(expand(M1*IF)),(x,y));

N:=unapply(simplify(expand(N1*IF)),(x,y));

A:=diff(M(x,y),y);B:=diff(N(x,y),x);

"Exact if zero" = simplify(A-B);# Check Exact

x0:=0;y0:=0;M(x0,y0);N(x0,y0);# Domain check

# Solve Mdx + Ndy=0, method of potentials

U:=int(M(t,y),t=x0..x)+int(N(x0,s),s=y0..y);

# U := (1/3)*exp(3*x+3*y)+exp(2*x+5*y)-4/3

42. M = 3ex + 2ey, N = 4ex + 5ey
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43. M = 12 ex + 2, N = 20 ex + 5

Solution:Integrating factor e2x+5y, solution 4e3x+5y + e2x+5y = c.

44. M = 12 ex + 2 e−y, N = 24 ex + 5 e−y

45. M = 12 ey + 2 e−x, N = 24 ey + 5 e−x

Solution:Integrating factor e3x+5y, solution 4 e6 y+3 x + e2 x+5 y = c.

46. M = 12 e−2 y + 2 e−x, N = 12 e−2 y + 5 e−x

47. M = 16 ey + 2 e−2 x+3 y, N = 12 ey + 5 e−2 x+3 y

Solution:Integrating factor e4x+2y, solution 4 e4 x+3 y + e2 x+5 y = c.

The sampling method changes: use x = y = 0 for the first equation and x = 0, y = 1
for the second equation. Computer code is edited to change the sample values for
eq2: x = 0, y = 1. The edit modifies function findIntFactorExp in the maple text
of Exercise 41.

48. M = 16 e−y + 2 e−2 x−3 y, N = −12 e−y − 5 e−2 x−3 y

49. M = −16− 2 e2 x+y, N = 12 + 4 e2 x+y

Solution:Integrating factor e−4 x+3 y, solution e−2 x+4 y + 4 e−4 x+3 y = c

50. M = −16 e−3 y − 2 e2 x, N = 8 e−3 y + 5 e2 x

Integrating Factor Q(x)
Report an implicit solution U(x, y) = c for the given equation, using an integrat-
ing factor Q = Q(x). Follow Example 2.52, page 171.

51. (x+ 2y)dx+ (x− x2)dy = 0

Solution:Integrating factor Q = x/(x− 1)3. Solution

−8y + 2 ln (x− 1)x2 + 6x2y − 4x ln (x− 1)

x2 − 2x+ 1

+
5x2 − 16xy + 2 ln (x− 1)− 14x+ 8 y + 8

x2 − 2x+ 1
= c

The plan for Q(x) a function of x alone: form µ = (My−Nx)/N and then Q =
∫
µdx.

The new equation Mµdx + Nµdy = 0 is exact and can be solved by the method of
potentials.
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# Exercise 51, Integrating factor Q(x)

findIntFactorQ:=proc(M1,N1)

local p,q,mu;

mu:=(diff(M1,y)-diff(N1,x))/N1;# depends on x only

p:=expand(mu);printf("mu=%a",p);

q:=exp(int(p,x));

if subs(y=’Y’,q) = q then RETURN (q) fi;

RETURN ("ERROR");

end proc;

M1:=x+2*y;N1:=x-x^2;

IF:=findIntFactorQ(M1,N1);# "ERROR" means no x-only IF

M:=unapply(simplify(expand(M1*IF)),(x,y));

N:=unapply(simplify(expand(N1*IF)),(x,y));

A:=diff(M(x,y),y);B:=diff(N(x,y),x);

"Exact if zero" = simplify(A-B);# Check Exact

x0:=0;y0:=0;M(x0,y0);N(x0,y0);# Domain check

# Solve Mdx + Ndy=0, method of potentials

U:=int(M(t,y),t=x0..x)+int(N(x0,s),s=y0..y);

# U := (1/2)*(2*ln(x-1)*x^2+6*x^2*y-4*x*ln(x-1)

# +5*x^2-16*x*y+2*ln(x-1)-14*x+8*y+8)/(x^2-2*x+1)-4*y

52. (x+ 3y)dx+ (x− x2)dy = 0

53. (2x+ y)dx+ (x− x2)dy = 0

Solution:Integrating factor Q = 1/(x− 1)2.

Solution
2x ln (x− 1) + xy − 2 ln (x− 1) + 2x− 2 y − 4

x− 1
− 2 y = c

54. (2x+ y)dx+ (x+ x2)dy = 0

55. (2x+ y)dx+ (−x− x2)dy = 0

Solution: Integrating factor Q = 1/x2.

Solution
1

3

6x ln (x)− 6 ln (3)x+ xy − 3 y

x
− 4

3
y

56. (x+ y)dx+ (−x− x2)dy = 0

57. (x+ y)dx+ (−x− 2x2)dy = 0

Solution:Integrating factor Q = 1/x2.

Solution
1

3

3x ln (x)− 3 ln (3)x+ xy − 3 y

x
− 7

3
y

58. (x+ y)dx+ (x+ 5x2)dy = 0

59. (x+ y)dx+ (3x)dy = 0

Solution:Integrating factor Q = 1/x2/3.
Solution − 9

4
3
√
3 + 3/4x4/3 + 3 3

√
xy
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60. (x+ y)dx+ (7x)dy = 0

Integrating Factor Q(y)

61. (y − y2)dx+ (x+ y)dy = 0

Solution:Integrating factor Q = 1/(y − 1)2.

Solution − xy

y − 1
+

ln (y − 1) y − ln (y − 1) + y − 2

y − 1
= c

# Exercise 61, Integrating factor Q(y)

findIntFactorQ:=proc(M1,N1)

local p,q,mu;

mu:=(diff(N1,x)-diff(M1,y))/M1;# depends on y only

p:=expand(mu);printf("mu=%a",p);

q:=exp(int(p,y));

if subs(x=’X’,q) = q then RETURN (q) fi;

RETURN ("ERROR");

end proc;

M1:=y-y^2;N1:=x+y;

IF:=findIntFactorQ(M1,N1);# "ERROR" means no y-only IF

M:=unapply(simplify(expand(M1*IF)),(x,y));

N:=unapply(simplify(expand(N1*IF)),(x,y));

A:=diff(M(x,y),y);B:=diff(N(x,y),x);

"Exact if zero" = simplify(A-B);# Check Exact

x0:=0;y0:=2;M(x0,y0);N(x0,y0);# Domain check

# Solve Mdx + Ndy=0, method of potentials

U:=int(M(t,y),t=x0..x)+int(N(x0,s),s=y0..y) assuming y>1;

# U := -y*x/(y-1)+(ln(y-1)*y-ln(y-1)+y-2)/(y-1)

62. (y − y2)dx+ (2x+ y)dy = 0

63. (y − y2)dx+ (2x+ 3y)dy = 0

Solution:Integrating factor Q = y/(y − 1)3. Solution

− xy2

(y − 1)
2

+
3

2

2 ln (y − 1) y2 − 4 ln (y − 1) y + 5 y2 + 2 ln (y − 1)− 14 y + 8

y2 − 2 y + 1
= c

64. (y + y2)dx+ (2x+ 3y)dy = 0

65. (y + y2)dx+ (x+ 3y)dy = 0

Solution:Integrating factor Q = 1/(y + 1)2. Solution
xy

1 + y
+

3 ln (1 + y) y − 3 ln (3) y + 3 ln (1 + y)− 3 ln (3)− y + 2

1 + y
= c

66. (y + 5y2)dx+ (x+ 3y)dy = 0
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67. (y + 3y2)dx+ (x+ 3y)dy = 0

Solution:Integrating factor Q = 1/(3y + 1)2. Solution

xy

1 + 3 y
+

21 ln (1 + 3 y) y − 21 ln (7) y + 7 ln (1 + 3 y)− 7 ln (7)− 3 y + 6

21(1 + 3 y)

68. (2y + 5y2)dx+ (7x+ 11y)dy = 0

69. (2y + 5y2)dx+ (x+ 7y)dy = 0

Solution:Integrating factor
1

(5 y + 2)
3/2√

y
, solution

√
yx√

5 y + 2
+ 2

25

7
√
5
√
5 y + 2 ln

(√
5
√
5 y + 2 + 5

√
y
)

√
5 y + 2

+

2
25

−7
√
5 ln

(√
5
√
7 + 5

)√
5 y + 2√

5 y + 2
+ 2

25

5
√
7
√

5 y + 2− 35
√
y√

5 y + 2

70. (3y + 5y3)dx+ (7x+ 9y)dy = 0
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§ Linear Algebraic Equations
No Matrices

Contents
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3.1 Systems of Linear Equations

Exercises 3.1 �
Toolkit
Compute the equivalent system of equations. Definitions of combo, swap and
mult on page 177.

1. Given

∣∣∣∣∣∣
x + 2z = 1
x + y + 2z = 4

z = 0

∣∣∣∣∣∣, find the system that results from combo(2,1,-1).

Solution:

∣∣∣∣∣∣
− y = −3

x + y + 2z = 4
z = 0

∣∣∣∣∣∣
2. Given

∣∣∣∣∣∣
x + 2z = 1
x + y + 2z = 4

z = 0

∣∣∣∣∣∣, find the system that results from swap(1,2) followed

by combo(2,1,-1).
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3. Given

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣, find the system that results from combo(1,2,-1).

Solution:

∣∣∣∣∣∣
x + 3z = 1

y = 3
z = 1

∣∣∣∣∣∣
4. Given

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣, find the system that results from swap(1,2) followed

by combo(1,2,-1).

5. Given

∣∣∣∣∣∣
y + z = 2

3y + 3z = 6
y = 0

∣∣∣∣∣∣, find the system that results from swap(2,3),

combo(2,1,-1).

Solution:∣∣∣∣∣∣
y + z = 2
y = 0
3y + 3z = 6

∣∣∣∣∣∣ after swap

∣∣∣∣∣∣
z = 2

y = 0
3y + 3z = 6

∣∣∣∣∣∣ after combo

6. Given

∣∣∣∣∣∣
y + z = 2

3y + 3z = 6
y = 0

∣∣∣∣∣∣, find the system that results from mult(2,1/3),

combo(1,2,-1), swap(2,3), swap(1,2).

Inverse Toolkit
Compute the equivalent system of equations.

7. If

∣∣∣∣∣∣
− y = −3

x + y + 2z = 4
z = 0

∣∣∣∣∣∣ resulted from combo(2,1,-1), then find the original sys-

tem.

Solution:

∣∣∣∣∣∣
x + 2z = 1
x + y + 2z = 4

z = 0

∣∣∣∣∣∣ after combo(2,1,c) with c = 1 = additive inverse

of −1

8. If

∣∣∣∣∣∣
y = 3

x + 2z = 1
z = 0

∣∣∣∣∣∣ resulted from swap(1,2) followed by combo(2,1,-1), then

find the original system.

9. If

∣∣∣∣∣∣
x + 3z = 1

y − 3z = 4
z = 1

∣∣∣∣∣∣ resulted from combo(1,2,-1), then find the original system.
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Solution:

∣∣∣∣∣∣
x + 3z = 1
x + y = 5

z = 1

∣∣∣∣∣∣
10. If

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣ resulted from swap(1,2) followed by combo(2,1,2), then

find the original system.

11. If

∣∣∣∣∣∣
y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣ resulted from mult(2,-1), swap(2,3), combo(2,1,-1), then

find the original system.

Solution:Apply inverse operations in reverse order: combo(2,1,1), swap(2,3),
mult(2,1).∣∣∣∣∣∣

4y + 4z = 8
− 3y + 3z = 6

y = 0

∣∣∣∣∣∣ after combo(2,1,1)

∣∣∣∣∣∣
4y + 4z = 8
y = 0

− 3y + 3z = 6

∣∣∣∣∣∣ after swap(2,3)

∣∣∣∣∣∣
4y + 4z = 8
y = 0

− 3y + 3z = 6

∣∣∣∣∣∣ after mult(2,1)

12. If

∣∣∣∣∣∣
2y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣ resulted from mult(2,1/3), combo(1,2,-1), swap(2,3),

swap(1,2), then find the original system.

Planar System
Solve the xy–system and interpret the solution geometrically as

(a) parallel lines

(b) equal lines

(c) intersecting lines.

13.

∣∣∣∣ x + y = 1,
y = 1

∣∣∣∣
Solution:x = 0, y = 1 intersecting lines

14.

∣∣∣∣ x + y = −1
x = 3

∣∣∣∣
15.

∣∣∣∣ x + y = 1
x + 2y = 2

∣∣∣∣
Solution:x = −1, y = 2, intersecting lines
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16.

∣∣∣∣ x + y = 1
x + 2y = 3

∣∣∣∣
17.

∣∣∣∣ x + y = 1
2x + 2y = 2

∣∣∣∣
Solution:Divide the second equation by 2 to get two equal equations. The two lines
are actually one line: equal lines.

18.

∣∣∣∣ 2x + y = 1
6x + 3y = 3

∣∣∣∣
19.

∣∣∣∣ x − y = 1
−x − y = −1

∣∣∣∣
Solution:x = 1, y = 0, intersecting lines

20.

∣∣∣∣ 2x − y = 1
x − 0.5y = 0.5

∣∣∣∣
21.

∣∣∣∣ x + y = 1
x + y = 2

∣∣∣∣
Solution:Parallel lines, because equation 2 minus equation 1 is a signal equation
0 = 1.

22.

∣∣∣∣ x − y = 1
x − y = 0

∣∣∣∣
System in Space
For each xyz–system:

(a) If no solution, then report three identical shelves, pup tent, two par-
allel shelves or book shelf.

(b) If infinitely many solutions, then report one shelf, open book or saw
tooth.

(c) If a unique intersection point, then report the values of x, y and z.

23.

∣∣∣∣∣∣
x − y + z = 2
x = 1

y = 0

∣∣∣∣∣∣
Solution:Answer: (c) unique intersection x = 1, y = 0, z = 1.

24.

∣∣∣∣∣∣
x + y − 2z = 3
x = 2

z = 1

∣∣∣∣∣∣
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25.

∣∣∣∣∣∣
x − y = 2
x − y = 1
x − y = 0

∣∣∣∣∣∣
Solution:Answer: (a) No solution. Three parallel planes x − y = c for c = 0, 1, 2.
Book shelves.

26.

∣∣∣∣∣∣
x + y = 3
x + y = 2
x + y = 1

∣∣∣∣∣∣
27.

∣∣∣∣∣∣
x + y + z = 3
x + y + z = 2
x + y + z = 1

∣∣∣∣∣∣
Solution:Answer: (a) No solution. Three parallel planes x+ y + z = c for c = 1, 2, 3.
Book shelves.

28.

∣∣∣∣∣∣
x + y + 2z = 2
x + y + 2z = 1
x + y + 2z = 0

∣∣∣∣∣∣
29.

∣∣∣∣∣∣
x − y + z = 2
2x − 2y + 2z = 4

y = 0

∣∣∣∣∣∣
Solution:Answer: (b) Infinitely many solutions. Open book. Two identical planes
intersect a second plane y = 0.

30.

∣∣∣∣∣∣
x + y − 2z = 3
3x + 3y − 6z = 6

z = 1

∣∣∣∣∣∣
31.

∣∣∣∣∣∣
x − y + z = 2

0 = 0
0 = 0

∣∣∣∣∣∣
Solution:Answer: (b) Infinitely many solutions. One shelf.

32.

∣∣∣∣∣∣
x + y − 2z = 3

0 = 0
1 = 1

∣∣∣∣∣∣
33.

∣∣∣∣∣∣
x + y = 2
x − y = 2

y = −1

∣∣∣∣∣∣
Solution:Answer: (a) No solution. Three planes intersect pairwise. Pup tent.
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Exercise 33 pup tent

eqs:=x+y=2,x-y=2,y=-1;

plots[implicitplot3d]({eqs},x=-2..5,y=-2..1,z=-2..2);

34.

∣∣∣∣∣∣
x − 2z = 4
x + 2z = 0

z = 2

∣∣∣∣∣∣
35.

∣∣∣∣∣∣
y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣
Solution:Answer: (b) Open book.

36.

∣∣∣∣∣∣
x + 2z = 1
4x + 8z = 4

z = 0

∣∣∣∣∣∣
,

3.2 Filmstrips and Toolkit Sequences

Exercises 3.2 �
Lead and free variables
For each system assume variable list x1, . . . , x5. List the lead and free variables.

1.

∣∣∣∣∣∣
x2+3x3 =0

x4 =0
0=0

∣∣∣∣∣∣
Solution:x2, x4
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2.

∣∣∣∣∣∣
x2 = 0

x3 + 3x5 = 0
x4 + 2x5 = 0

∣∣∣∣∣∣
3.

∣∣∣∣∣∣
x1 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣
Solution:x1, x4

4.

∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣
5.

∣∣∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

0= 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣
Solution:x1

6.

∣∣∣∣∣∣
x1 + x2 = 0

x3 = 0
0= 0

∣∣∣∣∣∣
7.

∣∣∣∣∣∣
x1 + x2 + 3x3 + 5x4 = 0

x5 = 0
0= 0

∣∣∣∣∣∣
Solution:x1, x5

8.

∣∣∣∣∣∣
x1 + 2x2 + 3x4 + 4x5 = 0

x3 + x4 + x5 = 0
0= 0

∣∣∣∣∣∣
9.

∣∣∣∣∣∣∣∣
x3 + 2x4 = 0

x5 = 0
0= 0
0 = 0

∣∣∣∣∣∣∣∣
Solution:x3, x5

10.

∣∣∣∣∣∣∣∣
x4 + x5 = 0

0= 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣
11.

∣∣∣∣∣∣∣∣
x2 + 5x4 = 0

x3 + 2x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣
Solution:x2, x3, x5
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12.

∣∣∣∣∣∣∣∣
x1 + 3x3 = 0

x2 + x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣
Elementary Operations
Consider the 3× 3 system

x + 2y + 3z = 2,
−2x + 3y + 4z = 0,
−3x + 5y + 7z = 3.

Define symbols combo, swap and mult as in the textbook. Write the 3 × 3
system which results from each of the following operations.

13. combo(1,3,-1)

Solution:Define combo(s,t,c) to be the result after adding c times source equation
s to target equation t. The operation changes only the target equation. The new
system after combo(1,3,-1):

x + 2y + 3z = 2,
−2x + 3y + 4z = 0,
−4x + 3y + 4z = 1.

14. combo(2,3,-5)

15. combo(3,2,4)

Solution:
x + 2y + 3z = 2,

−14x + 23y + 32z = 12,
−3x + 5y + 7z = 3.

16. combo(2,1,4)

17. combo(1,2,-1)

Solution:
x + 2y + 3z = 2,

−3x + y + z = −2,
−3x + 5y + 7z = 3.

18. combo(1,2,-e2)

19. mult(1,5)

Solution:Define mult(1,5) to be the result after multiplying equation 1 by 5:

5x + 10y + 15z = 10,
−2x + 3y + 4z = 0,
−3x + 5y + 7z = 3.
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20. mult(1,-3)

21. mult(2,5)

Solution:
x + 2y + 3z = 2,

−10x + 15y + 20z = 0,
−3x + 5y + 7z = 3.

22. mult(2,-2)

23. mult(3,4)

Solution:
x + 2y + 3z = 2,

−2x + 3y + 4z = 0,
−12x + 20y + 28z = 12.

24. mult(3,5)

25. mult(2,-π)

Solution:
x + 2y + 3z = 2,

2πx + −3πy + −4πz = 0,
−3x + 5y + 7z = 3.

26. mult(2,π)

27. mult(1,e2)

Solution:
e2x + 2e2y + 3e2z = 2e2,
−2x + 3y + 4z = 0,
−3x + 5y + 7z = 3.

28. mult(1,-e−2)

29. swap(1,3)

Solution:Define swap(1,3) to be the result after swapping equations 1 and 3:

−3x + 5y + 7z = 3,
−2x + 3y + 4z = 0,

x + 2y + 3z = 2.

30. swap(1,2)
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31. swap(2,3)

Solution:
x + 2y + 3z = 2,

−3x + 5y + 7z = 3,
−2x + 3y + 4z = 0.

32. swap(2,1)

33. swap(3,2)

Solution:
x + 2y + 3z = 2,

−3x + 5y + 7z = 3,
−2x + 3y + 4z = 0.

34. swap(3,1)

Unique Solution
Create a toolkit sequence for each system, whose final frame displays the unique
solution of the system of equations. Assume variable list order x1, x2, x3, x4, x5
and the number of variables is the number of equations.

35.

∣∣∣∣x1+3x2= 0
x2=−1

∣∣∣∣
Solution:

∣∣∣∣x1+3x2= 0
x2=−1

∣∣∣∣ Frame 1∣∣∣∣x1 = 3
x2=−1

∣∣∣∣ Frame 2, combo(2,1,-3)

36.

∣∣∣∣x1+2x2= 0
x2=−2

∣∣∣∣
37.

∣∣∣∣x1+3x2=2
x1− x2=1

∣∣∣∣
Solution:Definition: combo(s,t,c) arguments s=source equation, t=target equation,
c=multiplier∣∣∣∣x1+3x2=2
x1− x2=1

∣∣∣∣ Frame 1∣∣∣∣x1+3x2= 2
−4x2=−1

∣∣∣∣ Frame 2, combo(1,2,-1)∣∣∣∣x1+3x2= 2
x2=1/4

∣∣∣∣ Frame 3, mult(2,-1/4)∣∣∣∣x1 =5/4
x2=1/4

∣∣∣∣ Frame 4, combo(2,1,-3)
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38.

∣∣∣∣x1+ x2=−1
x1+2x2=−2

∣∣∣∣
39.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
4x3 = 4

∣∣∣∣∣∣
Solution:∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
4x3 = 4

∣∣∣∣∣∣ Frame 1

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
x3 = 1

∣∣∣∣∣∣ Frame 2: mult(3,1/4)

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 =−1
x3 = 1

∣∣∣∣∣∣ Frame 3: combo(3,2,-4)

∣∣∣∣∣∣
x1 + 3x2 =−1

x2 =−1
x3 = 1

∣∣∣∣∣∣ Frame 4: combo(3,1,-2)

∣∣∣∣∣∣
x1 = 2

x2 =−1
x3 = 1

∣∣∣∣∣∣ Frame 5: combo(2,1,-3)

40.

∣∣∣∣∣∣
x1 = 1
3x1 + x2 = 0
2x1 + 2x2 + 3x3 = 3

∣∣∣∣∣∣
41.

∣∣∣∣∣∣
x1 + x2 + 3x3 = 1

x2 = 2
3x3 = 0

∣∣∣∣∣∣
Solution:Reminder: combo(s,t,c) arguments s=source equation, t=target equation,
c=multiplier∣∣∣∣∣∣
x1 + x2 + 3x3 = 1

x2 = 2
x3 = 0

∣∣∣∣∣∣ Frame 2: mult(3,1/3)

∣∣∣∣∣∣
x1 + x2 = 1

x2 = 2
x3 = 0

∣∣∣∣∣∣ Frame 3: combo(3,1,-3)

∣∣∣∣∣∣
x1 =−1

x2 = 2
x3 = 0

∣∣∣∣∣∣ Frame 4: combo(2,1,-1)

42.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 = 3
3x3 = 0

∣∣∣∣∣∣
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43.

∣∣∣∣∣∣∣∣
x1 = 2
x1 + 2x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
Solution:∣∣∣∣∣∣∣∣

x1 = 2
2x2 =−1

2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣ Frame 2: combo(1,2,-1)

∣∣∣∣∣∣∣∣
x1 = 2

2x2 =−1
2x2 + x3 =−4

3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣ Frame 3: combo(1,3,-2)

∣∣∣∣∣∣∣∣
x1 = 2

2x2 =−1
2x2 + x3 =−4
6x2 + x3 + 2x4 =−4

∣∣∣∣∣∣∣∣ Frame 4: combo(1,4,-3)

∣∣∣∣∣∣∣∣
x1 = 2

2x2 =−1
x3 =−3

6x2 + x3 + 2x4 =−4

∣∣∣∣∣∣∣∣ Frame 5: combo(2,3,-1)

∣∣∣∣∣∣∣∣
x1 = 2

2x2 =−1
x3 =−3
x3 + 2x4 =−1

∣∣∣∣∣∣∣∣ Frame 6: combo(2,4,-3)

∣∣∣∣∣∣∣∣
x1 = 2

2x2 =−1
x3 =−3

2x4 = 2

∣∣∣∣∣∣∣∣ Frame 7: combo(3,4,-1)

∣∣∣∣∣∣∣∣
x1 = 2

x2 =−1/2
x3 = −3

x4 = 1

∣∣∣∣∣∣∣∣ Frame 8: mult(2,1/2), mult(4,1/2)

44.

∣∣∣∣∣∣∣∣
x1 = 3
x1 − 2x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 2

∣∣∣∣∣∣∣∣
45.

∣∣∣∣∣∣∣∣
x1 + x2 = 2
x1 + 2x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
Solution:∣∣∣∣∣∣∣∣

x1 + x2 = 2
x1 + 2x2 = 1

2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣ Frame 1
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∣∣∣∣∣∣∣∣
x1 + x2 = 2

x2 =−1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣ Frame 2: combo(1,2,-1)

∣∣∣∣∣∣∣∣
x1 + x2 = 2

x2 =−1
x3 =−4

3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣ Frame 3: combo(1,3,-2)

∣∣∣∣∣∣∣∣
x1 + x2 = 2

x2 =−1
x3 =−4

3x2 + x3 + 2x4 =−4

∣∣∣∣∣∣∣∣ Frame 4: combo(1,4,-3).

Variable x1 has just one occurrence. The next variable to eliminate to just once
occurrence is x2, taken from variable list order x1, x2, x3, x4.∣∣∣∣∣∣∣∣
x1 + x2 = 2

x2 =−1
x3 =−4
x3 + 2x4 =−1

∣∣∣∣∣∣∣∣ Frame 5: combo(2,4,-3)

∣∣∣∣∣∣∣∣
x1 = 3

x2 =−1
x3 =−4
x3 + 2x4 =−1

∣∣∣∣∣∣∣∣ Frame 6: combo(2,1,-1).

Variables x1, x2 isolated to just one occurrence. Next variable: x3.∣∣∣∣∣∣∣∣
x1 + = 3

x2 =−1
x3 =−4

2x4 = 3

∣∣∣∣∣∣∣∣ Frame 7: combo(3,4,-1).

All variables isolated to just one occurrence.∣∣∣∣∣∣∣∣
x1 + = 3

x2 = −1
x3 = −4

x4 = 3/2

∣∣∣∣∣∣∣∣ Frame 8: mult(4,1/2).

This is the Reduced Echelon Form of the system of equations, which displays the
unique solution.

46.

∣∣∣∣∣∣∣∣
x1 − 2x2 = 3
x1 − x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 1

∣∣∣∣∣∣∣∣

47.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 1
3x1 + x3 + 2x5 = 1

∣∣∣∣∣∣∣∣∣∣
Solution:x1 = 3, x2 = 2, x3 = −10, x4 = −5/2, x5 = 1
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# Maple answer check Ex 47

A:=Matrix

([

[1,0,0,0,0],

[1,-1,0,0,0],

[2,2,1,0,0],

[3,6,1,4,0],

[3,0,1,0,2]

]);

b:=<3,1,0,1,1>;

LinearAlgebra[LinearSolve](A,b,free=t);

48.

∣∣∣∣∣∣∣∣∣∣
x1 = 2
x1 − x2 = 0
2x1 + 2x2 + x3 = 1
3x1 + 6x2 + x3 + 3x4 = 1
3x1 + x3 + 3x5 = 1

∣∣∣∣∣∣∣∣∣∣

49.

∣∣∣∣∣∣∣∣∣∣
x1− x2+ x3− x4+ x5= 0

2x2− x3+ x4− x5= 0
3x3− x4+ x5= 0

4x4− x5= 0
5x5=20

∣∣∣∣∣∣∣∣∣∣
Solution:x1 = −1, x2 = 1, x3 = −1, x4 = 1, x5 = 4

# Maple answer check Ex 49

A:=Matrix

([

[1, -1, 1, -1, 1],

[0, 2, -1, 1, -1],

[0, 0, 3, -1, 1],

[0, 0, 0, 4, -1],

[0, 0, 0, 0, 5]

]);

b:=<0,0,0,0,20>;

LinearAlgebra[LinearSolve](A,b,free=t);

50.

∣∣∣∣∣∣∣∣∣∣
x1 − x2 = 3
x1 − 2x2 = 0
2x1 + 2x2 + x3 = 1
3x1 + 6x2 + x3 + 3x4 = 1
3x1 + x3 + x5 = 3

∣∣∣∣∣∣∣∣∣∣
No Solution
Develop a toolkit sequence for each system, whose final frame contains a signal
equation (e.g., 0 = 1), thereby showing that the system has no solution.

51.

∣∣∣∣x1+3x2=0
x1+3x2=1

∣∣∣∣
Solution:Parallel lines. Subtract the equations to get signal equation 0 = 1.
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52.

∣∣∣∣ x1+2x2=1
2x1+4x2=2

∣∣∣∣
53.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
x2 + 4x3 = 4

∣∣∣∣∣∣
Solution:Equations 2 and 3 are parallel lines in 3D. Subtract them to get signal
equation 0 = 1.

54.

∣∣∣∣∣∣
x1 = 0
3x1 + x2 + 3x3 = 1
2x1 + 2x2 + 6x3 = 0

∣∣∣∣∣∣
55.

∣∣∣∣∣∣
x1 + x2 + 3x3 = 1

x2 = 2
x1 + 2x2 + 3x3 = 2

∣∣∣∣∣∣
Solution:Subtract equation 2 from equation 3: x1 + x2 + 3x3 = 0, which is parallel
to equation 1. Subtract it from equation 1 to arrive at signal equation 0 = 1.

56.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 2x3 = 3
x1 + 5x3 = 5

∣∣∣∣∣∣
57.

∣∣∣∣∣∣∣∣
x1 = 2
x1 + 2x2 = 2
x1 + 2x2 + x3 + 2x4 = 0
x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
Solution:The first two equations give x1 = 2, x2 = 0. Then the last two equations
become x3 + 2x4 = −2, x3 + 2x4 = 0. Subtract them to arrive at signal equation
−2 = 0.

58.

∣∣∣∣∣∣∣∣
x1 = 3
x1 − 2x2 = 1
2x1 + 2x2 + x3 + 4x4 = 0
3x1 + 6x2 + x3 + 4x4 = 2

∣∣∣∣∣∣∣∣

59.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 − x5 = 1
− 6x2 − x3 + 4x4 + x5 = 0

∣∣∣∣∣∣∣∣∣∣
Solution:Solve the first 3 equations for x1 = 3, x2 = 2, x3 = −10. Substitute into
equations 4,5: 4x4 + x5 = −10, 4x4 + x5 = 2. Subtract them to arrive at signal
equation 0 = 12.

60.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1
3x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 − x5 = 1
− 6x2 − x3 − 4x4 + x5 = 2

∣∣∣∣∣∣∣∣∣∣
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Infinitely Many Solutions
Display a toolkit sequence for each system, whose final frame has this property:
each nonzero equation has a lead variable. Then apply the last frame algorithm
to write out the standard general solution of the system. Assume in each system
variable list x1 to x5.

61.

∣∣∣∣∣∣
x1+x2+3x3 =0

x2 +x4 =0
0=0

∣∣∣∣∣∣
Solution:∣∣∣∣∣∣
x1 +3x3−x4 =0

x2 +x4 =0
0=0

∣∣∣∣∣∣ Frame 2 = Last Frame

The lead variables are x1, x2 and the free variables are x3, x4, x5. The last frame
algorithm applies:

x1 = −3x3 + x4, isolate lead variables left
x2 = −x4,
x3 = t1, assign symbols to the free variables
x4 = t2,
x5 = t3.

Substitute symbols t1, t2, t3 for free variables on the right side of the lead variable
equations.

x1 = −3t1 + t2,
x2 = −t2,
x3 = t1,
x4 = t2,
x5 = t3.

This is the general solution in terms of invented symbols t1, t2, t3.

62.

∣∣∣∣∣∣
x1 + x3 = 0
x1 + x2 + x3 + 3x5 = 0

x4 + 2x5 = 0

∣∣∣∣∣∣
63.

∣∣∣∣∣∣
x2 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣
Solution:Lead variables x2, x4 and free variables x1, x3, x5. Last frame algorithm:
x2 = −3x3, isolate lead variables left
x4 = 0,
x1 = t1, assign symbols to the free variables
x3 = t2,
x5 = t3.

The general solution:

x1 = t1,
x2 = −3t2,
x3 = t2,
x4 = 0,
x5 = t3.
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64.

∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣
65.

∣∣∣∣ x1 + 2x2 + 3x3 = 0
x3 + x4 0 = 0

∣∣∣∣
Solution:Lead variables x1, x3 and free variables x2, x4, x5.∣∣∣∣ x1 + 2x2 − 3x4 = 0

x3 + x4 0 = 0

∣∣∣∣ Last frame.

Last frame algorithm:

x1 = −2x2 + 3x4, isolate lead variables left
x3 = −x4,
x2 = t1, assign symbols to the free variables
x4 = t2,
x5 = t3.

The general solution:

x1 = −2t1 + 3t2,
x2 = −t2,
x3 = t1,
x4 = t2,
x5 = t3.

66.

∣∣∣∣∣∣
x1 + x2 = 0

x2 + x3 = 0
x3 0 = 1

∣∣∣∣∣∣
67.

∣∣∣∣ x1 + x2 + 3x3 + 5x4 + 2x5 = 0
x5 = 0

∣∣∣∣
Solution:Lead variables x1, x5 and free variables x2, x3, x4.∣∣∣∣ x1 + x2 + 3x3 + 5x4 = 0

x5 = 0

∣∣∣∣ Last Frame.

Last frame algorithm:

x1 = −x2 − 3x3 − 5x4, isolate lead variables left
x5 = 0,
x2 = t1, assign symbols to the free variables
x3 = t2,
x4 = t3.

The general solution:

x1 = −t1 − 3t2 − 5t3,
x2 = t1,
x3 = t2,
x4 = t3,
x5 = 0.

68.

∣∣∣∣ x1 + 2x2 + x3 + 3x4 + 4x5 = 0
x3 + x4 + x5 = 0

∣∣∣∣
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69.

∣∣∣∣∣∣
x3 + 2x4 + x5 = 0
2x3 + 2x4 + 2x5 = 0

x5 = 0

∣∣∣∣∣∣
Solution: //

∣∣∣∣∣∣
x3 + 2x4 + x5 = 0
− 2x4 = 0

x5 = 0

∣∣∣∣∣∣ Frame 2: combo(1,2,-2)

∣∣∣∣∣∣
x3 + x5 = 0
− 2x4 = 0

x5 = 0

∣∣∣∣∣∣ Frame 3: combo(2,1,1)

∣∣∣∣∣∣
x3 + x5 = 0

x4 = 0
x5 = 0

∣∣∣∣∣∣ Frame 4: mult(2,-1/2)

∣∣∣∣∣∣
x3 = 0

x4 = 0
x5 = 0

∣∣∣∣∣∣ Last Frame: combo(3,1,-1)

Lead variables x3, x4, x5 and free variables x1, x2. Last frame algorithm:

x3 = 0, isolate lead variables left
x4 = 0,
x5 = 0,
x1 = t1, assign symbols to the free variables
x2 = t2.

The general solution:

x1 = t1,
x2 = t2,
x3 = 0,
x4 = 0,
x5 = 0.

70.

∣∣∣∣∣∣∣∣
x4 + x5 = 0

0= 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣
71.

∣∣∣∣∣∣∣∣
x2 + x3 + 5x4 = 0

x3 + 2x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣
Solution:∣∣∣∣∣∣∣∣
x2 + 3x4 = 0

x3 + 2x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣ Last Frame: combo(2,1,-1)

Lead variables x2, x3, x5 and free variables x1, x4. Last frame algorithm:

x2 = −3x4, isolate lead variables left
x3 = −2x4,
x5 = 0,
x1 = t1, assign symbols to the free variables
x4 = t2.
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The general solution:

x1 = t1,
x2 = −3t2,
x3 = −2t2,
x4 = t2,
x5 = 0.

72.

∣∣∣∣∣∣∣∣
x1 + 3x3 = 0
x1 + x2 + x4 = 0

x5 = 0
0= 0

∣∣∣∣∣∣∣∣
Inverses of Elementary Operations
Given the final frame of a toolkit sequence is∣∣∣∣∣∣

3x + 2y + 4z = 2
x + 3y + 2z = −1

2x + y + 5z = 0

∣∣∣∣∣∣
and the given operations, find the original system in the first frame.

73. combo(1,2,-1), combo(2,3,-3), mult(1,-2), swap(2,3).

Solution:Apply to the given system the inverse operations in reverse order:
swap(2,3), mult(1,-1/2), combo(2,3,3). The steps:∣∣∣∣∣∣
3x + 2y + 4z = 2
2x + y + 5z = 0
x + 3y + 2z = −1

∣∣∣∣∣∣ swap(2,3)

∣∣∣∣∣∣
−3x/2 − y − 2z = −1

2x + y + 5z = 0
x + 3y + 2z = −1

∣∣∣∣∣∣ mult(1,-1/2)

∣∣∣∣∣∣
−3x/2 − y − 2z = −1

2x + y + 5z = 0
7x + 6y + 17z = −1

∣∣∣∣∣∣ combo(2,3,3)

This is the original system.

74. combo(1,2,-1), combo(2,3,3), mult(1,2), swap(3,2).

75. combo(1,2,-1), combo(2,3,3), mult(1,4), swap(1,3).

Solution:∣∣∣∣∣∣
−3x/2 − y − 2z = −1

x/2 + 3z = −1
7x + 6y + 17z = −1

∣∣∣∣∣∣
76. combo(1,2,-1), combo(2,3,4), mult(1,3), swap(3,2).
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77. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3),
swap(2,3).

Solution:∣∣∣∣∣∣
x/4 + 3y/4 + z/2 = −1/4
9x/4 + 7y/4 + 11z/2 = −1/4
−3x − y − 11z = 2

∣∣∣∣∣∣
78. swap(2,3), combo(1,2,-1),

combo(2,3,4), mult(1,3),
swap(3,2).

79. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3),
mult(2,3).

Solution:∣∣∣∣∣∣
x/2 + y/4 + 5z/4 = 0
5x/6 + 5y/4 + 23z/12 = −1/3
2x − y + 2z = 3

∣∣∣∣∣∣
80. combo(1,2,-1), combo(2,3,4),

mult(1,3), swap(3,2),
combo(2,3,-3).

,

3.3 General Solution Theory

Exercises 3.3 �
Classification
Classify the parametric equations as a point, line or plane, then compute as
appropriate the tangent to the line or the normal to the plane.

1. x = 0, y = 1, z = −2
Solution:Point.

2. x = 1, y = −1, z = 2

3. x = t1, y = 1 + t1, z = 0

Solution:Line. Tangent = ı⃗+ ȷ⃗.

4. x = 0, y = 0, z = 1 + t1
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5. x = 1 + t1, y = 0, z = t2

Solution:Plane. The partial derivatives on t1 and t2 generate vectors ı⃗ and k⃗. The
cross product of these two vectors is −ȷ⃗ by the right hand rule. The normal vector
N⃗ can also be generated by determinant expansion:

N⃗ =

∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
1 0 0
0 0 1

∣∣∣∣∣∣ = 0⃗ı− ȷ⃗+ 0k⃗ = −ȷ⃗

6. x = t2 + t1, y = t2, z = t1

7. x = 1, y = 1 + t1, z = 1 + t2

Solution:Plane. The normal vector:

N⃗ =

∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
0 1 0
0 0 1

∣∣∣∣∣∣ = 1⃗ı− 0ȷ⃗+ 0k⃗ = ı⃗

8. x = t2 + t1, y = t1 − t2, z = 0

9. x = t2, y = 1 + t1, z = t1 + t2

Solution:Plane.The normal vector:

N⃗ =

∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
0 1 0
1 0 1

∣∣∣∣∣∣ = 1⃗ı− 0ȷ⃗+ (−1)k⃗ = ı⃗− k⃗

10. x = 3t2 + t1, y = t1 − t2, z = 2t1

Reduced Echelon System
Solve the xyz–system and interpret the solution geometrically.

11.

∣∣∣∣ y + z = 1
x + 2z = 2

∣∣∣∣
Solution:∣∣∣∣ y + z = 1
x + 2z = 2

∣∣∣∣ Frame 1∣∣∣∣ x + 2z = 2
y + z = 1

∣∣∣∣ Last Frame : swap(1,2)

Lead variables x, y, free variable z.

x = 2− 2z, isolate lead variables left
y = 1− z,
z = t1. assign symbols to free variables

x = 2− 2t1, replace RHS free variables by symbols
y = 1− t1, and report answer in variable list order
z = t1.
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Geometry: two planes intersect along a line.

# Maple answer check

with(LinearAlgebra):

A:=Matrix([[0,1,1,1],[1,0,2,2]]):

ReducedRowEchelonForm(A):

LinearSolve(A,free=t);

# ans=[2-2*t, 1-t, t]

12.

∣∣∣∣ x + z = 1
y + 2z = 4

∣∣∣∣
13.

∣∣∣∣ y + z = 1
x + 3z = 2

∣∣∣∣
Solution:x = 2− 3t, y = 1− t, z = t, two planes intersect in a line.

14.

∣∣∣∣ x + z = 1
y + z = 5

∣∣∣∣
15.

∣∣∣∣ x + z = 1
2x + 2z = 2

∣∣∣∣
Solution:x = 1− t2, y = t1, z = t2, two equal planes.

16.

∣∣∣∣ x + y = 1
3x + 3y = 3

∣∣∣∣
17.

∣∣ x + y + z = 1.
∣∣

Solution:x = 1− t1 − t2, y = t1, z = t2, one plane.

18.
∣∣ x + 2y + 4z = 0.

∣∣
19.

∣∣∣∣ x + y = 2
z = 1

∣∣∣∣
Solution:x = 2− t, y = t, z = 1, two planes intersect in a line.

20.

∣∣∣∣ x + 4z = 0
y = 1

∣∣∣∣
Homogeneous System
Solve the xyz–system using elimination with variable list order x, y, z.

21.

∣∣∣∣ y + z = 0
2x + 2z = 0

∣∣∣∣
Solution:x = −t1, y = −t1, z = t1

# Maple answer check

with(LinearAlgebra):

A:=Matrix([[0,1,1],[2,0,2],[0,0,0]]):

LinearSolve(A,Vector([0,0,0]),free=t);

# ans=[-t, -t, t]
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22.

∣∣∣∣ x + z = 0
2y + 2z = 0

∣∣∣∣
23.

∣∣∣∣ x + z = 0
2z = 0

∣∣∣∣
Solution:x = 0, y = t, z = 0

24.

∣∣∣∣ y + z = 0
y + 3z = 0

∣∣∣∣
25.

∣∣∣∣ x + 2y + 3z = 0
0 = 0

∣∣∣∣
Solution:x = −2t1 − 3t2, y = t1, z = t2

26.

∣∣∣∣ x + 2y = 0
0 = 0

∣∣∣∣
27.

∣∣∣∣∣∣
y + z = 0

2x + 2z = 0
x + z = 0

∣∣∣∣∣∣
Solution:x = −t, y = −t, z = t

28.

∣∣∣∣∣∣
2x + y + z = 0
x + 2z = 0
x + y − z = 0

∣∣∣∣∣∣
29.

∣∣∣∣∣∣
x + y + z = 0
2x + 2z = 0
x + z = 0

∣∣∣∣∣∣
Solution:x = t, y = 0, z = t

30.

∣∣∣∣∣∣
x + y + z = 0
2x + 2z = 0
3x + y + 3z = 0

∣∣∣∣∣∣
Nonhomogeneous 3× 3 System
Solve the xyz-system using elimination and variable list order x, y, z.

31.

∣∣∣∣ y = 1
2z = 2

∣∣∣∣
Solution:x = t, y = 1, z = 1

# Maple answer check

with(LinearAlgebra):

A:=Matrix([[0,1,0],[0,0,2],[0,0,0]]):

LinearSolve(A,Vector([1,2,0]),free=t);

# ans=[t, 1, 1]
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32.

∣∣∣∣ x = 1
2z = 2

∣∣∣∣
33.

∣∣∣∣∣∣
y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
Solution:x = 1− t, y = 1− t, z = t

34.

∣∣∣∣∣∣
2x + y + z = 1
x + 2z = 2
x + y − z = −1

∣∣∣∣∣∣
35.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
Solution:x = 1− t, y = 0, z = t

36.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
3x + y + 3z = 3

∣∣∣∣∣∣
37.

∣∣∣∣∣∣
2x + y + z = 3
2x + 2z = 2
4x + y + 3z = 5

∣∣∣∣∣∣
Solution:x = 1− t, y = 1 + t, z = t

38.

∣∣∣∣∣∣
2x + y + z = 2
6x y + 5z = 2
4x + y + 3z = 2

∣∣∣∣∣∣
39.

∣∣∣∣∣∣
6x + 2y + 6z = 10
6x y + 6z = 11
4x + y + 4z = 7

∣∣∣∣∣∣
Solution:x = 2− t, y = −1, z = t

40.

∣∣∣∣∣∣
6x + 2y + 4z = 6
6x y + 5z = 9
4x + y + 3z = 5

∣∣∣∣∣∣
Nonhomogeneous 3× 4 System
Solve the yzuv-system using elimination with variable list order y, z, u, v.

41.

∣∣∣∣∣∣
y + z + 4u + 8v = 10

2z − u + v = 10
2y − u + 5v = 10

∣∣∣∣∣∣
Solution: y = 5− 3t, z = 5− t, u = −t, v = t

# Maple answer check

with(LinearAlgebra):

A:=Matrix([[1,1,4,8],[0,2,-1,1],[2,0,-1,5]]):

LinearSolve(A,Vector([10,10,10]),free=t);

# ans=[5-3*t, 5-t, -t, t]
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42.

∣∣∣∣∣∣
y + z + 4u + 8v = 10

2z − 2u + 2v = 0
y + 3z + 2u + 5v = 5

∣∣∣∣∣∣
43.

∣∣∣∣∣∣
y + z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 1

∣∣∣∣∣∣
Solution:y = 1− t, z = t, u = t, v = 0

44.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 1

∣∣∣∣∣∣
45.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
Solution:y = 1 + 19t, z = −5t, u = −3t, v = t

46.

∣∣∣∣∣∣
y + z + 4u + 9v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
47.

∣∣∣∣∣∣
y + z + 4u + 9v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
Solution:y = 1− 47t, z = 6t, u = 8t, v = t

48.

∣∣∣∣∣∣
y + z + 4u + 9v = 10

2z − 2u + 4v = 4
y + 4z + 2u + 7v = 8

∣∣∣∣∣∣
49.

∣∣∣∣∣∣
y + z + 4u + 9v = 2

2z − 2u + 4v = 4
y + 3z + 5u + 13v = 0

∣∣∣∣∣∣
Solution:y = 10− 7t, z = −2t, u = −2, v = t

50.

∣∣∣∣∣∣
y + z + 4u + 3v = 2

2z − 2u + 4v = 4
y + 3z + 5u + 7v = 0

∣∣∣∣∣∣
,

3.4 Basis, Dimension, Nullity and Rank

Exercises 3.4 �
Rank and Nullity
Compute an abbreviated sequence of combo, swap, mult steps which finds the
value of the rank and nullity.
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1.

∣∣∣∣ x1 + x2 + 4x3 + 8x4 = 0
2x2 − x3 + x4 = 0

∣∣∣∣
Solution:∣∣∣∣ x1 + 9x3/2 + 15x4/2 = 0

2x2 − x3 + x4 = 0

∣∣∣∣ combo(2,1,-1/2)

Lead variables x1, x2 and free variables x3, x4. Rank = 2, nullity = 2.

# Maple answer check Ex 1

with(LinearAlgebra):

A:=Matrix([[1,1,4,8],[0,2,-1,1]]);

B:=Vector([0,0]);

ReducedRowEchelonForm(A);

LinearSolve(A,B,free=t);

# ans=[-9*t-12*s, t, 2*t+s, s]

2.

∣∣∣∣ x1 + x2 + 8x4 = 0
2x2 + x4 = 0

∣∣∣∣
3.

∣∣∣∣ x1 + 2x2 + 4x3 + 9x4 = 0
x1 + 8x2 + 2x3 + 7x4 = 0

∣∣∣∣
Solution:Steps: combo(2,1,-1), combo(1,2,8/6). Lead variables x1, x2 and free
variables x3, x4. Rank = 2, nullity = 2.

4.

∣∣∣∣ x1 + x2 + 4x3 + 11x4 = 0
2x2 − 2x3 + 4x4 = 0

∣∣∣∣
Nullspace
Solve using variable order y, z, u, v. Report the values of the nullity and rank
in the equation nullity+rank=4.

5.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
Solution:y = −3t, z = −t, u = −t, v = t, nullity=1, rank=3.

# Maple answer check Ex 5

with(LinearAlgebra):

A:=Matrix([[1,1,4,8],[0,2,-1,1],[2,0,-1,5]]);

B:=Vector([0,0,0]);

LinearSolve(A,B);

n:=ColumnDimension(A);Rank(A); n-Rank(A);

# ans: [-3*t, -t, -t, t]

# n=4, rank=3, nullity=1

6.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 2v = 0
y + 3z + 2u + 5v = 0

∣∣∣∣∣∣
7.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
Solution:y = −5t, z = t, u = t, v = 0, nullity=1, rank=3.
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8.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
9.

∣∣∣∣ y + 3z + 4u + 8v = 0
2z − 2u + 4v = 0

∣∣∣∣
Solution:y = −7t− 2s, z = t− 2s, u = t, v = s, nullity=2, rank=2.

10.

∣∣∣∣ y + z + 4u + 9v = 0
2z − 2u + 4v = 0

∣∣∣∣
11.

∣∣∣∣ y + z + 4u + 9v = 0
3y + 4z + 2u + 5v = 0

∣∣∣∣
Solution:y = −14t− 31s, z = 10t+ 22s, u = t, v = s, nullity=2, rank=2.

12.

∣∣∣∣ y + 2z + 4u + 9v = 0
y + 8z + 2u + 7v = 0

∣∣∣∣
13.

∣∣∣∣ y + z + 4u + 11v = 0
2z − 2u + 4v = 0

∣∣∣∣
Solution:y = −5t− 9s, z = t− 2s, u = t, v = s, nullity=2, rank=2.

14.

∣∣∣∣ y + z + 5u + 11v = 0
2z − 2u + 6v = 0

∣∣∣∣
Dimension of the nullspace
In the homogeneous systems, assume variable order x, y, z, u, v.

(a) Display an equivalent set of equations in reduced echelon form.

(b) Solve for the general solution and check the answer.

(c) Report the dimension of the nullspace.

15.

∣∣∣∣∣∣
x + y + z + 4u + 8v = 0
−x + 2z − 2u + 2v = 0

y − z + 6u + 6v = 0

∣∣∣∣∣∣
Solution:∣∣∣∣∣∣
x = 0

y + 5u + 7v = 0
z − u + v = 0

∣∣∣∣∣∣ (a) RREF

(b) x = 0, y = −5t− 7s, z = t− s, u = t, v = s

(c) Nullity=2.

# Maple answer check Ex 15

with(LinearAlgebra):

A:=Matrix([[1,1,1,4,8],[-1,0,2,-2,2],[0,1,-1,6,6]]):

B:=Vector([0,0,0]):

LinearSolve(A,B);

# [0, -5*t1-7*t2, t1-t2, t1, t2]

ReF:=ReducedRowEchelonForm(<A|B>);

ReF.<x,y,z,u,v,-1>;# equations for RREF

# [x, y+5*u+7*v, z-u+v]
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16.

∣∣∣∣∣∣
x + y + z + 4u + 8v = 0

− 2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
17.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

x + 2z − 2u + 4v = 0
2x + y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
Solution:
(a) x− 6v = 0, y + 5u+ 3v = 0, z − u+ 5v = 0

(b) x = 6s, y = −5t− 3s, z = t− 5s, u = t, v = s

(c) Nullity=2.

18.

∣∣∣∣∣∣
x + y + 3z + 4u + 8v = 0
2x + 2z − 2u + 4v = 0
x − y + 3z + 2u + 12v = 0

∣∣∣∣∣∣
19.

∣∣∣∣∣∣
y + 3z + 4u + 20v = 0
+ 2z − 2u + 10v = 0

− y + 3z + 2u + 30v = 0

∣∣∣∣∣∣
Solution:
(a) y = 0, z + 8v = 0, u+ 3v = 0

(b) x = t, y = 0, z = −8s, u = −3s, v = s

(c) Nullity=2.

20.

∣∣∣∣∣∣
y + 4u + 20v = 0
− 2u + 10v = 0

− y + 2u + 30v = 0

∣∣∣∣∣∣
21.

∣∣∣∣∣∣
x + y + z + 4u = 0

− 2z − u = 0
2y − u+ = 0

∣∣∣∣∣∣
Solution:
(a) x+ 4u = 0, y − u/2 = 0, z + u/2 = 0

(b) x = 8t, y = −t, z = t, u = −2t, v = s

(c) Nullity=2.

22.

∣∣∣∣∣∣
+ z + 12u + 8v = 0

x + 2z − 6u + 4v = 0
2x + 3z + 6u + 6v = 0

∣∣∣∣∣∣
23.

∣∣∣∣∣∣
y + z + 4u = 0

2z − 2u = 0
y − z + 6u = 0

∣∣∣∣∣∣
Solution:
(a) x+ 4u = 0, y − u/2 = 0, z + u/2 = 0

(b) x = t1, y = −5t2, z = t2, u = t2, v = t3

(c) Nullity=3.
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24.

∣∣∣∣∣∣
x + z + 8v = 0
− 2z + v = 0

5v = 0

∣∣∣∣∣∣
Three possibilities with symbols
Assume variables x, y, z. Determine the values of the constants (a, b, c, k, etc)
such that the system has (1) No solution, (2) A unique solution or (3) Infinitely
many solutions.

25.

∣∣∣∣ x + ky = 0
x + 2ky = 0

∣∣∣∣
Solution:Use combo(1,2,-1), combo(2,1,-1) to arrive at system x = 0, ky = 0. If
k = 0, then nullity=1 and there are infinitely many solutions. Otherwise k ̸= 0, then
nullity=0 with unique solution x = 0, y = 0.

26.

∣∣∣∣ kx + ky = 0
x + 2ky = 0

∣∣∣∣
27.

∣∣∣∣ ax + by = 0
x + 2by = 0

∣∣∣∣
Solution:Answer: Infinitely many solutions for b = 0, unique solution for b ̸= 0. A
homogeneous system always has a solution x = y = 0, so no solution cannot happen.

If a = 0, then the system is by = 0, x+ 2by = 0 which is equivalent to by = 0, x = 0.
If b = 0, then the system reduces to 0 = 0, x = 0 which has infinitely many solutions
x = 0, y = t1. If b ̸= 0, then the system is equivalent to y = 0, x = 0, a unique
solution.

If a ̸= 0, then the system is equivalent to x = 0, by = 0. Then a ̸= 0, b = 0 makes
infinitely many solutions, while a ̸= 0, b ̸= 0 makes for unique solution x = 0, y = 0.

28.

∣∣∣∣ bx + ay = 0
x + 2y = 0

∣∣∣∣
29.

∣∣∣∣ bx + ay = c
x + 2y = b− c

∣∣∣∣
Solution:Answer: (1) No solution if a = 2b, b ̸= 0 and c/b ̸= c + 2b. (2) Unique
solution for 2b−a ̸= 0. (3) Infinitely many solutions if a = b = c = 0 or a = 2b, b ̸= 0
and c/b = c+ 2b.

Cramer’s rule from college algebra detects the unique solution case: determinant∣∣∣∣ b a
1 2

∣∣∣∣ = 2b− a ̸= 0. Then 2b− a = 0 is required for either no solution or infinitely

many solutions. It can be false that all three possibilities occur.

If 2b−a = 0, then symbol a is replaced by 2b is give system bx+2by = c, x+2y = c+2b.

If b ̸= 0, then system bx + 2by = c, x + 2y = c + 2b is equivalent to x + 2y = c/b,
x + 2y = c + 2b. This system has no solution if c/b ̸= c + 2b (parallel lines) and
infinitely many solutions if c/b = c+ 2b (equal lines).

If b = 0, then system bx+2by = c, x+2y = c+2b is equivalent to 0 = c, x+2y = c, in
turn equivalent to the single equation x+2y = 0 which has infinitely many solutions.
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30.

∣∣∣∣ bx + ay = 2c
x + 2y = c+ a

∣∣∣∣
31.

∣∣∣∣∣∣
bx + ay + z = 0
2bx + ay + 2z = 0
x + 2y + 2z = c

∣∣∣∣∣∣
Solution: Case (1): No solution for a ̸= 0 and −2b + 1 = 0 and c ̸= 0. Case (2):
Unique solution for a ̸= 0 and b ̸= 1/2. Case (3): Infinitely many solutions for a ̸= 0
and −2b+ 1 = 0 and c = 0, or a = 0 and any values for b and c.

The unique solution case (2) is determined by a nonzero determinant of coefficients,
evaluated using college methods:∣∣∣∣∣∣

b a 1
2b a 2
1 2 2

∣∣∣∣∣∣ = a(−2b+ 1)

The no solution case (1) and infinitely many solution case (3) must assume a(−2b+
1) = 0. Steps applied:∣∣∣∣∣∣

bx + ay + z = 0
2bx + ay + 2z = 0
x + 2y + 2z = c

∣∣∣∣∣∣ Frame 1

∣∣∣∣∣∣
bx + z = 0

− ay = 0
x + 2y + 2z = c

∣∣∣∣∣∣ Frame 2: combo(1,2-2)

∣∣∣∣∣∣
− 2by + (1− 2b)z = −bc

− ay = 0
x + 2y + 2z = c

∣∣∣∣∣∣ Frame 3: combo(3,1,-b)

∣∣∣∣∣∣
x + 2y + 2z = c

2by + (2b− 1)z = −bc
− ay = 0

∣∣∣∣∣∣ Frame 6.

Details Frames 4, 5, 6: mult(1,-1), swap(2,3), swap(1,2).

The unique solution case (2) has 3 lead variables. No solution case (1) is decided by
a signal equation. Infinite many solutions case (3) has either 1 or 2 lead variables
and no signal equation.

Assume case (1) or case (3) holds, meaning a(−2b+1) = 0. We examine Frame 6 for
lead variables, free variables and signal equations. Variable x is a lead variable. The
other lead variable can be y or z, for a total of 2 lead variables:

1. a ̸= 0 allows division by a to get y = 0. Then x, y are lead variables
and z is a free variable (signal equation ignored). Substitute y = 0 and
(−2b+ 1) = 0 into Frame 6 equations: x+ 2z = c, 0 = −bc, y = 0. Then:

1a. Case (1) occurs for a ̸= 0, −2b+ 1 = 0, c ̸= 0 due to signal
equation ”0 = −bc.”
1b. Case (3) occurs for a ̸= 0, −2b+ 1 = 0 and c = 0.

2. a = 0 and b ̸= 0 implies y is a lead variable. Frame 6 after substitution
of a = 0 and division by b becomes x+2y+2z = c, 2y+(2− 1/b)z = −c,
0 = 0. Eliminate to get x + (1/b)z = 2c, 2y + (2 − 1/b)z = −c, 0 = 0.
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Consistent system, one free variable, no signal equation, case (3) infinitely
many solutions.

3. a = 0 and b = 0 implies Frame 6 becomes x + 2y + 2z = c, −z = 0,
0 = 0. Then z is a lead variable, y is a free variable, consistent system, no
signal equation, case (3) infinitely many solutions.

32.

∣∣∣∣∣∣
bx + ay + z = 0
3bx + 2ay + 2z = 2c,
x + 2y + 2z = c

∣∣∣∣∣∣
33.

∣∣∣∣∣∣
3x + ay + z = b
2bx + ay + 2z = 0
x + 2y + 2z = c

∣∣∣∣∣∣
Solution:Swap equations to put the right hand sides in order c, b, 0. Then do opera-
tions combo(1,2,-3), combo(1,3,-2b) to get equations

x+ 2y + 2z = c,
(a− 6)y − 5z = b− 3c,
(a− 4b)y + (2− 4b)z = −2bc
Case : a− 6 ̸= 0

Then x, y, z are lead variables and the result is case (2): unique solution.

Case: a− 6 = 0
Replace a = 6 in the preceding equations. Then do operations combo(1,2,-3),
combo(1,3,-2b) to get equations

x+ 2y = (2b− c)z/5,
(6− 4b)y = (2bc+ 2b− 6c− 4b2)/5,
z = (3c− b)/5

If 6 − 4b ̸= 0, then there is a unique solution. If 6 − 4b = 0, then y is a free
variable subject to consistency equation 0 = 2bc + 2b − 6c − 4b2. If6 − 4b = 0 and
0 = 2bc+ 2b− 6c− 4b2 then case (3) holds: infinitely many solutions. If 6− 4b = 0
and 0 ̸= 2bc+ 2b− 6c− 4b2 then case (1) holds: no solution.

34.

∣∣∣∣∣∣
x + ay + z = 2b

3bx + 2ay + 2z = 2c
x + 2y + 2z = c

∣∣∣∣∣∣
Three Possibilities
Answer the following questions by using equivalents for the three possibilities in
terms of lead and free variables, signal equations, rank and nullity.

35. Does there exist a homogeneous 3 × 2 system with a unique solution? Give an
example or else prove that no such system exists.

Solution:The variable list has 2 unknowns. Let’s use x, y. An example: x = 0, y = 0,
0 = 0.
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36. Does there exist a homogeneous 2 × 3 system with a unique solution? Either give
an example or else prove that no such system exists.

Solution:No such system exists. Proof expected.

37. In a homogeneous 10×10 system, two equations are identical. Prove that the system
has a nonzero solution.

Solution:Operation combo(s,t,c) applies to replace one of the two equations by
0 = 0. Therefore, the number of lead variables is at most 9 and there is at least one
free variable. A homogenous system always has the zero solution: the no solution
case never happens. A unique solution is detected by 10 lead variables. Infinitely
many solutions is detected by less than 10 lead variables, or equivalently, at least one
free variable. There are infinitely many solutions, hence at least one nonzero solution.

38. In a homogeneous 5 × 5 system, each equation has a leading variable. Prove that
the system has only the zero solution.

39. Suppose given two homogeneous systems A and B, with A having a unique solution
and B having infinitely many solutions. Explain why B cannot be obtained from A
by a sequence of swap, multiply and combination operations on the equations.

Solution:If B is so obtained from A, then systems A and B must have exactly the
same set of solutions. They must both fall into the same classification for the Three
Possibilities.

40. A 2× 3 system cannot have a unique solution. Cite a theorem or explain why.

41. If a 3× 3 homogeneous system contains no variables, then what is the general solu-
tion?

Solution:All variables that fail to appear are free variables. If the variable list is x,
y, z then the general solution is x = t1, y = t2, z = t3 in terms of invented symbols
t1, t2, t3.

42. If a 3× 3 non-homogeneous solution has a unique solution, then what is the nullity
of the homogeneous system?

43. A 7× 7 homogeneous system is missing two variables. What is the maximum rank
of the system? Give examples for all possible ranks.

Solution:Assume variable list x1 to x7. If two are missing then they are free variables
so the nullity is at least 2 and the rank is at most 5 (rank + nullity = 7). Examples
are systems with 1 to 5 equations of the form x1 = 0, . . . , xk = 0 with k = 1, 2, 3, 4, 5.

44. Suppose an n× n system of equations (homogeneous or non-homogeneous) has two
solutions. Prove that it has infinitely many solutions.

45. What is the nullity and rank of an n × n system of homogeneous equations if the
system has a unique solution?

Solution:No free variables implies the nullity is zero, the count of the number of free
variables. Then rank+nullity=n implies the rank is n.
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3.5 Answer Check, Proofs and Details

46. What is the nullity and rank of an n × n system of non-homogeneous equations if
the system has a unique solution?

47. Prove or else disprove by counter-example: A 4× 3 nonhomogeneous system cannot
have a unique solution.

Solution:Counter-example: x1 = 1, x2 = 2, x3 = 3, 0 = 0.

48. Prove or disprove (by example): A 4× 3 homogeneous system always has infinitely
many solutions.

,

3.5 Answer Check, Proofs and Details

Exercises 3.5 �
Parametric solutions

1. Is there a 2 × 3 homogeneous system with general solution having 2 parameters t1,
t2?

Solution:Yes: with variable list x, y, z an example system is x = 0, 0 = 0, 0 = 0 with
general solution x = 0, y = t1, z = t2.

2. Is there a 3 × 3 homogeneous system with general solution having 3 parameters t1,
t2, t3?

3. Give an example of a 4 × 3 homogeneous system with general solution having zero
parameters, that is, x = y = z = 0 is the only solution.

Solution:Example: x = 0, y = 0, z = 0, 0 = 0.

4. Give an example of a 4×3 homogeneous system with general solution having exactly
one parameter t1.

5. Give an example of a 4×3 homogeneous system with general solution having exactly
two parameters t1, t2.

Solution:Example: x = 0, y = 0, 0 = 0, 0 = 0 with general solution x = 0, y = t1,
z = t2.

6. Give an example of a 4×3 homogeneous system with general solution having exactly
three parameters t1, t2, t3.

7. Consider an n× n homogeneous system with parametric solution having parameters
t1 to tk. What are the possible values of k?

Solution:The question implies k ≥ 1. The number of parameters in the nullity and
nullity+rank=n. Answer: 1 ≤ k ≤ n. The case k = n is special: the system has
n free variables, which implies zero lead variables: the equations have no variables,
which means each equation must be 0 = 0!
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3.5 Answer Check, Proofs and Details

8. Consider an n×m homogeneous system with parametric solution having parameters
t1 to tk. What are the possible values of k?

Answer Checks
Assume variable list x, y, z and parameter t1. (a) Display the answer check
details. (b) Find the rank. (c) Report whether the given solution is a general
solution.

9.

∣∣∣∣ y = 1
2z = 2

∣∣∣∣
x = t1, y = 1, z = 1.

Solution:
(a) Substitute x = t1, y = 1, z = 1 formally into the equations∣∣∣∣ y = 1

2z = 2

∣∣∣∣∣∣∣∣ (1) = 1
2(1) = 2

∣∣∣∣
The equations are satisfied: x = t1, y = 1, z = 1 is a solution.

(b) Rank=2 because y, z are lead variables.

(c) Perhaps useful is the maple code below used to find the exact solution by computer
algebra. Expected is a paper and pencil solution with steps using combo, swap, mult
steps and the last frame algorithm.∣∣∣∣ y = 1

2z = 2

∣∣∣∣ Frame 1∣∣∣∣ y = 1
z = 1

∣∣∣∣ Frame 2: mult(2,1/2)

Last frame algorithm:

x = t1,
y = 1,
z = 1

No further steps needed, variables are in list order and the right sides involve only
constants and invented symbols. This is the general solution, which matches the
supplied solution.

with(LinearAlgebra):

A:=Matrix([[0,1,0],[0,0,2],[0,0,0]]):

B:=Vector([1,2,0]):

LinearSolve(A,B);

# x = t, y = 1, z = 1

10.

∣∣∣∣ x = 1
2z = 2

∣∣∣∣
x = 1, y = t1, z = 1.

11.

∣∣∣∣∣∣
y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
x = 0, y = 0, z = 1.
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3.5 Answer Check, Proofs and Details

Solution:
(a) The steps for verifying a solution:∣∣∣∣∣∣

y + z = 1
2x + 2z = 2
x + z = 1

∣∣∣∣∣∣ Given system

∣∣∣∣∣∣
0 + 1 = 1

2(0) + 2(1) = 2
0 + 1 = 1

∣∣∣∣∣∣ Substitute x = 0, y = 0, z = 1

The three equations are valid, so x = 0, y = 0, z = 1 is a solution.

(b) Rank=2, lead variables x, y.

(c) Not the general solution. Combo, swap, mult steps find general solution x = 1−t1,
y = 1− t1, z = t1. The solution from maple is the same.

12.

∣∣∣∣∣∣
2x + y + z = 1
x + 2z = 2
x + y − z = −1

∣∣∣∣∣∣
x = 2, y = −3, z = 0.

13.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
x = 1− t1, y = 0, z = t1.

Solution:
(a) Substitute x = 1− t1, y = 0, z = t1:∣∣∣∣∣∣

(1− t1) + 0 + t1 = 1
2(1− t1) + 2t1 = 2

1− t1 + t1 = 1

∣∣∣∣∣∣
The three equations are valid, so x = 1− t1, y = 0, z = t1 is a solution.

(b) Rank=2, lead variables x, y.

(c) Yes, it is the general solution. Checked in maple.

14.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
3x + y + 3z = 3

∣∣∣∣∣∣
x = 1− t1, y = 0, z = t1.

Failure of Answer Checks
Find the unique solution for ϵ > 0. Discuss how a machine might translate the
system to obtain infinitely many solutions.

15. x+ ϵy = 1, x− ϵy = 1

Solution:Answer: x = 2, y = 1/ϵ. If ϵ translates to zero on the machine, then both
equations are x = 1 and y is absent, a free variable, then there are infinitely many
solutions x = 1, y = t1.

16. x+ y = 1, x+ (1 + ϵ)y = 1 + ϵ
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3.5 Answer Check, Proofs and Details

17. x+ ϵy = 10ϵ, x− ϵy = 10ϵ

Solution:Answer: x = 20ϵ, y = 10. If ϵ translates to zero on the machine, then both
equations are x = 0 and y is absent, a free variable, then there are infinitely many
solutions x = 0, y = t1. Machine answer checks using floating point engines may fail
on this example, whereas computer algebra systems will not make an error.

18. x+ y = 1 + ϵ, x+ (1 + ϵ)y = 1 + 11ϵ

Minimal Parametric Solutions
For each given system, determine if the expression is a minimal general solution.

19.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
y = −3t1, z = −t1,
u = −t1, v = t1.

Solution:The answer given is checked as a solution, computer algebra system ex-
pected. The given solution is minimal because the rank is 3 and the nullity is 1. It
would not be minimal if the number of parameters differed from the number of free
variables. The nullity equals the number of free variables and the rank equals the
number of lead variables.

20.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 2v = 0
y − z + 6u + 6v = 0

∣∣∣∣∣∣
y = −5t1 − 7t2, z = t1 − t2,
u = t1, v = t2.

21.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
y = −5t1 + 5t2, z = t1 − t2,
u = t1 − t2, v = 0.

Solution:First, check the expression:∣∣∣∣∣∣
(−5t1 + 5t2) + (t1 − t2) + 4(t1 − t2) + 8(0) = 0

2(t1 − t2) − 2(t1 − t2) + 4(0) = 0
(−5t1 + 5t2) + 3(t1 − t2) + 2(t1 − t2) + 6(0) = 0

∣∣∣∣∣∣
The three equations are valid, so the given expression y = −5t1 + 5t2, z = t1 − t2,
u = t1 − t2, v = 0. is a solution for all values of symbols t1, t2. A computer algebra
system like maple reports the rank is 3, nullity 1 with solution

y = −5t1, z = t1, u = t1, v = 0.

The expression is not a minimal solution, because it has one extra parameter.

22.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 12v = 0

∣∣∣∣∣∣
y = 5t1 + 4t2, z = −3t1 − 6t2,
u = −t1 − 2t2, v = t1 + 2t2.

,
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Appendix 4

§ Numerical Methods with
Applications

Contents

4.1 Solving y′ = F (x) Numerically . . . . . . . . . . . . 1223
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4.3 Error in Numerical Methods . . . . . . . . . . . . . 1260

4.4 Computing π, ln 2 and e . . . . . . . . . . . . . . . . 1268

4.5 Earth to the Moon . . . . . . . . . . . . . . . . . . 1275

4.6 Skydiving . . . . . . . . . . . . . . . . . . . . . . . . 1282

4.7 Lunar Lander . . . . . . . . . . . . . . . . . . . . . . 1287

4.8 Comets . . . . . . . . . . . . . . . . . . . . . . . . . . 1289

4.9 Fish Farming . . . . . . . . . . . . . . . . . . . . . . 1301

4.1 Solving y′ = F (x) Numerically

Exercises 4.1 �
Connect-the-Dots
Make a numerical table of 6 rows and a connect-the-dots graphic for exercises
1-10.

1. y = 2x+ 5, x = 0 to x = 1

Solution:
x y
0.0 5.0
0.1 5.8
0.2 6.2
0.3 6.6
0.4 7.0
0.5 7.4
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4.1 Solving y′ = F (x) Numerically

# Maple: compute table values

f:=x->2*x+5;N:=6;a:=0;b:=1.0;h:=(b-a)/(N-1);

vals:=seq(f(a+h*k),k=0..N-1);evalf(vals,2);

# 5.0, 5.4, 5.8, 6.2, 6.6, 7.0, 7.4

# Maple: connect-the-dots graphic

Dots:=[seq([a+h*k,f(a+h*k)],k=0..N-1)];

plot(Dots,style=pointline);

2. y = 3x+ 5, x = 0 to x = 2

3. y = 2x2 + 5, x = 0 to x = 1

Solution:

x y
0.0 5.0
0.1 5.12
0.2 5.48
0.3 6.08
0.4 6.92
0.5 8.00

4. y = 3x2 + 5, x = 0 to x = 2

5. y = sinx, x = 0 to x = π/2

Solution:
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4.1 Solving y′ = F (x) Numerically

x y
0.0 0.000
0.1 0.309
0.2 0.588
0.3 0.809
0.4 0.952
0.5 1.00

6. y = sin 2x, x = 0 to x = π/4

7. y = x ln |1 + x|, x = 0 to x = 2

Solution:

x y
0.0 0.000
0.1 0.134
0.2 0.470
0.3 0.946
0.4 1.530
0.5 2.20

8. y = x ln |1 + 2x|, x = 0 to x = 1

9. y = xex, x = 0 to x = 1

Solution:
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4.1 Solving y′ = F (x) Numerically

x y
0.0 0.000
0.1 0.244
0.2 0.597
0.3 1.093
0.4 1.781
0.5 2.718

10. y = x2ex, x = 0 to x = 1/2

Rectangular Rule
Apply the rectangular rule to make an xy-table for y(x) with 11 rows, h = 0.1.
Graph the approximate solution and the exact solution. Follow example 4.1.

11. y′ = 2x, y(0) = 5.

Solution: Let F (x) = 2x. The exact solution of Y ′ = F (x), Y (0) = 5 is Y (x) = x2+5
by the method of quadrature.

x y-RECT y-EXACT
0.0 5.00 5.00
0.1 5.00 5.01
0.2 5.02 5.04
0.3 5.06 5.09
0.4 5.12 5.16
0.5 5.20 5.25
0.6 5.30 5.36
0.7 5.42 5.49
0.8 5.56 5.64
0.9 5.72 5.81
1.0 5.90 6.00
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4.1 Solving y′ = F (x) Numerically

The y-RECT value is found from y(x + h) = y(x) +
∫ x+h

x
F (u)du ≈ y(x) + hF (x).

Then y(0.1) = y(0)+
∫ 0.1

0
F (u)du ≈ 5+0.1F (0). Values for the first row of the table

:

x = 0, y-RECT = 5, y-EXACT = 5

The second row values:

x = 0.1, y-RECT = 5 + 0.1F (0) = 5, y-EXACT = Y (0.1) = 5.01

The third row values:

x = 0.2, y-RECT = 5 + 0.1F (0.1) = 5.02, y-EXACT = Y (0.2) = 5.04

The fourth row values:

x = 0.3, y-RECT = 5.02 + 0.1F (0.2) = 5.06, y-EXACT = Y (0.3) = 5.09

The fifth and later row values follow the same pattern:

y-RECT = (previous row y-RECT value) + 0.1F (this row x-value).
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4.1 Solving y′ = F (x) Numerically

# Maple: Exact solution

x:=’x’;y:=’y’; X:=’X’;Y:=’Y’;

F:=x->2*x;de:=diff(y(x),x)=F(x);y0:=5;x0:=0;

ans:=dsolve([de,y(0)=y0],y(x));

EY:=unapply(rhs(ans),x);# Y(x)=x^2+5

# Maple: table rectangular rule and exact solution

N:=11;a:=0;b:=1.0;h:=0.1;

rect:=x -> h*F(x-h);# rectangular rule

DotsRECT:=[x0,y0];DotsEXACT:=[x0,y0];Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k; Y:= Y+rect(X);

DotsRECT:=DotsRECT,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsRECT;DotsEXACT;# table values

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsRECT],[DotsEXACT]],opts,

color=[red,blue],legend=["Rect","Exact"]);

12. y′ = 3x2, y(0) = 5.

13. y′ = 3x2 + 2x, y(0) = 4.

Solution:Let F (x) = 3x2 + 2x. The exact solution of Y ′ = F (x), Y (0) = 4 is
Y (x) = x3 + x2 + 4 by the method of quadrature.

x y − RECT y − EXACT
0.0 4.000 4.000
0.1 4.000 4.011
0.2 4.023 4.048
0.3 4.075 4.117
0.4 4.162 4.224
0.5 4.290 4.375
0.6 4.465 4.576
0.7 4.693 4.833
0.8 4.980 5.152
0.9 5.332 5.539
1 5.755 6.000
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4.1 Solving y′ = F (x) Numerically

14. y′ = 3x2 + 4x3, y(0) = 4.

15. y′ = sinx, y(0) = 1.

Solution: Let F (x) = sin(x). The exact solution of Y ′ = F (x), Y (0) = 1 is Y (x) =
2− cos(x) by the method of quadrature.

x y − RECT y − EXACT
0 1 1
0.1 1.00000 1.00500
0.2 1.00998 1.01993
0.3 1.02985 1.04466
0.4 1.0594 1.07894
0.5 1.09834 1.12242
0.6 1.14629 1.17466
0.7 1.20275 1.23516
0.8 1.26717 1.30329
0.9 1.33891 1.37839
1 1.41724 1.45970
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4.1 Solving y′ = F (x) Numerically

16. y′ = 2 sin 2x, y(0) = 1.

17. y′ = ln(1 + x), y(0) = 1. Exact (1 + x) ln |1 + x|+ 1− x.

Solution: Let F (x) = ln(1 + x). The exact solution of Y ′ = F (x), Y (0) = 1 is
Y (x) = (1x) ln(1 + x)− x+ 1 by the method of quadrature.

x y − RECT y − EXACT
0 1 1
0.1 1 1.00484
0.2 1.00953 1.01879
0.3 1.02776 1.04107
0.4 1.054 1.07106
0.5 1.08765 1.1082
0.6 1.12819 1.15201
0.7 1.17519 1.20207
0.8 1.22826 1.25802
0.9 1.28704 1.31952
1 1.35122 1.38629

18. y′ = 2 ln(1 + 2x), y(0) = 1. Exact (1 + 2x) ln |1 + 2x|+ 1− 2x.

19. y′ = xex, y(0) = 1. Exact xex − ex + 2.

Solution:

Let F (x) = x ex. The exact solution of Y ′ = F (x), Y (0) = 1 is Y (x) = xex− ex +21
by the method of quadrature. The details require integration by parts.
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4.1 Solving y′ = F (x) Numerically

x y − RECT y − EXACT
0 1 1
0.1 1 1.00535
0.2 1.01105 1.02288
0.3 1.03548 1.0551
0.4 1.07598 1.10491
0.5 1.13565 1.17564
0.6 1.21808 1.27115
0.7 1.32741 1.39587
0.8 1.46837 1.55489
0.9 1.64642 1.75404
1 1.86778 2

20. y′ = 2x2e2x, y(0) = 4. Exact 2x2ex − 4xex + 4 ex.

Trapezoidal Rule
Apply the trapezoidal rule to make an xy-table for y(x) with 6 rows and step
size h = 0.2. Graph the approximate solution and the exact solution. Follow
example 4.2.

21. y′ = 2x, y(0) = 1.

Solution: Let F (x) = 2x. The exact solution of Y ′ = F (x), Y (0) = 1 is Y (x) = x2+1
by the method of quadrature.

x y-TRAP y-EXACT
0 1 1
0.2 1.04 1.04
0.4 1.16 1.16
0.6 1.36 1.36
0.8 1.64 1.64
1 2 2

The graphic shows only the blue curve because the red and blue curves are identical.
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4.1 Solving y′ = F (x) Numerically

The y-TRAP value is found from y(x+h) = y(x)+
∫ x+h

x
F (u)du ≈ y(x)+0.5h(F (x)+

F (x+ h)). Then y(0.1) = y(0) +
∫ 0.1

0
F (u)du ≈ 1 + 0.1(F (0) + F (0.1))/2. Values for

the first row of the table :

x = 0, y-TRAP = 1, y-EXACT = 1

The second row values:

x = 0.1, y-TRAP = 1 + 0.1(F (0) + F (0.1))/2 = 1.01, y-EXACT = 1.01

The third row values:

x = 0.2, y-TRAP = 1.01 + 0.1(F (0.1) + F (0.2))/2 = 1.04, y-EXACT = 1.04

The fourth and later row values follow the same pattern:

y-TRAP = (previous row y-TRAP value) +

0.1 (F (this row x-value) + F (h+ (this row x-value)) /2.

# Maple: Exact solution

x:=’x’;y:=’y’; X:=’X’;Y:=’Y’;

F:=x->2*x;de:=diff(y(x),x)=F(x);y0:=1;x0:=0;

ans:=dsolve([de,y(0)=y0],y(x));

EY:=unapply(rhs(ans),x);# Y(x)=x^2+1

# Maple: table trapzoidal rule and exact solution

N:=6;a:=0;b:=1.0;h:=0.2;

trap:=x -> 0.5*h*(F(x-h)+F(x));# trapezoidal rule

DotsTRAP:=[x0,y0];DotsEXACT:=[x0,y0];Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k; Y:= Y+trap(X);

DotsTRAP:=DotsTRAP,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsTRAP;DotsEXACT; # table values are the same

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsTRAP],[DotsEXACT]],opts,

color=[red,blue],legend=["Trap","Exact"]);

# only the blue plot is visible: duplicate data
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4.1 Solving y′ = F (x) Numerically

22. y′ = 3x2, y(0) = 1.

23. y′ = 3x2 + 2x, y(0) = 2.

Solution:Let F (x) = 3x2 + 2x. The exact solution of Y ′ = F (x), Y (0) = 2 is
Y (x) = x3 + x2 + 2 by the method of quadrature.

x y-TRAP y-EXACT
0 2 2
0.2 2.052 2.048
0.4 2.232 2.224
0.6 2.588 2.576
0.8 3.168 3.152
1 4.02 4

The graphic shows a limited range because the red and blue curves are nearly iden-
tical.

24. y′ = 3x2 + 4x3, y(0) = 2.

25. y′ = sinx, y(0) = 4.

Solution:Let F (x) = 3x2 + 2x. The exact solution of Y ′ = F (x), Y (0) = 2 is
Y (x) = x3 + x2 + 2 by the method of quadrature.

x y-TRAP y-EXACT
0 4 4
0.2 4.01987 4.01993
0.4 4.07868 4.07894
0.6 4.17408 4.17466
0.8 4.30228 4.30329
1 4.45816 4.4597

The graphic shows a limited range because the red and blue curves are nearly iden-
tical.
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4.1 Solving y′ = F (x) Numerically

26. y′ = 2 sin 2x, y(0) = 4.

27. y′ = ln(1 + x), y(0) = 1. Exact (1 + x) ln |1 + x|+ 1− x.

Solution:Let F (x) = ln(1 + x). The exact solution of Y ′ = F (x), Y (0) = 2 is
Y (x) = (1 + x) ln |1 + x| + 1 − x by the method of quadrature, using integration by
parts.

x y-TRAP y-EXACT
0 1 1
0.2 1.01823 1.01879
0.4 1.07011 1.07106
0.6 1.15076 1.15201
0.8 1.25654 1.25802
1 1.38463 1.38629

The graphic shows a limited range because the red and blue curves are nearly iden-
tical.

28. y′ = 2 ln(1 + 2x), y(0) = 1. Exact (1 + 2x) ln |1 + 2x|+ 1− 2x.
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4.1 Solving y′ = F (x) Numerically

29. y′ = xex, y(0) = 1. Exact xex − ex + 2.

Solution:Let F (x) = xex. The exact solution of Y ′ = F (x), Y (0) = 2 is
Y (x) = xex − ex + 2 by the method of quadrature, using integration by parts.

x y-TRAP y-EXACT
0 1 1
0.2 1.02443 1.02288
0.4 1.10853 1.10491
0.6 1.27753 1.27115
0.8 1.5649 1.55489
1 2.01477 2

The graphic shows a limited range because the red and blue curves are nearly iden-
tical.

30. y′ = 2x2e2x, y(0) = 4. Exact 2x2ex − 4xex + 4 ex.

Simpson Rule
Apply Simpson’s rule to make an xy-table for y(x) with 6 rows and step size
h = 0.2. Graph the approximate solution and the exact solution. Follow example
4.3.

31. y′ = 2x, y(0) = 2.

Solution: Let F (x) = 2x. The exact solution of Y ′ = F (x), Y (0) = 2 is Y (x) = x2+2
by the method of quadrature.

x y-SIMP y-EXACT
0 2 2
0.2 2.04 2.04
0.4 2.16 2.16
0.6 2.36 2.36
0.8 2.64 2.64
1 3 3

The graphic shows only the blue curve because the red and blue curves are identical.
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The y-SIMP value is found from y(x+ h) = y(x) +
∫ x+h

x
F (u)du ≈ y(x) + h(F (x) +

4F (x + h/2) + F (x + h))/6. Then y(0.2) = y(0) +
∫ 0.2

0
F (u)du ≈ 2 + 0.2(F (0) +

4F (0.1) + F (0.2))/6. Values for the first row of the table :

x = 0, y-SIMP = 2, y-EXACT = 2

The second row values:

x = 0.2, y-SIMP = 2+0.2(F (0)+4F (0.1)+F (0.2))/6 = 2.04, y-EXACT = 2.04

The third row values:

x = 0.4, y-SIMP = 2.04 + 0.2(F (0.2) + 4F (0.3) + F (0.4))/6 = 2.168, y-EXACT
= 2.168

The fourth and later row values follow the same pattern:

y-SIMP = (previous row y-SIMP value) +

0.2(F (current x-value− 0.2) + 4F ((current x-value− 0.1)+

F (current x-value))/6.

The values obtained for the Simpson’s rule solution and the exact solution are iden-
tical. This is no accident: it is known that Simpson’s rule is exact for F (x) equal to
a polynomial of degree 3 or less.
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# Maple: Exact solution

x:=’x’;y:=’y’; X:=’X’;Y:=’Y’;

F:=x->2*x;de:=diff(y(x),x)=F(x);y0:=2;x0:=0;

ans:=dsolve([de,y(0)=y0],y(x));

EY:=unapply(rhs(ans),x);# Y(x)=x^2+1

# Maple: Simpson rule solution

N:=6;a:=0;b:=1.0;h:=0.2;

simp:=x -> h*(F(x-h)+4*F(x-h/2)+F(x))/6;# Simpson rule

DotsSIMP:=[x0,y0];DotsEXACT:=[x0,y0];Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k; Y:= Y+simp(X);

DotsSIMP:=DotsSIMP,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsSIMP;DotsEXACT; # table values

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsSIMP],[DotsEXACT]],opts,

color=[red,blue],legend=["Simp","Exact"]);

# only the blue plot is visible: duplicate data

32. y′ = 3x2, y(0) = 2.

33. y′ = 3x2 + 2x, y(0) = 3.

Solution: Let F (x) = 2x. The exact solution of Y ′ = F (x), Y (0) = 2 is Y (x) =
x3 + x2 + 3 by the method of quadrature.

x y-SIMP y-EXACT
0 3 3
0.2 3.048 3.048
0.4 3.224 3.224
0.6 3.576 3.576
0.8 4.152 4.152
1 5 5

The graphic shows only the blue curve because the red and blue curves are identical.
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34. y′ = 3x2 + 4x3, y(0) = 3.

35. y′ = sinx, y(0) = 5.

Solution: Let F (x) = sin(x). The exact solution of Y ′ = F (x), Y (0) = 5 is Y (x) =
6− cos(x) by the method of quadrature.

x y-SIMP y-EXACT
0 5 5
0.2 5.01993 5.01993
0.4 5.07894 5.07894
0.6 5.17466 5.17466
0.8 5.30329 5.30329
1 5.4597 5.4597

The graphic shows only the blue curve because the red and blue curves are identical.

36. y′ = 2 sin 2x, y(0) = 5.

37. y′ = ln(1 + x), y(0) = 1. Exact (1 + x) ln |1 + x|+ 1− x.

Solution: Let F (x) = ln(1 + x). The exact solution of Y ′ = F (x), Y (0) = 1 is
(1 + x) ln |1 + x|+ 1− x by the method of quadrature, using integration by parts.

x y-SIMP y-EXACT
0 1 1
0.2 1.01879 1.01879
0.4 1.07106 1.07106
0.6 1.152 1.15201
0.8 1.25802 1.25802
1 1.38629 1.38629

The graphic shows only the blue curve because the red and blue curves are essentially
identical.

1238



4.1 Solving y′ = F (x) Numerically

38. y′ = 2 ln(1 + 2x), y(0) = 1. Exact (1 + 2x) ln |1 + 2x|+ 1− 2x.

39. y′ = xex, y(0) = 1. Exact xex − ex + 2.

Solution: Let F (x) = ln(1 + x). The exact solution of Y ′ = F (x), Y (0) = 1 is
xex − ex + 2 by the method of quadrature, using integration by parts.

x y-SIMP y-EXACT
0 1 1
0.2 1.02288 1.02288
0.4 1.10491 1.10491
0.6 1.27115 1.27115
0.8 1.55489 1.55489
1 2 2

The graphic shows only the blue curve because the red and blue curves are identical.

40. y′ = 2x2e2x, y(0) = 4. Exact 2x2ex − 4xex + 4 ex.

Simpson’s Rule
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The following exercises use formulas and techniques found in the proof on page
234 and in Example 4.4, page 233.

41. Verify with Simpson’s rule (5) for cubic polynomials the equality
∫ 2

1
(x3 + 16x2 +

4)dx = 541/12.

Solution:Simpson’s rule is exact for Q(x) a polynomial of degree 3 or less:∫ b

a
Q(x)dx = (b − a)(Q(a) + 4Q((a + b)/2) + Q(b))/6. Let Q(x) = x3 + 16x2 + 4,

a = 1, b = 2 and evaluate (b− a)(Q(a) + 4Q((a+ b)/2) +Q(b))/6 = 541/12.

# Maple: Simpson’s Rule

a:=’a’;b:=’b’;x:=’x’;

SimpRule:=(a,b,Q)->(b-a)*(Q(a)+4*Q((a+b)/2)+Q(b))/6;

QQ:=x->x^3+16*x^2+4;

SimpRule(1,2,QQ);# 541/12

int(QQ(x),x=1..2); # answer check

42. Verify with Simpson’s rule (5) for cubic polynomials the equality
∫ 2

1
(x3+x+14)dx =

77/4.

43. Let f(x) satisfy f(0) = 1, f(1/2) = 6/5, f(1) = 3/4. Apply Simpson’s rule with one

division to verify that
∫ 1

0
f(x)dx ≈ 131/120.

Solution:Let a = 0, b = 1. Evaluate:

(b− a)(f(a) + 4f(a+ b)/2) + f(b))/6 = 131/120

# Maple: Simpson’s Rule data version

a:=’a’;b:=’b’;

SimpRuleData:=(a,b,f1,f2,f3)->(b-a)*(f1+4*f2+f3)/6;

SimpRuleData(0,1,1,6/5,3/4); # 131/120

44. Let f(x) satisfy f(0) = −1, f(1/2) = 1, f(1) = 2. Apply Simpson’s rule with one

division to verify that
∫ 1

0
f(x)dx ≈ 5/6.

45. Verify Simpson’s equality (5), assuming Q(x) = 1 and Q(x) = x.

Solution:Part I. Verify for Q(x) = 1:

LHS =
∫ b

a
Q(x)dx =

∫ b

a
1dx = b− a,

RHS = (b− a)(Q(a) + 4A((a+ b)/2) +Q(b))/6 = (b− a)(1 + 4 + 1)/6 = b− a.
Then LHS = RHS, identity verified.

Part II. Verify for Q(x) = x:

LHS =
∫ b

a
Q(x)dx =

∫ b

a
xdx = b2/2− a2/2,

RHS = (b− a)(Q(a) + 4A((a+ b)/2) +Q(b))/6 =
(b− a)(a+ 4(b+ a)/2 + b)/6 = (b− a)(3a+ 3b)/6 = b2/2− a2/2.

Then LHS = RHS, identity verified.

46. Verify Simpson’s equality (5), assuming Q(x) = x2. Use college algebra identity
u3 − v3 = (u− v)(u2 + uv + v2).

Quadratic Interpolation
The following exercises use formulas and techniques from the proof on page 234.
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47. Verify directly that the quadratic polynomial y = x(7− 4x) goes through the points
(0, 0), (1, 3), (2,−2).
Solution:Details:

y(0) = x(7− 4x)|x=0 = 0(7− 0) = 0 (0, 0) verified
y(1) = x(7− 4x)|x=1 = 1(7− 4(1)) = 3 (1, 3) verified
y(2) = x(7− 4x)|x=2 = 2(7− 4(2)) = −2 (2,−2) verified

48. Verify directly that the quadratic polynomial y = x(8− 5x) goes through the points
(0, 0), (1, 3), (2,−4).

49. Compute the quadratic interpolation polynomial Q(x) which goes through the points
(0, 1), (0.5, 1.2), (1, 0.75).

Solution:Details:
Let Q(x) = a+ bx+ cx2. Plan: determine a, b, c by linear algebra. Equations:

a+ bx+ cx2
∣∣
x=0

= 1

a+ bx+ cx2
∣∣
x=0.5

= 1.2

a+ bx+ cx2
∣∣
x=1

= 0.75

a+ 0 + 0 = 1
a+ b/2 + c/4 = 1.2
a+ b+ c = 0.75

Solve by computer: a = 1, b = 1.05, c = −1.3.
# Maple: Solve system of equations

eqs:={a+0+0 = 1, a+b/2+c/4= 1.2, a+b+c = 0.75};

# braces { ... } needed!

solve(eqs,[a,b,c]);# brackets preserve order a,b,c

# {a = 1., b = 1.05, c = -1.3}

# Maple: Answer check

Y := X->1 + (1.05)*X + (-1.3)*X^2;

Y(0),Y(0.5),Y(1); # 1., 1.2, .75

50. Compute the quadratic interpolation polynomial Q(x) which goes through the points
(0,−1), (0.5, 1), (1, 2).

51. Verify the remaining cases in Lemma 4.1, page 235.

Solution:Given Y0, Y1 and Y2, define y1 = Y1 − Y0, y2 = 1
2 (Y2 − Y0), A = y2 − y1,

B = 2y1− y2 and x = 2(X − a)/(b− a). Formula y = x(Ax+B) will be tested to go
through the given data points (0, 0), (1, y1). The details:

x(AX +B)|x=0 = 0(A(0) +B) = 0 Verified (0, 0).
x(AX +B)|x=1 = 1(A(1) +B) = y2 − y1 + 2y1 − y2 = y1 Verified (1, y1). ■

52. Verify the remaining cases in Lemma 4.2, page 235.

4.2 Solving y′ = f (x, y) Numerically

Exercises 4.2 �
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4.2 Solving y′ = f(x, y) Numerically

Euler’s Method
Apply Euler’s method to make an xy-table for y(x) with 11 rows and step size
h = 0.1. Graph the approximate solution and the exact solution. Follow Example
4.5.

1. y′ = 2 + y, y(0) = 5. Exact y(x) = −2 + 7ex.

Solution:The exact answer for y′ = 2 + y, y(0) = 5 is y(x) = −2 + 7ex, found
by the linear integrating factor method. The constant coefficient shortcut applies:
y = yp + yh, yp = −2 = equilibrium solution, yh = c/W , W = integrating factor =
e−x.
x y-EULER y-EXACT
0 5 5
0.1 5.7 5.7362
0.2 6.47 6.54982
0.3 7.317 7.44901
0.4 8.2487 8.44277
0.5 9.27357 9.54105
0.6 10.4009 10.7548
0.7 11.641 12.0963
0.8 13.0051 13.5788
0.9 14.5056 15.2172
1 16.1562 17.028

Let F (x, y) = 2 + y. The y-EULER value is found from y(x + h) = y(x) +∫ x+h

x
F (u, y(u))du ≈ y(x) + hF (x, y(x)). Then y(0.1) = y(0) +

∫ 0.1

0
F (u)du ≈

5 + 0.1F (0, y(0)) = 5 + 0.1(2 + 5) = 5.7. Values for the first row of the table :

x = 0, y-EULER = 5, y-EXACT = 5

The second row values:

x = 0.1, y-EULER = 5 + 0.1F (0, 5) = 5 + 0.1(2 + 5) = 5.7, y-EXACT =
Y (0.1) = 5.7362

The third row values:

x = 0.2, y-EULER = 5.7+ 0.1F (0.1, 5.7) ≈ 6.47, y-EXACT = Y (0.2) = 6.54982

The fourth row values:
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4.2 Solving y′ = f(x, y) Numerically

x = 0.3, y-EULER = 6.47 + 0.1F (0.2, 6.47) ≈ 7.317, y-EXACT = Y (0.3) =
7.449019

The fifth and later row values follow the same pattern:

y-EULER = (previous row y-EULER value) +

0.1F (previous row x-value, previous row y-EULER value).

An online check in WolframAlpha: use input
y’=2+y, y(0)=5 by Euler’s method h=0.1 t=0 to 1.

# Maple: Exact solution

F:=(x,y)->2+y;de:=diff(y(x),x)=F(x,y(x));y0:=5;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=-2+7*exp(x)

# Maple: Euler’s method

N:=11;h:=0.1;

EULER:=(x,y) -> h*F(x,y);# Euler algorithm

DotsEULER:=[x0,y0];DotsEXACT:=[x0,y0];Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k; Y:= Y+EULER(X-h,Y);

DotsEULER:=DotsEULER,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsEULER;DotsEXACT;# answers

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsEULER],[DotsEXACT]],opts,

color=[red,blue],legend=["EULER","Exact"]);

2. y′ = 3 + y, y(0) = 5. Exact y(x) = −3 + 8ex.

3. y′ = e−x + y, y(0) = 4. Exact y(x) = − 1
2e

−x + 9
2e

x.

Solution:The exact answer for y′ = e−x + y, y(0) = 5 is y(x) = − 1
2e

−x + 9
2e

x, found
by the linear integrating factor method. No shortcut applies.

x y-EULER y-EXACT
0 4 4
0.1 4.5 4.52085
0.2 5.04048 5.08695
0.3 5.62641 5.70396
0.4 6.26313 6.37805
0.5 6.95647 7.11598
0.6 7.71277 7.92513
0.7 8.53893 8.81359
0.8 9.44248 9.79027
0.9 10.4317 10.8649
1 11.5155 12.0483
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4. y′ = 3e−2x + y, y(0) = 4. Exact y(x) = −e−2x + 5ex.

5. y′ = y sinx, y(0) = 1. Exact y(x) = e1−cos x.

Solution:The exact answer for y′ = y sin(x), y(0) = 1 is y(x) = e1−cos x, found by the
variables separable method.

x y-EULER y-EXACT
0 1 1
0.1 1 1.00501
0.2 1.00998 1.02013
0.3 1.03005 1.04568
0.4 1.06049 1.08214
0.5 1.10179 1.13023
0.6 1.15461 1.19085
0.7 1.2198 1.26511
0.8 1.29838 1.35431
0.9 1.39152 1.45993
1 1.50053 1.5836
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6. y′ = 2y sin 2x, y(0) = 1. Exact y(x) = e1−cos 2x.

7. y′ = y/(1 + x), y(0) = 1. Exact y(x) = 1 + x.

Solution:The exact answer for y′ = y/(1 + x), y(0) = 1 is y(x) = 1+ x, found by the
variables separable method.

x y-EULER y-EXACT
0 1.000000 1.000000
0.1 1.100000 1.100000
0.2 1.200000 1.200000
0.3 1.300000 1.300000
0.4 1.400000 1.400000
0.5 1.500000 1.500000
0.6 1.600000 1.600000
0.7 1.700000 1.700000
0.8 1.800000 1.800000
0.9 1.900000 1.900000
1 2.000000 2.000000

The graphic shows only the exact solution (blue) because the two data sets are
identical.

8. y′ = y(x)/(1 + 2x), y(0) = 1. Exact y(x) =
√
1 + 2x.

9. y′ = yxex, y(0) = 1. Exact y(x) = eu(x), u(x) = 1 + (x− 1)ex.

Solution:The exact answer for y′ = xyex, y(0) = 1 is y(x) = e1+(x−1)ex , found by the
variables separable method, using integration by parts for

∫
xexdx.
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x y-EULER y-EXACT
0 1.000000 1.000000
0.1 1.000000 1.005360
0.2 1.011052 1.023141
0.3 1.035750 1.056645
0.4 1.077693 1.110605
0.5 1.142002 1.192008
0.6 1.236145 1.311475
0.7 1.371289 1.485682
0.8 1.564589 1.741753
0.9 1.843154 2.125569
1 2.251162 2.718282

The graphic shows significant errors, caused by the exponential factor.

10. y′ = 2y(x2 + x)e2x, y(0) = 1. Exact y(x) = eu(x), u(x) = x2e2x.

Heun’s Method
Apply Heun’s method to make an xy-table for y(x) with 6 rows and step size
h = 0.2. Graph the approximate solution and the exact solution. Follow Example
4.6.

11. y′ = 2 + y, y(0) = 5. Exact y(x) = −2 + 7ex.

Solution:The exact answer for y′ = 2 + y, y(0) = 5 is y(x) = −2 + 7ex, found
by the linear integrating factor method. The constant coefficient shortcut applies:
y = yp + yh, yp = −2 = equilibrium solution, yh = c/W , W = integrating factor =
e−x.
x y-HEUN y-EXACT
0 5.000000 5.000000
0.2 6.540000 6.549819
0.4 8.418800 8.442773
0.6 10.710936 10.754832
0.8 13.507342 13.578786
1 16.918957 17.027973
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The graphic below was zoomed to show detail, because the table values are close.

Let F (x, y) = 2 + y. The y-HEUN value is found from y(x + h) = y(x) +∫ x+h

x
F (u, y(u))du ≈ y(x) + h(F (x, y(x)) + F (x + h, y(x + h))/2, using the Trape-

zoidal Rule. Value y(x + h) ≈ y(x) + hF (x, y(x)) by Euler’s Method. For in-
stance, y(0.2) ≈ y(0) + 0.2F (0, y(0)) = 5 + 0.2(2 + 5) = 6.4 by Euler’s method.

Then y(0.2) = y(0) +
∫ 0.2

0
F (u, y(u))du ≈ y(0) + 0.2(F (0, y(0)) + F (0.2, y(0.2))/2 =

5 + 0.2((2 + 5) + (2 + 6.4))/2 = 6.54.

Values for the first row of the table :

x = 0, y-HEUN = 5, y-EXACT = 5

The second row values:

x = 0.2, y1 = 5+0.2F (0, 5) = 6.4, y-HEUN = 5+0.2(F (0, 5)+F (0.2, y1))/2 = 6.54,
y-EXACT = Y (0.2) = 6.549819306

The third row values:

x = 0.4, y1 = 6.54 + 0.2F (0, 6.54) = 8.248, y-HEUN = 6.54 + 0.2(F (0.2, 6.54) +
F (0.4, 8.248))/2 = 8.4188, y-EXACT = Y (0.2) = 8.44277289

The fourth and later row values follow the same pattern, described precisely in the
maple code below. An online check in WolframAlpha: use input

y’=2+y, y(0)=5 by Heun’s method h=0.2 t=0 to 1.
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# Maple: Exact solution

F:=(x,y)->2+y;de:=diff(y(x),x)=F(x,y(x));y0:=5;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=-2+7*exp(x)

# Maple: Heun’s method

HEUN:=proc(x,y)

local y1,y2;

y1:=y+h*F(x,y);

y2:=0.5*h*(F(x,y)+F(x+h,y1));

RETURN (y2);

end proc;

DotsHEUN:=[x0,y0];DotsEXACT:=[x0,y0];Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k; Y:= Y+HEUN(X-h,Y);

DotsHEUN:=DotsHEUN,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsHEUN;DotsEXACT; # answers

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsHEUN],[DotsEXACT]],opts,

color=[red,blue],legend=["Heun","Exact"]);

12. y′ = 3 + y, y(0) = 5. Exact y(x) = −3 + 8ex.

13. y′ = e−x + y, y(0) = 4. Exact y(x) = − 1
2e

−x + 9
2e

x.

Solution:The exact answer for y′ = e−x + y, y(0) = 5 is y(x) = − 1
2e

−x + 9
2e

x, found
by the linear integrating factor method. No shortcut applies.

x y-HEUN y-EXACT
0 4.000000 4.000000
0.2 5.081873 5.086947
0.4 6.365165 6.378051
0.6 7.900821 7.925129
0.8 9.749792 9.790270
1 11.985453 12.048328

The graphic below was zoomed to show detail.
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14. y′ = 3e−2x + y, y(0) = 4. Exact y(x) = −e−2x + 5ex.

15. y′ = y sinx, y(0) = 1. Exact y(x) = e1−cos x.

Solution:The exact answer for y′ = y sin(x), y(0) = 1 is y(x) = e1−cos x, found by the
variables separable method.

x y-HEUN y-EXACT
0 1.000000 1.000000
0.2 1.019867 1.020133
0.4 1.081422 1.082138
0.6 1.189352 1.190846
0.8 1.351462 1.354312
1 1.578447 1.583595

The graphic below was zoomed to show detail.

16. y′ = 2y sin 2x, y(0) = 1. Exact y(x) = e1−cos 2x.

17. y′ = y/(1 + x), y(0) = 1. Exact y(x) = 1 + x.
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4.2 Solving y′ = f(x, y) Numerically

Solution:The exact answer for y′ = y/(1 + x), y(0) = 1 is y(x) = 1+ x, found by the
variables separable method.

x y-HEUN y-EXACT
0 1.000000 1.000000
0.2 1.200000 1.200000
0.4 1.400000 1.400000
0.6 1.600000 1.600000
0.8 1.800000 1.800000
1 2.000000 2.000000

The graphic shows only the exact solution (blue) because the two data sets match to
6 digits.

18. y′ = y(x)/(1 + 2x), y(0) = 1. Exact y(x) =
√
1 + 2x.

19. y′ = yxex, y(0) = 1. Exact y(x) = eu(x), u(x) = 1 + (x− 1)ex.

Solution:The exact answer for y′ = xyex, y(0) = 1 is y(x) = e1+(x−1)ex , found by the
variables separable method, using integration by parts on

∫
xexdx.

x y-HEUN y-EXACT
0 1.000000 1.000000
0.2 1.024428 1.023141
0.4 1.113570 1.110605
0.6 1.316293 1.311475
0.8 1.745800 1.741753
1 2.700169 2.718282

The graphic was zoomed to show detail.
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4.2 Solving y′ = f(x, y) Numerically

20. y′ = 2y(x2 + x)e2x, y(0) = 1. Exact y(x) = eu(x), u(x) = x2e2x.

RK4 Method
Apply the Runge-Kutta method (RK4) to make an xy-table for y(x) with 6 rows
and step size h = 0.2. Graph the approximate solution and the exact solution.
Follow Example 4.7.

21. y′ = 2 + y, y(0) = 5. Exact y(x) = −2 + 7ex.

Solution: The exact answer for y′ = 2 + y, y(0) = 5 is y(x) = −2 + 7ex, found
by the linear integrating factor method. The constant coefficient shortcut applies:
y = yp+ yh, yp = −2 = equilibrium solution, yh = c/W , integrating factor W = e−x.

x y-RK4 y-EXACT
0 5.000000 5.000000
0.2 6.549800 6.549819
0.4 8.442726 8.442773
0.6 10.754745 10.754832
0.8 13.578646 13.578786
1 17.027758 17.027973

The graphic shows only the exact curve (blue) because the two data sets agree to
3-digit accuracy.
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4.2 Solving y′ = f(x, y) Numerically

Let F (x, y) = 2 + y. The y-RK4 value is found from the 5-line algorithm

k1 = hF (x, y);
k2 = hF (x+ h/2, y + k1/2);
k3 = hF (x+ h/2, y + k2/2);
k4 = hF (x+ h, y + k3);
y(x+ h) = y(x) + (k1 + 2k2 + 2k3 + k4)/6;

The computation by hand calculator is lengthy. Some check points are supplied:

Values for the first row of the table :

x = 0, y-RK4 = 5, y-EXACT = 5

The second row values:

x = 0.2, k1 = 1.4, k2 = 1.54, k3 = 1.554, k4 = 1.7108, y-RK4 = 6.5498, y-
EXACT = Y (0.2) = 6.549819306

The third row values:

x = 0.4, k1 = 1.709960, k2 = 1.880956, k3 = 1.898056, k4 = 2.089571, y-RK4 =
8.442726, y-EXACT = Y (0.4) = 8.44277289

The fourth and later row values follow the same pattern, each row depending only
on the answer from the previous row.

An online check in WolframAlpha: use input
y’=2+y, y(0)=5 by runge kutta method h=0.2 t=0 to 1.

WolframAlpha numerical answers disagreed on date 9.2021 with online RK4 calcu-
lators. The WolframAlpha algorithm below computes values in agreement with the
table above:
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4.2 Solving y′ = f(x, y) Numerically

# Maple: Exact solution

F:=(x,y)->2+y;de:=diff(y(x),x)=F(x,y(x));y0:=5;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=-2+7*exp(x)

# Maple: RK4 method

RK4:=proc(x,y)

local k1,k2,k3,k4,Z;

k1:=h*F(x,y);

k2:=h*F(x+h/2,y+k1/2);

k3:=h*F(x+h/2,y+k2/2);

k4:=h*F(x+h,y+k3);

Z:=(k1+2*k2+2*k3+k4)/6;

RETURN (Z);

end proc;

DotsRK4:=[x0,y0];DotsEXACT:=[x0,y0];Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k; Y:= Y+RK4(X-h,Y);

DotsRK4:=DotsRK4,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsRK4;DotsEXACT; # answers

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsRK4],[DotsEXACT]],opts,

color=[red,blue],legend=["RK4","Exact"]);

22. y′ = 3 + y, y(0) = 5. Exact y(x) = −3 + 8ex.

23. y′ = e−x + y, y(0) = 4. Exact y(x) = − 1
2e

−x + 9
2e

x.

Solution:The exact answer for y′ = e−x + y, y(0) = 5 is y(x) = − 1
2e

−x + 9
2e

x, found
by the linear integrating factor method. No shortcut applies.
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4.2 Solving y′ = f(x, y) Numerically

x y-RK4 y-EXACT
0 4.000000 4.000000
0.2 5.086937 5.086947
0.4 6.378026 6.378051
0.6 7.925081 7.925129
0.8 9.790190 9.790270
1 12.048205 12.048328

The graphic shows only the exact (blue) curve, because the table values agree to 4
digits.

24. y′ = 3e−2x + y, y(0) = 4. Exact y(x) = −e−2x + 5ex.

25. y′ = y sinx, y(0) = 1. Exact y(x) = e1−cos x.

Solution:The exact answer for y′ = y sin(x), y(0) = 1 is y(x) = e1−cos x, found by the
variables separable method.

x y-RK4 y-EXACT
0 1.000000 1.000000
0.2 1.020133 1.020133
0.4 1.082138 1.082138
0.6 1.190846 1.190846
0.8 1.354311 1.354312
1 1.583593 1.583595

The graphic shows exact (blue) only because the data

matches to 4 digits.
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26. y′ = 2y sin 2x, y(0) = 1. Exact y(x) = e1−cos 2x.

27. y′ = y/(1 + x), y(0) = 1. Exact y(x) = 1 + x.

Solution:The exact answer for y′ = y/(1 + x), y(0) = 1 is y(x) = 1+ x, found by the
variables separable method.

x y-RK4 y-EXACT
0 1.000000 1.000000
0.2 1.200000 1.200000
0.4 1.400000 1.400000
0.6 1.600000 1.600000
0.8 1.800000 1.800000
1 2.000000 2.000000

The graphic shows only the exact solution (blue) because the two data sets match to
4-digit accuracy.

28. y′ = y(x)/(1 + 2x), y(0) = 1. Exact y(x) =
√
1 + 2x.
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4.2 Solving y′ = f(x, y) Numerically

29. y′ = yxex, y(0) = 1. Exact y(x) = eu(x), u(x) = 1 + (x− 1)ex.

Solution: The exact answer for y′ = xyex, y(0) = 1 is y(x) = e1+(x−1)ex , found by
the variables separable method, using integration by parts on

∫
xexdx.

x y-RK4 y-EXACT
0 1.000000 1.000000
0.2 1.023142 1.023141
0.4 1.110605 1.110605
0.6 1.311471 1.311475
0.8 1.741709 1.741753
1 2.717842 2.718282

The graphic shows only the exact solution (blue) because the two data sets match to
4-digit accuracy.

30. y′ = 2y(x2 + x)e2x, y(0) = 1. Exact y(x) = eu(x), u(x) = x2e2x.

Euler and RK4 Methods
Apply the Euler method and the Runge-Kutta method (RK4) to make a table
with 6 rows and step size h = 0.1. The table columns are x, y1, y2, y where
y1 is the Euler approximation, y2 is the RK4 approximation and y is the exact
solution. Graph y1, y2, y.

31. y′ = 1
2 (y − 2)2, y(0) = 3. Exact y(x) =

2x− 6

x− 2
.

Solution: The exact answer for y′ = 1
2 (y − 2)2, y(0) = 3 is y(x) = 2

x− 3

x− 2
, found by

the variables separable method.

The graphic shows only Euler (green) and the exact solution (blue) because RK4 and
EXACT data sets match to 4-digit accuracy.
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4.2 Solving y′ = f(x, y) Numerically

x y-EULER y-RK4 y-EXACT
0.0 3.0000000000 3.0000000000 3.0000000000
0.1 3.0500000000 3.0526315630 3.0526315780
0.2 3.1051250000 3.1111110710 3.1111111120
0.3 3.1661900630 3.1764705130 3.1764705880
0.4 3.2341900260 3.2499998710 3.2500000000
0.5 3.3103512770 3.3333331230 3.3333333340

# Maple: Exact solution

F:=(x,y)->(y-2)^2/2;de:=diff(y(x),x)=F(x,y(x));

y0:=3;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=(2*x-6)/(x-2)

# Maple: Euler’s method and RK4 method

N:=6;h:=0.1;

EULER:=(x,y) -> h*F(x,y);# Euler algorithm

RK4:=proc(x,y)# RK4 algorithm

local k1,k2,k3,k4,Z;

k1:=h*F(x,y);

k2:=h*F(x+h/2,y+k1/2);

k3:=h*F(x+h/2,y+k2/2);

k4:=h*F(x+h,y+k3);

Z:=(k1+2*k2+2*k3+k4)/6;

RETURN (Z);

end proc;

DotsEULER:=[x0,y0];DotsRK4:=[x0,y0];DotsEXACT:=[x0,y0];

Z:=y0;Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+EULER(X-h,Z);Y:= Y+RK4(X-h,Y);

DotsEULER:=DotsEULER,[X,Z];

DotsRK4:=DotsRK4,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsEULER;DotsRK4;DotsEXACT; # answers

# Maple: Three connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsEULER],[DotsRK4],[DotsEXACT]],opts,

color=[green,red,blue],legend=["Euler","RK4","Exact"]);
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4.2 Solving y′ = f(x, y) Numerically

32. y′ = 1
2 (y − 3)2, y(0) = 4. Exact y(x) =

3x− 8

x− 2
.

33. y′ = x3/y2, y(2) = 3. Exact y(x) = 1
2

3
√
6x4 + 120.

Solution: The exact answer for y′ = x3/y2, y(2) = 3 is y(x) = 1
2 (6x

4 + 120)1/3,
found by the variables separable method.

The graphic shows only Euler (green) and the exact solution (blue) because RK4 and
EXACT data sets match to 4-digit accuracy.

x y-EULER y-RK4 y-EXACT
2.0 3.0000000000 3.0000000000 3.0000000000
2.1 3.0888888890 3.0928756410 3.0928755920
2.2 3.1859518000 3.1935156080 3.1935155140
2.3 3.2908552180 3.3015627530 3.3015626210
2.4 3.4032033760 3.4166200600 3.4166198950
2.5 3.5225631310 3.5382706770 3.5382704850

34. y′ = x5/y2, y(2) = 3. Exact y(x) = 1
2

3
√
4x6 − 40.

35. y′ = 2x(1 + y2), y(0) = 1. Exact y(x) = tan(x2 + π/4).

Solution: The exact answer for y′ = x3/y2, y(0) = 1 is y(x) = tan(x2 + π/4), found
by the variables separable method.

The graphic shows only Euler (green) and the exact solution (blue) because RK4 and
EXACT data sets match to 4-digit accuracy.
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4.2 Solving y′ = f(x, y) Numerically

x y-EULER y-RK4 y-EXACT
0 1.0000000000 1.0000000000 1.0000000000
0.1 1.0000000000 1.0202030340 1.0202027010
0.2 1.0400000000 1.0833811120 1.0833796610
0.3 1.1232640000 1.1983950950 1.1983911490
0.4 1.2589673210 1.3848782010 1.3848688490
0.5 1.4657672180 1.6858165600 1.6857964190

36. y′ = 3y2/3, y(0) = 1. Exact y(x) = (x+ 1)3.

37. y′ = 1 + y2, y(0) = 0. Exact y(x) = tanx.

Solution: The exact answer for y′ = 1 + y2, y(0) = 0 is y(x) = tan(x), found by the
variables separable method.

The graphic shows only Euler (green) and the exact solution (blue) because RK4 and
EXACT data sets match to 4-digit accuracy. The graphic has been zoomed to show
detail.

x y-EULER y-RK4 y-EXACT
0 1.0000000000 1.0000000000 1.0000000000
0.1 1.0000000000 1.0202030340 1.0202027010
0.2 1.0400000000 1.0833811120 1.0833796610
0.3 1.1232640000 1.1983950950 1.1983911490
0.4 1.2589673210 1.3848782010 1.3848688490
0.5 1.4657672180 1.6858165600 1.6857964190

38. y′ = 1 + y2, y(0) = 1. Exact y(x) = tan(x+ π/4).
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4.3 Error in Numerical Methods

4.3 Error in Numerical Methods

Exercises 4.3 �
Cumulative Error
Make a table of 6 lines which has four columns x, y1, y, E. Symbols y1 and y are
the approximate and exact solutions while E = |y − y1| is the cumulative error.
Find y1 using Euler’s method in steps h = 0.1.

1. y′ = 2 + y, y(0) = 5. Exact solution y(x) = −2 + 7ex.

Solution: The exact answer for y′ = 2+ y, y(2) = 5 is y(x) = −2+7ex, found by the
linear integrating factor shortcut for constant-coefficient equations.

The first graphic shows Euler (green), exact solution (blue). The second graphic is a
bar chart for the cumulative error.
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x y-EULER y-EXACT y-Cumulative Error
0 5.0000000000 5.0000000000 0.0000000000
0.1 5.7000000000 5.7361964260 0.0361964260
0.2 6.4700000000 6.5498193060 0.0798193060
0.3 7.3170000000 7.4490116560 0.1320116560
0.4 8.2487000000 8.4427728900 0.1940728900
0.5 9.2735700000 9.5410489000 0.2674789000

The cumulative error is |EULER - EXACT|. On calculators without absolute value,
remove the sign of the answer in column 4.

# Cumulative Error Exercise 1

# Maple: Exact solution

F:=(x,y)->2+y;de:=diff(y(x),x)=F(x,y(x));y0:=5;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=-2+7*exp(x)

# Numerical solution

N:=6;h:=0.1;# 6 rows and stepsize

EULER:=(x,y) -> h*F(x,y);# Euler algorithm

DotsEULER:=[x0,y0];DotsEXACT:=[x0,y0];Z:=y0;

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+EULER(X-h,Z);

DotsEULER:=DotsEULER,[X,Z];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsEULER;DotsEXACT; # answers

# Compute cumulative error = |EULER-EXACT|

cErr:=k->abs(DotsEULER[k][2]-DotsEXACT[k][2]);

cumulativeError:=seq(cErr(k),k=1..N);

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsEULER],[DotsEXACT]],

opts,color=[green,blue,red],

legend=["Euler","Exact"]);

# Maple: Bar chart cumulative error

Statistics[ColumnGraph](<cumulativeError>,

color=violet,legend=["Cumulative Error"]);

2. y′ = 3 + y, y(0) = 5. Exact solution y(x) = −3 + 8ex.

3. y′ = e−x + y, y(0) = 4. Exact solution y(x) = − 1
2e

−x + 9
2e

x.

Solution: The exact answer for y′ = e−x + y, y(0) = 4 is y(x) = − 1
2e

−x + 9
2e

x, found
by the linear integrating factor method.

The first graphic shows Euler (green) and the exact solution (blue). The second
graphic is a bar chart for cumulative error.
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x y-EULER y-EXACT y-Cumulative Error
0 4.0000000000 4.0000000000 0.0000000000
0.1 4.5000000000 4.5208504220 0.0208504220
0.2 5.0404837420 5.0869470350 0.0464632930
0.3 5.6264051920 5.7039555260 0.0775503340
0.4 6.2631275330 6.3780511180 0.1149235850
0.5 6.9564722910 7.1159803890 0.1595080980

4. y′ = 3e−2x + y, y(0) = 4. Exact solution y(x) = −e−2x + 5ex.

Local Error
Make a table of 4 lines which has four columns x, y1, y, E. Symbols y1 and y
are the approximate and exact solutions while E is the local error. Find y1 using
Euler’s method in steps h = 0.1. The general solution in each exercise is the
solution for y(0) = c.

5. y′ = 2 + y, y(0) = 5. General solution y(x) = −2 + (2 + c)ex.

Solution: The exact answer for y′ = 2+ y, y(2) = 5 is y(x) = −2+7ex, found by the
linear integrating factor shortcut for constant-coefficient equations.
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The first graphic shows Euler (green) and exact (blue) solutions. The second graphic
is a bar chart for local error at x-values 0, 01., 0.2, 0.3.

x y-EULER y-EXACT y-Local Error
0 5.0000000000 5.0000000000 0.0000000000
0.1 5.7000000000 5.7361964260 0.0361964260
0.2 6.4700000000 6.5498193060 0.0398160690
0.3 7.3170000000 7.4490116560 0.0437976770
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# Local Error Exercise 5

# Maple: Exact solution

F:=(x,y)->2+y;de:=diff(y(x),x)=F(x,y(x));y0:=5;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=-2+7*exp(x)

# Numerical solution

N:=4;h:=0.1;# 4 rows and stepsize

EULER:=(x,y) -> h*F(x,y);# Euler algorithm

DotsEULER:=[x0,y0];DotsEXACT:=[x0,y0];Z:=y0;

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+EULER(X-h,Z);

DotsEULER:=DotsEULER,[X,Z];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsEULER;DotsEXACT; # answers

# Compute IVP solutions at 0.1 to 0.3

for k from 1 to N-1 do #

X:=DotsEULER[k][1];# x

Y:=DotsEULER[k][2];# y-EULER

ansLocal:=dsolve([de,y(X)=Y],y(x)):

ELocal:=unapply(rhs(ansLocal),x);

Ivp[k]:=evalf(ELocal(X+h));# y-value for next node

od:

# Compute local error = |EULER-(IVP-value)|

lErr:=k->abs(DotsEULER[k][2]-Ivp[k-1]);

localError:=0,seq(lErr(k),k=2..N);

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsEULER],[DotsEXACT]],opts,

color=[green,blue],legend=["Euler","Exact"]);

# Maple: Bar Chart local error

Statistics[ColumnGraph](<localError>,color=red,

legend=["Local Error"]);

6. y′ = 3 + y, y(0) = 5. General solution y(x) = −3 + (3 + c)ex.

7. y′ = 2e−x + y, y(0) = 4. General solution y(x) = −e−x + (1 + c)ex.

Solution: The exact answer for y′ = 2e−x + y, y(0) = 4 is y(x) = −e−x + 5ex, found
by the linear integrating factor method.

The first graphic shows Euler (green) and exact (blue) solutions. The second graphic
is a bar chart for local error at x-values 0, 01., 0.2, 0.3.
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x y-EULER y-EXACT y-Local Error
0 4.0000000000 4.0000000000 0.0000000000
0.1 4.6000000000 4.6210171720 0.0210171720
0.2 5.2409674840 5.2882830370 0.0240879850
0.3 5.9288103830 6.0084758190 0.0273736610

8. y′ = 3e−2x + y, y(0) = 4. General solution y(x) = −e−2x + (1 + c)ex.

Roundoff Error
Compute the roundoff error for y = 5a+ 4b.

9. Assume 3-digit precision. Let a = 0.0001 and b = 0.0003.

Solution: In 3-digit precision: â = 0.000, b̂ = 0.000. Then y = 5a + 4b = 0.0005 +
0.0012 = 0.0017 while ŷ = 5â + 4b̂ = 0.000. The roundoff error is y − ŷ = 0.0017 −
0.000 = 0.0017. Roundoff error can be a positive or negative number, or zero. Some
key examples and rounding methods can be found at

https://en.wikipedia.org/wiki/Round-off error
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# Roundoff, Exercise 9

Round:=(x,n)->evalf( round(x*10^(n))/10.0^n );

a:=0.0001;b:=0.0003;

ahat:=Round(a,3);bhat:=Round(b,3);

y:=5*a+4*b;yhat:=5*ahat+4*bhat;

rErr:=y-yhat;# Roundoff error 0.0017

10. Assume 3-digit precision. Let a = 0.0002 and b = 0.0001.

11. Assume 5-digit precision. Let a = 0.000007 and b = 0.000003.

Solution:In 5-digit precision: â = 0.00001, b̂ = 0.00000. Then y = 5a + 4b =
0.000035 + 0.000012 = 0.000047 while ŷ = 5â + 4b̂ = 0.00005. The roundoff error is
y − ŷ = 0.000047− 0.00005 = −0.000003.

12. Assume 5-digit precision. Let a = 0.000005 and b = 0.000001.

Truncation Error
Find the truncation error.

13. Truncate x = 1.123456789 to 3 digits right of the decimal point.

14. Truncate x = 1.123456789 to 4 digits right of the decimal point.

Solution:Answer: 1.1234

# Truncation, Exercise 13

Truncate:=(x,n)->evalf( trunc(x*10^(n))/10.0^n );

X:=1.123456789;

Xtrunc:=Truncate(X,4);# Xtrunc = 1.1234

15. Truncate x = 1.017171717 to 7 digits right of the decimal point.

Solution:Answer: 1.0171717

16. Truncate x = 1.03939393939 to 9 digits right of the decimal point.

Guessing the Step Size
Do a numerical experiment using the given method to estimate the number of
steps needed to generate a numerical solution with 2-digit accuracy on 0 ≤ x ≤ 1.
The number reported, if increased, should not change the 2-digit accuracy.

17. y′ = 2 + y, y(0) = 5. Exact solution y(x) = −2 + 7ex. Euler’s method.

Solution:The answer: about 5800 data points gives 2-digit accuracy. This numerical
project requires a CAS or Numerical Workbench.
A practical experiment is to evaluate Euler estimates at x-values x0 = 0, x1, . . . , xM =
1, then compare Euler values to the Exact solution values for 2-digit agreement. Once
a step size h is found that appears to work, then increase the step size and repeat
the experiment. There is no precise answer possible for M , only an estimate.
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# Guessing the stepsize, Exercise 17

# Maple: Exact solution

F:=(x,y)->2+y;de:=diff(y(x),x)=F(x,y(x));y0:=5;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=-2+7*exp(x)

M:=5800;# M steps

h:=1.0/M; # step size.

N:=M+1; # table rows

EULER:=(x,y) -> h*F(x,y);# Euler algorithm

approx:=EULER;# or HEUN, RK4

vals:=y0: Z:=y0;

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+approx(X-h,Z);

vals:=vals,Z;

od:

maxERR:=0;W:=vals:

for k from 1 to N do

X:= x0 + h*k;

Z:=abs(W[k]-EY(X));# cumulative error

maxERR:=max(maxERR,Z);

od:# colon=no echo

printf("MaxERR=%10f, h =%10f\n",maxERR,h);

# MaxERR= 0.004921, h = 0.000172

18. y′ = 3 + y, y(0) = 5. Exact solution y(x) = −3 + 8ex. Euler’s method

19. y′ = e−x + y, y(0) = 4. Exact solution y(x) = − 1
2e

−x + 9
2e

x. Euler’s method

Solution:The answer: about 3700 data points gives 2-digit accuracy.

20. y′ = 3e−2x + y, y(0) = 4. Exact solution y(x) = −e−2x + 5ex. Euler’s method.

21. y′ = y/(1 + x), y(0) = 1. Exact solution y(x) = 1 + x. Euler’s method.

Solution:The answer: about 201 data points gives 2-digit accuracy.

22. y′ = y(x)/(1 + 2x), y(0) = 1. Exact solution y(x) =
√
1 + 2x. Euler’s method.

23. y′ = 2 + y, y(0) = 5. Exact solution y(x) = −2 + 7ex. Heun’s method.

Solution:The answer: about 3810 data points gives 2-digit accuracy.

24. y′ = 3 + y, y(0) = 5. Exact solution y(x) = −3 + 8ex. Heun’s method

25. y′ = e−x + y, y(0) = 4. Exact solution y(x) = − 1
2e

−x + 9
2e

x. Heun’s method

Solution:The answer: about 2485 data points gives 2-digit accuracy.

26. y′ = 3e−2x + y, y(0) = 4. Exact solution y(x) = −e−2x + 5ex. Heun’s method.

27. y′ = y/(1 + x), y(0) = 1. Exact solution y(x) = 1 + x. Heun’s method.

Solution:The answer: about 201 data points gives 2-digit accuracy.
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28. y′ = y(x)/(1 + 2x), y(0) = 1. Exact solution y(x) =
√
1 + 2x. Heun’s method.

29. y′ = 2 + y, y(0) = 5. Exact solution y(x) = −2 + 7ex. RK4 method.

Solution:The answer: about 3810 data points gives 2-digit accuracy.

30. y′ = 3 + y, y(0) = 5. Exact solution y(x) = −3 + 8ex. RK4 method

31. y′ = e−x + y, y(0) = 4. Exact solution y(x) = − 1
2e

−x + 9
2e

x. RK4 method

Solution:The answer: about 2485 data points gives 2-digit accuracy.

32. y′ = 3e−2x + y, y(0) = 4. Exact solution y(x) = −e−2x + 5ex. RK4 method.

33. y′ = y/(1 + x), y(0) = 1. Exact solution y(x) = 1 + x. RK4 method.

Solution:The answer: about 201 data points gives 2-digit accuracy.

34. y′ = y(x)/(1 + 2x), y(0) = 1. Exact solution y(x) =
√
1 + 2x. RK4 method.

4.4 Computing π, ln 2 and e

Exercises 4.4 �
Computing π
Compute π = y(1) from the initial value problem y′ = 4/(1+x2), y(0) = 0, using
the given method. Number 3.14159 with 3-digit precision is the rounded number
3.142.

1. Use the Rectangular integration rule. Determine the number of steps for 3-digit
precision.

Solution:About 1102 steps, h = 1/1102.

# RECT 3-digit precision, Exercise 1

F:=x->4/(1+x^2);x0:=0;y0:=0;

precision:=3;EXACT:=Pi; # Default is 10 digits

Round:=(x,n)->evalf( round(x*10^(n))/10.0^n ):

RECT:=x -> h*F(x);# Rectangular rule algorithm

M:=1102;h:=1.0/M;N:=M+1; # N rows, stepsize h

approx:=y0;Z:=y0; ALGORITHM:=RECT:

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+ALGORITHM(X-h);

approx:=approx,Z;

od:

PiApprox:=Round(approx[N],precision);

PiExact:=Round(EXACT,precision);

ERR:=abs(PiExact-PiApprox);

printf("ERR=%10f, 3-digit Pi=%10f, h=1/%a\n",ERR,PiApprox,M);

# ERR= 0.000000, 3-digit Pi= 3.142000, h=1/1102
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2. Use the Rectangular integration rule. Determine the number of steps for 4-digit
precision.

Solution:More than 2180 steps.

3. Use the Trapezoidal integration rule. Determine the number of steps for 3-digit
precision.

Solution:About 43 steps, h = 1/43 = 0.02325581395.

# TRAP 3-digit precision, Exercise 3

F:=x->4/(1+x^2);x0:=0;y0:=0;

precision:=3;EXACT:=Pi; # Default is 10 digits

Round:=(x,n)->evalf( round(x*10^(n))/10.0^n ):

RECT:=x -> h*F(x);# Rectangular rule algorithm

TRAP:=x->h*(F(x)+F(x+h))/2;

M:=43;h:=1.0/M;N:=M+1; # N rows, stepsize h

approx:=y0;Z:=y0; ALGORITHM:=TRAP:

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+ALGORITHM(X-h);

approx:=approx,Z;

od:

PiApprox:=Round(approx[N],precision);

PiExact:=Round(EXACT,precision);

ERR:=abs(PiExact-PiApprox);

printf("ERR=%10f, PiApprox=%10f, h=1/%a\n",ERR,PiApprox,M);

# ERR= 0.000000, PiApprox= 3.142000, h=1/43

4. Use the Trapezoidal integration rule. Determine the number of steps for 4-digit
precision.

5. Use Simpson’s rule. Determine the number of steps for 5-digit precision.

Solution:About 3 steps, h = 1/3 = 0.3333333333.

# SIMP 5-digit precision, Exercise 5

F:=x->4/(1+x^2);x0:=0;y0:=0;

precision:=5;EXACT:=Pi; # Default is 10 digits

Round:=(x,n)->evalf( round(x*10^(n))/10.0^n ):

RECT:=x -> h*F(x);# Rectangular rule algorithm

TRAP:=x->h*(F(x)+F(x+h))/2;

SIMP:=x ->( h*(F(x)+4*F(x+h/2)+F(x+h))/6 );

M:=3;h:=1.0/M;N:=M+1; # N rows, stepsize h

approx:=y0;Z:=y0; ALGORITHM:=SIMP:

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+ALGORITHM(X-h);

approx:=approx,Z;

od:

PiApprox:=Round(approx[N],precision);

PiExact:=Round(EXACT,precision);

ERR:=abs(PiExact-PiApprox);

printf("ERR=%10f, PiApprox=%10f, h=1/%a\n",ERR,PiApprox,M);

# ERR= 0.000000, PiApprox= 3.141590, h=1/3
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6. Use Simpson’s rule. Determine the number of steps for 6-digit precision.

7. Use a computer algebra system library routine for RK4. Report the step size used
and the number of steps for 5-digit precision.

Solution:WolframAlpha:
Number of steps: 26. Step size: 1/26 = 0.03846153846.

URL: https://www.wolframalpha.com/

Input:

Runge-Kutta method, dy/dx = 4/(1+x^2),

y(0) = 0, from 0 to 1, h = 1/26

8. Use a numerical workbench library routine for RK4. Report the step size used and
the number of steps for 5-digit precision.

Solution:MATLAB:
No online input, like WolframAlpha. Write your own code.

URL of code source for RK4:

https://www.mathworks.com/matlabcentral/

answers/460395-runge-kutta-4th-order-method

Computing ln(2)
Compute ln(2) = y(1) from the initial value problem y′ = 1/(1 + x), y(0) = 0,
using the given method.

9. Use the Rectangular integration rule. Determine the number of steps for 3-digit
precision.

Solution:About 709 steps, h = 1/709 = 0.001410437236.

# RECT 3-digit precision, Exercise 9

F:=x->1/(1+x);x0:=0;y0:=0;

precision:=3;EXACT:=ln(2); # Default is 10 digits

Round:=(x,n)->evalf( round(x*10^n)/10.0^n ):

RECT:=x -> h*F(x);# Rectangular rule algorithm

M:=709;h:=1.0/M;N:=M+1; # N rows, stepsize h

approx:=y0;Z:=y0; ALGORITHM:=RECT:

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+ALGORITHM(X-h);

approx:=approx,Z;

od:

ln2Approx:=Round(approx[N],precision);

ln2Exact:=Round(EXACT,precision);

ERR:=abs(ln2Exact-ln2Approx);

printf("ERR=%10f, %a-digit ln(2)=%10f, h=1/%a\n",

ERR,precision,ln2Approx,M);

# ERR= 0.000000, 3-digit ln(2)= 0.693000, h=1/709

10. Use the Rectangular integration rule. Determine the number of steps for 4-digit
precision.
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11. Use the Trapezoidal integration rule. Determine the number of steps for 5-digit
precision.

Solution:About 90 steps, h = 1/90 = 0.01111111111.

# TRAP 5-digit precision, Exercise 11

F:=x->1/(1+x);x0:=0;y0:=0;

precision:=5;EXACT:=ln(2); # Default is 10 digits

Round:=(x,n)->evalf( round(x*10^n)/10.0^n ):

TRAP:=x->h*(F(x)+F(x+h))/2;

M:=90;h:=1.0/M;N:=M+1; # N rows, stepsize h

approx:=y0;Z:=y0; ALGORITHM:=TRAP:

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+ALGORITHM(X-h);

approx:=approx,Z;

od:

ln2Approx:=Round(approx[N],precision);

ln2Exact:=Round(EXACT,precision);

ERR:=abs(ln2Exact-ln2Approx);

printf("ERR=%10f, %a-digit ln(2)=%10f, h=1/%a\n",

ERR,precision,ln2Approx,M);

# ERR= 0.000000, 5-digit ln(2)= 0.693150, h=1/90

12. Use the Trapezoidal integration rule. Determine the number of steps for 6-digit
precision.

13. Use Simpson’s rule. Determine the number of steps for 5-digit precision.

Solution:About 4 steps, h = 1/4 = 0.25.

# SIMP 5-digit precision, Exercise 13

F:=x->1/(1+x);x0:=0;y0:=0;

precision:=5;EXACT:=ln(2); # Default is 10 digits

Round:=(x,n)->evalf( round(x*10^n)/10.0^n ):

TRAP:=x->h*(F(x)+F(x+h))/2;

SIMP:=x ->( h*(F(x)+4*F(x+h/2)+F(x+h))/6 );

M:=4;h:=1.0/M;N:=M+1; # N rows, stepsize h

approx:=y0;Z:=y0; ALGORITHM:=SIMP:

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+ALGORITHM(X-h);

approx:=approx,Z;

od:

ln2Approx:=Round(approx[N],precision);

ln2Exact:=Round(EXACT,precision);

ERR:=abs(ln2Exact-ln2Approx);

printf("ERR=%10f, %a-digit ln(2)=%10f, h=1/%a\n",

ERR,precision,ln2Approx,M);

# ERR= 0.000000, 5-digit ln(2)= 0.693150, h=1/4

14. Use Simpson’s rule. Determine the number of steps for 6-digit precision.

15. Use a computer algebra system library routine for RK4. Report the step size used
and the number of steps for 5-digit precision.
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Solution: MAPLE:
Estimate: ln(2) ≈ 0.693147180561166, error 0.0. The default step size for this
problem is 0.005. The engine dsolve is used with options found from maple help:
?dsolve,classical from the HELP Menu. The Runge-Kutta 4 method is called
rk4 in maple but the method is called classical[rk4]. MATHEMATICA:
Number of steps: 13. Step size: 1/13 = 0.07692307692.

# MAPLE, Exercise 15

F:=(x,y)->1/(1+x);x0:=0;y0:=0;

EXACT:=ln(2); # Default is 10 digits

sys:=[diff(y(x),x)=F(x,y(x)),y(x0)=y0]:

ans:=dsolve(sys,numeric,method=classical[rk4]);

ln2Approx:=rhs(ans(1)[2]); # ln2Approx = 0.693147180561166,

ERR:=abs(evalf(ln2Approx-EXACT,14));

# ERR = 1.21591625656947*10^(-12)

# MATHEMATICA

URL: https://www.wolframalpha.com/

Input:

Runge-Kutta method, dy/dx = 1/(1+x),

y(0) = 0, from 0 to 1, h = 1/13

16. Use a numerical workbench library routine for RK4. Report the step size used and
the number of steps for 5-digit precision.

Solution:MATLAB:
No online input, like WolframAlpha. Write your own code using the cited Mathworks
download. To use Matlab in 2021, a license is required for the desktop app or a 30-
day free trial for the online Matlab workbench.

URL of Matlab code source for RK4:

https://www.mathworks.com/matlabcentral/

fileexchange/29851-runge-kutta-4th-order-ode

# MAPLE: Numeric, RK4 method

F:=(x,y) -> y; x0:=0;y0:=1;

EXACT:=exp(1); # Default is 10 digits

sys:=[diff(y(x),x)=F(x,y(x)),y(x0)=y0]:

ans:=dsolve(sys,numeric,method=classical[rk4]);

eApprox:=rhs(ans(1)[2]); # eApprox = 2.71827054469638,

ERR:=abs(evalf(eApprox-EXACT,14));

# ERR = 0.000112837626158324

Computing e
Compute e = y(1) from the initial value problem y′ = y, y(0) = 1, using the
given computer library routines. Report the approximate number of digits of
precision attained with a computer algebra system or numerical workbench.

17. Improved Euler method, also known as Heun’s method.

Solution:
MAPLE:
Estimate: e ≈ 2.71827054469638, error 0.0001128, default step size 0.005. The en-
gine dsolve is used with options. The options can be found from the maple help
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menu: ?dsolve,classical. The Improved Euler method is called heun in maple

but method = classical[heunform] or equivalently, method = classical[rk2].

MATHEMATICA:
Number of steps: 10. Step size: 1/10. Estimate: e ≈ 2.71408, error 0.0040098.

# MAPLE: Numeric, Heun’s method, Exercise 17

F:=(x,y) -> y; x0:=0;y0:=1;

EXACT:=exp(1); # Default is 10 digits

sys:=[diff(y(x),x)=F(x,y(x)),y(x0)=y0]:

ans:=dsolve(sys,numeric,method=classical[heunform]);

eApprox:=rhs(ans(1)[2]); # eApprox = 2.71827054469638,

ERR:=abs(evalf(eApprox-EXACT,14)); # ERR = 0.0001128

# MATHEMATICA

URL: https://www.wolframalpha.com/

Input:

Heun method, dy/dx = y, y(0) = 1, from 0 to 1

18. RK4 method.

19. RKF45 method.

Solution:
MAPLE:
Number of steps: adaptive. Step size: adaptive. Estimate: e ≈ 2.71828133411964,
error 0.000000494.

MATHEMATICA:
Number of steps: 11. Step size: 1/11. Estimate: e ≈ 2.71828, error 0.000000198.

# Runge-Kutta-Fehlberg RKF45, Exercise 19

# MAPLE

F:=(x,y) -> y; x0:=0;y0:=1;

EXACT:=exp(1); # Default is 10 digits

sys:=[diff(y(x),x)=F(x,y(x)),y(x0)=y0]:

ans:=dsolve(sys,numeric,method=rkf45);

eApprox:=rhs(ans(1)[2]);

ERR:=abs(evalf(eApprox-EXACT,14)); # ERR = 0.000000494

# MATHEMATICA

URL: https://www.wolframalpha.com/

Input:

runge-kutta-fehlberg method, dy/dx = y, y(0) = 1, from 0 to 1

20. Adams-Moulton method.

Solution:The maple method is called abmoulton, using modified code from exercise
17. Literature citations might use the Adams-Bashforth-Moulton method. See
also

https://en.wikipedia.org/wiki/Linear multistep method

Stiff Differential Equation
The flame propagation equation y′ = y2(1 − y) is known to be stiff for small
initial conditions y(0) > 0. Use classical rk4, then Runge-Kutta-Fehlberg rkf45
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and finally a stiff solver to compute and plot the solution y(t) in each case. Expect
rk4 to fail, no matter the step size. Both rkf45 and a stiff solver will produce
about the same plot, but at different speeds. Reference: matlab author Cleve
Moler, blogs.mathworks.com 2014.

21. y(0) = 0.01

Solution:Classical RK4 does not improve the plot by using a smaller stepsize. The
other two plots are nearly identical: an increasing curve which at x = 100 quickly
rises to y = 1 and stays there. All plots use a large number of data points (diamonds).
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# MAPLE: Numeric, RK4 method, Exercise 21

y0:=0.01;x0:=0;F:=(x,y) -> (1-y)*y^2;

de:=diff(y(t),t)=F(t,y(t));

sys:=[diff(y(x),x)=F(x,y(x)),y(x0)=y0]:

ansRK4:=dsolve(sys,numeric,

method=classical[rk4],stepsize=1/10);

yRK4:=x -> rhs(ansRK4(x)[2]); # Runge-Kutta 4

ansRKF45:=dsolve(sys,numeric,method=rkf45);

yRKF45:=x -> rhs(ansRKF45(x)[2]); # Runge-Kutta-Fehlberg 45

ansSTIFF:=dsolve(sys,numeric,stiff=true);

yStiff:=x -> rhs(ansSTIFF(x)[2]); # Default stiff solver

opts:=style=pointline,font=[courier,12,bold],

symbol=diamond,symbolsize=24,thickness=2;

plot(yRK4,x0..x0+2/y0,opts,legend=["RK4"]);

plot(yRKF45,x0..x0+2/y0,opts,legend=["RKF45"]);

plot(yStiff,x0..x0+2/y0,opts,legend=["STIFF"]);

22. y(0) = 0.005

23. y(0) = 0.001

Solution:Classical RK4 improves the plot with stepsize = 1/2; increasing the stepsize
eventually fails. The other two plots are nearly identical: an increasing curve which
at x = 1000 quickly rises to y = 1 and stays there. Plots not shown because they are
no different in shape from those in Exercise 21.

24. y(0) = 0.0001

Solution:Classical RK4 fails. The other two plots are nearly identical: an increasing
curve which at x = 10000 quickly rises to y = 1 and stays there.

4.5 Earth to the Moon

Exercises 4.5 �
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Critical Altitude r∗

The symbol r∗ is the altitude r(t) at which gravitational effects of the moon take
over, causing the projectile to fall to the moon.

1. Justify from the differential equation that r′′(t) = 0 at r∗ = r(t) implies the first
relation in (2):

Gm2

(R2 − R1 − r∗)2
−

Gm1

(R1 + r∗)2
= 0.

Solution:Insert r′′(t) = 0 and r∗ = r(t) into the Jules Verne differential equation,
then:

0 = − Gm1

(R1 + r∗)2
+

Gm2

(R2 −R1 − r∗)2

Re-arrange:
Gm2

(R2 −R1 − r∗)2
− Gm1

(R1 + r∗)2
= 0

2. Solve symbolically the relation of the previous exercise for r∗, to obtain the second
equation of (2):

r∗ =
R2

1 +
√

m2/m1

−R1.

Solution:The solution r∗ is obtained by conversion to a quadratic equation, then solve
by the quadratic formula. The trick: use a2 − b2 = (a − b)(a + b) where a2 = m1,
b2 = m2. Expected details omitted.

# MAPLE: Answer check Exercise 2

R1:=’R1’:R2:=’R2’:m1:=’m1’:m2:=’m2’:G:=’G’:

w:=r -> G*m2/(R2-R1-r)^2 - G*m1/(R1+r)^2;

rStar:=R2/( 1+sqrt(m2/m1) )-R1;

"w(rStar)" = simplify(w(rStar)); # w(rStar) = 0

3. Use the previous exercise and values for the constants R1, R2, m1, m2 to obtain the
approximation

r∗ = 339, 649, 780 meters.

Solution: Assume: maple values

G:=6.6726e-11: m1:=5.975e24: m2:=7.36e22:

R1:=6.378e6: R2:=3.844e8:

r∗ =
R2

1 +
√
m2/m1

−R1

=
384400000

1 +
√
(7.36)1022/((5.975)1024)

− 6378000

≈ 339, 620, 820 meters

4. Determine the effect on r∗ for a one percent error in measurement m2. Replace m2

by 0.99m2 and 1.01m2 in the formula for r∗ and report the two estimated critical
altitudes.
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Escape Velocity v∗0
The symbol v∗0 is the velocity r′(0) such that limt→∞ r(t) =∞, but smaller launch
velocities will cause the projectile to fall back to the earth. Throughout, define

F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

5. Let v0 = r′(0), r∗ = r(t0). Derive the formula

1

2
(r′(t0))

2 = F (r∗)− F (0) +
1

2
v20

which appears in the proof details.

Solution:Following the technical details, multiply differential equation r′′(t) =
− Gm1

(R1+r(t))2 + Gm2

(R2−R1−r(t))2 by r′(t) and integrate:∫ t0

0

r′(t)r′′(t)dt = −
∫ t0

0

Gm1r
′(t)dt

(R1 + r(t))2
+

∫ t0

0

Gm2r
′(t)dt

(R2 −R1 − r(t))2

Then LHS = (r′(t0))
2/2− (r′(0))2/2 = r′(t0)

2/2− v20/2 because r′(0) = v0. Similarly

RHS =
Gm1

R1 + r(t)
+

Gm2

R2 −R1 − r(t)

∣∣∣∣t=t0

t=0

simplifies to
RHS = F (r∗)− F (0)

Then LHS = RHS becomes

r′(t0)
2/2− v20/2 = F (r∗)− F (0)

which is the claimed identity. ■

6. Verify using the previous exercise that r′(t0) = 0 implies

v∗0 =
√
2(F (0)− F (r∗)).

7. Verify by hand calculation that v∗0 ≈ 11067.31016 meters per second.

Solution: Let F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
. Use Exercise 6:

v∗0 =
√
2(F (0)− F (r∗))

=

√
2

(
Gm1

R1
+

Gm2

R2 −R1
− Gm1

R1 + r∗
− Gm2

R2 −R1 − r∗

)
The constants are

G:=6.6726e-11: m1:=5.975e24: m2:=7.36e22:

R1:=6.378e6: R2:=3.844e8: rstar:=339620820

and then by calculator v∗0 ≈ 11067.32755 meters per second.
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8. Argue by mathematical proof that F (r) is not minimized at the endpoints of the
interval 0 ≤ r ≤ R.

Numerical Experiments
Assume values given in the text for physical constants. Perform the given exper-
iment with numerical software on initial value problem (1), page 260. The cases
when v0 > v∗0 escape the earth, while the others fall back to earth.

9. RKF45 solver, v0 = 11068, T = 515000. Plot the solution on 0 ≤ t ≤ T .

Solution:Code results:

v0=11068, T=515000.00

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)
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# MAPLE: Numeric, RKF45 method, Exercise 9

G:=6.6726e-11: m1:=5.975e24: m2:=7.36e22:

R1:=6.378e6: R2:=3.844e8: R3:=1.74e6:

R:=R2-R1-R3:

ans:=[solve(-G*m1/(r+R1)^2 + G*m2/(R2-R1-r)^2=0,r)]:

rstar:=ans[1];

FF:=r->G*m1/(R1+r)+G*m2/(R2-R1-r):

v0star:=sqrt(2*(FF(0)-FF(rstar)));# v0star=11067.31016

report:=proc() #rMAX,tMAX) # print maximum + time

printf("v0=%a, T=%.2f\n",v0,T);

printf("Moon at distance R=%.2f (blue)\n",R);

printf("Acceleration=0 at r=rstar (green)\n");

end proc;

makePlot:=proc() local opt;global T,Y,R,rstar;

opt:=legend=["r(t)","R","rstar"],

color=[red,blue,green],title=sprintf("v0=%f",v0);

plot([Y(t),R,rstar],t=0..T,opt);

end proc:

v0:=11068;T:=515000;

ic:=r(0)=0,D(r)(0)=v0:

de:=diff(r(t),t,t)=-G*m1/(r(t)+R1)^2+G*m2/(R2-R1-r(t))^2:

NS:=numeric,method=rkf45,output=listprocedure:

p:=dsolve([de,ic],r(t),NS):Y:=eval(r(t),p):

DY:=eval(diff(r(t),t),p):

makePlot();report();

10. Stiff solver, v0 = 11068, T = 515000. Plot the solution on 0 ≤ t ≤ T .

11. RKF45 solver, v0 = 11067.2, T = 800000. Plot the solution on 0 ≤ t ≤ T .

Solution:Results:

v0=11067.2, T=800000.00

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)
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12. Stiff solver, v0 = 11067.2, T = 800000. Plot the solution on 0 ≤ t ≤ T .

13. RKF45 solver, v0 = 11067, T = 1000000. Plot the solution on 0 ≤ t ≤ T .

Solution:Results:

v0=11067.2, T=1000000.00

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)

14. Stiff solver, v0 = 11067, T = 1000000. Plot the solution on 0 ≤ t ≤ T .

15. RKF45 solver, v0 = 11066, T = 800000. Plot the solution on 0 ≤ t ≤ T .

Solution:Results:
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v0=11066, T=800000.00

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)

16. Stiff solver, v0 = 11066, T = 800000. Plot the solution on 0 ≤ t ≤ T .

17. RKF45 solver, v0 = 11065. Find a suitable value T which shows that the projectile
falls back to earth, then plot the solution on 0 ≤ t ≤ T .

Solution:Results:

v0=11065, T=800000.00

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)
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18. Stiff solver, v0 = 11065. Find a suitable value T which shows that the projectile
falls back to earth, then plot the solution on 0 ≤ t ≤ T .

19. RKF45 solver, v0 = 11070. Find a suitable value T which shows that the projectile
falls to the moon, then plot the solution on 0 ≤ t ≤ T .

Solution:Results:

v0=11070, T=430000

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)

20. Stiff solver, v0 = 11070. Find a suitable value T which shows that the projectile
falls to the moon, then plot the solution on 0 ≤ t ≤ T .

4.6 Skydiving

Exercises 4.6 �
Terminal Velocity
Assume force F (v) = av+ bv2+ cv3 and g = 32, m = 160/g. Using computer as-
sist, find the terminal velocity v∞ from the velocity model v′ = g− 1

mF (v), v(0) =
0.

1. a = 0, b = 0 and c = 0.0002.

Solution:The equilibrium solution is v = 92.83177667.

# MAPLE: Terminal velocity, Exercise 1

F:=v->a*v+b*v^2+c*v^3;

H:=v->subs(m=160/g,g=32,a=0,b=0,c=0.0002,G(v));

solve(H(v)=0,v);

# 92.83, -46.42+80.3*I, -46.42-80.39*I
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2. a = 0, b = 0 and c = 0.00015.

3. a = 0, b = 0.0007 and c = 0.00009.

Solution:v = 118.6034740.

4. a = 0, b = 0.0007 and c = 0.000095.

5. a = 0.009, b = 0.0008 and c = 0.00015.

Solution:v = 100.2350541.

6. a = 0.009, b = 0.00075 and c = 0.00015.

7. a = 0.009, b = 0.0007 and c = 0.00009.

Solution:v = 118.3342112.

8. a = 0.009, b = 0.00077 and c = 0.00009.

9. a = 0.009, b = 0.0007 and c = 0.

Solution:v = 471.7060907 because v′(0) = g > 0.

# MAPLE: Terminal velocity, Exercise 9

F:=v->a*v+b*v^2+c*v^3;

H:=v->subs(m=160/g,g=32,a=0.009,b=0.0007,c=0.0,G(v));

solve(H(v)=0,v);

# -484.5632335, 471.7060907

p:=dsolve([diff(v(t),t)=H(v(t)),v(0)=0],v(t));

limit(rhs(p),t=infinity);

# 45/7+(5/7)*sqrt(448081) = 471.7060907

10. a = 0.009, b = 0.00077 and c = 0.

Numerical Experiment
Let F (v) = av + bv2 + cv3 and g = 32. Consider the skydiver problem mv′(t) =
mg−F (v) and constants m, a, b, c supplied below. Using computer assist, apply
a numerical method to produce a table for the elapsed time t, the velocity v(t)
and the distance x(t). The table must end at x(t) ≈ 10000 feet, which determines
the flight time.

11. m = 160/g, a = 0, b = 0 and c = 0.0002.

Solution:A possible table:
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t X(t) V(t)
0.00 0.00 0.00
0.50 4.00 15.98
1.00 15.94 31.68
1.50 35.52 46.43
2.00 62.07 59.39
2.50 94.50 69.90
3.00 131.52 77.76
3.50 171.86 83.24
4.00 214.46 86.87
4.50 258.52 89.19
5.00 303.50 90.62
5.50 349.05 91.50
6.00 394.94 92.03
6.50 441.05 92.35
7.00 487.28 92.55
7.50 533.58 92.66
8.00 579.93 92.73
8.50 626.31 92.77
9.00 672.70 92.80
9.50 719.10 92.81
10.00 765.51 92.82
10.50 811.92 92.82
11.00 858.33 92.83
11.50 904.75 92.83
12.00 951.16 92.83
12.50 997.58 92.83
13.00 1043.99 92.83

# Maple: Numerical experiment, skydiving Exercise 11

dive:=proc(w,a,b,c,n)

global f,X,V,p,inc;

local de1,de2,ic,fmt,opts;

f:=unapply(32 - (32/w)*(a*v+b*v^2+c*v^3),v);

de1:=diff(x(t),t)=v(t); de2:=diff(v(t),t)=f(v(t));

ic:=x(0)=0,v(0)=0;opts:=numeric,output=listprocedure:

p:=dsolve({de1,de2,ic},[x(t),v(t)],opts);

X:=eval(x(t),p); V:=eval(v(t),p);

fmt:="%10.2f %10.2f %10.2f\n";

seq(printf(fmt,inc*t,X(inc*t),V(inc*t)),t=0..n);

end proc:

inc:=0.5;dive(160,0.0,0.0,0.0002,26);

12. m = 160/g, a = 0, b = 0 and c = 0.00015.

13. m = 130/g, a = 0, b = 0.0007 and c = 0.00009.

Solution:Code:

inc:=0.4;dive(130,0.0,0.0007,0.00009,28);

Last line of the table:

11.20 1005.21 110.47

14. m = 130/g, a = 0, b = 0.0007 and c = 0.000095.
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15. m = 180/g, a = 0.009, b = 0.0008 and c = 0.00015.

Solution:Code:

inc:=0.4;dive(180,0.009,0.0008,0.00015,29);

Last line of the table:

11.60 1003.08 104.32

16. m = 180/g, a = 0.009, b = 0.00075 and c = 0.00015.

17. m = 170/g, a = 0.009, b = 0.0007 and c = 0.00009.

Solution:Code:

inc:=0.4;dive(170,0.009,0.00077,0.00009,27);

Last line of the table:

10.80 1024.89 120.45

18. m = 170/g, a = 0.009, b = 0.00077 and c = 0.00009.

19. m = 200/g, a = 0.009, b = 0.0007 and c = 0.

Solution:Code:

inc:=0.4;dive(200,0.009,0.0007,0.0,21);

Last line of the table:

8.40 1080.24 246.84

20. m = 200/g, a = 0.009, b = 0.00077 and c = 0.

Flight Time
Let F (v) = av + bv2 + cv3 and g = 32. Consider the skydiver problem mv′(t) =
mg−F (v) with constants m, a, b, c supplied below. Using computer assist, apply
a numerical method to find accurate values for the flight time to 10,000 feet and
the time required to reach terminal velocity.

21. mg = 160, a = 0.0095, b = 0.0007 and c = 0.000092.

Solution:Reaches 10,000 feet in 85.4 seconds. Terminal velocity = 117.5 ft/sec.

# Maple: Flight time, Exercise 21

skydiveIvp:=proc(w,a,b,c)

global f,X,V,p;

local de1,de2,ic,fmt,opts;

f:=unapply(32 - (32/w)*(a*v+b*v^2+c*v^3),v);

de1:=diff(x(t),t)=v(t); de2:=diff(v(t),t)=f(v(t));

ic:=x(0)=0,v(0)=0;opts:=numeric,output=listprocedure:

p:=dsolve({de1,de2,ic},[x(t),v(t)],opts);

X:=eval(x(t),p); V:=eval(v(t),p);

end proc:

skydiveIvp(160,0.0095,0.0007,0.000092);# define X,V,f

plot(X,0..100);# Locate approx root = 80

x1:=fsolve(X(t)=10000,t=80);# 87.35197951

v1:=fsolve(f(v)=0,v);# 117.4934273
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22. mg = 160, a = 0.0097, b = 0.00075 and c = 0.000095.

23. mg = 240, a = 0.0092, b = 0.0007 and c = 0.

Solution:Reaches 10,000 feet in 29.2 seconds. Terminal velocity = 579 ft/sec.

# Maple: Flight time, Exercise 23

skydiveIvp(240,0.0092,0.0007,0.0);# define X,V,f

plot(X,0..100);# Locate approx root = 30

x1:=fsolve(X(t)=10000,t=30);# 29.15860533

v1:=fsolve(f(v)=0,v);# 579.0054891

24. mg = 240, a = 0.0095, b = 0.00075 and c = 0.

Ejected Baggage
Baggage of 45 pounds is dropped from a hovercraft at 15, 000 feet. Assume air
resistance force F (v) = av + bv2 + cv3, g = 32 and mg = 45. Using computer
assist, find accurate values for the flight time to the ground and the terminal
velocity. Estimate the time required to reach 99.95% of terminal velocity.

25. a = 0.0095, b = 0.0007, c = 0.00009

Solution:Flight time to ground: 197.7 seconds. Terminal velocity: 76.4 ft/sec. Time
to reach 99.95% of terminal velocity: 7.5 seconds.

# Maple: Ejected Baggage, Exercise 25

skydiveIvp:=proc(w,a,b,c)

global f,X,V,p;

local de1,de2,ic,opts;

f:=unapply(32 - (32/w)*(a*v+b*v^2+c*v^3),v);

de1:=diff(x(t),t)=v(t); de2:=diff(v(t),t)=f(v(t));

ic:=x(0)=0,v(0)=0;opts:=numeric,output=listprocedure:

p:=dsolve({de1,de2,ic},[x(t),v(t)],opts);

X:=eval(x(t),p); V:=eval(v(t),p);

end proc:

skydiveIvp(45,0.0095,0.0007,0.00009);# define X,V,f

plot(X(t),t=0..250);# Locate approx root = 180

x1:=fsolve(X(t)=15000,t=180);# 197.7216521

v1:=fsolve(f(v)=0,v);# 76.43153427

plot(V(t),t=0..20);# Locate approx root = 10

fsolve(V(t)=99.95*v1/100,t=10);# 7.455104385

26. a = 0.0097, b = 0.00075, c = 0.00009

27. a = 0.0099, b = 0.0007, c = 0.00009

Solution:Flight time to ground: 197.8 seconds. Terminal velocity: 76.4 ft/sec. Time
to reach 99.95% of terminal velocity: 7.5 seconds.

# Maple: Ejected Baggage, Exercise 27

skydiveIvp(45,0.0099,0.0007,0.00009);# define X,V,f

plot(X(t),t=0..250);# Locate approx root = 180

x1:=fsolve(X(t)=15000,t=200);# 197.7679961

v1:=fsolve(f(v)=0,v);# 76.41348454

plot(V(t),t=0..20);# Locate approx root = 8

fsolve(V(t)=99.95*v1/100,t=8);# 7.456210409
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28. a = 0.0099, b = 0.00075, c = 0.00009

4.7 Lunar Lander

Exercises 4.7 �
Lunar Lander Constant Field
Find the retrorocket activation time T and the activation height x(T ). Assume
the constant gravitational field model. Units are miles/hour and miles/hour per
hour.

1. v0 = 1210, A = 30020.

Solution:T = 2.418387742 min, x(T ) = 24.38540973 miles

# Maple: Constant field, Exercise 1

v0:=1210; A:=30020.0;

X:=t->-A*t^2/2+v0*t;

T:=(v0/A): (T*60.0).’min’,X(T).’miles’;

# 2.418387742 min, 24.38540973 miles

A1:=A*2.54*12*5280/100/3600/3600; # mks units

v1:=v0*12*2.54*5280/100/3600; # mks units

evalf(convert(X(T),units,miles,meters));

# 39244.51283 meters

2. v0 = 1200, A = 30100.

3. v0 = 1300, A = 32000.

Solution:T = 2.437500000 min, x(T ) = 26.40625000 miles

4. v0 = 1350, A = 32000.

5. v0 = 1500, A = 45000.

Solution:T = 2 min, x(T ) = 25 miles

6. v0 = 1550, A = 45000.

7. v0 = 1600, A = 53000.

Solution:T = 1.811320755 min, x(T ) = 24.15094340 miles

8. v0 = 1650, A = 53000.

9. v0 = 1400, A = 40000.

Solution:T = 2.1 min, x(T ) = 24.5 miles

10. v0 = 1450, A = 40000.
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Lunar Lander Variable Field
Find the retrorocket activation time T and the activation height x(T ). Assume
the variable gravitational field model and mks units.

11. v0 = 540.92, g1 = 5.277.

Solution:Activation height = 24.61 miles, activation time = 2.449 minutes

# Maple: Variable field, Exercise 11

v0:=540.92; g0:=G*M/R^2: g1:=5.277;

M:=7.35* 10^(22);R:=1.74* 10^6;G:=6.6726* 10^(-11);

eq:= -(v0^2/2) + g1*H + G*M/(R+H) - G*M/R=0:

HH:=[solve(eq,H)][1]; # HH := 39612.87725 meters

de:=diff(x(t),t,t) = -g1 + M*G/(R+HH-x(t))^2;

ic:= x(0)=0, D(x)(0)=v0;

p:=dsolve({de,ic},x(t),numeric):

X:=t->evalf(rhs(p(t)[2])):

V:=t-> evalf(rhs(p(t)[3])):

plot(’V(t)’,t=0..300);# Locate zero of x’ approx t=145

TT1:=fsolve(’V(t)’=0,t=145): TT:=TT1/60:

TT1.’seconds’, TT.’minutes’;

# 146.9421397 seconds, 2.449035662 minutes

X(TT1).’meters’, ((X(TT1)*100/2.54)/12/5280).’miles’;

# 39612.8828293276 meters, 24.6143042301382 miles

12. v0 = 536.45, g1 = 5.288.

13. v0 = 581.15, g1 = 5.517.

Solution:Activation height = 26.66 miles, activation time = 2.47 minutes

14. v0 = 603.504, g1 = 5.5115.

15. v0 = 625.86, g1 = 5.59.

Solution:Activation height = 30.32 miles, activation time = 2.61 minutes

16. v0 = 603.504, g1 = 5.59.

17. v0 = 581.15, g1 = 5.59.

Solution:Activation height = 26.18 miles, activation time = 2.42 minutes

18. v0 = 670.56, g1 = 6.59.

19. v0 = 670.56, g1 = 6.83.

Solution:Activation height = 26.61 miles, activation time = 2.13 minutes

20. v0 = 715.26, g1 = 7.83.
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Distinguishing Models
The constant field model (1) page 272 and the variable field model (2) page
273 are verified here to be distinct, by example. Find the retrorocket activation
times T1, T2 and the activation heights x1(T1), x2(T2) for the two models (1),
(2). Relations A = g1−g0 and g0 = GM/R2 apply to compute g1 for the variable
field model.

21. v0 = 1200 mph, A = 10000 mph/h. Answer: 72, 66.91 miles.

Solution:
Constant field: 7.2 minutes, 72 miles.
Variable field: 6.85 minutes, 66.91 miles.

# Maple: Constant field, book example

v0_CFM:=1200: A_CFM:=10000: # Constant field model values

X:=t->-A_CFM*t^2/2+v0_CFM*t;

T:=(v0_CFM/A_CFM): (T*60.0).’minutes’,X(T).’miles’;

# 7.2 minutes, 72 miles

# Maple: Variable field, Exercise 21

v0_CFM:=1200: A_CFM:=10000:

cf:=1*5280*12*2.54/100/3600; # mi/h to m/s

v0:=v0_CFM*cf; A:=A_CFM*cf/3600;

g0:=G*M/R^2: g1:=A+g0;

eq:= -(v0^2/2) + g1*H + G*M/(R+H) - G*M/R=0:

HH:=[solve(eq,H)][1];# 107685.7059

de:=diff(x(t),t,t) = -g1 + M*G/(R+HH-x(t))^2;

ic:= x(0)=0, D(x)(0)=v0;

p:=dsolve({de,ic},x(t),numeric):

X:=t->evalf(rhs(p(t)[2])):

V:=t-> evalf(rhs(p(t)[3])):

plot(’V(t)’,t=0..500);# Locate zero of x’ approx t=410

TT1:=fsolve(’V(t)’=0,t=410): TT:=TT1/60:

TT1.’seconds’, TT.’minutes’;

X(TT1).’meters’, ((X(TT1)*100/2.54)/12/5280).’miles’;

# 6.85 min, 66.91 miles

22. v0 = 1200 mph, A = 12000 mph/h. Answer: 60, 56.9 miles.

23. v0 = 1300 mph, A = 10000 mph/h. Answer: 84.5, 74.23 miles.

Solution:
Constant field: 7.8 minutes, 84.5 miles.
Variable field: 5.79 minutes, 74.23 miles.

24. v0 = 1300 mph, A = 12000 mph/h. Answer: 76.82, 71.55 miles.

4.8 Comets

Exercises 4.8 �
Eccentric Anomaly for the Planets
Make a plot of the eccentric anomaly E(M) on 0 ≤M ≤ 2π.
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1. Mercury, e = 0.2056

Solution:

# Eccentric anomoly Mercury, Exercise 1

e:=0.2056:de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;

p:=dsolve({de,ic},numeric,output=listprocedure);

EE := eval(y(x),p):

plot(EE,0..2*Pi);

2. Venus, e = 0.0068

3. Earth, e = 0.0167

Solution:

4. Mars, e = 0.0934

5. Jupiter, e = 0.0483
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Solution:

6. Saturn, e = 0.0560

7. Uranus, e = 0.0461

Solution:

8. Neptune, e = 0.0097

Elliptic Path of the Planets
Make a plot of the elliptic path of each planet, using constrained scaling with the
given major semi-axis A (in astronomical units AU). The equations:

x(M) = A cos(E(M)),

y(M) = A
√
1− e2 sin(E(M))

9. Mercury, e = 0.2056, A = 0.39
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Solution:

# Elliptic Path of the Planets, Exercise 9

e:=0.2056:A:=0.39:EE := unapply(RootOf(_Z-M-e*sin(_Z)),M);

Ex:=A*cos(EE(M)):Ey:=A*sqrt(1-e^2)*sin(EE(M)):

opt:=font=[courier,bold,16],thickness=3,tickmarks=[2,2],

scaling=constrained;

plot([Ex,Ey,M=0..2*Pi],opt);

10. Venus, e = 0.0068, A = 0.72

11. Earth, e = 0.0167, A = 1

Solution:

12. Mars, e = 0.0934, A = 1.52

13. Jupiter, e = 0.0483, A = 5.20

Solution:
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14. Saturn, e = 0.0560, A = 9.54

15. Uranus, e = 0.0461, A = 19.18

Solution:

16. Neptune e = 0.0097, A = 30.06

Planet Positions
Make a plot with at least 8 planet positions displayed. Use constrained scaling
with major semi-axis A in the plot. Display the given major semi-axis A and
period T in the legend.

17. Mercury, e = 0.2056, A = 0.39 AU, T = 0.24 earth-years

Solution:
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# Planet Positions, Exercise 17

e:=0.2056:A:=0.39:T:=0.24:planet:="Mercury":

de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;

p:=dsolve({de,ic},numeric,output=listprocedure);

EE := eval(y(x),p):

Ex:=unapply(A*cos(EE(M)),M):

Ey:=unapply(A*sqrt(1-e^2)*sin(EE(M)),M):

opts:=font=[courier,bold,16],thickness=3,

tickmarks=[2,2],scaling=constrained,axes=boxed,

symbol=solidcircle,style=point,symbolsize=22,

legend=sprintf("%s: A=%f, T=%f",planet,A,T);;

snapshots:=seq([Ex(2*n*Pi/12),Ey(2*n*Pi/12)],n=0..12):

plot([snapshots],opts);

18. Venus, e = 0.0068, A = 0.72 AU, T = 0.62 earth-years

19. Earth, e = 0.0167, A = 1 AU, T = 1 earth-years

Solution:
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20. Mars, e = 0.0934, A = 1.52 AU, T = 1.88 earth-years

21. Jupiter, e = 0.0483, A = 5.20 AU, T = 11.86 earth-years

Solution:

22. Saturn, e = 0.0560, A = 9.54 AU, T = 29.46 earth-years

23. Uranus, e = 0.0461, A = 19.18 AU, T = 84.01 earth-years

Solution:
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24. Neptune e = 0.0097, A = 30.06 AU, T = 164.8 earth-years

Comet Positions
Make a plot with at least 8 comet positions displayed. Use constrained scaling
with major-semiaxis 1 in the plot. Display the given eccentricity e and period T
in the legend.

25. Churyumov-Gerasimenko orbits the sun every 6.57 earth-years. Discovered in 1969.
Eccentricity e = 0.632.

Solution:
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# Comet Positions, Exercise 25

e:=0.632:T:=6.57:comet:="Churyumov-Gerasimenko":

de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;

p:=dsolve({de,ic},numeric,output=listprocedure);

EE := eval(y(x),p):

Ex:=unapply(cos(EE(M)),M):

Ey:=unapply(sqrt(1-e^2)*sin(EE(M)),M):

opts:=font=[courier,bold,16],thickness=3,tickmarks=[2,2],

scaling=constrained,axes=boxed,symbol=solidcircle,

style=point,symbolsize=22,

legend=sprintf("%s: e=%f, T=%f",comet,e,T);;

snapshots:=seq([Ex(2*n*Pi/12),Ey(2*n*Pi/12)],n=0..12):

plot([snapshots],opts);

26. Comet Wirtanen was the original target of the Rosetta space mission. This comet
was discovered in 1948. The comet orbits the sun once every 5.46 earth-years. Ec-
centricity e = 0.652.

27. Comet Wild 2 was discovered in 1978. The comet orbits the sun once every 6.39
earth-years. Eccentricity e = 0.540.

Solution:

28. Comet Biela was discovered in 1772. It orbits the sun every 6.62 earth-years. Ec-
centricity e = 0.756.

29. Comet Encke was discovered in 1786. It orbits the sun each 3.31 earth-years. Ec-
centricity e = 0.846.

Solution:
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30. Comet Giacobini-Zinner, discovered in 1900, orbits the sun each 6.59 earth-years.
Eccentricity e = 0.708.

31. Comet Schwassmann-Wachmann, discovered in 1930, orbits the sun every 5.36 earth-
years. Eccentricity e = 0.694.

Solution:

32. Comet Swift-Tuttle was discovered in 1862. It orbits the sun each 120 earth-years.
Eccentricity e = 0.960.

Comet Animations
Make an animation plot of comet positions. Use constrained scaling with major-
semiaxis 1 in the plot. Display the given period T and eccentricity e in the
legend.
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33. Comet Churyumov-Gerasimenko
T = 6.57, e = 0.632.

Solution:

# Comet animation, Exercise 33

e:=0.632:T:=6.57:comet:="Churyumov-Gerasimenko":

de:=diff(y(x),x)=1/(1-e*cos(y(x))): ic:=y(0)=0:

p:=dsolve({de,ic},numeric,output=listprocedure):

EE := eval(y(x),p):

xt:=cos(EE(M)):yt:=sqrt(1-e^2)*sin(EE(M)):

opts:=view=[-1..1,-0.9..0.9],frames=2,axes=none,

scaling=constrained,axes=boxed,style=point,

symbolsize=22,symbol=circle,thickness=3,

legend=sprintf("%s: \n e=%f, T=%f",comet,e,T);

plots[animatecurve]([xt,yt,M=0..2*Pi],opts);

34. Comet Wirtanen
T = 5.46, e = 0.652.

35. Comet Wild 2
T = 6.39, e = 0.540.

Solution:
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36. Comet Biela
T = 6.62, e = 0.756.

37. Comet Encke
T = 3.31, e = 0.846.

Solution:

38. Comet Giacobini-Zinner
T = 6.59, e = 0.708.

39. Comet Schwassmann-Wachmann
T = 5.36, e = 0.694.

Solution:
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40. Comet Swift-Tuttle
T = 120, e = 0.960.

4.9 Fish Farming

Exercises 4.9 �
Constant Logistic Harvesting
The model

x′(t) = kx(t)(M − x(t))− h

can be converted to the logistic model

y′(t) = (a− by(t))y(t)

by a change of variables. Find the change of variables y = x+ c for the following
pairs of equations.

1. x′ = −3x2 + 8x− 5,
y′ = (2− 3y)y

Solution: A way to find y = x− 1 is to factor −3x2 +8x− 5 = (−3x+5)(x− 1) and
then choose y = x − 1. After enough experience with finding changes of variables,
this will become the preferred method.

A general technique for finding the change of variables is to substitute x = y− c into
the differential equation. Then

y′ = x′ + 0
= −3x2 + 8x− 5
= −3(y − c)2 + 11(y − c)− 14
= −3y2 + (6c+ 8)y + (−3c2 − 11c− 14).

Equation y′ = (2− 3y)y holds provided:
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6c+ 8 = 2,
−3c2 − 11c− 14 = 0.

Equation 6c+ 8 = 2 gives c = −1. Equation −3c2 − 11c− 14 = 0 holds for c = −1.
Conclusion: y = x+ c = x− 1.

2. x′ = −2x2 + 11x− 14,
y′ = (3− 2y)y

3. x′ = −5x2 − 19x− 18,
y′ = (1− 5y)y

Solution:Factor −5x2 − 19x − 18 = −(5x + 9)(x + 2), then let y = x + 2 to get
y′ = x′ = −(5x+ 9)y = −(5y − 10 + 9)y = (1− 5y)y.

4. x′ = −x2 + 3x+ 4,
y′ = (5− y)y

Periodic Logistic Harvesting
The periodic harvesting model

x′(t) = 0.8x(t)

(
1− x(t)

780500

)
−H(t)

is considered with H defined by

H(t) =


0 0 < t < 5,

H0 5 < t < 6,
0 6 < t < 17,

H0 17 < t < 18,
0 18 < t < 24.

This project makes as computer graph of the solution on 0 < t < 24 for various
values of H0 and x(0). See Figures 17 and 18 and the corresponding examples.

5. H0 = 156100, P (0) = 300000

Solution:
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# Periodic Logistic Harvesting, Exercise 5

de:=diff(x(t),t)=r*(1-x(t)/M)*x(t)-H(t);

r:=0.8:M:=780500:H0:=156100:x0:=300000:

H:=t->H0*piecewise(t<5,0,t<6,1,t<12+5,0,t<12+6,1,0);

with(DEtools):DEplot(de,x(t),t=0..24,x=0..M,

[[x(0)=x0]],arrows=smalltwo,color=green,

dirfield=[20,10],linecolor=blue,font=[courier,bold,16],

title="Periodic Piecewise Harvesting",tickmarks=[6,6]);

6. H0 = 156100, P (0) = 800000

7. H0 = 800100, P (0) = 90000

Solution:

8. H0 = 800100, P (0) = 100000

von Bertalanffy Equation
Karl Ludwig von Bertalanffy (1901-1972) derived in 1938 the equation

dL

dt
=rB(L∞−L(t))

from simple physiological arguments. It is a widely used growth curve, especially
important in fisheries studies. The symbols:

t time,
L(t) length,
rB growth rate,
L∞ expected length for zero

growth.

9. Solve dL
dt = 2(10 − L), L(0) = 0. The answer is the length in inches of a fish over

time, with final adult size 10 inches.
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Solution:

Model: x′ + px = q with p, q constant has shortcut solution x = xp + xh where xp

is the equilibrium solution and xh = c/W , W = integrating factor.

Then L = 10 + c/W , W = e
∫
2dt = e2t. Solve for c: 0 = L(0) = 10 + c/e0. Answer:

L(t) = 10 − 10/e2t. Symbol L∞ = 10 = equilibrium solution. Symbol rB = 2 =
growth rate.

10. Solve von Bertalanffy’s equation to obtain the algebraic model

L(t) = L∞

(
1− e−rB(t−t0)

)
.

11. Assume von Bertalanffy’s model. Suppose field data L(0) = 0, L(1) = 5, L(2) = 7.
Display details using Exercise 10 to arrive for t0 = 0 at values L∞ = 25/3 and
rB = ln(5/2).

Solution:

Model: L(t) = L∞ (1− e−rB t) because t0 = 0.
Then L(0) = 0 holds. To satisfy the other two data items L(1) = 5, L(2) = 7 requires
values for L∞, rB satisfying the nonlinear system of equations

L∞
(
1− e−rB (1)

)
= 5,

L∞
(
1− e−rB (2)

)
= 7.

A computer algebra system is a reliable tool to solve these equations, giving L∞ =
25/3 and rB = ln(5/2). Rule ln(1/u) = − ln(u) converts the maple answer.

# Maple: Bertalanffy’s model with field data

eq1:=L * (1-exp(-r_B) ) = 5;

eq2:=L *(1-exp(-2*r_B)) = 7;

solve([eq1,eq2],[L,r_B]); # L = 25/3, r_B = -ln(2/5)

12. Assume von Bertalanffy’s model with field data L(0) = 0, L(1) = 10, L(2) = 13.
Find the expected length L∞ of the fish.
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§ Linear Algebra
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5.1 Vectors and Matrices

Exercises 5.1 �
Fixed vectors
Perform the indicated operation(s).

1.

(
1
−1

)
+

(
−2
1

)
Solution:

(
−1
0

)

2.

(
2
−2

)
−
(

1
−3

)

3.

 1
−1
2

+

 −21
−1


Solution:

 −10
1


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4.

 2
−2
9

−
 1
−3
7


5. 2

(
1
−1

)
+ 3

(
−2
1

)
Solution:

(
−4
1

)

6. 3

(
2
−2

)
− 2

(
1
−3

)

7. 5

 1
−1
2

+ 3

 −21
−1


Solution:

 −1−2
7



8. 3

 2
−2
9

− 5

 1
−3
7



9.

 1
−1
2

+

 −21
−1

−
 1

2
−3


Solution:

 −2−2
1



10.

 2
−2
4

−
 1
−3
5

−
 1

3
−2


Parallelogram Rule
Determine the resultant vector in two ways: (a) the parallelogram rule, and (b)
fixed vector addition.

11.

(
2
−2

)
+

(
1
−3

)
Solution:

(
3
−5

)
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# Maple: Parallelogram rule

with(VectorCalculus):opts:=font=[courier,bold,16];

A:=<2,-2>;B:=<1,-3>;

PlotVector([A,B,A+B], color = [red, blue,green],opts);

12. (2⃗ı− 2ȷ⃗) + (⃗ı− 3ȷ⃗)

13.

 2
2
0

+

 3
3
0


Solution:

 5
5
0


14. (2⃗ı− 2ȷ⃗+ 3k⃗) + (⃗ı− 3ȷ⃗− k⃗)

Toolkit
Let V be the data set of all fixed 2-vectors, V = R2. Define addition and
scalar multiplication componentwise. Verify the following toolkit rules by direct
computation.

15. (Commutative)

X⃗ + Y⃗ = Y⃗ + X⃗

Solution:

X⃗ + Y⃗ =

(
x1

x2

)
+

(
y1
y2

)
=

(
x1 + y1
x2 + y2

)
Y⃗ + X⃗ =

(
y1
y2

)
+

(
x1

x2

)
=

(
y1 + x1

y2 + x2

)
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Commutativity of addition of real numbers implies the result. ■

16. (Associative)

X⃗ + (Y⃗ + Z⃗) = (Y⃗ + X⃗) + Z⃗

17. (Zero)

Vector 0⃗ is defined and 0⃗ + X⃗ = X⃗

Solution:Define 0⃗ =

(
0
0

)
. Then:

0⃗ + X⃗ =

(
0
0

)
+

(
x1

x2

)
=

(
0 + x1

0 + x2

)
= X⃗ ■

18. (Negative)

Vector −X⃗ is defined and
X⃗ + (−X⃗) = 0⃗

19. (Distributive I)

k(X⃗ + Y⃗ ) = kX⃗ + kY⃗

Solution:The plan: expand both LHS and RHS of the identity and show they are
equal.

LHS = k(X⃗ + Y⃗ )

= k

((
x1

x2

)
+

(
y1
y2

))
= k

(
x1 + y1
x2 + y2

)
=

(
kx1 + ky1
kx2 + ky2

)
RHS = kX⃗ + kY⃗

= k

(
x1

x2

)
+ k

(
y1
y2

)
=

(
kx1

kx2

)
+

(
ky1
ky2

)
=

(
kx1 + ky1
kx2 + ky2

)
Therefore, LHS = RHS by the definition of vector equality: components are equal.
■

20. (Distributive II)

(k1 + k2)X⃗ = k1X⃗ + k2X⃗

21. (Distributive III)

k1(k2X⃗) = (k1k2)X⃗

Solution:Plan: expand both LHS and RHS of the identity and show they are equal.
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LHS = k1

(
k2X⃗

)
= k1

(
k2

(
x1

x2

))
= k1

(
k2x1

k2x2

)
=

(
k1k2x1

k1k2x2

)
RHS = (k1k2)X⃗

= (k1k2)

(
x1

x2

)
=

(
k1k2x1

k1k2x2

)
Therefore, LHS = RHS by the definition of vector equality: components are equal.
■

22. (Identity)

1X⃗ = X⃗

Subspaces
Verify that the given restriction equation defines a subspace S of V = R3. Use
Theorem 5.2, page 300.

23. z = 0

Solution:The equation z = 0 is a homogeneous linear equation. The Theorem applies:
S is a subspace of V .

24. y = 0

25. x+ z = 0

Solution:The equation x + z = 0 is a homogeneous linear equation. The Theorem
applies: S is a subspace of V .

26. 2x+ y + z = 0

27. x = 2y + 3z

Solution:The equation x = 2y+3z is a homogeneous linear equation x−2y−3z = 0.
The Theorem applies: S is a subspace of V .

28. x = 0, z = x

29. z = 0, x+ y = 0

Solution:Equations z = 0, x+y = 0 are homogeneous linear equations. The Theorem
applies: S is a subspace of V .

30. x = 3z − y, 2x = z
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31. x+ y + z = 0, x+ y = 0

Solution:Equations x+ y + z = 0, x+ y = 0 are homogeneous linear equations. The
Theorem applies: S is a subspace of V .

32. x+ y − z = 0, x− z = y

Test S Not a Subspace
Test the following restriction equations for V = R3 and show that the corre-
sponding subset S is not a subspace of V . Use Theorem 5.4 page 301.

33. x = 1

Solution:Vector 0⃗ is given by the equations x = 0, y = 0, z = 0. If 0⃗ is in S, then
equation x = 1 allows substitution of x = 0, resulting in the false equation 0 = 1.
Therefore, 0⃗ is not in S. Theorem 5.4 applies: S is not a subspace of V . ■

34. x+ z = 1

35. xz = 2

Solution:Vector 0⃗ is given by the equations x = 0, y = 0, z = 0. If 0⃗ is in S, then
equation xz = 2 allows substitution of x = 0, resulting in the false equation 0 = 2.
Therefore, 0⃗ is not in S. Theorem 5.4 applies: S is not a subspace of V . ■

36. xz + y = 1

37. xz + y = 0

Solution:Equation xz+y = 0 is nonlinear but homogeneous, therefore (1) of Theorem
5.4 does not apply. Both (2) or (3) in Theorem 5.4 will be tested instead of (1). Both
(2) and (3) hold, but only one of them is required. Let’s verify (2) by selecting a

vector A⃗ in S for which −A⃗ violates the equation xz + y = 0.

Choose A⃗ =

 1
1
−1

. Then xz+ y = (1)(−1)+ 1 = 0 and A⃗ is verified to belong to

S. Vector −A⃗ =

 −1−1
1

 fails to belong to S because xz+y = (−1)(−1)+1 = 2 ̸= 0.

Then (2) in Theorem 5.4 holds. Conclusion: S is not a subspace. ■

38. xyz = 0

39. z ≥ 0

Solution:The violation is from (2) in Theorem 5.4. Choose A =

 0
0
1

 in S. Then

−A =

 0
0
−1

 fails z ≥ 0 because z = −1. ■
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40. x ≥ 0 and y ≥ 0

41. Octant I

Solution:Octant 1 is defined by x ≥ 0. The proof parallels Exercise 39. ■

42. The interior of the unit sphere

Dot Product
Find the dot product of a⃗ and b⃗ .

43. a⃗ =

(
1
−1

)
and b⃗ =

(
0
−2

)
.

Solution:⃗a · b⃗ = 2

44. a⃗ =

(
1
2

)
and b⃗ =

(
1
−2

)
.

45. a⃗ =

 1
−1
0

 and b⃗ =

 0
−2
1

.

Solution:⃗a · b⃗ = 2

46. a⃗ =

 1
2
1

 and b⃗ =

 1
−2
0

.

47. a⃗ and b⃗ are in R169, a⃗ has all 169 components 1 and b⃗ has all components −1,
except four, which all equal 5.

Solution:⃗a · b⃗ = 169− 4 + (5)(4) = 185

48. a⃗ and b⃗ are in R200, a⃗ has all 200 components −1 and b⃗ has all components −1
except three, which are zero.

Length of a Vector
Find the length of the vector v⃗ .

49. v⃗ =

(
1
−1

)
.

Solution:
√
12 + (−1)2 =

√
2

50. v⃗ =

(
2
−1

)
.

51. v⃗ =

 1
−1
2

.

Solution:
√
12 + (−1)2 + 22 =

√
6
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52. v⃗ =

 2
0
2

.

Shadow Projection
Find the shadow projection d = a⃗ · b⃗/|b⃗ |.

53. a⃗ =

(
1
−1

)
and b⃗ =

(
0
−2

)
.

Solution:d = 1

54. a⃗ =

(
1
2

)
and b⃗ =

(
1
−2

)
.

55. a⃗ =

 1
−1
0

 and b⃗ =

 0
−2
1

.

Solution:d = 2/
√
5

56. a⃗ =

 1
2
1

 and b⃗ =

 1
−2
0

.

Projections and Reflections
Let L denote a line through the origin with unit direction u⃗ .

The projection of vector x⃗ onto L is P (x⃗ ) = du⃗ , where d = x⃗ · u⃗ is the shadow
projection.

The reflection of vector x⃗ across L is R(x⃗ ) = 2du⃗ − x⃗ (a generalized complex
conjugate).

57. Let u⃗ be the direction of the x-axis in the plane. Establish that P (x⃗ ) and R(x⃗ ) are
sides of a right triangle and P duplicates the complex conjugate operation z → z.
Include a figure.

Solution:A right triangle with sides a⃗ , b⃗ has third side b⃗ − a⃗ . The right angle
condition is verified by the Pythagorean identity |⃗a |2 + |b⃗ |2 = |b⃗ − a⃗ |2. a⃗ · b⃗ = 0,

which is equivalent to a⃗ ·b⃗ = 0. Let a⃗ = P (x⃗ ) = du⃗ and b⃗ = R(x⃗ )−P (x⃗ ) = du⃗− x⃗ .
Then:

a⃗ · b⃗ = du⃗ · (du⃗ − x⃗ )
= d2(u⃗ · u⃗ )− du⃗ · x⃗
= d2 − d2 = 0.

This proves that P (x⃗ ) and R(x⃗ ) are sides of a right triangle.

Complex conjugation is duplicated by the reflection R(x⃗ ) provided u⃗ is along the
x-axis, which means u⃗ = ı⃗ . Then for x⃗ = x1⃗ı + x2ȷ⃗ :

R(x⃗ ) = 2du⃗ − x⃗
= 2(x⃗ · u⃗ )⃗ı − x⃗
= 2x1.ı− x1⃗ı − x2ȷ⃗
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= x1.ı− x2ȷ⃗

Let z = x1 + x2i, i =
√
−1. Then z = x1 − x2i is the complex conjugate of z.

Complex numbers correspond to vectors by the mapping x1+x2i 7→
(
x1

x2

)
. Therefore,

z 7→ R(x⃗ ), showing that reflections duplicate complex conjugation in the special case
when L is the x-axis. ■

58. Let u⃗ be any direction in the plane. Establish that P (x⃗ ) and R(x⃗ ) are sides of a
right triangle. Draw a suitable figure, which includes x⃗ .

59. Let u⃗ be the direction of 2⃗ı+ ȷ⃗. Define x⃗ = 4⃗ı+3ȷ⃗. Compute the vectors P (x⃗ ) and
R(x⃗ ).

Solution: Let’s use fixed vectors for the computations:

x⃗ =

(
4
3

)
and u⃗ = c

(
2
1

)
where c = 1√

5

Then:

d = x⃗ · u⃗
= c

(
2
1

)
·
(
4
3

)
= 11c

dc = 11c2 = 11/5

P (x⃗ ) = du⃗ = dc

(
2
1

)
=

(
22/5
11/5

)
R(x⃗ ) = 2du⃗ − x⃗ = 2dc

(
2
1

)
−
(
4
3

)
=

(
4dc− 4
2dc− 3

)
=

(
44/5− 4
22/5− 3

)
=

(
24/5
7/5

)
# Projections and refections, Exercise 59

X:=<4,3>;u:=c*<2,1>;c:=1/sqrt(5);

d:=X.u; P:=d*u; R:=2*d*u-X;

# P = [22/5, 11/5], R = [24/5, 7/5]

60. Let u⃗ be the direction of ı⃗+2ȷ⃗. Define x⃗ = 3⃗ı+5ȷ⃗. Compute the vectors P (x⃗ ) and
R(x⃗ ).

Angle
Find the angle θ between the given vectors.

61. a⃗ =

(
1
−1

)
and b⃗ =

(
0
−2

)
.
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Solution:We will use identity cos(θ) = a⃗ · b⃗/∥a⃗∥ ∥b⃗∥

∥a⃗∥ =
√
2, ∥b⃗∥ =

√
4 = 2, a⃗ · b⃗ = 2, cos(θ) = 1/

√
2 = cos(π/4). Then θ = π/4 is

the acute angle between a⃗ and b⃗ .

62. a⃗ =

(
1
2

)
and b⃗ =

(
1
−2

)
.

63. a⃗ =

 1
−1
0

 and b⃗ =

 0
−2
1

.

Solution:∥a⃗∥ =
√
2, ∥b⃗∥ =

√
5, a⃗ · b⃗ = −3, cos(θ) = −3/

√
10. Then θ =

cos−1(−3/
√
10) = 2.819842099 radians is the acute angle between a⃗ and b⃗ .

64. a⃗ =

 1
2
1

 and b⃗ =

 1
−2
0

.

65. a⃗ =


1
−1
0
0

 and b⃗ =


0
−2
1
1

.

Solution:∥a⃗∥ =
√
2, ∥b⃗∥ =

√
6, a⃗ · b⃗ = 2, cos(θ) = 2/

√
12 = 1/

√
3. Then θ =

cos−1(2/
√
12) = 0.9553166184 radians is the acute angle between a⃗ and b⃗ .

66. a⃗ =


1
2
1
0

 and b⃗ =


1
−2
0
0

.

67. a⃗ =

 1
−1
2

 and b⃗ =

 2
−2
1

.

Solution:∥a⃗∥ =
√
6, ∥b⃗∥ =

√
4 + 4 + 1 = 3, a⃗ · b⃗ = 6, cos(θ) = 6/

√
54. Then

θ = cos−1(6/
√
54) = 0.6154797085 radians is the acute angle between a⃗ and b⃗ .

68. a⃗ =

 2
2
1

 and b⃗ =

 1
−2
2

.

Matrix Multiply
Find the given matrix product or else explain why it does not exist.

69.

(
1 1
1 −1

)(
1
−2

)
Solution:

(
−1
3

)
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70.

(
1 −1
1 0

)(
1
−2

)

71.

(
1 1
1 2

)(
1
−1

)
Solution:

(
0
−1

)

72.

(
1 2
3 1

)(
2
−1

)

73.

 1 1 1
1 −1 1
1 0 0

 1
−2
0


Solution:

−13
1



74.

 1 0 1
1 −1 0
1 1 0

 1
2
0



75.

 1 1 1
1 0 2
1 2 0

 1
3
1


Solution:

5
3
7



76.

 1 2 1
1 −2 0
1 1 −1

 1
2
1



77.

 1 1 1
1 −1 1
1 0 0

 1 0 0
0 −1 0
0 0 1


Solution:

 1 −1 1
1 1 1
1 0 0


# Maple: Answer check Exercise 77

A:=Matrix([[1 , 1 , 1],[1 ,-1 ,1],[1 , 0 , 0]]);

B:=Matrix([[1 , 0 , 0],[0 ,-1 ,0],[0 , 0 , 1]]);

A.B; # Matrix([[1, -1, 1], [1, 1, 1], [1, 0, 0]])

78.

 1 1 1
1 −1 1
1 0 0

 1 1 0
0 −1 0
0 0 1


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79.

(
1 1
−1 1

)(
1 0
1 2

)
Solution:

(
2 2
0 2

)

80.

(
1 1
−1 1

) 1 1 1
1 0 2
1 2 0



81.

 1 1
1 0
1 2

( 1 1
−1 1

)

Solution:

 0 2
1 1
−1 3



82.

(
1 1 1
1 0 1

) 1 1 1
1 0 2
1 2 0


Matrix Classification
Classify as square, non-square, upper triangular, lower triangular, scalar, diago-
nal, symmetric, non-symmetric. Cite as many terms as apply.

83.

(
1 0
0 2

)
Solution:square, upper triangular, lower triangular, diagonal, symmetric

84.

(
1 3
0 2

)

85.

(
1 3
4 2

)
Solution:square, non-symmetric

86.

(
1 3
3 2

)

87.

 1 3 4
5 0 0
0 0 0


Solution:square, non-symmetric

88.

 1 0 4
0 2 0
0 0 3


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89.

 1 3 4
3 2 0
4 0 3


Solution:square, symmetric

90.

 2 0 0
0 2 0
0 0 2


91.

(
i 0
0 2i

)
Solution:square, upper triangular, lower triangular, diagonal, symmetric

92.

(
i 3
3 2i

)
Digital Photographs
Assume integer 24-bit color encoding x = r + (256)g + (65536)b, which means r
units red, g units green and b units blue. Given matrixX = R+256G+65536B,
find the red, green and blue color separation matrices R, G, B. Computer assist
expected.

93. X =

(
514 3

131843 197125

)
Solution: R =

[
2 3

3 5

]
, G =

[
2 0

3 2

]
, B =

[
0 0

2 3

]
# Digital Photographs, Exercise 93

with(LinearAlgebra:-Modular):

X := Matrix([[514, 3], [131843, 197125]]);

R1:=Mod(2^16,X,integer);

R:=Mod(2^8,R1,integer);# R:=Matrix([[2,3],[3,5]]);

G:=(R1-R)/2^8;# G:=Matrix([[2,0],[3,2]]);

B:=(X-R-G*2^8)/2^16;# B:=Matrix([[0,0],[2,3]]);

ZERO:=R+256*G+65536*B-X;# ZERO:=Matrix([[0,0],[0,0]]);

94. X =

(
514 3

131331 66049

)

95. X =

(
513 7

131333 66057

)
Solution:

# Digital Photographs, Exercise 95

with(LinearAlgebra:-Modular):

X := Matrix([[513, 7], [131333, 66057]]);

R1:=Mod(2^16,X,integer);

R:=Mod(2^8,R1,integer);# R:=Matrix([[1,7],[5,9]]);

G:=(R1-R)/2^8;# G:=Matrix([[2,0],[1,2]]);

B:=(X-R-G*2^8)/2^16;# B:=Matrix([[0,0],[2,1]]);

ZERO:=R+256*G+65536*B-X;# ZERO:=Matrix([[0,0],[0,0]]);
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96. X =

(
257 7

131101 66057

)

97. X =

(
257 17

131101 265

)
Solution:

# Digital Photographs, Exercise 95

with(LinearAlgebra:-Modular):

X := Matrix([[257, 17], [131101, 265]]);

R1:=Mod(2^16,X,integer);

R:=Mod(2^8,R1,integer);# R:=Matrix([[1,17],[29,9]]);

G:=(R1-R)/2^8;# G:=Matrix([[1,0],[0,1]]);

B:=(X-R-G*2^8)/2^16;# B:=Matrix([[0,0],[2,0]]);

ZERO:=R+256*G+65536*B-X;# ZERO:=Matrix([[0,0],[0,0]]);

98. X =

(
65537 269
65829 261

)

99. X =

(
65538 65803
65833 7

)
Solution:

# Digital Photographs, Exercise 95

with(LinearAlgebra:-Modular):

X := Matrix([[65538, 65803], [65833, 7]]);

R1:=Mod(2^16,X,integer);

R:=Mod(2^8,R1,integer);# R:=Matrix([[2,11],[41,7]]);

G:=(R1-R)/2^8;# G:=Matrix([[0,1],[1,0]]);

B:=(X-R-G*2^8)/2^16;# B:=Matrix([[1,1],[1,0]]);

ZERO:=R+256*G+65536*B-X;# ZERO:=Matrix([[0,0],[0,0]]);

100. X =

(
259 65805
299 5

)

Matrix Properties
Verify the result.

101. Let C be an m × n matrix. Let X⃗ be column i of the n × n identity I. Define
Y⃗ = CX⃗. Verify that Y⃗ is column i of C.

Solution:To prove: the entries of Y⃗ are c1i, . . . , cni. Matrix multiply defines the
entries of CX⃗ to be

∑n
j=1 c1jxj , . . . ,

∑n
j=1 cnjxj . Because xj = 0 except for xi = 1,

then the entries of CX⃗ are c1i, . . . , cni, which matches the entries of column i of
matrix C. ■

102. Let A and C be an m× n matrices such that AC = 0. Verify that each column Y⃗
of C satisfies AY⃗ = 0⃗.

103. Let A be a 2× 3 matrix and let Y⃗1, Y⃗2, Y⃗3 be column vectors packaged into a 3× 3
matrix C. Assume each column vector Y⃗i satisfies the equation AY⃗i = 0⃗, 1 ≤ i ≤ 3.
Show that AC = 0.
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Solution:Let matrix A = (aij) be 2 × 3. Let matrix C = (cij) be 3 × 3. To prove:

AC = 0 provided the columns Y⃗ of C satisfy AY⃗ = 0⃗ .

Exercise 101 implies that ACX⃗ is column i of AC, provided X⃗ is column i of the
3 × 3 identity matrix. The same result implies CX⃗ = Y⃗ . then: ACX⃗ = AY⃗ = 0⃗ .
The result: the columns of AC are the zero vector. ■

104. Let A be an m × n matrix and let Y⃗1, . . . , Y⃗n be column vectors packaged into
an n × n matrix C. Assume each column vector Y⃗i satisfies the equation AY⃗i = 0⃗,
1 ≤ i ≤ n. Show that AC = 0.

Triangular Matrices
Verify the result.

105. The product of two upper triangular 2× 2 matrices is upper triangular.

Solution:Let A =

(
a b
0 c

)
, B =

(
d e
0 f

)
. Then:

AB =

(
a b
0 c

)(
d e
0 f

)
=

(
ad ac+ bf
0 cf

)
, which is upper triangular. ■

106. The product of two upper triangular n× n matrices is upper triangular.

107. The product of two triangular 2× 2 matrices is not necessarily triangular.

Solution:An example is required. Let A =

(
1 1
0 1

)
, B =

(
1 0
1 1

)
. Then:

AB =

(
1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
, which is not triangular. ■

108. The product of two lower triangular n× n matrices is upper triangular.

109. The product of two lower triangular 2× 2 matrices is lower triangular.

Solution:Let A =

(
a 0
b c

)
, B =

(
d 0
e f

)
. Then:

AB =

(
a 0
b c

)(
d 0
e f

)
=

(
ad ac+ bf
0 cf

)
, which is lower triangular. ■

An alternative proof uses transposes: (AB)T = BTAT is the product of upper tri-
angular matrices, therefore AB)T is upper triangular by Exercise 105. Because the
transpose swaps rows and columns then AB is lower triangular. ■

110. The only 3 × 3 matrices which are both upper and lower triangular are the 3 × 3
diagonal matrices.

Matrix Multiply Properties
Verify the result.
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111. The associative law A(BC) = (AB)C holds for matrix multiplication.
Sketch: Expand L = A(BC) entry Lij according to matrix multiply rules. Expand R =

(AB)C entry Rij the same way. Show Lij = Rij .

Solution:Let A = (aij), B = (bjk), C = (ckm). Then

BC = (djm) where djm =
∑

k bjkckm
AB = (eik) where eik =

∑
j aijbjk

Then

A(BC) = (fim) where

fim =
∑

j aijdjm
=
∑

j aij
∑

k bjkckm
=
∑

j

∑
k aijbjkckm

and

(AB)C = (gim) where

gim =
∑

k eikckm
=
∑

k

∑
j aijbjkckm

=
∑

j

∑
k aijbjkckm

The last equality holds by changing the order of summation. Then A(BC) = (AB)C
by equality of matrices. ■

112. The distributive law A(B + C) = AB +AC holds for matrices.
Sketch: Expand L = A(B + C) entry Lij according to matrix multiply rules. Expand

R = AB + AC entry Rij the same way. Show Lij =
∑n

k=1 aik(bkj + ckj) and Rij =∑n
k=1 aikbkj + aikckj . Then Lij = Rij .

113. For any matrix A the transpose formula (AT )T = A holds.
Sketch: Expand L = (AT )T entry Lij according to matrix transpose rules. Then Lij = aij .

Solution:Let L = (AT )T = (Lij), A = (aij) and AT = (bij). Then bij = aji. Because
L = BT , then Lij = bji = aij . Equality of matrices implies L = A. ■

114. For matrices A, B the transpose formula (A+B)T = AT +BT holds.
Sketch: Expand L = (A+B)T entry Lij according to matrix transpose rules. Repeat for

entry Rij of R = AT +BT . Show Lij = Rij .

115. For matrices A, B the transpose formula (AB)T = BTAT holds.
Sketch: Expand L = (AB)T entry Lij according to matrix multiply and transpose rules.

Repeat for entry Rij of R = BTAT . Show Lij = Rij .

Solution:Let L = (AB)T = (Lij) and R = BTAT = (Rij). To prove: L = R.
The proof is completed by proving that Lij = Rij . Let A = (aij), B = (bij),
C = BT = (bji), D = AT = (aji). Then:

AB = (eij) where eij =
∑

k aikbkj
BTAT = (fij) where fij =

∑
k cikdkj

Compare:

eij =
∑

k aikbkj
=
∑

k dkicjk
=
∑

k cjkdki
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= fji

Therefore,

(AB)T = (eij)
T = (fij) = BTAT . ■

116. For a matrix A and constant k, the transpose formula (kA)T = kAT holds.

Invertible Matrices
Verify the result.

117. There are infinitely many 2× 2 matrices A, B such that AB = 0

Solution:Let A =

(
0 a
0 0

)
and B =

(
b 0
0 0

)
for all possible values of a, b. Then

AB =

(
0 a
0 0

)(
b 0
0 0

)
=

(
0 0
0 0

)
■

118. The zero matrix is not invertible.

119. The matrix A =

(
1 2
0 0

)
is not invertible.

Solution:Assume A has an inverse a matrix B: AB = BA = I. Then B =

(
a b
c d

)
for some constants a, b, c, d and

I = AB

=

(
1 2
0 0

)(
a b
c d

)
=

(
a+ 2c b+ 2d

0 0

)
Matrix equality implies entries match. Then a+2c = 0, b+2d = 0, 0 = 0, 1 = 0. The
false equation 0 = 1 is a contradiction to the assumption that A has an inverse. ■

120. The matrix A =

(
1 2
0 1

)
is invertible.

121. The matrices A =

(
a b
c d

)
and B =

(
d −b
−c a

)
satisfy

AB = BA = (ad− bc)I.

Solution:

AB =

(
a b
c d

)(
d −b
−c a

)
=

(
ad− bc −ab+ ab
dc− cd ad− bc

)
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=

(
ad− bc 0

0 ad− bc

)
= (ad− bc)

(
1 0
0 1

)
= (ad− bc)I

Let a1 = d, b1 = −b, c1 = −c, d1 = a (case sensitive) and apply the results above:

BA =

(
a1 b1
c1 d1

)(
d1 −b1
−c1 a1

)
= (a1d1 − b1c1)I
= (ad− bc)I

Then: AB = BA = (ad− bc)I. ■

122. If AB = 0, then one of A or B is not invertible.

Symmetric Matrices
Verify the result.

123. The product of two symmetric n × n matrices A, B such that AB = BA is sym-
metric.

Solution:(AB)T = BTAT = BA = AB. ■

124. The product of two symmetric 2× 2 matrices may not be symmetric.

125. If A is symmetric, then so is A−1.
Sketch: Let B = A−1. Compute BT using transpose rules.

Solution:Assume A has inverse B = A−1. Then AB = BA = I and AT = A. To
prove: BT = B.

First I = IT = (AB)T = BTAT = BTA. Similarly, ABT = I. Then BTA = ABT =
I and BT is the (unique) inverse of A, i.e., BT = A−1 = B. ■

126. If B is an m× n matrix and A = BTB, then A is n× n symmetric.
Sketch: Compute AT using transpose rules.

5.2 Matrix Equations

Exercises 5.2 �
Identify RREF
Mark the matrices which pass the RREF Test, page 324. Explain the failures.

1.

 0 1 2 0 1
0 0 0 1 0
0 0 0 0 0


Solution:RREF. Each nonzero row has a leading one. Above and below a leading
one are zeros. Variable list =x1, x2, x3, x4, x5. The lead variables are x2, x4. Nonzero
rows appear in lead variable order x2, x4 Zero rows appear last.
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2.

 0 1 0 0 0
0 0 1 0 3
0 0 0 1 2



3.

 1 0 0 0
0 0 1 0
0 1 0 1


Solution:FAIL: not an RREF. The issue is row 3. It is an RREF after swapping rows
2 and 3. Lead variables are x1, x2.x3. The rows violate lead variable order: x1, x3, x2.

4.

 1 1 4 1
0 0 1 0
0 0 0 0


Lead and Free Variables
For each matrix A, assume a homogeneous system AX⃗ = 0⃗ with variable list x1,
. . . , xn. List the lead and free variables. Then report the rank and nullity of
matrix A.

5.

 0 1 3 0 0
0 0 0 1 0
0 0 0 0 0


Solution:Lead: x2, x4. Free: x1, x3, x5. Rank = 2 = number of lead variables. Nullity
= 3 = number of free variables.

6.

 0 1 0 0 0
0 0 1 0 3
0 0 0 1 2



7.

 0 1 3 0
0 0 0 1
0 0 0 0


Solution:Lead: x2, x4. Free: x1, x3. Rank = 2 = number of lead variables. Nullity
= 2 = number of free variables.

8.

 1 2 3 0
0 0 0 1
0 0 0 0



9.


1 2 3
0 0 0
0 0 0
0 0 0


Solution:Lead: x1. Free: x2, x3. Rank = 1 = number of lead variables. Nullity = 2
= number of free variables.

10.

 1 1 0
0 0 1
0 0 0


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11.

 1 1 3 5 0
0 0 0 0 1
0 0 0 0 0


Solution:Lead: x1, x5. Free: x2, x3, x4. Rank = 2 = number of lead variables. Nullity
= 3 = number of free variables.

12.

 1 2 0 3 4
0 0 1 1 1
0 0 0 0 0



13.


0 0 1 2 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


Solution:Lead: x3, x5. Free: x1, x2, x4. Rank = 2 = number of lead variables. Nullity
= 3 = number of free variables.

14.


0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



15.


0 1 0 5 0
0 0 1 2 0
0 0 0 0 1
0 0 0 0 0


Solution:Lead: x2, x3, x5. Free: x1, x4. Rank = 3 = number of lead variables. Nullity
= 2 = number of free variables.

16.


1 0 3 0 0
0 1 0 1 0
0 0 0 0 1
0 0 0 0 0


Elementary Matrices
Write the 3×3 elementary matrix E and its inverse E−1 for each of the following
operations, defined on page 323.

17. combo(1,3,-1)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply combo(1,3,-1)

E =

(
1 0 0
0 1 0
−1 0 1

)

E−1 =

(
1 0 0
0 1 0
1 0 1

)
, change entry 3,1 to additive inverse −(−1) = 1

Inverse rule for combo(s,t,c): replace entry t, s by −c.
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18. combo(2,3,-5)

19. combo(3,2,4)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply combo(3,2,4)

E =

(
1 0 0
0 1 4
0 0 1

)

E−1 =

(
1 0 0
0 1 −4
1 0 1

)
, change entry 2,3 to additive inverse −(4) = −4

20. combo(2,1,4)

21. combo(1,2,-1)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply combo(1,2-1)

E =

(
1 0 0
−1 1 0
0 0 1

)

E−1 =

(
1 0 0
1 1 0
1 0 1

)
, change entry 2,1 to additive inverse −(−1) = 1

22. combo(1,2,-e2)

23. mult(1,5)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply mult(1,5)

E =

(
5 0 0
0 1 0
0 0 1

)

E−1 =

(
1/5 0 0
0 1 0
1 0 1

)
, multiply I row 1 by 1/5

24. mult(1,-3)

25. mult(2,5)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply mult(2,5)
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E =

(
1 0 0
0 5 0
0 0 1

)

E−1 =

(
1 0 0
0 1/5 0
1 0 1

)
, multiply I row 2 by 1/5

26. mult(2,-2)

27. mult(3,4)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply mult(3,4)

E =

(
1 0 0
0 1 0
0 0 4

)

E−1 =

(
1 0 0
0 1 0
1 0 1/4

)
, multiply I row 3 by 1/4

28. mult(3,5)

29. mult(2,-π)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply mult(2,-π)

E =

(
1 0 0
0 −π 0
0 0 1

)

E−1 =

(
1 0 0
0 −1/π 0
1 0 1

)
, multiply I row 2 by −1/π

30. mult(1,e2)

31. swap(1,3)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply swap(1,3)

E =

(
0 1 0
0 0 1
1 0 0

)

E−1 = E =

(
0 1 0
1 0 1
1 0 0

)
, a swap is its own inverse

32. swap(1,2)
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33. swap(2,3)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply swap(2,3)

E =

(
1 0 0
0 0 1
0 1 0

)

E−1 = E =

(
1 0 0
0 0 1
0 1 0

)
, a swap is its own inverse

34. swap(2,1)

35. swap(3,2)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply swap(3,2)

E =

(
1 0 0
0 0 1
0 1 0

)

E−1 = E =

(
1 0 0
0 0 1
0 1 0

)
, a swap is its own inverse

36. swap(3,1)

Elementary Matrix Multiply
For each given matrix B1, perform the toolkit operation (combo, swap, mult)
to obtain the result B2. Then compute the elementary matrix E for the identical
toolkit operation. Finally, verify the matrix multiply equation B2 = EB1.

37.

(
1 1
0 3

)
, mult(2,1/3).

Solution:

B1 =

(
1 1
0 3

)
,

B2 =

(
1 1
0 1

)
after mult(2,1/3)

E =

(
1 0
0 1/3

)
which is I after mult(2,1/3)

EB1 =

(
1 0
0 1/3

)(
1 1
0 3

)
=

(
1 1
0 1

)
which equals B2

38.

 1 1 2
0 1 3
0 0 0

, mult(1,3).
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39.

 1 1 2
0 1 1
0 0 1

, combo(3,2,-1).

Solution:

B1 =

 1 1 2
0 1 1
0 0 1

,

B2 =

 1 1 2
0 1 0
0 0 1

 after combo(3,2,-1)

E =

 1 0 0
0 1 0
0 0 1

 after combo(3,2,-1)

=

 1 0 0
0 1 −1
0 0 1



40.

(
1 3
0 1

)
, combo(2,1,-3).

41.

 1 1 2
0 1 3
0 0 1

, swap(2,3).

Solution:

B1 =

 1 1 2
0 1 3
0 0 1


B2 =

 1 1 2
0 0 1
0 1 3

 after swap(2,3)

E =

 1 0 0
0 1 0
0 0 1

 after swap(2,3)

=

 1 0 0
0 0 1
0 1 0



42.

(
1 3
0 1

)
, swap(1,2).

Inverse Row Operations
Given the final frame B of a sequence starting with matrix A, and the given
operations, find matrix A. Do not use matrix multiply.

43. B =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,-3), mult(1,-2), swap(2,3).

Solution:The inverse operations in reverse order are:
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swap(2,3), mult(1,-1/2), combo(2,3,3), combo(1,2,1) 1 1 0
0 1 2
0 0 0

, given frame B 1 1 0
0 0 0
0 1 2

, after swap(2,3) −1/2 −1/2 0
0 0 0
0 1 2

, after mult(1,-1/2) −1/2 −1/2 0
0 0 0
0 1 2

, after combo(2,3,3) −1/2 −1/2 0
−1/2 −1/2 0
0 1 2

, after combo(1,2,1)

This is matrix A.

44. B =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,3), mult(1,2), swap(3,2).

45. B =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,3), mult(1,4), swap(1,3).

Solution:The inverse operations in reverse order are:

swap(1,3), mult(1,1/4), combo(2,3,-3), combo(1,2,1) 1 1 2
0 1 3
0 0 0

, given frame B 0 0 0
0 1 3
1 1 2

, after swap(1,3) 0 0 0
0 1 3
1 1 2

, after mult(1,1/4) 0 0 0
0 1 3
1 −2 −7

, after combo(2,3,-3) 0 0 0
0 1 3
1 −2 −7

, after combo(1,2,1)

This is matrix A.

46. B =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,4), mult(1,3), swap(3,2).

1329



5.2 Matrix Equations

Elementary Matrix Products
Given the first frame B1 of a sequence and elementary matrix operations E1, E2,
E3, find matrices F = E3E2E1 and B4 = FB1. Hint: Compute ⟨B4|F⟩ from

toolkit operations on ⟨B1|I⟩.

47. B1 =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,-3), mult(1,-2).

Solution:

⟨B1|I⟩ =

 1 1 0 1 0 0
0 1 2 0 1 0
0 0 0 0 0 1


=

 1 1 0 1 0 0
−1 0 2 −1 1 0
0 0 0 0 0 1

 after combo(1,2,-1)

=

 1 1 0 1 0 0
−1 0 2 −1 1 0
3 0 −6 3 −3 1

 after combo(2,3,-3)

=

 −2 −2 0 −2 0 0
−1 0 2 −1 1 0
3 0 −6 3 −3 1

 after mult(1,-2)

Then:

B4 =

 −2 −2 0
−1 0 2
3 0 −6

, F =

 −2 0 0
−1 1 0
3 −3 1



48. B1 =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,3), swap(3,2).

49. B1 =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), mult(1,4), swap(1,3).

Solution:

B4 =

 0 0 0
−1 0 1
4 4 8

, F =

 0 0 1
−1 1 0
4 0 0



50. B1 =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,4), mult(1,3).

Miscellany
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51. Justify with English sentences why all possible 2×2 matrices in reduced row-echelon
form must look like (

0 0
0 0

)
,

(
1 ∗
0 0

)
,(

0 1
0 0

)
,

(
1 0
0 1

)
,

where ∗ denotes an arbitrary number.

Solution: (1) If there are no leading ones then all rows are zeros.
(2) If there is one leading one then it occurs in column 1 or column 2, resulting in
the second and third forms.
(3) If there are two leading ones then one is in column 1 and the other is in column
2. The order of variables is preserved, so the leading one in column one must be in
row one. All other entries in a column with a leading one must be zero.

52. Display all possible 3 × 3 matrices in reduced row-echelon form. Besides the zero
matrix and the identity matrix, please report five other forms, most containing symbol
∗ representing an arbitrary number.

53. Determine all possible 4× 4 matrices in reduced row-echelon form.

Solution: No leading ones:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


One leading one:

1 ∗ ∗ ∗
0 0 0 0
0 0 0 0
0 0 0 0

,

0 1 ∗ ∗
0 0 0 0
0 0 0 0
0 0 0 0

,

0 0 1 ∗
0 0 0 0
0 0 0 0
0 0 0 0

,

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


Two leading ones:

1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

,

1 ∗ 0 ∗
0 0 1 ∗
0 0 0 0
0 0 0 0

,

1 ∗ ∗ 0
0 ∗ ∗ 1
0 0 0 0
0 0 0 0

,

0 1 0 ∗
0 0 1 ∗
0 0 0 0
0 0 0 0

,

0 1 ∗ 0
0 0 ∗ 1
0 0 0 0
0 0 0 0

,

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

,

Three leading ones:

1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 0

,

1 ∗ 0 0
0 0 1 0
0 0 0 1
0 0 0 0

,

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

,

Four leading ones:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


54. Display a 6× 6 matrix in reduced row-echelon form with rank 4 and only entries of

zero and one.

55. Display a 5× 5 matrix in reduced row-echelon form with nullity 2 having entries of
zero, one and two, but no other entries.
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Solution:


1 0 0 0 0
0 1 0 0 0
0 0 1 2 0
0 0 0 0 0
0 0 0 0 0


56. Display the rank and nullity of any n× n elementary matrix.

57. Let F = ⟨C|D⟩ and let E be a square matrix with row dimension matching F .
Display the details for the equality

EF = ⟨EC|ED⟩.

Solution:Matrix multiply of k × n matrix M against n ×m matrix N is defined by
the identity

MN = ⟨M col(N, 1)| · · · |M col(N,n)⟩
Assume C is k × n, D is n×m, F is k × (n+m). Then:

EF = ⟨E col(F, 1)| · · · |E col(F, n+m)⟩
EF = ⟨E col(C, 1)| · · · |E col(C, n)|E col(D, 1)| · · · |E col(D,m)⟩
EF = ⟨EC|ED⟩. ■

58. Let F = ⟨C|D⟩ and let E1, E2 be n×n matrices with n equal to the row dimension
of F . Display the details for the equality

E2E1F = ⟨E2E1C|E2E1D⟩.

59. Assume matrix A is invertible. Display details explaining why rref(⟨A|I⟩) equals
the matrix ⟨R|E⟩, where matrix R = rref(A) and matrix E = Ek · · ·E1. Symbols
Ei are elementary matrices in toolkit steps taking matrix A into reduced row-echelon
form. Suggestion: Use the preceding exercises.

Solution: Write R = rref(A) = En · · ·E1A with elementary matrices E1, . . . , En

representing the combo, swap, mult steps. Apply Exercise 57 to obtain

b ≡ En · · ·E1⟨A|I⟩ = ⟨En · · ·E1A|En · · ·E1I⟩ = ⟨R|B⟩
It remains to explain why matrix B equals rref(⟨A|I⟩).
Because A is square k× k, then B = ⟨R|E⟩ where E = En · · ·E1 is invertible k× k.
Leading ones of B occur in the first k columns. Above and below the leading ones
are zeros. Each leading one is in a column of the k × k identity I and these columns
appear in natural order of I. There are no other rows to consider, so B is in reduced

echelon form: B = rref(⟨A|I⟩). ■

60. Assume E1, E2 are elementary matrices in toolkit steps taking A into reduced row-
echelon form. Prove that A−1 = E2E1. In words, A−1 is found by doing the same
toolkit steps to the identity matrix.
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61. Assume matrix A is invertible and E1, . . . , Ek are elementary matrices in toolkit
steps taking A into reduced row-echelon form. Prove that A−1 = Ek · · ·E1.

Solution:Let E = Ek · · ·E1, an invertible matrix. Equation Ek · · ·E1A = rref(A)
means EA = I. By basic invertibility theorems, E is the inverse of A.

62. Assume A,B are 2×2 matrices. Assume A is invertible and rref(⟨A|B⟩) = ⟨I|D⟩.
Explain why the first column x⃗ of D is the unique solution of Ax⃗ = b⃗, where b⃗ is the
first column of B.

63. Assume A,B are n× n matrices with A invertible. Explain how to solve the matrix
equation AX = B for matrix X using the augmented matrix of A,B.

Solution:Multiply AX = B by the inverse of A. Then X = A−1B. Exercise 61
provides A−1 = En · · ·E1 in terms of elementary matrices E1. . . . , En. Exercises 57
and 59 apply:

E⟨A|B⟩ = ⟨ rref(A)|EB⟩ = rref(⟨A|B⟩)
Because X = A−1B = EB, then row-reduction of the augmented matrix of A and B
has X in the last n columns.

5.3 Determinants and Cramer’s Rule

Exercises 5.3 �
Determinant Notation
Write formulae for x and y as quotients of 2× 2 determinants. Do not evaluate
the determinants!

1.

(
1 −1
2 6

)(
x
y

)
=

(
−10

3

)

Solution: x =

∣∣∣∣ −10 −1
3 6

∣∣∣∣∣∣∣∣ 1 −1
2 6

∣∣∣∣ , y =

∣∣∣∣ 1 −10
2 3

∣∣∣∣∣∣∣∣ 1 −1
2 6

∣∣∣∣
2.

(
1 2
3 6

)(
x
y

)
=

(
10
−6

)

3.

(
0 −1
2 5

)(
x
y

)
=

(
−1
10

)

Solution: x =

∣∣∣∣ −1 −1
10 5

∣∣∣∣∣∣∣∣ 0 −1
2 5

∣∣∣∣ , y =

∣∣∣∣ 0 −1
2 10

∣∣∣∣∣∣∣∣ 0 −1
2 5

∣∣∣∣
4.

(
0 −3
3 10

)(
x
y

)
=

(
−1
2

)
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Sarrus’ 2× 2 rule
Evaluate det(A).

5. A =

(
2 1
1 2

)
Solution:det(A) = 3

6. A =

(
−2 1
1 −2

)

7. A =

(
2 −1
3 2

)
Solution:det(A) = 7

8. A =

(
5a 1
−1 2a

)

Sarrus’ rule 3× 3
Evaluate det(A).

9. A =

0 0 1
0 1 0
1 1 0


Solution:det(A) = −1

10. A =

0 0 1
0 1 0
1 0 0



11. A =

0 0 1
1 2 1
1 1 1


Solution:det(A) = −1

12. A =

0 0 −1
1 2 −1
1 1 −1


Inverse of a 2× 2 Matrix
Define matrix A and its adjugate C:

A =

(
a b
c d

)
, C =

(
d −b
−c a

)
.
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13. Verify AC = |A|
(
1 0
0 1

)
.

Solution:

AC =

(
a b
c d

)(
d −b
−c a

)
=

(
ad− bc −ab+ ba
cd− dc −cb+ da

)
=

(
|A| 0
0 |A|

)
= |A|

(
1 0
0 1

)

14. Display the details of the argument that |A| ≠ 0 implies A−1 exists and A−1 =
C

|A|
.

15. Show that A−1 exists implies |A| ≠ 0. Suggestion: Assume not, then AB = BA = I
for some matrix B and also |A| = 0. Find a contradiction using AC = |A|I from
Exercise 13.

Solution:Assume A−1 exists but |A| = 0. Then Exercise 13 gives AC = |A|I =(
0 0
0 0

)
. Multiply by A−1:

(
d −b
−c a

)
= C =

(
0 0
0 0

)
. Then a = b = c = d = 0

and A =

(
a b
c d

)
=

(
0 0
0 0

)
. The definition of inverse gives AA−1 = I which implies(

0 0
0 0

)
=

(
1 0
0 1

)
, a contradiction. ■

16. Calculate the inverse of

(
1 2
−2 3

)
using the formula developed in these exercises.

Unique Solution of a 2× 2 System
Solve AX⃗ = b⃗ for X⃗ using Cramer’s rule for 2× 2 systems.

17. A =

(
0 1
1 2

)
, b⃗ =

(
−1
1

)

Solution: x =

∣∣∣∣ −1 1
1 2

∣∣∣∣∣∣∣∣ 0 1
1 2

∣∣∣∣ = 2, y =

∣∣∣∣ 0 −1
1 1

∣∣∣∣∣∣∣∣ 0 1
1 2

∣∣∣∣ = −1

18. A =

(
0 1
1 2

)
, b⃗ =

(
5
−5

)

19. A =

(
2 0
1 2

)
, b⃗ =

(
−4
4

)

Solution: x =

∣∣∣∣ −4 0
4 2

∣∣∣∣∣∣∣∣ 2 0
1 2

∣∣∣∣ = −8/4 = −2, y =

∣∣∣∣ 2 −4
1 4

∣∣∣∣∣∣∣∣ 2 0
1 2

∣∣∣∣ = 12/4 = 3

1335



5.3 Determinants and Cramer’s Rule

20. A =

(
2 1
0 2

)
, b⃗ =

(
−10
10

)

Definition of Determinant

21. Let A be 3× 3 with zero first row. Use the college algebra definition of determinant
to show that det(A) = 0.

22. Let A be 3× 3 with equal first and second row. Use the college algebra definition of
determinant to show that det(A) = 0.

23. Let A =

(
a b
c d

)
. Use the college algebra definition of determinant to verify that

|A| = ad− bc.

Solution: The college algebra definition of |A| for a 2 × 2 matrix A involves two
permutations: Σ1 = (1, 2) and Σ2 = (2, 1). Then parity(Σ1) = 0, parity(Σ2) = 1
by counting the swaps needed to rearrange the permutation in natural order (1, 2).
By the college algebra definition:

|A| = (−1)parity(Σ1)a11a22 + (−1)parity(Σ2)a12a21
= a11a22 − a12a21

Substitute a11 = a, a12 = b, a21 = c, a22 = d. Then

|A| =
∣∣∣∣ a b
c d

∣∣∣∣ = ∣∣∣∣ a11 a12
a21 a22

∣∣∣∣
= a11a22 − a12a21
= ad− bc

The college algebra definition reduces to Sarrus’ 2 × 2 rule |A| =
∣∣∣∣ a b
c d

∣∣∣∣ = ad −

bc. ■

24. Let A =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
. Use the college algebra definition of determinant to verify

that the determinant of A equals

a11a22a33 + a21a32a13
+a31a12a23 − a11a32a23
−a21a12a33 − a31a22a13

Four Properties
Evaluate det(A) using the four properties for determinants, page 345.

25. A =

0 0 1
1 2 1
1 1 1


Solution:|A| = −1

|A| =

∣∣∣∣∣∣
0 0 1
1 2 1
1 1 1

∣∣∣∣∣∣
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|A| =

∣∣∣∣∣∣
0 0 1
1 2 1
0 −1 0

∣∣∣∣∣∣ Combination Rule: combo(2,3,-1)

|A| = (−1)

∣∣∣∣∣∣
1 2 1
0 0 1
0 −1 0

∣∣∣∣∣∣ Swap Rule: swap(1,2)

|A| = (−1)(−1)

∣∣∣∣∣∣
1 2 1
0 −1 0
0 0 1

∣∣∣∣∣∣ Swap Rule: swap(2,3)

|A| = (−1)(−1)(1)(−1)(1) Triangular Rule
|A| = −1

26. A =

0 0 1
3 2 1
1 1 1


27. A =

1 0 0
1 2 1
1 1 1


Solution:|A| = 1

|A| =

∣∣∣∣∣∣
1 0 0
1 2 1
1 1 1

∣∣∣∣∣∣
|A| =

∣∣∣∣∣∣
1 0 0
0 2 1
1 1 1

∣∣∣∣∣∣ Combination Rule: combo(1,2,-1)

|A| =

∣∣∣∣∣∣
1 0 0
0 2 1
0 1 1

∣∣∣∣∣∣ Combination Rule: combo(1,3,-1)

|A| = (−1)

∣∣∣∣∣∣
1 0 0
0 1 1
0 2 1

∣∣∣∣∣∣ Swap Rule: swap(2,3)

|A| = (−1)

∣∣∣∣∣∣
1 0 0
0 1 1
0 0 −1

∣∣∣∣∣∣ Combination Rule: combo(2,3,-2)

|A| = (−1)(1)(1)(−1) Triangular Rule
|A| = 1

28. A =

2 4 2
1 2 1
1 1 1



29. A =


0 0 1 0
1 2 1 0
1 1 1 1
2 1 1 2


Solution:|A| = 1

|A| =

∣∣∣∣∣∣∣∣
0 0 1 0
1 2 1 0
1 1 1 1
2 1 1 2

∣∣∣∣∣∣∣∣
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|A| = (−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 0 1 0
1 1 1 1
2 1 1 2

∣∣∣∣∣∣∣∣ Swap Rule: swap(1,2)

|A| = (−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 0 1 0
0 −1 0 1
2 1 1 2

∣∣∣∣∣∣∣∣ Combination Rule: combo(1,3,-1)

|A| = (−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 0 1 0
0 −1 0 1
0 −3 −1 2

∣∣∣∣∣∣∣∣ Combination Rule: combo(1,4,-2)

|A| = (−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 −1 0 1
0 0 1 0
0 −3 −1 2

∣∣∣∣∣∣∣∣ Swap Rule: swap(2,3)

|A| = (−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 −1 0 1
0 0 1 0
0 0 −1 −1

∣∣∣∣∣∣∣∣ Combination Rule: combo(2,4,-3)

|A| = (−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 −1 0 1
0 0 1 0
0 0 0 −1

∣∣∣∣∣∣∣∣ Combination Rule: combo(3,4,1)

|A| = (−1)(−1)(1)(−1)(1)(−1) Triangular Rule
|A| = 1

30. A =


1 2 1 0
0 1 2 1
0 0 1 2
0 0 0 1



31. A =


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2


Solution:|A| = 5

|A| =

∣∣∣∣∣∣∣∣
2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

∣∣∣∣∣∣∣∣
|A| = (−1)

∣∣∣∣∣∣∣∣
1 2 1 0
2 1 0 0
0 1 2 1
0 0 1 2

∣∣∣∣∣∣∣∣ Swap Rule: swap(1,2)

|A| = (−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 1 2 1
0 −3 −2 0
0 0 1 2

∣∣∣∣∣∣∣∣ Swap Rule: swap(2,3)
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|A| = (−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 1 2 1
0 0 4 3
0 0 1 2

∣∣∣∣∣∣∣∣ Combination Rule: combo(2,3,3)

|A| = (−1)(−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 1 2 1
0 0 1 2
0 0 4 3

∣∣∣∣∣∣∣∣ Swap Rule: swap(3,4)

|A| = (−1)(−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 1 2 1
0 0 1 2
0 0 0 −5

∣∣∣∣∣∣∣∣ Combination Rule: combo(3,4,-4)

|A| = (−1)(−1)(−1)(1)(1)(1)(−5) Triangular Rule
|A| = 5

32. A =


4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4


Elementary Matrices and the Four Rules
Find det(A).

33. A is 3× 3 and obtained from the identity matrix I by three row swaps.

Solution:|A| = −1

34. A is 7× 7, obtained from I by swapping rows 1 and 2, then rows 4 and 1, then rows
1 and 3.

35. A is obtained from the matrix

1 0 0
1 2 1
1 1 1

 by swapping rows 1 and 3, then two row

combinations.

Solution:|A| = (−1)

∣∣∣∣∣∣
1 0 0
1 2 1
1 1 1

∣∣∣∣∣∣ = (−1)(1) = −1

36. A is obtained from the matrix

1 0 0
1 2 1
1 1 1

 by two row combinations, then multiply

row 2 by −5.

More Determinant Rules
Cite the determinant rule that verifies det(A) = 0. Never expand det(A)! See
page 347.

37. A =

−1 5 1
2 −4 −4
1 1 −3


Solution:Dependent rows. Add rows 1 and 2 to get row 3.
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38. A =

0 0 0
2 −4 −4
1 1 −3



39. A =

4 −8 −8
2 −4 −4
1 1 −3


Solution:Common factor. Row 2 times 2 equals row 1.

40. A =

−1 5 0
2 −4 0
1 1 0



41. A =

−1 5 3
2 −4 0
1 1 3


Solution:Dependent rows. Row 1 plus row 2 equals row 3.

42. A =

−1 5 4
2 −4 −2
1 1 2


Cofactor Expansion and College Algebra
Evaluate the determinant with an efficient cofactor expansion.

43.

∣∣∣∣∣∣
2 5 1
2 0 −4
1 0 0

∣∣∣∣∣∣
Solution:Expand along row 3: |A| = (+1)(1)

∣∣∣∣ 5 1
0 −4

∣∣∣∣ = −20

44.

∣∣∣∣∣∣
2 5 1
2 0 −4
1 0 1

∣∣∣∣∣∣
45.

∣∣∣∣∣∣∣∣
2 5 0 0
2 1 4 0
1 1 1 1
1 0 0 0

∣∣∣∣∣∣∣∣
Solution:Expand along row 4:

|A| = (−1)(1)

∣∣∣∣∣∣
5 0 0
1 4 0
1 1 1

∣∣∣∣∣∣
Expand the 3× 3 determinant along row 1:

|A| = (−1)(1)(+1)(5)

∣∣∣∣ 4 0
1 1

∣∣∣∣ = (−1)(1)(+1)(5)(4) = −20
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46.

∣∣∣∣∣∣∣∣
0 2 0 1
2 3 2 0
1 1 1 0
1 2 1 1

∣∣∣∣∣∣∣∣

47.

∣∣∣∣∣∣∣∣∣∣
2 5 1 −1 1
0 −1 −4 1 −1
1 2 3 0 0
1 0 3 0 0
1 2 0 0 1

∣∣∣∣∣∣∣∣∣∣
Solution:|A| = 18
Column 4 has the most zeros. Expand along it:

|A| = (−1)(−1)D1 + (+1)(1)D2 where

D1 =

∣∣∣∣∣∣∣∣
0 −1 −4 −1
1 2 3 0
1 0 3 0
1 2 0 1

∣∣∣∣∣∣∣∣ , D2 =

∣∣∣∣∣∣∣∣
2 5 1 1
1 2 3 0
1 0 3 0
1 2 0 1

∣∣∣∣∣∣∣∣
The two 4× 4 cross-out determinants D1, D2 each have the most zeros in column 4.
Expand each along column 4:

D1 = (−1)(−1)

∣∣∣∣∣∣
1 2 3
1 0 3
1 2 0

∣∣∣∣∣∣+ (+1)(1)

∣∣∣∣∣∣
0 −1 −4
1 2 3
1 0 3

∣∣∣∣∣∣
D1 = (−1)(−1)(6) + (+1)(1)(8) = 14

D2 = (−1)(1)

∣∣∣∣∣∣
1 2 3
1 0 3
1 2 0

∣∣∣∣∣∣+ (+1)(1)

∣∣∣∣∣∣
2 5 1
1 2 3
1 0 3

∣∣∣∣∣∣
D2 = (−1)(1)(6) + (+1)(1)(10) = 4
Then
|A| = (−1)(−1)D1 + (+1)(1)D2 = 14 + 4 = 18

48.

∣∣∣∣∣∣∣∣∣∣
2 0 1 −1 1
0 −1 −4 1 −1
1 2 3 0 0
1 0 3 0 0
1 2 0 1 1

∣∣∣∣∣∣∣∣∣∣
Minors and Cofactors
Write out and then evaluate the minor and cofactor of each element cited for the

matrix A =

 2 5 y
x −1 −4
1 2 z


49. Row 1 and column 3.

Solution:Let A =

 2 5 y
x −1 −4
1 2 z

. Then minor(A, 1, 3) = cross-out determinant

of a13 =

∣∣∣∣ x −1
1 2

∣∣∣∣ = 2x+ 1 and cof(A, 1, 3) = (−1)1+3 minor(A, 1, 3) = 2x+ 1.
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# Minors and cofactors: Exercise 49

with(LinearAlgebra):

A:=Matrix([[2,5,y],[x,-1,-4],[1,2,z]]);

Minor(A,1,3);Minor(A,3,2);

# 2x+1, -8-xy

50. Row 2 and column 1.

51. Row 3 and column 2.

Solution:Then minor(A, 3, 2) = cross-out determinant of a3,2 =

∣∣∣∣ 2 y
x −4

∣∣∣∣ = −8−xy
and cof(A, 3, 2) = (−1)3+2 minor(A, 3, 2) = 8 + xy.

52. Row 3 and column 1.

Cofactor Expansion
Use cofactors to evaluate the determinant.

53.

∣∣∣∣∣∣
2 7 1
−1 0 −4
1 0 3

∣∣∣∣∣∣
Solution:Expand along column 2, which has the most zeros. Then

|A| = (−1)(7)
∣∣∣∣ −1 −4

1 3

∣∣∣∣ = −7
54.

∣∣∣∣∣∣
2 7 7
−1 1 0
1 2 0

∣∣∣∣∣∣
55.

∣∣∣∣∣∣∣∣
0 2 7 7
0 −1 1 0
3 1 2 0
0 −1 1 0

∣∣∣∣∣∣∣∣
Solution:|A| = 0. Expand along column 4. Then

|A| = (−1)(7)

∣∣∣∣∣∣
0 −1 1
3 1 2
0 −1 1

∣∣∣∣∣∣ = (−1)(7)(−1)(3)
∣∣∣∣ −1 1
−1 1

∣∣∣∣ = 0.

Alternatively, |A| = 0 due to equal rows 2 and 4.

56.

∣∣∣∣∣∣∣∣
0 2 7 7
0 −1 y 0
x 1 2 0
0 −1 1 0

∣∣∣∣∣∣∣∣

57.

∣∣∣∣∣∣∣∣∣∣
0 2 7 7 3
0 −1 0 0 1
x 1 2 0 −1
0 −1 1 0 0
0 −1 1 0 1

∣∣∣∣∣∣∣∣∣∣
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Solution:|A| = −7x. Expand along column 4. Then

|A| = (−1)(7)minor(A, 1, 4) = (−1)(7)|A1| where

A1 =


0 −1 0 1
x 1 2 −1
0 −1 1 0
0 −1 1 1


Expand |A1| along row 1:
|A1| = (−1)(−1)minor(A1, 1, 2) + (−1)(1)minor(A1, 1, 4)

|A1| =

∣∣∣∣∣∣
x 2 −1
0 1 0
0 1 1

∣∣∣∣∣∣+ (−1)

∣∣∣∣∣∣
x 1 2
0 −1 1
0 −1 1

∣∣∣∣∣∣
|A1| = x because the second determinant has identical rows 2, 3.
|A| = (−1)(7)|A1| = −7x

58.

∣∣∣∣∣∣∣∣∣∣
0 2 7 7 3
0 −1 2 0 1
x 1 2 0 −1
0 −1 1 0 0
0 −1 1 0 1

∣∣∣∣∣∣∣∣∣∣
Adjugate and Inverse Matrix
Find the adjugate of A and the inverse B of A. Check the answers via the
formulas A adj(A) = det(A)I and AB = I.

59. A =

(
2 7
−1 0

)
Solution: adj(A) =

(
0 −7
1 2

)
, |A| = 7, B = A−1 =

(
0 −1
1
7

2
7

)
# Adjugate and inverse, Exercise 59

A:=Matrix([[2,7],[-1,0]]);

B:=1/A;

Determinant(A); Adjoint(A);

(A . Adjoint(A)) - Determinant(A);# Expect the zero matrix

# Maple auto-inserts Matrix([[1,0],[0,1]])

60. A =

(
1 0
−1 2

)

61. A =

5 1 1
0 0 2
1 0 3


Solution:adj(A) =

 0 −3 2
2 14 −10
0 1 0

, |A| = 2,

B = A−1 =

 0 −3/2 1
1 7 −5
0 1/2 , 0


1343



5.3 Determinants and Cramer’s Rule

62. A =

5 1 2
2 0 0
1 0 3



63. A =


1 0 1 0
0 1 0 0
0 1 0 1
1 0 2 2



Solution:adj(A) =


−2 2 −2 1
0 −1 0 0
1 −2 2 −1
0 1 −1 0

, |A| = −1,

B = A−1


2 −2 2 −1
0 1 0 0
−1 2 −2 1
0 −1 1 0



64. A =


1 0 1 0
0 1 0 0
0 1 0 1
1 1 2 1


Transpose and Inverse

65. Verify that A = 1√
2

(
1 1
−1 1

)
satisfies AT = A−1.

Solution: A−1 =

(
1/2
√
2 −1/2

√
2

1/2
√
2 1/2

√
2

)
# Transpose and Inverse, Exercise 65

A:=(1/sqrt(2))*Matrix([[1,1],[-1,1]]);

B:=1/A;

C:=A^+;

B-C;# Expect a zero matrix

66. Find all 2× 2 matrices A =

(
a b
c d

)
such that det(A) = 1 and AT = A−1.

67. Find all 3× 3 diagonal matrices A such that AT = A−1.

Solution:Let A = diag(a, b, c). Then A−1 = diag(1/a, 1/b, 1/c) if and only if |A| =
abc ̸= 0. Because AT = A, then AT = A−1 holds if and only if diag(a, b, c) =
diag(1/a, 1/b, 1/c) or equivalently a2 = b2 = c2 = 1. The matrices are

diag(1, 1, 1), diag(1, 1,−1), diag(1,−1, 1), diag(1,−1,−1),
diag(−1, 1, 1), diag(−1,−1, 1), diag(−1, 1,−1), diag(−1,−1,−1)

68. Find all 3× 3 upper triangular matrices A such that AT = A−1.
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69. Find all n× n diagonal matrices A such that AT = A−1.

Solution:See Exercise 67 for n = 3. The matrices are diag(a1, . . . , an) for all possible
choices of ai = ±1, 1 ≤ i ≤ n.

70. Determine the n× n triangular matrices A such that det(A) = 1 and AT = adj(A).

Elementary Matrices
Find the determinant of A from the given equation.

71. Let A = 5E2E1 be 3 × 3, where E1 multiplies row 3 of the identity by −7 and E2

swaps rows 3 and 1 of the identity. Hint: A = (5I)E2E1.

Solution:|A| = 875.

Apply the determinant product rule: |A| = |5I||E2||E1|. Row operations mult(3,-7)
and swap(3,1) applied to the identity matrix imply |E1| = −7, |E2| = −1. Then
|A| = |5I||E2||E1| = 53(−7)(−1) = 875.

72. Let A = 2E2E1 be 5 × 5, where E1 multiplies row 3 of the identity by −2 and E2

swaps rows 3 and 5 of the identity.

73. Let A = E2E1B be 4× 4, where E1 multiplies row 2 of the identity by 3 and E2 is
a combination. Find |A| in terms of |B|.
Solution:|A| = |E2||E1||B| = (3)(1)|B| = 3|B|

74. Let A = 3E2E1B be 3× 3, where E1 multiplies row 2 of the identity by 3 and E2 is
a combination. Find |A| in terms of |B|.

75. Let A = 4E2E1B be 3 × 3, where E1 multiplies row 1 of the identity by 2, E2 is a
combination and |B| = −1.
Solution:|A| = |4I||E2||E1||B| = 43(1)(−1) = −64

76. Let A = 2E3E2E1B
3 be 3× 3, where E1 multiplies row 2 of the identity by −1, E2

and E3 are swaps and |B| = −2.

Determinants and the Toolkit
Display the toolkit steps for rref(A). Using only the steps, report:

• The determinant of the elementary matrix E for each step.

• The determinant of A.

77. A =

2 3 1
0 0 2
1 0 4


Solution:

A =

 2 3 1
0 0 2
1 0 4


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A1 =

 1 0 4
0 0 2
2 3 1

 swap(1,3), |E1| = −1

A2 =

 1 0 4
0 0 2
0 3 −3

 combo(1,3-2), |E2| = 1

A3 =

 1 0 4
0 3 −3
0 0 2

 swap(2,3), |E3| = −1

|A3| = 6 Triangular Rule
Result: E1A = A1, E2A1 = A2, E3A2 = A3. Summary: E3E2E1A = A3. Then
|E3||E2||E1||A| = |A3|. Insert values: (−1)(1)(−1)|A| = 6 or |A| = 6.

# Determinants and the Toolkit, Exercise 77

A:=Matrix([[2,3,1],[0,0,2],[1,0,4]]);

Determinant(A);

78. A =

2 3 1
0 3 0
1 0 2



79. A =


2 3 1 0
0 3 0 0
0 3 0 2
1 0 2 1


Solution:|A| = −18

80. A =


2 3 1 2
0 3 0 0
2 6 1 2
1 0 2 1


Determinant Product Rule
Apply the product rule det(AB) = det(A) det(B).

81. Let det(A) = 5 and det(B) = −2. Find det(A2B3).

Solution:|A2B3| = |AABBB| = |A|2|B|3 = 52(−2)3 = −200

82. Let det(A) = 4 and A(B − 2A) = 0. Find det(B).

Solution:Hint: AB = (2I)A2

83. Let A = E1E2E3 where E1, E2 are elementary swap matrices and E3 is an elemen-
tary combination matrix. Find det(A).

Solution:A| = |E1||E2||E3| = (−1)(−1)(1) = 1

84. Assume det(AB +A) = 0 and det(A) ̸= 0. Show that det(B + I) = 0.

Solution:Hint: AB +A = A(B + I)
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Cramer’s 2× 2 Rule
Assume (

a b
c d

)(
x
y

)
=

(
e
f

)
.

85. Derive the formula (
a b
c d

)(
x 0
y 1

)
=

(
e b
f d

)
.

Solution:The given matrix identity provides equations ax + by = e, cx + dy = f .
Then(
a b
c d

)(
x 0
y 1

)
=

(
ax+ by 0a+ 1b
cx+ dy 0c+ 1d

)
=

(
ax+ by b
cx+ dy d

)
=

(
e b
f d

)

86. Derive the formula (
a b
c d

)(
1 x
0 y

)
=

(
a e
c f

)
.

87. Use the determinant product rule to derive the Cramer’s Rule formula

x =

∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .
Solution:The plan: use Exercise 85 and the determinant product rule.∣∣∣∣ a b
c d

∣∣∣∣ ∣∣∣∣ x 0
y 1

∣∣∣∣ = ∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ x =

∣∣∣∣ e b
f d

∣∣∣∣
x =

∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣
88. Derive, using the determinant product rule, the Cramer’s Rule formula

y =

∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .

Cramer’s 3× 3 Rule
Let A be the coefficient matrix in the equation(

a11 a12 a13
a21 a22 a23
a31 a32 a33

)x1
x2
x3

 =

b1
b2
b3

 .
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89. Derive the formula

A

(
x1 0 0
x2 1 0
x3 0 1

)
=

(
b1 a12 a13
b2 a22 a23
b3 a32 a33

)

Solution:Definition A =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
and the given identity provide:

a11x1 + a12x2 + a13x3 = b1,
a21x1 + a22x2 + a23x3 = b2,
a31x1 + a32x2 + a33x3 = b3

Let LHS and RHS denote the two sides of the claimed formula. Matrix multiply:

LHS = A

(
x1 0 0
x2 1 0
x3 0 1

)

LHS =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)(
x1 0 0
x2 1 0
x3 0 1

)

LHS =

(
a11x1 + a12x2 + a13x3, a12 a13
a21x1 + a22x2 + a23x3, a22 a23
a31x1 + a32x2 + a33x3, a32 a33

)

LHS =

(
b1 a12 a13
b2 a22 a23
b3 a32 a33

)
by the three equations above

LHS = RHS ■

90. Derive the formula

A

(
1 0 x1
0 1 x2
0 0 x3

)
=

(
a11 a12 b1
a21 a22 b2
a31 a32 b3

)

91. Derive, using the determinant product rule, the Cramer’s Rule formula

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
.

Solution:Use Exercise 89 and the determinant product rule:

|A|

∣∣∣∣∣∣
x1 0 0
x2 1 0
x3 0 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
Then:

|A|x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
|A|
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92. Use the determinant product rule to derive the Cramer’s Rule formula

x3 =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
.

Cayley-Hamilton Theorem

93. Let A =

(
1 −1
2 3

)
. Expand |A − rI| to compute the characteristic polynomial of A.

Answer: r2 − 4r + 5.

Solution:|A− rI| =
∣∣∣∣ 1− r −1

2 3− r

∣∣∣∣ = (1− r)(3− r) + 2 = r2 − 4r + 5

94. Let A =

(
1 −1
2 3

)
. Apply the Cayley-Hamiltion theorem to justify the equation

A2 − 4A+ 5

(
1 0
0 1

)
=

(
0 0
0 0

)
.

95. Let A =

(
a b
c d

)
. Expand |A− rI| by Sarrus’ Rule to obtain r2− (a+ b)r+(ad− bc).

Solution:|A− rI| =
∣∣∣∣ a− r b

c d− r

∣∣∣∣ = (a− r)(d− r)− bc = r2− (a+ b)r+ (ad− bc)

96. The result of the previous exercise is often written as (−r)2 + trace(A)(−r) + |A|
where trace(A) = a+ d = sum of the diagonal elements. Display the details.

97. Let λ2− 2λ+1 = 0 be the characteristic equation of a matrix A. Find a formula for
A2 in terms of A and I.

Solution:Cayley-Hamilton provides equation A2 − 2A +

(
1 0
0 1

)
=

(
0 0
0 0

)
. Solve for

A2: A2 = 2A− I.

98. Let A be an n × n triangular matrix with all diagonal entries zero. Prove that
An = 0.

99. Find all 2×2 matrices A such that A2 =

(
0 0
0 0

)
, discovered from values of trace(A)

and |A|.
Solution:Exercise 96 reports the characteristic equation in the form |A − rI| =
(−r)2 + trace(A)(−r) + |A|. Cayley-Hamilton provides the identity (−A)2 +
trace(A)(−A) + |A|I = 0. If A2 is the zero matrix, then trace(A)(−A) + |A|I = 0.

Then trace(A)A = |A|I. Let A =

(
a b
c d

)
. Then the requirement becomes:
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(a+ d)

(
a b
c d

)
=

(
ad− bc 0

0 ad− bc

)
which is the set of equations

a(a+ d) = ad− bc,
b(a+ d) = 0,
c(a+ d) = 0,
d(a+ d) = ad− bc

The solution:

c = −a2/b, d = −a for all a and b ̸= 0,
a = b = c = d = 0

# Cayley-Hamilton Theorem, Exercise 99

eqs:=a*(a+d) = a*d-b*c,b*(a+d) = 0,

c*(a+d) = 0,d*(a+d) = a*d-b*c;

solve({eqs},{a,b,c,d});

100. Find four 2× 2 matrices A such that A2 =

(
1 0
0 1

)
.

Applied Definition of Determinant
Miscellany for permutation matrices and the sampled product page 358

A.P=(A1 · P1)(A2 · P2) · · · (An · Pn)
=a1σ1 · · · anσn .

101. Compute the sampled product of

5 3 1
0 5 7
1 9 4

 and

1 0 0
0 0 1
0 1 0

 .

Solution:A1.P1 = (5, 3, 1) · (1, 0, 0) = 5, A2 · P2 = 7, A3 · P3 = 9. Then A.P =
(5)(7)(9) = 315.

102. Compute the sampled product of

5 3 3
0 2 7
1 9 0

 and

0 0 1
0 1 0
1 0 0

 .

103. Determine the permutation matrices P required to evaluate det(A) when A is 2×2.

Solution:

(
1 0
0 1

)
and

(
0 1
1 0

)
104. Determine the permutation matrices P required to evaluate det(A) when A is 4×4.

Three Properties
Reference: Page 359, three properties that define a determinant

105. Assume n = 3. Prove that the three properties imply D = 0 when two rows are
identical.

Solution:Swap the identical rows to obtain determinant F . Then D = −F by the
swap property. Since the rows are unchanged, then F = D. Then D = −F = −D
and finally D = 0.

106. Assume n = 3. Prove that the three properties imply D = 0 when a row is zero.
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5.4 Vector Spaces, Independence, Basis

Exercises 5.4 �
Scalar and Vector General Solution
Given the scalar general solution of Ax⃗ = 0⃗, find the vector general solution

x⃗ = t1u⃗1 + t2u⃗2 + · · ·

where symbols t1, t2, . . . denote arbitrary constants and u⃗1, u⃗2, . . . are fixed
vectors.

1. x1 = 2t1, x2 = t1 − t2, x3 = t2

Solution:Let x⃗ =

 x1

x2

x3

 =

 2t1
t1 − t2

t2

. Compute the partial derivatives of x⃗ on

symbols t1, t2:

∂x⃗/∂t1 =

 2
1
0

 , ∂x⃗/∂t2 =

 0
−1
1

.

Let u⃗1 =

 2
1
0

 , u⃗2 =

 0
−1
1

.

Then the vector general solution is

x⃗ = t1u⃗1 + t2u⃗2 = t1

 2
1
0

+ t2

 0
−1
1


The vector partial derivatives create vectors u⃗1, u⃗2, which are called Strang’s Spe-
cial Solutions. ■

2. x1 = t1 + 3t2, x2 = t1, x3 = 4t2, x4 = t2

3. x1 = t1, x2 = t2, x3 = 2t1 + 3t2

Solution:

x⃗ = t1

 1
0
2

+ t2

 0
1
3

 ■

4. x1 = 2t1 + 3t2 + t3, x2 = t1, x3 = t2, x4 = t3

Vector General Solution
Find the vector general solution x⃗ of Ax⃗ = 0⃗.

5. A =

(
1 2
2 4

)
Solution:
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A =

(
1 2
2 4

)
Shortcut: augmented matrix ⟨A|⃗0⟩ not used.

A1 =

(
1 2
0 0

)
combo(1,2,-2), found rref(A).

Lead variable: x1. Free variable: x2

Assign symbols to free variables: x2 = t1 (invented symbol t1)
Scalar Equations with isolated lead variables:
x1 = −2x2,
0 = 0
Substitute symbols and list variables in order:
x1 = −2t1,
x2 = t1

Let x⃗ =

(
x1

x2

)
=

(
−2t1

t1

)
. There is only one partial derivative to find:

u⃗1 = ∂x⃗/∂t1 =

(
−2
1

)
.

The vector general solution is

x⃗ = t1u⃗1 = t1

(
−2
1

)
.

There is no known efficient shortcut which finds the vector general solution without
also finding the scalar general solution. The paper and pencil solution should be
learned by a few examples. An answer check is done by computer as shown below.
Computer answers often look different than paper and pencil answers. It can be
nontrivial to see that both answers are correct!

# Vector General Solution: Exercise 5

with(LinearAlgebra):

A:=Matrix([[1,2],[2,4]]);

X:=LinearSolve(A,<0,0>,free=’t’);

u1:=map(x->diff(x,t[1]),X);

# u1 = <-2,1>

6. A =

(
1 −1
−1 1

)

7. A =

 1 2 0
2 4 0
0 0 0


Solution: x⃗ = t1u⃗1 + t2u⃗2 = t1

 −21
0

+ t2

 0
0
1

. ■

8. A =

 1 1 −1
1 1 0
0 0 1



9. A =


1 1 −1 0
1 1 0 0
0 0 1 0
2 2 −1 0


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Solution: x⃗ = t1u⃗1 + t2u⃗2 = t1


−1
1
0
0

+ t2


0
0
0
1

. ■

10. A =


1 1 0 0
2 2 0 0
0 0 1 1
0 0 2 2


Dimension

11. Give four examples in R3 of S = span(v⃗1, v⃗2, v⃗3) (3 vectors required) which have
respectively dimensions 0, 1, 2, 3.

Solution:Let w⃗1, w⃗2, w⃗3 be the columns in order of the 3× 3 identity matrix. Define
S0 = {⃗0, 0⃗, 0⃗}, S1 = {⃗0, 0⃗, w⃗1}, S2 = {⃗0, w⃗1, w⃗2}, S3 = {w⃗1, w⃗2, w⃗3}.
The dim(Si) = i, 0 ≤ i ≤ 3. ■

12. Give an example in R3 of 2-dimensional subspaces S1, S2 with only the zero vector
in common.

13. Let S = span(v⃗1, v⃗2) in abstract vector space V . Explain why dim(S) ≤ 2.

Solution:The dimension k of S is the number of vectors in a basis for S. Vectors v⃗1,
v⃗2 already span S because of the equation S = span(v⃗1, v⃗2). If v⃗1, v⃗2 are independent
then they form a basis for S and dim(S) = 2. If v⃗1, v⃗2 are dependent and nonzero
then one of them is a basis for S and dim(S) = 1. If v⃗1 = v⃗2 = 0⃗ then S is the span
of the zero vector and dim(S) = 0. ■

14. Let S = span(v⃗1, . . . , v⃗k) in abstract vector space V . Explain why dim(S) ≤ k.

15. Let S be a subspace of R3 with basis v⃗1, v⃗2. Define v⃗3 to be the cross product of
v⃗1, v⃗2. What is dim(span(v⃗2, v⃗3))?

Solution:dim(span(v⃗2, v⃗3)) = 2 because it is known that the cross product is orthog-
onal to both v⃗1 and v⃗2, hence independent of both vectors. ■

16. Let S1, S2 be subspaces of R4 such that dim(S1) = dim(S2) = 2. Assume S1, S2

have only the zero vector in common. Prove or give a counter-example: the span of
the union of S1, S2 equals R4.

Independence in Abstract Spaces

17. Assume linear combinations of vectors v⃗1, v⃗2 are uniquely determined, that is, a1v⃗1+
a2v⃗2 = b1v⃗1 + b2v⃗2 implies a1 = b1, a2 = b2. Prove this result: If c1v⃗1 + c2v⃗2 = 0⃗,
then c1 = c2 = 0.

Solution:Let d1 = d2 = 0. Write the hypothesis c1v⃗1 + c2v⃗2 = 0⃗ in the form c1v⃗1 +
c2v⃗2 = d1v⃗1 + d2v⃗2 and apply the uniqueness assumption: c1 = d1 = 0, c2 = d2 =
0. ■
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18. Assume the zero linear combination of vectors v⃗1, v⃗2 is uniquely determined, that is,
c1v⃗1 + c2v⃗2 = 0⃗ implies c1 = c2 = 0. Prove this result: If a1v⃗1 + a2v⃗2 = b1v⃗1 + b2v⃗2,
then a1 = b1, a2 = b2.

19. Prove that two nonzero vectors v⃗1, v⃗2 in an abstract vector space V are independent
if and only if each of v⃗1, v⃗2 is not a constant multiple of the other.

Solution:Organize the proof as A <==> B where A is the independence statement
and B is the constant multiple statement.

Proof A => B: Assume A: the vectors are independent. If B fails then v⃗1 = cv⃗2 or
v⃗2 = cv⃗1 for some constant c. Both possibilities lead to an equation c1v⃗1 + c2v⃗2 = 0⃗
with one of c1, c2 equal to 1, implying dependence of the vectors, a violation to
assumption A. Therefore, A => B.

Proof B => A: Assume B: neither of v⃗1, v⃗2 is a constant multiple of the other. To
prove: independence of the vectors (conclusion A). Independence test: assume for
some constants c1, c2 the equation c1v⃗1+c2v⃗2 = 0⃗ holds. We show c1 = c2 = 0. Let’s
assume c1 = c2 = 0 is false. Renumbering allows the assumption c1 ̸= 0. Divide:
v⃗1 + (c2/c1)v⃗2 = 0⃗. Rearrange to equation v⃗1 = cv⃗2 where c = −c2/c1 is a constant.
Equation v⃗1 = cv⃗2 violates hypothesis B, contradiction. ■

20. Let v⃗1 be a vector in an abstract vector space V . Prove that the one-element set v⃗1
is independent if and only if v⃗1 is not the zero vector.

21. Let V be an abstract vector space and assume v⃗1, v⃗2 are independent vectors in V .
Define u⃗1 = v⃗1 + v⃗2, u⃗2 = v⃗1 + 2v⃗2. Prove that u⃗1, u⃗2 are independent in V .
Advice: Fixed vectors not assumed! Bursting the vector packages is impossible, there are

no components.

Solution:The details are to use only the definition of vector space. A common error is
to assume that the vectors have components, e.g., the vectors are fixed vectors from
some Rn. The error is the assumption that V = Rn, which was never assumed.

The proof is organized as A => B where A is independence of v⃗1, v⃗2 and B is
independence of u⃗1, u⃗2.

Assume A: Vectors v⃗1, v⃗2 are independent in V and u⃗1 = v⃗1 + v⃗2, u⃗2 = v⃗1 + 2v⃗2.
To prove B: Vectors u⃗1, u⃗2 are independent in V .

Independence test: Assume c1u⃗1 + c2u⃗2 = 0⃗ and prove c1 = c2 = 0.
Expand the equation c1u⃗1 + c2u⃗2 = 0⃗ using the definitions of u⃗1, u⃗2:

c1u⃗1 + c2u⃗2 = 0⃗ hypothesis of the independence test
c1(v⃗1 + v⃗2) + c2(v⃗1 + 2v⃗2) = 0⃗ use definitions of u⃗1, u⃗2

(c1 + c2)v⃗1 + (c1 + 2c2)v⃗2 = 0⃗ use the vector space toolkit
d1v⃗1 + d2v⃗2 = 0⃗ where d1 = c1 + c2, d2 = c1 + 2d2

Independence of v⃗1, v⃗2 is applied to conclude d1 = 0, d2 = 0, which is the system of
equations

c1 + c2 = 0, c1 + 2c2 = 0 or

(
1 1
1 2

)(
c1
c2

)
=

(
0
0

)
The 2× 2 matrix has an inverse, therefore c1 = c2 = 0, as was to be proved.

The proof of A => B is complete. ■
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22. Let V be an abstract vector space and assume v⃗1, v⃗2, v⃗3 are independent vectors
in V . Define u⃗1 = v⃗1 + v⃗2, u⃗2 = v⃗1 + 4v⃗2, u⃗3 = v⃗3 − v⃗1. Prove that u⃗1, u⃗2, u⃗3 are
independent in V .

23. Let S be a finite set of independent vectors in an abstract vector space V . Prove
that none of the vectors can be the zero vector.

Solution:Let the vectors be listed as v⃗1, . . . , v⃗k. The contrapositive statement A =>
B will be proved where A is the statement that one of the vectors is the zero vector
and B is the statement that the vectors are dependent.

Assume A. By renumbering if necessary, assume v⃗1 = 0⃗. Then

1v⃗1 +

k∑
i=2

0v⃗i = 0⃗

By definition, the vectors are dependent. Hence B. ■

24. Let S be a finite set of independent vectors in an abstract vector space V . Prove
that no vector in the list can be a linear combination of the other vectors.

The Spaces Rn

25. (Scalar Multiply) Let x⃗ =

x1

x2

x3

 have components measured in centimeters. Re-

port constants c1, c2, c3 for re-scaled data c1x⃗, c2x⃗, c3x⃗ in units of kilometers, meters
and millimeters.

Solution:One meter = 100 cm = 1000 millimeters. One kilometer = 1000 meters.
Then c1 = (1/100)/1000 kilometers, c2 = 1/100 meters, c3 = (1/100)(1000) = 1/10
millimeters

26. (Matrix Multiply) Let u⃗ =
(
x1, x2, x3, p1, p2, p3

)T
have position x-units in kilo-

meters and momentum p-units in kilogram-centimeters per millisecond. Determine a
matrix M such that the vector y⃗ = Mu⃗ has SI units of meters and kilogram-meters
per second.

27. Let v⃗1, v⃗2 be two independent vectors in Rn. Assume c1v⃗1+c2v⃗2 lies strictly interior
to the parallelogram determined by v⃗1, v⃗2. Give geometric details explaining why
0 < c1 < 1 and 0 < c2 < 1.

Solution:If the two vectors are specialized to ı⃗ and ȷ⃗, then the parallelogram is a
square with vertices (0, 0), (1, 0), (1, 1), (0, 1). A vector c1⃗ı+ c2ȷ⃗ has tail at (0, 0) and
head at (c1, c2). To be strictly inside the square means the head (c1, c2) is strictly
inside the square. This happens exactly when the projections c1, c2 onto the axes
satisfy 0 < c1 < 1 and 0 < c2 < 1.

A parallelogram maps to the unit square by matrix A chosen by the two requirements
Av⃗1 = ı⃗, Av⃗2 = ȷ⃗. The inside of the parallelogram maps to the inside of the unit
square (intuitively so, a rigorous proof was not expected). So if c1v⃗1+ c2v⃗2 is strictly
inside the parallelogram then A(c1v⃗1 + c2v⃗2) = c1⃗ı + c2ȷ⃗ is strictly inside the unit
square, hence 0 < c1 < 1 and 0 < c2 < 1.

Why is A invertible? Because A⟨v⃗1|v⃗2⟩ = I. The definition of A as the inverse of

⟨v⃗1|v⃗2⟩ is possible because the two vectors are independent. ■
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28. Prove the 4 scalar multiply toolkit properties for fixed vectors in R3.

29. Define

0⃗ =

0
0
0

 ,−v⃗ =

−v1−v2
−v3

 .

Prove the 4 addition toolkit properties for fixed vectors in R3.

Solution: The four rules are:

Addition X⃗ + Y⃗ = Y⃗ + X⃗ commutative
X⃗ + (Y⃗ + Z⃗) = (X⃗ + Y⃗ ) + Z⃗ associative

Vector 0⃗ is defined and 0⃗ + X⃗ = X⃗ zero
Vector −X⃗ is defined and X⃗ + (−X⃗) = 0⃗ negative

Let X⃗ =

−x1

−x2

−x3

 and similar notation for Y⃗ and Z⃗.

Commutative
LHS = X⃗ + Y⃗

LHS =

x1

x2

x3

+

y1
y2
y3


LHS =

x1 + y1
x2 + y2
x3 + y3


RHS = Y⃗ + X⃗

RHS =

y1
y2
y3

+

x1

x2

x3


RHS =

y1 + x1

y2 + x2

y3 + x3


Then LHS = RHS.

Associative
LHS = X⃗ + (Y⃗ + Z⃗)

LHS =

x1

x2

x3

+

y1
y2
y3

+

z1
z2
z3


LHS =

x1

x2

x3

+

y1 + z1
y2 + z2
y3 + z3


LHS =

x1 + y1 + z1
x2 + y2 + z2
x3 + y3 + z3


RHS = (X⃗ + Y⃗ ) + Z⃗

RHS =

x1

x2

x3

+

y1
y2
y3

+

z1
z2
z3


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RHS =

x1 + y1
x2 + y2
x3 + y3

+

z1
z2
z3


RHS =

x1 + y1 + z1
x2 + y2 + z2
x3 + y3 + z3


Then LHS = RHS.

Zero
LHS = 0⃗ + X⃗

LHS =

0
0
0

+

x1

x2

x3


LHS =

0 + x1

0 + x2

0 + x3


LHS = X⃗
LHS = RHS

Negative
LHS = X⃗ + (−X⃗)

LHS =

x1

x2

x3

+

−x1

−x2

−x3


LHS =

x1 − x1

x2 − x2

x3 − x3


LHS =

0
0
0


LHS = 0⃗
LHS = RHS ■

30. Use the 8 property toolkit in R3 to prove that zero times a vector is the zero vector.

31. Let A be an invertible 3 × 3 matrix. Let v⃗1, v⃗2, v⃗3 be a basis for R3. Prove that
Av⃗1, Av⃗2, Av⃗3 is a basis for R3.

Solution:To prove: (1) Av⃗1, Av⃗2, Av⃗3 is an independent set.
Let c1Av⃗1 + c2Av⃗2 + c3Av⃗3 = 0⃗. Multiply my A−1 to obtain the equation c1v⃗1 +
c2v⃗2 + c3v⃗3 = 0⃗. Because v⃗1, v⃗2, v⃗3 are given to be independent (they are a basis),
then c1 = c2 = c3 = 0. This proves Av⃗1, Av⃗2, Av⃗3 are independent.

To prove: (2) Vectors Av⃗1, Av⃗2, Av⃗3 span R3. Let y⃗ be any vector in R3. Constants
c1, c2, c3 must be found such that c1Av⃗1 + c2Av⃗2 + c3Av⃗3 = y⃗. Multiply by A−1 to
obtain the new equation c1v⃗1+c2v⃗2+c3v⃗3 = A−1y⃗. Hypothesis R3 = span(v⃗1, v⃗2, v⃗3)
implies c1, c2, c3 exist. ■

32. Let A be an invertible 3 × 3 matrix. Let v⃗1, v⃗2, v⃗3 be dependent in R3. Prove that
Av⃗1, Av⃗2, Av⃗3 is a dependent set in R3.

Digital Photographs
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Let V be the vector space of all 2× 3 matrices. A matrix in V is a 6-pixel digital
photo, a sub-section of a larger photo.

Let B1 =

(
1 0 0
0 0 0

)
, . . . , B6 =

(
0 0 0
0 0 1

)
. Each Bj lights up one pixel in the 2× 3

sub-photo.

33. Prove that B1, . . . , B6 are independent and span V : they are a basis for V .

Solution:Because
∑6

j=1 cjBj =

(
c1 c2 c3
c4 c5 c6

)
then

∑6
j=1 cjBj is the zero matrix if and

only if c1 to c6 are zero. This proves independence and also the span condition
span(B1, . . . , B6) = V . ■

34. Let A = 2

(
1 0 0
0 0 0

)
+ 4

(
0 0 0
0 1 0

)
. Assume a black and white image and 0 means

black. Describe photo A, from the checkerboard analogy.

Digital RGB Photos
Define red, green and blue monochrome matrices R,G,B by(

2 0 0
0 1 1
5 8 1

)
,

(
3 0 0
0 4 0
0 1 0

)
,

(
5 0 0
0 3 0
1 0 5

)
.

35. Define base x = 16. Compute A = R+ xG+ x2B.

Solution:A =

 1330 0 0
0 833 1
261 24 1281


According to the checkerboard analogy, the board has 9 checkers. Number 1330 is an
encoded checker count at pixel location (1, 1), representing 2 red, 3 green and 5 blue.

# Digital RGB Photos, Exercise 35

R:=Matrix([[2,0,0],[0,1,1],[5,8,1]]);

G:=Matrix([[3,0,0],[0,4,0],[0,1,0]]);

B:=Matrix([[5,0,0],[0,3,0],[1,0,5]]);

A:=R+x*G+x^2*B; subs(x=16,A);

# [[1330, 0, 0], [0, 833, 1], [261, 24, 1281]]

36. Define base x = 32. Compute A = R+ xG+ x2B.

Polynomial Spaces
Let V be the vector space of all cubic or less polynomials p(x) = c0+c1x+c2x

2+
c3x

3.

37. Find a subspace S of V , dim(S) = 2, which contains the vector 1 + x.

Solution:Let S = span(1 + x, 1). Set S is a subspace by the span theorem. Then
1 + x is in S. Because 1, 1 + x are independent then dim(S) = 2. ■

38. Let S be the subset of V spanned by x, x2 and x3. Prove that S is a subspace of V
which does not contain the polynomial 1 + x.
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39. Define set S by the conditions p(0) = 0, p(1) = 0. Find a basis for S.

Solution:The conditions on p(x) = c0 + c1x + c2x
2 + c3x

3 are 0 = p(0) = c0 and
0 = p(1) = c1 + c2 + c3. Select initially basis elements x, x2 which satisfy p(0) = 0
and then add c1x+c2x

2+c3x
3 with c1+c2+c3 = 0 by choosing c3 = 2, c1 = c2 = −1.

Then S = span(x, x2, 2x3−x2−x). Independence is proved by the Wronskian Test:∣∣∣∣∣∣
x x2 2x3 − x2 − x
1 2x 6x2 − 2x− 1
0 2x 12x− 2

∣∣∣∣∣∣
∣∣∣∣∣∣
x=1

=

∣∣∣∣∣∣
1 1 0
1 0 −1
0 0 −2

∣∣∣∣∣∣ = 2

40. Define set S by the condition p(0) =
∫ 1

0
p(x)dx. Find a basis for S.

The Space C(E)
Define f⃗ to be the vector package with domain E = {x : − 2 ≤ x ≤ 2} and
equation y = |x|. Similarly, g⃗ is defined by equation y = x.

41. Show independence of f⃗ , g⃗.

Solution:Because f is not differentiable then the Wronskian test does not apply.
We’ll try to use the sampling test. Select samples x1 = 1 and x2 = −1. Then the
sample matrix is

S =

(
f(x1) g(x1)
f(x2) g(x2)

)
=

(
1 1
1 −1

)
Because |S| = −2, then f and g are independent functions on E, meaning f⃗ and g⃗
are independent vectors in C(E). ■

42. Find the dimension of span(f⃗ , g⃗).

43. Let h(x) = 0 on −1 ≤ x ≤ 0, h(x) = −x on 0 ≤ x ≤ 1. Show that h⃗ is in C(E).

Solution:The issue is continuity of h at x = 0. The left and right hand limits at x = 0
are both equal to 0, therefore h is continuous a t x = 0. ■

44. Let h(x) = −1 on −2 ≤ x ≤ 0, h(x) = 1 on 0 ≤ x ≤ 2. Show that h⃗ is not in C(E).

45. Let h(x) = 0 on −2 ≤ x ≤ 0, h(x) = −x on 0 ≤ x ≤ 2. Show that h⃗ is in span(f⃗ , g⃗).

Solution:Assume h⃗ is in span(f⃗ , g⃗). Let h⃗ = c1f⃗ + c2g⃗. Then c1|x|+ c2x = h(x) at
x = −1 implies equation c1 − c2 = 0 while at x = 1 it implies equation c1 + c2 = 0.
Then c1 = c2 = 0 and h(x) = 0 for all x, a contradiction to the definition of h. ■

46. Let h(x) = tan(πx/2) on −2 < x < 2, h(2) = h(−2) = 0. Explain why h⃗ is not in
C(E)

The Space C1(E)
Define f⃗ to be the vector package with domain E = {x : − 1 ≤ x ≤ 1} and
equation y = x|x|. Similarly, g⃗ is defined by equation y = x2.
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47. Verify that f⃗ is in C1(E), but its derivative is not.

Solution:For y = x|x| the derivative is: y′ = 2x for x > 0, y′ = −2x for x < 0, y′ = 0
at x = 0. Simplified: y′ = 2|x|. This function is continuous but not continuously

differentiable, therefore f⃗ is in C1(E) but f⃗ ′ is not in C1(E). ■

48. Show that f⃗ , g⃗ are independent in C1(E).

The Space Ck(E)

49. Compute the first three derivatives of y(x) = e−x2

at x = 0.

Solution:Expand as a power series: y(x) =
∑∞

n=0(−x2)n/n!. Then y(x) = 1 − x2 +
x4/2− · · · which produces the answers y(0) = 0, y′(0) = 0, y′′(0) = −2, y′′′(0) = 0.

50. Justify that y(x) = e−x2

belongs to Ck(0, 1) for all k ≥ 1.

51. Prove that the span of a finite list of distinct Euler solution atoms (page 386) is a
subspace of Ck(E) for any interval E.

Solution:Euler atoms are in Ck(E). The span of a finite set of vectors is a subspace.

52. Prove that y(x) = |x| is in Ck(0, 1) but not in C1(−1, 1).

Solution Space
A differential equations solver finds general solution y = c1 + c2x+ c3e

x + c4e
−x.

Use vector space V = C4(E) where E is the whole real line.

53. Write the solution set S as the span of four vectors in V .

Solution:The technique to discover a basis is to formally differentiate the general
solution on the symbols c1 to c4. Then basis elements might be 1, x, ex, e−x. At
least S is the span of the four vectors just found. Because distinct Euler solution
atoms are independent, then indeed the four vectors are a basis for S.

54. Find a basis for the solution space S of the differential equation. Verify independence
using the sampling test or Wronskian test.

55. Find a differential equation y′′ + a1y
′ + a0y = 0 which has solution y = c1 + c2x.

Solution:Substitute y = c1 + c2x into y′′ + a1y
′ + a0y = 0 to arrive at a1c2 + a0(c1 +

c2x) = 0. Because 1, x are independent then a1c2 + a0c1 = 0 and a0c2 = 0. The
equations are valid for all c1, c2 provided a0 = a1 = 0. The required differential
equation is y′′ = 0.

56. Find a differential equation y′′′′ + a3y
′′′ + a2y

′′ + a1y
′ + a0y = 0 which has solution

y = c1 + c2x+ c3e
x + c4e

−x.

Algebraic Independence Test for Two Vectors
Solve for c1, c2 in the independence test for two vectors, showing all details.
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57. v⃗1 =

(
1
2

)
, v⃗2 =

(
1
−1

)
Solution:

c1v⃗1 + c2v⃗2 = 0⃗

c1

(
1
2

)
+ c2

(
1
−1

)
=

(
0
0

)
(

1 1
2 −1

)(
c1
c2

)
=

(
0
0

)
c1 = c2 = 0 because the determinant of coefficients is nonzero.

58. v⃗1 =

 1
−1
0

 , v⃗2 =

1
1
0


Dependence of two vectors
Solve for c1, c2 not both zero in the independence test for two vectors, showing
all details for dependency of the two vectors.

59. v⃗1 =

(
1
2

)
, v⃗2 =

(
2
4

)
Solution:

c1v⃗1 + c2v⃗2 = 0⃗

c1

(
1
2

)
+ c2

(
2
4

)
=

(
0
0

)
(

1 2
2 4

)(
c1
c2

)
=

(
0
0

)
c1 + 2c2 = 0 or c1 = −2t1, c2 = t1 (infinitely many solutions case).
Then for any value of t1 this dependency relation holds:

−2t1v⃗1 + t1v⃗2 = 0⃗

60. v⃗1 =

 1
−1
0

 , v⃗2 =

−22
0


Independence Test for Three Vectors
Solve for the constants c1, c2, c3 in the relation c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗. Report
dependent of independent vectors. If dependent, then display a dependency
relation.

61.

 1
−1
0

,

−12
0

,

0
2
0


Solution:Exercise 57 has the method, which produces the matrix equation 1 −1 0

−1 2 2
0 0 0

 c1
c2
c3

 =

 0
0
0


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The coefficient matrix A has rank 2, hence there are infinitely many solutions. Reduce

matrix A to rref(A) =

(
1 0 2
0 1 2
0 0 0

)
. Conclude c1 = −2t1, c2 = −2t1, c3 = t1. The

dependency relation is

−2t1

 1
−1
0

− 2t1

−12
0

+ t1

0
2
0

 =

0
0
0



62.

 1
−1
0

,

−12
0

,

0
1
1


Independence in an Abstract Vector Space
In vector space V , report independence or a dependency relation for the given
vectors.

63. Space V = C(−∞,∞), v⃗1 = 1 + x, v⃗2 = 2 + x, v⃗3 = 3 + x2.

Solution:The independence test:

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗
c1(1 + x) + c2(2 + x) + c3(3 + x2) = 0
c1 + 2c2 + 3c3 + (c1 + c2)x+ c3x

2 = 0
Independence of 1, x, x2 (distinct Euler solution atoms) implies the equations

c1 + 2c2 + 3c3 = 0, c1 + c2 = 0, c3 = 0 1 2 3
1 2 0
0 0 1

 c1
c2
c3

 =

 0
0
0


Then c1 = c2 = c3 = 0 because the determinant of coefficients is nonzero. The
vectors are independent.

64. Space V = C(−∞,∞), v⃗1 = x3/5, v⃗2 = x2, v⃗3 = 2x2 + 3x3/5

65. Space V is all 3× 3 matrices. Let

v⃗1 =

(
1 1 0
0 1 1
0 0 1

)
, v⃗2 =

(
0 1 0
0 0 1
0 1 1

)
, v⃗3 =

(
2 5 0
0 2 5
0 3 5

)
.

Solution:Dependent because 2v⃗1 + 3v⃗2 = v⃗3. The independence test gives rise to 9
equations in 3 unknowns c1, c2, c3. It helps to think of the matrices as column vectors
of length 9.

66. Space V is all 2× 2 matrices. Let

v⃗1 =

(
1 1
0 1

)
, v⃗2 =

(
−1 1
1 1

)
,

v⃗3 =

(
0 2
1 2

)
.
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Rank Test
Compute the rank of the augmented matrix to determine independence or de-
pendence of the given vectors.

67.


1
−1
0
0

,


−1
2
0
0

,


0
2
0
0



Solution:Let A =


1 −2 0
−1 2 2
0 0 0
0 0 0

. The rank is 2, dependent.

68.


0
1
−1
0

,


0
−1
2
0

,


0
0
1
1


Determinant Test
Evaluate the determinant of the augmented matrix to determine independence
or dependence of the given vectors.

69.

−13
0

,

2
1
0

,

3
5
0


Solution:Let A =

 −1 2 3
3 1 5
0 0 0

. Then |A| = 0 because A has a row of zeros.

Dependent.

70.

 0
1
−1

,

 0
−1
2

,

1
0
0


Sampling Test for Functions
Invent samples to verify independence.

71. cosh(x), sinh(x)

Solution:Choose samples x1 = 0, x2 = 1. Then the sampling matrix is

A =

(
cosh(x1) sinh(x1)
cosh(x2) sinh(x2)

)
=

(
cosh(0) sinh(0)
cosh(1) sinh(1)

)
Then |A| = sinh(1) ̸= 0 which implies independence.

72. x7/3, x sin(x)
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73. 1, x, sin(x)

Solution:Choose samples x1 = 0, x2 = π, x3 = π/2. Then the sampling matrix is

A =

 1 x1 sin(x1)
1 x2 sin(x2)
1 x3 sin(x3)

 =

 1 0 0
1 π 0
1 π/2 1


Then |A| = π ̸= 0 which implies independence.

74. 1, cos2(x), sin(x)

Sampling Test and Dependence
For three functions f1, f2, f3 to be dependent, constants c1, c2, c3 must be found
such that

c1f1(x) + c2f2(x) + c3f3(x) = 0.

The trick is that c1, c2, c3 are not all zero and the relation holds for all x. The
sampling test method can discover the constants, but it is unable to prove
dependence!

75. Functions 1, x, 1 + x are dependent. Insert x = 1, 2,−1 and solve for c1, c2, c3, to
discover a dependency relation.

Solution:The relation is

c1 + c2x+ c3(1 + x) = 0

Insert samples x = 0, 1, 2:

c1 + c2 + 2c3 = 0 for x = 1
c1 + 2c2 + 3c3 = 0 for x = 2
c1 − c2 = 0 for x = −1
Then arrange as a system of equations: 1 1 2

1 2 3
1 −1 0

 c1
c2
c3

 =

 0
0
0


The reduced echelon form of is 1 0 1

0 1 1
0 0 0

 c1
c2
c3

 =

 0
0
0


giving solution c1 = −t1, c2 = −t1, c3 = t1 and the possible dependency relation

−t1 + (−t1)x+ t1(1x) = 0

Cancel t1 to get −1 + x+ (1 + x) = 0, which is true for all x, proving that the three
vectors are dependent. ■
The samples x = 0, 1, 2 are unsuccessful in this adventure, showing that this discovery
method might fail for one set of samples and succeed for a different set of samples.
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76. Functions 1, cos2(x), sin2(x) are dependent. Cleverly choose 3 values of x, insert
them, then solve for c1, c2, c3, to discover a dependency relation.

Vandermonde Determinant

77. Let V =

(
1 x1
1 x2

)
. Verify by direct computation the formula

|V | = x2 − x1.

Solution:|V | =
∣∣∣∣1 x1
1 x2

∣∣∣∣ = 1(x2)− (x1)(1) = x2 − x1.

78. Let V =

(
1 x1 x

2
1

1 x2 x
2
2

1 x3 x
2
3

)
. Verify by direct computation the formula

|V | = (x3 − x2)(x3 − x1)(x2 − x1).

Wronskian Test for Functions
Apply the Wronskian Test to verify independence.

79. cos(x), sin(x).

Solution:Choose x = 0, then the Wronskian is

∣∣∣∣ cos(0) sin(0)
− sin(0) cos(0)

∣∣∣∣ = ∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1.

80. cos(x), sin(x), sin(2x).

81. x, x5/3.

Solution:Choose x = 1, then the Wronskian is

∣∣∣∣ 1 1
1 5/3

∣∣∣∣ = 2/3.

82. cosh(x), sinh(x).

Wronskian Test: Theory

83. The functions x2 and x|x| are continuously differentiable and have zero Wronskian.
Verify that they fail to be dependent on −1 < x < 1.

Solution:Function y(x) = x|x| has derivative y′ = 2|x|. The Wronskian of x2 and

x|x| is
∣∣∣∣ x2 x|x|
2x 2|x|

∣∣∣∣ = x|x|
∣∣∣∣ x x
2 2

∣∣∣∣ = 0. Independence holds on −1 < x < 1 because

c1x
2 + c2x|x| = 0 can be solved for c1 = c2 = 0 by using the sampling test with

samples x1 = −1/2, x2 = 1/2.

84. The Wronskian Test can verify the independence of the powers 1, x, . . . , xk. Show
the determinant details.
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Extracting a Basis
Given a list of vectors in space V = R4, extract a largest independent subset.

85.


1
−1
0
0

,


−1
2
0
0

,


0
2
0
0

,


0
−1
1
0

,


−1
1
1
0


Solution:Let A be the augmented matrix of the vectors:

A =


1 −1 0 0 −1
−1 2 2 −1 1
0 0 0 1 1
0 0 0 0 0


The reduced row-echelon form of A is

rref(A) =


1 0 2 0 0
0 1 2 0 1
0 0 0 1 1
0 0 0 0 0


The reduced form tells us this: the first two vectors are independent, by the rank
test, because if A was the augmentation of the first two vectors, then the reduced
form would be the first two columns of rref(A). Similarly, adding columns 3, 5 to A
has a reduced form with rank 2, so the added columns cannot be independent of the
first two columns. Adding column 4 increases the rank, so column 4 is independent
of the first two columns. Adding column 5 does not increase the rank, so column 5
cannot be independent of the preceding columns.
Collecting, a largest independent subset of the vectors is

1
−1
0
0

,


−1
2
0
0

,


0
−1
1
0


# Extracting a Basis, Exercise 85

A:=Matrix([[1,-1,0,0,-1],[-1,2,2,-1,1],

[0,0,0,1,1],[0,0,0,0,0]]);

ReducedRowEchelonForm(A);

# rref=[[1, 0, 2, 0, 0], [0, 1, 2, 0, 1],

# [0, 0, 0, 1, 1], [0, 0, 0, 0, 0]]

86.


0
−1
1
0

,


0
1
1
0

,


0
2
3
0

,


1
−1
0
1

,


1
0
1
1


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Extracting a Basis
Given a list of vectors in space V = C(−∞,∞), extract a largest independent
subset.

87. x, x cos2(x), x sin2(x), ex, x+ ex

Solution:Convert the square terms by trig identities cos2(x)+ sin2(x) = 1, cos(2x) =
2 cos2(x)− 1, cos(2x) = 1− 2 sin2(x). Then the list becomes

x,
x

2
+

x

2
cos(2x)),

x

2
− x

2
cos(2x), ex, x+ ex

The idea is to change the spanning set without changing the span. First fact: Multi-
plying a spanning vector by a constant c ̸= 0 does change the span. The replacement
set gets rid of the 1

2 appearing four times:

x, x+ x cos(2x)), x− x cos(2x), ex, x+ ex

Second fact: Vectors f⃗ and g⃗ are independent if and only if f⃗ and g⃗− f⃗ are indepen-
dent. The proof depends on two vectors being independent if and only if each vector
is not a scalar multiple of the other vector. The replacement set gets rid of three
occurrences of x:

x, x cos(2x)), −x cos(2x), ex, ex

The first fact applies to remove the single minus sign for replacement set

x, x cos(2x)), x cos(2x), ex, ex

The first four functions are distinct Euler solution atoms, therefore they are inde-
pendent. The fifth function is a duplicate. So the first four are independent. In the
original set, a largest list of independent spanning vectors is the first four:

x, x cos2(x), x sin2(x), ex

88. 1, 2 + x, x
1+x2 ,

x2

1+x2

Euler Solution Atom
Identify the Euler solution atoms in the given list. Strictly apply the definition:
ex is an atom but 2ex is not.

89. 1, 2 + x, e2.15x, ex
2

, x
1+x2

Solution: x, ex

90. 2, x3, ex/π, e2x+1, ln |1 + x|

Euler Solution Atom Test
Establish independence of set S1.
Suggestion: First establish an identity span(S1) = span(S2), where S2 is an
invented list of distinct atoms. The Test implies S2 is independent. Extract a
largest independent subset of S1, using independence of S2.
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91. Set S1 is the list 2, 1 + x2, 4 + 5ex, πe2x+π, 10x cos(x).

Solution:Two facts will be used, discussed above in the solution to Exercise 87.

Fact 1: Multiplying a spanning vector by a constant c ̸= 0 does change the span.
Fact 2: Vectors f⃗ and g⃗ are independent if and only if f⃗ and g⃗ − f⃗ are independent.

Using both facts, span(S1) = span(S2) where

S2 = {1, x2, ex, e2x, x cos(x)}

Specifically used is exponential identity πe2x+π = ce2x where c = πeπ. Fact 1 was
used to replace S1 by the set

1, 1 + x2, 4 + 5ex, e2x, x cos(x)

Fact 2 was then employed to replace the preceding set by

1, x2, 5ex, e2x, x cos(x)

Fact 1 was used again to replace the above by

1, x2, ex, e2x, x cos(x)

Conclusion: Set S2 is a set of distinct Euler solution atoms, therefore it is indepen-
dent. Then the first five in the original list are independent, so S1 itself is a largest
independent subset.

92. Set S1 is the list 1 + x2, 1− x2, 2 cos(3x), cos(3x) + sin(3x).

Solution:First, third and fourth make a largest independent subset.

5.5 Basis, Dimension and Rank

Exercises 5.5 �
Basis and Dimension
Compute a basis and the report the dimension of the subspace S.

1. In R3, S is the solution space of∣∣∣∣ x1 + x3 = 0,
x2 + x3 = 0.

∣∣∣∣
Solution:Let A =

 1 0 3
0 1 1
0 0 0

, the coefficient matrix for Ax⃗ = 0⃗, x⃗ with compo-

nents x1, x2, x3. The extra equation 0 = 0 was appended to create an equivalent 3×3
system.
Matrix A equals rref(A). The last frame algorithm applies to find general scalar
solution x1 = −t1, x2 = −t1, x3 = t1 in terms of invented symbol t1. The vector
general solution is then

x⃗ =

 x1

x2

x3

 = t1

 −1−1
1


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The partial derivative ∂x⃗/∂t1 is a basis, equivalent to setting t1 = 1 in the vector
general solution. Then

S = span


 −1−1

1

 , dim(S) = 1

2. In R4, S is the solution space of∣∣∣∣ x1 + 2x2 + x3 = 0,
x4 = 0.

∣∣∣∣
Solution:Follow Exercise 1, A is 4× 4 and dim(S) = 2.

3. In R2, S = span(v⃗1, v⃗2). Vectors v⃗1, v⃗2 are columns of an invertible matrix.

Solution:A matrix is invertible if and only if it is square and the columns are inde-
pendent. Therefore v⃗1, v⃗2 are independent and form a basis for S with dim(S) = 2.

4. Set S = span(v⃗1, v⃗2), in R4. The vectors are columns in a 4× 4 invertible matrix.

5. Set S = span(sin2 x, cos2 x, 1), in the vector space V of continuous functions.

Solution:The first two functions are independent by the sampling test applied with
samples x1 = 0 and x2 = π/2.

Details: the nonsingular sampling matrix is(
sin2(x1) cos2(x1)
sin2(x2) cos2(x2)

)
=

(
sin2(0) cos2(0)

sin2(π/2) cos2(π/2)

)
=

(
0 1
1 0

)
The third function satisfies 1 = cos2(x)+sin2(x) for all x, therefore the three functions
are dependent. A basis is the first two functions. The dimension of S is two.

6. Set S = span(x, x− 1, x+ 2), in the vector space V of all polynomials.

7. Set S = span(sinx, cosx), the solution space of y′′ + y = 0.

Solution:Distinct Euler solution atoms are independent. Therefore S has basis
sinx, cosx and dim(S) = 2.

8. Set S = span
(
e2x, e3x

)
, the solution space of y′′ − 5y′ + 6y = 0.

Euclidean Spaces

9. Let A be 3× 2. Why is it impossible for the columns of A to be a basis for R3?

Solution:A basis for R3 has to have 3 independent vectors. To justify this with fewest
support theorems, observe that the three columns of the 3× 3 identity matrix are a
basis for R3 (the standard basis of R3). All bases have the same number of elements,
so R3 cannot have a basis of 2 elements.
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10. Let A be m × n. What condition on indices m,n implies it is impossible for the
columns of A to be a basis for Rm?

11. Find a pairwise orthogonal basis for R3 which contains

 1
1
−1

.

Solution:A basis for R3 must have 3 elements. The first will be the given vector.
The other two have to be constructed. A geometrical construction idea is to
think of the given vector v⃗1 as the cross product of two orthogonal vectors v⃗2, v⃗3.
Because the cross product is orthogonal to v⃗2, v⃗3 then v⃗1 is independent of v⃗2,
v⃗3. Already v⃗2, v⃗3 are independent because they are orthogonal (and nonzero).
The construction leads to three orthogonal vectors, known to be independent, and
therefore R3 = span{v⃗1, v⃗2, v⃗3} and the three vectors are a basis for R3.

Let v⃗1 =

 1
1
−1


v⃗2 =

a
b
c

 and v⃗1 · v⃗2 = a+ b− c = 0 (orthogonality condition)

v⃗2 =

1
0
1

 satisfies a+ b− c = 0

To find v⃗3 requires another solution to a + b − c = 0 with additional requirement
v⃗2 · v⃗3 = a+ c = 0.
Choose a, b, c again:

v⃗3 =

−12
1

 satisfies a+ b− c = 0 and a+ c = 0

The three vectors are

v⃗1 =

 1
1
−1

 , v⃗2 =

1
0
1

 , v⃗3 =

−12
1


We check the conditions v⃗1 · v⃗2 = 0, v⃗1 · v⃗3 = 0, v⃗2 · v⃗3 = 0 and that all vectors are
nonzero. By the Orthogonal basis theorem they form a basis for R3.

12. Display a basis for R4 which contains the independent columns of

0 1 2 0
0 1 1 0
0 2 1 0
0 0 1 0

.

13. Let S be a subspace of R10 of dimension 5. Insert a basis for S into an m × n
augmented matrix A. What are m and n?

Solution:m = 10 = number of component of a vector in R10. n = 5 = number of
vectors in a basis for S.

14. Suppose A and B are 3 × 3 matrices and let C = AB. Assume the columns of A
are not a basis for R3. Is there a matrix B so that the columns of C form a basis for
R3?

Solution:No. The determinant product theorem provides |C| = |A||B|. Independent
columns means the determinant is nonzero. Use these hints to complete the proof.
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15. The term Hyperplane is used for an equation like x4 = 0, which in R4 defines a
subspace S of dimension 3. Find a basis for S.

Solution:Choose three columns of the 4 × 4 identity matrix all of which have last
component zero.

16. Find a 3-dimensional subspace S of R4 which has no basis consisting of columns of
the identity matrix.

Solution:Define S by an equation ax1 + bx2 + cx3 + dx4 = 0, which makes S have
dimension 3. Choose a, b, c, d so that no column of the identity matrix satisfies the
equation.

Polynomial Spaces
Symbol V is the vector space of all polynomials p(x). Given subspace S of V ,
find a basis for S and dim(S).

17. The subset S of span(1, x, x2) is defined by dp
dx (1) = 0.

Solution:Let p(x) = a + bx + cx2 and compute the condition 0 = p′(1) to be 0 =
b+ 2cx|x=1 = b + 2c. Then p(x) = a + bx + cx2 = a − 2cx + cx2 depends only on
symbols a, c. Differentiate on symbols a, c to identify a possible basis: ∂p/∂a = 1,
∂p/∂c = −2x + x2. We must prove that S = span{1,−2x + x2} and that the two
vectors 1, −2x + x2 form a basis for S. Any vector in S has to look like p(x) =
a + c(−2x + x2) by the preceding analysis. So the two vectors span S, meaning
S = span{1,−2x + x2}. It remains to prove they are independent vectors. Let’s
appeal to a general vector space result: two vectors are independent if and only if
each is not a multiple of the other. Geometry finishes the proof: y = 1 is a line of
slope 0 while y = −2x+ x2 has nonzero slope. ■

18. The subset S of span(1, x, x2, x3) is defined by p(0) = dp
dx (1) = 0.

19. The subset S of span(1, x, x2) is defined by
∫ 1

0
p(x)dx = 0.

Solution:Let p(x) = a+ bx+ cx2. Then

0 =
∫ 1

0
p(x)dx = ax+ bx2/2 + cx3/3

∣∣x=1

x=0
= a+ b/2 + c/3

which can be written as the equation 6a+3b+2c = 0. This equation defines a plane
in R3 with vector components a, b, c. The scalar general solution of the equation is
a = −b/2 − c/3, b = b, c = c without inventing symbols, because b, c can be used
for the usual symbols t1, t2. Independent R3 solutions are a = −1, b = 2, c = 0
and a = −1, b = 0, c = 3. These correspond to polynomials p1(x) = −1 + 2x and
p2(x) = −1 + 3x2. One polynomial is linear, the other is quadratic, so each is not a
multiple of the other: they are independent. Both are in S and S = span{p1, p2} by
the preceding analysis. The basis is p1, p2. ■

20. The subset S of span(1, x, x2, x3) is defined by
∫ 1

0
xp(x)dx = 0.

Differential Equations
Find a basis for solution subspace S. Assume the general solution of the 4th
order linear differential equation is

y(x) = c1 + c2x+ c3e
x + c4e

−x.
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21. Subspace S1 is defined by y(0) = dy
dx (0) = 0.

Solution:Coefficients are determined by the conditions:

y(0) = 0 is equivalent to c1 = 0
y′(0) = 0 is equivalent to c2 + c3 − c4 = 0

There are two linear equations in four unknowns c1 to c4. Lead variables are c1, c2
and the free variables are c3, c4. The scalar general solution is c1 = 0, c2 = −t1 + t2,
c3 = t1, c4 = t2. In R4 with vector components c1 to c4 there are two independent
solutions: c1 = 0, c2 = −1, c3 = 1, c4 = 0 and c1 = 0, c2 = 0, c3 = 1, c4 = 1. These
solutions correspond to solutions y1() = −x + ex, y2(x) = ex + e−x. Geometrically,
each of y1, y2 is not a scalar multiple of the other: they are independent. Then
S1 = span{y1, y2} with basis y1, y2.

22. Subspace S2 is defined by y(1) = 0.

23. Subspace S3 is defined by y(0) =
∫ 1

0
y(x)dx.

Solution:The condition for symbols c1 to c4:

y(0) =
∫ 1

0
y(x)dx

c1 + c3 + c4 = c1x+ c2x
2/2 + c3e

x − c4e
−x
∣∣x=1

x=0

c1 + c3 + c4 = c1 + c2/2 + c3e− c4e
−1 − c3 + c4

(−1/2)c2 + (2− e)c3 + c4e
−1 = 0

This linear equation in variables c1, c2, c3, c4 is a hyperplane in R4 of dimension 3.
The scalar general solution is c1 = t1, c2 = (4 − 2e)c3 + 2c4/e = (4 − 2e)t2 + 2t3/e,
c3 = t2, c4 = t3. Three independent solutions are obtained by letting t1, t2, t3 assume
the 3 values in each column of the 3× 3 identity matrix:

c1 = 1, c2 = 0, c3 = 0, c4 = 0 Identity column 1, t1 = 1, t2 = 0, t3 = 0
c1 = 0, c2 = 4− 2e, c3 = 1, c4 = 0 Identity column 2, t1 = 0, t2 = 1, t3 = 0
c1 = 0, c2 = 2/e, c3 = 0, c4 = 1 Identity column 3, t1 = 0, t2 = 0, t3 = 1

Then correspondingly

y1(x) = 1
y2(x) = (4− 2e)x+ ex

y3(x) = 2x/e+ e−x

S3 = span{y1, y2, y3} and y1, y2, y3 is the basis.

24. Subspace S4 is defined by y(1) = 0,
∫ 1

0
y(x)dx = 0.

Largest Subset of Independent Vectors
Find a largest independent subset of the given vectors.

25. The columns of

0 0 1 1
0 0 1 1
0 1 1 0
0 1 2 1

.

Solution:Let A denote the matrix, then

rref(A) =

0 1 0 −1
0 0 1 1
0 0 0 0
0 0 0 0


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Columns 2 and 3 of A are independent.

26. The columns of


3 1 2 0 5
2 1 1 0 4
3 2 1 0 7
1 0 1 0 1
3 2 1 0 7

.

27. The polynomials x, 1 + x, 1− x, x2.

Solution:
First method: 1 − x = c1(1) + c2(1 + x) for c1 = 2, c2 = −1, therefore the first
two are independent and the third depends on the first two. The last one x2 is not a
scalar multiple of either 1 or 1+x, therefore the largest independent set is 1, 1+x, x2.

Second method: The linear map T : a+ bx+ cx2 7→

a
b
c

 is one-to-one and onto

from V = span{1, x, x2} to R3. Then

T (x) =

0
1
0

 , T (1 + x) =

1
1
0

 , T (1− x) =

 1
−1
0

 , T (x2) =

0
0
1


Let

A =

 0 1 1 0
1 1 −1 0
0 0 0 1

 , then rref(A) =

 1 0 −2 0
0 1 1 0
0 0 0 1


Columns 1,2,4 of A are independent. The inverse images of these columns under T
are x, 1 + x, x2, which is a largest independent set.

28. The continuous functions x, ex, x+ ex, e2x.

Pivot Theorem Method
Extract a largest independent set from the columns of the given matrix A. The
answer is a list of independent columns of A, called the pivot columns of A.

29.

(
1 2 1
1 1 0
2 1 0

)
Solution:Let A be the matrix. Then rref(A) is the identity matrix. The pivot
theorem applies to conclude all three columns of A are independent.

30.

0 1 2 1
0 1 1 0
0 2 1 0
0 0 1 1



31.


0 2 1 0 1
1 5 2 0 3
1 3 1 0 2
0 2 1 0 3
0 2 1 0 1


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Solution:Let A be the matrix, then

rref(A) =



1 0 −1/2 0 0

0 1 1/2 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0


Columns 1,2,5 of A are independent by the pivot theorem.

32.


0 0 2 1 0 1
0 1 5 2 0 3
0 1 3 1 0 2
0 2 4 1 0 3
0 0 2 1 0 1
0 2 4 1 0 3


Row and Column Rank
Justify by direct computation that rank(A) = rank

(
AT
)
, which means that the

row rank equals the column rank.

33. A =

(
1 0 1
0 1 1
0 0 0

)

Solution:Already A = rref(A) with rank(A) = 2. Let B = AT =

(
1 0 0
0 1 0
1 1 0

)
. Then

rref(B) =

(
1 0 0
0 1 0
0 0 0

)
with rank(B) = 2.

34. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Nullspace or Kernel
Find a basis for the nullspace of A, which is also called the kernel of A.

35. A =

(
1 0 1
0 1 1
0 0 0

)

Solution:Solve Ax⃗ = 0⃗ for x⃗ = t1

 1
1
−1

 where t1 is the invented symbol in the last

frame algorithm. A basis for the nullspace of A is

 1
1
−1

.
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36. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Row Space
Find a basis for the row space of A. There are two possible answers: (1) The
nonzero rows of rref(A), (2) The pivot columns of AT . Answers (1) and (2) can
differ wildly.

37. A =

(
1 0 1
0 1 1
0 0 0

)
Solution:
(1): Exercise 35 has the same matrix A. Without computation, rref(A) = A and a
basis for the row space is obtained from the nonzero rows of rref(A) by transposition:1
0
1

,

0
1
1


(2): Find the pivot columns of B = AT =

(
1 0 0
0 1 0
1 1 0

)
via rref(B) =

(
1 0 0
0 1 0
0 0 0

)
. Con-

clusion: columns 1, 2 of B are independent. A basis is

1
0
1

,

0
1
1

. The answer

happens to duplicate the answer from (1), an unusual event.

38. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Column Space
Find a basis for the column space of A, in terms of the columns of A. Normally,
we report the pivot columns of A.

39. A =

(
1 0 1
0 1 1
0 0 0

)
Solution:Without computation, rref(A) = A and a basis for the column space is

obtained from columns 1, 2 of A:

1
0
0

,

0
1
0



40. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Dimension Identities
Let A be an m× n matrix of rank r. Prove the following dimension identities in
Theorem 5.46.
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41. dim(nullspace(A)) = n− r

Solution:The rank-nullity theorem in the form lead count + free count = vari-
able count was used to obtain rank(A) + nullity(A) = n. Because free count =
nullity(A) = dim(nullspace(A)) and lead count =rank(A) = r, then the result
follows. ■

42. dim(colspace(A)) = r

43. dim(rowspace(A)) = r

Solution:Symbol r is the rank of A. The dimension of the row space of A is the number
of independent rows of A, which equals the number of nonzero rows of rref(A).
An alterative explanation: the row space of A is the column space of AT and the
dimension of the row space is the number of pivot columns in rref(AT ). Because
rank(A) = rank(AT ) then the dimension of the row space of A equals the rank of
A, or using notation, dim(rowspace(A)) = r. ■

44. The dimensions of nullspace(A) and colspace(A) add to n.

Orthogonal Complement S⊥

Let S be a subspace of vector space V = Rn. Define the Orthogonal comple-
ment by

S⊥ = {x⃗ : x⃗T y⃗ = 0, y⃗ in S}.(1)

45. Let V = R3 and let S be the xy-plane. Compute S⊥. Answer: The z-axis.

Solution:Definition: S⊥ = {x⃗ : x⃗ · y⃗ = 0, y⃗ in the xy-plane}.

Let y⃗ =

a
b
0

 where a, b are real numbers, x⃗ =

x1

x2

x3

. Then y⃗ is in S and x⃗ is in V .

For x⃗ to also be in S this requirement is made:

0 = x⃗ · y⃗ = ax1 + bx2

The requirement must hold for all a, b. Quickly we decide that x1 = x2 = 0, leaving

x3 undetermined and x⃗ =

 0
0

x3

 with x3 any real number. So x⃗ is any vector whose

head lies on the z-axis and S is the z-axis. ■

46. Prove that S⊥ is a subspace, using the Subspace Criterion.

47. Prove that the orthogonal complement of S⊥ is S. In symbols,
(
S⊥)⊥ = S.

Solution:
Let W = S⊥ = {w⃗ : w⃗ · s⃗ = 0 for all s in S}.
Let X = W⊥ = {x⃗ : x⃗ · w⃗ = 0 for all w in W}.
Orthonormal basis for V : Let s⃗1, . . . , s⃗k be an orthonormal basis for S. Extend
it to an orthonormal basis for V by Gram-Schmidt, adding vectors s⃗k+1, . . . , s⃗n. Let

x⃗ ∈ X. By basis expansion, x⃗ = s⃗ + w⃗ where s⃗ =
∑k

i=1 cis⃗i and w⃗ =
∑n

j=k+1 cj s⃗j ,
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the constants defined by cm = x⃗ · s⃗m, 1 ≤ m ≤ n.
By construction, for k + 1 ≤ j ≤ n each vector s⃗j is orthogonal to every vector in S,
meaning s⃗j is in W = S⊥. Therefore s⃗ ∈ S and w⃗ ∈W .

To prove X ⊂ S: Let x⃗ ∈ X, then for k + 1 ≤ j ≤ n equation x⃗ · s⃗j = 0 holds

(definition of X). Expand x⃗ =
∑k

i=1 civ⃗i +
∑n

j=k+1 cj v⃗j . Definition cm = x⃗ · s⃗m and

x⃗ · s⃗j = 0 implies cj = 0 for k + 1 ≤ j ≤ n. Then x⃗ =
∑k

i=1 civ⃗i is in S.

To prove S ⊂ X: Let s⃗ ∈ S, then s⃗ =
∑k

i=1 civ⃗i for constants ci = s⃗ · s⃗i (1 ≤ i ≤ k).
We must show w⃗ ∈ W implies equation s⃗ · w⃗ = 0, then s⃗ ∈ X, as to be proved. Any
w⃗ ∈ W has expansion

∑n
j=k+1 cj s⃗j , each vector s⃗j orthogonal to s⃗1, . . . , s⃗k. So w⃗ is

orthogonal to s⃗1, . . . , s⃗k, hence w⃗ is orthogonal to s⃗: equation s⃗ · w⃗ = 0 holds. ■

48. Prove that
V = {x⃗+ y⃗ : x⃗ ∈ S, y⃗ ∈ S⊥}.

This relation is called the Direct Sum of S and S⊥.

Fundamental Theorem of Linear Algebra
Let A be an m× n matrix.

49. Write a short proof:
Lemma. Any solution of Ax⃗ = 0⃗ is orthogonal to every row of A.

Solution:Vector x⃗ is orthogonal to each row of A provided

n∑
j=1

aijxj = 0, 1 ≤ i ≤ n

row i =

 ai1
...

ain


T


Let Ax⃗ =

b1
...

bn

 where bi =
∑n

j=1 aijxj (Definition of matrix multiply). Because

Ax⃗ = 0⃗, matrix equality provides equation bi = 0 and in turn

n∑
j=1

aijxj = bi = 0, 1 ≤ i ≤ n

as required to complete the proof.

Alternate Proof: Details in R3 to get rid of all the summations:0
0
0

=Ax⃗=

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

) x1

x2

x3

=

 a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3


Then  a11x1 + a12x2 + a13x3 = 0

a21x1 + a22x2 + a23x3 = 0
a31x1 + a32x2 + a33x3 = 0

or

 row(A, 1) · x⃗ = 0
row(A, 2) · x⃗ = 0
row(A, 3) · x⃗ = 0

which displays orthogonality of each row of A to vector x⃗. ■
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50. Find the dimension of the kernel and image for both A and AT . The four answers
use symbols m,n, rank(A). The main tool is the rank-nullity theorem.

51. Prove
kernel(A) = Image

(
AT
)⊥

. Use Exercise 49.

Solution:Let S = kernel(A), the set of solutions to the equation Ax⃗ = 0⃗. Let
W = Image(AT ), the set of all linear combinations of columns of AT , that is, all
vectors w⃗ =

∑m
i=1 ci col(A

T , i). We will prove S = W⊥.

Show S ⊂W⊥: Exercise 49 shows that x⃗ ∈ S is orthogonal to each row of A, which
means equation x⃗ ·col(AT , i) = 0 holds, 1 ≤ i ≤ m. Then x⃗ ·

(∑m
i=1 ci col(A

T , i)
)
= 0

or x⃗ · w⃗ = 0 for all w⃗ ∈W . By definition of orthogonal complement, x⃗ ∈W⊥.

Show W⊥ ⊂ S: A vector s⃗ ∈W⊥ is orthogonal to all vectors w⃗ ∈W . In particular,
w⃗ = col(AT , i) is allowed, so s⃗ satisfies equation s⃗ · col(AT , i) = 0. Therefore s⃗ is
orthogonal to the rows of A, which by Exercise 49 implies As⃗ = 0⃗. Then s⃗ ∈ S. ■

52. Prove
kernel

(
AT
)
= Image (A)

⊥
.

Fundamental Subspaces
The kernel and image of both A and AT are called The Four Fundamental Sub-
spaces by Gilbert Strang. Let A denote an n×m matrix.

53. Prove using Exercise 51:
kernel(A) = rowspace(A)⊥

Solution:Exercise 51 gives kernel(A) = Image(AT )⊥. We must prove that
Image(AT ) = rowspace(A).

The row space of A is the set of all linear combinations of the rows of A, formally the
set of all linear combinations of columns of AT . The set of all linear combinations of
the columns of AT is the image of AT . ■

54. Establish these four identities.
kernel(A) = Image

(
AT
)⊥

kernel
(
AT
)
= Image (A)

⊥

Image (A) = kernel(AT )⊥

Image
(
AT
)
= kernel(A)⊥

Notation. kernel is null space, image is column space, symbol ⊥ is orthogonal
complement: see equation (1).

Equivalent Bases
Test the given subspaces for equality.

55. S1 = span

1
1
0

 ,

1
1
1

,

S2 = span

 3
3
−1

 ,

1
1
1


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Solution:Follow the Equivalent Bases example in the text.

Let B =

(
1 1
1 1
0 1

)
, C =

(
3 1
3 1
−1 1

)
.

Let W = ⟨B|C⟩ =

(
1 1 3 1
1 1 3 1
0 1 −1 1

)
.

Compute the rank of each to be 2. Then S1 = S2.

# Subspace equality test, Exercise 55

with(LinearAlgebra):

B:=<1,1,0|1,1,1>;C:=<3,3,-1|1,1,1>;

Rank(<B|C>);Rank(B);Rank(C);

# all equal 2 => S1 = S2

56. S3 = span

1
0
1

 ,

1
2
1

,

S4 = span

1
0
0

 ,

0
1
0



57. S5 = span



1
0
1
1

 ,


1
2
1
1


,

S6 = span



1
0
1
1

 ,


0
1
0
1




Solution:Follow Exercise 55. Compute the ranks: 3, 2, 2. Then S1 ̸= S2.

# Subspace equality test, Exercise 57

with(LinearAlgebra):

B:=<1,0,1,1|1,2,1,1>;C:=<1,0,1,1|0,1,0,1>;

Rank(<B|C>);Rank(B);Rank(C);

# Ranks: 3,2,2 => S1 != S2

58. S7 = span



2
1
1
1

 ,


1
2
1
1


,

S8 = span




1
−1
0
0

 ,


3
3
2
2



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Appendix 6

§ Scalar Linear Differential
Equations

Contents

6.1 Linear 2nd Order Constant . . . . . . . . . . . . . 1380

6.2 Continuous Coefficient Theory . . . . . . . . . . . 1387

6.3 Higher Order Linear Constant Equations . . . . . 1391

6.4 Variation of Parameters . . . . . . . . . . . . . . . 1398

6.5 Undetermined Coefficients . . . . . . . . . . . . . . 1401

6.6 Undamped Mechanical Vibrations . . . . . . . . . 1408

6.7 Forced and Damped Vibrations . . . . . . . . . . . 1414

6.8 Resonance . . . . . . . . . . . . . . . . . . . . . . . . 1429

6.9 Kepler’s laws . . . . . . . . . . . . . . . . . . . . . . 1432

6.1 Linear 2nd Order Constant

Exercises 6.1 �
General Solution 2nd Order
Solve the constant equation using Theorem 6.1, page 431. Report the general
solution using symbols c1, c2. Model the solution after Examples 6.1–6.3, page
434.

1. y′′ = 0
Ans: y = c1 + c2x

Solution:Follow Example 6.1 on page 434. Characteristic equation r2 = 0 has a
double root r = 0, 0. Then y1 = e0x = 1, y2 = xe0x = x and y = c1y1+c2y2 = c1+c2x.

2. 3y′′ = 0
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6.1 Linear 2nd Order Constant

3. y′′ + y′ = 0

Solution: Characteristic equation r2 + r = 0 has roots r = 0, r = −1. Then
y1 = e0x = 1, y2 = e−x and y = c1y1 + c2y2 = c1 + c2e

−x.

4. 3y′′ + y′ = 0

5. y′′ + 3y′ + 2y = 0

Solution:Characteristic equation r2 + 3r + 2 = 0 has roots r = −2, r = −1. Then
y1 = e−2x, y2 = e−x and y = c1y1 + c2y2 = c1e

−2x + c2e
−x.

6. y′′ − 3y′ + 2y = 0

7. y′′ − y′ − 2y = 0

Solution:Characteristic equation r2 − r − 2 = 0 has roots r = −1, r = 2. Then
y1 = e−x, y2 = e2x and y = c1y1 + c2y2 = c1e

−x + c2e
2x.

8. y′′ − 2y′ − 3y = 0

9. y′′ + y = 0

Solution: Follow Example 6.3 page 434. Characteristic equation r2 + 1 = 0 has
roots r = i, r = −i. Then y1 = cos(x), y2 = sin(x) and y = c1y1 + c2y2 =
c1 cos(x) + c2 sin(x).

10. y′′ + 4y = 0

11. y′′ + 16y = 0

Solution:y = c1 cos(4x) + c2 sin(4x).

12. y′′ + 8y = 0

13. y′′ + y′ + y = 0

Solution:Use the quadratic formula to find the roots of the characteristic equation

r2+r+1 = 0. Then r = − 1
2±

√
−3
2 = − 1

2±i
√
3
2 . Let y1 = e−x/2 cos(

√
3x/2) and y2 =

e−x/2 sin(
√
3x/2). The general solution is y = c1y1 + c2y2 = c1e

−x/2 cos(
√
3x/2) +

c2e
−x/2 sin(

√
3x/2).

14. y′′ + y′ + 2y = 0

15. y′′ + 2y′ + y = 0

Solution:y = c1e
−x + c2xe

−x.

16. y′′ + 4y′ + 4y = 0

17. 3y′′ + y′ + y = 0

Solution:Characteristic equation 3r2 + r + 1 = 0 has roots r = −1/6 ± (i/6)
√
11.

Then y = c1e
−x/6 cos(

√
11x/6) + c2e

−x/6 sin(
√
11x/6).
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18. 9y′′ + y′ + y = 0

19. 5y′′ + 25y′ = 0

Solution:y = c1 cos(
√
5x) + c2 sin(

√
5x).

20. 25y′′ + y′ = 0

21. 2y′′ + y′ − y = 0

Solution:Characteristic equation 2r2 + r − 1 = 0 has roots r = −1, 1/2. Then
y = c1e

−x + c2e
x/2.

22. 2y′′ − 3y′ − 2y = 0

23. 2y′′ + 7y′ + 3y = 0

Solution:y = c1e
−3x + c2e

−x/2.

24. 4y′′ + 8y′ + 3y = 0

25. 6y′′ + 7y′ + 2y = 0

Solution:y = c1e
−x/2 + c2e

−2x/3.

26. 6y′′ + y′ − 2y = 0

27. y′′ + 4y′ + 8y = 0

Solution:Roots −2± 2i. Then y = c1e
−2x cos(2x) + c2e

−2x sin(2x).

28. y′′ − 2y′ + 4y = 0

29. y′′ + 2y′ + 4y = 0

Solution:Roots −1± i
√
3. Then y = c1e

−x cos(
√
3x) + c2e

−x sin(
√
3x).

30. y′′ + 4y′ + 5y = 0

31. 4y′′ − 4y′ + y = 0

Solution:y = c1e
x/2 + c2xe

x/2.

32. 4y′′ + 4y′ + y = 0

33. 9y′′ − 6y′ + y = 0

Solution:y = c1e
x/3 + c2xe

x/3.

34. 9y′′ + 6y′ + y = 0

35. 4y′′ + 12y′ + 9y = 0

Solution:y = c1e
−3x/2 + c2xe

−3x/2.
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36. 4y′′ − 12y′ + 9y = 0

Initial Value Problem 2nd Order
Solve the given problem, modeling the solution after Example 6.4.

37. 6y′′ + 7y′ + 2y = 0, y(0) = 0, y′(0) = −1
Solution:y = 6e−2x/3−6e−x/2. The general solution is y = c1e

−2x/3+c2e
−x/2, found

from roots −2/3,−1/2 of 6r2 + 7r + 2 = 0. Substitute into equations y(0) = 0,
y′(0) = −1:
c1 + c2 = 0, −2c1/3− c2/2 = −1
Then solve for c1 = 6, c2 = −6 by Cramer’s rule.

# Exercise 37, answer check

L:=[6,7,2]; A:=0;B:=-1;

solve(L[1]*x^2+L[2]*x+L[3]=0,x);

de:=L[1]*diff(y(x),x,x)+L[2]*diff(y(x),x)+L[3]*y(x)=0;

ic:=y(0)=A,D(y)(0)=B;

dsolve([de,ic],y(x));

# y(x) = 6*exp(-(2/3)*x)-6*exp(-(1/2)*x)

38. 2y′′ + 7y′ + 3y = 0, y(0) = 5, y′(0) = −5

39. y′′ − 2y′ + 4y = 0, y(0) = 1, y′(0) = 1

Solution:y = ex cos(
√
3x)

40. y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 1

41. 9y′′ − 6y′ + y = 0, y(0) = 3, y′(0) = 1

Solution:y = 3 ex/3

42. 4y′′ + 12y′ + 9y = 0, y(0) = 2, y′(0) = 1

Detecting Euler Solution Atoms
A Euler solution atom is defined in Definition 6.1 page 432. Box each list
entry that is precisely an atom. Double-box non-atom list entries that are a sum
of constants times atoms. Follow Example 6.5 page 436.

43. 1, ex/5, −1, e1.1x, 2ex

Solution: 1 , ex/5 , −1 (not an atom), e1.1x , 2ex

44. −x cosπx, x2 sin 2x, x3, 2x3

45. e2x, e−x2/2, cos2 2x, sin 1.57x

Solution: e2x , e−x2/2 not an atom, cos2 2x because of a trig double angle identity,

sin 1.57x
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46. x7ex cos 3x, x10ex sin 4x

47. x7ex cosh 3x, x10e−x sinh 5x

Solution:Both double-boxed because of definitions cosh(x) = 1
2e

x + 1
2e

−x and
sinh(x) = 1

2e
x − 1

2e
−x.

48. cosh2 x, x(1 + x), x1.5,
√
xe−x

49. x1/2ex/2,
1

x
ex, ex(1 + x2)

Solution: x1/2ex/2 not an atom,
1

x
ex not an atom, ex(1 + x2)

50.
x

1 + x
,
1

x
(1 + x2), ln |x|

Euler Base Atom
An Euler base atom is defined in Definition 6.1 page 432. Find the base atom
for each Euler solution atom in the given list.

51. x cosπx, x3, x10e−x sin 5x

Solution:Strip off the power of x: base atoms = cosπx, 1, e−x sin 5x.

52. x6, x4e2x, x2e−x/π, x7ex cos 1.1x

Inverse Problems
Find the homogeneous 2nd order differential equation, given the supplied infor-
mation. Follow Example 6.6.

53. e−x/5 and 1 are solutions.
Ans: 5y′′ + y′ = 0.

Solution:The roots are obtained from the atoms: r = −1/5, 0. Then (r+1/5)(r−0) =
0 is the characteristic equation: r2 + r/5 = 0. The differential equation is then
y′′ + (1/5)y′ = 0. A common error is to report y′′ + (1/5)y = 0, caused by reading
r/5 as the constant term (it is not).

54. e−x and 1 are solutions.

55. ex + e−x and ex − e−x are solutions.

Solution:Identify atoms ex and e−x, then roots r = 1,−1 to create characteristic
polynomial (r − 1)(r + 1) = r2 − 1. Then the differential equation is y′′ − y = 0.

56. e2x + xe2x and xe2x are solutions.

57. x and 2 + x are solutions.

Solution:Identify atoms 1, x and then roots r = 0, 0 (double root) to find character-
istic equation r2 = 0. The differential equation is y′′ = 0.
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58. 4ex and 3e2x are solutions.

59. The characteristic equation is r2 + 2r + 1 = 0.

Solution:y′′ + 2y′ + y = 0

60. The characteristic equation is 4r2 + 4r + 1 = 0.

61. The characteristic equation has roots r = −2, 3.
Solution:The characteristic polynomial is (r+2)(r− 3) = r2− r− 6. The differential
equation is y′′ − y′ + 6y = 0.

62. The characteristic equation has roots r = 2/3, 3/5.

63. The characteristic equation has roots r = 0, 0.

Solution:y′′ = 0

64. The characteristic equation has roots r = −4,−4.

65. The characteristic equation has complex roots r = 1± 2i.

Solution:The characteristic polynomial is (r − 1 − 2i)(r − 1 + 2i) = (r − 1)2 + 4 =
r2 − 2r + 5. The differential equation is y′′ − 2y′ + 5y = 0.

66. The characteristic equation has complex roots r = −2± 3i.

Details of proofs

67. (Theorem 6.1, Background) Expand the relation Ar2+Br+C = A(r− r1)(r− r2)
and compare coefficients to obtain the sum and product of roots relations

B

A
= −(r1 + r2),

C

A
= r1r2.

Solution:

Ar2 +Br + C = A(r − r1)(r − r2)
Ar2 +Br + C = A(r2 − r1r − r2e+ r1r2)

Compare cofficients left and right:

A = A
B == −A(r1 + r2) sum of the roots
C = Ar1r2

Then:

B/A = −(r1 + r2) = negative of the sum of the roots
C/S = r1r2 = product of the roots
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68. (Theorem 6.1, Background)

Let r1, r2 be the two roots of Ar2+Br+C = 0. The discriminant is D = B2− 4AC.
Use the quadratic formula to derive these relations for D > 0, D = 0, D < 0,
respectively:

r1 = −B+
√
D

2A , r2 = −B−
√
D

2A ,

r1 = r2 =
√
D

2A .

r1 = −B+i
√
−D

2A , r2 = −B−i
√
−D

2A .

69. (Theorem 6.1, Case 1)

Let y1 = er1x, y2 = er2x. Assume
Ar2+Br+C = A(r−r1)(r−r2). Show that y1, y2 are solutions of Ay′′+By′+Cy = 0.

Solution:
Ay′′ +By′ + Cy|y=y1

= A(er1x)′′ +B(er1x)′ + Cer1x

= Ar1r1e
r1x +Br1e

r1x + Cer1x

= (Ar1r1 +Br1 + C)er1x

= A(r1 − r1)(r1 − r2)e
r1x

= 0

Except for indexing the proof is the same for er2x. ■

70. (Theorem 6.1, Case 2)

Let y1 = er1x, y2 = x er1x. Assume
Ar2 +Br + C=A(r − r1)(r − r1).
Show that y1, y2 are solutions of Ay′′ +By′ + Cy = 0.

71. (Theorem 6.1, Case 3)

Let a, b be real, b > 0. Let y1 = eax cos bx, y2 = eax sin bx. Assume factorization
Ar2+Br+C=A(r−a−ib)(r−a+ib)
then show that y1, y2 are solutions of Ay′′ +By′ + Cy = 0.

Solution:
Let r1 = a + ib, r2 = a − ib, the two complex roots. Let z = a + ib. Let y = ezx =
y1+ iy2. Then Az2 +Bz+C = 0 and y is a solution of Ay′′+By′+Cy = 0 by these
steps:

Az2 +Bz + C = 0 because z is a root of the characteristic equation
Az2y +Bzy + Cy = 0 multiply by y
Ay′′ +By′ + Cy = 0 because y = ezx, y′ = zezx = zy, y′′ = z2ezx = z2y

Then y = y1 + iy2 implies:

A(y′′1 + iy′′2 ) +B(y′1 + iy′2) + C(y1 + iy2) = 0
Ay′′1 +By′1 + Cy1 + i(Ay′′2 +By′2 + Cy2) = 0

The left side is a complex number X + iY equal to zero on the right side, therefore
the real and imaginary parts X, Y of the complex number are zero:

X = Ay′′1 +By′1 + Cy1 = 0
Y = Ay′′2 +By′2 + Cy2 = 0

The result: both y1 and y2 are solutions of Ay′′ +By′ + Cy = 0. ■
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6.2 Continuous Coefficient Theory

Exercises 6.2 �
Continuous Coefficients
Determine all intervals J of existence of y(x), according to Picard’s theorem.

1. y′′ + y = ln |x|
Solution:Let f(x, y) = −y + ln |X|. The domain D is x ̸= 0 and all y. Both f and
fy = −1 are continuous on D. According to Picard’s theorem, there is a locally
unique solution to each initial value problem y′ = f(x, y), y(x0) = y0 for any y0 and
any x0 ̸= 0.

2. y′′ = ln |x− 1|

3. y′′ + (1/x)y = 0

Solution:All y and all x ̸= 0.

4. y′′ + 1
1+xy

′ + 1
xy = 0

5. x2y′′ + y = sinx

Solution:All y and all x ̸= 0.

6. x2y′′ + xy′ = 0

Superposition
Verify that y = c1y1 + c2y2 is a solution.

7. y′′ = 0, y1(x) = 1, y2(x) = x

Solution:y′′ = c1y
′′
1 + c2y

′′
2 = c1(0) + c2(0) = 0

8. y′′ = 0, y1(x) = 1 + x, y2(x) = 1− x

9. y′′′ = 0, y1(x) = x, y2(x) = x2

Solution:y′′′ = c1y
′′′
1 + c2y

′′′
2 = c1(0) + c2(0) = 0

10. y′′′ = 0, y1(x) = 1 + x, y2(x) = x+ x2

Structure
Verify that y = yh + yp is a solution.

11. y′′ + y = 2, yh(x) = c1 cosx+ c2 sinx, yp(x) = 2

Solution:y′′+y = (yh+yp)
′′+yh+yp = −c1 cosx−c2 sinx+0+c1 cosx+c2 sinx+2 = 2

12. y′′ + 4y = 4, yh(x) = c1 cos 2x+ c2 sin 2x, yp(x) = 1
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13. y′′ + y′ = 5, yh(x) = c1 + c2e
−x, yp(x) = 5x

Solution:y′′ + y′ = (c1 + c2e
−x + 5x)′′ + (c1 + c2e

−x + 5x)′ = 0 + c2e
−x + 0 + (0 −

c2e
−x + 5) = 5

14. y′′ + 3y′ = 5, yh(x) = c1 + c2e
−3x, yp(x) = 5x/3

15. y′′ + y′ = 2x, yh(x) = c1 + c2e
−x, yp(x) = x2 − 2x

Solution:y′′ + y′ = (c1 + c2e
−x + x2 − 2x)′′ + (c1 + c2e

−x + x2 − 2x)′ = 0 + c2e
−x +

2− 0 + (0− c2e
−x + 2x− 2 = 2x

16. y′′ + 2y′ = 4x, yh(x) = c1 + c2e
−2x, yp(x) = x2 − x

Initial Value Problems
Solve for constants c1, c2 in the general solution yh = c1y1 + c2y2.

17. y′′ = 0, y1 = 1, y2 = x, y(0) = 1, y′(0) = 2

Solution:
y = c1y1 + c2y2
= c1 + c2x

Translate equations y(0) = 1, y′(0) = 2:

c1 + c2(0) = 1, c2 = 2

Solve: c1 = 1, c2 = 2. Then y = 1 + 2x.

18. y′′ = 0, y1 = 1 + x, y2 = 1− x, y(0) = 1, y′(0) = 2

19. y′′ + y = 0, y1 = cosx, y2 = sinx, y(0) = 1, y′(0) = −1
Solution:
y = c1y1 + c2y2
= c1 cosx+ c2 sinx

Translate equations y(0) = 1, y′(0) = −1:
c1(1) + c2(0) = 1, −c1(0) + c2(1) = −1
Solve: c1 = 1, c2 = −1. Then y = cosx− sinx.

20. y′′ + y = 0, y1 = sinx, y2 = cosx, y(0) = 1, y′(0) = −1

21. y′′ + 4y = 0, y1 = cos 2x, y2 = sin 2x, y(0) = 1, y′(0) = −1
Solution:
y = c1y1 + c2y2
= c1 cos 2x+ c2 sin 2x

Translate equations y(0) = 1, y′(0) = −1:
c1(1) + c2(0) = 1, −2c1(0) + 2c2(1) = −1
Solve: c1 = 1, c2 = −1/2. Then y = cos 2x− (1/2) sin 2x.
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22. y′′ + 4y = 0, y1 = sin 2x, y2 = cos 2x, y(0) = 1, y′(0) = −1

23. y′′ + y′ = 0, y1 = 1, y2 = e−x, y(0) = 1, y′(0) = −1
Solution:
y = c1y1 + c2y2
= c1 + c2e

−x

Translate equations y(0) = 1, y′(0) = −1:
c1(1) + c2(1) = 1, 0− c2(1) = −1
Solve: c1 = 0, c2 = 1. Then y = e−x.

24. y′′ + y′ = 0, y1 = 1, y2 = e−x, y(0) = 2, y′(0) = −3

25. y′′ + 3y′ = 0, y1 = 1, y2 = e−3x, y(0) = 1, y′(0) = −1
Solution:
y = c1y1 + c2y2
= c1 + c2e

−3x

Translate equations y(0) = 1, y′(0) = −1:
c1 + c2(1) = 1, 0− 3c2(1) = −1
Solve: c1 = 2/3, c2 = 1/3. Then y = 2/3 + (1/3)e−3x.

26. y′′ + 5y′ = 0, y1 = 1, y2 = e−5x, y(0) = 1, y′(0) = −1

Recognizing yh
Extract from the given solution y a particular solution yp with fewest terms.

27. y′′ + y = x,
y = c1 cosx+ c2 sinx+ x

Solution:The Euler solution atoms for the homogeneous equation y′′+y = 0 are cosx,
sinx. Then c1 cosx+c2 sinx is a solution of the homogeneous equation, making yp = x
a particular solution.

28. y′′ + y = x,
y = cosx+ x

29. y′′ + y′ = x,
y = c1 + c2e

−x + x2/2− x

Solution:yp = x2/2− x

30. y′′ + y′ = x,
y = e−x − x+ 1 + x2/2

31. y′′ + 2y′ + y = 1 + x,
y = (c1 + c2x)e

−x + x− 1

Solution:yp = x− 1
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32. y′′ + 2y′ + y = 1 + x,
y = e−x + x+ xe−x − 1

Reduction of Order
Given solution y1, find an independent solution y2 by reduction of order.

33. y′′ + 2y′ = 0, y1(x) = 1

Solution:Let x0 = 0. Let a = 1, b = 2. Then∫ t

x0
(b/a)dr =

∫ t

0
2dr = 2t

y2(x) = y1(x)
∫ x

x0

e
−
∫ t
x0

(b/a)dr

y21(t)
dt =

∫ x

0
e−2t

12 dt

= (1− e−2x)/2

Answer check:

y′′ + 2y′ = (1/2)(1− e−2x)′′ + 2(1/2)(1− e−2x)′ = (1/2)(4)e−2x − 2e−2x = 0

34. y′′ + 2y′ = 0, y1(x) = e−2x

35. 2y′′ + 3y′ + y = 0, y1(x) = e−x

Solution:Let x0 = 0. Let a = 2, b = 3. Then∫ t

x0
(b/a)dr =

∫ t

0
(3/2)dr = 3t/2

y2(x) = y1(x)
∫ x

x0

e
−
∫ t
x0

(b/a)dr

y21(t)
dt = e−x

∫ x

0
e−3t/2

e−2t dt

= 2(−e−x + e−x/2)

Answer check:

2y′′ + 3y′ + y
= 2(−2e−x + 2e−x/2)′′ + 3(−2e−x + 2e−x/2)′ + (−2e−x + 2e−x/2)
= −4e−x + e−x/2 + 6e−x − 3e−x/2 − 2e−x + 2e−x/2

= (−4 + 6− 2)e−x + (1− 3 + 2)e−x/2 = 0

36. 2y′′ − y′ − y = 0, y1(x) = ex

Equilibrium Method
Apply the equilibrium method to find yp, then find the general solution y =
yh + yp.

37. 2y′′ = 3

Solution:yh = c1 + c2x, yp = 3x2/4.

The equilibrium method applies because the coefficients are constant. Solve 2y′′ = 3
by quadrature, all integration constants zero. Then y′ = 3x/2, y = 3x2/4.

38. y′′ + 4y′ = 5
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39. y′′ + 3y′ + 2y = 3

Solution:yh = c1e
−2x + c2e

−x, yp = 3/2.

Factor r2 + 3r + 2 = (r + 1)(r + 2), then roots are r = −1, r = −2 and yh =
c1e

−2x + c2e
−x. Drop all but the lowest order term in the DE to obtain 2y = 3, then

solve for y (no quadrature required): y = 3/2.

40. y′′ − y′ − 2y = 2

41. y′′ + y = 1

Solution:yh = c1 cosx+ c2 sinx, yp = 1

42. 3y′′ + y′ + y = 7

43. 6y′′ + 7y′ + 2y = 5

Solution:yh = c1e
−2x/3 + c2e

−x/2, yp = 5/2

44. y′′ − 2y′ + 4y = 8

45. 4y′′ − 4y′ + y = 8

Solution:yh = c1e
x/2 + c2x e

x/2, yp = 8

46. 4y′′ − 12y′ + 9y = 18

6.3 Higher Order Linear Constant Equations

Exercises 6.3 �
Constant Coefficients
Solve for y(x). Proceed as in Examples 6.13–6.20.

1. 3y′ − 2y = 0

Solution:y = c e2x/3.

The characteristic equation is 3r − 2 = 0 with root r = 2/3. There is one Euler
solution atom e2x/3. Then y is a linear combination of the atoms.

2. 2y′ + 7y = 0

3. y′′ − y′ = 0

Solution:y = c1 + c2e
x.

The characteristic equation is r2 − r = 0 with roots r = 0, r = 1. The Euler solution
atoms are e0x and ex. Then y is a linear combination of the atoms.

4. y′′ + 2y′ = 0
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5. y′′ − y = 0

Solution:y = c1e
x + c2e

−x

6. y′′ − 4y = 0

7. y′′ + 2y′ + y = 0

Solution:y = c1e
−x + c2xe

−x

8. y′′ + 4y′ + 4y = 0

9. y′′ + 3y′ + 2y = 0

Solution:y = c1e
−x + c2e

−2x

10. y′′ − 3y′ + 2y = 0

11. y′′ + y = 0

Solution:y = c1 cosx+ c2 sinx.

The characteristic equation r2 + 1 = 0 has complex roots ±i, with Euler solution
atoms cosx, sinx. Then y is a linear combination of the atoms.

12. y′′ + 4y = 0

13. y′′ + y′ + y = 0

Solution:y = c1e
−x/2 cos

√
3x/2 + c2e

−x/2 sin
√
3x/2

14. y′′ + 2y′ + 2y = 0

15. y′′ = 0

Solution:y = c1 + c2x

16. y′′′ = 0

17. d4y
dx4 = 0

Solution:y = c1 + c2x+ c2x
2 + c4x

3.

The characteristic equation r4 = 0 has roots r = 0, 0, 0, 0 counted according to
multiplicity. The Euler atoms are 1, x, x2, x3 by Euler’s multiplicity theorem. Then
y is a linear combination of the atoms.

18. d5y
dx5 = 0

19. y′′′ + 2y′′ = 0

Solution:y = c1 + c2x+ c3e
−2x

The characteristic equation r3 + 2r2 = 0 has roots r = 0, 0,−2 and Euler atoms
e0x, xe0x, e−2x. Then y is a linear combination of the atoms.
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20. y′′′ + 4y′ = 0

21. d4y
dx4 + y′′ = 0

Solution:y = c1 + c2x+ c3 cosx+ c4 sinx.

The characteristic equation r4 + r2 = 0 has roots r = 0, 0, i,−i and Euler solution
atoms 1, x, cosx, sinx. Then y is a linear combination of the atoms.

22. d5y
dx5 + y′′′ = 0

Detecting Atoms
Decompose each atom into a base atom times a power of x. If the expression
fails to be an atom, then explain the failure.

23. −x
Solution:Not an atom. Euler solution atoms have coefficient 1.

24. x

25. x2 cosπx

Solution:Base atom = cosπx, power = x2.

26. x3/2 cosx

27. x1000e−2x

Solution:Base atom = e−2x, power = x1000.

28. x+ x2

29.
x

1 + x2

Solution:Not an Euler solution atom. Most fractions fail.

30. ln |xe2x|

31. sinx

Solution:Base atom = sinx, power = x0.

32. sinx− cosx

Solution:A linear combination of Euler solution atoms is not an atom.

Higher Order
A homogeneous linear constant-coefficient differential equation can be defined
by (1) coefficients, (2) the characteristic equation, (3) roots of the characteristic
equation. In each case, solve the differential equation.
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33. y′′′ + 2y′′ + y′ = 0

Solution:y = c1 + c2e
−x + c3xe

−x

34. y′′′ − 3y′′ + 2y′ = 0

35. y(4) + 4y′′ = 0

Solution:y = c1 + c2x+ c3 cos 2x+ c4 sin 2x

36. y(4) + 4y′′′ + 4y′′ = 0

37. Order 5, r2(r − 1)3 = 0

Solution:y = c1 + c2x+ c3e
x + c4xe

x + c5x
2ex

38. Order 5, (r3 − r2)(r2 + 1) = 0.

39. Order 6, r2(r2 + 2r + 2)2 = 0.

Solution:y = c1 + c2x+ c3e
−x cosx+ c4xe

−x cosx+ c5e
−x sinx+ c6xe

−x sinx

Factor r2 + 2r + 2 = (r + 1)2 + 1 with roots −1πi. Then the six roots are
r = 0, 0,−1πi,−1πi and the Euler solution atoms are 1, x and e−x cosx, xe−x cosx,
e−x sinx, xe−x sinx. Then y is a linear combination of the atoms.

40. Order 6, (r2 − r)(r2 + 4r + 5)2 = 0.

41. Order 10, (r4 + r3)(r2 − 1)2(r2 + 1) = 0.

Solution:Solution y has ten terms as a linear combination of ten atoms 1, x, x2,
ex, xex, e−x, xe−x, x2e−x. cosx, sinx.

Factor as r3(r + 1)(r − 1)2(r + 1)2(r2 + 1) = 0 and then collect factors:

r3(r − 1)2(r + 1)3(r2 + 1) = 0

The ten roots are r = 0, 0, 0, r = 1, 1, r = −1,−1,−1, r = ±i. The ten atoms are
1, x, x2, ex, xex, e−x, xe−x, x2e−x. cosx, sinx. Then y is a linear combination of the
atoms.

42. Order 10, (r3 + r2)(r − 1)3(r2 + 1)2 = 0.

43. Order 5, roots r = 0, 0, 1, 1, 1.

Solution:y = c1 + c2x+ c3e
x + c4xe

x + c5x
2ex

44. Order 5, roots r = 0, 0, 1, i,−i.

45. Order 6, roots r = 0, 0, i,−i, i,−i.
Solution:y = c1 + c2x+ c3 cosx+ c4x cosx+ c5 sinx+ c6x sinx

46. Order 6, roots r = 0,−1, 1 + i, 1− i, 2i,−2i.
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47. Order 10, roots r = 0, 0, 0, 1, 1,−1,−1,−1, i,−i.
Solution:y is a linear combination of the ten atoms 1, x, x2, ex, xex, e−x, xe−x, x2e−x,
cosx, sinx.

48. Order 10, roots r = 0, 0, 1, 1, 1,−1, i,−i, i,−i.

Initial Value Problems
Given in each case is a set of independent solutions of the differential equation.
Solve for the coefficients c1, c2, . . . in the general solution, using the given initial
conditions.

49. ex, e−x, y(0) = 0, y′(0) = 1

Solution:Let y = c1e
x+ c2e

−x. Relations y(0) = 0, y′(0) = 1 translate to c1+ c2 = 0,
c1 − c2 = 1. Elimination gives c1 = 1/2, c2 = −1/2.

50. xex, ex, y(0) = 1, y′(0) = −1

51. cosx, sinx, y(0) = −1, y′(0) = 1

Solution:Let y = c1 cosx + c2 sinx. Relations y(0) = 0, y′(0) = 1 translate to
c1 cos 0 + c2 sin 0 = 0, −c1 sin 0 + c2 cos 0 = 1. Because cos 0 = 1, sin 0 = 0, then
c1 = 0, c2 = 1.

52. cos 2x, sin 2x, y(0) = 1, y′(0) = 0

53. ex, cosx, sinx, y(0) = −1, y′(0) = 1, y′′(0) = 0

Solution:Let y = c1 cosx+ c2 sinx+ c3e
x. Relations y(0) = −1, y′(0) = 1, y′′(0) = 0

translate to c1+ c3 = −1, c2+ c3 = 1, −c1+ c3 = 0. Add the first and third equation
to get c3 = −1/2. Then c1 = −1/2, c2 = 3/2, c3 = −1/2.

# Exercise 53 answer check

u:=x->-1/2*cos(x)+3/2*sin(x)-1/2*exp(x);

u(0);D(u)(0);D(D(u))(0);

# -1, 1, 0

54. 1, cosx, sinx, y(0) = −1, y′(0) = 1, y′′(0) = 0

55. ex, xex, cosx, sinx, y(0) = −1, y′(0) = 1, y′′(0) = 0, y′′′(0) = 0

Solution:Let y = c1 cosx + c2 sinx + c3e
x + c4xe

x. Relations y(0) = −1, y′(0) = 1,
y′′(0) = 0, y′′′(0) = 0 translate to c1 + c3 = −1, c2 + c3 + c4 = 1, −c1 + c3 + 2c4 = 0,
−c2 + c3 + 3c4 = 0. Use computer assist to find c1 = 1/2, c2 = 3/2, c3 = −3/2,
c4 = 1.

# Exercise 55, solve and answer check

sys:=[c1+c3=-1, c2+c3+c4=1, -c1+c3+2*c4=0, -c2+c3+3*c4=0];

solve(sys,{c1,c2,c3,c_});

# {c1 = 1/2, c2 = 3/2, c3 = -3/2, c4 = 1}

u:=x->1/2*cos(x)+3/2*sin(x)-3/2*exp(x)+x*exp(x);

u(0);D(u)(0);D(D(u))(0);D(D(D(u)))(0);

# -1, 1, 0, 0
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56. 1, x, cosx, sinx, y(0) = 1, y′(0) = −1, y′′(0) = 0, y′′′(0) = 0

57. 1, x, x2, x3, x4, y(0) = 1, y′(0) = 2, y′′(0) = 1, y′′′(0) = 3, y(4)(0) = 0

Solution:Let y = c1 + c2x + c3x
2 + c4x

3 + c5x
4. Relations y(0) = 1, y′(0) = 2,

y′′(0) = 1, y′′′(0) = 3, y(4)(0) = 0 translate to c1 = 1, c2 = 2, 2c3 = 1, 6c4 = 3,
24c5 = 0. Then y = 1 + 2x + x2/2 + x3/2 and c1 = 1, c2 = 2, c3 = 1/2, c4 = 1/2.
c5 = 0.

58. ex, xex, x2ex, 1, x, y(0) = 1, y′(0) = 0, y′′(0) = 1, y′′′(0) = 0, y(4)(0) = 0

Inverse Problem
Find a linear constant-coefficient homogeneous differential equation from the
given information. Follow Example 6.21.

59. The characteristic equation is (r + 1)3(r2 + 4) = 0.

Solution:Expand to r5+3r4+7r3+13r2+12r+4 = 0. Then the DE is y(5)+3y(4)+
7y′′′ + 13y′′ + 12y′ + 4y = 0

60. The general solution is a linear combination of the Euler solution atoms
ex, e2x, e3x, cosx, sinx.

Solution:The atoms ex, e2x, e3x, cosx, sinx correspond to roots 1, 2, 3,±i. The char-
acteristic polynomial is then (r−1)(r−2)(r−3)(r2+1) = r5−6r4+12r3−12r2+11r−6.
Then the DE is y(5) − 6y(4) + 12y′′′ − 12y′′ + 11y′ − 6y = 0.

61. The roots of the characteristic polynomial are 0, 0, 2 + 3i, 2− 3i.

Solution:The roots imply characteristic polynomial (r − 0)(r − 0)((r − 2)2 + 9) =
r4 − 4r3 + 13r2. Then the DE is y(4) − 4y′′′ + 13y′′ = 0.

62. The equation has order 4. Known solutions are ex + 4 sin 2x, xex.

63. The equation has order 10. Known solutions are sin 2x, x7ex.

Solution:Derivatives of solutions are also solutions which amasses a longer list of
ten atoms sin 2x, cos 2x, ex, xex, x2ex, x3ex, x4ex, x5ex, x6ex, x7ex. Then the
characteristic polynomial is (r2 + 4)(r − 1)8 = r10 − 8r9 + 32r8 − 88r7 + 182r6 −
280r5 + 308r4 − 232r3 + 113r2 − 32r + 4. Then the DE is y(10) − 8y(9) + 32y(8) −
88y(7) + 182y(6) − 280y(5) + 308y(4) − 232y′′′ + 113y′′ − 32y′ + 4y = 0.

64. The equation is my′′ + cy′ + ky = 0 with m = 1 and c, k positive. A solution is
y(x) = e−x/5 cos(2x− θ) for some angle θ.

Independence of Euler Atoms

65. Apply the independence test page 378 to atoms 1 and x: form equation 0 = c1+c2x,
then solve for c1 = 0, c2 = 0. This proves Euler atoms 1, x are independent.

Solution:Equation 0 = c1 + c2x holds for all x. Set x = 0 to conclude c1 = 0. Then
0 + c2x = 0 for all x. Set x = 1 to conclude c2 = 0. By the independence test, 1 and
x are independent on −∞ < x <∞.
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66. Show that Euler atoms 1, x, x2 are independent using the independence test page
378,

67. A Taylor series is zero if and only if its coefficients are zero. Use this result to give a
complete proof that the list 1, . . . , xk is independent. Hint: a polynomial is a Taylor
series.

Solution:Let y(x) =
∑k

n=0 cnx
n. Apply the independence test: let y(x) = 0 for all

x and solve for c0 to ck. By the theory of Taylor series, y(x) = 0 means all Taylor
coefficients are zero, because cn = y(n)(0)/n!. Therefore, c0 to ck are all zero, proving
the powers 1 to xk are independent on −∞ < x <∞.

68. Show that Euler atoms ex, xex, x2ex are independent using the independence test
page 378.

Solution:Hint: reduce the problem to Exercise 67 by canceling ex from the indepen-
dence test equation.

Wronskian Test
Establish independence of the given lists of functions by using the Wronskian
test page 385:

Functions f1, f2, . . . , fn are independent if W (x0) ̸= 0 for some x0, where W (x)
is the n× n determinant ∣∣∣∣∣∣∣

f1(x) · · · fn(x)
...

f
(n−1)
1 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣
69. 1, x, ex

Solution:Because W (x) =

∣∣∣∣∣∣
1 x x2

0 1 2x
0 0 2

∣∣∣∣∣∣ = 2, then the Wronskian test applies and

1, x, x2 are independent on −∞ < x <∞.

70. 1, x, x2, ex

71. cosx, sinx, ex

Solution:Let W (x) =

∣∣∣∣∣∣
cosx sinx ex

− sinx cosx ex

− cosx − sinx ex

∣∣∣∣∣∣. Then W (0) =

∣∣∣∣∣∣
1 0 1
0 1 1
−1 0 1

∣∣∣∣∣∣ = 2.

The Wronskian test applies. proving the three functions are independent on −∞ <
x <∞.

72. cosx, sinx, sin 2x

Kümmer’s Lemma
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73. Compute the characteristic polynomials p(r) and q(r) for

y′′ + 3y′ + 2y = 0 and
z′′ + z′ = 0.

Verify the equations are related by y = e−xz and p(r − 1) = q(r).

Solution:The characteristic polynomials are p(r) = r2 + 3r + 2 = (r + 1)(r + 2) and
q(r) = r2 + r. Then p(u − 1) = (u − 1 + 1)(u − 1 + 2) = u(u + 1) = u2 + u = q(u).
Compute:

y′ = d
dx (e

−x z) = −e−xz + e−xz′

y′′ = e−xz − 2e−xz′ + e−xz′′

y′′ + 3y′ + 2y = e−x(z − 2z′ + z′′)− 3e−xz + 3e−xz′ + 2e−xz
= e−x(z − 2z′ + z′′ − 3z + 3z′ + 2z)
= e−x(z′′ + z′)

Then y′′ + 3y′ + 2y = 0 if and only if z′′ + z′ = 0.

74. Compute the characteristic polynomials p(r) and q(r) for

ay′′ + by′ + cy = 0 and
az′′ + (2ar0 + b)z′+

(ar20 + br0 + c)z = 0.

Verify the equations are related by y = er0xz and p(r + r0) = q(r).

6.4 Variation of Parameters

Exercises 6.4 �
Independence: Constant Equation
Find solutions y1, y2 of the given homogeneous differential equation using The-
orem 6.1 page 431. Then apply the Wronskian test page 464 to prove indepen-
dence, following Example 6.22.

1. y′′ − y = 0

Solution:Characteristic equation r2−4 = 0 has roots r = 2,−2. Euler solution atoms

are e2x, e−2x. The Wronskian of the two atoms is W =

∣∣∣∣ e2x e−2x

2e2x −2e−2x

∣∣∣∣ = −4. The
Wronskian test applies: the two atoms are independent.

2. y′′ − 4y = 0

3. y′′ + y = 0

Solution:W =

∣∣∣∣ cosx sinx
− sinx cosx

∣∣∣∣ = cos2 x+ sin2 x = 1.

4. y′′ + 4y = 0
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5. 4y′′ = 0

Solution:Atoms are 1, x and W = 1.

6. y′′ = 0

7. 4y′′ + y′ = 0

Solution:Atoms are 1, e−x/4. Then W =

∣∣∣∣ 1 e−x/4

0 −e−x/4/4

∣∣∣∣ = −1
4 e−x/4.

8. y′′ + y′ = 0

9. y′′ + y′ + y = 0

Solution:The roots of r2 + r + 1 = 0 are −1/2± i
√
3/2. Atoms are e−x/2 cos

√
3x/2,

e−x/2 sin
√
3x/2. Let W =

∣∣∣∣ eax cos bx eax sin bx
(eax cos bx)′ (eax sin bx)′

∣∣∣∣. Then W = be2ax because

cos2(bx) + sin2(bx) = 1. Substitute a = −1/2, b =
√
3/2. Then W =

√
3

2
e−x. The

Wronskian test applies to prove the two atoms are independent.

10. y′′ − y′ + y = 0

11. y′′ + 8y′ + 2y = 0

Solution:The roots of r2 + 8r + 2 = 0 are −4 ±
√
14. Let W =

∣∣∣∣ eax ebx

aeax bebx

∣∣∣∣ =
(b − a)(eax+bx. Then W ̸= 0 if a ̸= b. Substitute a, b = −4 ±

√
14 and apply the

Wronskian test to prove the atoms are independent.

12. y′′ + 16y′ + 4y = 0

Independence for Euler’s Equation
Change variables, x = et, u(t) = y(x) in Ax2y′′(x) + Bxy′(x) + Cy(x) = 0 to

obtain a constant-coefficient equation A

(
d2u

dt2
− du

dt

)
+ B

du

dt
+ Au = 0. Solve

for u(t) and then substitute t = ln |x| to obtain y(x). Find two solutions y1, y2
which are independent by the Wronskian test page 464.

13. x2y′′ + y = 0

Solution:The transformed equation is u′′ − u′ + u = 0 where ′ = d/dt, t = ln |x|,
u(t) = y(x). The roots and atoms are 1/2 ± i

√
3/2, ex/2 cos

√
3x/2, ex/2 sin

√
3x/2.

The calculation of Exercise 9 proves independence of the atoms.

14. x2y′′ + 4y = 0

15. x2y′′ + 2xy′ + y = 0

Solution:The transformed equation is u′′ − u′ + 2u′ + u = 0 where ′ = d/dt,
t = ln |x|, u(t) = y(x). The roots and atoms are −1/2 ± i

√
3/2, e−x/2 cos

√
3x/2,

e−x/2 sin
√
3x/2. The calculation of Exercise 9 proves independence of the atoms.
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6.4 Variation of Parameters

16. x2y′′ + 8xy′ + 4y = 0

Wronskian
Compute the Wronskian, up a constant multiple, without solving the differential
equation: Example 6.23 page 466.

17. y′′ + y′ − xy = 0

Solution:Abel’s identity W (x) = W (x0)e
−
∫ x
x0

b(t)
a(t)

dt
applies to a(x)y′′ + b(x)y′ +

c(x)y = 0. Translate y′′ + y′ − xy = 0 to a = b = 1, c = −1. Choose x0 = 0.
Then

W (x) = W (0)e−
∫ x
0

dt = W (0)e−x

The Wronskian W (x) = e−x up to a constant multiple.

18. y′′ − y′ + xy = 0

19. 2y′′ + y′ + sin(x)y = 0

Solution:W (x) = e−x/2 up to a constant.

20. 4y′′ − y′ + cos(x)y = 0

21. x2y′′ + xy′ − y = 0

Solution:The integral in Abel’s identity is
∫ x

1
(−t/t2)dt = − ln |x| + ln |1|. Abel’s

identity is W (x) = W (1)e− ln |x| = c/x for some constant c.

22. x2y′′ − 2xy′ + y = 0

Variation of Parameters
Find the general solution yh + yp by applying a variation of parameters formula:
Example 6.24 page 466.

23. y′′ = x2

Solution:Because yh = c1 + c2x, let y1 = 1 and y2 = x. Compute W =

∣∣∣∣ 1 x
0 1

∣∣∣∣ = 1.

Follow Example 6.24 page 466:

yp = −y1(x)
∫
y2(x)x

2dx+ y2(x)
∫
y1(x)x

2dx
= −

∫
x3dx+ x

∫
x2dx

= −x4/4 + x4/3 + c3 + c4x
= x4/12 by taking integration constants c3 = c4 = 0.

Then y = yh + yp = c1 + c2x+ x4/12.

Answer check: y′′ = (c1 + c2x+ x4/12)′′ = (c2 + 4x3/12)′ = x2.

24. y′′ = x3
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25. y′′ + y = sinx

Solution: Let y1 = cosx, y2 = sinx, which are Euler atoms for r2 + 1 = 0. Then
W = 1 and

yp = −y1(x)
∫
y2(x) sinxdx+ y2(x)

∫
y1(x) sinxdx

= − cosx
∫
sinx sinxdx+ sinx

∫
cosx sinxdx

= − cos(x)(− 1
2 cos(x) sin(x) +

1
2x) +

1
2 sin

3(x) + c3 cosx+ c4 sinx
= 1

2 sinx−
1
2x cosx by taking c3 = c4 = 0.

Then yh = c1 cosx+ c2 sinx, yp = 1
2 sinx−

1
2x cosx

Answer check: y′′ + y = ( 12 sinx−
1
2x cosx)

′′ + ( 12 sinx−
1
2x cosx)

= − 1
2 sinx+ sinx+ 1

2x cosx+ ( 12 sinx−
1
2x cosx)

= sinx.

# Exercise 25, Variation of Parameters

Y1:=cos(x);Y2:=sin(x);

YP:=-Y1*int(Y2*sin(x),x) + Y2*int(Y1*sin(x),x);

simplify(YP);

# (1/2)*sin(x)-(1/2)*cos(x)*x

dsolve(D(D(y))(x) + y(x)=sin(x),y(x));# double-check answer

26. y′′ + y = cosx

27. y′′ + y′ = ex

Solution:y1 = 1, y2 = e−x, W = −e−x, yp = 1
2e

x.

28. y′′ + y′ = −ex

29. y′′ + 2y′ + y = e−x

Solution:y1 = e−x, y2 = xe−x, W = −e−2x, yp = 1
2x

2e−x.

30. y′′ − 2y′ + y = ex

6.5 Undetermined Coefficients

Exercises 6.5 �
Polynomial Solutions
Determine a polynomial solution yp for the given differential equation.

1. y′′ = x

Solution:Quadrature equation, yp = x3/6.

2. y′′ = x− 1

3. y′′ = x2 − x

Solution:Quadrature equation, yp = x4/12− x3/6.
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6.5 Undetermined Coefficients

4. y′′ = x2 + x− 1

5. y′′ − y′ = 1

Solution:Trial solution y = d1 + d2x or guess by experience yp = −x.

6. y′′ − 5y′ = 10

7. y′′ − y′ = x

Solution:Trial solution y = d1x+d2x
2. Calculate 2d2−d1−2d2x = x and then linear

algebraic equations −d1+2d2 = 0, −2d2 = 1. Solution d2 = −1/2 and d1 = −1 gives
particular solution yp = −x− x2/2.

8. y′′ − y′ = x− 1

9. y′′ − y′ + y = 1

Solution:No roots of characteristic equation r2 − r + 1 = 0 match root=0 of RHS
atom 1. Then y = d1 is the trial solution. Substitution gives d1 = 1 and yp = 1. A
shortcut is provided by theorems: cancel all higher order terms and deduce y = 1.

10. y′′ − y′ + y = −2

11. y′′ + y = 1− x

Solution:No shortcut available. Trial solution y = d1 + d2x obtained from the RHS
has roots 0, 0, which do not conflict with the roots ±i of the characteristic equation
r2 + 1 = 0. The first trial solution is also the corrected trial solution. Substitute to
obtain d1+d2x = 1−x, then yp = 1−x. The shortcut of canceling higher derivatives
does not apply, however the answer provided is correct. Guessing the answer and
then checking the answer is always a valid technique.

12. y′′ + y = 2 + x

13. y′′ − y = x2

Solution:No shortcut available. Trial solution y = d1+ d2x+ d3x
2 obtained from the

RHS has roots 0, 0, 0, which do not conflict with the roots ±1 of the characteristic
equation r2 − 1 = 0. The first trial solution is also the corrected trial solution.
Substitute to obtain 2d3 − d1 − d2x − d3x

2 = x2, then match coefficients left and
right. The linear algebraic equations are d3 = −1, −d1 + 2d3 = 0, d2 = 0. Then
yp = −2 − x2. The shortcut of canceling higher derivatives does not apply and the
answer from this false method is incorrect.

14. y′′ − y = x3

Polynomial-Exponential Solutions
Determine a solution yp for the given differential equation.

15. y′′ + y = ex

Solution:yp = 1
2e

x
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6.5 Undetermined Coefficients

16. y′′ + y = e−x

17. y′′ = e2x

Solution:yp = d1e
2x, d1 = 1

4 .

18. y′′ = e−2x

19. y′′ − y = (x+ 1)e2x

Solution:yp = d1e
2x + d2xe

2x, d1 = − 1
9 , d2 = 1

3 .

# Exercise 19

de:=diff(y(x),x,x) - y(x) = (x+1)*exp(2*x);

dsolve(de,y(x));

20. y′′ − y = (x− 1)e−2x

21. y′′ − y′ = (x+ 3)e2x

Solution:yp = d1e
2x + d2xe

2x, d1 = 3
4 , d2 = 1

2 .

22. y′′ − y′ = (x− 2)e−2x

23. y′′ − 3y′ + 2y = (x2 + 3)e3x

Solution:yp = d1e
3x + d2xe

3x + d3x
2e3x, d1 = 13

4 , d2 = − 3
2 , d3 = 1

2 .

24. y′′ − 3y′ + 2y = (x2 − 2)e−3x

Sine and Cosine Solutions
Determine a solution yp for the given differential equation.

25. y′′ = sin(x)

Solution:yp = d1 cos(x) + d2 sin(x), d1 = 0, d2 = −1

26. y′′ = cos(x)

27. y′′ + y = sin(x)

Solution:yp = d1x cos(x) + d2x sin(x), d1 = − 1
2 , d2 = 0

28. y′′ + y = cos(x)

29. y′′ = (x+ 1) sin(x)

Solution:yp = d1 cos(x) + d2 sin(x) + d3x cos(x) + d4x sin(x), d1 = −2, d2 = −1,
d3 = 0, d4 = −1.

30. y′′ = (x+ 1) cos(x)
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6.5 Undetermined Coefficients

31. y′′ − y = (x+ 1)ex sin(2x)

Solution:yp = d1e
x cos(2x) + d2e

x sin(2x) + d3xe
x cos(x) + d4xe

x sin(x), d1 = − 3
16 ,

d2 = 0, d3 = − 1
8 , d4 = − 1

8 .

32. y′′ − y = (x+ 1)ex cos(2x)

33. y′′ − y′ − y = ex sin(2x)

Solution:yp = d1e
x cos(2x) + d2e

x sin(2x), d1 = 2, d2 = − 5
29 .

34. y′′ − y′ − y = (x2 + x)ex cos(2x)

Undetermined Coefficients
Algorithm
Determine a solution yp for the given differential equation.

35. y′′ = x+ sin(x)

Solution:yp = (d1 + d2x)x
2 + d3 cos(x) + d4 sin(x) = 1

6x
3 − sin(x). Superposition

implies yp = u + v where u′′ = x and v′′ = sin(x). Guess answers u = x3/6,
v = − sin(x) and check.

36. y′′ = 1 + x+ cos(x)

37. y′′ + y = x+ sin(x)

Solution:yp = d1 + d2x + x(d3 cos(x) + d4 sin(x)) = x − 1
2x cos(x). Superposition

implies yp = u + v where u′′ + u = x and v′′ + v = sin(x). Guess answers u = x,
v = − 1

2x cos(x) and check.

38. y′′ + y = 1 + x+ cos(x)

39. y′′ + y = sin(x) + cos(x)

Solution:yp = x(d1 cos(x) + d2 sin(x)) = − 1
2x cos(x) +

1
2x sin(x)

40. y′′ + y = sin(x)− cos(x)

41. y′′ = x+ xex + sin(x)

Solution:yp = (d1 + d2x)x
2 + d3e

x + d4xe
x + d5 cos(x)+ d6 sin(x) =

1
6x

3− ex +xex−
sin(x).

42. y′′ = x− xex + cos(x)

43. y′′ − y = sinh(x) + cos2(x)

Solution:Write the RHS = 1
2e

x− 1
2e

−x+ 1
2 +

1
2 cos(2x). Then yp = x(d1e

x+d2e
−x)+

d3 + d4 cos(2x) + d5 sin(2x) =
1
4xe

x + 1
4xe

−x − 1
2 −

1
10 cos(2x).

44. y′′ − y = cosh(x) + sin2(x)
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45. y′′ + y′ − y = x2ex

Solution:yp = d1e
x + d2xe

x + d3x
2ex = 16ex − 6xex + x2ex.

46. y′′ + y′ − y = xex sin(2x)

Roots and Related Atoms
Euler atoms A and B are said to be related if and only if the derivative lists A,
A′, . . . and B, B′, . . . share a common Euler atom.

47. Find the roots, listed according to multiplicity, for the atoms 1, x, x2, e−x, cos 2x,
sin 3x, x cosπx, e−x sin 3x.

Solution:Roots = 0, 0, 0, −1, ±2i, ±3i, πi, πi, −1± 3i.

48. Find the roots, listed according to multiplicity, for the atoms 1, x3, e2x, cosx/2,
sin 4x, x2 cosx, e3x sin 2x.

49. Let A = xe−2x and B = x2e−2x. Verify that A and B are related.

Solution:Distinct atoms in derivatives of A = e−2x, xe−2x. Distinct atoms in deriva-
tives of B = e−2x, xe−2x, x2e−2x. The lists have two atoms in common.

50. Let A = xe−2x and B = x2e2x. Verify that A and B are not related.

51. Prove that atoms A and B are related if and only if their base atoms have the same
roots.

Solution: An atom can be written as xneax cos(bx) or xneax sin(bx) where n ≥ 0 is
an integer, a = real number, b ≥ 0 is a real number.

If A ad B are related then their derivative lists have an atom in common, say
xneax cos(bx). The base atom strips off the power of x: base atom = eax cos(bx).
Then eax cos(bx) is an atom in common with the two derivative lists. So both A and
B have base atom eax cos(bx) with roots a± bi.

If A and B have the same base atom, say eax cos(bx), then this atom appears in both
derivative lists. Therefore A and B are related. ■

52. Prove that atoms A and B are related if and only if they are in the same group.
See page 474 for the definition of a group of atoms.

Modify a Trial Solution
Apply Rule II to modify the given Rule I trial solution into the shortest trial
solution.

53. The characteristic equation has factors r3, (r3 +2r2 +2), (r− 1)2, (r+1), (r2 +4)3

and the Rule I trial solution is constructed from atoms 1, x, ex, xex, e−x, cos 2x,
sin 2x, cosx, sinx.

Solution:The shortest trial solution is a linear combination of atoms x3, x4, x2ex,
x3ex, xe−x, x3 cos 2x, x3 sin 2x, cosx, sinx.
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54. The characteristic equation has factors r2, (r3 + 3r2 + 2), (r+ 1), (r2 + 4)3 and the
Rule I trial solution is constructed from atoms 1, x, ex, xex, e−x, cos 2x, sin 2x.

Annihilators and Laplace Theory
Laplace theory can construct the annihilator of f(t). The example y′′+4y = t+
2t3 is used to discuss the techniques. Formulas to be justified: p(s) = L(f)/L(y)
and q(s) = denom(L(f(t))).

55. (Transfer Function) Find the characteristic polynomial q(r) for the homogeneous
equation y′′ + 4y = 0. The transfer function for y′′ + 4y = f(t) is L(y)/L(f), which
equals 1/q(s).

Solution:q(r) = r2 + 4; the transfer function can be formally obtained by solving
with Laplace’s method for the special solution with zero initial data and input Dirac
impulse function. The details are in the solution of Exercise 56.

56. (Laplace of yp(t))

The Laplace of y(t) for problem
y′′ + 4y = f(t), y(0) = y′(0) = 0 must equal the Laplace of f(t) times the transfer
function. Justify and explain what it has to do with finding yp.

Solution:Laplace details: (s2 + 4)L(y) = L(f). Then y is a particular solution yp,
found by Laplace methods.

57. (Annihilator of f(t))

Let g(t) = t+2t3. Verify that L(g(t)) = s2 + 12

s4
, which is a proper fraction with de-

nominator s4. Then explain why one annihilator of g(t) has characteristic polynomial
r4. The result means that y = g(t) = t+ 2t3 is a solution of y′′′′ = 0.

Solution:Laplace tables: L(g) = L(t) + L(2t3) = 1/s2 + 2(6/s4) = (s2 + 12)/s4.

A differential equation H(y) = 0 with one solution being y = g(t) is called an
annihilator of g.

Solution y(t) = t + 2t3 of H(y) = 0 has initial data y(0) = 0, y′(0) = 1. Formal
Laplace methods applied to find L(y) from H(y) = 0 would collect symbols y(0) and
y′(0) on the left side, with L(0) = 0 on the right side. We always collect q(s)L(y) on
the left and move the lower order terms to the right side. Then divide. Therefore,
L(y) = polynomial in s divided by q(s). Look at fraction L(g) = (s2 + 12)/s4. It
has lower order terms in the numerator. So q(s) = s4 could be the characteristic
polynomial.

Check: q(r) = r4 would imply H(y) = 0 is y′′′′ = 0. Test H(g) = 0. It works.

58. (Laplace Theory finds yp)

Show that the problem y′′ + 4y = t+ 2t3, y(0) = y′(0) = 0 has Laplace transform

L(y) = s2 + 12

(s2 + 4)s4
.

Explain why y(t) must be a solution of the constant-coefficient homogeneous differ-
ential equation having characteristic polynomial w(r) = (r2 + 4)r4.

1406



6.5 Undetermined Coefficients

Annihilator Method Justified
The method of annihilators can be justified by successive differentiation of a
non-homogeneous differential equation, then forming a linear combination of the
resulting formulas. It is carried out here, for exposition efficiency, for the non-
homogeneous equation y′′ + 4y = x+ 2x3. The right side is f(x) = x+ 2x3 and
the homogeneous equation is y′′ + 4y = 0.

59. (Homogeneous equation)

Verify that y′′ + 4y = 0 has characteristic polynomial q(r) = r2 + 4.

Solution:Euler’s substitution y = erx gives r2 + 4 = 0 as characteristic equation.

60. (Annihilator)

Verify that y(4) = 0 is an annihilator for f(x) = x+ 2x3, with characteristic polyno-
mial q(r) = r4.

61. (Composite Equation)

Differentiate four times across the equation y′′ + 4y = f(x) to obtain y(6) + 4y(4) =
f (4)(x). Argue that f (4)(x) = 0 because y(4) = 0 is an annihilator of f(x). This
proves that yp is a solution of higher order equation y(6)+4y(4) = 0. Then argue that
w(r) = r4(r2 + 4) is the characteristic polynomial of the equation y(6) + 4y(4) = 0.

Solution:Details are short proofs or calculations. Because yp is a solution of y′′+4y =
f(x) then it is legal to differentiate the equation repeatedly to obtain homogeneous
higher order equation y(6) + 4y(4) = f (4)(x) = 0.

62. (General Solution)

Solve the homogeneous composite equation y(6) + 4y(4) = 0 using its characteristic
polynomial w(r) = r4(r2 + 4).

Solution:y = d1 cos 2x+ d2 sin 2x+ d3 + d4x+ d5x
2 + d6x

3

63. (Extraneous Atoms)

Argue that the general solution from the previous exercise contains two terms con-
structed from atoms derived from roots of the polynomial q(r) = r2 + 4. Remove
these terms to obtain the shortest expression for yp and explain why it works.

Solution:Remove d1 cos 2x + d2 sin 2x. Then yp = d3 + d4x + d5x
2 + d6x

3. The
argument: y = y1+y2 where y1 = d1 cos 2x+d2 sin 2x and y2 = d3+d4x+d5x

2+d6x
3.

Because y′′ + 4y = 0 has general solution yh = c1 cos 2x+ c2 sin 2x then y1 equals yh
with specialized coefficients c1 = d1, c2 = d2. Therefore, y = y1 + y2 has the form
yh+ yp and we remove y1 to obtain the shortest particular solution y2, announced as
particular solution yp.

64. (Particular Solution)

Report the form of the shortest particular solution of y′′ + 4y = f(x), according to
the previous exercise.

Solution: yp = d3 + d4x+ d5x
2 + d6x

3
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6.6 Undamped Mechanical Vibrations

Exercises 6.6 �
Simple Harmonic Motion
Determine the model equation mx′′(t) + kx(t) = 0, the natural frequency ω =√
k/m, the period 2π/ω and the solution x(t) for the following spring–mass

systems.

1. A mass of 4 Kg attached to a spring of Hooke’s constant 20 Newtons per meter starts
from equilibrium plus 0.05 meters with velocity 0.

Solution:Initial data: x(0) = 0.05, x′(0) = 0. Parameters: m = 4, k = 20. The
model is 4x′′ + 20x = 0 with solution x(t) = c1 cos(ωt) + c2 sin(ωt), ω

2 = k/m = 5.
Initial data x(0) = 0.05, x′(0) = 0 provides a system of linear algebraic equations for
unknowns c1, c2:

c1 cos(0) + c2 sin(0) = 0.05, −ωc1 sin(0) + ωc2 cos(0) = 0

Solve for c1 = 0.05, c2 = 0. Then x(t) = 0.05 cos(
√
5t).

2. A mass of 2 Kg attached to a spring of Hooke’s constant 20 Newtons per meter starts
from equilibrium plus 0.07 meters with velocity 0.

3. A mass of 2 Kg is attached to a spring that elongates 20 centimeters due to a force of
10 Newtons. The motion starts at equilibrium with velocity −5 meters per second.

Solution:Initial data: x(0) = 0, x′(0) = −5. Parameters: m = 2 and k =
force/elongation = 10/(20/100) = 50. The model is 2x′′ + 50x = 0 with solution
x(t) = c1 sin(5t) + c2 cos(5t), c1 = 0, c2 = −1.
# Exercise 3 Answer Check

DE:=m*diff(x(t),t,t) + k*x(t)=0;

de:=subs(m=2,k=50,DE);

dsolve(de,x(t));

dsolve([de,x(0)=0,D(x)(0)=-5],x(t));

4. A mass of 4 Kg is attached to a spring that elongates 20 centimeters due to a force of
12 Newtons. The motion starts at equilibrium with velocity −8 meters per second.

5. A mass of 3 Kg is attached to a coil spring that compresses 2 centimeters when 1
Kg rests on the top coil. The motion starts at equilibrium plus 3 centimeters with
velocity 0.

Solution:Newton’s law: force = mass × acceleration = 3g. Hooke’s law: 3g = force
= k(elongation) = k(2/100). Then k = 3g/(2/100) = 150g. Units are MKS: g = 9.8.

Model: 3x′′ + 150gx = 0. Answer: x (t) = − 1

14
√
10

sin
(
7
√
10 t
)

6. A mass of 4 Kg is attached to a coil spring that compresses 2 centimeters when 2
Kg rests on the top coil. The motion starts at equilibrium plus 4 centimeters with
velocity 0.
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7. A mass of 5 Kg is attached to a coil spring that compresses 1.5 centimeters when 1
Kg rests on the top coil. The motion starts at equilibrium plus 3 centimeters with
velocity −5 meters per second.

Solution:Newton’s law: force = mass × acceleration = 5g. Hooke’s law: 5g = force
= k(elongation) = k(1.5/100). Then k = 5g/(1.5/100) = 1000g/3. Units are MKS:

g = 9.8. Model: 15x′′+1000gx = 0. Answer: x (t) = − 1

28
√
30

sin (ωt)+
3

100
cos (ωt),

ω = 14
3

√
30.

8. A mass of 4 Kg is attached to a coil spring that compresses 2.2 centimeters when 2
Kg rests on the top coil. The motion starts at equilibrium plus 4 centimeters with
velocity −8 meters per second.

9. A mass of 5 Kg is attached to a spring that elongates 25 centimeters due to a force
of 10 Newtons. The motion starts at equilibrium with velocity 6 meters per second.

Solution:Model: 5x′′ + 20x = 0, x(0) = 0, x′(0) = 6. Answer: x(t) = 3 sin(2t)

10. A mass of 5 Kg is attached to a spring that elongates 30 centimeters due to a force
of 15 Newtons. The motion starts at equilibrium with velocity 4 meters per second.

Phase–amplitude Form
Solve the given differential equation and report the general solution. Solve for
the constants c1, c2. Report the solution in phase–amplitude form

x(t) = A cos(ωt− α)

with A > 0 and 0 ≤ α < 2π.

11. x′′ + 4x = 0,
x(0) = 1, x′(0) = −1
Solution:General solution: x(t) = c1 cos(ωt) + c2 sin(ωt), ω = 2. Constants: c1 = 1,
c2 = −1/2. Amplitude: A =

√
(c21 + c22) = 1

2

√
5. Phase: α = arctan(c2/c1) =

arctan(−1/2). Because α < 0 then replace it by α + 2π = − arctan(1/2) + 2π =
5.819537699 radians. Then x(t) = A cos(ωt− α) with A > 0 and 0 ≤ α < 2π.
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# Exercise 11, Answer Check

DE:=m*diff(x(t),t,t) + k*x(t)=0;

de:=subs(m=1,k=4,DE);dsolve(de,x(t));

q:=dsolve([de,x(0)=1,D(x)(0)=-1],x(t));

# Convert to phase-amplitude form

findAlphaAmplitude:=proc(c1,c2)

local A,alpha;

A:=sqrt(c1^2+c2^2);alpha:=arctan(c2,c1);

if evalf(alpha)>=0 then RETURN([A,alpha,alpha]);

else RETURN([A,alpha+2*Pi,alpha]); fi;

end proc:

c1:=1:c2:=-1/2:

p:=findAlphaAmplitude(c1,c2);

A:=p[1]:ALPHA:=p[2]:

printf("A=%a, ALPHA=%a, %a\n",A,ALPHA,evalf(ALPHA));

printf("c1=%a,c2=%a,tan(alpha)=%a\n",c1,c2,tan(ALPHA));

simplify(expand(A*cos(u-ALPHA)));

12. x′′ + 4x = 0,
x(0) = 1, x′(0) = 1

13. x′′ + 16x = 0,
x(0) = 2, x′(0) = −1
Solution:Solution: x (t) = 1

2 sin (2 t) + cos (2 t). Values: α = arctan(1/2) =

0.4636476090, c1 = 1, c2 = 1/2, tan(α) = 1/2, A = 1
2

√
5. Then x(t) = A cos(ωt− α)

with A > 0 and 0 ≤ α < 2π.

14. x′′ + 16x = 0,
x(0) = −2, x′(0) = −1

15. 5x′′ + 11x = 0,
x(0) = −4, x′(0) = 1

Solution:Solution: x (t) = 1
11

√
55 sin

(
1
5

√
55t
)
− 4 cos

(
1
5

√
55t
)
. Values: α =

− arctan(
√
55/44) + π = 2.974612139, c1 = −4, c2 =

√
55/11, tan(α) = −

√
55/11,

A =
√
1991/11. Then x(t) = A cos(ωt− α) with A > 0 and 0 ≤ α < 2π.

16. 5x′′ + 11x = 0,
x(0) = −4, x′(0) = −1

17. x′′ + x = 0,
x(0) = 1, x′(0) = −2
Solution:Solution: x (t) = 2 sin (t) − cos (t). Values: α = − arctan(2) + 2π =
5.176036590, c1 = 1, c2 = −2, tan(α) = −2, A =

√
5. Then x(t) = A cos(ωt − α)

with A > 0 and 0 ≤ α < 2π.

18. x′′ + x = 0,
x(0) = −1, x′(0) = 2
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6.6 Undamped Mechanical Vibrations

19. x′′ + 36x = 0,
x(0) = 1, x′(0) = −4
Solution:Solution: x (t) = − 2

3 sin (6 t) + cos (6 t). Values: α = − arctan(2/3) + 2π =

5.695182704, c1 = 1, c2 = −2/3, tan(α) = −2/3, A =
√
13/3. Then x(t) = A cos(ωt−

α) with A > 0 and 0 ≤ α < 2π.

20. x′′ + 64x = 0,
x(0) = −1, x′(0) = 4

Pendulum
The formula

P1

P2
=

R1

R2

√
L1

L2

is valid for the periods P1, P2 of two pendulums of lengths L1, L2 located at
distances R1, R2 from the center of the earth. The formula implies that a pen-
dulum can be used to find the radius of the earth at a location. It is also useful
for designing a pendulum clock adjustment screw.

21. Derive the formula, using ω =
√
g/L, period P = 2π/ω and the gravitational relation

g = GM/R2.

Solution:
Pendulum 1: ω1 =

√
g/L1, period P1 = 2π/ω1.

Pendulum 2: ω2 =
√
g/L2, period P2 = 2π/ω2.

Divide:
P1

P2
=

ω2

ω1
, now use ω =

√
g/L and g = GM/R2:

=

√
GM/R2

2/L2√
GM/R2

1/L1

=

√
L1√
L2

√
1/R2

2√
1/R2

1

=

√
L1

L2

1/R2

1/R1

=
R1

R2

√
L1

L2

22. A pendulum clock taken on a voyage loses 2 minutes a day compared to its exact
timing at home. Determine the altitude change at the destination.

23. A pendulum clock with adjustable length L loses 3 minutes per day when L = 30
inches. What length L adjusts the clock to perfect time?

Solution:Answer: L = 2.4896157952 feet = 29.87538954 inches. Details: The time
lost is 3/60 hours in one day and L1 = 30.0/12 feet is the current length of the
pendulum. We seek L = L2 so that 0 hours are lost. Let P1 = 24+3/60 hours, P2 =
24 hours. The radii are R1 = R2 = radius of the earth. Then: P1/P2 = 1

√
L1/L2 or

L1 = L2(P1/P2)
2. Solve for L2 = L1(P2/P1)

2 = (30.0/12)(24/(24 + 3/60))2 = 29.88
inches.
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24. A pendulum clock with adjustable length L loses 4 minutes per day when L = 30
inches. What fineness length F is required for a 1/4–turn of the adjustment screw,
in order to have 1/4–turns of the screw set the clock to perfect time plus or minus
one second per day?

Torsional Pendulum
Solve for θ0(t).

25. θ′′0 (t) + θ0(t) = 0

Solution:Answer: θ0(t) = c1 cos t+ c2 sin t

26. θ′′0 (t) + 4θ0(t) = 0

27. θ′′0 (t) + 16θ0(t) = 0

Solution:Answer: θ0(t) = c1 cos 4t+ c2 sin 4t

28. θ′′0 (t) + 36θ0(t) = 0

Shockless Auto
Find the period and frequency of oscillation of the car on four springs. Use model
mx′′(t) + kx(t) = 0.

29. Assume the car plus occupants has mass 1650 Kg. Let each coil spring have Hooke’s
constant k = 20000 Newtons per meter.

Solution:Follow the shockless auto example. Model: mx′′(t) + kx(t) = 0, x(t) =
A cos(ωt− α), m = 1650/4, k = 20000, ω2 = k/m = 1600/33. The period is 2π/ω =
2π/

√
1600/33 = 2π

√
33/40 = 0.9023537906, frequency = 1/period = 1.108212777.

30. Assume the car plus occupants has mass 1850 Kg. Let each coil spring have Hooke’s
constant k = 20000 Newtons per meter.

31. Assume the car plus occupants has mass 1350 Kg. Let each coil spring have Hooke’s
constant k = 18000 Newtons per meter.

Solution:Model: mx′′(t) + kx(t) = 0, x(t) = A cos(ωt− α), m = 1350/4, k = 18000,
ω2 = k/m = 40/3. The period is 2π/ω = 2π/

√
40/3 = π/

√
10/3 = 1.7207211636,

frequency = 1/period = 0.5811516831.

32. Assume the car plus occupants has mass 1350 Kg. Let each coil spring have Hooke’s
constant k = 16000 Newtons per meter.

Rolling Wheel on a Spring
Solve the rolling wheel model mx′′(t) + 2

3 kx(t) = 0 and also the frictionless
model mx′′(t) + kx(t) = 0, each with the given initial conditions. Graph the two
solutions x1(t), x2(t) on one set of axes.
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6.6 Undamped Mechanical Vibrations

33. m = 1, k = 4,
x(0) = 1, x′(0) = 0

Solution:The two equations are harmonic oscillators with general solutions x1(t) =
c1 cosωt + c2 sinωt, ω

2 = 2k/(3m) = 8/3, and x2(t) = c3 cos 2t + c4 sin 2t. Evaluate
from initial data constants c1 = 1, c2 = 0, c3 = 1, c4 = 0. Plot cosωt, cos 2t on one
set of axes.

# Exercise 33, Rolling wheel graphics

omega:=sqrt(8/3):F:=[cos(omega*t),cos(2*t)];

plot(F,t=0..2*Pi/omega,color=[red,blue],thickness=3);

34. m = 5, k = 18,
x(0) = 1, x′(0) = 0

35. m = 11, k = 18,
x(0) = 0, x′(0) = 1

Solution:The two equations are harmonic oscillators with general solutions x1(t) =
c1 cosω1t + c2 sinω1t, ω2

1 = 2k/(3m) = 36/33 = 12/11, and x2(t) = c3 cosω2t +
c4 sinω2t, ω

2
2 = k/m = 18/11. Evaluate from initial data constants c1 = 1, c2 = 0,

c3 = 1, c4 = 0. Plot cosω1t, cosω2t on one set of axes.

# Exercise 35, Rolling wheel graphics

omomega1:=sqrt(12/11):omega2:=sqrt(18/11):

F:=[cos(omega1*t),cos(omega2*t)];

plot(F,t=0..2*Pi/omega1,color=[red,blue],thickness=3);

36. m = 7, k = 18,
x(0) = 0, x′(0) = 1
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6.7 Forced and Damped Vibrations

Exercises 6.7 �
Forced Undamped Vibration
Solve the given equation.

1. x′′ + 100x = 20 cos(5t)

Solution:Answer: x(t) = xh(t) + xp(t), xh(t) = c1 cos 10t + c2 sin 10t, xp(t) =
75

20
cos 5t.

The method of undetermined coefficients applies. Trial solution: xp(t) = d1 cos 5t
because of the trig shortcut for 2-termed second order differential equations (the ex-
pected d2 sin 5t upon substitution gives d2 = 0). Substitute xp and find the linear

equation(s): (100− 25)d1 = 20. Then xp(t) =
75

20
cos 5t.

2. x′′ + 16x = 100 cos(10t)

3. x′′+ω2
0x = 100 cos(ωt), when the internal frequency ω0 is twice the external frequency

ω.

Solution:Answer: x(t) = xh(t) + xp(t), xh(t) = c1 cosω0t + c2 sinω0t, xp(t) =

ω2
0 − ω2

200
cosωt. Details follow Exercise 1.

4. x′′ + ω2
0x = 5 cos(ωt), when the internal frequency ω0 is half the external frequency

ω.

Black Box in the Trunk

5. Construct an example x′′ +ω2
0x = F1 cos(ωt) with a solution x(t) having beats every

two seconds.

Solution:Two beats correspond to two consecutive extrema (max-min or min-max)
in the slow;y varying envelope curve. For x(t) = 2 sin(4t) sin(40t) the slowly varying
envelope curves are ±2 sin 4t. Two consecutive extrema for this example occur in one
period, which is 2π/4. We replace 4 by a larger number A so that 2π/A = 1: choose
A = 2π. The example would have x(t) = 2 sin(2πt) sin(40t) as a solution. Needed
was 2π < 40 to keep the rapidly varying curve x = sin 40t.

It remains to find the differential equation.

Let’s use the equations in the textbook, subsection Black Box in the Trunk.
Required: ω0 > ω. Equations: 1

2 (ω0 − ω) = 2π, 1
2 (ω0 + ω) = 40. Then ω0 = 40 + 2π

and ω = 40− 2π.

The differential equation is found by differentiation of the solution x(t) = cos(ω0t)−
cos(ωt):

x′′(t) + (ω0)
2 x(t) = (ω2 − ω2

0) cos(ωt),
x′′(t) + (40 + 2π)2 x(t) = (ω − ω0)(ω0 + ω) cos(ωt)

= (−4π)(80) cos(ωt)
= −320π cos((40− 2π)t)
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6.7 Forced and Damped Vibrations

# Exercise 5, Answer check, black box in the trunk

omega0:=40+2*Pi:omega:=40-2*Pi;

LHS:=diff(x(t),t,t)+(40+2*Pi)^2 * x(t);

RHS:=-320*Pi*cos((40-2*Pi)*t);

p:=subs(x(t)=cos(omega0*t)-cos(omega*t),LHS);

simplify(p-RHS);#expect zero)

# Check college algebra:

# 2*sin(2*Pi*t)*cos(40*t)=cos(omega0*t)-cos(omega*t)

x3:=expand(cos(a-b)-cos(a+b));subs(a=2*Pi*t,b=40*t,x3);

x4:=cos(a-b)-cos(a+b);subs(a=2*Pi*t,b=40*t,x4);

6. A solution x(t) of x′′ + 25x = 100 cos(ωt) has beats every two seconds. Find ω.

Rotating Drum
Solve the given equation.

7. x′′ + 100x = 500ω2 cos(ωt), ω ̸= 10.

Solution:Answers: x = xh + xp, xh = c1]cos10t+ c2 sin 10t, xp =
F0/m

ω2
0 − ω2 cos(ωt) =

xp =
F0

199− ω2 cos(ωt) where F0 = 500ω2. Equation (1) in the textbook was used

with m = 1.

8. x′′ + ω2
0x = 5ω2 cos(ωt), ω ̸= ω0.

Harmonic Oscillations
Express the general solution as a sum of two harmonic oscillations of different
frequencies, each oscillation written in phase-amplitude form.

9. x′′ + 9x = sin 4t

Solution:Answer: x = xh + xp, xh = c1 cos 3t + c2 sin 3t = A cos(3t − α), xp =

d1 sin 4t =
1

9− 42
sin 4t by the method of undetermined coefficients. The challenge:

write sin 4t = cos(4t−π/2) using trig identity cos(a−b) = cos(a) cos(b)+sin(a) sin(b).
Then xp = − 1

7 cos(4t − π/2) and x = xh + xp = A cos(3t − α) − 1
7 cos(4t − π/2) is

the sum of two harmonic oscillations of different frequencies, each harmonic term in
phase-amplitude form.

10. x′′ + 100x = sin 5t

11. x′′ + 4x = cos 4t

Solution:Answer: x(t) = A cos(2t− α)− 1

12
cos(4t)

12. x′′ + 4x = sin t
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6.7 Forced and Damped Vibrations

Beats: Convert and Graph
Write each linear combination as x(t) = C sin at sin bt. Then graph the slowly-
varying envelope curves and the curve x(t).

13. x(t) = cos 4t− cos t

Solution:Let ω0 = 4, ω = 1. Use the textbook formulas from subsection
Black Box in the Trunk to write x(t) = 2 sin((ω − ω0)t/2) sin((ω0 + ω)t/2) =
−2 sin(3t/2) sin(5t/2).

# Exercise 13, Graph envelope curves, Beats

x1:=2*sin(3*t/2);x2:=cos(4*t)-cos(t);

plot([x1,-x1,x2],t=0..4*Pi,color=[red,red,green],thickness=3);

14. x(t) = cos 10t− cos t

15. x(t) = cos 16t− cos 12t

Solution:Let ω0 = 16, ω = 12. Then x(t) = 2 sin(−4t/2) sin(28t/2).

16. x(t) = cos 25t− cos 23t

Beats: Solve, find Envelopes
Solve each differential equation with x(0) = x′(0) = 0 and determine the slowly-
varying envelope curves.

17. x′′ + x = 99 cos 10t.

Solution:Answer: x(t) = cos(t) − cos(10t) = 2 sin(9t/2) sin(11t/2), envelope curves
± sin(9t/2).
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6.7 Forced and Damped Vibrations

Details: use superposition x = xh + xp. The homogeneous solutionis xh = c1 cos t+
c2 sin t. The undetermined coefficients method finds xp = − cos 10t. Use the initial
data and the general solution x = xh + xp to find linear equations for c1, c2:

c1(1) + c2(0)− cos(0) = 0, −c1(0) + c2(1) + 10(0) = 0

Solve for c1 = 1, c2 = 0. Then x = cos t − cos 10t. Use the textbook formulas from
subsection Black Box in the Trunk to write x = −2 sin(9t/2) sin(11t/2). The
envelope curves use the sine factor with smaller natural frequency.

18. x′′ + 4x = 252 cos 10t.

19. x′′ + x = 143 cos 12t.

Solution:Answer: x(t) = cos(t) − cos(12t) = 2 sin(11t/2) sin(13t/2), envelope curves
± sin(11t/2).

20. x′′ + 256x = 252 cos 2t.

Waves and Superposition
Graph the individual waves x1, x2 and then the superposition x = x1+x2. Report
the apparent period of the superimposed waves.

21. x1(t) = sin 22t, x2(t) = 2 sin 20t

Solution:The periods of the two waves: 2π/20 and 2π/22. The waves share a common
period T provided T = 2nπ/20 = 2mπ/22 for some positive integers n, m. The
requirement on n, m: n/10 = m/11 or 11n = 10m. Find the least period by trying
n = 1, 2, 3, . . . until 11n = 10m can be satisfied for some m. This happens at n = 10
and m = 11. The least period common to both waves is T = n(2π/20) = π.
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# Exercise 21, Waves and superposition

isolve(11*n=10*m,a);

# {m = 11 a, n = 10 a}, a=integer=1=least solution

x1:=sin (22*t); x2:=2*sin( 20*t);

plot(x1+x2,t=0..Pi,color=[green],thickness=3);

plot({x1,x2},t=0..Pi,color=[red,blue],thickness=3);

22. x1(t) = cos 16t, x2(t) = 4 cos 20t

23. x1(t) = cos 16t, x2(t) = 4 sin 16t

Solution:Fundamental period = T = 2π/16.
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# Exercise 23, Waves and superposition

x1:=cos (16*t); x2:=4*sin( 16*t);

opts:=thickness=3,font=[courier,14,bold];

plot(x1+x2,t=0..Pi/8,color=[green],opts);

plot([x1,x2],t=0..Pi/8,color=[red,blue],opts);

24. x1(t) = cos 25t, x2(t) = 4 cos 27t

Periodicity

25. Let x1(t) = cos 25t, x2(t) = 4 cos 27t. Their sum has period T = m 2π
25 = n 2π

27 for
some integers m,n. Find all m,n and the least period T .

Solution:Solve 27m = 25n for positive integers n, m: m = 25a, n = 27a, a =
1, 2, 3, . . .. The smallest period is for a = 1. Then T = m 2π

25 = (25a) 2π25 , therefore
T = 2π. Maple code to solve the equation 27m = 25n appears above in Exercise 21.

26. Let x1(t) = cosω1t, x2(t) = cosω2t. Find a condition on ω1, ω2 which implies that
the sum x1 + x2 is periodic.

27. Let x(t) = cos(t)− cos(
√
2t). Explain without proof, from a graphic, why x(t) is not

periodic.

Solution:The graphic displayed on a large interval does not show repeating extrema.
So it cannot be periodic.

A proof can be done by expanding the relation x(t+ T ) = x(t):

x(t+ T ) = x(t)
cos(t+ T )− cos(

√
2t+

√
2T ) = cos(t)− cos(

√
2t)

cos(t) cos(T )− sin(t) sin(T )− cos(
√
2T ) cos(

√
2T )+

sin(
√
2t) sin(

√
2T ) = cos(t)− cos(

√
2t)

Transform to a system of four nonlinear equations by matching coefficients of
Euler solution atoms cos(t), sin(t), cos(

√
2t), sin(

√
2t) on each side (independence of

atoms used here): 
cos(T ) = 1
− sin(T ) = 0

− cos(
√
2T ) = 1

sin(
√
2T ) = 0
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The first two equations imply T = 2nπ for integers n = 0, 1, 2, . . .. The last two
equations violate T = 2nπ. There is no solution T : function x(t) fails to be periodic.
■

28. Let x(t) = cos(5t) + cos(5
√
2t). Is x(t) is periodic? Explain without proof.

Rotating Drum
Let x(t) and xp(t) be defined as in Example 4, page 509. Replace Hooke’s con-
stant k = 10 by k = 1, all other constants unchanged.

29. Re-compute the amplitude A(t) of solution xp(t). Find the decimal value for the
maximum of |A(t)|.

Solution:Answer: xp = −275π2 cos (20π t)

4120π2 − 2
, amplitude A(t) =

275π2

4120π2 − 2
. The

maximum of |A(t)| is |A(0)| ≈ 0.067.

30. Find x(t) when x(0) = x′(0) = 0. It is known that x(t) fails to be periodic. Let
t1 = 0, . . . , t29 be the consecutive extrema on 0 ≤ t ≤ 1.4. Verify graphically or by
computation that |x(ti+1)− x(ti)| ≈ 0.133 for i = 1, . . . , 28.

Solution:Answer:

x (t) =
275π2

4120π2 − 2
cos

(
2
√
515t

103

)
− 275

π2 cos (20π t)

4120π2 − 2

Function x(t) is not periodic: identity x(t + T ) = x(t) fails for all T > 0. A func-
tion that fails to be periodic is called Aperiodic. Functions like x(t) are called
Quasiperiodic.

# Exercise 30, Rotating drum, quasiperiodic x(t)

de:=m*diff(x(t),t,t)+k*x(t)=R*M*omega^2*cos(omega*t);

DE:=subs(k=1,M = 0.275, m =5.15, R = 1.25, omega = 20*Pi,de);

p:=dsolve([DE,x(0)=0,D(x)(0)=0],x(t));

X:=unapply(evalf(rhs(p)),t);

plot(X(t),t=0..1.4);

seq(abs(X(0.1*j+0.05)-X(0.1*j)),j=0..7);

Musical Instruments
Melodious tones are superpositions of harmonics sin(nωt), with n = an integer,
ω = fundamental frequency.

In 1885 Alexander J. Ellis introduced a measurement unit Cent by the equation
one cent = 2

1
12 ≈ 1.0005777895. On most pianos, the frequency ratio between

two adjacent keys equals 100 cents, called an equally tempered semitone.
Two piano keys of frequencies 480 Hz and 960 Hz span 1200 cents and have
tones sin(ωt) and sin(2ωt) with ω = 480. A span of 1200 cents between two
piano key frequencies is called an Octave.
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31. (Equal Temperament) Find the 12 frequencies of equal temperament for octave 480
Hz to 960 Hz. The first two frequencies are 480, 508.5422851.

Solution: The frequencies are

480.0, 508.5422851, 538.7817830, 570.8194152, 604.7621040,

640.7231299, 678.8225098, 719.1873970, 761.9525050,

807.2605589, 855.2627693, 906.1193400, 960.0

# Exercise 31, Equal temperament

seq(480.0*2.0^(n/12),n=0..12);

32. (Flute or Noise) Equation x(t) = sin 220πt+2 sin 330πt could represent a tone from
a flute or just a dissonant, unpleasing sound. Discuss the impossibility of answering
the question with a simple yes or no.

33. (Guitar) Air inside a guitar vibrates a little like air in a bottle when you blow across
the top. Consider a flask of volume V = 1 liter, neck length L = 5 cm and neck cross-

section S = 3 cm2. The vibration has model x′′ + f2x = 0 with f = c
√

S
V L , where

c = 343 m/s is the speed of sound in air. Compute f
2π and λ = 2πc

f , the frequency
and wavelength. The answers are about 130 Hz and λ = 2.6 meters, a low sound.

Solution:Answers: ω := 343.2
√
6, F = 133.7959711, λ = 2.565099660

# # Exercise 33, Guitar

S:=3*(1/100)^2; # 1cm=m/100

L:=5*(1/100);

V:=1/1000; # 1000 liters = 1 cubic meter

c:=343.2;

omega:=c*sqrt(S/(V*L));

F:=omega/(2*Pi); # Frequency in Hz

lambda:=evalf(c/F); # wavelength

34. (Helmholtz Resonance) Repeat the previous exercise calculations, using a flask
with neck diameter 2.0 cm and neck length 3 cm. The tone should be lower, about
100 Hz, and the wavelength λ should be longer.

Seismoscope

35. Verify that xp given in (14) and x∗
p given by (15), page 519, have the same initial

conditions when u(0) = u′(0) = 0, that is, the ground does not move at t = 0.
Conclude that xp = x∗

p in this situation.

Solution:Given u(0) = u′(0) = 0 then x∗
p(0) = 0 by (15). Differentiate (15) to obtain

d
dtxp ∗ (0) = −u′(0) +K(0)u(0) +

∫ 0

0
Kt(0− x)u(x)dx = 0.

Equation (14) implies xp(0) = x′
p(0) = 0 similarly. Then both xp and x∗

p have the
same initial data. Apply Picard-Lindelöf to show they are identical solutions. ■

36. A release test begins by starting a vibration with u = 0. Two successive maxima
(t1, x1), (t2, x2) are recorded. Explain how to find β,Ω0 in the equation x′′+2βΩ0x

′+
Ω2

0x = 0, using Exercises 69 and 70, infra.
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Free Damped Motion
Classify the homogeneous equation mx′′ + cx′ + kx = 0 as over-damped, crit-
ically damped or under-damped. Then solve the equation for the general
solution x(t).

37. m = 1, c = 2, k = 1

Solution:Answer: Critically-damped, x = c1e
−t + c2te

−t

Characteristic equation: r2+2r+1 = 0 with roots r = 1, 1 and atoms e−t, te−t. The
discriminant of ar2 + br + c is zero: D = b2 − 4ac = 4 − 4 = 0. Critical damping
corresponds to the double root case.

38. m = 1, c = 4, k = 4

39. m = 1, c = 2, k = 3

Solution:Answer: under-damped, x = c1e
at cos(bt) + c2e

at sin(bt) where aπib are
the two complex roots of the characteristic equation r2 + 2r + 3 = 0. The roots are
−1±

√
2i. The discriminant of ar2+br+c is D = b2−4ac = 4−12 < 0, which implies

complex roots and therefore oscillation. The only oscillatory case is for complex roots
and then the classification is underdamped.

40. m = 1, c = 5, k = 6

41. m = 1, c = 2, k = 5

Solution:Roots of r2+2r+5 = 0 are complex: −1±2i. Classification: under-damped.
Solution: x = c1e

−t cos 2t+ c2e
−t sin 2t.

42. m = 1, c = 12, k = 37

43. m = 6, c = 17, k = 7

Solution:Roots of r2 + 2r + 5 = 0 are real distinct: −1/2,−7/3. Classification:
over-damped. Solution: x = c1e

−t/2 + c2e
−7t/3.

44. m = 10, c = 31, k = 15

45. m = 25, c = 30, k = 9

Solution:Roots of 25r2 + 30r + 9 = 0 are real repeated: −3/5,−3/5. Classification:
critically-damped. Solution: x = c1e

−3t/5 + c2te
−3t/5.

46. m = 9, c = 30, k = 25

47. m = 9, c = 24, k = 41

Solution:Roots of 9r2 + 24r + 41 = 0 are complex: −4/3 ± 5i/3. Classification:
under-damped. Solution: x = c1e

−4t/3 cos 5t/3 + c2e
−4t/3 sin 5t/3.

48. m = 4, c = 12, k = 34
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Cafe and Pet Door
Classify as a cafe door model and/or a pet door model. Solve the equation for
the general solution and identify as oscillatory or non-oscillatory.

49. x′′ + x′ = 0

Solution:Cafe door. The pet door always has a nonzero x(t)-term. Non-ocillatory
because the classification is over-damped. Discriminant of ar2 + br + c = D =
b2 − 4ac = 1− 0 > 0 and two distinct real roots 0, 1.

50. x′′ + 2x′ + x = 0

Solution:Can be either a pet door or a cafe door. Non-oscillatory because the dis-
criminant = 0, the critically-damped case with two equal real roots −1,−1.

51. x′′ + 2x′ + 5x = 0

Solution:The roots are −1±
√
5i, so the equation is under-damped oscillatory. Cafe

door or pet door.

52. x′′ + x′ + 3x = 0

53. 9x′′ + 24x′ + 41x = 0

Solution:The roots are −4/3 ±
√
5i/3, so the equation is under-damped oscillatory.

Cafe door or pet door.

54. 6x′′ + 17x′ = 0

55. 9x′′ + 24x′ = 0

Solution:Cafe door. The pet door always has a nonzero x(t)-term. Non-oscillatory
because the classification is over-damped, discriminant = 242−0 > 0 and two distinct
real roots 0,−8/3.

56. 6x′′ + 17x′ + 7x = 0

Classification
Classify mx′′ + cx′ + kx = 0 as over-damped, critically damped or under-
damped without solving the differential equation.

57. m = 5, c = 12, k = 34

Solution:It is enough to compute the discriminant of ar2+br+c: b2−4ac = −536 < 0.
Under-damped.

58. m = 7, c = 12, k = 19

59. m = 5, c = 10, k = 3

Solution:Under-damped.
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60. m = 7, c = 12, k = 3

61. m = 9, c = 30, k = 25

Solution:Under-damped.

62. m = 25, c = 80, k = 64

Critically Damped
The equation mx′′ + cx′ + kx = 0 is critically damped when c2 − 4mk = 0.
Establish the following results for c > 0.

63. The mass undergoes no oscillations, because

x(t) = (c1 + c2t)e
− ct

2m .

Solution:The roots of mr2 + cr + k = 0 are −c/2,−c/2, the critically-damped case.
Then the solution is a linear combination of Euler atoms e−ct/2, te−ct/2. There are
no trig terms in the solution: non-oscillatory.

64. The mass passes through x = 0 at most once.

Over-Damped
Equation mx′′ + cx′ + kx = 0 is defined to be over-damped when c2 − 4mk > 0.
Establish the following results for c > 0.

65. The mass undergoes no oscillations, because if r1, r2 are the roots of mr2+cr+c = 0,
then

x(t) = c1e
r1t + c2e

r2t.

Solution:Oscillation is caused by trig terms. There are none so no oscillation.

66. The mass passes through equilibrium position x = 0 at most once.

Under-Damped
Equation mx′′+ cx′+kx = 0 is defined to be under-damped when c2− 4mk < 0.
Establish the following results.

67. The mass undergoes infinitely many oscillations. If c = 0, then the oscillations are
harmonic.

Solution:The roots are complex aπbi with a = −c/2m < 0 and b =
√
4mk − c2 > 0.

The solutions are linear combinations of Euler atoms eat cos bt, eat sin bt, which is
always oscillatory. If c = 0 then a = 0 and the Euler atoms are cos bt, sin bt. Then
x(t) is a pure harmonic.

68. The solution x(t) can be factored as an exponential function e−
ct
2m times a harmonic

oscillation. In symbols:

x(t) = e−
ct
2m (A cos(ωt− α)) .
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Experimental Methods
Assume model mx′′ + cx′ + kx = 0 is oscillatory. The results apply to find non-
negative constants m, c, k from one experimentally known solution x(t). Provide
details.

69. Let x(t) have consecutive maxima at t = t1 and t = t2 > t1. Then t2−t1 = T = 2π
ω =

pseudo period of x(t).

Solution:The solution is x(t) = A(t) cos(ωt − α) in phase-amplitude form. As in
the work on envelope curves and the pseudo-period, the amplitude is A(t) = Ceat

and ω is the natural frequency with a ± ωi the two complex roots of characteristic
equation mr2 + cr + k = 0. Maxima of x(t) occur when x′(t) = 0, which is the
equation 0 = x′(t) = aCeat cos(ωt−α)−Ceatω sin(ωt−α). This equation simplifies
to tan(ωt − α) = a

ω = − c
2mω . Consecutive maxima at t1, t2 then satisfy a

ω =
tan(ωt1−α) = tan(ωt2−α). For t2 > t1 the possible solutions are ωt2−α = ωt1+nπ,
n = 1, 2, 3, . . ., because the tangent has period π. Suppose amplitude A(t1) is positive,
equivalent to coefficient C > 0. Then x(t1) > 0 implies cos(θ) > 0 for θ = ωt1 − α.
At a later maximum t = t2 > t1 the values of x(t2) and cos(θ+nπ) must be positive.
For n = 1: cos(θ + π) = cos(θ) cos(π) = − cos(θ), so the cosine is not positive.
Then n = 1 is not a solution. Let’s try n = 2: it works because the sine and cosine
are 2π-periodic. So the correct answer is n = 2. Choosing n = 2 gives equation
ωt1 − α+ 2π = ωt2 − α. Solve: t2 − t1 = 2π

ω , which is the pseudo period.

70. Let (t1, x1) and (t2, x2) be two consecutive maximum points of the graph of a solution
x(t) = Ce−ct/(2m) cos(ωt−α) of mx′′ + cx′ + kx = 0. Let a±ωi be the two complex
roots of mr2 + cr + k = 0 where a = −c/(2m) and ω = 1

2m

√
4mk − c2. Then

ln
x1

x2
=

cπ

mω
,

Solution:The equations: A(t) = Ceat, x1 = A(t1) cos(ωt1 − α) = A(t1)(1) = Ceat1 ,
x2 = A(t2) cos(ωt2 − α) = A(t2)(1) = Ceat2 . Then Exercise 69 gives

x1

x2
= ea(t1−t2) = e(−1) c

2m (−1) 2π
ω

Take logs:

ln |x1

x2
| = c

2m

2π

ω
=

cπ

mω

71. (Bike Trailer) Assume fps units. A trailer equipped with one spring and one shock
has mass m = 100 in the model mx′′ + cx′ + kx = 0. Find c and k from this
experimental data: two consecutive maxima of x(t) are (0.35, 10/12) and (1.15, 8/12).
Hint: Use exercises 69 and 70.

72. (Auto) Assume fps units. An auto weighing 2.4 tons is equipped with four identical
springs and shocks. Each spring-shock module has damped oscillations satisfying
mx′′ + cx′ + kx = 0. Find m. Then find c and k from this experimental data: two
consecutive maxima of x(t) are (0.3, 3/12) and (0.7, 2/12).
Hint: Use exercises 69 and 70.

Solution:Answer: m = 41.113, c = 83.34943495, ω = 5π, k = 10860.46092.
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Let t1 = 0.3, x1 = 3/12, t2 = 0.7, x2 = 2/12. Let m = 164.452/4 = 41.113 slugs, for
2.4 tons divided among the four springs equally. The model is under-damped from
the data. The pseudo period is 2/pi/ω = t2 − t1 = 0.4 by the result of Exercise
69. Then ω = 5π. The logarithmic decrement = cπ/(mω) = ln |x1/x2| by Exercise
70. Then cπ/(mω) = ln(x1/x2) = ln(3/2). Because m = 41.113 and ω = 5π then
c = 1

π (mω ln(3/2)) = 83.34943495. To find k use ω = 1
2m

√
4mk − c2 and solve for

k = 10860.46092.

Structure of Solutions
Establish these results for the damped spring-mass system mx′′ + cx′ + kx = 0.
Assume m > 0, c > 0, k > 0.

73. (Monotonic Factor) Let the equation be critically damped or over-damped. Prove
that

x(t) = e−ptf(t)

where p ≥ 0 and f(t) is monotonic (f ′ one-signed).

Solution:Case 1: over-damped. Then the roots of the characteristic equation are two
distinct real roots r1 > r2. The roots satisfy (r−r1)(r−r2) = 0 which upon expansion
gives r2 − (r1 + r2)r+ r1r2 = 0. Because −r1 − r2 = c/m and r1r2 = k/m then both
roots are negative. The Euler atoms give general solution x(t) = c1e

r1t + c2e
r2t =

er2tf(t) where f(t) = c1e
r1t−r2t + c2. The derivative f ′(t) is either zero (c1 = 0) or

else never vanishes. Then f ′(t) is one-signed: f(t) is monotonic.

Case 2: critically-damped, Then the characteristic equation has a double root r1 =
r2 and the general solution is x(t) = er1t(c1 + c2t). Root r1 is negative because
−r1 − r1 = c, following Case 1. Let f(t) = c1 + c2t. Then f ′(t) is zero or never
vanishes: f(t) is monotonic.

74. (Harmonic Factor) Let the equation be under-damped. Prove that

x(t) = e−atf(t)

where a > 0 and f(t) = c1 cosωt+ c2 sinωt = A cos(ωt−α) is a harmonic oscillation.

75. (Limit Zero and Transients) A term appearing in a solution is called transient
if it has limit zero at t = ∞. Prove that positive damping c > 0 implies that the
homogeneous solution satisfies limt→∞ x(t) = 0.

Solution:The decompositions of x(t) in the last few exercises show that x(t) equals
an exponential factor ert with r < 0 multiplied by a function f(t). There are three
cases:

(1) f(t) = c1e
−at+c2 with a > 0, a monotone function with limt=∞ f(t) =

c2,
(2) f(t) = c1 + c2t, a linear function,
(3) f(t) = c1 cos(bt) + c2 sin(bt), a harmonic function.

In cases (1), (2), (3) the exponential factor ert dominates at t =∞ with limt=∞ x(t) =
0.
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76. (Steady-State) An observable or steady-state is expression obtained from a solu-
tion by excluding all terms with limit zero at t =∞. The Transient is the expression
excluded to obtain the steady state. Assume mx′′+cx′+kx = 25 cos 2t has a solution

x(t) = 2te−t − cos 2t+ sin 2t.

Find the transient and steady-state terms.

Damping Effects
Construct a figure on 0 ≤ t ≤ 2 with two curves, to illustrate the effect of
removing the dashpot. Curve 1 is the solution of mx′′ + cx′ + kx = 0, x(0) = x0,
x′(0) = v0. Curve 2 is the solution of my′′ + ky = 0, y(0) = x0, y

′(0) = v0.

77. m = 2, c = 12, k = 50,
x0 = 0, v0 = −20
Solution:

# Exercise 77, Damping effects

de:=m*diff(x(t),t,t)+c*diff(x(t),t)+k*x(t);

ic:=x(0)=0,D(x)(0)=-20;

de1:=subs(m=2,c=12,k=50,de);

p:=dsolve({de1,ic},x(t));X:=unapply(rhs(p),t);

de2:=subs(m=2,c=0,k=50,de);

q:=dsolve({de2,ic},x(t));Y:=unapply(rhs(q),t);

opts:=font=[courier,14,bold],thickness=3,color=[red,blue];

plot([X,Y],0..2,opts);

78. m = 1, c = 6, k = 25,
x0 = 0, v0 = 20

79. m = 1, c = 8, k = 25,
x0 = 0, v0 = 60

Solution:
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80. m = 1, c = 4, k = 20,
x0 = 0, v0 = 4

Envelope and Pseudo-period
Plot on one graphic the envelope curves and the solution x(t), over two pseudo-
periods. Use initial conditions x(0) = 0, x′(0) = 4.

81. x′′ + 2x′ + 5x = 0

Solution:Answer: x(t) = 8
3 e

−t/2 sin (3t/2), envelope curves y(t) = ± 8
3 e

−t/2

# Exercise 81, Envelope and pseudo-period

de:=m*diff(x(t),t,t)+c*diff(x(t),t)+k*x(t);

ic:=x(0)=0,D(x)(0)=4;

de1:=subs(m=2,c=2,k=5,de);

p:=dsolve({de1,ic},x(t));X:=unapply(rhs(p),t);

Y:=t->(8/3)*exp(-(1/2)*t);Z:=t->(-8/3)*exp(-(1/2)*t);

T:=4*Pi/3;

opts:=font=[courier,14,bold],thickness=3,color=[red,blue];

plot([X,Y,Z],0..2*T,opts);

82. x′′ + 2x′ + 26x = 0
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83. 2x′′ + 12x′ + 50x = 0

Solution:Answer: x(t) = e−3t sin (4t), envelope curves y(t) = ±e−3t

84. 4x′′ + 8x′ + 20x = 0

6.8 Resonance

Exercises 6.8 �
Beats
Each equation satisfies the beats relation ω ̸= ω0. Find the general solution. See
Example 6.53, page 538.

1. x′′ + 100x = 10 sin 9t

Solution:Answer: x = xh + xp, xh = c1 cos 10t+ c2 sin 10t, xp = 5
19 sin(9t)

2. x′′ + 100x = 5 sin 9t

3. x′′ + 25x = 5 sin 4t

Solution:Answer: x = xh + xp, xh = c1 cos 5t+ c2 sin 5t, xp = 5
9 sin(4t)

4. x′′ + 25x = 5 cos 4t

Pure Resonance
Each equation satisfies the pure resonance relation ω = ω0. Find the general
solution. See Example 6.53, page 538.

5. x′′ + 4x = 10 sin 2t

Solution:Answer: x = xh + xp, xh = c1 cos 2t+ c2 sin 2t, xp = − 5
2 t cos(2t)

6. x′′ + 4x = 5 sin 2t
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7. x′′ + 16x = 5 sin 4t

Solution:Answer: x = xh + xp, xh = c1 cos 4t+ c2 sin 4t, xp = − 5
8 t cos(4t)

8. x′′ + 16x = 10 sin 4t

Practical Resonance
For each model, find the tuned practical resonance frequency Ω and the
resonant amplitude C:

Ω =
√

k/m− c2/(2m2),

C = F0/
√

(k −mΩ2)2 + (cΩ)2

9. x′′ + 2x′ + 17x = 100 cos(4t)

Solution:Answer: m = 1, c = 2, k = 17, F0 = 100, ω = 4, C = 20
13

√
65, Ω =

√
60/2,

xp = 20
13 cos 4t, xh = c1e

−t cos 4t+ c2e
−t sin 4t

# Exercise 9, practical resonance

F:=t->100*cos(4*t);

de:=m*diff(x(t),t,t)+c*diff(x(t),t)+k*x(t)=F(t);

de1:=subs(m=1,c=2,k=17,de);

p:=dsolve(de1,x(t));X:=unapply(rhs(p),t);

C:=F(0)/sqrt( (k-m*omega^2)^2 + (c*omega)^2 );

Omega:=sqrt(k/m - c^2/(2*m^2));

subs(m=1,c=2,k=17,Omega);

subs(m=1,c=2,k=17,omega=4,C);

10. x′′ + 2x′ + 10x = 100 cos(4t)

11. x′′ + 4x′ + 5x = 10 cos(2t)

Solution:Answer: m = 1, c = 4, k = 5, F0 = 100, ω = 2, C = 2
√
65

13 , Ω = −3
which means no practical resonant frequency exists, xp = 2

13 cos 2t +
16
13 sin 2t, xh =

c1e
−2t cos t+ c2e

−2t sin t

12. x′′ + 2x′ + 6x = 10 cos(2t)

Transient Solution
Identify from superposition x = xh + xp a shortest particular solution, given one
particular solution.

13. x′′ + 2x′ + 10x = 26 cos(3t),
x = 100e−t cos(3t) + 3 cos (2 t) + 2 sin (2 t)

Solution:xp = 3 cos (2 t) + 2 sin (2 t)

14. x′′ + 4x′ + 13x = 920 cos(3t),
x = 5 e−2 t cos (3 t) + 23 cos (3 t) + 69 sin (3 t)
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15. x′′ + 2x′ + 2x = 2 cos(t),
x = 3 e−t sin (t) + 5 e−t cos (t) + cos (t) + 2 sin (t)

Solution:xp = cos (t) + 2 sin (t)

16. x′′ + 2x′ + 17x = 65 cos(4t),
x = −2 e−t sin (4 t) + 7 e−t cos (4 t) + cos (4 t) + 8 sin (4 t)

Steady-State Periodic Solution
Consider the modelmx′′+cx′+kx = F0 cos(ωt) of external frequency ω. Compute
the unique steady-state solution A cos(ωt)+B sin(ωt) and its amplitude C(ω) =√
A2 +B2. Graph the ratio 100C(ω)/C(Ω) on 0 < ω <∞, where Ω is the tuned

practical resonance frequency.

17. x′′ + 2x′ + 17x = 100 cos(4t)

Solution:xss =
20 cos (4 t)

13
+

160 sin (4 t)

13
, because the steady-state consists of terms

left over in the general solution after the transient terms have been removed.

# Exercise 17, Steady-state periodic solution

F:=t->100*cos(4*t);

de:=m*diff(x(t),t,t)+c*diff(x(t),t)+k*x(t)=F(t);

de1:=subs(m=1,c=2,k=17,de);

p:=dsolve(de1,x(t));X:=unapply(rhs(p),t);

18. x′′ + 2x′ + 10x = 100 cos(4t)

19. x′′ + 4x′ + 5x = 10 cos(2t)

Solution:xss =
16 sin (2 t)

13
+ 2/13 cos (2 t)

20. x′′ + 2x′ + 6x = 10 cos(2t)

21. x′′ + 4x′ + 5x = 5 cos(2t)

Solution:xss =
8 sin (2 t)

13
+ 1/13 cos (2 t)

22. x′′ + 2x′ + 5x = 5 cos(1.5t)

Phase-Amplitude
Solve for a particular solution in the form x(t) = C cos(ωt− α).

23. x′′ + 6x′ + 13x = 174 sin(5t)

Solution:Answer: xp =
√
(29) cos(arctan(5/2)− π).

First solve for the general solution

x(t) = c1e
−3 t cos (2 t) + c2e

−3 t sin (2 t)− 2 sin (5 t)− 5 cos (5 t)
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Extract the steady-state solution xp = −2 sin (5 t)− 5 cos (5 t) and convert to phase-
amplitude form as follows:

xp = −5 cos (5 t)− 2 sin (5 t)

=
√

c21 + c22 cos(5t− α) where c1 = −5, c2 = −2
=
√
29 cos(5t− α) where tan(α) = c1/c2 = 5/2

Then α = arctan(5/2) + π because α is the angle in quadrant 3 formed by point
(−5,−2). Check: expand

√
29 cos(u− arctan(5/2)− π) using the trig sum identities

to get −2 cosu− 5 sinu.

24. x′′ + 8x′ + 25x = 100 cos(t) + 260 sin(t)

6.9 Kepler’s laws
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§ Topics in Linear Differential
Equations

Contents

7.1 Higher Order Homogeneous . . . . . . . . . . . . . 1433

7.2 Differential Operators . . . . . . . . . . . . . . . . . 1437

7.3 Higher Order Non-Homogeneous . . . . . . . . . . 1439

7.4 Cauchy-Euler Equation . . . . . . . . . . . . . . . . 1444

7.5 Variation of Parameters Revisited . . . . . . . . . 1445

7.6 Undetermined Coefficients Library . . . . . . . . . 1446

7.1 Higher Order Homogeneous

Exercises 7.1 �
Higher Order Factored
Solve the higher order equation with the given characteristic equation. Display
the roots according to multiplicity and list the corresponding solution atoms.

1. (r − 1)(r + 2)(r − 3)2 = 0

Solution:Roots: 1,−2, 3, 3. Atoms: ex, e−2x, e3x, xe3x.

eq:=(r-1)*(r+2)*(r-3)^2;

solve(eq=0,r);

2. (r − 1)2(r + 2)(r + 3) = 0

3. (r − 1)3(r + 2)2r4 = 0

Solution:Roots: 1, 1, 1,−2,−2, 0, 0, 0, 0. Atoms: ex, xex, x2ex e−2x, xe−2x, 1, x, x2,
x3
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4. (r − 1)2(r + 2)3r5 = 0

5. r2(r − 1)2(r2 + 4r + 6) = 0

Solution:Roots: 0, 0, 1, 1,−2±
√
2i. Atoms: 1, x, ex, xex, e−2x cos

√
2x, e−2x sin

√
2x

6. r3(r − 1)(r2 + 4r + 6)2 = 0

7. (r − 1)(r + 2)(r2 + 1)2 = 0

Solution:Roots: 1,−2,±i. Atoms: ex, e−2x, cosx, sinx

8. (r − 1)2(r + 2)(r2 + 1) = 0

9. (r − 1)3(r + 2)2(r2 + 4) = 0

Solution:Roots: 1, 1, 1,−2,−2,±2i. Atoms: ex, xex, x2ex, e−2x, xe−2x, cos 2x, sin 2x

10. (r − 1)4(r + 2)(r2 + 4)2 = 0

Higher Order Unfactored
Completely factor the given characteristic equation, then the roots according to
multiplicity and the solution atoms.

11. (r − 1)(r2 − 1)2(r2 + 1)3 = 0

Solution:(r− 1)3(r+1)2(r2+1)3 = 0, roots 1, 1, 1− 1,−1, i, i, i,−i,−i,−i, atoms ex,
xex, x2ex, e−x, xe−x, cosx, x cosx, x2 cosx, sinx, x sinx, x2 sinx

12. (r + 1)2(r2 − 1)2(r2 + 1)2 = 0

13. (r + 2)2(r2 − 4)2(r2 + 16)2 = 0

Solution:(r + 2)4(r − 2)2(r2 + 16)3 = 0, roots
−2,−2,−2,−2, 2, 2, , 4i, 4i, 4i,−4i,−4i,−4i, atoms e−2x, xe−2x, x2e−2x, x3e−2x,
e2x, xe2x, cos 4x, x cos 4x, x2 cos 4x, sin 4x, x sin 4x, x2 sin 4x

14. (r + 2)3(r2 − 4)4(r2 + 5)2 = 0

15. (r3 − 1)2(r − 1)2(r2 − 1) = 0

Solution: (r − 1)5(r2 + r + 1)2(r + 1) = 0, roots 1, 1, 1, 1, 1,−1/2 +
√
3i/2,−1/2 +√

3i/2,−1/2 −
√
3i/2,−1/2 −

√
3i/2,, −1, atoms 1, x, x2, x3, x4, e−x/2 cos

√
3x/2,

xe−x/2 cos
√
3x/2, e−x/2 sin

√
3x/2, xe−x/2 sin

√
3x/2, e−x

16. (r3 − 8)2(r − 2)2(r2 − 4) = 0

17. (r2 − 4)3(r4 − 16)2 = 0

Solution:(r − 2)3(r + 2)3(r2 − 4)2(r2 + 4)2 = 0 or (r − 2)5(r + 2)5(r2 + 4)2 = 0,
roots 2, 2, 2,−2,−2,−2, 2i, 2i,−2i,−2i, atoms e2x multiplied by 1, x, x2, x3, x4, e−2x

multiplied by 1, x, x2, x3, x4, cos 2x, x cos 2x, sin 2x, x sin 2x
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18. (r2 + 8)(r4 − 64)2 = 0

19. (r2 − r + 1)(r3 + 1)2 = 0

Solution:(r2 − r + 1)3(r + 1)2 = 0, roots −1,−1, 1/2 +
√
3i/2, 1/2 +

√
3i/2, 1/2 +√

3i/2, 1/2 −
√
3i/2, 1/2 −

√
3i/2, 1/2 −

√
3i/2, atoms e−x, xe−x, ex/2 cos

√
3x/2,

xex/2 cos
√
3x/2, x2ex/2 cos

√
3x/2, ex/2 sin

√
3x/2, xex/2 sin

√
3x/2, x2ex/2 sin

√
3x/2

20. (r2 + r + 1)2(r3 − 1) = 0

Higher Order Equations
The exercises study properties of Euler atoms and nth order linear differential
equations.

21. (Euler’s Theorem)

Explain why the derivatives of atom x3ex satisfy a higher order equation with char-
acteristic equation (r − 1)4 = 0.

Solution:Euler’s theorem says that x3ex is a solution if and only if r = 1 is a root of
the characteristic of multiplicity 4. Therefore, (r − 1)4 is a factor of the character-
istic equation. The simplest such equation comes from expanding (r − 1)4 and then
recovering the differential equation from the powers of r: rn 7→ (d/dx)ny(x).

22. (Euler’s Theorem)

Explain why the derivatives of atom x3 sinx satisfy a higher order equation with
characteristic equation (r2 + 1)4 = 0.

23. (Kümmer’s Change of Variable)

Consider a fourth order equation with characteristic equation (r+a)4 = 0 and general
solution y. Define y = ue−ax. Find the differential equation for u and solve it. Then
solve the original differential equation.

Solution:Let v = ebx, b = −a. Then v′ = bv. The product rule for derivatives gives

(d/dx)(uv) = u′v + buv = (u′ + bu)v

Expand (D+a)y = (D+a)(uebx) = u′v+buv+auv = u′v. Replace u by u′ and repeat
the expansion: (D + a)2y = (D + a)(u′v) = u′′v. Conclusion: (D + a)4u = u′′′′v.
Because y is a solution of (D + a)4y = 0 then 0 = u′′′′v. Cancel v = e−ax to reach
the differential equation for u: u′′′′ = 0.

The solution of u′′′′ = 0 is u =
∑3

i=1 cix
i−1. Then y =

(∑3
i=1 cix

i−1
)
e−ax.

24. (Kümmer’s Change of Variable)

A polynomial u = c0 + c1x + c2x
2 satisfies u′′′ = 0. Define y = ueax. Prove that y

satisfies a third order equation and determine its characteristic equation.

25. (Ziebur’s Derivative Lemma)

Let y be a solution of a higher order constant-coefficient linear equation. Prove that
the derivatives of y satisfy the same differential equation.

Solution:The proof consists of differentiation of the differential equation, n times to
find a new differential equation for y(n). ■
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26. (Ziebur’s Lemma: atoms)

Let y = x3ex be a solution of a higher order constant-coefficient linear equation.
Prove that Euler atoms ex, xex, x2ex are solutions of the same differential equation.

27. (Ziebur’s Atom Lemma)

Let y be an Euler atom solution of a higher order constant-coefficient linear equation.
Prove that the Euler atoms extracted from the expressions y, y′, y′′, . . . are solutions
of the same differential equation.

Solution:The ideas are in Exercise 22 and Exercise 26. The proof of Exercise 27 is
inductive, motivated by Ziebur’s Derivative Lemma, Exercise 25.

Induction Hypothesis:
Let y be an Euler atom solution decomposed as y = xnz, where z is a base atom. If
z has associated complex root a+ ib (b = 0 if real) then for some constants ci, di

y′ =

n∑
i=1

xi−1(ci cos bx+ di sin bx)⃗e
ax

The identity for y′ says that y′ is a linear combination of Euler solution atoms w.
Each atom w is a solution by Euler’s theorem.

Induction n = 0:
Let y = x0z where z is a base atom. Then z = eat cos bt or z = eat sin bt, with b = 0
allowed, the latter excluding z = 0 from the cases. Differentiate y = z = eat cos bt
and y = z = eat sin bt, proving directly from Euler’s theorem that y′ = z′ = linear
combination of solution atoms of the differential equation.

Induction n ≥ 1:
Assume the induction hypothesis is true for all powers less than or equal to n − 1.
Differentiate y = xnz to obtain nxn−1z + xnz′. The induction hypothesis applies
to nxn−1z: it equals some

∑n−1
i=1 xi−1(ci cos bx + di sin bx)⃗e

ax and the atoms w in-
volved are solutions of the differential equation. Euler’s theorem implies z′ is a linear
combination of at most two base atoms which are solutions of the same differential
equation. Multiply by xn to produce xnz′ as a linear combination of Euler atoms w.
Each atom w is known by Euler’s theorem and the hypothesis on y to be a solution.
Then y′ is a sum of linear combinations of Euler solution atoms. ■

28. (Differential Operators)

Let y be a solution of a differential equation with characteristic equation (r−1)3(r+
2)6(r2 + 4)5 = 0. Explain why y′′′ is a solution of a differential equation with char-
acteristic equation (r − 1)3(r + 2)6(r2 + 4)5r3 = 0.

29. (Higher Order Algorithm)

Let atom x2 cosx appear in the general solution of a linear higher order equation.
Find the pair of complex conjugate roots that constructed this atom, and the multi-
plicity k. Report the 2k atoms which must also appear in the general solution.

Solution:The root pair for the base atom cosx is ±i. The base atoms for this pair
are cosx, sinx. The multiplicity according to Euler’s theorem is k = 3, always one
higher than the highest power of x in the atom. The 2k = 6 atoms according to
Euler’s theorem: cosx, x cosx, x2 cosx, sinx, x sinx, x2 sinx.
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30. (Higher Order Algorithm)

Let Euler atom xex cos 2x appear in the general solution of a linear higher order
equation. Find the pair of complex conjugate roots that constructed this atom and
estimate the multiplicity k. Report the 2k atoms which are expected to appear in
the general solution.

31. (Higher Order Algorithm)

Let a higher order equation have characteristic equation (r−9)3(r−5)2(r2+4)5 = 0.
Explain precisely using existence-uniqueness theorems why the general solution is a
sum of constants times Euler atoms.

Solution:The number of independent solutions is the order n of the differential equa-
tion, which is the degree of the characteristic equation: n = 15. It suffices by
existence-uniqueness theory to find a basis of n independent solutions, because then
the general solution is a linear combination of these solutions. Euler’s theorem pro-
vides the n solutions from the roots listed according to multiplicity: 3, 3, 3, 5, 5, and
±2i repeated 5 times. The atoms: e9x, xe9x, x2e9x, e5x, xe5x, cosx, x cosx, x2 cosx,
x3 cosx, x4 cosx, sinx, x sinx, x2 sinx, x3 sinx, x4 sinx. The atoms are independent
by a theorem: A finite list of distinct Euler atoms is independent.

32. (Higher Order Algorithm)

Explain why any higher order linear homogeneous constant-coefficient differential
equation has general solution a sum of constants times Euler atoms.

7.2 Differential Operators

Exercises 7.2 � Operator Arithmetic
Compute the operator and solve the corresponding differential equation.

1. D(D + 1) +D

Solution:Answers: D2 + 2D, y′′ + 2y′ = 0 has solution y = c1 + c2e
−2x.

2. D(D + 1) +D(D + 2)

3. D(D + 1)2

Solution:Answers: D3 + 2D3 +D, y′′′ + 2y′′ + y′ = 0 has solution y = c1 + c2e
−x +

c3xe−x.

4. D(D2 + 1)2

5. D2(D2 + 4)2

Solution:Answers: D6 + 8D4 + 16D2, solution y = c1 + c2x+ c3 cos 2x+ c4 sin 2x+
c5x cos 2x+ c6x sin 2x.

6. (D − 1)((D − 1)2 + 1)2
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Operator Properties.

7. (Operator Composition) Multiply P = D2 + D and Q = 2D + 3 to get R =
2D3 + 5D2 + 3D. Then compute P (Qy) and Q(Py) for y(x) 3-times differentiable,
and show both equal Ry.

Solution:Multiply: PQ = (D2 +D)(2D + 3) = 2D3 + 5D2 + 3D = R.

Compute P (Qy): Let u = Qy = (2D+3)(y) = 2y′+3y. Then P (u) = (D2+D)(u) =
u′′ + u′ = (2y′ + 3y)′′ + (2y′ + 3y)′ = 2y′′′ + 3y′′ + 2y′′ + 3y′ = 2y′′′ + 5y′′ + 3y′.

Compute Q(Py): Let u = Py = (D2+D)(y) = y′′+y′. ThenQ(Py) = Q(u) = (2D+
3)(u) = 2u′+3u = 2(y′′+y′)′+3(y′′+y′) = 2y′′′+2y′′+3y′′+3y′ = 2y′′′+5y′′+3y′

Because R(y) = (2D3+5D2+3D)(y) = 2y′′′+5y′′+3y′, then P (Qy) = Q(Py) = Ry.

8. (Kernels)

The operators (D− 1)2(D+2) and (D− 1)(D+2)2 share common factors. Find the
Euler solution atoms shared by the corresponding differential equations.

9. (Operator Multiply)

Let differential equation (D2 + 2D + 1)y = 0 be formally differentiated four times.
Find its operator and solve the equation. What does this have to do with operator
multiply?

Solution:After four differentiations: y(6) + 2y(5) + y(4) = 0. The operator is D6 +
2D5 +D4, which can be factored according to theorems in a number of ways, one of
which is D4(D2 + 2D + 1). The meaning: to differentiate the differential equation
four times, multiply the operator equation by D4.

10. (Non-homogeneous Equation) The differential equation (D5 + 4D3)y = 0 can be
viewed as (D2 +4)u = 0 and u = D3y. On the other hand, y is a linear combination
of the atoms generated from the characteristic equation r3(r2 + 4) = 0. Use these
facts to find a particular solution of the non-homogeneous equation y′′′ = 3 cos 2x.

Kümmer’s Change of Variable
Kümmer’s change of variable y = ueax changes a y-differential equation into a
u-differential equation. It can be used as a basis for solving homogeneous nth
order linear constant coefficient differential equations.

11. Supply details: y = ueax changes y′′ = 0 into u′′ + 2au′ + a2u = 0.

Solution:Differentiate y = ueax: y′ = u′eax+aueax = (u′+au)eax, then differentiate
again to get y′′ = (u′′ + 2au′ + a2u)eax.

12. Supply details: y = ueax changes (D2 + 4D)y = 0 into ((D + a)2 + 4(D + a))u = 0.

13. Supply details: y = ueax changes the differential equation Dny = 0 into (D+a)nu =
0.

Solution:The details in Exercise 11 give D(weax) = (w′+aw)eax = ((D+a)(w))eax.
Then y′ = ((D+ a)(u))eax, y′′ = D(weax) = ((D+ a)(w))eax where w = (D+ a)(u).
Repeat or use induction to give Dny = ((D + a)n(u))eax.

14. Kümmer’s substitution y = ueax changes the differential equation (Dn+an−1D
n−1+

· · · + a0)y = 0 into (Fn + an−1F
n−1 + · · · + a0)u = 0, where F = D + a. Write the

proof.
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7.3 Higher Order Non-Homogeneous

7.3 Higher Order Non-Homogeneous

Exercises 7.3 �
Variation of Parameters
Solve the higher order equation given by its characteristic equation and right
side f(x). Display the Cauchy kernel K(x) and a particular solution yp(x) with
fewest terms. Use a computer algebra system to evaluate integrals, if possible.

1. (r − 1)(r + 2)(r − 3)2 = 0,
f(x) = ex

Solution: Answers: y = 1
12 xe

x + c1 ex + c2 e−2 x + c3 e3 x + c4 xe3 x,
yp = 1

12 xe
x, k(x) = 1

12 e
x − 1

75e
−2 x − 7

100e
3 x + 1

10 xe
3 x

# Exercise 1,Variation of Parameters

F:=x->exp(x);

sol:=c1*exp(x)+c2*exp(-2*x)+c3*exp(3*x)+c4*x*exp(3*x);

eqs:=[subs(x=0,sol)=0,

subs(x=0,diff(sol,x))=0,

subs(x=0,diff(sol,x,x))=0,

subs(x=0,diff(sol,x,x,x))=1];

solve(eqs,[c1,c2,c3,c4]);

kk:=unapply(subs(c1 = 1/12, c2 = -1/75, c3 = -7/100,

c4 = 1/10,sol),x);

int(kk(x-t)*F(t),t=0..x);# Var of parameters formula

# (1/900*(45*exp(5*x)*x-54*exp(5*x)+75*x*exp(3*x)+

50*exp(3*x)+4))*exp(-2*x)

# Answer check

expand((r-1)*(r+2)*(r-3)^2);

# r^4-5*r^3+r^2+21*r-18

de:=diff(u(x),x,x,x,x)-5*diff(u(x),x,x,x)+diff(u(x),x,x)+

21*diff(u(x),x)-18*u(x)=F(x);

dsolve(de,u(x));

2. (r − 1)2(r + 2)(r + 3) = 0,
f(x) = ex

3. (r − 1)3(r + 2)2r4 = 0,
f(x) = x+ e−2x

Solution:Answers: k (x) = −e−2 x

144
− xe−2 x

432
+

13 ex

9
− 14xex

27
+

1

18
exx2 − 23

16
− 15x

16
− 1

4
x2 − 1

24
x3,

yh = c1 e−2 x + c2 xe−2 x + c3 e
x + c4 x ex + c5 x2 ex+

c6 + c7 x+ c8 x2 + c9 x3,

yp =
x3ex

54
− 2

9
exx2 +

10xex

9
− 20 ex

9
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4. (r − 1)2(r + 2)3r5 = 0,
f(x) = x+ e−2x

5. r2(r − 1)2(r2 + 4r + 6) = 0,
f(x) = x+ ex

Solution:k (x) = 2/9 + x/6 − 28 ex

121
+

1

11
xex +

10 e−2 x cos
(√

2x
)

1089
−

17
√
2e−2 x sin

(√
2x
)

4356
,

yp (t) =
1

36
x3 +

4xex

33
+

1

9
x2 − 545 ex

1089
+

11x

27
+

313

648
+

263 e−2x sin
(√

2x
)√

2

78408
+

139 cos
(√

2x
)

39204 (ex)
2 +

1

72
e−2x

# Exercise 5,Variation of Parameters

F:=x->x+exp(x);

solve(r^2*(r-1)^2*(r^2+4*r+6)=0,r);

# 0, 0, 1, 1, -2+I*sqrt(2), -2-I*sqrt(2)

sol:=c1+c2*x+c3*exp(x)+c4*x*exp(x)+

c5*exp(-2*x)*cos(sqrt(2)*x)+c6*exp(-2*x)*sin(sqrt(2)*x);

eqs:=[subs(x=0,sol)=0,subs(x=0,diff(sol,x))=0,

subs(x=0,diff(sol,x$2))=0,subs(x=0,diff(sol,x$3))=0,

subs(x=0,diff(sol,x$4))=0,subs(x=0,diff(sol,x$5))=1];

p:=solve(eqs,[c1,c2,c3,c4,c5,c6]);

q:=convert(p[1],set,nested=true);

kk:=unapply(subs(q,sol),x);

int(kk(x-t)*F(t),t=0..x);# Var of parameters formula

6. r3(r − 1)(r2 + 4r + 6)2 = 0,
f(x) = x2 + ex

7. (r − 1)(r + 2)(r2 + 1)2 = 0,
f(x) = cosx+ e−2x

Solution:k(x) = − 1

75
e−2x+

1

12
ex− 7

100
cos(x)− 13

50
sin(x)+

3

20
x cos(x)− 1

20
x sin(x),

yp(x) = −67 (cos (x))
3

400
− 67 (sin (x))

2
cos (x)

400
+

3 cos (x)x2

80
− sin (x)x2

80
+

19x cos (x)

400
− 33x sin (x)

400
+
237 cos (x)

2000
− 289 sin (x)

2000
+
5 ex

72
+
(cos (x))

2

500 (ex)
2 +

(sin (x))
2

500 (ex)
2 −

x

75 (ex)
2 −

101

4500 (ex)
2

8. (r − 1)2(r + 2)(r2 + 1) = 0,
f(x) = sinx+ e−2x

9. (r − 1)3(r + 2)2(r2 + 4) = 0,
f(x) = cos 2x+ ex
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Solution:k(x) =
e−2 x

144
− xe−2 x

216
+

14 ex

1125
− 16xex

675
+

exx2

90
− 11 cos (2x)

2000
+

sin (2x)

1000
,

yp(x) =
(sin (x))

2
(cos (x))

4

500
+

(cos (x))
6

500
− 7 ex (sin (x))

2
(cos (x))

2

2500
− 7 ex (cos (x))

4

2500
−

(sin (x))
2
(cos (x))

2

1000
− 3 (cos (x))

4

1000
+

x3ex

270
+

sin (x) cos (x)x

1000
+

7 ex (cos (x))
2

2500
−

11 (cos (x))
2
x

2000
− 13 exx2

1350
+
93 sin (x) cos (x)

20000
+
71 (cos (x))

2

20000
+
7xex

675
− 887 ex

151875
+

11x

4000
−

51

40000
+

7x

2592 (ex)
2 +

71

15552 (ex)
2

10. (r − 1)4(r + 2)(r2 + 4)2 = 0,
f(x) = sin 2x+ ex

Undetermined Coefficient Method
A higher order equation is given by its characteristic equation and right side
f(x). Display (a) a trial solution, (b) a system of equations for the undetermined
coefficients, and (c) a particular solution yp(x) with fewest terms. Use a computer
algebra system to solve for undetermined coefficients, if possible.

11. (r − 1)(r + 2)(r − 3)2 = 0,
f(x) = ex

Solution:(a) Trial solution y = c1xe
x

The char equation roots: −2, 1, 3, 3
The roots for f(x): 1

(b) System
The differential equation is (D − 1)(D + 2)(D − 3)2y = ex.
Substitute the trial solution into the DE to get 12c1e

x = ex. Then only one equation
occurs by matching coefficients of atoms:
c1 = 1/12

(c) Particular solution: yp = 1
12xe

x
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F:=x->exp(x);

solve((r-1)*(r+2)*(r-3)^2=0,r);

# -2, 1, 3, 3

sol:=c1*exp(-2*x)+c2*exp(x)+c3*exp(3*x) + c4*x*exp(3*x);

L:=PolynomialTools[CoefficientList]((r-1)*(r+2)*(r-3)^2,r)

# [-18, 21, 1, -5, 1]

n:=numelems(L);

expand((r-1)*(r+2)*(r-3)^2);

de:=L[1]*y(x):for i from 1 to n-1 do

de:= de + diff(y(x),x$i)*L[i+1];

od:

trial:=c1*x*exp(x);

eqs:=subs(y(x)=trial,de=F(x)):simplify(eqs);

# 12 c1 exp(x) = exp(x)

solve(eqs,c1);

# c1 = 1/12

# Answer check:

dsolve(de = F(x),y(x))

# yp = (1/12)*x*exp(x) by setting y_h=0

12. (r − 1)2(r + 2)(r + 3) = 0,
f(x) = ex

13. (r − 1)3(r + 2)2r4 = 0,
f(x) = x+ e−2x

Solution: Roots of the char equation: −2,−2, 1, 1, 1, 0, 0, 0, 0
Roots for f : 0, 0,−2
Trial solution: y = c1x

4 + c2x
5 + c3x

2e−2x

Differential equation:

−4y′′′′ + 8y(5) − y(6) − 5y(7) + y(8) + y(9) = f(x)

Equations:  −96 c1 − 864 c3 + 960 c2 = 1
−480 c2 + 1728 c3 = −1
−3456 c3 = 4

Solution to the equations: c1 = −1/48, c2 = −1/480, c3 = −1/864
Particular solution:

yp = −x4

48
− x5

480
− x2e−2 x

864
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# Exercise 13, Undetermined coefficients

F:=x->x+exp(-2*x);charpoly:=(r-1)^3*(r+2)^2*r^4;

solve(charpoly=0,r); # -2, -2, 1, 1, 1, 0, 0, 0, 0

sol:=c1*exp(-2*x)+c2*x*exp(-2*x) + c3*exp(x)+c4*x*exp(x)

+ c5*x^2*exp(x) + c6 + c7*x + c8*x^2+c9*x^3;

L:=PolynomialTools[CoefficientList](charpoly,r)

n:=numelems(L);expand(charpoly);

de:=L[1]*y(x):for i from 1 to n-1 do

de:= de + diff(y(x),x$i)*L[i+1];

od:

# roots F: 0,0,-2

trial:=c1*x^4 + c2*x^5+c3*x^2*exp(-2*x);

eqs:=subs(y(x)=trial,de=F(x)):simplify(eqs);

eq1:=simplify(subs(x=0,eqs));

eq2:=simplify(subs(x=0,diff(eqs,x)));

eq3:=simplify(subs(x=0,diff(eqs,x$2)));

solve([eq1,eq2,eq3],[c1,c2,c3]);

# c1 = -1/48, c2 = -1/480, c3 = -1/864

# Answer check:

dsolve(de = F(x),y(x))

# yp = -x^5/480-x^4/48+2* exp(-2*x) -x^2*exp(-2*x)/864

# Extra terms from y_h removed

14. (r − 1)2(r + 2)3r5 = 0,
f(x) = x+ e−2x

15. r2(r − 1)2(r2 + 4r + 6) = 0,
f(x) = x+ ex

Solution:Roots of char equation: 0, 0, 1, 1,−2± i
√
2

Roots for f : 0, 0, 1
Trial solution: y = c1x

2 + c2x
3 + c3x

2ex

Differential equation:
6D2y − 8D3y −D4y + 2D5y +D6y = f(x)
Particular solution:

yp =
1

36
x3 +

2

9
x2 +

1

22
exx2

16. r3(r − 1)(r2 + 4r + 6)2 = 0,
f(x) = x2 + ex

17. (r − 1)(r + 2)(r2 + 1)2 = 0,
f(x) = cosx+ e−2x

Solution:Roots of char equation: −2, 1,±i,±i
Roots for f : ±i,−2
Trial solution: y = c1x

2 cos(x) + c2x
2 sin(x) + c3xe

−2x

Differential equation:
−2y +Dy − 3D2y + 2D3y +D5y +D6y = f(x)
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7.4 Cauchy-Euler Equation

Particular solution:

yp = 3x2 cos (x)

80
− x2 sin (x)

80
− xe−2 x

75

18. (r − 1)2(r + 2)(r2 + 1) = 0,
f(x) = sinx+ e−2x

19. (r − 1)3(r + 2)2(r2 + 4) = 0,
f(x) = cos 2x+ ex

Solution:Roots of char equation: −2,−2, 1, 1, 1,±2i
Roots for f : ±2i, 1
Trial solution: y = c1x cos(2x) + c2x sin(2x) + c3x

3ex

Differential equation:
−16y + 32Dy − 8D2y − 12D3y + 3D4y −D5y +D6y +D7y = f(x)
-16, 32, -8, -12, 3, -1, 1, 1 Particular solution:

yp =
11x cos (2x )

4000
+

x sin (2x)

2000
+

x3ex

270

20. (r − 1)4(r + 2)(r2 + 4)2 = 0,
f(x) = sin 2x+ ex

7.4 Cauchy-Euler Equation

Exercises 7.4 �
Cauchy-Euler Equation
Find solutions y1, y2 of the given homogeneous differential equation which are
independent by the Wronskian test, page 464.

1. x2y′′ + y = 0

Solution:y1 (x) =
√
x sin

(
1/2
√
3 ln (x)

)
, y2 (x) =

√
x cos

(
1/2
√
3 ln (x)

)
2. x2y′′ + 4y = 0

3. x2y′′ + 2xy′ + y = 0

Solution:y1 (x) =
sin
(
1/2
√
3 ln (x)

)
√
x

, y2 (x) =
cos
(
1/2
√
3 ln (x)

)
√
x

4. x2y′′ + 8xy′ + 4y = 0

Variation of Parameters
Find a solution yp using a variation of parameters formula.

5. x2y′′ = x
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6. x3y′′ = ex

Solution:yp (x) = x ln (x)− x

Because yh = c1 + c2x then variation of parameters in Cauchy kernel form gives

yp =

∫ x

1

k(x− t)f(t)dt/t2 =

∫ x

1

k(x− t)(1/t)dt

Compute k(x) = x. Then integrate:

yp =

∫ x

1

k(x− t)(1/t)dt =

∫ x

1

(x
t
− 1
)
dt = x ln |x| − x+ c

for some constant c. Choose c = 0.

7. y′′ + 9y = sec 3x

Solution:yp = (1/3)x sin(3x) + (1/9) cos(3x) ln | cos(3x)|
The Cauchy kernel for y′′ + 9y = 0 is k(x) = sin(3x)/3. To keep the integration
result simple, feed the computer algebra system integrator this t-expression for the
integrand k(x− t) sec(3t) in the variation of parameters formula (x held fixed):

(1/3)(sin(3x)− cos(3x) sin(3t)/ cos(3t))

8. y′′ + 9y = csc 3x

7.5 Variation of Parameters Revisited

Exercises 7.5 �
Cauchy Kernel
Find the Cauchy kernel K(x, t) for the given homogeneous differential equation.

1. y′′ − y = 0

Solution:Solve the equation with initial data x(0) = 0, x′(0) = 1. Then k(x) =
1
2e

x − 1
2e

−x = sinh(x).

2. y′′ − 4y = 0

3. y′′ + y = 0

Solution:k(x) = sinx

4. y′′ + 4y = 0

5. 4y′′ + y′ = 0

Solution:k(x) = c1 + c2e
−x/4 = 4− 4e−x/4

6. y′′ + y′ = 0
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7. y′′ + y′ + y = 0

Solution:k(x) = 2
3

√
3 e−x/2 sin(

√
3x/2)

8. y′′ − y′ + y = 0

Variation of Parameters
Find the general solution yh + yp by applying a variation of parameters formula.

9. y′′ = x2

Solution:yh = c1 + c2x, yp = x4/12

10. y′′ = x3

11. y′′ + y = sinx

Solution:yh = c1 cosx + c2 sinx, k(x) = sinx, yp =
∫ x

0
k(x − t) sin(t)dt = 1

2 sin(x) −
1
2x cos(x). A shortened yp = − 1

2x cos(x).

12. y′′ + y = cosx

13. y′′ + y′ = ln |x|
Solution:yh = c1+c2x, k(x) = x, yp =

∫ x

1
k(x− t) ln(t)dt = x− 1

4 +
1
2 x

2 ln (x)− 3
4 x

2.

A shortened yp = 1
2 x

2 ln (x)− 3
4 x

2.

14. y′′ + y′ = − ln |x|

15. y′′ + 2y′ + y = e−x

Solution:yh = c1e
−x + c2xe

−x, k(x) = xe−x,
yp =

∫ x

0
k(x− t)e−tdt = 1

2x
2e−x.

16. y′′ − 2y′ + y = ex

7.6 Undetermined Coefficients Library

Exercises 7.6 �
Polynomial Solutions
Determine a polynomial solution yp for the given differential equation. Apply
Theorem 7.8, page 581, and model the solution after Examples 7.5, 7.6, 7.7 and
7.8.

1. y′′ = x

Solution:The example needs no special method: use quadrature. Answer: yp = x3/6.

2. y′′ = x− 1
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3. y′′ = x2 − x

Solution:The example needs no special method: use quadrature. Answer: yp =
x4/12− x2/6.

4. y′′ = x2 + x− 1

5. y′′ − y′ = 1

Solution:Equilibrium method is an easy shortcut: drop term y′′ and solve −y′ = 1
by quadrature. Then yp = −x.

6. y′′ − 5y′ = 10

7. y′′ − y′ = x

Solution:The polynomial method applies. Differentiate the DE until the RHS be-
comes constant: {

y′′ − y′ = x
y′′′ − y′′ = 1

Use the equilibrium method on the last equation: drop y′′′ and solve −y′′ = 1 by
quadrature. Then y = p(x) = −x2/2+ d0 + d1x is a polynomial trial solution. Insert
the trial solution into the DE:

(−x2/2 + d0 + d1x)
′′ − (−x2/2 + d0 + d1x)

′ = x

(−1)− (−x+ d1) = x

Match Euler atom coefficients left and right to find the equation(s) for d0, d1:
−1 − d1 = 0. Then d1 = −1 and d0 is a free variable. Let c0 = 0. Then
yp = p(x) = −x2/2− x.

Check the answer:

(−x2/2− x)′′ − (−x2/2− x)′ = (−1)− (−x− 1) = x

The method agrees with case One Root r = 0 of characteristic equation r2 − r = 0.

8. y′′ − y′ = x− 1

9. y′′ − y′ + y = 1

Solution:Equilibrium method: replace terms y′′ and y′ by zero, then solve 0+0+y = 1
to find yp = 1. The answer can be checked without pencil and paper.

10. y′′ − y′ + y = −2

11. y′′ + y = 1− x

Solution:The polynomial method applies. The trial solution arises from y′′′+y′ = −1,
solved by replacing y′′′ by zero, then apply quadrature to 0+ y′ = −1 get y = p(x) =
d0 − x. Substitute back into the DE: (d0 − x)′′ + (d0 − x) = 1− x. Then d0 = 1 and
y = p(x) = 1− x. The answer can be checked without pencil and paper.
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12. y′′ + y = 2 + x

13. y′′ − y = x2

Solution:The polynomial method applies. Reduced equation: 0 − y′′ = 2. Trial
solution: y = p(x) = x2 + d1x+ d0. Euler atom equation for d0, d1:

(x2 + d1x+ d0)
′′ + (x2 + d1x+ d0) = x2

(2) + (x2 + d1x+ d0) = x2

Then d0 = −2, d1 = 0 and yp = p(x) = x2 − 2
Answer check:

(x2 − 2)′′ + (x2 − 2) = (2) + x2 − 2 = x2

14. y′′ − y = x3

Polynomial-Exponential Solutions
Determine a solution yp for the given differential equation. Apply Theorem 7.9,
page 581, and model the solution after Example 7.9.

15. y′′ + y = ex

Solution:The polynomial times exponential method applies. Kummer’s transforma-
tion y = exY is used to obtain the new equation (D+ 1)2Y + Y = 1, which expands
to Y ′′ + 2Y ′ + 2Y = 1. The latter is solved by the equilibrium shortcut: replace
terms Y ′′ and Y ′ by zero, then solve the reduced equation: 2Y = 1. Then Y = 1/1
and y = exY = 1

2e
x.

Answer check:

(
1

2
ex)′′ + (

1

2
ex) = (

1

2
+

1

2
)ex = ex

16. y′′ + y = e−x

17. y′′ = e2x

Solution:Solved by quadrature: yp = 1
4e

2x.

18. y′′ = e−2x

19. y′′ − y = (x+ 1)e2x

Solution:The polynomial times exponential method applies: Replace D by D + 2 in
the DE and cancel e2x on the RHS:

(D + 2)2Y − Y = x+ 1, or Y ′′ + 4Y ′ + 3Y = x+ 1

The solution will be yp = e2xY , which is Kummer’s transformation.
The trial solution: solve 0+0+3Y ′ = 1, which is obtained by one differentiation of the
equation Y ′′ +4Y ′ +3Y = x+1 then replace Y ′′ and Y ′ by zero. The trial solution:
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Y = p(x) = x/3+ d0. Substitute Y into the original equation Y ′′+4Y ′+3Y = x+1
to determine d0:

(x/3 + d0)
′′ + 4(x/3 + d0)

′ + 3(x/3 + d0) = x+ 1

(0) + 4(1/3) + 3(x/3 + d0) = x+ 1

Then 4/3 + 3d0 = 1 and d0 = −1/9, giving Y = x/3− 1/9.
Answer check:
Y ′′+4Y ′+3Y = (x/3−1/9)′′+4(x/3−1/9)′+3(x/3−1/9) = 0+4/3+x−1/3 = x+1.
Final answer: y = e2xY = (x/3− 1/9)e2x.

20. y′′ − y = (x− 1)e−2x

21. y′′ − y′ = (x+ 3)e2x

Solution:The polynomial times exponent method applies. Replace D by D+2 in the
DE and cancel e2x on the RHS:

(D + 2)2Y − (D + 2)Y = x+ 3, or Y ′′ + 3Y ′ + 2Y = x+ 3

The solution will be yp = e2xY , which is Kummer’s transformation.
The trial solution: solve 0+0+2Y ′ = 1, which is obtained by one differentiation of the
equation Y ′′ +3Y ′ +2Y = x+3 then replace Y ′′′ and Y ′′ by zero. The trial solution
is Y = x/2 + d0. Substitute Y into the original equation Y ′′ + 3Y ′ + 2Y = x+ 3 to
determine d0:

(x/2 + d0)
′′ + 3(x/2 + d0)

′ + 2(x/2 + d0) = x+ 3

(0) + 3(1/2) + 2(x/2 + d0) = x+ 3

Then 3/2 + 2d0 = 3 and d0 = 3/4, giving Y = x/2 + 3/4.
Answer check:
Y ′′+3Y ′+2Y = (x/2+3/4)′′+3(x/2+3/4)′+2(x/2+3/4) = (0)+(3/2)+(x+3/2) =
x+ 3.
Final answer: y = e2xY = (x/2 + 3/4)e2x.

22. y′′ − y′ = (x− 2)e−2x

23. y′′ − 3y′ + 2y = (x2 + 3)e3x

Solution:The polynomial times exponent method applies. Final answer: y =(
1

2
x2 − 3

2
x+

13

4

)
e3x.

24. y′′ − 3y′ + 2y = (x2 − 2)e−3x

Sine and Cosine Solutions
Determine a solution yp for the given differential equation. Apply Theorem 7.10,
page 581, and model the solution after Examples 7.10 and 7.11.
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25. y′′ = sin(x)

Solution:The polynomial times exponential times sine method applies. The root:
z = 0 + i. The reduced equation: (D + z)2Y = 1. Expand: (D2 + 2zD + z2 =
D2 + 2iD − 1. Solve Y ′′ + 2iY ′ − Y = 1 by the equilibrium method: Y = −1. Then
y = e0x Im(eixY ) = − sinx.
Answer check:
y′′ = (− sinx)′′ = sinx

26. y′′ = cos(x)

27. y′′ + y = sin(x)

Solution:The polynomial times exponential times sine method applies. The root:
z = 0+ i. The reduced equation: (D+ z)2Y +Y = 1. Expand: (D2+2zD+ z2+1 =
D2 + 2iD. Solve Y ′′ + 2iY ′ = 1 by the equilibrium method: 2iY = x (d0 = 0 to
simplify). Then y = e0x Im(eix Y ) = Im(eix x/(2i)) = − 1

2 x cosx.
Answer check:
y′′ = 1

2 (−x cosx)
′′ + 1

2 (−x/ cosx) =
1
2 (− cosx+ x sinx)′ + 1

2 (−x/ cosx) =
1
2 (sinx+

sinx+ x cosx) + 1
2 (−x/ cosx) = sinx.

28. y′′ + y = cos(x)

Solution:yp = 1
2x sinx. See also Exercise 39.

29. y′′ = (x+ 1) sin(x)

Solution:The polynomial times exponential times sine method applies.
y = −2 cos(x)− x sin(x)− sin(x)

30. y′′ = (x+ 1) cos(x)

31. y′′ − y = (x+ 1)ex sin(2x)

Solution:The polynomial times exponential times sine method applies.
The root: z = 1 + 2i. The reduced equation: (D + z)2Y − Y = x + 1. Expand:
(D+z)2−1 = D2+2D+(4i)D−4+4i. Solve D2+2D+(4i)D−4+4i = x+1 by the
equilibrium method: Y ′′′+2Y ′′+(4i)Y ′′−4Y ′+4iY ′ = 1 reduces to (−4+4i)Y ′ = 1
and then Y = x/(4i − 4) + d0. Find d0 by substitution into Y ′′ + 2Y ′ + (4i)Y ′ +
(−4 + 4i)Y = x+ 1. Then y = ex Im(e2ix Y ) = ex Im(e2ix (x/(4i− 4) + d0)).

Final answer: y =
1

16
(−2x− 3)ex cos(2x)− 1

8
x ex sin(2x)

Answer check by maple dsolve.

# Exercise 31

F:=x->(x+1)*exp(x)*sin(2*x);

de:=m*diff(y(x),x,x)+c*diff(y(x),x)+k*y(x)=F(x);

de1:=subs(m=1,c=0,k=-1,de);

p:=dsolve(de1,y(x));

32. y′′ − y = (x+ 1)ex cos(2x)
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33. y′′ − y′ − y = (x2 + x)ex sin(2x)

Solution:The polynomial times exponential times sine method applies.
The root: z = 1 + 2i. The reduced equation: (D + z)2Y − (D + z)Y − Y = x2 + x.
Final answer:

y =

(
−1682x2 − 7714x− 956

)
ex cos (2x)

24389
−

5 ex sin (2x)

29

(
x2 +

27x

145
− 943

841

)

34. y′′ − y′ − y = (x2 + x)ex cos(2x)

Undetermined Coefficients Algorithm
Determine a solution yp for the given differential equation. Apply the polynomial
algorithm, page 576, and model the solution after Example 7.12.

35. y′′ = x+ sin(x)

Solution:Break the problem into two equations:

y′′1 = x, y′′2 = sin(x)

Solve each problem by quadrature, dropping homogeneous terms. Then yp = y1+y2 =
x3/6− sin(x).

36. y′′ = 1 + x+ cos(x)

37. y′′ + y = x+ sin(x)

Solution:Break the problem into two equations:

y′′1 + y1 = x, y′′2 + y2 = sin(x)

Solve for y1 by the equilibrium method for polynomials: y1 = x (or guess the answer).
Solve for y2 by the polynomial exponential sine method: y2 = − 1

2x cosx by Exercise
27. Then yp = y1 + y2 = x− 1

2x cosx.

38. y′′ + y = 1 + x+ cos(x)

39. y′′ + y = sin(x) + cos(x)

Solution:Break the problem into two equations:

y′′1 + y1 = sinx, y′′2 + y2 = cos(x)

Solve for y1 by the polynomial exponential sine method: y1 = − 1
2x cosx by Exercise

27. Then yp = y1 + y2 = x− 1
2x cosx.

Solve for y2 by the polynomial exponential cosine method: y2 = 1
2x sinx by Exercise

28. Then yp = y1 + y2 = − 1
2x cosx+ 1

2x sinx.

40. y′′ + y = sin(x)− cos(x)
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41. y′′ = x+ xex + sin(x)

Solution:Break the problem into three equations:

y′′1 = x, y′′2 = xex,′ quady′′3 = sin(x)

All three can be solved by quadrature.
Final answer: yp = y1 + y2 + y3 = (1/6) ∗ x3 + x ∗ exp(x)− 2 ∗ exp(x)− sin(x)

42. y′′ = x− xex + cos(x)

43. y′′ − y = sinh(x) + cos2(x)

Solution:Use identities sinhu = 1
2e

u − 1
2e

−u, cos 2θ = cos(θ + θ) = cos2θ − sin2 θ

and cos2 θ + sin2 θ = 1 to write the RHS of the DE as f(x) = sinh(x) + cos2(x) =
1
2e

x − 1
2e

−x + 1
2 (cos 2x+ 1). Then split into four differentia equations:

y′′1 − y1 =
1

2
ex, y′′2 − y2 = −1

2
e−x, y′′3 − y3 =

1

2
cos 2x, y′′4 − y4 =

1

2

Apply classical undetermined coefficients to find y1, y2 and y3. Guess y4 = − 1
2 . Then

yp = y1 + y2 + y3 + y4 = 1
40 (10x+ 5)e−x − 1

10 cos(2x)−
1
2 + 1

40 (10x− 5)ex

Answer check: Use maple dsolve

44. y′′ − y = cosh(x) + sin2(x)

45. y′′ + y′ − y = x2ex + xex cos(2x)

Solution:Break into two equations:

y′′1 + y′1 − y1 = x2ex, y′′2 + y′2 − y2 = xex cos(2x)

Alternatively, apply Kummer’s transformation y = zex to reduce the problem to
polynomial type and polynomial cosine type.
The steps to solution are challenging. Final answer:
yp = −(1/45)ex(3x cos(2x)− 6x sin(2x)− 45x2 − 5 cos(2x) + 270x− 720)

46. y′′ + y′ − y = x2e−x + xex sin(2x)

Additional Proofs
The exercises below fill in details in the text. The hints are in the proofs in the
textbook. No solutions will be given for the odd exercises.

47. (Theorem 7.8)

Supply the missing details in the proof of Theorem 7.8 for case 1. In particular, give
the details for back-substitution.

48. (Theorem 7.8)

Supply the details in the proof of Theorem 7.8 for case 2. In particular, give the
details for back-substitution and explain fully why it is possible to select y0 = 0.
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49. (Theorem 7.8)

Supply the details in the proof of Theorem 7.8 for case 3. In particular, explain
why back-substitution leaves y0 and y1 undetermined, and why it is possible to select
y0 = y1 = 0.

50. (Superposition)

Let Ly denote ay′′ + by′ + cy. Show that solutions of Lu = f(x) and Lv = g(x) add
to give y = u+ v as a solution of Ly = f(x) + g(x).

51. (Easily Solved Equations)

Let Ly denote ay′′ + by′ + cy. Let Lyk = fk(x) for k = 1, . . . , n and define y =
y1 + · · ·+ yn, f = f1 + · · ·+ fn. Show that Ly = f(x).
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Appendix 8

§ Laplace Transform

Contents

8.1 Laplace Method Introduction . . . . . . . . . . . . 1454

8.2 Laplace Integral Table . . . . . . . . . . . . . . . . 1460

8.3 Laplace Transform Rules . . . . . . . . . . . . . . . 1466

8.4 Heaviside’s Method . . . . . . . . . . . . . . . . . . 1479

8.5 Transform Properties . . . . . . . . . . . . . . . . . 1486

8.6 Heaviside Step and Dirac Impulse . . . . . . . . . 1487

8.7 Laplace Table Derivations . . . . . . . . . . . . . . 1489

8.8 Modeling . . . . . . . . . . . . . . . . . . . . . . . . 1490

8.1 Laplace Method Introduction

Exercises 8.1 �
Laplace method
Solve the given initial value problem using Laplace’s method.

1. y′ = −2, y(0) = 0.

Solution:Answer: y(t) = −2t.

L(y′) = L(−2) Apply L across the DE

sL(y)− y(0) = −2/s Laplace derivative rule, forward Laplace table

L(y) =)y(0)− 2)/s Isolate L(y) left
L(y) = −2/s = L(−2t) Use y(0) = 0 and the backward Laplace table

y = −2t Lerch’s cancellation law
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# Exercise 1, Laplace method

with(inttrans):

de:=diff(y(t),t)=-2;

p:=laplace(de,t,s); # Apply L across DE

q:=solve(p,laplace(y(t), t, s)); # Isolate L(y)

y(t)= subs(y(0)=0,invlaplace(q,s,t)); # Solve for y

# y(t)=-2t

2. y′ = 1, y(0) = 0.

3. y′ = −t, y(0) = 0.

Solution:y(t) = −(1/2)t2

4. y′ = t, y(0) = 0.

5. y′ = 1− t, y(0) = 0.

Solution:y(t) = t− (1/2)t2

6. y′ = 1 + t, y(0) = 0.

7. y′ = 3− 2t, y(0) = 0.

Solution:y(t) = −t2 + 3t

8. y′ = 3 + 2t, y(0) = 0.

9. y′′ = −2, y(0) = y′(0) = 0.

Solution:y = −t2

L(y′′) = L(−2) apply L across the DE

s2L(y)− y′(0)− y(0)s = −2/s Derivative theorem, forward Laplace table

L(y) = y′(0) + y(0)s− 2/s

s2
Isolate L(y) left

L(y) = −2/s3 Insert y(0) = 0 and y′(0) = 0

L(y) = L(−t2) backward Laplace table

y = −t2 Lerch’s cancellation law

# Exercise 9, Laplace method

with(inttrans):

de:=diff(y(t),t,t)=-2;

p:=laplace(de,t,s);

q:=solve(p,laplace(y(t), t, s));

y(t)= subs(y(0)=0,D(y)(0)=0,invlaplace(q,s,t));

10. y′′ = 1, y(0) = y′(0) = 0.
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11. y′′ = 1− t, y(0) = y′(0) = 0.

Solution:y(t) = (1/2)t2 − (1/6)t3

12. y′′ = 1 + t, y(0) = y′(0) = 0.

13. y′′ = 3− 2t, y(0) = y′(0) = 0.

Solution:y(t) = (3/2)t2 − (1/3)t3

14. y′′ = 3 + 2t, y(0) = y′(0) = 0.

Exponential order
Show that f(t) is of exponential order, by finding a constant α ≥ 0 in each case

such that lim
t→∞

f(t)

eαt
= 0.

15. f(t) = 1 + t

Solution:Let α > 0, e.g., α = 1. Then lim
t→∞

f(t)

eαt
= 0.

16. f(t) = et sin(t)

17. f(t) =
∑N

n=0 cnt
n, for any choice of the constants c0, . . . , cN .

Solution: Let α > 0, e.g., α = 1. Then lim
t→∞

f(t)

eαt
= 0. The limit is zero because

an exponential eαt grows faster than any power xk. The latter is proved in calculus
using L’Hôpital’s Rule.

18. f(t) =
∑N

n=1 cn sin(nt), for any choice of the constants c1, . . . , cN .

Existence of transforms
Let f(t) = tet

2
sin(et

2
). Establish these results.

19. The function f(t) is not of exponential order.

Solution: Let α be any real number. Then f(t)/eαt = tet
2−αt sin(et

2

). Define se-

quence {tn} by the equation et
2
n = (4n+ 1)π/2. Then sin(et

2
n) = sin(2nπ + π/2) = 1

by periodicity of the sine function. Fraction f(tn)/e
αtn then equals tne

t2n−αtn , which
has limit infinity as n → ∞ (t2 grows faster than αt for any fixed α). Therefore,
f(t)/eαt cannot have limit zero at infinity for any value of α. ■

20. The Laplace integral of f(t),
∫∞
0

f(t)e−stdt, converges for all s > 0.

Jump Magnitude
For f piecewise continuous, define the jump at t by

J(t) = lim
h→0+

f(t+ h)− lim
h→0+

f(t− h).

Compute J(t) for the following f .
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21. f(t) = 1 for t ≥ 0, else f(t) = 0

Solution: The left limit at t = 0 is one, the right limit at t = 0 is zero. Then J(0) = 1
and by continuity elsewhereJ(t) = 0.

22. f(t) = 1 for t ≥ 1/2, else f(t) = 0

23. f(t) = t/|t| for t ̸= 0, f(0) = 0

Solution:J(0) = 1− (−1) = 2 and elsewhere J(t) = 0.

24. f(t) = sin t/| sin t| for t ̸= nπ, f(nπ) = (−1)n

Taylor series
The series relation L(

∑∞
n=0 cnt

n) =
∑∞

n=0 cnL(tn) often holds, in which case the
result L(tn) = n!s−1−n can be employed to find a series representation of the
Laplace transform. Use this idea on the following to find a series formula for
L(f(t)).

25. f(t) = e2t =
∑∞

n=0(2t)
n/n!

Solution:L(f(t)) =
∑∞

n=0

2n

n!
L(tn) =

∑∞
n=0

2n

n!

n!

sn+1 =
∑∞

n=0

2n

sn+1

26. f(t) = e−t =
∑∞

n=0(−t)n/n!

Transfer of Radiance
The differential equation d

drN+αN = N∗ models laser beam radiance (absorption
and scattering out of the beam) in a medium like water, where r is the distance
from the source.

27. Solve d
drN + 2N = 1, N(0) = 20 by Laplace’s method.

Ans: N (r) = 1
2 + 39

2 e−2 r.

Hint: Obtain L(N(t)) = 1+20 s
s(s+2) = 1

2s + 39
2(s+2) using L(eat) = 1

s−a from the Forward

Table page 601.

Solution: Let y = N(t) and use y′ + 2y = 1, y(0) = 20 with Laplace’s method as
follows.

L(y′ + 2y) = L(1) Apply L across the DE.

sL(y)− y(0) + 2L(y) = 1

s
Derivative rule, forward table.

L(y) =
20 +

1

s
s+ 2

Isolate L(y) left, use y(0) = 20.

L(y) = a

s+ 2
+

b

s
Partial fractions, a, b found later.

L(y) = L(ae−2t + b) Backward table.

y = ae−2t + b Lerch’s cancellation law.

y = ae−2t + b Found a =
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28. Solve d
drN + 2N = 1− e−r, N(0) = 25 by any method.

Ans: N (r) = 1
2 − e−r + 51

2 e−2 r.

Hint: A particular solution is Np = 1
2−e−r. Superposition applies. See also Example

8.11 page 609.

Piecewise-Defined Functions

29. Define a piecewise continuous function f(t) on [−1, 1] that agrees with sin(t)
|t| except

at t = 0. Suggestion: use Taylor expansion sin(t) = t− t3/6+ · · · to define continuous
functions f1, f2 on −∞ < t <∞.

Solution: Let f1 = −f2 and f2(t) = 1−t2/6+t4/5!−· · · = 1
t

∑∞
n=0(−1)nt2n+1/(2n+

1)! =
∑∞

n=0(−1)nt2n/(2n + 1)!. Power series are infinitely differentiable, therefore
continuous. Define

f(t) =

 f1(t) t < 0,
1 t = 0,
f2(t) t > 0.

Then f(t) =
sin t

|t|
except at t = 0 where the fraction is undefined.

30. Explain in detail why 1/t is not piecewise continuous on [−1, 1]. ■

31. Find L(f(t)), given

f(t) =

{
1 1 ≤ t < 2,
0 otherwise.

Solution: A basic solution:

L(f(t)) =
∫∞
0

f(t)e−stdt =
∫ 2

1
(1)e−stdt =

e−s

s
− e−2s

s
.

A second solution:

Define pulse(t, a, b) =

{
1 a ≤ t < b,
0 otherwise.

as in Exercise 32, infra. Then f(t) =

pulse(t, 1, 2). Because pulse(t, a, b) = u(t − a) − u(t − b) and L(u(t − c)) =
e−cs

s

then L(f(t)) = L(u(t− 1))− L(u(t− 2)) =
e−s

s
− e−2s

s
.

32. Find L(pulse(t, a, b)), given

pulse(t, a, b) =

{
1 a ≤ t < b,
0 otherwise.

33. Define

f(t) =

 1 1 ≤ t < 2,
2 3 ≤ t < 4,
0 otherwise.

Find the weights c1, c2 such that
f(t) = c1 pulse(t, 1, 2)+

c2 pulse(t, 3, 4).

Solution: c1 = 1, c2 = 2
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f(t) =

 1 1 ≤ t < 2,
2 3 ≤ t < 4,
0 otherwise.

=

{
1 1 ≤ t < 2,
0 otherwise.

+ 2

{
1 3 ≤ t < 4,
0 otherwise.

= pulse(t, 1, 2) + 2pulse(t, 3, 4)

34. Let
f(t) = cos(t)pulse(t, 0, π)+

(sin(t)− 1)pulse(t, π, 2π)
Write f as a piecewise-defined function and graph it.

Piecewise Continuous Definition
Let g(t) be zero for t < 0 and have on t ≥ 0 at most finitely many points of
discontinuity, at which finite right and left hand limits exist.

This definition is an alternative way to define piecewise continuous, crafted for
Laplace theory.

35. Let t1, t2 be consecutive points of discontinuity of g. Define a function g1(t) contin-
uous on −∞ < t <∞ such that g(t) = g1(t) on t1 ≤ t ≤ t2.

The whole real line is the required domain of g1, which must be defined using g itself and right and left

hand limit values of g.

Solution:The plan: define g1 = g on t1 ≤ t ≤ t2 with the endpoint definition taken
to mean the appropriate left or right limit at the point. Then extend g1 to the whole
real line as a constant on t < t1 and also on t > t2.

g1(t) =

 g(t1 + 0) t ≤ t1,
g(t) t1 < t < t2,
g(t2 − 0) t ≥ t2.

Then g1 is continuous except possibly at t = t1, t = t2. Compute the left and right
limits at these two points:

(g1(t1 − 0) = g(t1 + 0) = g1(t1 + 0)
(g1(t2 − 0) = g(t2 − 0) = g1(t2 + 0)
Because right and left limits match at t = t1, t2 then g1 is continuous. ■

36. Let t1, t2, t3 be consecutive points of discontinuity of g. Invent functions g1(t), g2(t)
continuous on −∞ < t < ∞ such that g(t) = g1(t) on t1 ≤ t ≤ t2 and g(t) = g2(t)
on t2 ≤ t ≤ t3.

37. Define g1, g2 as in Exercise 36 above. Compute the jump at t = t2, J(t2) = g(t2 +
0)− g(t2 − 0), in terms of g1, g2.

Solution:

g(t2 + 0) = g2(t2 + 0) = g2(t2)
g(t2 − 0) = g1(t2 − 0) = g1(t2)
Then: J(t2) = g2(t2)− g1(t2)

38. Using the preceding steps, prove that g is piecewise continuous according to the
definition given in the text.
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8.2 Laplace Integral Table

Exercises 8.2 �
Laplace Transform Forward Table
Using the basic Laplace table and linearity properties of the transform, compute
L(f(t)). Do not use the direct Laplace transform!

1. L(2t)

Solution:L(2t) = 2L(t) = 2
1

s2

2. L(4t)

3. L(1 + 2t+ t2)

Solution:L(1 + 2t+ t2) = L(1) + L(2t) + L(t2) = 1

s
+ 2

1

s2
+

2

s3

4. L(t2 − 3t+ 10)

5. L(sin 2t)

Solution:L(sin 2t) = b

s2 + b2

∣∣∣∣
b=2

=
2

s2 + 4

6. L(cos 2t)

7. L(e2t)

Solution: L(e2t) = 1

s− a

∣∣∣∣
a=2

=
1

s− 2

8. L(e−2t)

9. L(t+ sin 2t)

Solution: L(t+ sin 2t) = L(t) + L(sin 2t) = 1

s2
+

2

s2 + 4

10. L(t− cos 2t)

11. L(t+ e2t)

Solution: L(t+ e2t) = L(t)L(+e2t) =
1

s2
+

1

s− 2

12. L(t− 3e−2t)

13. L((t+ 1)2)

Solution: L((t+ 1)2) = L(t2 + 2t+ 1) = L(t2) + L(2t) + L(1) = 2

s3
+

2

s2
+

1

s
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14. L((t+ 2)2)

15. L(t(t+ 1))

Solution: L(t(t+ 1)) = L(t2 + t) = L(t2) + L(t) = 2

s3
+

1

s2

16. L((t+ 1)(t+ 2))

17. L(
∑10

n=0 t
n/n!)

Solution:
L(
∑10

n=0 t
n/n!) =

∑10
n=0 L(tn/n!)

=
∑10

n=0

n

sn+1(n!)

=
∑10

n=0

1

sn+1((n− 1)!)

18. L(
∑10

n=0 t
n+1/n!)

19. L(
∑10

n=1 sinnt)

Solution:
L(
∑10

n=1 sinnt) =
∑10

n=1 L(sinnt) =
∑10

n=1

n

s2 + n2

20. L(
∑10

n=0 cosnt)

Laplace Backward Table
Solve the given equation for the function f(t). Use the basic table and linearity
properties of the Laplace transform.

21. L(f(t)) = s−2

Solution:L(f(t)) = s−2 = L(t) by the backward table, then f(t) = t by Lerch’s
cancellation law.

22. L(f(t)) = 4s−2

23. L(f(t)) = 1/s+ 2/s2 + 3/s3

Solution: L(f(t)) = 1/s + 2/s2 + 3/s3 = L(1) + 2L(t) + 3
2

2

s3
= L(1 + 2t + 3

2 t
2) by

the backward table, then f(t) = 1 + 2t+ 3
2 t

2 by Lerch’s cancellation law.

# Exercise 23, Laplace backward table

with(inttrans):

invlaplace(1/s+2/s^2+3/s^3,s,t);

24. L(f(t)) = 1/s3 + 1/s
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25. L(f(t)) = 2/(s2 + 4)

Solution:L(f(t)) = 2/(s2 + 4) =
b

s2 + b2

∣∣∣∣
b=2

= L(sin(bt)) = L(sin(2t)) by the back-

ward table, then f(t) = sin(2t) by Lerch’s cancellation law. )

26. L(f(t)) = s/(s2 + 4)

27. L(f(t)) = 1/(s− 3)

Solution:L(f(t)) = 1/(s − 3) =
1

s− a

∣∣∣∣
a=3

= L(e3t) by the backward table, then

f(t) = e3t by Lerch’s cancellation law.

28. L(f(t)) = 1/(s+ 3)

29. L(f(t)) = 1/s+ s/(s2 + 4)

Solution: L(f(t)) = 1/s+ s/(s2+4) = L(1)+ L(cos(bt))|b=2 = L(1+cos(2t)) by the
backward table, then f(t) = 1 + cos(2t) by Lerch’s cancellation law.

30. L(f(t)) = 2/s− 2/(s2 + 4)

31. L(f(t)) = 1/s+ 1/(s− 3)

Solution: L(f(t)) = 1/s + 1/(s − 3) =
1

s
+

1

s− a

∣∣∣∣
a=3

= L(1) + L(e3t) = L(1 + e3t)

by the backward table, then f(t) = 1 + e3t by Lerch’s cancellation law.

32. L(f(t)) = 1/s− 3/(s− 2)

33. L(f(t)) = (2 + s)2/s3

Solution: L(f(t)) = (2 + s)2/s3 =
4 + 4s+ s2

s3
= 2

2

s3
+ 4

1

s2
+

1

s
= 2L(t2) + 4L(t) +

L(1) = L(2t2 + 4t + 1) by the backward table, then f(t) = 2t2 + 4t + 1 by Lerch’s
cancellation law.

34. L(f(t)) = (s+ 1)/s2

35. L(f(t)) = s(1/s2 + 2/s3)

Solution:L(f(t)) = s(1/s2 + 2/s3) =
1

s
+

2

s2
= L(1) + 2L(t) = L(1 + 2t) by the

backward table, then f(t) = 1 + 2t by Lerch’s cancellation law.

36. L(f(t)) = (s+ 1)(s− 1)/s3

37. L(f(t)) =
∑10

n=0 n!/s
1+n

Solution: L(f(t)) =
∑10

n=0 n!/s
1+n =

∑10
n=0 L(tn) = L

(∑10
n=0 t

n
)
by the backward

table, then f(t) =
∑10

n=0 t
n by Lerch’s cancellation law.
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38. L(f(t)) =
∑10

n=0 n!/s
2+n

39. L(f(t)) =
∑10

n=1

n

s2 + n2

Solution: L(f(t)) =
∑10

n=0

s

s2 + n2
=
∑10

n=0 L(sin(nt)) = L
(∑10

n=0 sin(nt)
)
by the

backward table, then f(t) =
∑10

n=0 sin(nt) by Lerch’s cancellation law.

40. L(f(t)) =
∑10

n=0

s

s2 + n2

Laplace Table Extension
Compute the indicated Laplace integral using the extended Laplace table, page
602.

41. L(u(t− 2) + 2u(t))

Solution: L(u(t − 2) + 2u(t)) = L(u(t − 2)) + 2L(u(t)) = e−as

s

∣∣∣∣
a=2

+ 2
e−as

s

∣∣∣∣
a=0

=

e−2s

s
+

2

s

42. L(u(t− 3) + 4u(t))

43. L(u(t− π)(u(t) + u(t− 1)))

Solution: L(u(t−π)(u(t)+u(t− 1))) = L(u(t−π)u(t)+u(t−π)u(t− 1)) = L(u(t−

π) + u(t− π)) = 2L(u(t− π))) = 2
e−as

s

∣∣∣∣
a=π

=
2e−πs

s

# Exercise 43, Laplace table extension

with(inttrans):u:=Heaviside:

laplace( u(t-Pi)*(u(t)+u(t-1) ),t,s);

44. L(u(t− 2π) + 3u(t− 1)u(t− 2))

45. L(δ(t− 2))

Solution: L(δ(t− 2)) = e−as|a=2 = e−2s

# Exercise 45, Laplace table extension

with(inttrans):

laplace( Dirac(t-2),t,s );

46. L(5δ(t− π))

47. L(δ(t− 1) + 2δ(t− 2))

Solution: L(δ(t−1)+2δ(t−2)) = L(δ(t−1))+2L(δ(t−2)) = e−as|a=1+2 e−as|a=2 =
e−s + 2e−2s

48. L(δ(t− 2)(5 + u(t− 1)))
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49. L(floor(3t))

Solution: L(floor(3t)) = e−as

s(1− e−as)

∣∣∣∣
a=1/3

=
e−s/3

s(1− e−s/3)
=

1

s(es/3 − 1)

# Exercise 49, Laplace table extension

with(inttrans):

laplace( floor(3*t),t,s );

50. L(floor(2t))

51. L(5 sqw(3t))

Solution: L(5 sqw(3t)) = L(5 sqw(t/a))|a=1/3 = 5
tanh(as/2)

s

∣∣∣∣
a=1/3

= 5
tanh(s/6)

s

maple does not have a laplace table entry for the square wave in 2022.

52. L(3 sqw(t/4))

53. L(4 trw(2t))

Solution: L(4 trw(2t)) = 8L( 12 trw(t/(1/2))) = 8 L(a trw(t/a))|a=1/2 = 8
tanh(s/4)

s2

54. L(5 trw(t/2))

55. L(t+ t−3/2 + t−1/2)

Solution:

L(t+ t−3/2 + t−1/2) = L(t) + L(tα)|α=−3/2 + L(tα)|α=−1/2

= L(t) + Γ(1 + α)

s1+α

∣∣∣∣
α=−3/2

+
Γ(1 + α)

s1+α

∣∣∣∣
α=−1/2

=
1

s2
+

Γ(−1/2)
s−1/2

+
Γ(1/2)

s1/2

=
1

s2
+

Γ(−1/2)
s−1/2

+

√
π√
s

56. L(t3 + t−3/2 + 2t−1/2)

Inverse Laplace, Extended Table
Solve the given equation for f(t), using the extended Laplace integral table.

57. L(f(t)) = e−s/s

Solution:L(f(t)) = e−s/s =
e−as

s

∣∣∣∣
a=1

= L(δ(t− a))|a=1 = L(δ(t − 1)) by the ex-

tended Laplace table.
Then f(t) = δ(t− 1) by Lerch’s cancellation law.
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58. L(f(t)) = 5e−2s/s

59. L(f(t)) = e−2s

Solution: L(f(t)) = e−2s = e−as|a=2 = L(δ(t− a))|a=2 = L(δ(t − 2)) by the ex-
tended Laplace table.
Then f(t) = δ(t− 2) by Lerch’s cancellation law.

60. L(f(t)) = 5e−3s

61. L(f(t)) = e−s/3

s(1− e−s/3)

Solution:

L(f(t)) = e−s/3

s(1− e−s/3)
=

e−as

s(1− e−as)

∣∣∣∣
a=1/3

= L(floor(t/a)|a=1/3 = L(floor(3t)) by

the extended Laplace table.
Then f(t) = floor(3t) by Lerch’s cancellation law.

62. L(f(t)) = e−2s
s(1− e−2s)

63. L(f(t)) = 4 tanh(s)

s
Solution:

L(f(t)) =
4 tanh(s)

s
= 4

tanh(as/2)

s

∣∣∣∣
a=2

= 4 L(sqw(t/a))|a=2 = L(4 sqw(t/2)) by

the extended Laplace table.
Then f(t) = 4 sqw(t/2) by Lerch’s cancellation law.

64. L(f(t)) = 5 tanh(3s)

2s

65. L(f(t)) = 4 tanh(s)

3s2

Solution:f(t) = 4a trw(t/a) where a/2 = 1 by the extended Laplace table.
Final answer: f(t) = 8 trw(t/2).

66. L(f(t)) = 5 tanh(2s)

11s2

67. L(f(t)) = 1√
s

Solution:f(t) =
1√
πs

by the extended Laplace table entry L(t−1/2) =
√
π/s.

68. L(f(t)) = 1√
s3
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Exercises 8.3 �
First Order Linear DE
Display the Laplace method details which verify the supplied answer.
The first two exercises use forward and backward Laplace tables plus the first shifting theorems.

The others require a calculus background in partial fractions.

1. x′ + x = e−t, x(0) = 1;
x(t) = (1 + t)e−t.

Solution:
Transform and isolate L(x):
L(x′ + x) = L(e−t) Apply L across the DE.

sL(x)− x(0) + L(x) = 1

s+ 1
Derivative rule, forward table.

L(x) =
x(0) +

1

s+ 1
s+ 1

Isolate L(x) left.

L(x) = 1

s+ 1
+

1

(s+ 1)2
Use x(0) = 1 and expand in partial fractions.

L(x) = L(e−t) + L(t)|s→s+1 Backward Laplace table.

L(x) = L(e−t) + L(te−t) Shift theorem.

x(t) = e−t + te−t Linearity, Lerch’s theorem.

f:=proc(de1) local q;

q:=subs(laplace(x(t),t,s)=F,laplace(de1,t,s));

collect(q,F);# Collect on F=Laplace of x(t)

end proc:

#

fx:=proc(de,label)global qx,qxx;

qx:=f(de); qxx:=solve(qx,F);# Isolate F=laplace(x(t))

printf("%a: %a\n%a\nF=%a\n",label,convert(de,D),qx,qxx);

dsolve([de,ic],x(t));

end proc:

#

# Exercise 1, First Order Linear DE

ic:=x(0)=1;de1:=diff(x(t),t)+x(t)=exp(-t):

fx(de1,DE1);

# DE1: D(x)(t)+x(t) = exp(-t)

# (s+1)*F-x(0) = 1/(s+1)

# F=(x(0)*s+x(0)+1)/(s+1)^2

# x(t) = (t + 1) exp(-t)

2. x′ + 2x = −e−2t, x(0) = 1;
x(t) = (1− t)e−2t.
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3. x′ + x = 1, x(0) = 1; x(t) = 1.

Solution:L(x(t)) = (x(0)s + 1)/(s(s + 1)) =
1

s
= L(1), then x(t) = 1 by Lerch’s

theorem.

4. x′ + 4x = 4, x(0) = 1; x(t) = 1.

5. x′ + x = t, x(0) = −1; x(t) = t− 1.

Solution:L(x(t)) = −(s − 1)/s2 =
−1
s

+
1

s2
= L(−1 + t). Then x(t) = −1 + t by

Lerch’s theorem.

6. x′ + x = t, x(0) = 1;
x(t) = t− 1 + 2e−t.

Second Order Linear DE
Display the Laplace method details which verify the supplied answer.
The first 4 exercises require only forward and backward Laplace tables and the first shifting

theorems. The others require methods in partial fractions beyond a calculus background.

7. x′′ + x = 0, x(0) = 1, x′(0) = 1; x(t) = cos t+ sin t.

Solution:
Transform and isolate L(x):
L(x′′ + x) = 0 Apply L across the DE.

sL(x′)− x′(0) + L(x) = 0 Derivative rule on x′.

s(sL(x)− x(0))− x′(0) + L(x) = 0 Derivative rule on x.

L(x) =
x(0) +

1

s+ 1
s+ 1

Isolate L(x) left.

L(x) = (x(0)s+ x′(0))/(s2 + 1) Expand and simplify.

L(x) = s/(s2 + 1) + 1/(s2 + 1) Use x(0) = x′(0) = 1 and expand in partial
fractions.

L(x) = L(cos t) + L(sin t) Backward Laplace table.

x(t) = cos t+ sin t Linearity, Lerch’s theorem.

# Exercise 7, Second Order Linear DE

de7:=diff(x(t),t,t)+x(t)=0;ic:=x(0)=1,D(x)(0)=1;

fx(de7,DE7);# See Exercise 1 for the code

# F=(x(0)*s+D(x)(0))/(s^2+1)

# x(t) = sin(t)+cos(t)

8. x′′ + x = 0, x(0) = 1, x′(0) = 2; x(t) = cos t+ 2 sin t.

9. x′′ + 2x′ + x = 0, x(0) = 0, x′(0) = 1; x(t) = te−t.

Solution:L(x(t)) = (x(0)s+x′(0)+2x(0))/(s2+2s+1) = 1/(s+1)2 = L(te−t) by the
backward table and the first shifting theorem. Then x(t) = te−t by Lerch’s theorem.
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10. x′′ + 2x′ + x = 0, x(0) = 1, x′(0) = −1; x(t) = e−t.

11. x′′ + 3x′ + 2x = 0, x(0) = 1, x′(0) = −1; x(t) = e−t.

Solution:L(x(t)) = (x(0)s+x′(0)+3x(0))/(s2+3s+2) = (s−1+3)/((s+1)(s+2)) =
1

s+ 1
= L(e−t) by the backward table. Then x(t) = e−t by Lerch’s theorem.

12. x′′ + 3x′ + 2x = 0, x(0) = 1, x′(0) = −2; x(t) = e−2t.

13. x′′ + 3x′ = 0, x(0) = 5, x′(0) = 0; x(t) = 5.

Solution: L(x(t)) = (x(0)s +D(x)(0) + 3x(0))/(s(s + 3)) = (5s + 15)/(s(s + 3)) =
5/s = L(5). Then x(t) = 5 by Lerch’s theorem.

14. x′′ + 3x′ = 0, x(0) = 1, x′(0) = −3; x(t) = e−3t.

15. x′′ + x = 1, x(0) = 1, x′(0) = 0; x(t) = 1.

Solution: L(x(t)) = (x(0)s2 + x′(0)s+ 1)/(s(s2 + 1)) = (s2 + 1)/(s(s2 + 1)) = 1/s =
L(1). Then x(t) = 1 by Lerch’s theorem.

16. x′′ = 2, x(0) = 0, x′(0) = 0; x(t) = t2.

Forward Integral Rule

The rule is L
(∫ t

0 g(r)dr
)
= 1

sL(g(t))

17. Relate this rule to the convolution rule with f(t) = 1.

Solution:The integral
∫ t

0
g(r)dr is the convolution of 1 and g. Therefore,

L(
∫ t

0
g(r)dr) = L(1)L(g) = 1

sL(g) by the convolution rule.

18. Compute L
(∫ t

0
sin(r)dr

)
.

19. Compute L
(∫ t

0
(r + 1)3 dr

)
.

Solution:Answer: (s3 + 3 ∗ s2 + 6 ∗ s+ 6)/s5.

Details: Let g(t) = (t+ 1)3. Then

L(
∫ t

0
g(r)dr) = L(1)L(g) = 1

s
L(g)

=
1

s
L(t3 + 3t2 + 3t+ 1)

=
1

s

(
6

s4
+ 3

2

s3
+ 3

1

s2
+

1

s

)
=

6

s5
+

6

s4
+

3

s3
+

1

s2

20. Compute L
(∫ t

0
sqw(r)dr

)
, where sqw is the square wave of period 2. Use the

Extended Laplace Table.
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Backward Integral Rule

Apply rule 1
sL(g(t)) = L

(∫ t
0 g(r)dr

)
and Lerch’s theorem to solve for f(t).

21. L(f(t)) = 1
s(s2+1)

Solution:L(f(t)) = 1
s

1
s2+1 = 1

sL(sin t) = L
(∫ t

0
sin(r)dr

)
= L (− cos(t) + 1). Then

f(t) = 1− cos(t) by Lerch’s theorem.

22. L(f(t)) = 1
s

s+1
s2+1

23. L(f(t)) = 1
s

(
1

s+1 −
1

s+2

)
Solution:L(f(t)) = 1

s

(
1

s+1 −
1

s+2

)
= 1

sL
(
e−t − e−2t

)
by the backward table. Then

L(f(t)) = L
(∫ t

0
(e−r − e−2r)dr

)
= L

(
1− e−t − 1/2 + e−2t/2

)
. By Lerch’s theorem,

f(t) = 1/2− e−t + e−2t/2.

24. L(f(t)) = 1
s

e−s

s
Hint: L(u(t− a)) = 1

se
−as.

The s–Integral Rule

Identity L
(
f(t)
t

)
=
∫∞
s L(f(t)) ds

requires piecewise continuous f(t) of exponential order with limt→0+
f(t)
t = L.

25. Prove the identity.

Solution: A statement of the known theorem appears in Joel Schiff’s textbook The
Laplace Transform: Theory and Applications, Springer New York (1999), page 33,
ISBN 0-0387-98698-7. The proof found there has missing details.

Let g(t) = f(t)/t with definition g(0) = L and g(t) = 0 for t < 0.
Lemma 1. Function g(t) is piecewise continuous and of exponential order.

Lemma 2. Function F (x) =
∫∞
0

f(t)e−xtdt is continuous, of exponential order and∫∞
s

F (x)dx exists for s ≥ 0.

Details:
Proofs of the lemmas require details but the details will not be supplied.

L(tg(t)) = L(f(t) definition g(t) = f(t)/t

− d
dsL(g) = L(f) Derivative theorem

−
∫∞
s

d
dsL(g)ds =

∫∞
s
L(f)ds integrate, valid by Lemma 2

−0 + L(g) =
∫∞
s
L(f)ds because lims→∞ L(g) = 0

L(f(t)/t) =
∫∞
s
L(f)ds because g(t) = f(t)/t

■

26. Compute L
(

sin(t)
t

)
.
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Forward First Shifting Rule
Apply L(f(t)eat) = L(f(t))|s→s−a to find the Laplace transform.

27. L(tet)
Solution:Let f(t) = t. Then

L(tet) = L(f(t)eat)
∣∣
a=1

= L(f)|s→s−a

∣∣
a=1

= L(t)|s→s−a

∣∣
a=1

=
1

s2

∣∣∣∣
s→s−a

∣∣∣∣∣
a=1

=
1

(s− a)2

∣∣∣∣
a=1

=
1

(s− 1)2

28. L(tet + e2t)

29. L(sin(t)et)

Solution:
1

(s− 1)2 + 1

30. L(sin(2t)e2t + cos(t)et)

31. L(t cosh(2t)) using identity
cosh(w) = 1

2e
w + 1

2e
−w.

Solution:
s2 + 4

(s2 − 4)2

32. L((t+ 1)3 et)

Backward First Shifting Rule
Apply L(f(t))|s→s−a = L(f(t)eat) and Lerch’s theorem to solve for f(t).

33. Explain for L(t2)
∣∣
s→s−4

the rule

Erase a shift |s→s−a by inserting eat inside the scope of L.
Solution:Rule L(f(t))|s→s−a = L(f(t)eat) on the left has a shift while on the right
there is no shift. The effect of the shift on the left is to multiply f(t) by an exponential.
Then:

L(t2)
∣∣
s→s−4

= L(g(t)) where g(t) is t2 multiplied by e4t:

L(t2)
∣∣
s→s−4

= L(t2e4t)

34. L(f(t)) = s
s2+1

∣∣∣
s→s−1
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35. L(f(t)) = s−1
(s−1)2+4

Solution: L(f(t)) = s−1
(s−1)2+4 = s

s2+4

∣∣∣
s→s−1

= L(cos(2t))|s→s−1 = L(cos(2t) et).
Then f(t)) = cos(2t) et by Lerch’s theorem.

36. L(f(t)) = 8
(s+1)2+4

37. L(f(t)) = s+1
s2+2s+5

Solution: L(f(t)) =
s+ 1

s2 + 2s+ 5
=

s+ 1

(s+ 1)2 + 4
=

s

s2 + 4

∣∣∣∣
s→s+1

=

L(cos(2t))|s→s+1 = L(cos(2t)e−t). Then f(t)) = cos(2t) e−t by Lerch’s theorem.

38. L(f(t)) = 4
s2+8s+17

39. L(f(t)) = 2
(s+1)2

Solution: L(f(t)) = 2

(s+ 1)2
=

2

s2

∣∣∣∣
s→s+1

= L(2t)|s→s+1 = L(2te−t). Then f(t)) =

2te−t by Lerch’s theorem.

40. L(f(t)) = 1
(s+2)101

Forward s-Differentiation
Apply L((−t)f(t)) = d

dsL(f(t)) to find the Laplace transform.

41. Explain for L((−t) cos(t)) the rule
Multiplying by (−t) differentiates the Laplace transform..

Solution:One explanation:
L((−t) cos(t)) = d

dsL(cos t) effectively differentiates on s the expression L(cos t) =

s

s2 + 1
to obtain the final answer d

ds

s

s2 + 1
=
−(s2 − 1)

(s2 + 1)2
.

Another explanation:

L((−t) cos(t)) =
∫∞
0

cos(t)(−t)e−stdt

=
∫∞
0

cos(t) d
ds (e

−st) dt

= d
ds

∫∞
0

cos(t)e−stdt

= d
dsL(cos(t))

42. L((−t) sin(2t))

43. L((−t) sinh(2t)), using identity
sinh(w) = 1

2e
w − 1

2e
−w.

Solution: L((−t) sinh(2t)) = 1
2L(e

2t)− 1
2L(e

−2t) = 1
2 (1/(s− 2)− 1/(s+2)). Further

simplifications would give
−4s

(s2 − 4)2
.
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44. L(tet sin(2t) + te2t cos(t))

Backward s-Differentiation
Apply d

dsL(f(t)) = L((−t)f(t)) and Lerch’s theorem to solve for f(t).

45. Explain for d
dsL(cos(t)) the rule

Erase d
ds by inserting factor (−t) inside the scope of L.

Solution:
d
dsL(cos(t)) =

d
ds

∫∞
0

cos(t)e−stdt

=
∫∞
0

cos(t) d
ds (e

−st)dt

=
∫∞
0

cos(t)(−t)e−stdt

= L((−t) cos(t))

46. L(f(t)) = d
ds

s
s2+4

47. L(f(t)) = d2

ds2
1

(s+1)5

Solution:

L(f(t)) = d2

ds2
1

(s+1)5

= d2

ds2 L(t
4/24)

∣∣
s→s+1

= L((−t)(−t)t4/24)
∣∣
s→s+1

one (−t) for each d/ds

= L((−t)(−t)t4e−t/24) first shifting theorem

Then f(t) = t6e−t/24 by Lerch’s theorem.

48. L(f(t)) = d3

ds3
s+1

s2+2s+5

Unit Step and Pulse
Define

pulse(t, a, b) =

{
1 a ≤ t < b,
0 else,

which is a tool for encoding and decoding piecewise-defined functions.

49. Prove the identity
pulse(t, a, b)=u(t− a)− u(t− b),
where u is the unit step.

Solution:

pulse(t, a, b) =

{
1 a ≤ t < b,
0 else,

u(t− a) =

{
1 t ≥ a
0 else,

u(t− b) =

{
1 t ≥ b
0 else,
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u(t− a)− u(t− b) =

{
1 t ≥ a
0 else,

−
{

1 t ≥ b
0 else,

=

 1− 1 t ≥ b,
1 a ≤ t < b,
0 else,

= pulse(t, a, b)

50. Prove the Laplace formula

L(pulse(t, a, b))= e−at−e−bt

s

51. Verify that f(t) defined by2 1 ≤ t < 2,
0 else

+

3 3 ≤ t < 4,
0 else

encodes to representation
2pulse(t, 1, 2)+3pulse(t, 3, 4).

Solution:Let

LHS =

{
2 1 ≤ t < 2,
0 else

+

{
3 3 ≤ t < 4,
0 else

LHS = 2pulse(t, 1, 2) + 3pulse(3, 4)

To use Laplace calculations in a computer algebra system it is necessary to write a
function for pulse(t, s, b) or to rewrite in unit step form:

= 2(u(t− 1)− u(t− 2)) + 3(u(t− 3)− u(t− 4))

52. Decode f(t) into a piecewise–defined function and graph it by hand, no computer,
given f(t) is
et pulse(t, 1, 3)+e−t pulse(t, 4, 6)

53. Decode f(t) into a piecewise–defined function and graph it, no computer, given f(t)
is the sum∑3

n=1 | sin(nπt)|pulse(t, 2n, 2n+1)

Solution:Let

f(t) = | sin(πt)|pulse(t, 2, 3) + | sin(2πt)|pulse(t, 4, 5) + | sin(3πt)|pulse(t, 6, 7).
Pulses are sine graphs: 1/2 period, 1 period, 1.5 periods. The graph is all in quadrant
I.
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# Exercise 53, Answer check

step:=t->piecewise(t >=0,1,0);

pulse:=(t,a,b)->step(t-a)-step(t-b);

f:=t->abs(sin(Pi*t))*pulse(t,2,3) +

abs(sin(2*Pi*t))*pulse(t,4,5) +abs(sin(3*Pi*t))*pulse(t,6,7);

plot(f(t),t=0..7,font=[courier,18,bold],thickness=3)

54. Encode as a combination of pulses

f(t)=


1 1 ≤ t < 2,
−2 3 ≤ t < 4,
1 5 ≤ t < 6,
0 else,

showing all encoding details. Ans: f(t)=pulse(t,1,2)−2pulse(t,3,4)

+pulse(t,5,6).

Alternate Second Shifting Rule
L(g(t)u(t−a)) = e−asL

(
g(w)|w=t+a

)
. No Laplace here. The focus is on function

notation and finding g(t + a) = g(w)|w=t+a, which means substitute w = t + a
into the g(w)–formula.

55. Let g(t) = te−t. Verify identity g(w)|w=t+2 = e−2(te−t + 2e−t).

Solution:
g(w)|w=t+2 = we−w|w=t+2

= (t+ 2)e−t−2

= e−2(t+ 2)e−t

= e−2 (te−t + 2e−t).

56. Let g(t) = t3. Verify identity g(w)|w=t+2 = 8 + 12t+ 6t2 + t3.

57. Typical polynomial g(w) = 1 + 2w2 + 3w4 upon substitution w = t + a requires
expansions for (t+a)2 and (t+a)4. Pascal’s Triangle can be useful. Find the answer
for g(t+ a) = g(w)|w=t+a.

Solution:
g(t+ a) = g(w)|w=t+a

= 1 + 2w2 + 3w4
∣∣
w=t+a

= 1 + 2(t+ a)2 + 3(t+ a)4

= 1 + 2(t2 + 2at+ a2) + 3(a4 + 4a3t+ 6a2t2 + 4at3 + t4)

= a4 + 4 a3t+ 6 a2t2 + 4 at3 + t4 + 2 a2 + 4 ta+ 2 t2 + 1

58. Polynomial 1 + 2w2 + 3w4 upon substitution w = t − b is a Taylor polynomial
expansion

f(t) =
∑4

n=0
f(n)(b)

n! (t− b)n .
Find the Maclaurin expansion

f(t) =
∑4

n=0
f(n)(0)

n! tn.
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Forward Second Shifting Rule
L(g(t)u(t− a)) = e−asL(g(t+ a))
Find L(f(t)), where u is the unit step.

59. f(t) = u(t− π)

Solution:

f(t) = L(u(t− π)) = e−asL(u(t))| a = π = e−as 1

s

∣∣∣∣ a = π = e−πs 1

s

60. f(t) = et u(t− 1)

61. f(t) = t3u(t− π)

Solution:
L(f(t)) = L(t3u(t− π)

= e−asL((t+ a)3u(t))
∣∣
a=π

= e−asL(t3 + 3at2 + 3a2t+ a3)
∣∣
a=π

= e−as

(
6

s4
+

6a

s3
+

3a2

s2
+

a3

s

)∣∣∣∣
a=π

= e−πs

(
6

s4
+

6π

s3
+

3π2

s2
+

π3

s

)

62. f(t) = et pulse(t, 1, 2), where
pulse(t, a, b)=u(t− a)−u(t− b).

63. f(t) = tetu(t− 2)

Solution:L(f) = (−1 + 2s)e−2s+2

(s− 1)2

64. f(t) = t sin(t)u(t− π)

Backward Second Shifting Rule
e−asL(f(t)) = L(f(t− a)u(t− a))
Find f(t) using the rule and Lerch’s theorem, giving a piecewise–defined display
and a unit step or pulse formula.

65. L(f(t)) = 1
se

−3s

Ans: f(t)=u(t− 3)=

{
1 t ≥ 3,
0 else,

Solution:

L(f(t)) = 1

s
e−3s

= e−3sL(u(t))
= L(u(t− a)u(t− a))|a=3

= L(u(t− a))|a=3
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= L(u(t− 3))

Then

f(t) = u(t− 3) =
{
0 t < 3
1 3 ≤ t

66. L(f(t)) = 1

s2
e3−3s

67. L(f(t)) = 4

s2 + 8s+ 17
e−2s

Solution:f(t) = 4u(t− 3)e−4t+12 sin(t− 3) or

f(t) = 4 e−4 t+12 sin (t− 3)
{
1 0 ≤ t− 3
0 otherwise

68. L(f(t)) = 4 + s

s2 + 8s+ 17
e−3s

69. L(f(t)) =
(

1

s2
+

2

s3

)
e−2s

Solution:f(t) = (t− 2)(t− 1)u(t− 2) or

f(t) =

{
0 t < 2
(t− 2) (t− 1) 2 ≤ t

70. L(f(t)) = 1

(s− 4)2
e−2s

Trigonometric Formulas
Supply the details in Example 8.21.

71. L(t sin at) = 2as

(s2 + a2)2

Solution:
L(t sin at) = −L((−t) sin(at))

= − d
dsL(sin(at))

= − d
ds

a

s2 + a2

=
2as

(s2 + a2)2
calculus quotient rule (1/u)′ = −u′/u2

72. L(t2 sin at) = 6s2a− a3

(s2 + a2)3
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Exponential Formulas
Supply the details in Example 8.22.

73. L(eat sin bt) = b

(s− a)2 + b2

Solution:
L(eat sin bt) = L(sin(bt))|s→s−a

=
b

s2 + b2

∣∣∣∣
s→s−a

=
b

(s− a)2 + b2

74. L(teat sin bt) = 2b(s− a)

((s− a)2 + b2)2

Hyperbolic Functions
Supply the details in Example 8.23.

75. L(sinh at) = a

s2 − a2

Solution:
L(sinh at) = L

(
1
2e

at − 1
2e

−at
)

because sinhu = (eu − e−u)/2

= 1
2L(e

at)− 1
2L(e

−at)

=
1

2(s− a)
− 1

2(s+ a)

=
4a

4(s− 1)(s+ a)

=
a

s2 − a2

76. L(t cosh at) = s2 + a2

(s2 − a2)2

Waves
Use Laplace ideas from Examples 8.24 and 8.25. Each f(t) can be expressed as
a pulse train, which is an expression

∑∞
n=1 fn(t)pulse(t, ai, bi) to which the

second shifting theorem applies.

77. Find L(f(t)) for the square wave
f(t)=

∑∞
n=0(−1)n pulse(t, n, n+ 1)

Solution:First, establish L(pulse(t, a, b)) = L(u(t − a)) − L(u(t − b)) = e−as/s −
e−bs/s. Then

L(f(t)) =
∑∞

n=0(−1)nL(pulse(t, n, n+ 1))

=
∑∞

n=0(−1)n (e−ns/s− e−ns−s/s)

=
∑∞

n=0(−1)ne−ns

(
1− e−s

s

)
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=
1− e−s

s

∑∞
n=0(−1)ne−ns

=
1− e−s

s

∑∞
n=0 rn|r=−e−s

=
1− e−s

s

(
1

1− r

∣∣∣∣
r=−e−s

)
by geometric series

=
1− e−s

s

1

1 + e−s

=
1− e−s

s

es

es + 1
multiply by

es

ss

=
es − 1

s(es + 1)

=
es/2 − e−s/2

s(es/2 + e−s/2)
multiply by

e−s/2

s−s/2

=
1

s

sinh(s/2)

s cosh(s/2)

=
1

s
tanh(s/2)

The answer agrees with the Extended Laplace Table: L(sqw(t/a)) = 1
s tanh(as/2)

when a = 1.

78. Define pulse train
f(t)=

∑∞
n=0 fn(t)pulse(t, n, n+ 1),

f2n(t)=t− 2n, f2n+1(t)=2− t+ 2n. Show that f(t+ 2) = f(t) and

f(t)=

{
t 0 ≤ t < 1,
2− t 1 ≤ t ≤ 2.

79. Find L(f(t)) for

f(t) =

{
| sin(2t)| 0 ≤ t ≤ π,
0 π ≤ t ≤ 2π,

and f(t+ rπ) = f(t).

Solution:Answer: L(f) = 2 (esπ − 1) e−sπ

(s2 + 4)(1− e−2πs

The Rule for P-periodic functions will be applied:

L(f) =

∫ P

0

f(t)e−stdt

1− e−Ps
where P = 2π

∫ P

0
f(t)e−stdt =

∫ π

0
sin(2t)e−stdt

=
2 (esπ − 1) e−sπ

s2 + 4

# Exercise 79, P-Periodic Function Rule

int(sin(2*t)*exp(-s*t),t=0..Pi);

# (2*(exp(s*Pi)-1))*exp(-s*Pi)/(s^2+4)
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80. Find L(f(t)) for

f(t) =

{
1 0 ≤ t ≤ π,
| sin(t)| π ≤ t ≤ 2π,

and f(t+ 2π) = f(t).

81. Given f(t) = 1
2 (| sin t|+sin t), called the Half–wave rectification of the sine wave,

derive L(f(t))= 1
(s2+1)(1−e−πs)

Solution:Answer: Following the method in Exercise 79, maple gives:

L(f) = 1 + e−πs

(s2 + 1)(1− e−2πs)

The problem reduces to rewriting the answer in reduced form:

L(f) = 1

s2 + 1

1 + e−πs

1− e−2πs .

=
1

s2 + 1

1 + e−πs

(1− e−πs)(1 + e−πs)
factor by a2 − b2 = (a− b)(a+ b)

=
1

s2 + 1

1

1− e−πs

82. Solve for 2–periodic function f(t):

L(f(t)) = 1

s
tanh

(s
2

)
.

Use the Extended Laplace Integral Table.

8.4 Heaviside’s Method

Exercises 8.4 �
Partial Fraction Mistakes

1. How many real constants appear in the partial fraction expansion of the fraction
s+ 1

s2(s+ 2)(s+ 3)2
?

Solution:The numerator does not divide the denominator. The degree of the denom-
inator is 5. The number of constants is 5.

2. How many real constants appear in the partial fraction expansion of
s+ 1

s2(s2 + 4)(s2 + 2s+ 5)2
?

3. Guido expanded
s+ 1

s(s+ 2)(s+ 3)2

to get
a

s
+

b

s+ 2
+

c

(s+ 3)2
.

What is the mistake?

Solution:The numerator does not divide the denominator. The degree of the denom-

inator is 4. The number of constants is 4. Guido omitted fraction
d

s+ 3
.

1479



8.4 Heaviside’s Method

4. Helena made this expansion:
s+ 1

s(s+ 2)
=
a

s
+

b

s+ 2
+

c

s+ 3
The expansion is correct! Explain how you know that c = 0 without computing
anything.
This example explains why fractions on the right have denominators dividing the denominator

on the left.

5. Marco made an expansion:
s+ 1

s(s2 + 4)
=
a

s
+

b

s+ 2
+

c

s− 2
Explain why it is a mistake.

This example explains why sanity checks have more than one item to check.

Solution:Marco incorrectly factored s2 +4 as though the roots are π2. The roots are

complex: ±2i. The correct term is
cs+ d

s2 + 4
or if using complex numbers then instead

C

s− 2i
+

D

s+ 2i
with C,D complex.

6. Violeta made an expansion
s+ 2

s(s− 2)(s+ 2)
=
a

s
+

b

s− 2
+

c

s+ 2
Explain why c = 0 without computing anything.

This example explains why common factors of numerator and denominator should be removed.

7. Find the mistake in expansion
(s+ 2)2

s(s− 2)
=
a

s
+

b

s− 2
This example explains why the degree of the numerator and denominator are checkpoints.

Solution:The degree of the numerator is not less than the degree of the denominator.
Long division should be applied followed by partial fraction theory:

(s+ 2)2

s(s− 2)
= 1 +

6s+ 4

s(s− 2)
= 1− 2

s
+

8

(s− 2

8. Is there a mistake here?
(s+ 2)2

s2(s− 2)
=
a

s
+

b

s2
+

c

s− 2

Solution:No mistake.

Sampling Method
Apply the sampling method (a failsafe method) to verify the given equation.

9.
s

s2 − 1
=

1/2

s− 1
+

1/2

s+ 1

Solution:

Seek a, b in the equation
s

(s− 1)(s+ 1)
=

a

s− 1
+

b

s+ 1
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s = a(s+ 1) + b(s− 1) Clear fractions.
Then substitute roots of the denominator.{

1 = a(2) + b(0) substitute s = 1
−1 = a(0) + b(−2) substitute s = −1

Solution of the system of equations: a = 1/2, b = 1/2

Then

s

(s− 1)(s+ 1)
=

a

s− 1
+

b

s+ 1
=

1/2

s− 1
+

1/2

s+ 1

10.
s

s4 − 1
=

1/4

s− 1
+

1/4

s+ 1
+
−s/2
s2 + 1

Method of Atoms
Apply the method of atoms to verify the given equation.

11.
2s

s2 − 1
=

1

s− 1
+

1

s+ 1

Solution:

Seek a, b in the equation
2s

(s− 1)(s+ 1)
=

a

s− 1
+

b

s+ 1

2s = a(s+ 1) + b(s− 1) Clear fractions.

2s = (a+ b)s+ (a− b)1 collect coefficients on atoms s, 1.{
2 = a+ b match coefficient of atom = s
0 = a− b match coefficient of atom = 1

Solution of the system of equations: a = 1, b = 1

Then
2s

(s− 1)(s+ 1)
=

a

s− 1
+

b

s+ 1
=

1

s− 1
+

1

s+ 1

12.
4s

s4 − 1
=

1

s− 1
+

1

s+ 1
+
−2s
s2 + 1

Heaviside’s 1890 Shortcut
Apply Heaviside’s shortcut to verify the given equation.

13.
2s

s2 − 4
=

1

s− 2
+

1

s+ 2

Solution:Solve for a, b in the equation

2s

(s− 2)(s+ 2)
=

a

s− 2
+

b

s+ 2

To find a, let H = s− 2 be the denominator of the fraction
a

s− 2
. Mentally multiply

the equation by H to get

2s

(s+ 2)(H removed)
=

a

H removed
+

bH

s+ 2

Set H = 0 and solve for s = 2. Substitute s = 2 and H = 0 into the mentally
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multiplied equation. This step removes all symbols from the equation except for
symbol a.

2(2)

((2) + 2)(H was removed)
=

a

(H was removed)
+

b(0)

(2) + 2

Simplify:
2(2)

4
= a

Then 1 = a.

The process repeats using H = s+ 2 to find symbol b:

2s

(s− 2)(H covered up)
=

a(H)

s− 2
+

b

(H covered up)

Then set s = −2 and H = 0:

2(−2)
(−2− 2)(H remvoved)

=
a(0)

−2− 2
+

b

(H removed)

Simplify: 1 = b.

Conclusion:

2s

(s− 2)(s+ 2)
=

a

s− 2
+

b

s+ 2
=

1

s− 2
+

1

s+ 2

14.
s+ 4

s3 + 4s
=
1

s
+
−s+ 1

s2 + 4

Residues and Poles
Compute the residue for the given pole.

15. Residue at s = 2 for
2s

s2 − 4
.

Solution:The process is the same as Heaviside’s Coverup method but with steps
eliminated. The residue calculation imagines the coverup method in progress with

H = s − 2 so that s = 2 results from H = 0. The given fraction
2s

s2 − 4
is imagined

as the LHS of the equation before mentally multiplying by H. Suppose constant a

in fraction
a

H
is being determined by the coverup method. Then multiplying by H

and setting H = 0 and s = 2 would result in

2sH

s2 − 4

∣∣∣∣
s=2,H=0

= a

This is the essence of the residue formula: multiply by H then set s = 2 (which also
means H = 0). Because H cancels in the fraction then it is only required to set s = 2:

2s(s+ 2)

(s− 2)(s+ 2)

∣∣∣∣
s=2

= a

2s

(s+ 2)

∣∣∣∣
s=2

= a H = s− 2 cancelled

Then: 1 = a is the residue.

16. Residue at s = 0 for
s+ 4

s3 + 16s
.
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Scalar Differential Equations
The transfer function of x′′ + x = f(t) is H(s) = 1

s2+1
. A common definition

is H(s) = L(f(t)) divided by L(x(t)), assuming x(0) = x′(0) = 0.

17. Verify for x′′+x = e−t with x(0) = 0, x′(0) = 0 that L(x)= 1
s+1

1
s2+1 . Then compute

H(s).

Solution:Step 1:

L(x′′ + x) = L(e−t) Apply L across the DE.

sL(x′)− x′(0) + L(x) = 1

s+ 1
Derivative rule on x′.

s(sL(x)− x(0))− x′(0) + L(x) = 1

s+ 1
Derivative rule on x.

(s2 + 1)L(x) = 1

s+ 1
Use x(0) = x′(0) = 0 and collect on L(x).

L(x) = 1

(s2 + 1)(s+ 1)
Use x(0) = x′(0) = 0 Isolate L(x) left.

Step 2:

H(s) = transfer function = L(f)/L(x)
= L(e−t)/L(x)

=
1/(s+ 1)

1/((s2 + 1)(s+ 1))

=
1(s2 + 1)(s+ 1)

(s+ 1)

= s2 + 1

The most often-used shortcut: H(s) is the characteristic polynomial of the homoge-
neous DE with the variable changed to s: r2 + 1 with r → s is H(s) = s2 + 1.

18. Explain the transfer function
equation
H(s) = 1

characteristic equation
.

19. Solve L(x(t))= 1
s+1

1
s2+1 by Heaviside cover–up for output x(t) = 1

2 (e
−t−cos t+sin t).

Solution:The roots of s2+1 = 0 are complex: s = ±i. The plan is to expand L(x(t))
in partial fractions and then use the backward Laplace table:

L(x(t)) = 1

s+ 1

1

s2 + 1
=

a

s+ 1
+

bs+ c

s2 + 1
, Real a, b, c.

The coverup method applies because the roots are distinct: −1, i,−i.
Let H = s− i for root s = i. Multiply by H mentally and cancel H where possible,
then set H = 0 which implies symbol s is replaced by i:

1

s+ 1

s− i

(s− i)(s+ i)
=

a(s− i)

(s+ i)(s− i)
+

(bs+ c)(s− i)

(s− i)(s+ i)

1

s+ 1

1

s+ i

∣∣∣∣
s=i,H=0

= 0 +
bs+ c

s+ i

∣∣∣∣
s=i
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1

s+ 1

1

s+ i
=

bs+ c

s+ i

∣∣∣∣
s=i

1

1

i+ 1

1

i+ i
=

bi+ c

i+ i

1

i+ 1
= bi+ c

1 = (bi+ c)(i+ 1) = −b+ ci+ bi+ c

Then 1 = −b+ c and 0 = c+ b by matching real and imaginary parts of the complex
number on each side of the equation. Solve to get b = −1/2, c = 1/2. The usual
Heaviside coverup method quickly finds a = 1. Lerch’s theorem and the backward
Laplace table then imply

x(t) = ae−t + b cos(t) + c sin(t) = e−t − 1
2 cos(t) +

1
2 sin(t)

Shortcut.
The substitution of s = i found both c = −1/2 and c = 1/2 in one step. It turns out
that the answer can be found by manipulation of s instead of substitution of s = i
at stage 1 above. Using just symbol s gives:

1 = (bs+ c)(s+ 1)

1 = bs2 + (b+ c)s+ c

1 = (b+ c)s+ (c− b) because s2 = i2 = −1.
It is correct to analyze the equation as a linear equation in s and match coefficients:
1 = c − b, 0 = b + c. This is due to independence of complex numbers i and 1,
imagined as 2-vectors in the plane.The result is a method to find b, c without using
complex arithmetic.

20. Given x′′ + x = te−t, x(0) = x′(0) = 0, show all steps to find
L(x(t)) = 1

(s+1)2
1

s2+1 .

First Order System
Using Example 8.29 as a guide, solve the system for x1(t) by Laplace’s method.

21.

 x′
1=x2,

x′
2=4x1 + 12e−t,

x1(0)=x2(0)=0.

Ans: x1(t)=e2t + 3e−2t − 4e−t.

Solution:
Step 1.
Apply L across each of the two differential equations. Use the Derivative Theorem
and the Forward Table to reduce the equations to a system in L(x1, L(x2) with
coefficients in variable s.{

sL(x1)− x1(0) = L(x2),
sL(x2)− x2(0) = 4L(x1) + 12/(s+ 1)

Step 2.
Insert the initial data x1(0) = x2(0) = 0 to obtain the nonhomogeneous linear alge-
braic system for variables X1 = L(x1), X2 = L(x2):{

sX1 −X2 = 0,
−4X1 + sX2 = 12/(s+ 1)
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Solve by linear algebra:

X1 =
12

(s− 2)(s+ 2)(s+ 1)
, X2 =

12s

(s− 2)(s+ 2)(s+ 1)

Step 3.
Solve the preceding equations for x1 and x2. For instance,

L(x1) = X1 =
12

(s− 2)(s+ 2)(s+ 1)

=
a

s− 2
+

b

s+ 2
+

c

s+ 1

Then a = 1, b = 3, c = −4 by Heaviside coverup and the backward table. Final
answer:

L(x1) = L(ae2t + be−2t + ce−t)

x1 = e2t + 3e−2t − 4e−t by Lerch’s theorem.

Details for x2 = 2e2t − 6e−2t + 4e−t are similar.

22.


x′
1=x2,

x′
2=x3,

x′
3=4x1 − 4x2 + x3 + 10e−t,

x1(0)=x2(0)=x3(0)=0.

Ans: x1(t)=et − e−t − sin(2t).

Second Order System
Using Example 8.29 as a guide, compute x(t), y(t).

23. L(x(t))= 3s2+2
(s−1)(s2+4) ,

L(y(t))= 10
(s−1)(s2+4) .

Ans: x=2 cos(2t)+ sin(2t)+et,
y=− 2 cos(2t)− sin(2t)+2et

Solution:The methods are in Exercise 19. To solve for x(t):

3s2 + 2

(s− 1)(s2 + 4)
=

a

s− 1
+

bs+ c

s2 + 4

Then a = 1 by Heaviside coverup. To find b, c multiply by H = s2 + 4 and then set
H = 0:

3s2 + 2

s− 1
= bs+ c subject to H = s2 + 4 = 0

3s2 + 2 = (bs+ c)(s− 1) cross-multiply

3s2 + 2 = bs2 + cs− bs− c

3(−4) + 2 = b(−4) + cs− bs− c because H = 0 implies s2 = −4 for both roots of
H = 0

−10 = −4b− c, 0 = c− b match coefficients of 1 and s

Solve: b− 2, c = 2. Then

L(x(t)) = 3s2 + 2

(s− 1)(s2 + 4)
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=
1

s− 1
+

2s+ 2

s2 + 4

= L(et) + L(2 cos 2t+ sin 2t)

Lerch’s theorem gives x(t) = et + 2 cos 2t+ sin 2t. The details for y(t) are similar.

# Exercise 23, Answer check

convert((3*s^2+2)/((s-1)*(s^2+4)),parfrac);

# 1/(s-1)+(2*s+2)/(s^2+4)

24. L(x(t))= 2s2+4
(s+1)(s2+1) ,

L(y(t))= 2
(s+1)(s2+1) .

Ans: x=− cos(t)+ sin(t)+3e−t,
y=− cos(t)+ sin(t)+e−t.

8.5 Transform Properties

Exercises 8.5 �
There are no exercises for this section. The content is exclusively statements of
theorems and proofs, for the following theorems.

Linearity

The t-Derivative Rule or Parts Rule

The t-Integral Rule

The s-Differentiation Rule

First Shifting Rule

Second Shifting Rule

Periodic Function Rule

Convolution Rule

Initial and Final Value Rules
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8.6 Heaviside Step and Dirac Impulse

Exercises 8.6 �
Unit Step and Heaviside

1. The unit step u(t) is defined on the whole real line. Is it piecewise continuous on the
whole line?

Solution:Yes.

2. Is there a continuous function on the real line that agrees with the Heaviside function
except at t = 0?

3. The piecewise continuous function pulse(t, a, b) is defined everywhere. Redefine
pulse(t, a, b) using H(t) instead of u(t).

Solution:Replace in the pulse(t, a, b) definition symbol u(t) by symbol H(t), the
Heaviside function. There is a difference at t = a and t = b, because H(0) is
undefined. The piecewise definition after the replacement:

pulse(t, a, b) =


0 t < a
undefined t = a
1 a < t < b
undefined t = b
0 t > b

4. Write f(t) = floor(t)u(t) as a sum of terms, each of which has the form
g(t)pulse(t, a, b).

Solution:An infinite series is required.

Dirac Impulse

5. Verify
∫∞
−∞

pulse(t,a,b)
b−a dt = 1.

Solution:∫ ∞

−∞

pulse(t, a, b)

b− a
dt =

∫ ∞

−∞

1

b− a

({
1 a ≤ t < b
0 otherwise

)
dt

=

∫ b

a

1

b− a
dt zero integrand outside a ≤ t ≤ b

= 1

6. Verify by direct integration that f(t) = 10 pulse(t,−0.001, 0.001) represents a simple
impulse of 10 at t = 0 of duration 0.002. Graph it without using technology.

7. Find L(δ(t− 1) + δ(t− 2)).

Solution:L(δ(t− 1) + δ(t− 2)) = e−s + e−2s
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8. Find L(10 δ(t− 1)− 5 δ(t− 2)).

9. Solve for f(t) in terms of δ:
L(f(t)) = 10e−s

Solution:There is no piecewise continuous function f(t) of exponential order satisfying
the equation L(f(t)) = 10e−s. Nevertheless, most experts would write L(f(t)) =
10e−s = L(10δ(t−1)), then write f(t) = 10δ(t−1) which represents an impulse of 10
at t = 1 (a hammer hit). It is technically incorrect to claim that f(t) is a function. It is
not, but it is approximated by the function fϵ(t) = 10 1

2ϵ pulse(t, 1−ϵ, 1+ϵ) as ϵ→ 0.
What allows the formal result is the equation limϵ→0 L(fϵ) = e−s = L(δ(t− 1)). The
formal calculation looks like we used Lerch’s theorem. But Lerch’s theorem does not
apply to equations involving δ.

10. Solve for f(t) in terms of δ:
L(f(t)) = 10e−s + s

s2+1 e
−2s

11. Find L
(∑10

n=1(1 + n)δ(t− n)
)
.

Solution:

L
(∑10

n=1(1 + n)δ(t− n)
)
=
∑10

n=1(1 + n)L(δ(t− n)) =
∑10

n=1(1 + n)e−ns

12. A sequence of camshaft impulses happening periodically in a finite time interval have
transform L(f(t)) =

∑N
i=1 e−ci s. Find the idealized impulse train f .

Riemann–Stieltjes Integral
Evaluate the integrals either directly from the definition or else by using Theorem
8.15.

13.
∫ 2

0
du(t− 1)

Solution:Theorem 8.15 part (2) does not apply directly because the limits of integra-
tion do not match.∫ 2

0
du(t − 1) =

∫∞
−∞ pulse(t,−1, 3)du(t − 1) because du(t − 1) = 0 outside a small

interval containing t = 1.∫ 2

0
du(t− 1) = limt→1+ pulse(t,−1, 3) by Theorem 8.15 part (2)∫ 2

0
du(t− 1) = 1

14.
∫∞
0

du(t− 2)

15.
∫ 2

0
tanh(t2 + 1) du(t− 1)

Solution:∫ 2

0
tanh(t2 + 1) du(t− 1) =

∫∞
−∞ pulse(t,−1, 3) tanh(t2 + 1) du(t− 1)

= limt→1+ pulse(t,−1, 3) tanh(t2 + 1)

= tanh(2) by Theorem 8.15 part (2).

16.
∫∞
0

t
1+t2 du(t− 2)
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Exercises 8.8 �
Oscillatory and Non–oscillatory
Assume x′′ + px′ + qx = 0 with p, q nonnegative.

Parameter p is imagined as a set screw adjustment on a screen door dashpot,
larger p meaning more damping effect.

Parameter q is the Hooke’s constant for the spring restoring force.

1. Let q = 100, p = 99. Verify that the equation is over–damped in two ways:
(1) Graph x(t);
(2) Justify that r2 + pr + q = 0 has real negative roots.

Solution:The graph can be made by hand for

x (t) = c1 e(−99+
√
9401)t/2 + c2 e−(99+

√
9401)t/2

It looks like x = e−t or x = −e−t as t→∞ no matter the nonzero values of c1, c2.

The characteristic equation r2 + pr + q = 0 has roots −1.02062294, −97.97937706,
both negative.

# Exercise 1, Over-damped

de:=diff(x(t),t,t)+p*diff(x(t),t)+q*x(t)=0;

eq:=r^2+p*r+q=0;

p:=99;q:=100;

X:=dsolve(de,x(t));

# x(t) = _C1*exp((1/2*(-99+sqrt(9401)))*t)+

# _C2*exp(-(1/2*(99+sqrt(9401)))*t)

R:=solve(eq,r);evalf([R]);

# [-1.02062294, -97.97937706]

XX:=subs(_C1=1,_C2=1,rhs(X));

plot(XX,t=0..5);

2. Let q = 100. The case which is called critically–damped happens at exactly one value
p = p∗ between 0 and 99. Compute p∗ numerically. Graph x(t) using q = 100, p = p∗,
x(0) = 0, x′(0) = 1.

3. Let q = 100. Verify that p = 0 produces the harmonic oscillator x′′ + ω2 x = 0,
ω = 10.
Small set screw changes from p = 0 to p > 0 are still oscillatory. Under–damped means weak
dashpot reaction.

Solution:Equation x′′ + px′ + qx = 0 becomes x′′ +100x = 0 or x′′ +102x = 0. Then
ω = 10 and the equation is the harmonic oscillator.

4. Let q = 100, p = 2. Justify oscillatory under–damped from the graph of x(t) and
also by solving r2 + pr + q = 0.
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Simplistic Dirac Impulse
Define g(t) = 7 e−153800 t u(t) and
f(t, a) = 1

a (u(t)− u(t− a)), a > 0.
The impulse of force h is

∫∞
−∞ h(t) dt.

5. Compute the impulse for f(t, a).
Ans: 1.

Solution:Let h(t) = f(t, a) be the force. The impulse of h is∫∞
−∞ h(t) dt =

∫∞
−∞

1
a pulse(t, 0, a)dt

=
∫ a

0
1
a pulse(t, 0, a)dt

=
∫ a

0
1
a (1)dt

= 1

6. Plot f(t, a) for a = 0.1, 0.001, 0.0001.

7. Calculate the impulse for g(t).
Ans: About 46 times 10−6.

Solution:

Given: g(t) = 7 e−153800 t u(t), compute
∫∞
−∞ g(t) dt.∫∞

−∞ g(t) dt =
∫∞
−∞ 7 e−153800 t u(t) dt

= 7
∫∞
0

e−153800 t (1) dt

=
7e−153800 t

−153800

∣∣∣∣∞
t=0

= 0− 7

−153800
== 0.00004551365410

8. Try to find an RC discharge circuit with 10 volt emf and output g(t).

Circuit response g(t) simulates Dirac impulsive force 45.5
1000000

δ(t).

Parameters: Over–Damped
Find a, b, ω =

√
ab, ζ = a+b

2ω given the plot and two dots on the graph.

9. Step input Figure 9, dots
(1, 0.1998), (4, 0.4819).
Ans: a = 1.0000, b = 1.9997, ω = 1.4141, ζ = 1.0607.

Solution:The exercise follows the solution to the example following Figure 9 page
660. The work should be carried out with a computer.
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# Exercise 9, Parameters: Over-Damped

F:=(t,a,b)->1/(a*b)+exp(-a*t)/(a^2-a*b)+exp(-b*t)/(b^2-a*b);

t1:=1;x1:=0.1998;t2:=4;x2:=0.4819;

ans:=fsolve(eval({F(t1,a,b)=x1,F(t2,a,b)=x2}),{a,b});

# ans := {a = 1.000041775, b = 1.999717461}

omega:=eval(sqrt(a*b),ans);

# omega := 1.414143203

zeta:=eval((a+b)/(2*omega),ans);

# zeta := 1.060627817

10. Impulse input Figure 10, dots
(0.5, 0.1193), (2, 0.0585).
Ans: a = 0.9991, b = 2.0021, ω = 1.4143, ζ = 1.0610.

Parameters: Under–Damped
Find a, b, ω =

√
a2 + b2, ζ = a

ω given the plot and two dots on the graph.

11. Zero input like Figure 11, but consecutive maxima at (2.5107, 0.0257),
(4.6051, 0.0032).
Ans: Approximately a = 1, b = 3.

Solution:Follow the solution to the Example after Figure 11 page 663.

# Exercise 11, Parameters: Under-Damped

t1:=2.5107; x1:=0.0257; t2:=4.6051;x2:=0.0032;y0:=0;

a=ln((x1-y0)/(x2-y0))/(t2-t1); # a = 0.9947193382

b=2*Pi/(t2-t1);# b = 2.999992986

12. Step input like Figure 13, but steady–state y0 = 1/26 and consecutive maxima at
(0.6283, 0.0205), (1.8850, 0.0058).
Ans: Approximately a = 1, b = 5.
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Appendix 9

§ Eigenanalysis

Contents

9.1 Matrix Eigenanalysis . . . . . . . . . . . . . . . . . 1493

9.2 Eigenanalysis Applications . . . . . . . . . . . . . . 1508

9.3 Advanced Topics in Linear Algebra . . . . . . . . 1518

9.1 Matrix Eigenanalysis

Exercises 9.1 �
Eigenanalysis
Classify as true or false. If false, then explain.

1. The purpose of eigenanalysis is to discover a new coordinate system.

Solution:True.

2. Eigenanalysis can discover an opportunistic change of coordinates.

3. A matrix can have eigenvalue 0.

Solution:True: the zero matrix.

4. Eigenvalues are scale factors, imagined to be measurement units.

5. Eigenvectors are directions.

Solution:True. A physical example is a football or ellipsoid. The eigenvectors are the
three semiaxis directions.

6. For each eigenvalue of a matrix A, there always exists at least one eigenpair.
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9.1 Matrix Eigenanalysis

7. If A−1 has eigenvalue λ, then A has eigenvalue 1/λ.

Solution:True. If A−1 exists then identity A−1 = adj(A)/|A| prevents |A| = 0.
Matrix A−1 cannot have eigenvalue zero, due to characteristic equation |A−1−λI| = 0
being impossible for λ = 0 (use product identity |A||A−1| = |AA−1| = |I| = 1). If
A−1x⃗ = λx⃗ then x⃗ = λAx⃗ . Because λ ̸= 0, then division is possible and (1/λ, x⃗ ) is
an eigenpair of A.

8. Eigenvectors cannot be 0⃗ .

9. The transpose of A has the same eigenvalues as A.

Solution:True. Eigenvalues of A are found from algebraic equation |A−λI| = 0, called
the characteristic equation of A. Then |AT −λI| = |(A−λI)T | = |A−λI| = 0 by the
determinant property |B| = |BT |. Therefore A and AT have the same eigenvalues.

10. Eigenpairs (λ, v⃗ ) of A satisfy the equation (A− λI)v⃗ = 0⃗ .

Eigenpairs of a Diagonal Matrix
Find eigenpairs of A without computation. Use Theorem 9.7.

11.

(
2 0
0 3

)
Solution: λ = 2, 3

12.

(
1 0
0 4

)

13.

(
2 0 0
0 3 0
0 0 1

)
Solution: λ = 2, 3, 1

14.

(
2 0 0
0 1 0
0 0 1

)

15.

(
7 0 0
0 2 0
0 0 −6

)
Solution: λ = 7, 2,−6

16.

(
2 0 0
0 −4 0
0 0 −1

)

Fourier Replacement
Let symbols c1, c2 represent arbitrary constants. Let 2×2 matrix A have Fourier
replacement equation

A

(
c1

(
1
1

)
+c2

(
1
2

))
= 2c1

(
1
1

)
−5c2

(
1
2

)
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17. Display the eigenpairs of A.

Solution:

(
2,

(
1
1

))
,

(
−5,

(
1
2

))

18. Display the replacement equation if the eigenvalues 2,−5 are replaced by 1, 0.

19. Display the eigenpair packages P,D such that AP = PD.

Solution:By Exercise 17, the eigenpairs of A are

(
2,

(
1
1

))
,

(
−5,

(
1
2

))
. Then

P =

(
1 1
1 2

)
, D = diag(2,−5)

20. Find A.

Eigenanalysis Facts
Mark as true or false, then explain your answer.

21. If matrix A has all eigenvalues zero, then A is the zero matrix.

Solution: False. A triangular matrix with zeros on the diagonal has all eigenvalues
zero.

22. If 2× 2 matrix A has all eigenvalues zero, then Fourier’s replacement equation is

A (c1v⃗ 1+c2v⃗ 2) = 0⃗ .

23. There are infinitely many 2× 2 matrices A with complex eigenvalues 1 + i, 1− i.

Solution: True. Let B =

(
1 1
−1 1

)
. Then B has eigenvalues 1+i, 1−i. Let P =

(
1 x
0 1

)
for arbitrary real x. Let A(x) = P−1BP . Then A(x) and B have the same eigenvalues
and there are infinitely many distinct matrices A(x).

24. A real 2× 2 matrix A with eigenvalues 2 + 3i, 2− 3i cannot have a real eigenvector.

25. A real 2× 2 matrix A with real eigenvalues has only real eigenvectors.

Solution: False. If λv⃗ = Av⃗ and v⃗ is real then w⃗ = zv⃗ is complex for purely
complex z and λw⃗ = z(λv⃗ ) = zAv⃗ = Aw⃗ . Then (λ, w⃗ ) is an eigenpair with
complex eigenvector.

What is known:
The eigenpairs (λ, v⃗ ) of A in the case of a real eigenvalue λ can always be selected
so that v⃗ is real. This is because A − λI is a real matrix and Gaussian elimination
finds a real vector v⃗ solution to the homogeneous system (A− λI)v⃗ = 0⃗ .

26. A real 2× 2 matrix A with complex eigenvalues has only complex eigenvectors.

Eigenpair Packages and equation AP = PD
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27. Suppose A has eigenpair packages. Explain why there are so many different answers
for P,D.

Solution: The packages contain eigenpairs which can be listed in many different
orders, resulting in different P and D. Further, while eigenvalues are determined
from |A − λI| = 0, the eigenvectors are not unique: even for 2 × 2 matrices an
eigenvector is either determined up to a constant multiple or else kernel(A − λI)
is two dimensional leaving infinitely many choices for two independent eigenvectors.
For instance, the eigenvectors of the zero matrix can be any two independent vectors
in R2.

28. Suppose AP = PD and AQ = QD hold (same diagonal matrix D). Does P = Q?

29. Find one choice of P and D for A = 2× 2 diagonal matrix.

Solution: Let A = diag(a, b). The eigenpairs can be

(
a,

(
1
0

))
,

(
b,

(
0
1

))
. Then

P = I and D = A.

30. Given A = 3 × 3 zero matrix, find one choice of P and D with column one of P

equal to

(
1
−1
1

)
.

Matrix Eigenanalysis Method

31. The eigenvalues of

(
1 3
1 4

)
satisfy a quadratic equation. Find the equation and solve

for the eigenvalues.

Solution:The equation is |A − λI| = 0 which is

∣∣∣∣ 1− λ 3
1 4− λ

∣∣∣∣ = 0. The equation

can be written directly as (−λ)2 + trace(A)(−λ) + |A| = 0 or λ2 − 5λ+ 1 = 0. The
roots are found by the quadratic formula: 5/2±

√
21/2.

32. Find the eigenvalues of

(
1 3
2 4

)
.

33. Find all eigenpairs of

(
1 2 0
0 2 2
0 0 3

)
.

Solution: The eigenvalues are the diagonal elements of A: 1, 2, 3.

Eigenvectors are found from solving the equation (A − I)v⃗ 1 = 0⃗ , (A − 2I)v⃗ 2 = 0⃗ ,
(A − 3I)v⃗ 3 = 0⃗ . Each of the three homogeneous systems is solved by finding the
general solution by swap, combo, multiply. Take as the eigenvector in each case
∂v⃗/∂t1 where t1 is the free variable. We know in advance that each eigenvalue has
at least one eigenvector. Distinct eigenvalues implies the dimension of the solution
space, which equals the number of free variables, is in each case exactly one.

To find an eigenpair (1, v⃗ ), solve A1v⃗ = 0⃗ where

A1 = A− (1)I =

 1− (1) 2 0
0 2− (1) 2
0 0 3− (1)

 =

 0 2 0
0 1 2
0 0 2


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Then rref(A1) =

(
0 1 0
0 0 1
0 0 0

)
. The general solution is v⃗ = t1

1
0
0

. Let

v⃗ 1 = ∂v⃗/∂t1 =

1
0
0


and then the eigenpair (1, v⃗ 1) is 1,

1
0
0


The other two eigenpairs are found similarly:2,

2
1
0

 ,

3,

2
2
1


# Exercise 33

A:=Matrix([[1,2,0],[0,2,2],[0,0,3]]);

CharacteristicPolynomial(A,r);

# r^3 - 6 r^2 + 11 r - 6

Eigenvalues(A);Eigenvectors(A);

A1:=A-(1)*IdentityMatrix(3);

ReducedRowEchelonForm(A1);

LinearSolve(A1,ZeroVector(3));

34. A triangular n×n matrix with distinct diagonal entries has n eigenpairs. Provide a
detailed proof for the case n = 3.

35. Find all eigenpairs of

(
1 2 0
0 1 2
0 0 1

)
.

Solution: There is only one eigenpair, all eigenvalues = 1:1,

1
0
0


# Exercise 35

A:=Matrix([[1,2,0],[0,2,2],[0,0,3]]);

CharacteristicPolynomial(A,r);

# r^3 - 6 r^2 + 11 r - 6

Eigenvalues(A);Eigenvectors(A);

A1:=A-(1)*IdentityMatrix(3);

ReducedRowEchelonForm(A1);

LinearSolve(A1,ZeroVector(3));

36. A triangular n× n matrix may not have n eigenpairs. Provide a series of examples
for dimensions n = 2, 3, 4, 5.
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37. Prove that equations Ax⃗ = λx⃗ and (A− λI)x⃗ = 0⃗ have exactly the same solutions
x⃗ .

Solution:

Proof:
Part I. Let x⃗ solve Ax⃗ = λx⃗ . Then

(A− λI)x⃗ = Ax⃗ − λIx⃗ = λx⃗ − λx⃗ = 0⃗

Part II. Let x⃗ solve (A− λI)x⃗ = 0⃗ . Then

Ax⃗ = λx⃗ + (Ax⃗ − λx⃗ ) = λx⃗ + 0⃗ = λx⃗

Combine Part I and Part II: the equations have the same solutions. ■

38. Cite basic linear algebra theorems to prove that (A − λI)x⃗ = 0⃗ has a nonzero
solution x⃗ if and only if λ is a root of the characteristic equation |A− λI| = 0.

Basis of Eigenvectors
The problem Ax⃗ = λx⃗ has a standard general solution x⃗ with invented symbols
t1, t2, t3, . . .. Strang’s special solutions are defined to be the vector partial
derivatives of x⃗ with respect to the invented symbols.

39. Why are Strang’s special solutions independent?

Solution:
First solution: We can cite a theorem which says they are independent: Theorem
5.22 page 370.

Second solution: The plan is prove that a linear combination of the special solutions
equal to the zero vector has all weights zero.
The special solutions are given as vector partial derivatives on the free variables
t1, . . . , tk where k is the rank of the matrix. A linear combination of the special
solutions with weights c1, . . . , ck is the same as the vector general solution with sub-
stitutions t1 = c1, . . . , tk = ck. Setting this linear combination equal to the zero
vector is the same as setting the vector general solution equal to the zero vector,
except for notation. Then the corresponding scalar general solution is also zero. But
the free variables t1, . . . , tk then appear in the zero scalar general solution in k scalar
equations 0 = t1, . . . , 0 = tk. The other scalar equations in the general solution
not of this form are ignored for this analysis. This means all free variables t1, . . . , tk
are zero, which also means all weights c1, . . . , ck are zero. The special solutions are
proved independent. ■

40. Prove that linear combinations of Strang’s special solutions provide all possible so-
lutions of Ax⃗ = λx⃗ .

Independence of Eigenvectors
Eigenvectors of matrix A for eigenvalue λ are the nonzero solutions of Ax⃗ = λx⃗ .

41. Invent a 2× 2 example A with eigenpairs

(
2,

(
1
1

))
,

(
2,

(
5
5

))
. Then explain why

an eigenvector for eigenvalue λ is never unique.
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Solution:

Explanation: Only the first eigenpair is used to construct the example because

(
5
5

)
=

c

(
1
1

)
for c = 5. A constant multiple of an eigenvector is also an eigenvector, therefore

an eigenvector for eigenvalue λ is never unique. Eigenvectors can be unique up to
a constant multiple. If an eigenvalue has algebraic multiplicity greater than 1, then
uniqueness up to a constant multiple fails.

An example: let D = diag(1, 2), P =

(
1 0
1 1

)
, A = PDP−1. Then A has two distinct

eigenvalues 1, 2 and two independent eigenvectors. One eigenpair is

(
2,

(
1
1

))
and

another is is

(
2, 5

(
1
1

))
.

42. Explain: For a given eigenvalue λ, there are infinitely many eigenvectors.

43. Explain: Each solution x⃗ of Ax⃗ = λx⃗ is a linear combination of Strang’s special
solutions for B = A− λI.

Solution:
Solution 1. Apply Theorem 5.22 page 370.

Solution 2. Equation Ax⃗ = λx⃗ has the same solutions as equation (A− λI) x⃗ , or
Bx⃗ = 0⃗ . Then x⃗ is a linear combination of Strang’s special solutions by elimination
methods for solving homogeneous linear algebraic equations of the form Bx⃗ = 0⃗ .

44. Let P be an invertible 3 × 3 matrix. Construct a matrix A which has eigenvectors
equal to the columns of P and corresponding eigenvalues −1, 0, 0.

Eigenspaces
Let B(λ) denote some basis of eigenvectors for the eigenpair equation Av⃗ = λv⃗ .
The eigenspace for λ is the subspace span(B(λ)).

45. Explain: The eigenspace of λ does not depend on the choice of basis.

Solution: An eigenspace E is a subspace of vector space Rn. It is a vector space itself
using the toolkit of Rn. Then E = span{v⃗ 1, . . . , v⃗ k} for every basis v⃗ 1, . . . , v⃗ k of
E. The vectors in any basis of E satisfy equation Ax⃗ = λx⃗ .

46. Every nonzero vector in eigenspace span(B(λ)) is an eigenvector of A for eigenvalue
λ. Provide details of proof.

47. Justify that span(B(λ)) is a vector subspace of Rn, one possible basis being Strang’s
special solutions for matrix B = A− λI.

Solution:Apply to matrix B the Kernel Theorem 5.2 page 300.

48. Find a 4 × 4 matrix A with only one eigenvalue λ = 1 such that eigenspace B(λ)
(defined above) has dimension two.
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Independence of Unions of Eigenvectors
Denote by B(λ) some basis for the eigenpair equation Av⃗ = λv⃗ .

49. Define U1 to be the union of lists B(λ1), B(λ2) and define U2 to be the union of lists
B(λ3), B(λ4), where λ1, λ2, λ3, λ4 is a list of distinct eigenvalues of A. Prove that
subspaces V1 = span(U1) and V2 = span(U2) intersect in only the zero vector.

Solution:
Let x⃗ ∈ V1 ∩ V2. We will prove x⃗ = 0⃗ .

Vector x⃗ is a linear combination
∑k

i=1 civ⃗ i of basis vectors v⃗ i from U1. Also vector

x⃗ is a linear combination
∑ℓ

j=1 djw⃗ j of basis vectors w⃗ j from U2. The proof will be
completed by showing that all weights are zero: ci = dj = 0.

Theorem 9.5 page 673 about unions of eigenvectors tell us that the list
v⃗ 1, . . . , v⃗ k, w⃗ 1, . . . , w⃗ ℓ is independent. Then independence and the equation

x⃗ − x⃗ =
∑k

i=1 civ⃗ i −
∑ℓ

j=1 djw⃗ j = 0⃗

results in all weights zero: ci = dj = 0. Conclusion: zero is the only vector in the
intersection of V1 and V2. ■

50. Complete the details of the induction proof of Theorem 9.5, using the textbook
details for k = 3.

51. Let U∗ be a subset of the list U of independent vectors in Theorem 9.5. Explain
why U∗ is an independent set.

Solution: Subsets of independent sets are independent: Theorem 5.24 page 378.

52. Let Bi be a subset of the list of independent vectors in B(λi), i = 1, . . . , p. Explain
why the union U∗ of B1, . . . , Bp is an independent set.

Diagonalization Theory

53. Let A =

(
2 0 0
0 5 0
0 0 8

)
.

(a) Find Strang’s special solutions for each eigenvalue.
(b) Compare to Theorem 9.7 on diagonal matrices.

Solution: (a) The eigenvalues are the diagonal elements. The eigenpairs are
(2, v⃗ 1), (2, v⃗ 2), (2, v⃗ 3) where v⃗ 1, v⃗ 3, v⃗ 3 are the columns of the 3 × 3 identity ma-
trix, in order left to right. The method: subtract λ = 2 from the diagonal of A then

row-reduce to rref(A − 2I) =

(
0 1 0
0 0 1
0 0 0

)
. Then x1 = t1 = free variable, x2 = x3 = 0.

The eigenvector is ∂t1 x⃗ = column 1 of I. Similar for the other two eigenvectors.

(b) Same result as the theorem.

54. Let v⃗ !, v⃗ 2, v⃗ 3 be independent vectors in R3. Explain why (0, v⃗ 1), (0, v⃗ 2), (0, v⃗ 3) is
a complete set of eigenpairs for the 3× 3 zero matrix. Does this contradict Theorem
9.7?
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55. Write a proof of Theorem 9.7 for n = 3.

Solution: The eigenvalues are the diagonal elements of A, which are symbols a, b, c.
Details: expand |A− λI| = (λ− a)(λ− b)(λ− c) and solve for λ.

(1) Subtract λ = a from the diagonal of A and reduce to row echelon form

(
0 1 0
0 0 1
0 0 0

)
.

Convert the matrix problem (A − λI)x⃗ = 0⃗ to scalar form 0 = 0, x2 = 0, x3 = 0.
Then x1 = t1 = free variable, x2 = x3 = 0. The eigenvector is ∂t1 x⃗ = column 1 of I.
(2) Repeat (1) for λ = b, result v⃗ 2 = column 2 of I.
(2) Repeat (1) for λ = c, result v⃗ 2 = column 3 of I.

56. State Theorem 9.7 for n× n diagonal matrices and outline a proof.

Non-diagonalizable Matrices
Verify that the matrix is not diagonalizable by using the equation AP = PD.

57. A =

(
5 2
0 5

)
Solution:Eigenvalues are on the diagonal of A. Then D = diag(5, 5). Use AP = PD
to reach a contradiction. Compute PD = 5P . Then AP = 5P . Multiply right by

P−1, assumed to exist. Then APP−1 = 5PP−1 simplifies to

(
5 2
0 5

)
=

(
5 0
0 5

)
, which

is false. Contradiction reached. ■

58. A =

(
5 2 1
0 5 1
0 0 5

)

Distinct Eigenvalues
Find the eigenvalues.

59. A =

(
2 6
5 3

)
Ans: 8,−3

Solution:Characteristic equation: |A− λI| = λ2 − 5λ− 24 with roots 8,−3.

60. A =

(
1 2
2 4

)
Ans: 0, 5

61. A =

(
2 6 2
9 3 9
1 3 1

)
Ans: 0, 12,−6

Solution: |A− λI| = λ3 − 6λ2 − 72λ with roots 0, 12,−6 found by factoring.

62. A =

(
0 2 0
0 1 0
3 0 3

)
Ans: 0, 1, 3
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63. A =

(
7 12 6
2 2 2
−7 −12 −6

)
Ans: 0, 1, 2

Solution: |A− λI| = λ3 − 3λ2 + 2λ with roots 0, 1, 2 found by factoring.

64. A =

(
2 2 −6
−3 −4 3
−3 −4 −1

)
Ans: 0, 1, 4

Computing 2× 2 Eigenpairs

65. Verify eigenpairs:

(
1 2
4 3

)
,(

−1,
(
−1
1

))
,

(
5,

(
1
2
1

))
Solution:The plan: check the answer, do not compute eigenvalues or eigenvectors.

Let A =

(
1 2
4 3

)
, v⃗ 1 =

(
−1
1

)
, λ1 = −1. Then:

Av⃗ 1 =

(
1 2
4 3

) (
−1
1

)
=

(
1
−1

)
λ1v⃗ 1 = (−1)

(
−1
1

)
=

(
1
−1

)
Then Av⃗ 1 = λ1v⃗ 1, verifying the first eigenpair.
The second eigenpair is done similarly.

# Exercise 65, Answer check

A:=<1,2|4,3>^+;Eigenvectors(A);

#[5, -1]), v1=[1/2, 1], v2=[-1, 1]

66. Verify eigenpairs:

(
1 6
2 −3

)
,(

−5,
(
−1
1

))
,

(
3,

(
3
−1

))
Solution:
# Exercise 66, Answer check

A:=<1,6|2,-3>^+;Eigenvectors(A);

# [3, -5], v1=[1/2, 1], v2=[-1, 1]

67. Verify eigenpairs:

(
1 6
4 3

)
,(

7,

(
1
1

))
,

(
−3,

(
−3
2

))
Solution:
# Exercise 67, Answer check

A:=<1,2|4,3>^+;Eigenvectors(A);

# [7, -3], v1=[1, 1], v2=[-3/2, 1]
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68. Verify eigenpairs:

(
7 4
−1 3

)
,(

5,

(
1
2

))
, only one eigenpair

Solution:
# Exercise 68, Answer check

A:=<7,4|-1,3>^+;Eigenvectors(A);

# [5, 5], v1=[1/2, 1], v2=[0, 0] invalid

Computing 2× 2 Complex Eigenpairs

69. Verify eigenpairs:

(
−2 −6
3 4

)
,(

1 + 3i,

(
−1 + i

1

))
,

(
1− 3i,

(
−1− i

1

))
Solution:The first eigenpair is checked like in Exercise 65.

Let A =

(
−2 −6
3 4

)
, v⃗ 1 =

(
−1 + i

1

)
, λ1 = 1 + 3i. Then:

Av⃗ 1 =

(
−2 −6
3 4

) (
−1 + i

1

)
=

(
2− 2i− 6
−3 + 3i+ 4

)
=

(
−4− 2i
1 + 3i

)
λ1v⃗ 1 = (1 + 3i)

(
−1 + i

1

)
=

(
−4− 2i
1 + 3i

)
Then Av⃗ 1 = λ1v⃗ 1, verifying the first eigenpair.

The second eigenpair is checked by replacing i by −i throughout the first eigenpair.

# Exercise 69, Answer check

A:=<-2,-6|3,4>^+;Eigenvectors(A);

# [1+3*I, 1-3*I], v1=[-1+I, 1], v2=[-1-I, 1]

lambda:=1+3*I;v:=<-1+I,1>;A.v - lambda*v;# zero expected

70. Verify eigenpairs:

(
2 3
−3 2

)
,(

2 + 3i,

(
−i
1

))
,

(
2− 3i,

(
i
1

))
Solution:
# Exercise 70, Answer check

A:=<2,-3|3,2>^+;Eigenvectors(A);

# [2+3*I, 2-3*I]

# v1=[I, 1], v2=[-I, 1]

lambda:=2+3*I;v:=<I, 1>;

simplify(A.v - lambda*v);# zero expected

71. Let a, b be real with b ̸= 0. Assume n × n real matrix A has eigenpair (a+ ib, v⃗ ).
Replace i by −i throughout expression v⃗ to obtain vector w⃗ . Prove that (a− ib, w⃗ )
is an eigenpair.
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Solution:
Proof:
To be verified is equation Aw⃗ = λw⃗ where λ = a − ib. Notation: an over-line on a
symbol denotes complex conjugation, which is replacing i by −i.
Aw⃗ = Av⃗

= Av⃗ because A is a real matrix

= Av⃗ by college algebra rule z1z2 = z1z2

= λv⃗ by Av⃗ = λv⃗

= (a− ib)w⃗ ■

72. Explain: Eigenpairs of a 2×2 real matrix A with complex eigenvalues are computed
with just one row-reduction sequence.

Computing 3× 3 Eigenpairs

73. Show algorithm steps to compute eigenpairs of A =

(
2 1 0
1 0 0
0 0 3

)
.

Answers:

(
1,

(
−1
1
0

))
,

(
3,

(
0
0
1

))
Solution:There are only two eigenpairs, not three. The eigenvalues λ = 1, 1, 3 are
found from the characteristic equation |A − λI| = 0, which is the cubic equation
λ3 − 5λ2 + 7λ− 3 = (3− λ)(λ2 − 2λ+ 1) = 0.

Cofactor expansion of the determinant produces a pre-factored equation. Make
this your default method of attack on paper. Computer algebra systems like
maple will display the expanded polynomial and then extra steps are required
to factor it or to find the roots.

Steps for λ = 1:

Create matrix B = A− λI = A− (1)I =

(
1 1 0
1 −1 0
0 0 2

)
. Row-reduce B to rref(B) and

find Strang’s Special Solutions:

B =

(
1 1 0
−1 −1 0
0 0 2

)

B1 =

(
1 1 0
−1 −1 0
0 0 1

)
mult(3,1/2)

B2 =

(
1 1 0
0 0 0
0 0 1

)
combo(1,2,1)

B3 =

(
1 1 0
0 0 1
0 0 0

)
swap(2,3)

Then B3 = rref(B) and the scalar equations for Bx⃗ = 0⃗ are x1 + x2 = 0, x3 = 0.
The lead variables are x1, x3 and x2 = free variable. Let x2 = t1 = invented symbol.
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Due to only one free variable, there will be only one eigenvector. The scalar solution
is x1 = −t1, x2 = t1, x3 = 0 and Strang’s solution is

v⃗ 1 = ∂t1 x⃗ =

−11
0


There is no eigenvector v⃗ 2.

Steps for λ = 3:
The eigenvector for λ = 3 is found similarly by creating matrix B = A − λI =

A− (3)I =

(
−1 1 0
1 −3 0
0 0 0

)
. Row-reduce B to rref(B) =

(
1 0 0
0 1 0
0 0 0

)
. The scalar equations

for Bx⃗ = 0⃗ are x1 = 0, x2 = 0. The lead variables are x1, x2 and x3 = free variable.
Let x3 = t1 = invented symbol. Due to only one free variable, there will be only one
eigenvector. The scalar solution is x1 = 0, x2 = 0, x3 = t1 and Strang’s solution is

v⃗ 3 = ∂t1 x⃗ =

0
0
1


# Exercise 73, Compute 3x3 eigenpairs

A:=<2,1,0|-1,0,0|0,0,3>^+;p:=Eigenvectors(A);

# lambda= [1, 1, 3]

# v1=[-1, 1, 0], v2=[0, 0, 0], v3=[0, 0, 1]

CharacteristicPolynomial(A,’lambda’);

# lambda^3-5*lambda^2+7*lambda-3

Z:=<0,0,0>;# Solve (A-I)x=Z, (A-3I)x=Z

ReducedRowEchelonForm(A-1);LinearSolve(A-1,Z);

ReducedRowEchelonForm(A-3);LinearSolve(A-3,Z);

74. Show algorithm steps to compute eigenpairs of A =

(
1 −2 0
0 −1 0
4 −4 −1

)
.

Answers:(
1,

(
1
0
2

))
,

(
−1,

(
1
1
0

))
,(

−1,

(
0
0
1

))

75. Suppose A is row-reduced to a triangular form B. Are the eigenvalues of B also the
eigenvalues of A? Give a proof or a counter-example.

Solution:Counterexample: Choose an invertible matrix A with at least two complex
eigenvalues.Then rref(A) = I, which has all eigenvalues equal to one. ■
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# Exercise 75, Counterexample

A:=<1 , 2 , 4|-2 , 1 , 0|0 , 0 , -1>^+;

with(LinearAlgebra):

Eigenvalues(A);

# lambda = -1. 1 + 2i, 1-2i

B:=ReducedRowEchelonForm(A);

Eigenvalues(B);

# lambda = 1,1,1

76. Suppose A− λI is row-reduced to a triangular form B. Explain: The eigenvalues of
A are usually unrelated to the roots λ of |B| = 0.

Decomposition A = PDP−1

Compute the eigenpairs. If diagonalizable, then display D, P and Fourier’s
replacement equation.

77. A =

 7 4 0
−1 3 0
0 0 3


Ans: only 2 eigenpairs

Solution:The expected solution is by hand. It terminated when λ = 5 produced
rank(A− 5I) = 2, meaning only one free variable.

# Exercise 77, A=P.D.(1/P) failed

A:=<7,4,0|-1,3,0|0,0,3>^+; Eigenvectors(A);

# lambda = 5,5,3

# v1=[-2,1,0], v2=[0,0,0] (not an eigenvector), v3=[0,0,1]

Rank(A-5);

# rank = number lead vars = 2, nullity = number free vars = 1

.

78. A =

 1 6 0
2 −3 0
0 0 3


Ans:

(
3 0 0
0 3 0
0 0 −5

)
,

(
3 0 −1
1 0 1
0 1 0

)
Fourier equation: AP c⃗ = PDc⃗ .

Diagonalization
Report diagonalizable or not and explain why.

79. A =


1 2 0 0
2 1 0 0
0 0 3 1
0 0 0 −3


Ans: diagonalizable
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Solution:Cofactor expansion of |A−λI| along the last row produces the factored form
((1− λ)2 − 4)(3− λ)(−3− λ). Then λ = −1,−3, 3, 3. To decide diagonalizability we
only need to find the nullity of A− 3I, by row reduction.

A− 3I =


−2 2 0 0
2 −2 0 0
0 0 0 1
0 0 0 −6



7→


1 −1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 the RREF after several row operations.

Then rank(A − 3I) = 2, nullity(A − 3I) = 4 − rank(A − 3I) = 2 and matrix A is
diagonalizable.

# Exercise 79, Diagonalization

A:=<1,2,0,0|2,1,0,0|0,0,3,1|0,0,0,-3>^+;

Eigenvectors(A);

RowDimension(A)-Rank(A-3);

80. A =


1 2 0 0
2 1 0 0
0 0 3 1
0 0 0 3


Ans: not diagonalizable

Non-diagonalizable Matrices

81. Verify A =

(
1 2
−8 9

)
is not diagonalizable.

Solution:The eigenvalues: λ = 5, 5. To decide compute the nullity of A− 5I by row
operations.

A− 5I =

(
−4 2
−8 5

)
subtract 5 along the diagonal of A

rref(A− 5I) =

(
1 −1/2
0 0

)
after some row operations

Then rank(A − 6I) = 1, nullity(A − 5I) = 1. There is only one eigenvector for
λ = 5, because there is only one free variable. Conclusion: A is not diagonalizable.

82. Verify A =

(
1 2 0
−8 9 1
0 0 5

)
is not diagonalizable.

83. Invent a 3× 3 matrix which has exactly one eigenpair.

Solution:Let A =

(
0 1 0
0 0 1
0 0 0

)
. The eigenvalues are λ = 0, 0, 0. Then rank(A− 0I) = 2

and nullity(A− 0I) = 1. There is only one free variable hence only one eigenvector.
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84. Invent a 4× 4 matrix which has exactly two eigenpairs.

Fourier’s Heat Model
Define
v⃗ 1=sinπx, v⃗ 2=sin 2πx, v⃗ 3=sin 3πx
considered as vectors in the vector space V of twice continuously differentiable
functions on 0 ≤ x ≤ 1.

85. Verify that v⃗ 1, v⃗ 2, v⃗ 3 are independent vectors in V .

Solution:Apply Theorem 6.11 page 453: a finite list of distinct Euler atoms is inde-
pendent.

86. Verify that v⃗ 1, v⃗ 2, v⃗ 3 vanish at x = 0 and x = 1.

87. Define u(x) = sinπx (from v⃗ 1). Explain: Function u satisfies differential equation
d2u

dx2
+ π2u = 0.

Solution:The general solution of the harmonic oscillator x′′ + ω2x = 0 is x =
c1 cosωt+ c2 sinωt. Choose ω = π.

88. Write vector expression
c1e

−π2tv⃗ 1 + c2e
−4π2tv⃗ 2

+c3e
−9π2tv⃗ 3

as a scalar function u(t, x). Find initial heat distribution u(0, x). Explain how Fourier
replacement (re-scaling) constructs future state u(t, x) from initial state u(0, x).

9.2 Eigenanalysis Applications

Exercises 9.2 �
Discrete Dynamical Systems
Define matrix A via equation

y⃗ =
1

10

 5 1 0
3 4 3
2 5 7

 x⃗(1)

1. Find eigenpair packages of A.
Answers:

D=

 0.5 0 0
0 0.1 0
0 0 1


P=

 −1 1 1
0 −4 5
1 3 9


Solution:
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# Exercise 1, Discrete Dynamical Systems

with(LinearAlgebra):

A:=(1/10)*Matrix([[5,1,0],[3,4,3],[2,5,7]]);

B:=A-lambda*IdentityMatrix(3);

DD,P:=Eigenvectors(A);

# lambda = [1/2, 1, 1/10]

# v1=[-1, 0, 1], v2=[1/9, 5/9, 1], v3=[1/3, -4/3, 1]

factor(Determinant(B));

# -(1/20*(lambda-1))*(2*lambda-1)*(10*lambda-1)

2. Explain: A is a transition matrix.1

3. Assume y⃗ = Ax⃗ has period one year. Find the system state after two years.

Solution:Ax⃗ is the state after one year, A2x⃗ is after two years. Compute in maple:

A2 =


7
25

9
100

3
100

33
100

17
50

33
100

39
100

57
100

16
25


# Exercise 3, Discrete Dynamical Systems

with(LinearAlgebra):

A:=(1/10)*Matrix([[5,1,0],[3,4,3],[2,5,7]]);

X:=<x1,x2,x3>;

B:=A^2;

y:=B . X;

4. Explain: Anx⃗ is the system state after n periods.

Market Shares
Define matrix A via equation

y⃗ =
1

10

(
5 4 0
3 5 3
2 1 7

)
x⃗(2)

5. Find with software the eigenpairs of A given by equation 2.

Solution: The maple eigenvectors v1, v2, v have fractions. Multiply to clear fractions.
Then:

v⃗ 1 = 13 ∗ v1 =

12
15
13

 , v⃗ 2 = v2 =

−43
1

 , v⃗ 3 = v3 =

−10
1


# Exercise 5, Market shares

A:=(1/10)*Matrix([[5,4,0],[3,5,3],[2,1,7]]);

Eigenvectors(A);

# lambda = [1, 1/5, 1/2]

# v1=[12/13, 15/13, 1], v2=[-4, 3, 1], v3=[-1, 0, 1]

1Perron-Frobenius theory extensions in the literature apply to transition matrices. See the
Weierstrass Proof exercises.
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6. Compute A2, A3, A4 using software. Predict the limit of An as n approaches infinity.

7. Compute with software (rounded)

A10=

(
.30 .30 .30
.37 .38 .37
.32 .32 .33

)
(3)

Solution:

A10 =


0.3001953637 0.3005207480 0.2992188012

0.3749999616 0.3750000640 0.3749999616

0.3248046747 0.3244791880 0.3257812372


# Exercise 7, Market shares

A:=(1/10)*Matrix([[5,4,0],[3,5,3],[2,1,7]]);

B:=A^10;

evalf(B);# rounded to default number of digits

8. Let x⃗= 1
3

(
1
1
1

)
. Compute

A10x⃗ =

(
0.30
0.37
0.33

)
(rounded)

in two ways by calculator:
(1) Fourier replacement (3).
(2) Matrix multiply using (3).

Stochastic Matrices
Reference: Perron-Frobenius proof on page 715.

9. Establish the identity |A− λI| = |AT − λI|.
Solution:Determinant theory provides |B| = |BT | for any square matrix B and (C +
D)T = CT +DT for any two square matrices C,D.

Let B = A−λI. Then BT = (A−λI)T = AT − (λI)T = AT −λI. Apply the identity
|B| = |BT |. ■

10. Explain why A and AT have the same eigenvalues but not necessarily the same
eigenvectors.

11. Verify maxr(A) = ⟨w⃗ |w⃗ | · · · |w⃗ ⟩, where w⃗ has components wi = max{aij , 1 ≤ j ≤
n}.
Solution:Let B = maxr(A), which is the n × n matrix formed by replacing aij by
the largest element in row i, for i = 1, . . . , n and j = 1, . . . , n.

We are given vector w⃗ with components equal to the largest element in each row:

w⃗ =

 max{a1j , 1 ≤ j ≤ n}
...

max{anj , 1 ≤ j ≤ n}


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By definition, bij = max{aij , 1 ≤ j ≤ n} = wi. Therefore, each column of B is a
copy of vector w⃗ . ■

12. Verify maxr(A) = DO, where D is the diagonal matrix of row maxima and O is the
matrix of all ones.

Perron-Frobenius Theorem
Let A > 0 be n × n stochastic with unique eigenpair (1, w⃗ ), all wi > 0 and∑n

i=1wi = 1. Assume v⃗ ≥ 0⃗ ,
∑n

i=1 vi = 1 and δ = mini,j aij .

13. Apply inequality minr(A
n)v⃗ ≤ Anv⃗ ≤ maxr(A

n)v⃗ to prove limn→∞ Anv⃗ =(∑n
i=1 vi

)
w⃗ = w⃗ .

Solution:
Proof from Perron-Frobenius:
Part (a) of Perron-Frobenius Theorem 9.13 page 705 concludes limn→∞ An =

⟨w⃗ | · · · |w⃗⟩. Uniqueness was used to draw the conclusion. The definition of ma-
trix multiply gives

lim
n→∞

Anv⃗ = ⟨w⃗ | · · · |w⃗⟩v⃗ =

n∑
i−1

viw⃗ = w⃗

Proof using the inequality:
Apply proof details in Lemma 5a in the Perron-Frobenius proof: minr(A

n) and
maxr(A

n) converge by the calculus squeeze theorem to some matrix P .

Limit as n → ∞ across the inequality minr(A
n)v⃗ ≤ Anv⃗ ≤ maxr(A

n)v⃗ to obtain
inequality P v⃗ ≤ limn→∞ Anv⃗ ≤ P v⃗ , which implies limn→∞ Anv⃗ = P v⃗ .

Matrix P has identical elements in each row which means P = ⟨y⃗ | · · · |y⃗⟩ for some
vector y⃗ . Argue as in the proof of Lemma 5a that y⃗ = Ay⃗ and y⃗ > 0. So (1, y⃗ ) is
an eigenpair of A. In summary:

lim
n→∞

Anv⃗ = P v⃗ = (

n∑
i=1

vi)y⃗ = y⃗

It remains to prove y⃗ = w⃗ by uniqueness. First, y⃗ > 0⃗ was argued above. Second,
relation

∑n
i=1 vi = 1 implies

∑n
i=1 yi = 1 by Stochastic Matrix Properties Theorem

9.12 page 705 and limiting. Because (1, y⃗ ) is an eigenpair of A with properties y⃗ > 0
and

∑n
i=1 yi = 1 then y⃗ = w⃗ by uniqueness. ■

Brief Proof:
Because 0 ≤ Ak+1v⃗ − Ak+1+pv⃗ ≤ maxr(A

k+1)v⃗ − minr(A
k+1+p)v⃗ ≤

maxr(A
k+1)v⃗ − minr(A

k+1)v⃗ ≤ (1 − δ)kOv⃗ , then in the limit as p → ∞
Ak+1v⃗ − (

∑n
i=1 vi)w⃗ ≤ (1 − δ)kOv⃗ . Because

∑n
i=1 vi = 1, simplification shows

that each vector entry on the left is no greater than (1 − δ)k, which implies the
result. ■

14. Verify Euclidean norm inequality
∥Ak+1v⃗ − w⃗∥ ≤

√
n (1− δ)k
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Weierstrass Proof
These exercises establish existence of an eigenpair (1, v⃗ ) for stochastic matrix A
having only nonnegative entries.

Weierstrass Compactness Theorem

A sequence of vectors {v⃗ i}∞i=1 contained in a closed, bounded set K in Rn has a subsequence

converging in the vector norm of Rn to some vector v⃗ in K.

Define set K to be all vectors v⃗ with nonnegative components adding to 1.
Let v⃗ 0 be any element of K. Assume stochastic A with aij ≥ 0 and define

v⃗N = 1
N

∑N−1
j=0 Ajv⃗ 0.

15. Verify K is closed and bounded in Rn. Then prove λx⃗ + (1 − λ)y⃗ is in K for
0 ≤ λ ≤ 1 and x⃗ , y⃗ in K.

Solution:
Closed and Bounded.
Let u⃗ be the vector of all ones. The first requirement can be written as u⃗ · v⃗ = 1. A
convergent sequence whose terms v⃗ have nonnegative entries and satisfy u⃗ · v⃗ = 1
gives two relations for the sequence limit v⃗ ∗:

u⃗ · v⃗ ∗ = 1 and v∗i ≥ 0

So K is closed.

Set K is norm-bounded because ∥v⃗∥2 =
∑n

i−1 v
2
i ≤

∑n
i−1 vi = 1, due to inequality

0 ≤ vi ≤ 1.

Convexity.
Let 0 ≤ λ ≤ 1. Let x⃗ , y⃗ be in K. Let z⃗ = λx⃗ + (1− λ)y⃗ . To be proved:

(1) z⃗ ≥ 0⃗
(2)

∑n
i=1 zi = 1

Item (1): Because x⃗ ≥ 0⃗ and y⃗ ≥ 0⃗ then

z⃗ = λx⃗ + (1− λ)y⃗ ≥ λ0⃗ + (1− λ)0⃗ = 0⃗

Item (2):∑n
i=1 zi =

∑n
i=1 (λxi + (1− λ)yi)

= λ
∑n

i=1 xi + (1− λ)
∑n

i=1 yi

= λ(1) + (1− λ)(1) = 1
Convexity verified. ■

16. Prove identity
v⃗N+1 = λv⃗N + (1− λ)AN v⃗ 0

where λ = N
N+1 and then prove by induction that v⃗N is in K.

17. Verify all hypotheses in the Weierstrass theorem applied to {v⃗N}∞N=0. Applying the
theorem produces a subsequence {v⃗Np

}∞p=1 limiting to some v⃗ in K.

Solution:To prove: set K is closed and bounded and all sequence elements are in K.

Closed and Bounded.
Exercise 15 establishes K as closed and bounded.
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Sequence element v⃗N is in K.

Vector v⃗ 0 is given to belong to K. Matrix A is stochastic with nonnegative elements.
Stochastic Matrix Properties Theorem 9.12 page 705 shows that Av⃗ 0 is in K. Several
applications imply Aiv⃗ 0 is in K for i ≥ 0. Exercise 15 shows directly that v⃗ 2 =
1
2 (v⃗ 0 +Av⃗ 0) is in K. Induction on the convexity result of Exercise 15 provides: if

y⃗ i is in K and λi ≥ 0 with
∑k

i−1 λi = 1 then
∑k

i=1 λiy⃗ i is in K. This is called
generalized convexity. Apply generalized convexity with λi = (i+ 1)/N , 0 ≤ i ≤
N − 1. Then

∑N−1
i=0 λi = 1 and v⃗N = 1

N

∑N−1
i=0 Aiv⃗ 0 =

∑N−1
i=0 λiA

iv⃗ 0. Because
Aiv⃗ 0 is in K then v⃗N is in K. ■

18. Verify identity
v⃗N −Av⃗N = 1

N (v⃗ 0 −AN v⃗ 0).

19. Explain why Av⃗ = limp→∞ Av⃗Np . Then prove v⃗ = Av⃗ .

Solution:
Proof:
The limit is Av⃗ because function x⃗ → Ax⃗ is continuous from Rn to Rn. Applied
is the advanced calculus theorem which says that all subsequences of a convergent
sequence are also convergent. Also used: continuity is equivalent to sequential conti-
nuity.

Because v⃗ 0 and AN v⃗ 0 are in bounded setK, then their Euclidean norms are bounded
by some number M > 0. Compute:

v⃗N −Av⃗N = 1
N

(∑N−1
i=0 Aiv⃗ 0 −

∑N−1
i=0 Ai+1v⃗ 0

)
= 1

N

(
v⃗ 0 −AN v⃗ 0

)
The triangle inequality gives ∥v⃗N − Av⃗N∥ ≤ 1

N

(
∥v0∥+ ∥AN v⃗ 0∥

)
≤ 2M/N . Re-

place N by subsequence values Np, p = 1, . . . ,∞ and limit p → ∞ to conclude
v⃗ = limp→∞ v⃗Np = Av⃗ . ■

20. The claimed eigenpair (1, v⃗ ) has been found, provided v⃗ ̸= 0⃗ . Explain why v⃗ ̸= 0⃗ .

Coupled Systems
Find the coefficient matrix A. Identify as coupled or uncoupled and explain why.

21. x′ = 2x+ 3y, y′ = x+ y

Solution:Coupled. The matrix

(
2 3
1 1

)
is not diagonal.

22. x′ = 3y, y′ = x

23. x′ = 3x, y′ = 2y

Solution:Uncoupled. The matrix of coefficients is diagonal.

24. x′ = 3x, y′ = 2y, z′ = z
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Solving Uncoupled Systems
Solve for the general solution.

25. x′ = 3x, y′ = 2y

Solution:No linear algebra required. Both equations are growth-decay equations u′ =
au with solution u = u0e

at. Then: x = x0e
3t, y = y0e

2t.

26. x′ = 3x, y′ = 2y, z′ = z

Change of Coordinates
Given the change of coordinates y⃗ = Ax⃗ , find the matrix B for the inverse
change x⃗ = By⃗ .

27. y⃗ =

(
1 0 0
1 0 1
0 1 0

)
x⃗

Solution:The matrix is B = A−1 =


1 0 0

0 0 1

−1 1 0

.

# Exercise 27, Change of coordinates

A:=Matrix([[1,0,0],[1,0,1],[0,1,0]]);

B:=1/A;

# [[1, 0, 0], [0, 0, 1], [-1, 1, 0]]

28. y⃗ =

(
−1 1 0
1 1 0
0 0 1

)
x⃗

Constructing Coupled Systems
Given the uncoupled system and change of coordinates y⃗ = P x⃗ , find the coupled
system.

29. x′
1 = 2x1, x

′
2 = 3x2, P =

(
1 1
2 −1

)
Solution:Let D =

(
2 0
0 3

)
= matrix of coefficients for the uncoupled system. The

coupled system is u⃗ ′ = Au⃗ where u⃗ =

(
x
y

)
and AP = PD. Then A = PDP−1 =(

8
3 − 1

3

− 2
3

7
3

)
and the coupled system is


x′ =

8

3
x − 1

3
y

y′ = −2

3
x +

7

3
y
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# Exercise 29, Constructing Coupled Systems

P:=<1,-1|2,1>^+;

DD:=<2,0|0,3>^+;

A:=P.DD.(1/P);

<D(x),D(y)> = A . <x,y>;

30. x′
1 = x1, x

′
2 = −x2, P =

(
1 −1
2 1

)

Uncoupling a System
Change the given coupled system into an uncoupled system using the eigenanal-
ysis change of variables y⃗ = P x⃗ .

31. x′
1 = 2x1, x

′
2 = x1 + x2, x

′
3 = x3

Ans: P =

(
1 0 0
1 0 1
0 1 0

)
, y′1 = 2y1, y

′
2 = y2, y

′
3 = y3

Solution: The eigenvectors of coefficient matrix A are the columns of P , reported
above. The corresponding eigenvalues are 2, 1, 1.

# Exercise 31, Uncoupling a System

A:=<2,0,0|1,1,0|0,0,1>^+;;

Evalues,P:=Eigenvectors(A);

# Evalues = [2, 1, 1]

# P = [[1, 0, 0], [1, 0, 1], [0, 1, 0]]

DD:=(1/P).A.P;# Solve AP=PD for D

# DD = [[2, 0, 0], [0, 1, 0], [0, 0, 1]]

<D(y1),D(y2),D(y3)> = DD . <y1,y2,y3>;

# y_’=2y1, y2’=y2, y3’=y3

32. x′
1 = x1 + x2, x

′
2 = x1 + x2, x

′
3 = x3

Ans: P =

(
−1 1 0
1 1 0
0 0 1

)
, y′1 = 0, y′2 = 2y2, y

′
3 = y3

Solving Coupled Systems
Report the answers for x(t), y(t).

33. x′ = −x− 2y, y′ = −4x+ y

Solution:Eigenanalysis of A =

(
−1 −2

−4 1

)
is required. Use AP = PD.

Matrix P =

(
1 −1/2

1 1

)
. Matrix D = diag(−3, 3).

Then X⃗ = P Y⃗ , Y1 = ae−3t, Y2 = be3t, x = X1 = ae−3t − 1
2b e

3t, y = X2 =
a e−3t + b e3t.
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# Exercise 33, Solving Coupled Systems

A:=<-1,-2|-4,1>^+;

Lambda,P:=Eigenvectors(A);

DD:=DiagonalMatrix(Lambda);

# DD = [[-3, 0], [0, 3]]

# P = [[1, -1/2], [1, 1]]

# Warning: eigenpair order can change!

Y:=<a*exp(Lambda[1]*t),b*exp(Lambda[2]*t)>;

X:=P.Y;

# ans check

de:=diff(x(t),t)=A[1].vars,diff(y(t),t)= A[2].vars;

dsolve([de],[x(t),y(t)]);

q:=subs(x(t)=X[1],y(t)=X[2],[de]);

simplify(q);

34. x′ = 8x− y, y′ = −2x+ 7y

Eigenanalysis and Footballs
The exercises study the ellipsoid
17x2 + 8y2 − 12xy + 80z2 = 80.

35. Let A =

(
17 −6 0
−6 8 0
0 0 80

)
. Expand equation W⃗TAW⃗ = 80, where W⃗ has components

x, y, z.

Solution:Answer: 17x2 − 12xy + 8y2 + 80z2 = 80

Exercise 35, Eigenanalysis and Footballs

A:=Matrix([[17,-6,0],[-6,8,0],[0,0,80]]);

W:=<x,y,z>;

expand(W^+ . A . W=80);

# 7*x^2-12*x*y+8*y^2+80*z^2 = 80

36. Find the eigenpairs of

A =

(
17 −6 0
−6 8 0
0 0 80

)
.

37. Verify the semi-axis lengths 4, 2, 1.

Solution:The standard ellipsoid equation is
X2

a2
+

Y 2

b2
+

Z2

c2
= 1. Numbers a, b, c are

the semiaxis lengths in coordinate system X,Y, Z.

Use relations λ1 =
80

a2
, λ2 =

80

b2
, λ3 =

80

c2
. The order a, b, c depends on the eigenpairs

used to create the new X,Y, Z coordinate system.

The computations are possible by hand, but labor intensive. Computer algebra
system maple will be used.
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# Exercise 37, Eigenanalysis and Footballs

# Equation 7*x^2-12*x*y+8*y^2+80*z^2 = 80

# Standard form (X^2/16+Y^2/4+Z^2 = 1

A:=Matrix([[17,-6,0],[-6,8,0],[0,0,80]]);

Lambda,P:=Eigenvectors(A);

# Lambda=[[5, 20, 80]] or some other order

# P = [[1/2, -2, 0], [1, 1, 0], [0, 0, 1]]

# warning: eigenpairs can be in any order!

semiAxisLength:=proc(eqnRHS,LAMBDA) sqrt(eqnRHS/LAMBDA);end proc;

a:=semiAxisLength(80,Lambda[1]);

b:=semiAxisLength(80,Lambda[2]);

c:=semiAxisLength(80,Lambda[3]);

# Semiaxis lengths a,b,c = 4,2,1 for eigenvalue order 5,20,80

DD:=DiagonalMatrix(Lambda);

W:=<’X’,’Y’,’Z’>;

stdForm:=(W^+ . DD . W )/80 = 1;

38. Verify that the ellipsoid has semi-axis unit directions0
0
1

 , 1√
5

1
2
0

 , 1√
5

−21
0


The Ellipse and Eigenanalysis
The exercises study the ellipse
2x2 + 4xy + 5y2 = 24.

39. Let A =

(
2 2
2 5

)
. Expand equation W⃗TAW⃗ = 24, where W⃗ =

(
x
y

)
.

Solution:

W⃗TAW⃗ =

(
x
y

)T (
2 2
2 5

)(
x
y

)
=

(
x
y

)T (
2x+ 2y
2x+ 5y

)
= x2x+ 2y + y(2x+ 5y)

= 2x2 + 2xy + 2xy + 5y2

= 2x2 + 4xy + 5y2

40. Find the eigenpairs of A =

(
2 2
2 5

)
.

41. Verify the semi-axis lengths 2, 2
√
6.

Solution:The eigenpairs of A are

(
6,

(
1
2

))
,

(
1,

(
−2
1

))
. Let D = diag(5, 1). The

same equation 2x2 + 4xy + 5y2 = 24 in new coordinates X,Y is(
X
Y

)T (
6 0
0 1

)(
X
Y

)
= 24
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⇝

(
X
Y

)T (
6X
Y

)
= 24

⇝ 6X2/24 + Y 2/24 = 1

Then
√
4,
√
24 are the semiaxis lengths.

42. Verify that the ellipse has semi-axis unit directions

1√
5

(
1
2

)
, 1√

5

(
−2
1

)
.

Orthogonal Triad Computation
The exercises fill in details from page 711.
The ellipsoid equation: x2+4y2+xy+4z2=16 or x⃗TAx⃗=16,

A =

 1 1
2 0

1
2 4 0
0 0 4


43. Find the characteristic equation of A. Then verify the roots are 4, 5/2 +

√
10/2,

5/2−
√
10/2.

Solution:Characteristic equation A−λI = (4−λ)(((1−λ)(4−λ)− 1/4) by cofactor
expansion along row 3. Expand and factor:

(4− λ)(((1− λ)(4− λ)− 1/4) = (4− λ)(4− 5λ+ λ2 − 1
4 )

= (4− λ)(4− 5λ+ λ2 − 1
4 )

= 1
4 (λ− 4)(4λ2 − 20λ+ 15)

One root is λ = 4. Quadratic formula roots are λ = 1
2 ±

1
2

√
10.

44. Show the steps from rref to second eigenvector x⃗2:

rref =

 1 3−
√
10 0

0 0 1
0 0 0

,

x⃗2 =

√10−31
0



9.3 Advanced Topics in Linear Algebra

Exercises 9.3 �
Diagonalization
Find the eigenpair packages P and D in the relation AP = PD.

1. A =

(
−4 2
0 −1

)
Solution:

D =

(
−1 0

0 −4

)
, P =

(
2/3 1

1 0

)
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# Exercise 1, Diagonalization

A:=<-4,2|0,-1>^+;Lambda,P:=Eigenvectors(A);

DD:=DiagonalMatrix(Lambda);

# Lambda = [-1, -4]

# P = [[2/3, 1], [1, 0]]

2. A =

(
7 5

10 −7

)

3. A =

(
1 2
2 4

)
Solution:

D =

(
0 0

0 5

)
, P =

(
−2 1/2

1 1

)
# Exercise 3, Diagonalization

A:=<1,2|2,4>^+;Lambda,P:=Eigenvectors(A);

DD:=DiagonalMatrix(Lambda);

# Lambda = [0, 5]

# P = [[-2, 1/2], [1, 1]]

4. A =

(
1 0
2 −1

)

5. A =

 −1 0 3
3 4 −9
−1 0 3


Solution:

D =


4 0 0

0 2 0

0 0 0

, P =


0 1 3

1 3 0

0 1 1


# Exercise 5, Diagonalization

A:=<-1,0,3|3,4,-9|-1,0,3>^+;

Lambda,P:=Eigenvectors(A);

DD:=DiagonalMatrix(Lambda);

# Lambda = [4, 2, 0]

# P = [[0, 1, 3], [1, 3, 0], [0, 1, 1]]

6. A =

 1 1 0
1 1 0
0 0 −3



7. A =


1 1 0 1
1 1 0 1
0 0 −3 0
0 0 0 −1


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Solution:

D =


0 0 0 0

0 2 0 0

0 0 −1 0

0 0 0 −3

, P =


−1 1 −1/3 0

1 1 −1/3 0

0 0 0 1

0 0 1 0


# Exercise 7, Diagonalization

A:=<1,1,0,1|1,1,0,1|0,0,-3,0|0,0,0,-1>^+;

Lambda,P:=Eigenvectors(A);

DD:=DiagonalMatrix(Lambda);

# Lambda = [0, 2, -1, -3]

# P = [[-1,1,-1/3,0],[1,1,-1/3,0],[0,0,0,1],[0,0,1,0]]

8. A =


4 0 0 1
12 −2 0 0
0 0 −3 0
21 −6 1 0


Jordan’s Theorem
Given matrices P and T , verify Jordan’s relation AP = PT .

9. A =

(
−4 2
0 −1

)
, P = I, T = A.

Solution:AP = AI = A = IA = PT

10. A =

(
0 1
−2 3

)
, P =

(
1 0
1 1

)
, T =

(
1 1
0 2

)

Cayley-Hamilton Theorem

11. Verify that A =

(
a b
c d

)
satisfies

A2=(a+d)A−(ad− bc)

(
1 0
0 1

)
.

Solution:
LHS = A2

=

(
a b
c d

)(
a b
c d

)
=

(
a2 + bc ab+ bd
ac+ cd bc+ d2

)

RHS = (a+ d)A− (ad− bc)

(
1 0
0 1

)
= (a+ d)

(
a b
c d

)
− (ad− bc)

(
1 0
0 1

)
=

(
a2 + ad ab+ bd
ac+ cd ad+ d2

)
−
(

ad− bc 0
0 ad− bc

)
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=

(
a2 + bc ab+ bd
ac+ cd bc+ d2

)
Then LHS = RHS. ■
# Exercise 11, Diagonalization

A:=<a,b|c,d>^+;

A.A;

(a+d)*A-(a*d-b*c)*IdentityMatrix(2);

p:=simplify(%);

simplify(A.A-p);

12. Verify

(
1 0
2 1

)20

=

(
1 0
40 1

)
by induction using Cayley-Hamilton.

Gram-Schmidt Process
Find the Gram–Schmidt orthonormal basis from the given independent set.

13.

1
0
0

,

0
1
0

,

−10
1

.

Ans: Columns of I.

Solution:Notation is important for use of the Gram-Schmidt formulas. Follow nota-
tion x⃗ j , y⃗ k developed in subsection The Gram-Schmidt process. After the y⃗ k

are found then the final answer will be orthogonal unit vectors y⃗ k/∥y⃗ k∥.
Let

x⃗1 =

1
0
0

 , x⃗2 =

0
1
0

 , x⃗3 =

−10
1


The first two vectors are already of unit length and orthogonal. Therefore Gram-
Schmidt gives y⃗ 1 = x⃗1 and y⃗ 2 = x⃗2. It remains to find

y⃗ 3 = x⃗3 −
2∑

k=1

(vector shadow projection of x⃗3 onto y⃗ k)

The shadow projection formula is

Shadow projection of X⃗ onto a line with direction Y⃗ =
X⃗ · Y⃗
Y⃗ · Y⃗

Y⃗

The two shadow projections to be inserted into the answer for y⃗ 3 are:

Shadow projection of x⃗3 onto y⃗ 1 =
x⃗3 · y⃗ 1

y⃗ 1 · y⃗ 1
y⃗ 1 =

−1
1

 1
0
0

 =

 −10
0


Shadow projection of x⃗3 onto y⃗ 2 =

x⃗3 · y⃗ 2

y⃗ 2 · y⃗ 2
y⃗ 2 =

0

1

 0
1
0

 =

 0
0
0


Then

y⃗ 3 = x⃗3 −

 −10
0

−
 0

0
0

 =

 −10
1

−
 −10

0

 =

 0
0
1


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Because y⃗ 3 has unit length then y⃗ 1, y⃗ 2, y⃗ 3 are orthonormal. The Gram-Schmidt
orthonormal basis constructed from x⃗1, x⃗2, x⃗3 is the list of columns of the 3 × 3
identity matrix. ■

# Exercise 13, Gram-Schmidt answer check

x1:=<1,0,0>;x2:=<0,1,0>;x3:=<-1,0,1>;

GramSchmidt([x1,x2,x3]);

14.

 1
2
−1

,

2
0
3

,

0
4
1

.

15.


1
0
0
1

,


−1
0
2
1

,


0
1
2
0

,


0
0
−1
1

.

Solution:The answer is the list of columns of the 4 × 4 identity matrix. The paper
and pencil solution is computation-intensive, but possible in 5-10 minutes.

# Exercise 15, Gram-Schmidt answer check

V:=[<1,0,0,0>,<1,1,0,0>,<1,1,1,0>,<1,1,1,1>];

GramSchmidt(V);

16.


1
0
0
0

,


1
1
0
0

,


1
1
1
0

,


1
1
1
1

.

Ans: Columns of I.

Gram-Schmidt on Polynomials
Define V = span(1, x, x2) with inner product

∫ 1
0 f(x)g(x)dx. Find a Gram–

Schmidt orthonormal basis.

17. 1, 1 + x, x2

Solution:Answer: 1, x− 1/2, x2 − x+ 1/6

Details for Gram-Schmidt.
Let x⃗1 = 1, x⃗2 = 1 + x, x⃗3 = x2(an abuse of notation, but faster communication).
Then y⃗ 1 = 1 in Gram-Schmidt. Compute y⃗ 2:

y⃗ 2 = x⃗2 − (x⃗2 · y⃗ 1)y⃗ 1/(y⃗ 1 · y⃗ 1)

= 1 + x− (
∫ 1

0
(1 + x)(1)dx)(1)(

∫ 1

0
(1)2dx)

= 1 + x−
(
x+ x2/2

∣∣1
x=0

)
(1)(1)

= 1 + x− (3/2) (1)(1)

= x− 1/2

Check: y⃗ 1 = 1 and y⃗ 2 = x − 1/2 are independent and
∫ 1

0
y⃗ 1y⃗ 2dx =

∫ 1

0
(1)(x −

1/2)dx = 0: they are orthogonal.

Then y⃗ 1 = 1, y⃗ 2 = x− 1/2 in Gram-Schmidt. Compute y⃗ 3:

y⃗ 3 = x⃗3 − (x⃗3 · y⃗ 1)y⃗ 1/(y⃗ 1 · y⃗ 1)− (x⃗3 · y⃗ 2)y⃗ 2/(y⃗ 2 · y⃗ 2)
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= x2 − (
∫ 1

0
x⃗3y⃗ 1dx)y⃗ 1/(y⃗ 1 · y⃗ 1)− (

∫ 1

0
x⃗3y⃗ 2dx)y⃗ 2/(

∫ 1

0
y⃗ 2

2dx)

= x2 − (
∫ 1

0
x2dx)(1)/(1)− (

∫ 1

0
x2(x− 1/2)dx)(x− 1/2)/(

∫ 1

0
(x− 1/2)2dx)

= x2 − (1/3)(1)/(1)− (1/4− 1/6)(x− 1/2)/(1/12)

= x2 − 1/3− (x− 1/2)

= x2 − x+ 1/6

Check:
∫ 1

0
y⃗ 1y⃗ 3dx =

∫ 1

0
(x2 − x + 1/6)dx = 1/3 − 1/2 + 1/6 = 0,

∫ 1

0
y⃗ 2y⃗ 3dx =∫ 1

0
(x− 1/2)(x2 − x+ 1/6)dx = 0. Then y⃗ 3 is orthogonal to y⃗ 1 and y⃗ 2. Conclusion:

1, x− 1/2, x2 − x+ 1/6 are pairwise orthogonal vectors in V .

A Warning about method.
A commonly attempted technique uses the mapping

T : a+ bx+ cx2 →

 a
b
c


The mapping allows the polynomial computation to be computerized, but it also allows
efficient hand computation in low dimensions. The mapping is called an isomorphism,
meaning T is a one-to-one linear map from V onto R3. A basis constructed from the images

T (1) =

 1
0
0

 , T (1 + x) =

 1
1
0

 , T (x2) =

 0
0
1


will map by the inverse T−1 into a basis in V . Because Gram-Schmidt vectors y⃗ k are
orthonormal then they form a basis of R3. Therefore, the inverse mapping provides a basis
for V .

Normal Gram-Schmidt on paper will produce vectors y⃗ 1, y⃗ 2, y⃗ 3 from

x⃗1 =

 1
0
0

 , x⃗2 =

 1
1
0

 , x⃗3 =

 0
0
1


The vectors y⃗ 1, y⃗ 2, y⃗ 3 are the columns of the identity matrix. The inverse images are the
polynomials

p1 = 1 = T−1

 1
0
0

 , p2 = x = T−1

 0
1
0

 , p3 = x2 = T−1

 0
0
1


The process looks like it worked. But it fails. The polynomials p1, p2, p3 are independent

but they fail to be orthogonal with inner product ⟨f, g⟩ =
∫ 1

0
fgdx.

18. 1− x, 1 + x, 1 + x2

Gram-Schmidt: Coordinate Map
Define V = span(1, x, x2) with inner product

∫ 1
0 f(x)g(x)dx. The coordinate

map is

T : c1 + c2x+ c3x
2 →

c1
c2
c3


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19. Find the images of 1− x, 1 + x, 1 + x2 under T .

Solution:See Exercise 17 for a warning using the coordinate map with Gram-Schmidt.

The images are  1
−1
0

 ,

 1
1
0

 ,

 1
0
1



20. Assume column vectors x⃗1, x⃗2, x⃗3 in R3 orthonormalize under Gram-Schmidt to
u⃗1, u⃗2, u⃗3. Are the pre-images T−1(u⃗1), T

−1(u⃗2), T
−1(u⃗3) orthonormal in V ?

Solution:Hint: Read the solution to Exercise 17.

Shadow Projection
Compute shadow vector (x⃗ · u⃗)u⃗ for direction u⃗ = v⃗

|v⃗ | . Illustrate with a hand–
drawn figure.

21. x⃗ =

(
1
−1

)
, v⃗ =

(
1
2

)
Ans: − 1

5

(
1
2

)
Solution:Compute u⃗ = v⃗/∥v⃗∥ = 1√

5

(
1
2

)
. Then the shadow projection = (x⃗ ·u⃗ )u⃗ =((

1
−1

)
·
(
1
2

))
1√
5

1√
5

(
1
2

)
=
−1
5

(
1
2

)
.

22. x⃗ =

(
1
1

)
, v⃗ =

(
1
3

)

23. x⃗ =

1
1
2

, v⃗ =

1
0
2


Ans:

1
0
2


Solution:Compute u⃗ = v⃗/∥v⃗∥ =

1√
5

1
0
2

. Then the shadow projection = (x⃗ ·

u⃗)u⃗ =

1
1
2

 ·
1
0
2

 1√
5

1√
5

1
0
2

 =
5

5

1
0
2

 =

1
0
2

.

24. x⃗ =


1
1
2
1

, v⃗ =


1
0
2
1


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Orthogonal Projection
Find an orthonormal basis {u⃗k}nk=1 for V = span(1+x, x, x+x2), inner product∫ 1
0 f(x)g(x)dx. Then compute the orthogonal projection p⃗ =

∑n
k=1(x⃗ · u⃗k)u⃗k.

25. x⃗ = 1 + x+ x2

Solution:Vector x⃗ is in V so p⃗ = x⃗ .

The basis computation follows. We’ll answer-check p⃗ = 1 + x+ x2 = x⃗ .

Exercise 17 gives orthogonal basis 1, x−1/2, x2−x+1/6 for span(1, x, x2). Because
V = span(1 + x, x, x+ x2) = span(1, x, x2) then the same basis can be used in this
exercise. An orthonormal basis is required, so unitize the three vectors to obtain
{u⃗k}3k=1:

u⃗1 =
1√∫ 1

0

12dx

= 1

u⃗2 =
x− 1/2√∫ 1

0

(x− 1/2)2dx

=
√
12(x− 1/2)

u⃗3 =
x2 − x+ 1/6√∫ 1

0

(x2 − x+ 1/6)2dx

=
√
180(x2 − x+ 1/6)

To compute the orthogonal projection of x⃗ = 1+x+x2 requires three inner products
to be computed.

x⃗ · u⃗1 =
∫ 1

0
(1 + x+ x2)(1) dx = 1 + 1/2 + 1/3 = 11/6

x⃗ · u⃗2 =
∫ 1

0
(1 + x+ x2)(x− 1/2)

√
12 dx = 1/

√
3

x⃗ · u⃗3 =
∫ 1

0
(1 + x+ x2)(

√
180(x2 − x+ 1/6)) dx =

√
5/30

Then p⃗ = (11/6)u⃗1 + (1/
√
3)u⃗2 + (

√
5/30)u⃗3 = 1 + x+ x2 = x⃗ . ■

26. x⃗ = 1 + 2x+ x2 + x3

Orthogonal Projection: Theory

27. Prove that the orthogonal projection ProjV (x⃗ ) on V = span{Y⃗} is the vector
shadow projection projY⃗ (x⃗ ).

Solution: Let u⃗ = Y⃗/∥Y⃗∥, a unit vector. Then V has orthonormal basis {u⃗} and
ProjV (x⃗ ) = (x⃗ · u⃗ )u⃗ . The shadow projection of x⃗ onto the line determined by Y⃗
is:

projY⃗ (x⃗ ) =
x⃗ · Y⃗
Y⃗ · Y⃗

Y⃗

=

(
x⃗ · Y⃗

∥Y⃗∥

)
Y⃗

∥Y⃗∥
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= (x⃗ · u⃗)u⃗

= ProjV (x⃗ ) ■

28. (Gram-Schmidt Construction)

Define x⃗⊥
j = x⃗ j −ProjWj−1

(x⃗ j),
and Wj−1 = span(x⃗1, . . . , x⃗ j−1).
Prove these properties.

(a) Subspace Wj−1 is equal to the Gram-Schmidt Vj−1 = span(u⃗1, . . . , u⃗ j).

(b) Vector x⃗⊥
j is orthogonal to all vectors in Wj−1.

(c) The vector x⃗⊥
j is not zero.

(d) The Gram-Schmidt vector is

u⃗ j =
x⃗⊥

j

∥x⃗⊥
j ∥

.

Near Point Theorem
Find the near point to the subspace V .

29. x⃗ =

(
1
1

)
, V = span

((
1
2

))
Solution:The near point is the orthogonal projection of x⃗ onto V , which is the same

as the shadow projection of x⃗ onto Y⃗ =

(
1
2

)
. Compute ∥Y⃗∥ =

√
5 then the near

point =
x⃗ · Y⃗
∥Y⃗∥2

Y⃗ =
3

5

(
1
2

)
.

30. x⃗ =

(
1
1

)
, V = span

((
0
1

))

31. x⃗=

1
1
0

,V= span

1
2
0

 ,

1
0
1


Solution:The near point is 1

9

 7
10
2

. Computation follows.

Compute an orthonormal basis u⃗1, u⃗2 for V spanned by

x⃗1 =

1
2
0

, x⃗2 =

1
0
1

. Details:

y⃗ 1 = x⃗1 =

1
2
0


u⃗1 =

y⃗ 1

∥y⃗ 1∥
= 1√

5

1
2
0


1526



9.3 Advanced Topics in Linear Algebra

y⃗ 2 = x⃗2 −
x⃗2 · y⃗ 1

y⃗ 1 · y⃗ 1
y⃗ 1

=

1
0
1

−
1

0
1

 ·
1
2
0

1
2
0


=

1
0
1

− 1
5

1
2
0


=

 4/5
−2/5
1


u⃗2 =

y⃗ 2

∥y⃗ 2∥
=

√
5

15

 4
−2
5


Then the near point is the orthogonal projection

ProjV (x⃗ ) = (x⃗ · u⃗1)u⃗1 + (x⃗ · u⃗2)u⃗2

=

 7/9
10/9
2/9


# Exercise 31, Near Point Theorem

x1:=<1,2,0>;x2:=<1,0,1>;

y1:=x1;

u1:=y1/sqrt(y1.y1);

y2:=x2-(x2.y1)*y1/(y1.y1);

u2:=y2/sqrt(y2.y2);

u1.u2;u1.u1;u2.u2;# check orthonormal

X:=<1,1,0>;NearPoint:=(X.u1)*u1+(X.u2)*u2;

# NearPoint=[7/9, 10/9, 2/9]

32. x⃗=

1
0
1

,V= span

1
1
0

 ,

1
1
1


QR-Decomposition
Give A, find an orthonormal matrix Q and an upper triangular matrix R such
that A = QR.

33. A=


5 9
1 7
1 5
3 5

, Ans: R =

(
6 12
0 6

)

Solution:Q =


5/6 −1/6

1/6 5/6

1/6 1/2

1/2 −1/6


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The details by pencil and paper involve Gram-Schmidt on the columns of A. The k
columns of A must be independent for success. The method first writes the Gram-
Schmidt identities for y⃗ 1, . . . , y⃗ k in terms of x⃗1, . . . , x⃗k. Symbol u⃗ i = y⃗ i/∥y⃗ i∥.
Then find (see Theorem 9.26, Matrices Q and R in A = QR)

R =


∥y1∥ u⃗1 · x⃗2 u⃗1 · x⃗3 · · · u⃗1 · x⃗n

0 ∥y2∥ u⃗2 · x⃗3 · · · u⃗2 · x⃗n

...
...

... · · ·
...

0 0 0 · · · ∥yn∥

 .

Equation A = QR is solved for Q = AR−1. Compute R−1 with row operations, then
find Q by matrix multiply.

# Exercise 33, QR-Decomposition

A:=< 5,9 | 1,7 | 1,5 | 3,5 >^+;

Q,R:=QRDecomposition(A);

34. A=


2 1
2 0
2 0
2 1

, Ans: R =

(
4 1
0 1

)

35. A=


1 0 0
1 1 0
1 1 0
1 0 0

, Ans: R=

(
2 1 0
0 1 0

)

Solution:Q =


1/2 −1/2

1/2 1/2

1/2 1/2

1/2 −1/2


# Exercise 35, QR-Decomposition

A:=< 1,0,0 | 1,1,0 | 1,1,0 | 1,0,0 >^+;

Q,R:=QRDecomposition(A);

36. A=


1 0 0
1 1 1
1 1 1
1 0 0

, Ans: R=

(
2 1 1
0 1 1

)

Linear Least Squares: 3× 2

Let A=

2 0
0 2
1 1

, b⃗=

1
0
5

.

37. Find the normal equations for Ax⃗ = b⃗ .

Solution:The normal equation refers to ATAx⃗ = AT b⃗ . Applications generally
require the columns of A to be independent. The m×n matrix A generally has m is
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much larger than n: there are more rows than columns. In applications, the number
of rows can be the number of data samples and the number of columns can represent
a short list of parameters.

ATA =

(
2 0 1
0 2 1

) 2 0
0 2
1 1

 =

(
5 1
1 5

)

AT b⃗ =

(
2 0 1
0 2 1

) 1
0
5

 =

(
7
5

)
The normal equation:(

5 1
1 5

)
x⃗ =

(
7
5

)
# Exercise 37, Linear Least Squares: 3 x 2

A:=<2,0 | 0,2 | 1,1>^+;

A^+ . A;

b:=<1,0,5>;

A^+ . b;

38. Solve Ax⃗ = b⃗ by least squares.

Linear Least Squares: 4× 3

Let A=


4 0 1
1 0 1
0 1 0
1 1 1

, b⃗=


3
0
0
0

.

39. Find the normal equations for Ax⃗ = b⃗ .

Solution:


18 1 6

1 2 1

6 1 3

 x⃗ =

 12
0
3


# Exercise 39, Linear Least Squares: 4 x 3

A:=<4,0,1 | 1,0,1 |0,1,0 | 1,1,1>^+;

A^+ . A;

b:=<3,0,0,0>;

A^+ . b;

LeastSquares(A,b);# Answer check to Exercise 40

40. Solve Ax⃗ = b⃗ by least squares.

Orthonormal Diagonal Form
Let A = AT . The spectral theorem implies AQ = QD where D is diagonal
and Q has orthonormal columns. Find Q and D.
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41. A=

(
7 2
2 4

)
Solution:D =

(
8 0
0 3

)
, P =

(
2 −1/2
1 1

)
, Q =

1√
5

(
2 −1

1 2

)
.

The plan: find D and P for matrix A by eigenanalysis. Matrix D is the correct
diagonal matrix of eigenvalues. Check that A is symmetric: AT − A. Then the
spectral theorem applies and success is guaranteed to find the orthonormal matrix Q
from P . Matrix Q contains the orthonormal vectors u⃗1, u⃗2 constructed by Gram-
Schmidt from the columns x⃗1, x⃗2 of matrix P .

Details.

Computation by hand or computer gives D =

(
8 0
0 3

)
and P =

(
2 −1/2
1 1

)
.

Then x⃗1 =

(
2
1

)
, x⃗2 =

(
−1/2
1

)
are the columns of P to which Gram-Schmidt will

be applied. We check first that x⃗1 · x⃗2 = 0, then y⃗ 1 = x⃗1, y⃗ 2 = x⃗2 and Gram-

Schmidt has no details except to unitize the two answers, making u⃗1 =
1√
5

(
2
1

)
,

u⃗2 =
1√
5/4

(
−1/2
1

)
=

1√
5

(
−1
2

)
.

Then

Q = ⟨u⃗1|u⃗2⟩ =
1√
5

(
2 −1

1 2

)
# Exercise 41, Orthonormal Diagonal Form

A:=<7,2|2,4>^+;

Lambda,P:=Eigenvectors(A);

# Lambda = [8,3]

# P = [[2, -1/2], [1, 1]]

DD:=DiagonalMatrix(Lambda);

L:=[Column(P,1),Column(P,2)];

q:=GramSchmidt(L,normalized);

Q:=Matrix(q);

Q^+ . Q; # Check orthogonal Q: Q^TQ=I

A.Q-Q.DD; # Check identity: AQ=QD

42. A=

(
1 5
5 1

)

43. A=

(
1 5 0
5 1 0
0 0 2

)
Ans: Eigenvalues −4, 2, 6, orthonormal eigenvectors

1√
2

−11
0

,

minicolvectorC001, 1√
2

1
1
0


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Solution:D =

 −4 0 0
0 2 0
0 0 6

, Q =
√
2


−1 0 1

1 0 1

0
√
2 0

.

# Exercise 43, Orthonormal Diagonal Form

A:=<1,5,0|5,1,0|0,0,2>^+;

Lambda,P:=Eigenvectors(A);

# Lambda = [-4, 2, 6]

# P = Matrix([[-1, 0, 1], [1, 0, 1], [0, 1, 0]])

DD:=DiagonalMatrix(Lambda);

L:=[Column(P,1),Column(P,2)];

q:=GramSchmidt(L,normalized);

Q:=Matrix(q);

Q^+ . Q; # Check orthogonal Q: Q^TQ=I

A.Q-Q.DD; # Check identity: AQ=QD

44. A=

(
1 5 0
5 1 1
0 1 1

)

Eigenpairs of Symmetric Matrices:
Spectral Theorem.

45. Let A=

(
3 −1 1
−1 3 −1
1 −1 3

)
. Eigenvalues are 2, 2, 5. Find three orthonormal eigenpairs.

Solution:Eigenanalysis of A gave eigenpair packages P =

(
−1 1 1
0 1 −1
1 0 1

)
and D =(

2 0 0
0 2 0
0 0 5

)
. The orthonormal eigenvectors are found by Gram-Schmidt from the

columns of P , reported below as the columns of Q:

Q =


− 1

2

√
2 1

6

√
6 1

3

√
3

0 1
3

√
6 − 1

3

√
3

1
2

√
2 1

6

√
6 1

3

√
3


# Exercise 45, Eigenpairs of Symmetric Matrices

A:=<3,-1,1|-1,3,-1|1,-1,3>^+;

Lambda,P:=Eigenvectors(A);

# Lambda = [2, 2, 5]

# P = Matrix([[-1, 1, 1], [0, 1, -1], [1, 0, 1]])

DD:=DiagonalMatrix(Lambda);

L:=[seq( Column(P,j), j=1..RowDimension(A) )];

q:=GramSchmidt(L,normalized);

Q:=Matrix(q);

Q^+ . Q; # Check orthogonal Q: Q^TQ=I

A.Q-Q.DD; # Check identity: AQ=QD
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46. Let A=

(
5 −1 1
−1 5 −1
1 −1 5

)
. Then |A−λI|=(4 − λ)2(7 − λ). Find three orthonormal

eigenpairs.

47. Let A=

(
6 −1 1
−1 6 −1
1 −1 6

)
. Eigenvectors

(
1
0
−1

)
,

(
1
1
0

)
,

(
1
−1
1

)
are for λ = 5, 5, 8. Illus-

trate AQ = QD with D diagonal and Q orthogonal.

Solution: The plan is similar to Exercise 45: apply Gram-Schmidt to find orthonor-
mal eigenvectors, then insert the answers into matrix Q. Then

D = diag(5, 5, 8) and Q =

 − 1
2

√
2 1

6

√
6 1

3

√
3

0 1
3

√
6 − 1

3

√
3

1
2

√
2 1

6

√
6 1

3

√
3

array


# Exercise 47, Eigenpairs of Symmetric Matrices

A:=<6,-1,1|-1,6,-1|1,-1,6>^+;

Lambda,P:=Eigenvectors(A);

# Lambda = [5, 5, 8]

# P = Matrix([[-1,1,1],[0,1,-1],[1,0,1]])

DD:=DiagonalMatrix(Lambda);

L:=[seq( Column(P,j), j=1..RowDimension(A) )];

q:=GramSchmidt(L,normalized);

Q:=Matrix(q);

Q^+ . Q; # Check orthogonal Q: Q^TQ=I

A.Q-Q.DD; # Check identity: AQ=QD

48. Matrix A for λ = 1, 1, 4 has orthogonal eigenvectors(
1
1
0

)
,

(
1
0
−1

)
,

(
1
−1
1

)
.

Find A and directly verify A = AT .

Singular Value Decomposition
Find the SVD A = UΣV T .

49. A=

−1 1
−2 2
2 −2

.

Ans: U=3× 3, V=2× 2. Matrix

Σ=

3
√
2 0

0 0
0 0

=3× 2, the size of A.

Solution:Details:

Let A =

 −1 1
−2 2
2 −2

.

Compute

B = ATA
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=

(
−1 −2 2
1 2 −2

) −1 1
−2 2
2 −2

( 9 −9
−9 9

)

=

(
9 −9
−9 9

)
.

The eigenvalues of B are 0, 18. Then the singular values are 0, 3
√
2, to be reordered

largest to smallest: 3
√
2, 0. The size of Σ is 3× 2:

Σ =

 3
√
2 0
0 0
0 0


The eigenpairs of B = ATA =

(
9 −9
−9 9

)
are

(
0,

(
1
1

))
,

(
18,

(
−1
1

))
The eigenvectors are orthogonal. Unitize them to obtain

v⃗ 1 =
1√
2

(
1
1

)
, v⃗ 2 =

1√
2

(
−1
1

)
, V =

1√
2

(
1 −1
1 1

)

Define u⃗1 =
1√
18

Av⃗ 1 = 1
3

(
1
2
−2

)
. Define C = ⟨u⃗1|I⟩ where I is the 3× 3 identity

matrix. Find rref(C) and select the pivot columns of C as the columns of U :

U =

 1/3 1 0 0
2/3 0 1 0
−2/3 0 0 1

array


To check the answers, compute UΣV T , which should equal A.

UΣV T =

 1/3 1 0
2/3 0 1
−2/3 0 0

 3
√
2 0
0 0
0 0

 1√
2

(
−1 1
1 1

)

=

 −1 1
−2 2
2 −2

 = A
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# Exercise 49, Singular Value Decomposition

A:=<-1,1|-2,2|2,-2>^+;

B:=A^+ . A;

Lambda,P:=Eigenvalues(B);map(sqrt,Lambda);

# reorder singular values to 3*sqrt(2), 0,

# then make Sigma 3x2

Sigma:=Matrix([[3*sqrt(2),0],[0,0],[0,0]]);

#

# Compute orthogonal matrix V

v2:=(1/sqrt(2))*<1,1>;v1:=(1/sqrt(2))*<-1,1>;

V:=<v1 | v2>;

#

# Compute orthogonal matrix U

u1:=(1/sqrt(18))*A.v1;

C:=<u1 | IdentityMatrix(3)>;

ReducedRowEchelonForm(C);

U:=C[1..3,1..3];# Select pivot columns of C

L:=[seq(Column(U,j),j=1..3)];

q:=GramSchmidt(L);

U:=Matrix(q);# Columns of U are orthonormal

#

# Answer check

A-U.Sigma.V^+;# Expect zero

#

# Answer check with package LinearAlgebra[SingularValues]

# Warning: answers are floats, not symbolic

S:=SingularValues(A);# answer check singular values

U, Vt := SingularValues(A, output = [’U’, ’Vt’]);# float answers

Solution:

The support in maple for the svd has computation limited to floating point and
limited symbolic support, whereas mathematica has full support. The list of singular
values returned by maple is in the wrong order, causing manual construction of Σ.
Access to mathematica in 2022 is free via

https://www.wolframalpha.com/
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50. A=

−1 1
−2 2
1 1

.

Ans: σ1 =
√
10, σ2 =

√
2.

51. A=

−3 3
0 0
1 1

.

Solution:The method follows Exercise 49.

Let B = ATA =

(
10 −8
−8 10

)
. The eigenpairs of B are

(
18,

(
−1
1

))
,

(
2,

(
1
1

))

The eigenvalues of B are 18, 2. Then the singular values are 3
√
2,
√
2, to be re-

ordered largest to smallest: 3
√
2,
√
2. Define 3× 2 matrix
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Σ =

 3
√
2 0

0
√
2

0 0


The eigenvectors of B are orthogonal. Unitize them to obtain

v⃗ 1 =
1√
2

(
−1
1

)
, v⃗ 2 =

1√
2

(
1
1

)
, V =

1√
2

(
−1 1
1 1

)

Define u⃗1 =
1√
18

Av⃗ 1 =

(
1
0
0

)
. Define u⃗2 =

1√
2
Av⃗ 2 =

(
0
0
1

)
. Define C = ⟨u⃗1|u⃗2|I⟩

where I is the 3 × 3 identity matrix. Find rref(C) and identify the pivot columns
1,2,4. These columns of C are the columns of U :

U =

 1 0 0
0 0 1
0 1 0


To check the answers, compute UΣV T , which should equal A.

UΣV T =

 1 0 0
0 0 1
0 1 0

 3
√
2 0

0
√
2

0 0

 1√
2

(
−1 1
1 1

)

=

 −3 3
0 0
1 1

 = A

# Exercise 51, Singular Value Decomposition

A:=<-3,3|0,0|1,1>^+;

B:=A^+ . A;

Lambda,P:=Eigenvalues(B);map(sqrt,Lambda);

# reorder singular values to 3*sqrt(2), sqrt(2),

Sigma:=Matrix([[3*sqrt(2),0],[0,sqrt(2)],[0,0]]);# size 3x2

# Compute orthogonal matrix V

v2:=(1/sqrt(2))*<1,1>;v1:=(1/sqrt(2))*<-1,1>;

V:=<v1 | v2>;

# Compute orthogonal matrix U

1:=(1/sqrt(18))*A.v1;u2:=(1/sqrt(2))*A.v2;

C:=<u1 | u2 | IdentityMatrix(3)>;

ReducedRowEchelonForm(C);# pivots 1,2,4

U:=C[1..3, [1,2,4] ];# Select pivot columns 1,2,4 of C

# Cols are already orthonormal, no Gram-Schmidt!

A-U.Sigma.V^+;# Expect zero

52. A=

1 1
0 1
1 −1

.

Ellipse and the SVD
Repeat Example 9.17, page 736 for the given ellipse equation.
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53. 50x2 − 30xy + 10y2 = 2500

Solution: Let B =

(
50 −15
−15 10

)
. Then BP = PD with eigenpair packages

D =

(
5 0
0 55

)
, P =

(
1/3 −3
1 1

)
Unitize the orthogonal eigenvectors in P and define

Q =
1√
10

(
1 −3
3 1

)
Let u⃗ =

(
x
y

)
= Qw⃗ with w⃗ =

(
X
Y

)
. Then

50x2 − 30xy + 10y2 = 2500

⇝ w⃗TDw⃗ = 2500

⇝ ⟨X|Y ⟩
(

5 0
0 55

)(
X
Y

)
= 2500

⇝
1

500
X2 +

11

500
Y 2 = 1

The semiaxis lengths are 10
√
5 and 10

√
55/11. ■

54. 40x2 − 16xy + 10y2 = 2500

Mapping and the SVD
Reference: Example 9.18, page 738.

Let w⃗=

(
x
y

)
=c1v⃗ 1+c2v⃗ 2,

U= 1√
5

(
1 2
2 −1

)
, Σ=

(
10 0
0 5

)
, V= 1√

5

(
1 −2
2 1

)
,

A=

(
−2 6
6 7

)
. Then A=UΣV T .

55. Verify ∥w⃗∥2 = w⃗ · w⃗ = c21 + c22.

Solution:∥w⃗∥2 = w⃗ · w⃗ = (c1v⃗ 1 + c2v⃗ 2) · (c1v⃗ 1 + c2v⃗ 2) = c21v⃗ 1 · v⃗ 1 +2c1c2v⃗ 2 · v⃗ 1 +
c22v⃗ 2 · v⃗ 2 = c21(1) + 2c1c2(0) + c22(1) due to v⃗ 1, v⃗ 2 given orthonormal (unit vector,
pairwise orthogonal). Then ∥w⃗∥2 = w⃗ · w⃗ = c21 + c22. ■

56. Verify V T w⃗=

(
c1
c2

)
from the general identity V TV = I. Then show that

ΣV T w⃗=

(
10c1
5c2

)
.

Therefore, coordinate map w⃗ →
(
c1
c2

)
undergoes re-scaling by 10 in direction v⃗ 1 and 5 in direction

v⃗ 2.

57. Find the angle θ of rotation for V T and the reflection axis for U .

Solution:
The angle θ of rotation for V T .
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Angle θ must satisfy(
cos θ sin θ
− sin θ cos θ

)
= V T = 1√

5

(
1 2
−2 1

)
A clever shortcut is to use the isomorphism between 2 × 2 matrices and complex
numbers:

a+ bi→
(

a b
−b a

)
Then cos θ = 1/

√
5, sin θ = 2/

√
5 or tan θ = 2 with θ in quadrant 1. Conclusion:

θ = arctan(2) = 1.107148718 radians = 63.43494883 degrees, proper rotation about
the origin clockwise.

Line of reflection for U .

Let R = U = 1√
5

(
1 2
2 −1

)
. Then |R| = −1 and RTR = I, so it is an improper

rotation, which is a reflection across a line of symmetry. The line of reflection has
equation y = mx+b for some slope m and intercept b. Points of the line do not move
under the action R. Choose two points on the line, say x = 1 and x = 2. Then the
following equations hold:

w⃗ =

(
1

m+ b

)
for x = 1

w⃗ = Rw⃗(
1

m+ b

)
= R

(
1

m+ b

)
= 1√

5

(
1 2
2 −1

)(
1

m+ b

)
= 1√

5

(
1 + 2m+ 2b

2−m− b

)

The vectors must match entries, giving two equations in two unknowns:{ √
5 = 1 + 2m+ 2b√
5(m+ b) = 2−m− b

w⃗ =

(
1

m+ b

)
for x = 2

w⃗ = Rw⃗(
2

2m+ b

)
= R

(
2

2m+ b

)
= 1√

5

(
1 2
2 −1

)(
2

2m+ b

)
= 1√

5

(
1 + 4m+ 2b
4− 2m− b

)
Match vector entries to give two equations in two unknowns:{

2
√
5 = 1 + 2m+ 2b√
5(2m+ b) = 4− 2m− b

Solve the four equations for m =
−1 +

√
5

2
, b = 0. The line of reflection is y = mx+0,
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which is y = (−1 +
√
5)x/2. ■

# Exercise 57, Mapping and the SVD

R:=(1/sqrt(5))*Matrix([[1,2],[2,-1]]);

w1:=<1,m+b>;A1:=R.w1-w1;

w2:=<2,2*m+b>;A2:=R.w2-w2;

solve({A1[1]=0,A1[2]=0,A2[1]=0,A2[2]=0},[m,b]);

# reflection line: y = mx+b, m=(-1+sqrt(5))/2, b=0

58. Assume |w⃗∥ = 1, a point on the unit circle. Is Aw⃗ on an ellipse with semi-axes
10 and 5? Justify your answer geometrically, no proof expected. Check your answer
with a computer plot.

Solution:
Proof: Let A = UΣV T . Let vector w⃗ be given. Then V T w⃗ rotates w⃗ by angle θ,
so the image remains on the unit circle. Then Σ scales the axes. Finally, U reflects
ΣV T w⃗ across the line of symmetry found in Exercise 57. ■

Four Fundamental Subspaces

Compute matrices S1, S2 such that the column spaces of S1, S2 are the nullspaces
of A and AT . Verify the two orthogonality relations of the four subspaces page
739 from the matrix identities AS1 = 0, ATS2 = 0.

59. A =

(
1 0 0
1 1 0
2 1 0

)
. Answer:

S1 =

0
0
1

, S2 =

−1−1
1

.

Solution:Details require finding the nullspace of A and the nullspace of AT . The
calculations can be done on paper or by computer. The orthogonality tests are by
matrix multiply, which should return a matrix with columns all zero.

# Exercise 59, Four Fundamental Subspaces

A:=<1,0,0|1,1,0|2,1,0>^+;

S1:=Matrix(convert(NullSpace(A), ’list’ ));

A.S1;# check A perp cols of S1

B:=A^+;

S2:=Matrix(convert(NullSpace(B), ’list’ ));

B.S2;# check A^T perp cols of S2

60. A =

1 0 0
1 1 0
2 1 0
3 2 0

. Answer:

S1 =

0
0
1

, S2 =

−1 −1−2 −1
0 1
1 0


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61. A =

(
1 0 0 0
1 1 0 1
2 2 0 2

)
Answer:

S1 =

 0 0
−1 0
0 1
1 0

, S2 =

−1−1
1



62. A =

1 0 0 0
2 0 0 2
0 0 0 0
0 0 0 2

 Answer:

S1 =

0 0
0 1
1 0
0 0

, S2 =

 2 0
−1 0
0 1
1 0

,

Fundamental Theorem of Linear Algebra
Strang’s Theorem says that the four subspaces built from n ×m matrix A and
m× n matrix AT satisfy

colspace(AT ) ⊥ nullspace(A),
colspace(A) ⊥ nullspace(AT ).

Let r = rank(A) = rank(AT ). The four subspace dimensions are:

dim(colspace(A)) = r,
dim(nullspace(A)) = n− r,
dim(colspace(AT )) = r,
dim(nullspace(AT )) = m− r.

63. Explain why dim(colspace(A)) = dim(colspace(AT )) = r from the Pivot Theorem.

Solution:Let r1 = dim(colspace(A)) and r2 = dim(colspace(AT )). To prove: r1 =
r2 = r = rank(A). First, r1 is the number of pivot columns of A by the pivot
theorem, which the theorem states is equal the number of independent columns of
A. Second, r2 is the number of independent columns of AT , which equals the number
independent rows of A. Because rank = number of independent columns of A =
number of independent rows of A, by the theorem row rank = column rank, then
r = r1 = r2. ■

64. Suppose A is 10× 4. What are the dimensions of the four subspaces?

65. Invent a 4× 4 matrix A where one of the four subspaces is the zero vector alone.

Solution:Let A be a 4 × 4 invertible matrix, like the identity matrix. Then the
nullspace of A is the zero vector. ■

66. Prove that the only vector in common with rowspace(A) and nullspace(A) is the
zero vector.
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67. Prove that each vector x⃗ in Rn can be uniquely written as x⃗ = x⃗1 + x⃗2 where x⃗1

is in colspace(AT ) and x⃗2 is in nullspace(A). See direct sum in exercise 5.5 page
1377.

Solution:Assume A is m× n, r = rank(A), s = nullity(A). Then r + s = n by the
rank-nullity theorem, which in simpler language says the number of lead variables
plus the number of free variables equals n = number of variables.

Let S1 = colspace(AT ) = rowspace(A) and S2 = nullspace(A). Let V = Rn.
Assemble these facts:

Both S1 and S2 are subspaces.
Exercise 66 provides S1 ∩ S2 = {0⃗}.
Subspace S1 has a basis u⃗1, . . . , u⃗ r where r = rank(A).
Subspace S2 has basis v⃗ 1, . . . , v⃗ s where s = nullity(A) = n− r.
Let W = {u⃗1, . . . , u⃗ r, v⃗ 1, . . . , v⃗ s}. Then W contains n independent vec-
tors because S1 ∩ S2 = {0⃗} (independence proof omitted).
Set W is a basis for V = Rn. See Theorem 5.40 page 406.

The proof:
Let x⃗ be any vector in Rn. Expand x⃗ with basis W . Then

x⃗ =
∑r

i=1 aiu⃗ i +
∑s

j=1 bjv⃗ j

Let x⃗1 =
∑r

i=1 aiu⃗ i and x⃗2 =
∑s

j=1 bjv⃗ j . Then x⃗ = x⃗1 + x⃗2 with x⃗1 in S1 and x⃗2

in S2. Existence established.

It remains to prove uniqueness. Suppose x⃗ = x⃗1 + x⃗2 = y⃗ 1 + y⃗ 2 with x⃗1, y⃗ 1 in
S + 1 and x⃗2, y⃗ 2 in S2. To prove: x⃗1 = y⃗ 1 and x⃗2 = y⃗ 2. Rearrange the equation
for x⃗ : x⃗1 − y⃗ 1 = y⃗ 2 − x⃗2. Then the LHS is in S1 and the RHS is in S2. Because
S1 ∩ S2 = {0⃗} then x⃗1 − y⃗ 1 = y⃗ 2 − x⃗2 = 0⃗ , which proves uniqueness. ■

68. Prove that each vector y⃗ in Rm can be uniquely written as y⃗ = y⃗ 1 + y⃗ 2 where y⃗ 1

is in colspace(A) and y⃗ 2 is in nullspace(AT ).
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§ Phase Plane Methods

Contents
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10.5 Mechanical Models . . . . . . . . . . . . . . . . . . 1583

10.1 Planar Autonomous Systems

Exercises 10.1 �
Autonomous Planar Systems.

Consider
x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

(1)

1. (Vector-Matrix Form) System (1) can be written in vector-matrix form

d

dt
u⃗ = F⃗ (u⃗(t)).

Display formulas for u⃗ and F⃗ .

Solution:The formulas:

u⃗ =

(
x
y

)
, F⃗(u⃗) =

(
x+ y
1− x2

)
Computer implementations use strict rules with code only similar to the mathematics,
not the same.
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# Exercise 1, Autonomous Planar Systems

PDEtools[declare]((x, y)(t), prime = t);

## x(t), y(t) are displayed as x, y

## diff(f(t),t) displayed in prime notation f’

u:=t-><x(t),y(t)>;

F0:=(x,y)-><x+y,1-x^2>;

F:=w->F0(w[1],w[2]):

F(u(t));## = < x(t)+y(t), 1-x(t)^2 >

2. (Picard’s Theorem) Picard’s vector existence-uniqueness theorem applies to system
(1) with initial data x(0) = x0, y(0) = y0. Show the details.

Solution:Expected details are hypothesis checks: F⃗ and .Fy continuous with initial
data in domain D.

Trajectories Don’t Cross.

3. (Theorem 10.1 Details) Show dy
dt = g(x1(t + c), y1(t + c)), then show that y′(t) =

g(x(t), y(t)) in the proof of Theorem 10.1.

Solution:
dy

dt
= d

dt y1(t+ c)

= g(x1(t+ c), y1(t+ c))

= g(x(t), y(t)) ■

4. (Orbits Can Cross) The example

dx

dt
= 1,

dy

dt
= 3y2/3

has infinitely many orbits crossing at x = y = 0. Exhibit two distinct orbits which
cross at x = y = 0. Does this example contradict Theorem 10.1?

Equilibria. A point (x0, y0) is called an Equilibrium provided x(t) = x0, y(t) =
y0 is a solution of the dynamical system.

5. Justify that (1,−1), (−1, 1) are the only equilibria for the system x′ = x + y, y′ =
1− x2.

Solution: For (x0, y0) to be an equilibrium the following equations must hold:

0 = x′
0 = x0 + y0, 0 = y′0 = 1− x2

0

The second equation gives x0 = 1 or x0 = −1. The first equation provides y0 = −x0.
Then the two solution pairs are (x0, y0) = (1,−1) and (x0, y0) = (−1, 1). ■

6. Display the details which justify that (0, 0), (90, 0), (0, 60), (80, 20) are all equilibria
for the system x′(t) = x(−2x− y + 180), y′(t) = y(−x− 2y + 120).

Practical Methods for Computing Equilibria.
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7. (Murray System) The biological system

x′ = x(6− 2x− y), y′ = y(4− x− y)

has equilibria (0, 0), (3, 0), (0, 4), (2, 2). Justify the four answers.

Solution:

Instead of using symbols x0, y0 let’s use x, y. Equilibrium (x, y) satisfies

0 = x(6− 2x− y), 0 = y(4− x− y)

First equation: x = 0 or 2x+ y = 6.

Second equation: y = 0 or x+ y = 4.

There are 4 possibilities:

x = 0, y = 0

x = 0, x+ y = 4

2x+ y = 6, y = 0

2x+ y = 6, x+ y = 4

The first three possibilities give three equilibria: (0, 0), (0, 4), (3, 0). The last possi-
bility requires a solving with the linear algebra toolkit or Cramer’s rule to find the
unique solution (2, 2).

8. (Nullclines) Curves along which either x′ = 0 or y′ = 0 are called nullclines. The
biological system

x′ = x(6− 2x− y), y′ = y(4− x− y)

has nullclines x = 0, y = 0, 6− 2x− y = 0, 4− x− y = 0. Justify the four answers.

9. (Nullclines by Computer) Produce a graphical display of the nullclines of the Murray
System above. Maple code below makes a plot from equations x(6 − 2x − y) = 0,
y(4− x− y) = 0.

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=-5..5,y=-10..10;

opts:=wind,contours=[0];

plots[contourplot](eqns,opts);

Solution: Plot options can improve a nullcline plot. System mathematica offers a
nullcline plot demonstration
https://demonstrations.wolfram.com/NullclinePlot/
that uses the free WolframPlayer. System maple produced the plot below using the
code that follows the plot.

1544

https://demonstrations.wolfram.com/NullclinePlot/


10.1 Planar Autonomous Systems

# Exercise 9, Autonomous planar systems: nullclines

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=-5..5,y=-10..10;

opts:=contours=[0],filledregions = true,

coloring = ["White", "PaleGreen"];

plots[contourplot](eqns,wind,opts);

10. (Isoclines by Computer) Level curves f(x, y) = c are called Isoclines.

Maple will plot level curves f(x, y) = −2, f(x, y) = 0, f(x, y) = 2 using the nullcline
code above, with replacement contours=[-2,0,2]. Produce an isocline plot for the
Murray System above with these same contours.

11. (Implicit Plot) Equilibria can be found graphically by an implicit plot.

# MAPLE implicit plot

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=-5..5,y=-10..10;

plots[implicitplot](eqns,wind);

Produce the implicit plot. Is it the same as the nullcline plot?

Solution:
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# Exercise 11, Autonomous systems: implicit plot, equilibria

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=-5..5,y=-10..10;

plots[implicitplot](eqns,wind,gridrefine=2);

solve(eqns,[x,y]);

# equilibria: [x=0, y=0],[x=0, y=4],[x=3, y=0],[x=2, y=2]

12. (Implicit Plot) Find the equilibria graphically by an implicit plot. Then find the
equilibria exactly. {

x′(t) = x(t) + y(t),
y′(t) = 4− x2(t).

Rabbit-Fox System.

13. (Predator-Prey) Consider a rabbit and fox system

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

Argue why extinction of the rabbits (x = 0) implies extinction of the foxes (y = 0).

Solution:When x = 0 then y′ = −40y which is a decay equation. Then limt→∞ y(t) =
limt→∞ y0e

−40t = 0, which is extinction.

14. (Predator-Prey) The rabbit and fox system

x′ =
1

200
x(40− y),

y′ =
1

100
y(x− 40),

has extinction of the foxes (y = 0) implying Malthusian population explosion of the
rabbits (limt=∞ x(t) =∞). Explain.

Trout System. Consider

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

15. (Carrying Capacity) Show details for calculation of the equilibrium x = 80, y = 20,
which is co-existence.

Solution:Equilibria (x, y) are found from the equations

0 = x(−2x− y + 180),
0 = y(−x− 2y + 120).

Follow the method in Exercise 7 to solve for

(x, y) = (0, 0), (0, 60), (90, 0), (80, 20)

The first three equilibria involve at least one extinction state x = 0 or y = 0. Equi-
librium x = 80, y = 20 is co-existence, analagous to co-habitation for foxes and
rabbits.
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16. (Stability) Equilibrium point x = 80, y = 20 is stable. Explain this statement using
geometry from Figure 10 and the definition of stability.

Phase Portraits. Consider

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

17. (Equilibria) Solve for x, y in the system

0 = x+ y,
0 = 1− x2,

for equilibria (1,−1), (−1, 1). Explain why |x| ≤ 2, |y| ≤ 2 is a suitable graph
window.

Solution:Equilibrium (x, y) is a solution of the system of equations

0 = x+ y,
0 = (1− x)(1 + x)2,

which arises by factoring the second equation. Follow the method in Exercise 7 to
solve for

(x, y) = (1,−1), (−1, 1)

18. (Grid Points) Draw a 5 × 5 grid on the graph window |x| ≤ 2, |y| ≤ 2. Label the
equilibria.

19. (Direction Field) Draw direction field arrows on the 5 × 5 grid of the previous
exercise. They coincide with the tangent direction v⃗ = x′⃗ı+y′ȷ⃗ = (x+y)⃗ı+(1−x2)ȷ⃗,
where (x, y) is the grid point. The arrows may not touch.

Solution:Expected is a plot made on paper using graph paper or similar. There
should be 5 lines of 5 grid points, a uniform grid. The arrows have tail or midpoint
at a grid point and head pointing in the direction of the tangent vector v⃗ . The arrow
length is by trial and error. The result should look like the figure below.
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# Exercise 19, Direction field

de1:=diff(x(t),t)=x(t)+y(t);

de2:=diff(y(t),t)=1-x(t)*x(t);

trange:=t=-10..10:xrange:=x=-2..2:yrange:=y=-2..2:

vars:=[x(t),y(t)];opts1:=trange,xrange,yrange:

opts2:=arrows=large,color=cyan,dirfield=[5,5]:

DEtools[dfieldplot]([de1,de2],vars,opts1,opts2);

20. (Threaded Orbits) On the direction field of the previous exercise, draw orbits
(threaded solution curves), using the rules:

1. Orbits don’t cross.

2. Orbits pass direction field arrows with nearly matching tangent.

Phase Plot by Computer. Use a computer algebra system or a numerical work-
bench to produce phase portraits for the given dynamical system. A graph
window should contain all equilibria.

21. (Rabbit-Fox System I)

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

Solution:

The solution uses maple. Instructions:

To open the Phase portrait task, click Tools => Tasks menu => Browse,
thenDifferential Equations=>ODEs=>Phase portrait - Autonomous
Systems. Click on Insert Minimal Content, which inserts the template into
the worksheet. For safety, save the WorkSheet as soon as the template loads.

There are input boxes to fill. Careful: any click error or keyboard error may
destroy the template, resulting in all data and images lost. The most common
error is the RETURN key. Don’t use it. If an error stops you then the only
alternative is to exit maple, start again and load the WorkSheet saved earlier.
Do not save a worksheet that has a template error!
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To begin a new example, click button Erase Data. Use a mouse click to start
filling a data box, then Backspace and Delete keys for correction. It is OK to
copy text from an editor and paste it.

After all data is entered, then click button Enter Data. To add threaded curves
to the plot, click on the plot where you want the curve to start. If no action,
then right-click on the plot to bring up the Plot Menu. In the menu select
Manipulator => Click and Drag. Then try clicking on the plot to generate
a threaded curve.

# Exercise 21, Rabbit-Fox System I

# Launch Task: Phase portrait - Autonomous Systems

# Save the task (ctrl-S).

# Click button: Erase Data

# Keyboard data into 5 text boxes

Box 1: x: 0 to 80, y: 0 to 80

Box 2: (1/200)*x*(30-y)

Box 3: (1/100)*y*(x-40)

Box 4: [0, 0], [40, 30]

Box 5: t: -10 to 20

# Click button: Enter Data

# Click image: Thread a solution curve

22. (Rabbit-Fox System II)

x′ =
1

100
x(50− y),

y′ =
1

200
y(x− 40).

Solution:
# Exercise 22, Rabbit-Fox System II

# Tools => Task: Phase portrait - Autonomous Systems

# Save the task (ctrl-S).

# Click button: Erase Data

# Keyboard data into 5 text boxes

Box 1: x: 0 to 60, y: 0 to 80

Box 2: (1/100)*x*(50-y)

Box 3: (1/200)*y*(x-40)

Box 4: [0, 0], [40, 50]

Box 5: t: -10 to 20

# Click button: Enter Data

# Click image: Thread a solution curve

23. (Trout System I)

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

Solution:
The solution uses maple. Follow instructions in Exercise 21.
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# Exercise 23, Trout System

# Launch Task: Phase portrait - Autonomous Systems

# Save the task (ctrl-S).

# Click button: Erase Data

# Keyboard data into 5 text boxes

Box 1: x: 0 to 110, y: 0 to 80

Box 2: x*(-2*x-y+180)

Box 3: y*(-x-2*y+120)

Box 4: [0, 0], [0,60], [90,0], [80, 20]

Box 5: t: -10 to 20

# Click button: Enter Data

# Click image: Thread a solution curve

24. (Trout System II)

x′(t) = x(−2x− y + 200),
y′(t) = y(−x− 2y + 120).

Stability Conditions. Consider equilibrium point (0, 0) and nearby solution curves
x(t), y(t) with (x(0), y(0)) near (0, 0).

25. (Instability: Repeller) Prove: If for every δ > 0 there is one solution with |x(0)2 +
y(0)2| < δ2 such that limt→∞ |x(t)|+ |y(t)| =∞ then equilibrium (0, 0) is unstable.

Solution: Let ϵ > 0. Consider a disk D = {(x, y) : x2 + y2 < ϵ2}. Stability means
that for all δ > 0, with δ < ϵ, a solution with

√
x(0)2 + y(0)2 < δ is required to

satisfy
√
x(t)2 + y(t)2 < ϵ, i.e., the solution remains in D for t ≥ 0. Limit condition

limt→∞ |x(t)| + |y(t)| = ∞ causes this requirement to fail. Therefore, equilibrium
(0, 0) is unstable. ■

26. (Stability: Attractor) Prove that x′(t) < 0 and y′(t) < 0 for all nearby solutions
implies stability at (0, 0), but not asymptotic stability.

Solution:Hint: Look at the geometry.
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27. (Instability in x) Prove that limt→∞ |x(t)| =∞ implies instability at (0, 0).

Solution:Then limt→∞ |x(t)|+ |y(t)| =∞, Apply Exercise 25.

28. (Instability in y) Prove that limt→∞ |y(t)| =∞ implies instability at (0, 0).

Geometric Stability.

29. (Attractor) Imagine a dust particle in a fluid draining down a funnel, whose trace is
a space curve. Assume fluid drains at x = 0, y = 0 and the funnel centerline is along
the z-axis. Project the space curve onto the xy-plane. Is this planar orbit stable at
(0, 0) in the sense of the definition?

Solution:Maybe yes, maybe no. Exercise 25 requires limt→∞ |x(t)|+ |y(t)| = 0. That
may not happen, due to gravity effects altering the path of the dust particle. What
does happen: the dust particle moves closer to (0, 0) as t→∞. Layman conclusion:
stable.

30. (Repeller) Imagine a paint droplet from a paint spray can, pointed downward, which
traces a space curve. Project the space curve onto the xy-plane orthogonal to the
spray nozzle direction, centerline along the z-axis. Is this planar orbit stable at (0, 0)
in the sense of the definition?

Solution:Maybe yes, maybe no. Tracing the droplet to t = ∞ reveals a path
that moves away from the centerline (z-axis). Gravity effects may keep the xy-
plane projected droplet near (0, 0), which means a test like limt→∞ |x(t)| = ∞ or
limt→∞ |y(t)| =∞ can fail. The key issue is the path of a droplet from near the cen-
ter of the nozzle: it likely follows the z-axis due to gravity effects. Layman conclusion:
undecided.

Geometric Stability: Phase Portrait.

31. (Rabbit–Fox I Stability) Plot a phase portrait for system

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

Provide geometric evidence for stability of equilibrium x = 40, y = 30.

Solution:The figure in Exercise 21 shows stability but not asymptotic stability. In this
chapter see the discussions of center and spiral. Theorems later in the chapter allow
from calculus calculations a prediction of center or spiral, either stable or unstable.
Conclusion: the phase portrait really helps to classify stability at an equilibrium.

32. (Rabbit–Fox II Instability) Plot a phase portrait for system

x′ =
1

100
x(50− y),

y′ =
1

200
y(x− 40).

Provide geometric evidence for instability of equilibrium x = 0, y = 0 and stability
of equilibrium x = 40, y = 50.

Solution:See Exercise 22.

1551



10.2 Planar Constant Linear Systems

10.2 Planar Constant Linear Systems

Exercises 10.2 �
Planar Constant Linear Systems

1. (Picard’s Theorem) Explain why planar solutions don’t cross, by appeal to Picard’s
existence-uniqueness theorem for d

dt u⃗=Au⃗.

Solution:Function u⃗ → Au⃗ is continuously differentiable for all u⃗ . Picard-Lindelöf
applies: solutions to initial value problems are locally unique.

If two solutions u⃗1 and u⃗2 cross or touch then there are times t1 and t2 such that

u⃗1(t1) = u⃗2(t2) =

(
x0
y0

)
. Define v⃗ 1(t) = u⃗1(t+ t1), v⃗ 2(t) = u⃗2(t+ t2). Then v⃗ ′

1 =

Av⃗ 1, v⃗
′
2 = Av⃗ 2 and v⃗ 1(0) = v⃗ 2(0) =

(
x0
y0

)
. Picard’s theorem says v⃗ 1(t) = v⃗ 2(t)

which implies that trajectories u⃗1 and u⃗2 coalesce locally near the contact point. To
cross means the curves don’t coalesce at the contact point. ■

2. (Equilibria) System du⃗
dt = Au⃗ always has solution u⃗(t) = 0⃗, so there is always one

equilibrium point. Give an example of a matrix A for which there are infinitely many
equilibria.

Putzer’s Formula

3. (Cayley-Hamilton) Define matrices I⃗ =

(
1 0
0 1

)
, 0⃗ =

(
0 0
0 0

)
. Given matrix A =(

a b
c d

)
, expand left and right sides to verify the Cayley-Hamilton identity

A2−(a+ d)A+ (ad−bc)⃗I = 0⃗ .

Solution:Expand LHS:

LHS = A2−(a+ d)A+ (ad−bc)⃗I

=

(
a b
c d

)(
a b
c d

)
− (c+ d)

(
a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
=

(
a2 − (a+ d) a+ ad ab+ bd− (a+ d) b
ca+ dc− (a+ d) c d2 − (a+ d) d+ ad

)
=

(
0 0
0 0

)
# Exercise 3, Cayley-Hamilton

A:=<a,b|c,d>^+;

LHS:=A^2-(a+d)*A+(a*d-b*c)*<1,0|0,1>;

simplify(LHS);

4. (Complex Roots) Verify the Putzer solution u⃗ = Φ(t)u⃗(0) of u⃗′ = Au⃗ for complex
roots λ1 = λ2 = a+ bi, b > 0, where Φ(t) is

eat
(
cos(bt) I + (A− aI)

sin(bt)

b

)
.
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5. (Distinct Eigenvalues) Solve

du⃗

dt
=

(
−1 1
0 2

)
u⃗.

Solution: Let’s apply Theorem 10.2 page 767. The real eigenvalues of A =

(
−1 1
0 2

)
are λ1 = −1, λ2 = 2. Then

Φ(t) = eλ1t I +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I)

= e−t I +
e2t − e−t

2− (−1)
(A+ I)

= e−t

(
1 0
0 1

)
+

e2t − e−t

3

(
0 1
0 3

)
=

(
e−t 0
0 e−t

)
+

e2t − e−t

3

(
0 1
0 3

)
=

(
e−t 1

3 (e
2t − e−t)

0 e2t

)

6. (Real Equal Eigenvalues) Solve

du⃗

dt
=

(
6 −4
4 −2

)
u⃗.

7. (Complex Eigenvalues) Solve

du⃗

dt
=

(
2 3
−3 2

)
u⃗.

Solution: Let’s apply Theorem 10.2 page 767. The complex eigenvalues of A =(
2 3
−3 2

)
are 2± 3i. Let a = 2, b = 3. Then

Φ(t) = eat
(
cos(bt) I + (A− aI)

sin(bt)

b

)
= e2t

(
cos(3t) I + (A− 2I)

sin(3t)

3

)
= e2t

(
cos(3t)

(
1 0
0 1

)
+

(
2− 2 3
−3 2− 2

)
sin(3t)

3

)
= e2t

((
cos(3t) 0

0 cos(3t)

)
+

(
0 sin(3t)

− sin(3t) 0

))
= e2t

(
cos(3t) sin(3t)
− sin(3t) cos(3t)

)

8. (Purely Complex Eigenvalues) Solve

du⃗

dt
=

(
0 3
−3 0

)
u⃗.

1553



10.2 Planar Constant Linear Systems

Solution:Eigenvalues are ±3i. Then

Φ(t) =

(
cos(3t) sin(3t)
− sin(3t) cos(3t)

)
by details in Exercise 7.

Continuity and Redundancy

9. (Real Equal Eigenvalues) Show that limiting λ2 → λ1 in the Putzer formula for
distinct eigenvalues gives Putzer’s formula for real equal eigenvalues.

Solution:Limiting λ2 → λ1 is done on the formula

Φ(t) = eλ1t I +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I)

Quotient Q =
eλ2t − eλ1t

λ2 − λ1
can be written as

Q =
f(x0 + h)− f(x0)

h
, where f(x) = ext, x0 = λ1 and h = λ2 − λ1

Then Q is a Newton quotient for f ′(x0). Because f is differentiable with f ′(x) = t ext

then limh→0 Q = f ′(x0) = t ex0t = teλ1t

These details prove:

limλ2→λ1
Φ(t) = eλ1t I + limλ2→λ1

eλ2t − eλ1t

λ2 − λ1
(A− λ1I)

= eλ1t I + (limh→0 Q) (A− λ1I)

= eλ1t I + t eλ1t (A− λ1I)

10. (Complex Eigenvalues) Assume λ1 = λ2 = a + ib with b > 0. Then Putzer’s first
formula holds. Show the third formula details for Φ(t):

eat
(
cos(bt) I + (A− aI)

sin(bt)

b

)
.

Illustrations

11. (Distinct Eigenvalues) Show the details for the solution of

du⃗

dt
=

(
−1 3
−6 8

)
u⃗.

Solution:Let’s apply to A =

(
−1 3
−6 8

)
the Putzer formula for distinct eigenvalues

λ1 = 5, λ2 = 2.

Φ(t) = eλ1t I +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I)

= e5t I +
e5t − e2t

5− 2
(A− 5I)

= e5t
(

1 0
0 1

)
+

e5t − e2t

3

(
−6 3
−6 3

)
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Then u⃗ (t) = Φ(t)u⃗ (0), verifying the illustration answer. Let’s continue to simplify
the answer:

Φ(t) = e5t
(

1 0
0 1

)
+

e5t − e2t

1

(
−2 1
−2 1

)
=

(
e5t 0
0 e5t

)
+

(
−2e5t + 2e2t e5t − e2t

−2e5t + 2e2t e5t − e2t

)
=

(
−e5t + 2e2t e5t − e2t

−2e5t + 2e2t 2e5t − e2t

)
# Exercise 11, Illustrations: distinct eigenvalues, Ans Check

A:=<-1,3|-6,8>^+;

MatrixExponential(A,t);

# Matrix([[2*exp(2*t)-exp(5*t), exp(5*t)-exp(2*t)],

# [-2*exp(5*t)+2*exp(2*t), -exp(2*t)+2*exp(5*t)]]);

12. (Complex Eigenvalues) Show the details for the solution of

du⃗

dt
=

(
2 5
−5 2

)
u⃗.

Isolated Equilibria

13. (Determinant Expansion) Verify that |A− λI| equals

λ2 − (λ1 + λ2)λ+ λ1λ2.

Solution:Because |A+xI| is a quadratic polynomial with roots r1, r2 then |A+xI| =
(x− r1)(x− r2). Then

|A− λI| = |A+ xI| |x=−λ

= (−λ− λ1)(−λ− λ2)

= λ2 − (λ1 + λ2)λ+ λ1λ2

14. (Infinitely Many Equilibria) Explain why Au⃗ = 0⃗ has infinitely many solutions
when det(A) = 0.

Classification of Equilibria

15. (Rotating Figures) When sines and cosines appear in the Euler atoms, the phase
portrait at (0, 0) rotates around the origin. Explain precisely why this is true.

Solution: Sines and cosines appear because of complex eigenvalues a± bi with b > 0.
The phase portrait is realized as a choice of several (x0, y0) initial conditions, from
which threaded solution curves are added to the portrait.

Matrix A satisfies AP = PD where D =

(
a b
−b a

)
is formed from the complex eigen-

values a ± bi. Geometrically, matrix D is a rotation matrix. Matrix P is invertible
and real: it is a change of coordinates. The columns of P are the real and imaginary
parts of an eigenvector v⃗ of A. A threaded curve (x(t), y(t)) starting at (x0, y0) has a
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simpler expression in terms of the coordinate system (X,Y ) defined by the columns
of P . (

x(t)
y(t)

)
= P

(
X(t)
Y (t)

)
,

(
X0

Y0

)
= P−1

(
x0

y0

)
,(

X(t)
Y (t)

)
= eat

(
cos bt sin bt
− sin bt cos bt

)(
X0

Y0

)
Choosing a starting point (x0, y0) amounts to choosing (X0, Y0). The impact of factor

eat is scaling, nothing to do with rotation. Matrix factor Ψ(t) =

(
cos bt sin bt
− sin bt cos bt

)
for fixed t is itself a rotation matrix. Then(

X(t)
Y (t)

)
= eatΨ(t)

(
X0

Y0

)
is rotation Ψ(t) followed by scaling eatI.

There are five values of t that provide the most insight about rotation of the threaded
curves. They are bt = 0, π/2, π, 3π/2, 2π. Then the five rotation matrices Ψ(t) are

R1=

(
1 0
0 1

)
, R2=

(
0 1
−1 0

)
, R3=

(
−1 0
0 −1

)
, R4=

(
0 −1
1 0

)
, R5=

(
1 0
0 1

)
Let’s ignore the scale factor eat for the moment and examine the position of initial

point v⃗ =

(
X0

Y0

)
at the five times. For the discussion, assume v⃗ is in quadrant

I, both coordinates positive. At t = 0 and t = 2π/b, point v⃗ is multiplied by

R1 = R5 = I: the point is stationary. At t =
π

2b
the geometric result is

v⃗ 1 =

(
X
Y

)
= R1

(
X0

Y0

)
=

(
Y0

−X0

)
which is a 90 degree counter-clockwise rotation of v⃗ . Target v⃗ 1 is in quadrant II.

The analysis continues with rotation matrices R2, R3 resulting in vectors v⃗ 2, v⃗ 3 hav-
ing the same length as v⃗ , each a 90 degree counter-clockwise rotation. Target v⃗ 2 is
in quadrant III and target v⃗ 3 is in quadrant IV.

The snapshot analysis of vector v⃗ rotation at the five times from quadrant I counter-
clockwise through the four quadrants is the rotation evidence sought. ■

16. (Non-Rotating Figures) When sines and cosines do not appear in the Euler atoms,
the phase portrait at (0, 0) has no rotation. Give a precise explanation.

Attractor and Repeller

17. (Classification) Which of spiral, center, saddle, node can be an attractor or a re-
peller?

Solution:Spiral and node.

18. (Attractor) Prove that (0, 0) is an attractor if and only if the Euler atoms have limit
zero at t =∞.
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19. (Repeller) Prove that (0, 0) is a repeller if and only if the Euler atoms have limit
zero at t = −∞.

Solution: Definition: A repeller is an equilibrium point (x0, y0) such that all nearby
solutions limit to (x0, y0) as t tends to negative infinity.

A solution v⃗ (t) =

(
x(t)
y(t)

)
of v⃗ ′ = Av⃗ can be written in terms of the Euler atoms

A1, A2 as v⃗ =

(
c1 c2
d1 d2

)(
A1

A2

)
for some constants a1, a2, b2, b2. Let B =

(
c1 c2
d1 d2

)
.

Then v⃗ = B

(
A1

A2

)
is a solution of v⃗ ′ = Av⃗ for any constant matrix B.

Assume the origin is a repeller.
To prove: the Euler atoms have limit zero at t = −∞. Choose matrix B = I. Then

v⃗ = B

(
A1

A2

)
=

(
A1

A2

)
has limit zero at t = −∞. This proves the Euler atoms have

limit zero at t = −∞.

Assume the Euler atoms have limit zero at t = −∞.

To prove: the origin is a repeller, i.e., the limit of any nearby solution v⃗ = B

(
A1

A2

)
is zero at t = −∞. Because B is a constant matrix then

lim
t=−∞

v⃗ (t) = B lim
t=−∞

(
A1

A2

)
= B

(
0
0

)
= 0⃗

■

20. (Center) A center is neither an attractor nor a repeller. Explain, using Euler atoms.

Phase Portrait Linear
Show the classification details for spiral, center, saddle, proper node, improper
node. Include for saddle and node a drawing which shows eigenvector directions.
Notation: ′ = d

dt .

21. (Spiral)

x′ = 2x+ 3y,
y′ = −3x+ 2y.

Solution:Eigenvalues 2π3i, atoms e2t cos 3t, e2t sin 3t. Sines and cosines are present
and also scale factor e2t. It is a rotating figure. It is a center or spiral. Center
eliminated by the scale factor, which limits to infinity at t = ∞. It is an unstable
spiral.

22. (Center)

x′ = 3y,
y′ = −3x.

Solution:Purely complex eigenvalues ±3i with atoms cos 3t, sin 3t. It is a rotating
figure, center or spiral. No exponential scale factor in the atoms implies it is a center.
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23. (Saddle)

x′ = 3x,
y′ = −5y.

Solution:Eigenvector directions are

(
1
0

)
and

(
0
1

)
. A solution u⃗ of u⃗ ′ = Au⃗ can be

expanded as u⃗ = c1v⃗ 1e
λ1t + c2v⃗ 2e

λ2t = c1

(
1
0

)
e2t + c2

(
0
1

)
e−5t. The eigenpairs

λ1, v⃗ 1), λ2, v⃗ 2) determine the asymptotes of the phase portrait as t→∞ or t→ −∞.
This is because an exponential with negative exponent λt limits to zero. In this

example, the asymptote at t = ∞ is along v⃗ 1 =

(
1
0

)
: the x-axis. Eigenvectors

do not have to be orthogonal, therefore do not expect asymptote directions to be
orthogonal.

The eigenvalues of A =

(
3 0
0 −5

)
are 3.− 5. The Euler atoms are e3t, e−5t. No sines

or cosines so it is a non-rotating phase portrait: saddle or node. Because one atom
limits to infinity as t→∞ and the other limits to minus infinity it must be a saddle.
Reminder: Atoms are formed from the eigenvalues by strict rules: leading coefficient
1, zero is not an atom.

The test for a saddle or node:

L1 = limt=∞ (Atom 1), L2 = limt=∞ (Atom 2)
Extended limit values of ±∞ allowed.

Saddle: L1 ̸= L2.
If you trace a threaded curve in the phase portrait then x → 0, y → ±∞ or y → 0,
x→ ±∞. The phase portrait asymptotes are eigenvector directions.

Node: L1 = L2.
If you trace a threaded curve in the phase portrait then limx = lim y = 0 at t = ∞
or at t = −∞. An asymptote except for a star node follows an eigenvector in the
phase portrait.

24. (Proper Node)

x′ = 2x,
y′ = 2y.

Solution:Atoms are e2t, te2t. This is a star node. There are no asymptotes to report.

25. (Improper Node: Degenerate)

x′ = 2x+ y,
y′ = 2y.

Solution:Repeated eigenvalue 2 produces atoms e2t, te2t. No sines or cosines means
it is a non-rotating figure: saddle or node. Find limits L1, L2 of the two atoms. Then
L1 = L2 so it is a node.

Degenerate means equal eigenvalues but only one real eigenvector.
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Asymptotes are not found like in Exercise 23 because there is only one eigenvector

v⃗ 1 =

(
1
0

)
. The solution can be written

(
x
y

)
=

(
c1

(
1
0

)
+ c2

(
t
1

))
e2t

The solution follows

(
1
0

)
when c2 = 0. This is the asymptote direction, which is the

eigenvector v⃗ 1 found for λ = 2.

26. (Improper Node: λ1 ̸= λ2)

x′ = 2x+ y,
y′ = 3y.

Solution:Eigenvalues 2, 3. Atoms e2t, e3t with equal limits L1, L2 at infinity. No
sines and cosines means a non-rotating figure: node or saddle. Equal limits L1 = L2

eliminates the saddle: it is a node.

An improper node is distinguished from a proper node and a degenerate node
by having distinct eigenvalues. The classification terminology has only limited use in
the literature: all are called nodes, ignoring the delicate distinctions. Degenerate
means equal eigenvalues but only one real eigenvector.

Asymptotes are found found using ideas in Exercise 23. The eigenpairs are (2, v⃗ 1),

(3, v⃗ 2) where v⃗ 1 =

(
1
1

)
, v⃗ 2 =

(
1
0

)
. The solution can be written

(
x
y

)
=

(
c1

(
1
1

)
e−t + c2

(
1
0

))
e3t

The solution follows v⃗ 2 =

(
1
0

)
because of the decay factor e−t. The asymptote

direction is eigenvector v⃗ 2 found for λ = 3, the larger eigenvalue.

10.3 Planar Almost Linear Systems

Exercises 10.3 �
Almost Linear Systems. Find all equilibria (x0, y0) of the given nonlinear system.
Then compute the Jacobian matrix A = J(x0, y0) for each equilibria.

1. (Spiral and Saddle)
d
dtx = x+ 2y,
d
dty = 1− x2.

Solution: Jacobian J(x, y) =

(
1 2

−2x 0

)
.

Unstable spiral at (1,−1/2), J(1,−1/2) =
(

1 2
−2 0

)
.
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Unstable saddle at (−1, 1/2), J(−1, 1/2) =
(

1 2
2 0

)
.

# Exercise 1, Spiral and Saddle

f:=(x,y)->x+2*y;g:=(x,y)->1-x^2;

p:=solve({f(x,y)=0,g(x,y)=0},{x,y});

# p = {x = 1, y = -1/2}, {x = -1, y = 1/2}

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# unstable spiral

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# unstable saddle

2. (Two Improper Nodes, Spiral)

d
dtx = x− 3y + 2xy,
d
dty = 4x− 6y − xy − x2.

Solution:

J(x, y) =

(
2y + 1 2x− 3

−2x− y + 4 −x− 6

)
# Exercise 2, Two Improper Nodes, Spiral

f:=(x,y)->x-3*y+2*x*y;g:=(x,y)->4*x-6*y-x*y-x^2;

q:=solve({f(x,y)=0,g(x,y)=0},{x,y});

# q := {x=0, y=0},

# {x=RootOf(_Z^2-6*_Z+3), y=-(1/5)*RootOf(_Z^2-6*_Z+3)+2/5}

r:=[allvalues(RootOf(_Z^2-6*_Z+3))];

# r = 3-sqrt(6), 3+sqrt(6)

p:=[ {x=0,y=0}, {x=r[1], y=-(1/5)*r[1]},

{x=r[2], y=-(1/5)*r[2] }] ;

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

J(x,y);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# stable improper node

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# stable improper node

A3:=subs(p[3],J(x,y));Eigenvectors(A3);# stable spiral

3. (Proper Node, Saddle)

d
dtx = 3x− 2y − x2 − y2,
d
dty = 2x− y.

Solution:

Jacobian J(x, y) =

(
−2x+ 3 −2y − 2

2 −1

)
Equilibria at x = 0, y = 0 and x = −1/5, y = −2/5.

J(0, 0) =

(
3 −2
2 −1

)
, unstable star node (a proper node)
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J(−1/5,−2/5) =
(

17/5 −6/5
2 −1

)
, unstable saddle

# Exercise 3, Spiral, Saddle

f:=(x,y)->3*x-2*y-x^2-y^2;g:=(x,y)->2*x-y;

p:=solve({f(x,y)=0,g(x,y)=0},{x,y});

# p : {x = 0, y = 0}, {x = -1/5, y = -2/5}

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# unstable spiral

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# unstable saddle

4. (Center and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = 2x− y − xy.

Solution:J(x, y) =

(
2x+ 1 −1− 2y
−y + 2 −x− 1

)
# Exercise 4, Center and Three Saddles

f:=(x,y)->x-y+x^2-y^2;g:=(x,y)->2*x-y-x*y;

p:=solve({f(x,y)=0,g(x,y)=0},{x,y});

# p := {x = 0, y = 0}, {x = 1, y = 1},

# {x = -1-RootOf(_Z^2-2*_Z-2), y = RootOf(_Z^2-2*_Z-2)}

r:=allvalues(RootOf(_Z^2-2*_Z-2));

p:=[{x = 0, y = 0}, {x = 1, y = 1}, {x = -1-r[1], y = r[1]},

{x = -1-r[2], y = r[2]}];

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# stable center

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# unstable saddle

A3:=subs(p[3],J(x,y));Eigenvectors(A3);# unstable saddle

A4:=subs(p[4],J(x,y));Eigenvectors(A4);# unstable saddle

5. (Proper Node and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = y − xy.

Solution:Jacobian J(x, y) =

(
2x+ 1 −1− 2y
−y −x+ 1

)
.

Equilibria:
x = 0, y = 0, x = −1, y = 0, x = 1, y = −2, x = 1, y = 1

Jacobians in order:(
1 −1
0 1

)
,

(
−1 −1
0 2

)
,

(
3 3
2 0

)
,

(
3 −3
−1 0

)
.
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# Exercise 5, Proper Node and Three Saddles

f:=(x,y)->x-y+x^2-y^2;g:=(x,y)->y-x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

# p := [ {x=0, y=0}, {x=-1, y=0}, {x=1, y=-2}, {x=1, y=1} ]

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# star node

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# unstable saddle

A3:=subs(p[3],J(x,y));Eigenvectors(A3);# unstable saddle

A4:=subs(p[4],J(x,y));Eigenvectors(A4);# unstable saddle

6. (Degenerate Node, Spiral and Two Saddles)

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.

Solution:Jacobian J(x, y) =

(
3x2 + 1 3y2 − 1

3y 3x+ 1

)
# Exercise 6, Degenerate Node, Spiral and Two Saddles

f:=(x,y)->x-y+x^3+y^3;g:=(x,y)->y+3*x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];# Ignore RootOf(_Z^2+1)

r:=[allvalues(RootOf(_Z^2-2*_Z-5))];

p := [{x=0, y=0}, {x=-1/3, y=-2/3}, {x=-1/3, y=(1/3)*r[1]},

{x=-1/3, y=(1/3)*r[2]}];

# p := [{x=0, y=0}, {x=-1/3, y=-2/3},

# {x=-1/3, y=1/3+(1/3)*sqrt(6)},

# {x=-1/3, y=1/3-(1/3)*sqrt(6)}]

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# degenerate node

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# unstable spiral

A3:=subs(p[3],J(x,y));Eigenvectors(A3);# unstable saddle

A4:=subs(p[4],J(x,y));Eigenvectors(A4);# unstable saddle

7. (Improper Node, Saddle)

d
dtx = x− y + x3,
d
dty = 2y + 3xy.

Solution:Jacobian J(x, y) =

(
3x2 + 1 −1

3y 3x+ 2

)
Equilibria: x = 0, y = 0, x = −2/3, y = −26/27
Jacobians in order:(

1 −1
0 2

)
,

(
7/3 −1

−26/9 0

)
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# Exercise 7, Improper Node, Saddle

f:=(x,y)->x-y+x^3;g:=(x,y)->2*y+3*x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];# Ignore RootOf(_Z^2+1)

p := [{x = 0, y = 0}, {x = -2/3, y = -26/27}];

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# improper node

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# unstable saddle

8. (Proper Node and a Saddle)

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

Solution:Jacobian J(x, y) =

(
2x+ 1 −1− 2y
−y −x+ 1

)
# Exercise 8, Proper Node and a Saddle

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

restPointClassify:=proc(valueSet)# arg = {x=a,y=b}

global f,g; local J,A,Lambda,P,jacobian,L;

with(LinearAlgebra):L:=subs(valueSet,[x,y]);

jacobian:=Student[MultivariateCalculus][Jacobian]:

J:=LL->jacobian([f(x,y),g(x,y)],[x,y]=LL);

A:=J(L);Lambda,P:=Eigenvectors(A);

RETURN (A,Lambda,evalf(Lambda),P,evalf(P));

end proc:

fmt:="%a: A,Lambda,evalf(Lambda),P,evalf(P)\n":

for i from 1 to nops(p)

do printf(fmt,p[i]); restPointClassify(p[i]); od;

Phase Portrait Almost Linear. Linear library phase portraits can be locally
pasted atop the equilibria of an almost linear system, with limitations. Apply
the theory for the following examples. Complete the phase diagram by computer,
thereby resolving the possible mutation of a center or node into a spiral. Label
eigenvector directions where it makes sense.

9. (Center and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = 2x− y − xy.

Solution:
Equilibria:
x = 0, y = 0, x = 1, y = 1.0,
x = −3.73, y = 2.73, x = −.2679, y = −.732

Eigenvalue pairs:
[I,-I], [2.3,-1.3], [3.2,-6.95], [1.14,-1.41]
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Jacobian J(x, y) =

(
2x+ 1 −1− 2y
−y + 2 −x− 1

)
xy-Window: −5 < t < 2, −1 < y < 3.5

WolframAlpha offers a free online phase plane plotter. It is basic without enough
features to be confusing and limited in what it can display. For Exercise 9 the graph
window has to be limited to a region around one equilibrium in order to show adequate
detail. At the online Wolfram site below, search for string phase plane:

https://www.wolframalpha.com/widgets/gallery/?category=math

The phase plot in maple is a challenge due to proximity of the equilibria. The
maple phase portrait task needed a resolution change to 800x800 from the default
400x400. Changes were made to line width. The graph window was first estimated
then corrected by trial and error. Changing the graph window to focus on three of
the four equilibria made it possible to see most details. There was no facility to add
z separatrix to saddles and nodes. To do that, print the graphic on paper and draw
the lines by hand.
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# Exercise 9, Center and Three Saddles

f:=(x,y)->x-y+x^2-y^2;g:=(x,y)->2*x-y-x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

r:=allvalues(RootOf(_Z^2-2*_Z-2));

p := [{x = 0, y = 0}, {x = 1, y = 1},

{x = -1-r[1], y = r[1]}, {x = -1-r[2], y = r[2]}];

# p := [{x = 0, y = 0}, {x = 1, y = 1},

# {x=-2-sqrt(3), y=1+sqrt(3)}, {x=-2+sqrt(3), y=1-sqrt(3)}]

restPointClassify:=proc(valueSet)# arg = {x=a,y=b}

global f,g; local J,A,Lambda,P,jacobian,L;

with(LinearAlgebra):L:=subs(valueSet,[x,y]);

jacobian:=Student[MultivariateCalculus][Jacobian]:

J:=LL->jacobian([f(x,y),g(x,y)],[x,y]=LL);

A:=J(L);Lambda,P:=Eigenvectors(A);

RETURN (A,Lambda,evalf(Lambda),P,evalf(P));

end proc:

fmt:="%a: A,Lambda,evalf(Lambda),P,evalf(P)\n":

for i from 1 to nops(p)

do printf(fmt,p[i]); restPointClassify(p[i]); od;

# center, three saddles

10. (Degenerate Node, Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = y − xy.

11. (Degenerate Node, Spiral, Two Saddles)

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.
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Solution: Jacobian J(x, y) =

(
3x2 + 1 3y2 − 1

3y 3x+ 1

)
Equilibria:
x = 0, y = 0, x = −0.33, y = −0.667, x = −0.33, y = 1.15,

x = −0.33, y = −0.48
For maple: [0,0], [-.33,-.667], [-.33,1.15], [-.33,-.48]

xy-Window: −0.6 < x < 0.2, −0.8 < y < 1.5

The graphic obtained from the Phase Portrait Task in maple lacks important detail
near equilibria. One fix is to make 4 plots, each focused on an equilibrium. Then
plot on a full size window to show the global behavior.

# Exercise 11, Degenerate Node, Spiral, Two Saddles

f:=(x,y)->x-y+x^3+y^3;g:=(x,y)->y+3*x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

r:=allvalues(RootOf(_Z^2-2*_Z-5));

p := [{x = 0, y = 0}, {x = -1/3, y = -2/3},

{x = -1/3, y = (1/3)*r[1]}, {x = -1/3, y = (1/3)*r[2]}];

# p := [{x=0,y=0},{x=-1/3,y=-2/3},

# {x=-1/3,y=1/3+(1/3)*sqrt(6)},{x=-1/3,y=1/3-(1/3)*sqrt(6)}]

restPointInfo:=proc(valueSet)# arg = {x=a,y=b}

global f,g,J; local A,Lambda,P,jacobian,L;

with(LinearAlgebra):

jacobian:=Student[MultivariateCalculus][Jacobian]:

J:=LL->jacobian([f(x,y),g(x,y)],[x,y]=LL);

L:=subs(valueSet,[x,y]);A:=J(L);Lambda,P:=Eigenvectors(A);

RETURN (A,Lambda,evalf(Lambda),P,evalf(P));

end proc:

JACOBIAN:=J([’x’,’y’]);

fmt:="%a: A,Lambda,evalf(Lambda),P,evalf(P)\n":

for i from 1 to nops(p)

do printf(fmt,p[i]); restPointInfo(p[i]); od;

# unstable degenerate node, stable spiral, two saddles
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12. (Improper Node, Saddle)

d
dtx = x− y + x3,
d
dty = 2y + 3xy.

Solution:
# Exercise 12, Improper Node, Saddle

f:=(x,y)->x-y+x^3;g:=(x,y)->2*y+3*x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

p:=[{x=0,y=0},{x=-2/3,y=-26/27}];

restPointInfo:=proc(valueSet)# arg = {x=a,y=b}

global f,g,J; local A,Lambda,P,jacobian,L;

with(LinearAlgebra):

jacobian:=Student[MultivariateCalculus][Jacobian]:

J:=LL->jacobian([f(x,y),g(x,y)],[x,y]=LL);

L:=subs(valueSet,[x,y]);A:=J(L);Lambda,P:=Eigenvectors(A);

RETURN (A,Lambda,evalf(Lambda),P,evalf(P));

end proc:

JACOBIAN:=J([’x’,’y’]);

fmt:="%a: A,Lambda,evalf(Lambda),P,evalf(P)\n":

for i from 1 to nops(p)

do printf(fmt,p[i]); restPointInfo(p[i]); od;

# Improper node, saddle

13. (Proper Node, Saddle)
d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

Solution:

Jacobian J(x, y) =

(
2 3y2

3y 3x+ 2

)
Equilibria for maple: [0,0],[-0.667,1.1006]

xy-Window: −1 < x < 0.4, −1 < y < 2
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# Exercise 13, Proper Node, Saddle

f:=(x,y)->2*x+y^3;g:=(x,y)->2*y+3*x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

r:=allvalues(RootOf(3*_Z^3-4));

p:=[{x=0,y=0},{x=-2/3,y=r[1]}];# ignore y complex

restPointInfo:=proc(valueSet)# arg = {x=a,y=b}

global f,g,J; local A,Lambda,P,jacobian,L;

with(LinearAlgebra):

jacobian:=Student[MultivariateCalculus][Jacobian]:

J:=LL->jacobian([f(x,y),g(x,y)],[x,y]=LL);

L:=subs(valueSet,[x,y]);A:=J(L);Lambda,P:=Eigenvectors(A);

RETURN (A,Lambda,evalf(Lambda),P,evalf(P));

end proc:

JACOBIAN:=J([’x’,’y’]);

fmt:="%a: A,Lambda,evalf(Lambda),P,evalf(P)\n":

for i from 1 to nops(p)

do printf(fmt,p[i]); restPointInfo(p[i]); od;

# Proper Node, saddle

14. (Two Improper Nodes and Two Saddles)

d
dtx = (120− 4x− 2y)x,
d
dty = (60− x− 2y)y

Solution:
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# Exercise 14, Two Nodes and Two Saddles

# Peaceful co-existence, Rabbit-Gerbil system

f:=(x,y)->(120-4*x-2*y)*x;g:=(x,y)->(60-x-2*y)*y;

solve({f(x,y)=0,g(x,y)=0},{x,y});

# {x=0,y=0},{x=0,y=30},{x=30,y=0},{x=20,y= 20}

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A:=J(0,0);Eigenvectors(A);# unstable node

A:=J(0,30);Eigenvectors(A);# unstable saddle

A:=J(30,0);Eigenvectors(A);;# unstable saddle

A:=J(20,20);Eigenvectors(A);evalf(%);# stable node

Classification of Almost Linear Equilibria. With computer assist, find and classify
the nonlinear equilibria.

15. (Co-existing Species)

x′(t) = x(t)(24− 2x(t)− y(t)),
y′(t) = y(t)(30− 2y(t)− x(t)).

Solution:

Jacobian J(x, y) =

(
24− 4x− y −x

−y 30− 4y − x

)
Equilibria for maple: [0,0],[0,15],[12,0],[6,12]

xy-Window: −1 < x < 15, −1 < y < 18
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# Exercise 15, Co-existing Species

f:=(x,y)->x*(24-2*x-y);g:=(x,y)->y*(30-2*y-x);

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

# p:=[{x=0,y=0},{x=0,y=15},{x=12,y=0},{x=6,y=12}]

restPointInfo:=proc(valueSet)# arg = {x=a,y=b}

global f,g,J; local A,Lambda,P,jacobian,L;

with(LinearAlgebra):

jacobian:=Student[MultivariateCalculus][Jacobian]:

J:=LL->jacobian([f(x,y),g(x,y)],[x,y]=LL);

L:=subs(valueSet,[x,y]);A:=J(L);Lambda,P:=Eigenvectors(A);

RETURN (A,Lambda,evalf(Lambda),P,evalf(P));

end proc:

JACOBIAN:=J([’x’,’y’]);

fmt:="%a: A,Lambda,evalf(Lambda),P,evalf(P)\n":

for i from 1 to nops(p)

do printf(fmt,p[i]); restPointInfo(p[i]); od;

# unstable node, saddle, saddle, stable node

16. (Doomsday-Extinction)

x′(t) = x(t)(x(t)− y(t)− 4),
y′(t) = y(t)(x(t) + y(t)− 8).

Almost Linear Geometry. A separatrix S is a union of curves and equilibria.
Ideally, orbits limit to S. With computer assist, make a plot of threaded curves
which identify one or more separatrices near the equilibrium.

17. (Saddle (−1, 1))
d
dtx = x+ y,
d
dty = 1− x2.

Solution:

Jacobian J(x, y) =

(
1 1

−2x 0

)
Equilibria for maple: [1,-1],[-1,1]

xy-Window: −2 < x < 2, −2 < y < 2
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18. (Saddle (−1/5,−2/5))

d
dtx = 3x− 2y − x2 − y2,
d
dty = 2x− y.

19. (Saddle (−2/3, 3
√

4/3))
d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

Solution:

Jacobian J(x, y) =

(
2 3y2

3y 2 + 3x

)
Equilibria for maple: [0,0],[-0.667,1.100642416]

xy-Window: −2 < x < 2, −2 < y < 2
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20. (Degenerate Improper Node (0, 0))

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.

Rayleigh and van der Pol. Each example below has a unique periodic orbit sur-
rounding an equilibrium point that is the limit at t = ∞ of any other orbit.
Discuss the spiral repeller at (0, 0) in the attached figure, from the linearized
problem at (0, 0) and Paste Theorem 10.4. Create a phase portrait with com-
puter assist for the nonlinear problem.

21. (Lord Rayleigh 1877, Clarinet Reed Model)

d
dtx = y,

d
dty = −x+ y − y3.

Solution:

Jacobian: J(x, y) =

(
0 1
−1 −3y2 + 1

)
, J(0, 0) =

(
0 1
−1 1

)
The eigenvalues of J(0, 0) are 1

2 ±
1
2 i. The linearized problem u⃗ ′ = Au⃗ at x = y = 0

is an unstable center. However, the Paste Theorem 10.4 does not predict the phase
portrait near (0, 0) for the nonlinear problem: it is a center or spiral. Stability is also
not inherited: the nonlinear phase portrait can be stable or unstable at (0, 0).

Graphing the nonlinear phase portrait reveals (0, 0) is unstable, a repeller. Orbits
that start far from (0, 0) wind around the origin but never reach it: they limit to a
cycle as shown in the figure.

# Exercise 21, Clarinet Reed Model, Lord Rayleigh 1877

f:=(x,y)->y; g:=(x,y)->-x+y-y^3;

JJ:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

JACOBIAN:=JJ(’x’,’y’);A:=JJ(0,0);

Lambda,P:=LinearAlgebra[Eigenvectors](A);

ic1:=[x(0)=0,y(0)=0.5],[x(0)=0,y(0)=-0.5],

[x(0)=0.5,y(0)=0],[x(0)=-0.5,y(0)=0];

ic2:=[x(0)=0,y(0)=1.6],[x(0)=0,y(0)=-1.6],

[x(0)=1.6,y(0)=0],[x(0)=-1.6,y(0)=0];

des:=diff(x(t),t)=f(x(t),y(t)),diff(y(t),t)=g(x(t),y(t)):

wind:=x=-3..3,y=-3..3:Times:=t=-15..15:

opts:=axes=none,thickness=2,arrows=small,color=blue,

linecolor=black,numpoints=500,stepsize=0.05:

ics:=[ic1,ic2]:

DEtools[DEplot]([des],[x(t),y(t)],Times,ics,wind,opts);
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Figure 1. Clarinet Reed.

22. (van der Pol 1924, Radio Oscillator Circuit Model)

d
dtx = y,

d
dty = −x+ (1− x2)y.

Solution:Details follow Exercise 21.
# Exercise 22, van der Pol 1924, Radio Oscillator Circuit

f:=(x,y)->y; g:=(x,y)->-x + (1-x^2)*y;

JJ:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

JACOBIAN:=JJ(’x’,’y’);A:=JJ(0,0);

Lambda,P:=LinearAlgebra[Eigenvectors](A);

ic1:=[x(0)=0,y(0)=0.5],[x(0)=0,y(0)=-0.5],

[x(0)=0.5,y(0)=0],[x(0)=-0.5,y(0)=0];

ic2:=[x(0)=0,y(0)=2.8],[x(0)=0,y(0)=-2.3],

[x(0)=2.4,y(0)=0],[x(0)=-2.8,y(0)=0];

des:=diff(x(t),t)=f(x(t),y(t)),diff(y(t),t)=g(x(t),y(t)):

wind:=x=-3..3,y=-3..3:Times:=t=-15..15:

opts:=axes=none,thickness=2,arrows=small,color=blue,

linecolor=black,numpoints=500,stepsize=0.05:

ics:=[ic1,ic2]:

DEtools[DEplot]([des],[x(t),y(t)],Times,ics,wind,opts);

Figure 2. Oscillator Circuit.

10.4 Biological Models

Exercises 10.4 �
Predator-Prey Models.
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Consider the system

x′(t) =
1

250
(1− 2y(t))x(t),

y′(t) =
3

500
(2x(t)− 1)y(t).

1. (System Variables) The system has vector-matrix form

d

dt
u⃗ = F⃗ (u⃗(t)).

Display formulas for u⃗ and F⃗ .

Solution: The formulas:

u⃗ =

(
x
y

)
, F⃗(u⃗) =

( 1
250x(1− 2y)
3

500y(2x− 1)

)
Computer implementations are not the same:

# Exercise 1, Predator-Prey, System Variables

PDEtools[declare]((x, y)(t), prime = t);

## x(t), y(t) are displayed as x, y

## diff(f(t),t) displayed in prime notation f’

u:=t-><x(t),y(t)>;

F0:=(x,y)-><x*(1-2*y)/250,3*y*(2*x-1)/500>;

F:=w->F0(w[1],w[2]):

F(u(t));

## <(1/250)*x(t)*(1-2*y(t)),(3/500)*y(t)*(2*x(t)-1)>

2. (System Parameters) Identify the values of a, b, c, d, p, q, as used in the textbook’s
predator-prey system.

3. (Identify Predator and Prey) Which of x(t), y(t) is the predator?

Solution:When the number of predators is near zero then the number of prey ex-
plodes: think rabbits and foxes. In the model, y ≈ 0 in the first differential equation
reduces to x′ = cx with c = 1/250 positive. The model is Malthusian population
growth: population x explodes. Therefore, x = prey, y = predator.

4. (Switching Predator and Prey) Give an example of a predator-prey system in which
x(t) is the predator and y(t) is the prey.

Implicit Solution Predator-Prey. These exercises prove equation

a ln |y|+ b ln |x| − q x− p y = C

for predator-prey system

x′(t) = (a− p y(t))x(t),
y′(t) = (q x(t)− b)y(t).
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5. (First Order Equation) Verify from the chain rule of calculus the first order equation

dy

dx
=

y′(t)

x′(t)
=

y

x

qx− b

a− py
.

Solution:Details:

dy
dx =

y′(t)

x′(t)

=
(q x(t)− b)y(t)

(a− p y(t))x(t)

=
y(t)

x(t)

(q x(t)− b)

(a− p y(t))

=
y

x

q x− b

a− p y
■

6. (Separated Variables) Verify(
a

y
− p

)
dy =

(
q − b

x

)
dx.

7. (Quadrature) Integrate the equation of Exercise 6 to obtain

a ln |y| − p y = q x− b ln |x| = C.

Then re-arrange to obtain the reported implicit solution.

Solution: Details:∫ (
a
y − p

)
dy = a ln |y| − py + c1∫ (

q − b
x

)
dx = qx− b ln |x|+ c2

Equate the two answers above. Move constants to the right and all other terms to
the left. Let C = c2 − c1. ■

8. (Energy Function) Define E(t) = a ln |u| − pu. Show that dE/du = (a − pu)/u.
Then show that dE/du < 0 for a > 0, p > 0 and a/p < u <∞.

Linearized Predator-Prey System. Consider

x′(t) = (100− 2y(t))x(t),
y′(t) = (2x(t)− 160)y(t).

9. (Find Equilibria) Verify equilibria (0, 0), (80, 50).

Solution: An equilibrium point (x, y) satisfies the equations

0 = (100− 2y)x,
0 = (2x− 160)y.

If either x = 0 or y = 0 then the other variable is zero, giving equilibrium (0, 0).
If both x ̸= 0 and x ̸= 0 then 100 − 2y = 0 and 2x − 160 = 0, giving equilibrium
(80, 50). ■
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10. (Jacobian Matrix) Compute J(x, y) for each x, y. Then find J(0, 0) and J(80, 50).

Solution:

Jacobian J(x, y) =

(
100− 2y −2x

2y 2x− 160

)
J(80, 50) =

(
0 −160
100 0

)
.

# Exercise 10, Jacobian Matrix J(x,y)

f:=(x,y)->(100-2*y)*x;g:=(x,y)->(2*x-160)*y;

p:=solve({f(x,y)=0,g(x,y)=0},{x,y});

# p = {x = 1, y = -1/2}, {x = -1, y = 1/2}

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

J(x,y);J(0,0);J(80,50);

11. (Transit Time) Find the transit time of an orbit for one loop about (0, 0) for system

d
dt v⃗ =

(
0 −160
100 0

)
v⃗ , the linearization about (80, 50).

Solution:The transit time T for one loop is T = 0.04967294134 seconds.

# Exercise 11, Transit time for one loop about (0,0)

f:=(x,y)->(100-2*y)*x;g:=(x,y)->(2*x-160)*y;

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A:=J(80,50);

LinearAlgebra[Eigenvectors](A);

# eigenvalues = [ (40*I)*sqrt(10),-(40*I)*sqrt(10) ]

omega:=40*sqrt(10);

# One period of cosine and sine of omega*t is 2*Pi/omega

T:=evalf(2*Pi/omega);

# T = 0.04967294134

12. (Paste Theorem) Describe the local figures expected near equilibria in the nonlinear
phase portrait.

Solution:Saddle at (0, 0). At (80, 50) either a spiral or a center.

Rabbits and Foxes. Consider

x′(t) =
1

200
x(t)(50− y(t)),

y′(t) =
1

100
y(t)(x(t)− 40).

13. (Equilibria) Verify equilibria (0, 0), (40, 50), showing all details.

Solution:Equilibria (x, y) satisfy

0 =
1

200
x(50− y),

0 =
1

100
y(x− 40).
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If x = 0 or y = 0 then both x = y = 0 and the equilibrium is (0, 0). Otherwise, x ̸= 0
and y ̸= 0 and then 50− y = 0, x− 40 = 0 giving equilibrium (40, 50). ■

14. (Jacobian) Compute Jacobian J(x, y), then J(0, 0) and J(40, 50).

Solution:

J(x, y) =

(
1/4− y/200 −x/200

y/100 x/100− 2/5

)
J(0, 0) =

(
1/4 0
0 −2/5

)
J(40, 50) =

(
0 −1/5
1/2 0

)
# Exercise 14, Jacobian, Rabbits and Foxes

f:=(x,y)->(50-y)*x/200;g:=(x,y)->(x-40)*y/100;

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

J(x,y);J(0,0);J(40,50);

15. (Rabbit Oscillation) Find a graphical estimate for the period of oscillation of the
rabbit population x(t) for the nonlinear system, given x(0) = 100, y(0) = 60 and t is
in weeks. Answer: about 23 weeks.

Solution:The plan is to graph the solution of the nonlinear Lotka-Volterra system
with initial data x(0) = 100, y(0) = 30 and then estimate the period from the plot.
Expected is a plot that looks like sine curve. The period is the t-range between two
consecutive local maxima. Because the curve fails to be exactly periodic, several
pairs of maxima are tested to arrive at an estimate for the period.

In maple the maxima can be located by mouse probe. Right-click on the plot, then
click on menu item Manipulator ⇝ Point Probe. Right-click again on the plot and
click on menu item Probe Info ⇝ Cursor position. Next step: hover the mouse
over several consecutive maxima in the plot. Write on paper the t-value displayed by
maple. Subtract t-values to get an estimate for the period:

46.32− 22.58, 68.876− 46.32, 91.735− 68.876
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The three values are all different, but approximately equal to 23 weeks. ■

# Exercise 15, Rabbit Estimates, Rabbits and Foxes

f:=(x,y)->(50-y)*x/200;g:=(x,y)->(x-40)*y/100;

ic:=[x(0)=x0,y(0)=y0];

de:=diff(x(t),t)=f(x(t),y(t)),diff(y(t),t)=g(x(t),y(t));

DEtools[DEplot]([de],[x(t),y(t)],t=0..100,

[[x(0)=100,y(0)=30]],scene=[t,x]);

# See solution text for mouse hover to display t-values at maxima.

16. (Rabbit-Gerbil Competing Species) Consider system

x′ =
(
5
4 −

x
160 −

3y
1000

)
x,

y′ =
(
3− 3y

500 −
3x
160

)
y.

Verify equilibria (0, 0), (0, 500), (200, 0), (80, 250). Show the first three are nodes and
the last is a saddle.

Pesticides. Consider the system

x′(t) = (10− y(t))x(t)− s1x(t),
y′(t) = (x(t)− 20)y(t)− s2y(t).

17. (Average Populations) Explain: A field biologist should count, on the average,
populations of about 20 + s2 prey and 10− s1 predators.

Solution:Equilibrium (20 + s2, 10 − s1) is an attractor, which means limt→∞ x(t) =
20 + s2 and limt→∞ y(t) = 10 − s1. On a given day after the populations have
oscillated sufficiently long (t → ∞) the limiting populations should be observed on
the average by a field biologist.

18. (Equilibria) Show details for computing the pesticide system equilibria (0, 0), (20+
s2, 10− s1), where s1, s2 are the pesticide death rates.

Survival of One Species. Consider

x′(t) = x(t)(24− x(t)− 2y(t)),
y′(t) = y(t)(30− y(t)− 2x(t)).

19. (Equilibria) Find all equilibria.

Solution:Equilibria (x, y) satisfy the equations

0 = x(24− x− 2y),
0 = y(30− y − 2x).

Solve for x, y: x = 0 and y = 0 or else x = 0 and y = 30 or else y = 0 and x = 24 or
else 24− x− 2y = 0 and 30− y− 2x = 0. The last equilibrium is the unique solution
of the linear algebraic system of equations. Elimination gives x = 12, y = 6.

# Exercise 19, Survival of One Species, equilibria

x:=’x’:y:=’y’:

eqs:=24-x-2*y=0, 30-y-2*x=0;

solve([eqs],[x,y]);

# [[x = 12, y = 6]]
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20. (Interactions) Show that doubling either x or y causes the interaction term 2xy to
double.

21. (Nonlinear Classification) Classify each equilibrium point (x0, y0) as center, spiral,
node, saddle, using the Paste Theorem. Determine stability for node and spiral.
Make a computer phase portrait to confirm the classifications.

Solution:
Equilibria: [0, 0], [0, 30], [24, 0], [12, 6]

(0,0) unstable improper node (repeller)
(0,30) stable improper node (attractor)
(24,0) stable improper node (attractor)
(12,6) unstable saddle

The Paste Theorem says that the linear classification and stability are inherited to
the nonlinear phase portrait.
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# Exercise 21, Survival of One Species, Paste Theorem

f:=(x,y)->(24-x-2*y)*x;g:=(x,y)->(30-y-2*x)*y;

p:=solve([f(x,y)=0,g(x,y)=0],[x,y]);

# [0, 0], [0, 30], [24, 0], [12, 6]

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

JACOBIAN:=J(’x’,’y’);

q:=seq(subs(p[i],JACOBIAN),i=1..nops(p));

seq(print(LinearAlgebra[Eigenvectors](q[i])),i=1..nops(p));

# (0,0) unstable improper node (repeller)

# (0,30) stable improper node (attractor)

# (24,0) stable improper node (attractor)

# (12,6) unstable saddle

# Used MAPLE task Phase Portrait

# Window: -10<x<30, -10<y<40

# F=(24-x-2*y)*x, G=(30-y-2*x)*y

# Equilibria: [0, 0], [0, 30], [24, 0], [12, 6]

# Time: -20 to 20

22. (Extinction and Competing Species) Equilibria for which either x = 0 or y = 0
signal extinction states. Discuss how the phase portrait of the nonlinear system shows
extinction of one species but not both.

Co-existence
Find the equilibria, then classify them as node, saddle, spiral, center using the
Paste Theorem. Determine stability for node and spiral. Make a computer
phase portrait to confirm the classifications.

23. (Node, Saddle, Saddle, Node)

x′ = (144− 2x− 3y)x,
y′ = (90− 6y − x)y.

Solution:
Equilibria: [0,0], [0,15], [72,0], [66,4]

(0,0) unstable improper node (repeller)
(0,15) unstable saddle
(24,0) unstable saddle
(12,6) stable improper node (attractor)

The Paste Theorem says that the linear classification and stability are inherited to
the nonlinear phase portrait.
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# Exercise 23, Co-existence, Paste Theorem

f:=(x,y)->(144-2*x-3*y)*x;g:=(x,y)->(90-6*y-x)*y;

p:=solve([f(x,y)=0,g(x,y)=0],[x,y]);

# [0,0], [0,15], [72,0], [66,4]

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

JACOBIAN:=J(’x’,’y’);

q:=seq(subs(p[i],JACOBIAN),i=1..nops(p));

seq(print(LinearAlgebra[Eigenvectors](q[i])),i=1..nops(p));

# (0,0) unstable improper node (repeller)

# (0,15) unstable saddle

# (72,0) unstable saddle

# (66,4) stable improper node (attractor)

# Used MAPLE task Phase Portrait

# Window: -10<x<85, -10<y<20

# F=(144-2*x-3*y)*x G=(90-6*y-x)*y

# Equilibria: [0,0], [0,15], [72,0], [66,4]

# Time: -20 to 20

24. (Node, Saddle, Saddle, Node)

x′ = (120− 4x− 2y)x,
y′ = (60− x− 2y)y.

Solution:Equilibria (0, 0), (30, 0), (0, 30), (20, 20). The nodes are stable.
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Explosion and Extinction
Find the equilibria, then classify them as node, saddle, spiral, center using the
Paste Theorem. Determine stability for node and spiral. Make a computer
phase portrait to confirm the classifications.

25. (Node, Saddle, Saddle, Spiral)

x′ = x(x− 2y − 4),
y′ = y(x+ 2y − 8).

Solution:
Equilibria: [0,0], [0,8], [4,0], [6,2]

(0,0) stable improper node (attractor)
(0,8) unstable saddle
(4,0) unstable saddle
(6,2) unstable spiral (repeller)

The Paste Theorem says that the linear classification and stability are inherited to
the nonlinear phase portrait.
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# Exercise 25, Explosion and Extinction, Paste Theorem

f:=(x,y)->(x-y-4)*x;g:=(x,y)->(x+y-8)*y;

p:=solve([f(x,y)=0,g(x,y)=0],[x,y]);

# [0,0], [0,8], [4,0], [6,2]

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

JACOBIAN:=J(’x’,’y’);

q:=seq(subs(p[i],JACOBIAN),i=1..nops(p));

seq(print(LinearAlgebra[Eigenvectors](q[i])),i=1..nops(p));

# (0,0) stable improper node (attractor)

# (0,8) unstable saddle

# (4,0) unstable saddle

# (6,2) unstable spiral (repeller)

# Used MAPLE task Phase Portrait

# Window: -5<x<8, -5<y<10

# F=((x-y-4)*x G=(x+y-8)*y

# Equilibria: [0,0], [0,8], [4,0], [6,2]

# Time: -20 to 20

26. (Node, Saddle, Saddle, Spiral)

x′ = x(x− y − 4),
y′ = y(x+ y − 6).

10.5 Mechanical Models

Exercises 10.5 �
Linear Mechanical Models
Consider the unforced linear model mx′′+cx′+kx = 0, where m, c, k are positive
constants: m=mass, c=dashpot constant, k=Hooke’s constant.

1. (Dynamical System Form) Write the scalar problem as u⃗ ′ = Au⃗ . Explicit defini-
tions of u⃗(t) and A are expected.

Solution:

u⃗ =

(
x
y

)
,

(
x′

y′

)
= A

(
x
y

)
, A =

(
0 1

− k
m − c

m

)
# Exercise 1, Linear Mechanical Model, Dynamical System Form

PDEtools[declare]((x, y)(t), prime = t);

## x(t), y(t) are displayed as x, y

## diff(f(t),t) displayed in prime notation f’

A:=Matrix([[0, 1], [-k/m, -c/m]]);

u:=t-><x(t),y(t)>;

# Check dynamical system form

map(diff,u(t),t) = A.u(t);
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2. (Attractor to u⃗ = 0⃗ ) Explain why limt→∞ u⃗(t) = 0⃗ , giving citations to theorems in
this book.

Solution:Hint: Theorem 6.21 (Transient Solution) page 530.

3. (Isolated Equilibrium) Prove that u⃗ ′ = Au⃗ has a unique equilibrium at u⃗ = 0⃗ .
Then explain why the equilibrium is isolated.

Solution:Matrix A =

(
0 1

− k
m −

c
m

)
has nonzero determinant, therefore it is invertible.

If Ax⃗ = 0⃗ then x⃗ = A−1Ax⃗ = A−10⃗ = 0⃗ . This proves the equilibrium u⃗ = 0⃗ is
unique.

Isolated means there is a disk ∥x⃗∥ < r which excludes all solutions of Ax⃗ = 0⃗ except
x⃗ = 0⃗ . Let r = 1 and assume a solution x⃗ of Ax⃗ = 0⃗ with ∥x⃗∥ < r. Multiply
Ax⃗ = 0⃗ by A−1 to obtain x⃗ = 0⃗ . Then this disk contains no other solution of
Ax⃗ = 0⃗ except x⃗ = 0⃗ . ■

4. (Phase Plots) Classify the cases of over-damped and under-damped as a stable
node or a stable spiral for u⃗ ′ = Au⃗ at equilibrium u⃗ = 0⃗ . Why are classifications
center and saddle impossible?

Nonlinear Spring-Mass System
Consider the general model x′′ + F (x) = 0 with the assumptions on page 804.

5. (Harmonic Oscillator) Let F (x) = ω2 x with ω > 0. Show F is odd and F (0) = 0.
Then find the general solution x(t) for x′′ + F (x) = 0.

Solution: The general solution is x(t) = c1 cosωt+ c2 sinωt.

Odd means F (−x) = −F (x). Calculate F (−x) = ω2(−x) = −ω2x = −F (x). ■

6. (Taylor Series) Show that an odd function F (x) with Maclaurin series
∑∞

n=0 an x
n

has all even order terms zero, that is, an = 0 for n even.

Soft and Hard Springs
Classify as a hard or soft spring. Then write the conservation law for the equation.

7. x′′ + x+ x3 = 0

Solution:Hard spring mx′′ + F (x) = 0: F (x) = kx+ βx3 with m = k = β = 1.

8. x′′ + x− x3 = 0

Hard spring

9. Prove that a hard spring has exactly one equilibrium x = y = 0.

Solution:The dynamical system is x′ = y, y′ = −F (x). Solve equations 0 = y,
0 = −F (x) for x, y. Answer: y = 0 and 1

m

(
kx+ βx3

)
= 0. Solve for (x, y): y = 0

and x = 0 or 1 + βx2 = 0. Equation 1 + βx2 = 0 has no real solution x, because
β > 0. The only equilibrium is x = y = 0.
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10. Substitute x = x(t), y = x′(t) into z = y2 + x2 + x4 to obtain z(t). Function z(t)
has a minimum when dz

dt = 0. Reduce this equation to x′′ + x+ 2x3 = 0.

Soft Spring
Consider soft spring x′′ + kx− βx3 = 0, k > 0, β > 0.

11. (Equilibria) Verify the three equilibria (0, 0), (0,
√
kβ), (0,−

√
kβ).

Solution:The dynamical system is x′ = y, y′ = −F (x) = −kx+βx3. Solve equations
0 = y, 0 = −F (x) for x, y. Answer: y = 0 and kx− βx3 = 0. Solve for (x, y): y = 0
and x = 0 or 1− βx2 = 0. Then the equilibria are (0, 0), (1/

√
β, 0), (−1/

√
β, 0).

12. (Saddles) Verify by linearization and the Paste Theorem that nonlinear equilibria
(0,
√
kβ), (0,−

√
kβ) are saddles.

13. (Center or Spiral) The Paste Theorem says that equilibrium (0, 0) of the nonlin-
ear system is a center or spiral. Verify by computer phase portrait m = k = 1 and
β = 2 Figure 37, page 807.

Solution:The phase portrait at (0, 0) is a center.

# Exercise 13, Center or Spiral, phase portrait soft spring

beta:=1/sqrt(2.);# 0.7071067814

# Used MAPLE task Phase Portrait

# Window: -2<x<2, -3<y<3

# F=y G=-x-2*x^3

# Equilibria: [0,0], [0.707,0], [-0.707,0]

# Time: -20 to 20
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14. (Mass at Rest) Verify that the only solutions with the mass at rest are the equilibria.
Mass at rest means velocity zero: u⃗ ′(t0) = 0⃗ for some t0, vector notation from
Exercise 1.

15. (Phase Portrait) Solve for the equilibria of x′′+4x−x3 = 0. Draw a phase portrait
similar to Figure 37, page 807.

Solution:Equilibria: [0,0], [2,0], [-2,0].

# Exercise 15, Soft Spring phase portrait

# Used MAPLE task Phase Portrait

# Window: -3<x<3, -4<y<4

# F=y G=-4*x-x^3

# Equilibria: [0,0], [2,0], [-2,0]

# Time: -20 to 20

16. (Separatrix) The energy equation for x′′ + 4x − x3 = 0 is 1
2y

2 + 2x2 − 1
4x

4 = E.
Substitute the saddle equilibria to find E = 4. Plot implicitly the energy equation
curve. A separatrix is the union of the two saddle equilibria and this implicit curve.

Solution:
# Exercise 16, Separatrix

Energ:=(1/2)*y^2+2*x^2-(1/4)*x^4;

plots[implicitplot](Energ=4,x=-3..3,y=-4..4,gridrefine=3);
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Damped Nonlinear Pendulum

Consider d2θ(t)
dt2

+ cdθdt + g
L sin(θ(t)) = 0, which has vector-matrix form u⃗ ′ =

G⃗(u⃗(t)).

17. Display both u⃗ and G⃗ .

Solution:Let u⃗ =

(
u1

u2

)
=

(
θ(t)
θ′(t)

)
. Then

G⃗ (u⃗) =

(
θ′(t)

−cθ′(t)− g
L sin θ(t)

)
=

(
u2

−cu2 − g
L sin(u1)

)

18. Find the Jacobian matrix of G⃗ with respect to u⃗ .

Undamped Nonlinear Pendulum

Consider d2θ(t)
dt2

+ g
L sin(θ(t)) = 0, having vector-matrix form u⃗ ′ = F⃗ (u⃗ (t)).

19. Find the Jacobian matrix of F⃗ with respect to u⃗ .

Solution:Apply Exercise 17 with c = 0, u1 = x, u2 = y:

G⃗(u⃗ ) ==

(
y

− g
L sin(x)

)
Then

J(x, y) = Jacobian matrix =

(
0 1

− g
L cos(x) 0

)
J(θ, θ′) =

(
0 1

− g
L cos(θ) 0

)
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20. Solve F⃗(u⃗) = 0⃗ for u⃗ , showing all details.

Solution:Equation F⃗ (u⃗) = 0⃗ means G⃗(u⃗) =

(
u2

−cu2 − g
L sin(u1)

)
= 0⃗ in Exercise

17. Let c = 0. Details omitted to find equilibria (nπ, 0), n = 0,±1,±2, . . ., which are
points along the abscissa equally spaced by pi units.

21. Evaluate the Jacobian matrix at the roots of F⃗(u⃗) = 0⃗ .

Solution:By Exercise 20 the equilibria are (nπ, 0), n = 0,±1,±2, . . .. By Exercise 19:

J(nπ, 0) =

(
0 1

− g
L cos(nπ) 0

)
=

(
0 1

−(−1)n g/L 0

)

22. Plot y2 + 4g
L sin2(x/2) = 4 g

L
implicitly for g

L = 10. The separatrix is this curve plus equilibria.

Solution:
# Exercise 22, Separatrix, Nonlinear Pendulum

Energ:=y^2 + 40*sin(x/2)^2;

plots[implicitplot](Energ=40,x=-10..10,y=-10..10,gridrefine=4);

The phase portrait below shows the separatrix location.
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Appendix 11

§ Systems of Differential
Equations

Contents

11.1 Examples of Systems . . . . . . . . . . . . . . . . . 1590

11.2 Fundamental System Methods . . . . . . . . . . . 1591

11.3 Structure of Linear Systems . . . . . . . . . . . . . 1599

11.4 Matrix Exponential . . . . . . . . . . . . . . . . . . 1606

11.5 Eigenanalysis, Spectral, CHZ . . . . . . . . . . . . 1613

11.6 Jordan Form and Eigenanalysis . . . . . . . . . . . 1622

11.7 Nonhomogeneous Linear Systems . . . . . . . . . . 1639

11.8 Second Order Systems . . . . . . . . . . . . . . . . 1644

11.9 Numerical methods for Systems . . . . . . . . . . . 1654

11.1 Examples of Systems

Exercises 11.1 �
There are no exercises for this section of examples. Later sections use this section
for definitions, equations and key examples.
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11.2 Fundamental System Methods

11.2 Fundamental System Methods

Exercises 11.2 �
Solving 2× 2 Systems

1. Solve x′
1 = 2x1 + x2, x

′
2 = x2. Ans: x1 = c1 e

2 t − c2 e
t, x2 = c2 e

t

Solution:Solve growth-decay equation x′
2 = x2 by the Growth-Decay shortcut for u′ =

ku:. Then x2 = c2e
t. Insert this answer into the first equation. Then x′

1 = 2x1+c2e
t.

Write it in standard form x′
1 + (−2)x1 = c2e

t. Solve by the linear integrating factor
method.

x′
1 + (−2)x1 = c2e

t(
x1e

−2t
)′

e−2t = c2e
t Replace LHS x′ + px by

(
x e
∫
pdt
)′

/e
∫
pdt.(

x1e
−2t
)′

= c2e
t e−2t

x1e
−2t =

∫
c2e

t e−2tdt Quadrature method.

x1 = −c2 et + c1 e
2 t

2. Discuss how to solve x⃗ ′ =

(
a b
0 d

)
x⃗ .

Triangular 2× 2 Matrix A

3. Solve x⃗ ′ =

(
2 1
0 3

)
x⃗ .

Solution:Answer: x1 = c1e
2t + c2e

3t, x2 = c2e
3t

Use the scalar method in Exercise 1. First step: convert the matrix form to scalar
form.

Given x′
1 = 2x1 + x2, x

′
2 = 3x2, solve for x2 then x1.

x′
2 = 3x2 Second DE, solve for x2.

x2 = c2e
3t Growth-decay shortcut for u′ = ku.

x′
1 = 2x1 + x2 First DE, solve for x1.

x′
1 = 2x1 + c2e

3t Substitute x2 = c2e
3t into the first DE.

(e−2tx1)
′/e−2t = c2e

3t Linear integrating factor method.

e−2tx1 =
∫
c2e

3te−2t dt Quadrature method.

e−2tx1 = c1 + c2e
t

x1 = c1e
2t + c2e

3t

4. Solve x⃗ ′ =

(
2 0
2 3

)
x⃗ .

Non-Triangular 2× 2 Matrix A
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5. Solve x⃗ ′ =

(
1 3
3 1

)
x⃗ .

Solution:Answer: x1 = c1e
4t + c2e

−2t, x2 = c1e
4t − c2e

−2t

Details:
Characteristic equation: r2 − trace(A)r + |A| = r2 − 2r − 8 = 0. Roots: r = 4,−2.
Atoms: e4t, e−2t. The scalar system is x′

1 = x1 + 3x2, x
′
2 = 3x1 + x2. The Cayley-

Hamilton-Ziebur Theorem page 840 applies:

x1 = c1e
4t + c2e

−2t.

Solve the first differential equation for x2:

x2 = 1
3 (x

′
1 − x1)

Insert equation x1 = c1e
4t + c2e

−2t and simplify:

x2 = 1
3 (x

′
1 − x1)

= 1
3 (4c1e

4t − 2c2e
−2t − c1e

4t − c2e
−2t)

= c1e
4t − c2e

−2t

6. Solve x⃗ ′ =

(
1 3
−3 1

)
x⃗ .

Method for n× n Diagonal A

7. Solve x⃗ ′ =

(
1 0 0
0 3 0
0 0 2

)
x⃗ .

Solution:Answer: x⃗ =

 et 0 0
0 e3t 0
0 0 e2t

 c1
c2
c3

 =

 c1e
t

c2e
3t

c3e
2t



8. Solve x⃗ ′ =

1 0 0 0
0 3 0 0
0 0 4 0
0 0 0 2

 x⃗ .

Method for n× n Lower Triangular

9. Solve x⃗ ′ =

(
1 0 0
1 3 0
1 0 2

)
x⃗ .

Solution:Answer:

By maple:

x1 (t) = d1 et,
x2 (t) = − 1

2 d1 et + d2 e3 t,
x3 (t) = −d1 et + d3 e2 t

Vector-Matrix form of the answer: x⃗ =

 et 0 0
− 1

2e
t e3t 0

−et 0 e2t

  d1
d2
d3


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11.2 Fundamental System Methods

Pencil and paper: solve the differential equations top to bottom by either the shortcut
for u′ = ku or else the linear integrating factor method for u′ + pu = q. Involved in
the preparation to solve is substitution of previously known functions, order x1, x2, x3

for lower triangular matrices.

Start: x1 = c1e
t.

Second equation: x′
2 = x1 + 3x2 = c1e

t + 3x2. To standard form:

x′
2 − 3x2 = c1e

t.

x2 = − 1
2c1e

t + c2e
3t By the linear integrating factor method.

Third equation: x′
3 = x1 + 2x3

x′
3 − 2x3 = c1e

t

x3 = −c1et + c3e
2t By the Linear integrating factor method.

Vector-Matrix Answer obtained by the linear integrating factor method matches the
maple dsolve answer:

x⃗ =

 et 0 0
− 1

2e
t e3t 0
et 0 e2t

  c1
c2
c3


# Exercise 9, 3x3 lower triangular

A:=Matrix([[1 , 0 , 0],[1 , 3 , 0],[1 , 0 , 2]]);

sys:=[diff(x(t),t)=x(t),

diff(y(t),t)=x(t)+3*y(t),

diff(z(t),t)=x(t)+2*z(t)];

vars:=[x(t),y(t),z(t)];

dsolve(sys,vars);

10. Solve x⃗ ′ =

(
1 0 0
0 3 0
1 0 2

)
x⃗ .

Method for n× n Upper Triangular

11. Solve x⃗ ′ =

(
1 0 1
0 3 1
0 0 2

)
x⃗ .

Solution:The scalar equations:

x′
1 = x1 + x3, x′

2 = 3x2 + x3, x′
3 = 2x3

maple answer:

x1 (t) = d3 e
2t + d1e

t,
x2 (t) = −d3e2t + d2e

3t,
x3 (t) = d3e

2t

Vector-Matrix form: x⃗ =

 et 0 e2t

0 e3t −e2t
0 0 e2t

  d1
d2
d3


Pencil and paper answer:
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Solve the differential equations bottom to top by either the shortcut for u′ = ku or
else the linear integrating factor method for u′ + pu = q. Involved in the preparation
to solve is substitution of previously known functions, order x3, x2, x1 for upper tri-
angular matrices.

Start: x3 = c3e
2t.

Second equation:
x′
2 = 3x2 + x3 = 3x2 + c3e

2t

x′
2 − 3x2 = c3e

2t Standard form.

x2 = −c3e2t + c2e
3t By the linear integrating factor method.

Third equation:
x′
1 = x1 + x3

x′
1 − x1 = c3e

2t

x1 = c1e
t + c3e

2t By the Linear integrating factor method.

Vector-Matrix Answer obtained by the linear integrating factor method matches the
maple dsolve answer:

x⃗ =

 et 0 e2t

0 e3t −e2t
0 0 e2t

  c1
c2
c3


# Exercise 11, 3x3 upper triangular

A:=Matrix([[1 , 0 , 1],[0 , 3 , 1],[0 , 0 , 2]]);

sys:=[diff(x(t),t)=x(t)+z(t),

diff(y(t),t)=3*y(t)+z(t),

diff(z(t),t)=2*z(t)];

vars:=[x(t),y(t),z(t)];

p:=dsolve(sys,vars);

12. Solve x⃗ ′ =

(
1 1 0
0 3 1
0 0 2

)
x⃗ .

Jordan’s n× n Variable Change
Let A = PTP−1 with T upper triangular and P invertible. Define change of
variable x⃗(t) = P y⃗ (t). Prove these results:

13. If x⃗ (t) solves x⃗ ′(t) = Ax⃗ (t), then y⃗ (t) = P−1x⃗ (t) solves y⃗ ′(t) = T y⃗ (t).

Solution:Let x⃗ = P y⃗ , Then AP y⃗ = Ax⃗ = x⃗ ′ = P y⃗ ′. Reverse to P y⃗ ′ = AP y⃗ , then
multiply by P−1 and use AP = PT :

y⃗ ′ = P−1AP y⃗ = P−1PT y⃗T y⃗ . ■

14. If y⃗ ′(t) = T y⃗ (t), then x⃗ (t) = P y⃗ (t) solves x⃗ ′(t) = Ax⃗ (t).

Convert Scalar Linear 2nd Order to u⃗ ′ = Au⃗ + F⃗ (t)
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15. x′′ + 2x′ + x = sin t

Solution:Let u⃗ =

(
x
x′

)
. Then

u⃗ ′ =

(
x′

x′′

)
=

(
x′

−2x′ − x+ sin t

)
=

(
x′

−2x′ − x

)
+

(
0

sin t

)
=

(
0 1
−1 −2

)(
x
x′

)
+

(
0

sin t

)
=

(
0 1
−1 −2

)
u⃗ +

(
0

sin t

)

Then A =

(
0 1
−1 −2

)
. F⃗ =

(
0

sin t

)
. ■

16. 2x′′ + 3x′ + 8x = 4 cos t

Convert Second Order Scalar System to u⃗ ′ = Au⃗

17. x′′ = x+ y, y′′ = x− y

Solution:Let u⃗ =


x
x′

y
y′

. Then

u⃗ ′ =


x′

x′′

y′

y′′



=


x′

x+ y
y′

x− y



=


0 1 0 0
1 0 1 0
0 0 0 1
1 0 −1 0




x
x′

y
y′



Then A =


0 1 0 0
1 0 1 0
0 0 0 1
1 0 −1 0

 and F⃗ = 0⃗ . ■

18. x′′ = x+ y + sin t, y′′ + y = x+ cos t

Convert Coupled Spring-Mass System to u⃗ ′ = Au⃗ + F⃗
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19. x⃗ ′′ =

(
−2 1
1 −1

)
x⃗ +

(
0

sin t

)

Solution:Assume ′ = d
dt . Let x⃗ =

(
x1

x2

)
and u⃗ =


x1

x2

x′
1

x′
2

. Then

u⃗ ′ =


x′
1

x′
2

x′′
1

x′′
2



=


x′
1

x′
2

−2x1 + x2

x1 − x2 + sin t



=


0 0 1 0
0 0 0 1
−2 1 0 0
1 −1 0 0




x1

x2

x′
1

x′
2



Then A =


0 0 1 0
0 0 0 1
−2 1 0 0
1 −1 0 0

 and F⃗(t) =


0
0
0

sin t

. ■

20. x⃗ ′′ =

(
−2 1 0
1 −2 1
0 −1 −2

)
x⃗

Convert Higher Order Linear Equations to u⃗ ′ = Au⃗

21. x′′′ = x

Solution:Let u⃗ =

 x
x′

x′′

, then

u⃗ ′ =

 x′

x′′

x′′′

 =

 x′

x′′

x


u⃗ ′ =

 0 1 0
0 0 1
1 0 0

  x
x′

x′′


Then A =

 0 1 0
0 0 1
1 0 0

. ■

22.
d4y

dx4 + 16y = 0

Convert Scalar Continuous-Coefficient Equation to u⃗ ′ = Au⃗
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23. x2y′′ + 3xy′ + 2y = 0

Solution: Let u⃗ =

(
y
y′

)
, then

u⃗ ′ =

(
y′

y′′

)
=

(
y′

−3y′/x− 2y/x2

)
u⃗ ′ =

(
0 1

−2/x2 −3/x

)(
y
y′

)
Then A =

(
0 1

−2/x2 −3/x

)
. ■

24. y′′′ + xy′′ + x2y + y = 0

Convert Forced Higher Order Equation to u⃗ ′ = Au⃗ + F⃗ (t)

25.
d4y

dx4 = y′′′ + y + sinx

Solution: Variable t is the same as variable x and ′ = d
dx = d

dt .

Let u⃗ =


y
y′

y′′

y′′′

, then

u⃗ ′ =


y′

y′′

y′′′

y′′′′



=


y′

y′′

y′′′

y′′′ + y + sinx



=


y′

y′′

y′′′

y′′′ + y

+


0
0
0

sinx



=


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1




y
y′

y′′

y′′′

+


0
0
0

sinx


Then

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

, F⃗ (x) =


0
0
0

sinx

. ■

26.
d6y

dx6 =
d4y

dx4 + y + cos t
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Convert 2nd Order System to u⃗ ′ = Au⃗ + G⃗ (t)

27. x⃗ ′′ =

(
−2 1
1 −1

)
x⃗ +

(
1
−1

)
Solution:Assume ′ = d

dt .

Let x⃗ =

(
x1

x2

)
and u⃗ =


x1

x2

x′
1

x′
2

. Then:

u⃗ ′ =


x′
1

x′
2

x′′
1

x′′
2



=


x′
1

x′
2

−2x1 + x2 + 1
x1 − x2 − 1



=


x′
1

x′
2

−2x1 + x2

x1 − x2

+


0
0
1
−1



=


0 0 1 0
0 0 0 1
−2 1 0 0
1 −1 0 0




x1

x2

x′
1

x′
2

+


0
0
1
−1


Then

u⃗ ′ =


0 0 1 0
0 0 0 1
−2 1 0 0
1 −1 0 0




x1

x2

x′
1

x′
2

+


0
0
1
−1



A =


0 0 1 0
0 0 0 1
−2 1 0 0
1 −1 0 0

, G⃗(t) =


0
0
1
−1

. ■

28. x⃗ ′′=

(
−2 1 0
1 −2 1
0 −1 −2

)
x⃗ + et

1
1
1


Convert Damped 2nd Order System to u⃗ ′ = Au⃗ + G⃗ (t)

29. x⃗ ′′=

(
−2 1
1 −1

)
x⃗ +

(
0 1
1 0

)
x⃗ ′ +

(
1
−1

)

Solution:Assume ′ = d
dt . Let x⃗ =

(
1

x2

)
. Let u⃗ =


x1

x2

x′
1

x′
2

.
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Write the differential equation in terms of components:(
x′′
1

x′′
2

)
=

(
−2x1 + x2 + x′

2 + 1
x1 − x2 + x′

1 − 1

)
Then

u⃗ ′ =


x′
1

x′
2

x′′
1

x′′
2



=


x′
1

x′
2

−2x1 + x2 + x′
2 + 1

x1 − x2 + x′
1 − 1



=


0 0 1 0
0 0 0 1
−2 1 0 1
1 −1 1 0




x1

x2

x′
1

x′
2

+


0
0
1
−1



Then A =


0 0 1 0
0 0 0 1
−2 1 0 1
1 −1 1 0

 and G⃗(t) =


0
0
1
−1

. ■

30. x⃗ ′′ =

(
−2 1 0
1 −2 1
0 −1 −2

)
x⃗ + x⃗ ′ + et

1
1
1



11.3 Structure of Linear Systems

Exercises 11.3 �
Linear Systems
Convert to matrix notation u⃗ ′ = Au⃗ + F⃗ (t).

1. x′
1 = 2x1 + x2 + et,

x′
2 + x1 − 2x2 = sinh(t)

Solution:Answer: A =

(
2 1
−1 2

)
, F⃗(t) =

(
et

sinh(t)

)
. ■

2. x′
1 = x1 + x2 + x3,

x′
2 + x1 − 2x2 + x3 = ln |1 + t2|,

x′
3 = x2 + x3 + cosh(t)

Existence-Uniqueness

3. Apply Gronwall’s inequality to
|y(t)| ≤ 4 +

∫ t

0
(1 + r2)|y(r| dr, t ≥ 0.
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Solution: Gronwall’s inequality assumes for t for t0 ≤ t ≤ t0 +H

u(t) ≤ c+

∫ t

t0

u(r)v(r)dr

and concludes
u(t) ≤ c+ e

−
∫ t
t0

v(r)dr

Let u(t) = |y(t)|, v(r) = 1 + r2, c = 4 and t0 = 0. Then Gronwall’s inequality
concludes

|y(t)| ≤ 4 +

∫ t

0

|y(r)|(1 + r2)dr

■

4. Solve with x1(0) = x2(0) = 0:
x′
1 = etx+ e−tx2,

x′
2 = ln |1 + sinh2(t)|x1 + x2

5. Find the interval on which the solution is defined:
x′
1 = tx1 + x2, x

′
2 = x1 + tan(t)x2

Solution:Answer: −π/2 < t < π/2. Reason: It is a linear system u⃗ ′ = Au⃗ +

F⃗(t) with A(t) =

(
t 1
1 tan(t)

)
continuous on domain −π/2 < t < π/2, F⃗ = 0⃗

everywhere continuous. Map (t, u⃗ )→ A(t)u⃗ + F⃗ (t) is therefore continuous in (t, u⃗)
and continuously differentiable in u⃗ on the domain |t| < π/2, u⃗ in R2. Picard’s
Theorem page 851 says that the solution is defined on the entire domain, initial
value problems uniquely solvable.

Remark on Global Existence
Picard’s theorem for nonlinear problems u⃗ ′ = G⃗(t, u⃗ ) does not claim
global definition of solutions. For instance, scalar problem y′ = 1 + y2,
y(0) = 0 has solution y(t) = tan t, which is only defined on |t| < π/2,
even though the map (t, y) → 1 + y2 is continuous in t and infinitely
continuously differentiable in y.

6. Let matrix A be 2 × 2 constant. Find A, given x⃗ ′ = Ax⃗ has general solution x1 =
c1e

t + c2e
2t, x2 = 5c12e

t + 4c2e
2t.

Solution:Hint: Write the general solution as u⃗ = Φ(t)

(
c1
c2

)
and insert this equa-

tion into u⃗ ′ = Au⃗ to get an equation for A.

7. Let x⃗ ′ = A(t)x⃗ have two solutions :

(
1
2

)
,

(
et

et

)
. Solve x⃗ ′ = A(t)x⃗ .

Solution:Matrix A(t) has to be 2 × 2. The solutions are independent, therefore

x⃗ = c1

(
1
2

)
+ c2

(
et

et

)
is the general solution by Picard’s Theorem.

It is possible to find A(t) explicitly. All possible constants are allowed in the general
solution. Insert x⃗ into the equation x⃗ ′ = A(t)x⃗ :
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11.3 Structure of Linear Systems

x⃗ ′ = A(t)x⃗

c1
d
dt

(
1
2

)
+ c2

d
dt

(
et

et

)
= A(t)

(
c1

(
1
2

)
+ c2

(
et

et

))
d
dt

(
1 et

2 et

)(
c1
c2

)
= A(t)

(
1 et

2 et

)(
c1
c2

)
(

0 et

0 et

)(
c1
c2

)
= A(t)

(
1 et

2 et

)(
c1
c2

)
((

0 et

0 et

)
−A(t)

(
1 et

2 et

))(
c1
c2

)
=

(
0
0

)
for all c1, c2.

Choose c1 = 1, c2 = 0 and then c1 = 0, c2 = 1 to prove the coefficient matrix is zero:(
0 et

0 et

)
= A(t)

(
1 et

2 et

)
The matrix multiplying A(t) has determinant −et, so it is invertible for all t with
inverse (

1 et

2 et

)−1

=
1

−et

(
et −et
−2 1

)
=

(
−1 1
2e−t −e−t

)
Solve by matrix inversion

A(t) =

(
0 et

0 et

)(
−1 1
2e−t −e−t

)
=

(
2 −1
2 −1

)
■

8. Let A =

(
0 0
0 0

)
. Solve x⃗ ′ = Ax⃗ .

9. Let constant matrix A be 10 × 10. Two solutions of x⃗ ′ = Ax⃗ have equal value at
t = 100. Are they the same solution?

Solution:Yes. Initial value problems have unique solutions by Picard’s Theorem.

10. Solutions y1, y2 of y′ + p(x)y = q(x) are zero at x = −2. What assumptions on p, q
imply y1 ≡ y2?

Superposition

11. Explain: et is a solution of y′′ − y = 0 because cosh(t), sinh(t) are a solution basis.

Solution:Function et is a linear combination of the solution basis: it is the sum
cosh(t) + sinh(t). Because linear combinations of solutions are solutions then et is a
solution.

12. Explain: et + 10 is a solution of y′′ − y = −10, therefore 10 is a particular solution.

13. The shortest solution of y′ + y = 100 is y = 100. Explain why.

Solution:All solutions are y = yh + yp. Solution yp can be taken to be yp = 100, an
equilibrium solution. The homogeneous solution is yh = c/integrating factor = ce−t.
Let z = 100 and let y be any solution of y′ + y = 100. Then u = y − z is a solution
of u′ + u = 0, so it equals ce−t for some c: u = y − z = ce−t implies y = ce−t + 100.
The shortest solution is when c = 0.
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14. Let x′
1 = 2x1, x

′
2 = −x2. Report the matrix form x⃗ ′ = Ax⃗ and the vector general

solution.

15. Let 2-dimensional x⃗ ′ = Ax⃗ + F⃗(t) have general solution x1 = c1e
t + c2e

3t, x2 =
(c1 + c2)e

t + 2c2e
3t + cos(t). Find formulas for vectors x⃗h and x⃗p.

Solution:Homogeneous solution x⃗h = Φ(t)

(
c1
c2

)
where Φ(t) =

(
et e3t

et et + 2e3t

)
.

The columns of Φ(t) are the partial derivatives of vector x⃗ =

(
x1

x2

)
on symbols

c1, c2. Particular solution x⃗p =

(
0

cos t

)
, found from c1 = c2 = 0.

16. Let x⃗ ′ = Ax⃗ + F⃗(t) have two solutions x1 = et+ e3t, x2 = 2et+sin(t) and x1 = e3t,
x2 = e3t + sin(t). Find a solution of x⃗ ′ = Ax⃗ .

Superposition x⃗ ′ = Ax⃗ + F⃗ (t)

17. Let u⃗1(t), . . . , u⃗k(t) be solutions of x⃗ ′ = A(t)x⃗ . Let c1, . . . , ck be constants. Prove:

u⃗(t) =
∑k

i=1 ciu⃗ i(t) is a solution of x⃗ ′ = A(t)x⃗ .

Solution: // Proof:

u⃗ ′(t) =
∑k

i=1 ciu⃗
′
i(t)

=
∑k

i=1 ciA(t)u⃗ i(t)

= A(t)
(∑k

i=1 ciu⃗ i(t)
)

= A(t)u⃗ (t) ■

18. Find the standard basis w⃗ 1(t), w⃗ 2(t):

x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗

19. Let matrix A be 2× 2. For x⃗ ′ = Ax⃗ + F⃗(t), find x⃗h(t), x⃗p(t):
x1 = c1 + c2t+ et, x2 = (c1 − c2)t+ e2t

Solution:Let c1 = c2 = 0 to find particular solution x⃗p =

(
et

e2t

)
.

Subtract the particular solution from the general solution to find the homogeneous
solution

x⃗h =

(
c1 + c2t+ et

(c1 − c2)t+ e2t

)
− x⃗p =

(
c1 + c2t
(c1 − c2)t

)
=

(
1 t
t −t

)(
c1
c2

)

20. Let matrix A(t) be 2 × 2. Let x⃗ ′ = A(t)x⃗ + F⃗ (t) have two solutions

(
1 + et

1

)
,(

1 + e−t

−1

)
. Find a solution of x⃗ ′ = A(t)x⃗ .

General Solution
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21. Assume A is 2× 2 and x⃗ ′ = Ax⃗ has solutions et
(
1
1

)
, e−t

(
1
−1

)
. Find the general

solution and explain.

Solution:The two solutions are independent. The solution space is 2-dimensional for
a 2 × 2 constant matrix, by Picard’s Theorem. Therefore the two solutions are a
basis for the solution space and every solution is a linear combination of the two
solutions. ■

22. Assume x⃗ ′ = Ax⃗ +

(
1
1

)
. Prove that zero is not a solution.

23. Assume x⃗ ′ = Ax⃗ +

(
1
1

)
and x⃗ (t) = x⃗0 = constant. Find an equation for x⃗0.

Solution:The equation: 0⃗ = Ax⃗0 +

(
1
1

)
. ■

24. Find the vector general solution:

x⃗ ′ =

(
1 0
0 2

)
x⃗ +

(
1
1

)
.

25. Given 3 x⃗ ′ = A(t)x⃗ with scalar general solution x1 = c1 + c2t+ c3t
2, x2 = c2 + c3t,

x3 = c3, find the vector general solution.

Solution:There are two forms of the answer:

x⃗ =

 c1 + c2t+ c3t
2

c2 + c3t
c3

 or x⃗ =

 1 t 0
0 1 0
0 0 1

 c1
c2
c3

.

Matrix Φ(t) has columns equal to the partial derivatives on symbols c1, c2, c3 of the

vector general solution

 c1 + c2t+ c3t
2

c2 + c3t
c3

. We compute by calculus:

Φ(t) =

 1 t 0
0 1 0
0 0 1

 ■

26. Given 3 x⃗ ′ = A(t)x⃗ with scalar general solution x1 = c1 + c2t+ c3t
2, x2 = c2 + c3t,

x3 = c3, find A(t).

27. Find the vector general solution:

x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗ +

(
1
1
0

)
.

Solution: Let’s find a valid x⃗p by seeking a constant solution x⃗ = x⃗0. Then

0⃗ =

(
1 0 0
0 2 0
0 0 0

)
x⃗0 +

(
1
1
0

)
.

Then x⃗0 =

−1− 1
2
c

 for any constant c. Choose c = 0 and x⃗p =

−1− 1
2
0

.
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Let’s find a x⃗h by solving x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗ or scalar equations

 x′
1 = x1

x′
2 = 2x2

x′
3 = 0

Then

x1 = c1e
t, x2 = c2e

2t, x3 = c3.

The vector general solution is

x⃗ = x⃗h + x⃗p =

 et 0 0
0 e2t 0
0 0 1

  c1
c2
c3

+

 −1− 1
2
0

 ■

28. Find the vector general solution:

x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗ +

(
0
1
0

)
.

Independence

29. Assume A is 2 × 2 and x⃗ ′ = Ax⃗ has solutions et
(
1
1

)
, e−t

(
1
−1

)
. Prove they are

independent directly from the definition.

Solution:Let v⃗ 1 = et
(
1
1

)
, v⃗ 2 = e−t

(
1
−1

)
. The vectors are functions from −∞ <

t < ∞ to R2, which is a known vector space V . To prove independence in V form
the equation

c1v⃗ 2 + c2v⃗ 2 = 0⃗

and solve for c1, c2. The vectors are independent in V if the only solution is c1 =
c2 = 0. The equation formed means

c1e
t

(
1
1

)
+ c2e

−t

(
1
−1

)
=

(
0
0

)
for all t.

Vector equality gives two equations:

c1e
t + c2e

−t = 0, c1e
t − c2e

−t = 0

Add the two equations to get c1 = 0. Subtract the two equations to get c2 = 0. Then
the only solution i c1 = c2 = 0 and vectors v⃗ 1, v⃗ 2 are independent. ■

30. Compute the Wronskian:

et
(
1
1

)
, e−t

(
1
−1

)
.

Abel-Liouville Formula

31. Apply Abel’s Independence Test:

et
(
1
1

)
, e−t

(
1
−1

)
Solution:Compute the Wronskian of the two vector functions:

W (t) = det

(
et e−t

et −e−t

)
Then W (0) =

∣∣∣∣ 1 1
1 −1

∣∣∣∣ = −2 ̸= 0 implies the two vector functions are independent.

■
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32. Let Φ(t) an invertible matrix satisfying Φ′(t) = AΦ(t). Prove that the columns of
Φ(t) are independent solutions of x⃗ ′ = Ax⃗ .

33. Let Φ(t) an invertible matrix satisfying Φ′(t) = AΦ(t). Prove that the columns of
Φ(t) are independent solutions of x⃗ ′ = Ax⃗ .

Solution:Multiply Φ′(t) = AΦ(t) by a column e⃗ of the identity matrix. This proves
each column of Φ(t) is a solution of x⃗ ′ = Ax⃗ . Independence follows from Abel’s
Wronskian Independence Test. ■

34. Let Φ(t) any matrix satisfying Φ′(t) = AΦ(t). Assume the determinant of Φ(t0) is
nonzero. Prove that the columns of Φ(t) are independent solutions of x⃗ ′ = Ax⃗ .

35. Let Φ(t) any matrix satisfying Φ′(t) = AΦ(t). Let C be a constant matrix. Prove
that the columns of Φ(t)C are solutions of x⃗ ′ = Ax⃗ .

Solution:A column of Φ(t)C is formally Φ(t)Ce⃗ for a column e⃗ of the identity matrix.
Product v⃗ = Ce⃗ is a column vector of constants. Matrix multiply Φ(t)v⃗ is a linear
combination of the columns of Φ(t), which is a linear combination of solutions to
x⃗ ′ = Ax⃗ . Therefore, each column of Φ(t)C is a solution to x⃗ ′ = Ax⃗ . ■

36. Assume continuous coefficients:
y(n)+pn−1y

(n−1)+ · · ·+p0y=0
Prove from the Abel-Liouville formula for the companion system
that the Wronskian W (t) of
solutions y1, . . . , yn satisfies
W ′ + pn−1(t)W = 0.

Initial Value Problem

37. Let matrix A be 3 × 3. Assume x⃗ ′ = A(t)x⃗ + F⃗(t) has scalar general solution
x1 = c1e

t + c2e
−t + t, x2 = (c1 + c2)e

t + c3e
2t, x3 = (c1 + c2)e

t − 2c2e
−t + c3e

2t + t.
Given initial conditions x1(0) = x2(0) = 0, x3(0) = 1, solve for c1, c2, c3.

Solution:Answers: c1 = 1/2, c2 = −1/2, c3 = 0.

There are two common solution methods:

(1) Scalar equations and linear algebra without matrices, finding the scalar
answers using college algebra.

(2) Vector-matrix notation and linear algebra, obtaining both the scalar
answers and a vector-matrix representation of the solution x⃗ (t).

Only the second solution method (2) is offered. Let

Φ(t) =

 et e−t 0
et et e2t

et et − 2e−t e2t

, v⃗ =

 c1
c2
c3

, x⃗p =

 t
0
t


Then x⃗ = Φ(t)v⃗ + x⃗p is the vector general solution of x⃗ ′ = A(t)x⃗ + F⃗(t).

The initial value problem is solved by finding c1, c2, c3 satisfying

x⃗ (0) = Φ(0)v⃗ + x⃗p(0) =

 0
0
1


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11.4 Matrix Exponential

Because x⃗p(0) = 0⃗ then there is the simplified equation

Φ(0)v⃗ =

 0
0
1

 or

 1 1 0
1 1 1
1 −1 1

 c1
c2
c3

 =

 0
0
1


Constants c1, c2, c3 are found on paper from augmented matrix 1 1 0 0

1 1 1 0
1 −1 1 1


The reduced row-echelon form is 1 0 0 1/2

0 1 0 −1/2
0 0 1 0

.

Then c1 = 1/2, c2 = −1/2, c3 = 0. The solution found:

x⃗ (t) =

 et e−t 0
et et e2t

et et − 2e−t e2t

 1/2
−1/2

0

+

 t
0
t

. ■

38. Let matrix A be 3 × 3. Assume x⃗ ′ = A(t)x⃗ + F⃗(t) has scalar general solution
x1 = c1 + c2t + c3t

2 + et, x2 = c2 + c3t + e2t, x3 = c3. Find the vector particular
solution x⃗ for initial conditions x1(0) = x2(0) = 0, x3(0) = 1.

Equilibria

39. Find all equilibria:

x⃗ ′ =

(
cos(t) cos(t)
2 2

)
x⃗

Solution:Solve 0⃗ =

(
cos(t) cos(t)
2 2

)
x⃗0 for constant x⃗0 =

(
x1

x2

)
. Then cos(t)(x1 +

x2) = 0, 2(x1 + x2) = 0 for all t with x1, x2 constant. The solution is all points on

the line y = −x in the xy-plane, equivalently,

(
x1

x2

)
= c

(
1
−1

)
for all constants

c. There are infinitely many equilibria, which are constant solutions to the equation
x⃗ ′ = A(t)x⃗ . ■

40. Find all equilibria:

x⃗ ′ =

(
sin(t) sin2(t)
2 2

)
x⃗

11.4 Matrix Exponential

Exercises 11.4 �
Matrix Exponential.

1. (Picard) Let A be real 2× 2. Write out the two initial value problems which define
the columns w⃗ 1(t), w⃗ 2(t) of e

At.
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11.4 Matrix Exponential

Solution:

(1) w⃗ ′
1 = Aw⃗ 1, w⃗ 1(0) =

(
1
0

)
(2) w⃗ ′

2 = Aw⃗ 2, w⃗ 2(0) =

(
0
1

)
■

2. (Picard) Let A be real 3× 3. Write out the three initial value problems which define
the columns w⃗ 1(t), w⃗ 2(t), w⃗ 3(t) of e

At.

3. Let A be real 2× 2. Show that x⃗ (t) = eAtu⃗0 satisfies x⃗ ′ = Ax⃗ , x⃗ (0) = u⃗0.

Solution:Let u⃗0 =

(
c1
c2

)
. By definition, eAt = ⟨w⃗ 1(t)|w⃗ 2(t)⟩. Uniqueness in Pi-

card’s Theorem implies x⃗ = c1w⃗ 1 + c2w⃗ 2, because

x⃗ (0) = u⃗0 = c1

(
1
0

)
+ c2

(
0
1

)
= c1w⃗ 1(0) + c2w⃗ 2(0)

Then:

x⃗ ′(t) =
(
eAt
)′
u⃗0

=
(
⟨w⃗ 1(t)|w⃗ 2(t)⟩

)′
u⃗0

= ⟨w⃗ ′
1(t)|w⃗ ′

2(t)

(
c1
c2

)
= c1w⃗

′
1(t) + c2w⃗

′
2(t)

matrix multiply is a
linear combination of columns

= c1Aw⃗ 1(t) + c2Aw⃗ 2(t) because w⃗ 1, w⃗ 2 are solutions of x⃗ ′ = Ax⃗

= A(c1w⃗ 1(t) + c2w⃗ 2(t))

= Ax⃗ (t)

Proved: x⃗ (0) = u⃗0 and x⃗ ′ = Ax⃗ . ■

4. Let A be real n× n. Show that x⃗ (t) = eAtx⃗0 satisfies x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗0.

Matrix Exponential 2 × 2. Find eAt from representation eAt = ⟨w⃗ 1|w⃗ 2⟩. Use
first-order scalar methods.

5. A =

(
1 0
0 2

)
.

Solution:Solve x⃗ ′ = Ax⃗ : x1 = c1e
t, x2 = c2e

2t. Then the vector general solution is

x⃗ =

(
c1e

t

c2e
2t

)
Vector w⃗ 1 satisfies w⃗ 1(0) =

(
1
0

)
=

(
c1e

0

c2e
2(0)

)
, resulting in c1 = 1, c2 = 0 and

w⃗ 1 =

(
et

0

)
. Similarly, w⃗ 2 =

(
0
e2t

)
. Then

eAt = ⟨w⃗ 1|w⃗ 2⟩ =

(
et 0
0 e2t

)
. ■
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6. A =

(
−1 0
0 0

)
.

7. A =

(
1 1
0 0

)
.

Solution:Matrix A is upper triangular. The vector general solution of x⃗ ′ = Ax⃗ is
found by scalar methods applied the scalar system

x′
1 = x1 + x2, x

′
2 = 0

Then

x⃗ =

(
x1

x2

)
=

(
c1e

t − c2
c2

)
w⃗ 1 =

(
et

0

)
w⃗ 2 =

(
et − 1

1

)
eAt = ⟨w⃗ 1|w⃗ 2⟩ =

(
et et − 1
0 1

)
. ■

8. A =

(
−1 1
0 2

)
.

Matrix Exponential Identities. Verify from exponential identities.

9. eA e−A = I

Solution:Matrices A and B = −A commute: AB = BA. Apply identity eAteBt =

e(A+B)t, valid for AB = BA. Then eA e−A = e(A−A)t = e0t = ⟨w⃗ 1|w⃗ 2⟩ where w⃗ 1,
w⃗ 2 are solutions of system

x⃗ ′ = (A−A)x⃗ =

(
0 0
0 0

)
x⃗

with initial data equal to the columns of the identity matrix. Solutions of this system

are constant vectors. Therefore w⃗ 1 =

(
1
0

)
, w⃗ 2 =

(
0
1

)
by the definitions of w⃗ 1, w⃗ 2.

Then

eA e−A = ⟨w⃗ 1|w⃗ 2⟩ =

(
1 0
0 1

)
= I. ■

10. e−A =
(
eA
)−1

11. A =
d

dt
eAt evaluated at t = 0

Solution:Let Φ(t) = eAt = ⟨w⃗ 1|w⃗ 2⟩. The exercise can be re-phased as A = Φ′(0).
The columns of Φ are the special solutions w⃗ 1, w⃗ 2 of x⃗ ′ = Ax⃗ . Definitions of
w⃗ 1, w⃗ 2 give identity Φ(0) = I. The proof is completed from equation Φ′(t) = AΦ(t)
by substitution of t = 0: Φ′(0) = AΦ(0) = AI = A.

Proof of Φ′(t) = AΦ(t):
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11.4 Matrix Exponential

Φ′(t) = ⟨w⃗ ′
1|w⃗ ′

2⟩
= ⟨Aw⃗ 1|Aw⃗ 2⟩
= A⟨w⃗ 1|w⃗ 2⟩
= AΦ(t) ■

12. If A3 = 0, then eA = I +A+ 1
2A

2.

13. Let A =

(
a 0
0 a

)
and N =

(
0 1
0 0

)
. Verify N2 = 0 and

eAt+Nt = eAt(I +Nt).

Solution:

(1) Verify N2 = 0:

N2 =

(
0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)
(2) Verify eAt+Nt = eAt(I +Nt):

eAt =

(
eat0
0 eat

)
= eatI

I +Nt =

(
1 t
0 1

)
eAt+Nt = eatI + teat(A+N − aI) by Putzer’s formula for λ1 = λ2 = a

= eatI + teatN

= eatI(I + tN)

= eAt(I + tN) ■

14. Let A be 3× 3 diagonal and N =

(
0 1 0
0 0 1
0 0 0

)
. Prove N3 = 0 and

eAt+Nt = eAt(I +Nt+N2 t
2

2
).

15. e

(
1 1
0 2

)
t

=

(
et e2t − et

0 e2t

)
Solution:Let A =

(
1 1
0 2

)
. Apply Putzer’s formula for λ1 = 1, λ2 = 2.

eAt = etI +
et − e2t

1− 2
(A− (1)I)

= etI + (e2t − et)

(
0 1
0 1

)
=

(
et 0
0 et

)
+

(
0 e2t − et

0 e2t − et

)
=

(
et e2t − et

0 e2t

)
■
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16. e

(
1 1
0 1

)
t

=

(
et tet

0 et

)

Putzer’s Spectral Formula.

17. Apply Picard-Lindelöf theory to conclude that r1, . . . , rn are everywhere defined,

Solution: Growth-decay differential equation r′1 = λ1r1 has solution r1 = eλ1t,
continuous everywhere. Substitute into the the second differential equation to get
r′2 + pr2 = q where p is constant and q(t) is everywhere continuous. Picard’s The-
orem says that r2(t) is everywhere continuous. Cascade each ri into the next dif-
ferential equation and apply Picard’s Theorem repeatedly to conclude r1, . . . , rn are
everywhere continuous. ■

18. Prove that P1, . . . , Pk commute.

Putzer’s Formula 2× 2 .

19. Find a formula for
d

dt
eAt for a 2× 2 matrix A with eigenvalues 1, 2.

Solution: Use

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A− λ1I)

with λ1 = 1, λ2 == 2. Then

eAt = etI +
et − e2t

1− 2
(A− I).

Differentiate on t:
d

dt
eAt = etI +

et − 2e2t

1− 2
(A− I).

20. Let 2× 2 matrix A have duplicate eigenvalues 0, 0. Compute r1, r2 and then report
eAt.

Putzer: Real Distinct. Find the matrix exponential.

21. A =

(
1 2
0 2

)
Solution:Let A =

(
1 2
0 2

)
in Exercise 19. Then

eAt = etI + et−e2t

1−2 (A− I)

= etI +
(
−et + e2t

)
(A− I)

= et
(
1 0
0 1

)
+
(
−et + e2t

)(0 2
0 1

)
=

(
et 0
0 et

)
+

(
0 −2et + 2e2t

0 −et + e2t

)
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=

(
et −2et + 2e2t

0 e2t

)
# Exercise 21: Matrix exponential

A:=<1,2|0,2>^+;

with(LinearAlgebra):

MatrixExponential(A,t);

22. A =

(
1 0
2 3

)

Putzer: Real Equal. Find the matrix exponential.

23. A =

(
1 0
0 1

)
Solution:

eAt = eλ1tI + teλ1t(A− λ1I)

eAt = etI + tet(A− I)

eAt = etI

24. A =

(
1 2
0 1

)

Putzer: Complex Eigenvalues. Find the matrix exponential.

25. A =

(
1 1
−1 1

)
Solution:Eigenvalues 1± i. Let a = 1, b = 1. Then:

eAt = eat
(
cos bt I + sin bt

b (A− aI)
)

= et
(
cos t I + sin t

1 (A− I)
)

= et
(
cos(t)

(
1 0
0 1

)
+ sin(t)

(
0 1
−1 0

))
= et

(
cos t sin t
− sin t cost

)
.

26. A =

(
0 2
−2 0

)

How to Remember Putzer’s 2× 2 Formula.

27. Find limλ→λ1

eλt − eλ1t

λ− λ1
.

Solution:L’Hôpital’s Rule applies.

28. Let matrix A be 2× 2 real. Take the real part: eAt = I +
eit − e−it

2i
A.
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Classical n× n Spectral Formula. Find eAt.

29. A =

(
0 2 0
−2 0 0
0 0 1

)
Solution:The basic idea is to use the formula for a block diagonal matrix, Theorem

11.19. Then eAt = diag
(
eBt, eCt

)
where B =

(
0 2
−2 0

)
and C = (1) = 1× 1 matrix.

eAt =

 cos(2t) sin(2t) 0
− sin(2t) cos(2t) 0

0 0 et


# Exercise 29: Matrix exponential

A:=<0,2,0|-2,0,0|0,0,1>^+;

with(LinearAlgebra):

MatrixExponential(A,t);

30. A =

0 0 2 0
0 −2 0 0
0 0 0 1
1 0 0 0


Proofs of Matrix Exponential
Properties.

31. Let Au⃗ = Bu⃗ for all vectors u⃗ . Prove A = B.

Solution:Let u⃗ equal the first column of the identity matrix I. Then Au⃗ = Bu⃗ says
the first column of A equals the first column of B. Repeat for all columns of I to
proved A, B have exactly the same entries. ■

32. Let A =

(
1 2
0 2

)
. Compute the first four Picard iterates for x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗0.

Special Cases eAt.

33. Show the details to solve
x′
1 = 2x1 + x3,

x′
2 = 3x2 + x3,

x′
3 = 4x3,

x1(0) = 1, x2(0) = x3(0) = 0.

Solution:Let A =

 2 0 1
0 3 1
0 0 4

. Compute

eAt =

 e2t 0 − 1
2e

2t + 1
2e

4t

0 e3t e4t − e3t

0 0 e4t


then
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x⃗ (t) = eAt

 1
0
0

 =

 e2t

0
0

.

# Exercise 33: Matrix exponential

A:=<2,0,1|0,3,1|0,0,4>^+;

with(LinearAlgebra):MatrixExponential(A,t);

34. Let A = diag(1, 2, 3, 4). Find eAt.

35. Let B =

(
1 1
0 0

)
, A = diag(B,B). Find eAt.

Solution:Theorem 11.19 gives
eAt = diag

(
eBt, eBt

)
.

Putzer’s identity gives

eBt = e0tI +
e0t − e1t

0− 1
(B − 0I)

= I + (−1 + et)B

=

(
1 0
0 1

)
+ (−1 + et)

(
1 1
0 0

)
=

(
et et − 1
0 1

)
eAt = diag

(
eBt, eBt

)
= diag

((
et et − 1
0 1

)
,

(
et et − 1
0 1

))

=


et et − 1 0 0
0 1 0 0
0 0 et et − 1
0 0 0 1


# Exercise 35: Matrix exponential

with(LinearAlgebra):

B:=<1,1|0,0>^+;MatrixExponential(B,t);

Z:=Matrix(2,2);A:=< <B,Z> | <Z,B> >;

MatrixExponential(A,t);

36. Let B =

(
1 2
−2 1

)
and

A = diag(B,B). Find eAt.

11.5 Eigenanalysis, Spectral, CHZ

Exercises 11.5 �
Determinant |A− rI|
Justify these statements.
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1. Subtract r from the diagonal of A to form |A− rI|.
Solution: Matrix A with r subtracted from the diagonal is matrix B = A− rI. The
determinant of B is |A− rI|, the characteristic equation of A.

2. If A is 2× 2, then |A− rI| is a quadratic.

3. If A is 3× 3, then |A− rI| is a cubic.

Solution: Symbol r appears three times in A − rI, once per row. One term in the
determinant expansion is the product of the diagonal elements, which is

(a11 − r)(a22 − r)(a33 − r).

Then (−r)3 appears as the largest power of r in the determinant expansion: |A− rI|
is a cubic polynomial in variable r.

4. Expansion of |A− rI| by the cofactor rule often preserves factorizations.

5. If A is triangular, then |A− rI| is the product of diagonal entries.

Solution: Apply the triangular rule for determinants, because A−rI is also triangular.

6. The combo, mult and swap rules for determinants are generally counter-productive
for expansion of |A− rI|.

Characteristic Polynomial
Show expansion details for |A− rI|.

7. A =

(
2 3
0 4

)
.

Ans: (2− r)(4− r)

Solution: |A− rI| =
∣∣∣∣ 2− r 3

0 4− r

∣∣∣∣ = (2− r)(4− r).

8. A =

(
2 3 4
0 5 6
0 0 7

)
.

Ans: (2− r)(5− r)(7− r)

Eigenanalysis Method: 2× 2
Solve x⃗ ′ = Ax⃗ .

9. A =

(
1 0
0 2

)
Solution:The eigenvalues of A are 1, 2. Two eigenpairs are

(
1,

(
1
0

))
,

(
2,

(
0
1

))
.

Then Theorem 11.21 gives

x(t) = c1e
t

(
1
0

)
+ c2e

2t

(
0
1

)
.
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10. A =

(
1 1
2 2

)

Eigenanalysis Method: 3× 3
Solve x⃗ ′ = Ax⃗ .

11. A =

(
1 1 0
2 2 0
0 0 1

)

Solution: The eigenvalues are 3, 0, 1 with matching eigenvectors

1
2
0

,

 1
−1
0

,

0
0
1

.

The general solution using Theorem 11.22:

x⃗ (t) = c1e
3t

1
2
0

+ c2e
0t

 1
−1
0

+ c3e
t

0
0
1


# Exercise 11, Eigenanalysis method 3x3

with(LinearAlgebra):

A:=<1,1,0|2,2,0|0,0,1>^+;Eigenvectors(A);

12. A =

(
1 1 0
2 2 1
0 0 1

)

Eigenanalysis Method: n× n
Solve x⃗ ′ = Ax⃗ .

13. A =

1 1 0 0
2 2 1 0
0 0 1 0
0 0 0 1



Solution: The eigenvalues are 0, 1, 1, 3 with matching eigenvectors


1
−1
0
0

,


0
0
0
1

,


0
0
0
1

,


0
0
0
1

. The general solution using Theorem 11.23:

x⃗ (t) = c1e
0t


1
−1
0
0

+ c2e
t


0
0
0
1

+ c3e
t


0
0
0
1

+ c4e
3t


0
0
0
1

.

# Exercise 13, Eigenanalysis method 4x4

with(LinearAlgebra):

A:=<1,1,0,0|2,2,1,0|0,0,1,0|0,0,0,1>^+;Eigenvectors(A);
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14. A =


1 1 0 0 1
2 2 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


eAt for Simple Eigenvalues
Find aAt using classical spectral theory. Check by computer.

15. A =

(
1 1
2 2

)
Solution: The eigenvalues are λ1 = 0, λ2 = 3. Define Q1 = (A− 0I)/(3− 0) = 1

3A,
Q2 = (A− 3I)/(0− 3) = − 1

3A− I. Theorem 11.24 gives

eAt = eλ1tQ1 + eλ2tQ2

= 1
3 e

λ1tA+ eλ2t(− 1
3A− I)

= 1
3 e

0t

(
1 1
2 2

)
+ e3t

(
− 1

3

(
1 1
2 2

)
−
(
1 0
0 1

))
= 1

3 e
0t

(
1 1
2 2

)
+ e3t

(
− 4

3 −
1
3− 2

3 −
5
3

)
=

(
2
3 + 1

3e
3t 1

3e
3t − 1

3
2
3e

3t − 2
3

1
3 + 2

3e
3t

)
# Exercise 15, Classical spectral theory

with(LinearAlgebra):

A:=<1,1|2,2>^+;Eigenvectors(A);

MatrixExponential(A,t);

16. A =

(
1 1 0
2 2 1
0 0 1

)

eAt for Multiple Eigenvalues
Find aAt using classical spectral theory. Check by computer.

17. A =

(
1 1
0 1

)
Solution: The eigenvalues are λ1 = 1, λ2 = 1. The characteristic polynomial is
p(λ) = (1 − λ)2. Then a1(λ) = 1, a2(λ) = 0, m1 = 2, m2 = 0. Define Q1 =
a1(A)(A− I)0 = I, Q2 = 0. Theorem 11.25 gives

eAt = eλ1tQ1(I + (A− I)t)

= e1tI(I + (A− I)t)

= e1t
((

1 0
0 1

)
+ t

(
0 1
0 0

))
= et

(
1 t
0 1

)
=

(
et tet

0 et

)
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# Exercise 17, Classical spectral theory

with(LinearAlgebra):

A:=<1,1|0,1>^+;Eigenvectors(A);

MatrixExponential(A,t);

18. A =

(
1 1 0
0 1 1
0 0 2

)

Cayley-Hamilton Theorem
Prove the identity by applying the Cayley-Hamilton Theorem.

19. Let A=

(
a b
c d

)
, a0=|A|=ad−bc,

a1=trace(A)=a+d. Then

A2 + a1(−A) + a0

(
1 0
0 1

)
=

(
0 0
0 0

)
Solution: Compute |A− rI| = r2 − (a+ d)r + ad− bc. Cayley-Hamilton says

A2 − (a+ d)A+ (ad− bc)I =

(
0 0
0 0

)
Then

A2 + a1(−A) + a0I =

(
0 0
0 0

)
■

20. Let A=

(
2 3 4
0 5 6
0 0 7

)
. Then:

(2I−A)(5I−A)(7I−A)=

(
0 0 0
0 0 0
0 0 0

)

CHZ Theorem: Scalar Form

21. Write Theorem 11.27 proof missing details for n = 3.

Solution:The book’s proof is routine up to the point of multiplying by rows of the
identity matrix. Start with

x⃗ ′′ + a1x⃗
′ + a0x⃗ = 0⃗

then multiply left by row vector e⃗ =

(
1
0

)T

, which is the first row of I. Left multiply

by e⃗ is the same as taking the dot product of the equation with vector

(
1
0

)
. Then(

1
0

)
· x⃗ ′′ + a1

(
1
0

)
· x⃗ ′ + a0

(
1
0

)
· x⃗ =

(
1
0

)
· 0⃗(

1
0

)
·
(
x′′
1

x′′
2

)
+ a1

(
1
0

)
·
(
x′
1

x′
2

)
+ a0

(
1
0

)
·
(
x1

x2

)
=

(
1
0

)
· 0⃗
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x′′
1 + a1x

′
1 + a0x1 = 0

The second equation is obtained similarly by using e⃗ =

(
0
1

)T

, which is the second

row of I. ■

22. Write Theorem 11.27 proof missing details for any n.

CHZ Theorem: Vector Form

23. Write Theorem 11.28 proof details for n = 2.

Solution: Let n = 2. Expand |A − rI| = r2 + a1r + a0. The roots of the quadratic
generate Euler atoms A1(t), A2(t). Theorem 11.27 implies components x1, x2 of
solution x⃗ (t) to system x⃗ ′ = Ax⃗ satisfy the 2nd order scalar differential equation
u′′ + a1u

′ + a0u = 0. Then each of x1, x2 is a linear combination of atoms A1, A2.
Assume x1 = c11A1 + c12A2 and x2 = c21A1 + c22A2. Then

x⃗ =

(
x1

x2

)
=

(
c11A1 + c12A2

c21A1 + c22A2

)
=

(
c11
c21

)
A1 +

(
c12
c22

)
A2

which is a vector linear combination of atoms A1, A2. ■

24. Write Theorem 11.28 proof details for n = 3.

CHZ Identity: Vandermonde

Find matrixD = ⟨ d⃗ 1| · · · |d⃗n ⟩ using Theorems 11.29, 11.31, given x⃗ (0)=

c1
...
cn

.

25. A=

(
1 0
2 2

)
. Ans: W (0)T , D=(

1 2
1 1

)
,

(
0 c1

2c1 + c2 −2c1

)
Solution: The eigenvalues are 2, 1. The atoms are e2t, et. The Wronskian matrix

of the atoms is W (t) =

(
e2t et

2e2t et

)
. Then W (0)T =

(
1 1
2 1

)T

=

(
1 2
1 1

)
= the Vandermonde matrix for list 2, 1. See maple help for the definition of the

Vandermonde matrix:

(
x1 x2

1

x2 x2
2

)
= Vandermonde matrix for list [x1, x2]. The

literature has more than one definition, the currently accepted definition matching
maple help, agreeing with Wikipedia:

https://en.wikipedia.org/wiki/Vandermonde matrix

Form the equation in Theorem 11.29 and solve for matrix ⟨d⃗1|d⃗2⟩.
⟨d⃗1|d⃗2⟩ = ⟨x⃗0|Ax⃗0⟩ (W (0)T

)−1
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=

(
c1 c1
c2 2c1 + 2c2

)(
−1 2
1 −1

)
=

(
0 c1

c2 + 2c1 −2c1

)
# Exercise 25, Vandermonde identity

with(LinearAlgebra):

A:=<1,2|0,2>;

C:=x-><x|A.x>;

EV:=convert(Eigenvalues(A),list);

V:=VandermondeMatrix(EV);

x0:=<c1,c2>;

<d1|d2> = C(x0).(1/V);

26. A=

(
1 0 0
2 2 0
0 0 3

)
. Ans: W (0)T , D=(

1 1 1
1 2 4
1 3 9

)
,

(
c1 0 0
−2c1 2c1 + c2 0
0 0 c3

)

CHZ and Eigenvectors
Supply details for the following.

27. Find a scalar 3rd order linear differential equation that has et, e2it, e−2it as solutions.
Apply theorems to conclude that the Wronskian of the exponentials is invertible for
every t.

Solution:The plan: apply Theorem 11.13 (Abel-Liouville Formula). Matrix A will
be the companion matrix for the characteristic polynomial (1− r)(r2 +4), the latter
constructed from roots 1, 2i,−2i of atoms et, cos 2t, sin 2t extracted from et, e2it, e−2it.

28. Assume eλ1t, . . . , eλnt are independent exponentials . Apply theorems to conclude
that the Wronskian of the exponentials is invertible for every t.

29. If d⃗1e
t + d⃗2e

−t + d⃗3e
2t =

0
0
0

, then d⃗1 = d⃗2 = d⃗3 = 0⃗ .

Solution:Let e⃗ = a column of the identity matrix. Take the dot product of e⃗ across
the equation. The result is a scalar linear combination of distinct Euler atoms equal
to zero. Independence of atoms implies all the constants are zero. The constants for
all choices of e⃗ exhaust the components of d⃗1, d⃗2, d⃗3. Therefore, the three vectors
d⃗1, d⃗2, d⃗3 have all zero components. ■

30. Independence of atoms applied to the n-vector equation d⃗1e
t + d⃗2e

−t = c1v⃗ 1e
t +

c2v⃗ 2e
−t implies d⃗1 = c1v⃗ 1 and d⃗2 = c2v⃗ 2.

31. There is a 2× 2 system x⃗ ′ = Ax⃗ for which CHZ vectors d⃗1, d⃗2 are not eigenvectors
of A.
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Solution:Let A =

(
1 1
0 1

)
, which is non-diagonalizable with eigenvalues 1, 1. The-

orem 11.31 (Vandermonde Matrix and ...) does not apply because the eigenvalues
are not distinct. Equation |A − rI| = (1 − r)2 has associated atoms et, tet (double
root case). Theorem 11.29 (Cayley-Hamilton-Ziebur Identity: Real) applies:

⟨d⃗1|d⃗2⟩ = ⟨x⃗0|Ax⃗0⟩
(

1 1
0 1

)
Then for x⃗0 =

(
1
0

)
we compute d⃗1 =

(
1
0

)
and d⃗2 =

(
2
1

)
. But Ad⃗2 ̸= Ad⃗2. Then d⃗2 fails to equal an eigenvector of A.

32. Let A be the 3×3 identity matrix. For x⃗ ′ = Ax⃗ , two of the CHZ vectors d⃗1, d⃗2, d⃗3

are zero.

Eigenvectors by Matrix Multiply Find the eigenvectors of A by Theorem 11.33.
Report the choice of U⃗ .

33. A=

(
1 2
−2 1

)
. Ans: U⃗=

(
1
1

)
.

34. A=

(
1 0 0
0 2 1
0 0 3

)
. Ans: U⃗=

 1
1
−1

.

CHZ 2×2 Matrix Shortcut Find the general solution of x⃗ ′ = Ax⃗ using Theorem
11.36.

35. A =

(
1 3
3 1

)
, r = −2, 4

Solution:Follow Example 11.8. Let y1 = e−2t, y2 = e4t, y⃗ =

(
y1
y2

)
. Then

y⃗ ′ =

(
−2e−2t

4e4t

)
=

(
−2 0
0 4

)(
e−2t

e4t

)
Let B =

(
−2 0
0 4

)
, which is the diagonal matrix of eigenvalues −2, 4. Then(

k1
k2

)
= 1

3 (B
T − I)

(
c1
c2

)
= 1

3

(
−3 0
0 3

)(
c1
c2

)
=

(
−c1
c2

)
Conclusion:

x1 = c1e
−2t + c2e

4t,
x2 = k1y1 + k2y2 = −c1e−2t + c2e

4t
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Remark.
The algorithm is designed to generate a solution in the correct form using a computer
workbench or a computer algebra system. This example can be used to write the
code for a subroutine that solves x⃗ ′ = Ax⃗ for a non-diagonal matrix A.

36. A =

(
1 3
−3 1

)
, r = 1± 3i

CHZ Scalar 2× 2 Shortcut Find the general solution of x⃗ ′ = Ax⃗ using Theorem
11.35.

37. A =

(
1 4
4 1

)
, r = −3, 5

Solution: The scalar equations are x′
1 = x1 +4x2, x

′
2 = 4x1 + x2. To apply Theorem

11.35, define x1 = c1e
−3t + c2e

5t. Solve the first differential equation x′
1 = x1 + 4x2

for 4x2 = x′
1 − x1 = (c1e

−3t + c2e
5t)′ − c1e

−3t − c2e
5t = −4c1e−3t + 4e5t. Then

x1 = c1e
−3t + c2e

5t

x2 = −c1e−3t + e5t ■

38. A =

(
1 4
−4 1

)
, r = 1± 4i

Putzer’s 2× 2 Spectral Formula Verify the identity.

39. A =

(
−1 3
−6 8

)
eAt = e5tI +

e5t − e2t

3

(
−6 3
−6 3

)
Solution:Factor |A− rI| = r2 − trace()r+ |A| as r2 − 7r+ 10 = (r− 2)(r− 5). The
eigenvalues of A are 5, 2. Apply Putzer’s formula for distinct real roots:

eAt = eλ1tI +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I)

eAt = e5tI +
e2t − e5t

2− 5
(A− 5I)

eAt = e5tI +
e5t − e2t

3

(
−1− 5 3
−6 8− 5

)
eAt = e5tI +

e5t − e2t

3

(
−6 3
−6 3

)

40. A =

(
0 1
6 1

)
eAt = e−2tI +

e3t − e−2t

5

(
2 1
6 3

)

41. A =

(
0 1

−16 8

)
eAt = e4tI + te4t

(
−4 1
−16 4

)
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Solution: The eigenvalues of A are 4, 4. Apply Putzer’s formula for a double root:

eAt = eλ1tI + teλ1t(A− λ1I)

= e4tI + te4t(A− 4I)

= e4tI + te4t
(

0− 4 1
−16 8− 4

)
= e4tI + te4t

(
−4 1
−16 4

)

42. A =

(
3 2
−2 3

)
, eAt =

e3t cos(2t)I + e3t sin(2t)

(
0 2
−2 0

)

11.6 Jordan Form and Eigenanalysis

Exercises 11.6 �
Jordan block definition. Write out the Jordan form matrix explicitly.

1. diag(B(7, 2), B(5, 3))

Answer:


7 1 0 0 0
0 7 0 0 0
0 0 5 1 0
0 0 0 5 1
0 0 0 0 5


Solution: By definition page 894,

B(7, 2) =

(
7 1
0 7

)
,

B(5, 3) =

 5 1 0
0 5 1
0 0 5

.

Then

diag(B(7, 2), B(5, 3)) =


7 1 0 0 0
0 7 0 0 0
0 0 5 1 0
0 0 0 5 1
0 0 0 0 5


2. diag(B(0, 2), B(4, 3))

3. diag(B(−1, 1), B(−1, 2), B(5, 3))

Solution:Jordan matrix diag(B(−1, 1), B(−1, 2), B(5, 3)) =
−1 0 0 0 0 0
0 −1 1 0 0 0
0 0 −1 0 0 0
0 0 0 5 1 0
0 0 0 0 5 1
0 0 0 0 0 5


1622



11.6 Jordan Form and Eigenanalysis

4. diag(B(1, 1), B(5, 2), B(5, 3))

Jordan form definition. Which are Jordan forms and which are not? Explain.

5.


0 1 0 0 0
0 0 0 0 0
0 0 5 1 0
0 0 0 5 1
0 0 0 0 5


Solution:Jordan form diag(B(0, 2), B(5, 3))

6.

5 1 0 0
0 5 0 0
0 0 5 1
0 0 0 5



7.

1 0 0 0
0 7 0 0
0 0 1 0
0 0 5 1


Solution:Not a Jordan form because of entry 5 below the diagonal.

8.


5 1 0 0 0
0 5 0 0 0
0 0 5 1 0
0 0 0 5 0
0 0 0 0 5


Decoding A = PJP−1. Decode A = PJP−1 in each case, displaying explicitly
the Jordan chain relations and their solutions.

9. A =


4 8 0 0 −8
0 4 0 0 0
2 8 2 0 −8
0 20 0 2 −12
0 8 0 0 −4

,

J = diag(−4, 2, 2, 4, 4)
Solution: The eigenvalues of A are −4, 2, 2, 4, 4, found by computer. What is not
known initially is the block sizes for the repeated eigenvalues. Additional information
supplied says all blocks have size one. All Jordan chain relations have the form
(A− λI)v⃗ = 0⃗ , the classical eigenvalue problem.

The 5 Jordan blocks in J correspond to 1-chains. Each block decodes into one vector
equation. All vectors v⃗ below are in R5, because the row dimension of A is 5. The
ordering of the blocks is not important as long as eigenvalues and columns of P are
paired. Recorded below is the Jordan Form computed by maple from the Frobenius
Form. The maple answer for P is not used, because it comes from the Frobenius
Form, having little in common with hand solution details. Details by hand usually
differ because eigenvectors are not unique. Additional differences arise because of
the free choice of two independent eigenvectors for both λ = 2 and λ = 4.

1623



11.6 Jordan Form and Eigenanalysis

Block B(−4, 1), λ = −4: The 1-chain Av⃗ 1 = −4v⃗ 1 is solved for v⃗ 1 =


1
0
1
2
1

 from

homogeneous problem (A+4I)v⃗ 1 = 0⃗ . Simple eigenvalues always generate a 1-chain
solved by classical eigenanalysis.

Two Blocks B(2, 1), B(2, 1) for λ = 2: Given in the exercise: there are no 2-chains.
The task remaining: find two independent eigenvectors v⃗ 2, v⃗ 3 for problem Av⃗ = 2v⃗ .
To expedite the computation we use maple, details below.

Two Blocks B(4, 1), B(4, 1) for λ = 4: Given is there are no 2-chains. The
task remaining: find two independent eigenvectors v⃗ 4, v⃗ 5 for problem Av⃗ = 4v⃗ .
Following the case for λ = 2, we use maple, details below..

The answers:

v⃗ 1 =


1
0
1
2
1

 , v⃗ 2 =


0
0
1
0
0

 , v⃗ 3 =


0
0
0
1
0

 , v⃗ 4 =


1
0
1
0
0

 , v⃗ 5 =


0
1
0
4
1

 .

Let P be the augmented matrix of v⃗ 1 to v⃗ 5 and let J = diag(−4, 2, 2, 4, 4). Then

P =


1 0 0 1 0
0 0 0 0 1
1 1 0 1 0
2 0 1 0 4
1 0 0 0 1

 , J =


−4 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 4 0
0 0 0 0 4


Using maple we check the equation AP = PJ , verifying the Jordan Decomposition
found by hand. The details of this example follow exactly the details for equation
AP = PD for a diagonalizable matrix A. ■
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# Exercise 9, Decoding and solving 1-chains

A:=Matrix([

[ 4, 8, 0, 0, -8],

[ 0, 4, 0, 0, 0],

[ 2, 8, 2, 0 , -8],

[ 0, 20, 0, 2, -12],

[ 0, 8, 0, 0, -4]]);

J:=JordanForm(A);Q:=JordanForm(A,output=’Q’);# Automated by maple

A.Q - Q.J; # Check maple answer, should be zero

# Proceed to find chains manually

ZV:=ZeroMatrix(5,1);

# Eigenvalue -4

N:=A-2*IdentityMatrix(5);

ZV:=ZeroMatrix(5,1);LinearSolve(N,ZV,free=’s’);

ReducedRowEchelonForm(N);

# v1:=<1,0,1,2,1>;

# Eigenvalue 2

N:=A-2*IdentityMatrix(5);

ZV:=ZeroMatrix(5,1);LinearSolve(N,ZV,free=’ss’);

ReducedRowEchelonForm(N);

# v2:=<0,0,1,0,0>;v3:=<0,0,0,1,0>;

# Eigenvalue 4

N:=A-4*IdentityMatrix(5);LinearSolve(N,ZV,free=’sss’);

ReducedRowEchelonForm(N);

# v4:=<1,0,1,0,0>;v5:=<0,1,0,4,1>;

v1:=<1,0,1,2,1>;

v2:=<0,0,1,0,0>;v3:=<0,0,0,1,0>;

v4:=<1,0,1,0,0>;v5:=<0,1,0,4,1>;

P:=<v1|v2|v3|v4|v5>;# pair eigenvalues and eigenvectors

JJ:=DiagonalMatrix([-4,2,2,4,4]);

A.P-P.JJ;# Should be zero

10. A =


−4 −4 −12 12 4
0 0 0 0 0
−8 4 −12 16 0
−8 4 −16 20 0
0 0 −4 4 0

,

J = diag(−4, 4, 4, 0, 0)

Geometric and algebraic multiplicity.
Determine GeoMult(λ) and AlgMult(λ).

11. A =


4 8 0 0 −8
0 4 0 0 0
2 8 2 0 −8
0 20 0 2 −12
0 8 0 0 −4

, λ = 4

Solution:Answer: GeoMult(A) = AlgMult(A) = 2 because there are two eigenpairs
for λ = 4.
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# Exercise 11, GeoMult and AlgMult

A:=Matrix([[4,8,0,0,-8],[0,4,0,0,0],[2,8,2,0,-8],

[0,20,0,2,-12],[0,8,0,0,-4]]);

Eigenvectors(A);

12. A =


−4 −4 −12 12 4
0 0 0 0 0
−8 4 −12 16 0
−8 4 −16 20 0
0 0 −4 4 0

, λ = 4

Generalized eigenvectors. Find all generalized eigenvectors and represent A =
PJP−1. Check the answer in a computer algebra system.

13. A =


4 8 0 0 −8
0 4 0 0 0
2 8 2 0 −8
0 20 0 2 −12
0 8 0 0 −4

,

Answer: J = diag(−4, 4, 4, 2, 2),

P =


1 0 0 1 0
0 0 0 0 1
1 0 1 1 0
2 1 0 0 4
1 0 0 0 1


Solution: The matrix is diagonalizable. Generalized eigenvectors are eigenvectors.
Use maple for the computation.

J =


−4 0 0 0 0
0 4 0 0 0
0 0 4 0 0
0 0 0 2 0
0 0 0 0 2



P =


1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
2 0 4 1 0
1 0 1 0 0


# Exercise 13, Diagonalizable matrix

A:=Matrix([[4,8,0,0,-8],[0,4,0,0,0],[2,8,2,0,-8],

[0,20,0,2,-12],[0,8,0,0,-4]]);

JV,P:=Eigenvectors(A);J:=DiagonalMatrix(convert(JV,list));

A.P-P.J;

14. A =


−4 −4 −12 12 4
0 0 0 0 0
−8 4 −12 16 0
−8 4 −16 20 0
0 0 −4 4 0

,

Answer: J = diag(−4, 4, 4, 0, 0),
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P =


1 2 0 1 1
0 0 0 2 −1
1 −1 1 0 3
1 0 1 0 3
0 2 0 3 0



15. A =

0 2 −2 −2
2 0 −2 −4
2 2 −4 −2
0 0 0 −4

,

Ans: J = diag(0,−4,−2,−2),

P =

1 0 1 −1
1 1 −4 0
1 0 −3 −1
0 1 0 0


Solution: The matrix is diagonalizable. Generalized eigenvectors are eigenvectors.
Use maple for the computation.

J =


−2 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 −4



P =


1 −1 1 0
0 1 1 1
1 0 1 0
0 0 0 1


# Exercise 15, Diagonalizable matrix

A:=Matrix([[0,2,-2,-2],[2,0,-2,-4],[2,2,-4,-2],[0,0,0,-4]]);

JV,P:=Eigenvectors(A);J:=DiagonalMatrix(convert(JV,list));

A.P-P.J;

16. A =


−2 2 −1 −1 0
0 1 0 0 0
0 1 1 0 0
0 0 0 2 1
0 0 0 0 2

,

Ans: J = diag(2, 2, B(2, 3)),

P =


1 1 1 −2 3
0 1 0 0 0
1 2 0 0 0
0 0 0 1 −2
0 0 0 0 1



17. A =


2 1 0 1 0
0 2 0 0 0
0 1 2 0 0
0 0 0 2 1
0 0 0 0 2

,

Ans: J = diag(B(2, 3), B(2, 2)),

P =


1 2 1 2 1
0 0 2 0 2
0 2 1 2 1
0 1 0 0 0
0 0 1 0 0


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Solution: The matrix is not diagonalizable. Use maple for the computation, which
reveals there is one eigenvalue λ = 2 and two eigenvectors. The eigenpairs are (which
we do not use)2,


0
0
1
0
0


,

2,


1
0
0
0
0




The possible chains are:

5-chain;
1-chain, 4-chain;
2-chain, 3-chain

Rank computations use the maple code below, following textbook Example 11.11, to
find the possible block sizes. The result: there is a 2-chain and a 3-chain. Eliminated
by the computation are three possibilities: no 1-chain, no 4-chain, no 5-chain.

Details: Record A, N = A− 2I, N2 from computer assist:

A=


2 1 0 1 0
0 2 0 0 0
0 1 2 0 0
0 0 0 2 1
0 0 0 0 2

 , N=


1 −1 1 0 0
2 −2 1 1 0
1 −1 0 1 0
−1 1 0 0 1
−3 3 0 −2 1

 , N2=


0 0 0 0 0
−2 2 0 −1 1
−2 2 0 −1 1
−2 2 0 −1 1
2 −2 0 1 −1


The 3-chain. Let m = 3 (find a 3-chain). The plan is to find a vector w⃗ with
N3w⃗ = 0⃗ , N2w⃗ ̸= 0⃗ and N2x⃗ = w⃗ has no solution x⃗ . Then v⃗ 1 = N2w⃗ , v⃗ 2 = Nw⃗ ,
v⃗ 3 = w⃗ are the columns of P corresponding to Jordan block B(λ, 3), to wit: columns
1,2,3 of P .

We will choose w⃗ to be a basis element for the nullspace of (N2)T , following Table
2 and Proposition 11.9. This clever choice works because Nm = 0. We still have to
check N2w⃗ ̸= 0⃗ , as in Table 2, page 898. Employ maple to find the nullspace basis:

nullspace((N2)T ) = span




0
0
0
0
1

 ,


0
0
0
1
0

 ,


0
0
1
0
0

 ,


0
1
0
0
0




Choose vector w⃗ to be the first basis vector above, that is, the vector with components
0, 0, 0, 0, 1. Then (1) equation N2x⃗ = w⃗ is insolvable for x⃗ , (2) N2w⃗ ̸= 0⃗ , (3)
N3w⃗ = 0⃗ .

Columns 1,2,3 of P will be defined by equations

v⃗ 1=N2w⃗ =


1
0
0
0
0

 , v⃗ 2=Nw⃗ =


0
0
0
1
0

 , v⃗ 3=w⃗ =


0
0
0
0
1


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The computation means that AP = PJ1 where

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3|0⃗ |0⃗⟩ =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 ,

 N v⃗ 1 = 0⃗
N v⃗ 2 = v⃗ 1

N v⃗ 3 = v⃗ 2

The 2-chain. Let m = 2 (find a 2-chain). The plan is to find a vector w⃗ with
N2w⃗ = 0⃗ , Nw⃗ ̸= 0⃗ and N x⃗ = w⃗ has no solution x⃗ . Then v⃗ 4 = Nw⃗ , v⃗ 5 = w⃗ are
the columns of P corresponding to Jordan block B(λ, 2), to wit: columns 4,5 of P .

We will choose w⃗ ̸= 0⃗ to be a vector in the nullspace of NT , following Table 2 and
Proposition 11.9. First, find a basis for the nullspace of NT (see Proposition 11.9).
Then write w⃗ in terms of this basis:

nullspace(NT ) = span




0
0
0
0
1

 ,


0
1
0
0
0


 ,

w⃗ = c1


0
0
0
0
1

+ c2


0
1
0
0
0

 .

Next, we force w⃗ to belong to the nullspace of Nm = N2. Equation

N2w⃗ =


c1
0
0
0
0

 = 0⃗

holds if and only if c1 = 0. Choose c1 = 0, c2 = 1 to make it so, then compute

w⃗ =


0
1
0
0
0

 , Nw⃗ =


1
0
1
0
0

 ̸= 0⃗

Conclusions: (1) equation N x⃗ = w⃗ is insolvable for x⃗ , (2) Nw⃗ ̸= 0⃗ and (3) N2w⃗ =
0⃗ . Define

v⃗ 4 = Nw⃗ =


1
0
1
0
0

 , v⃗ 5 = w⃗ =


0
1
0
0
0


1Zero columns in P allow rapid testing of AP = PJ .
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Then

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3|v⃗ 4|v⃗ 5⟩ =


1 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0


Matrix multiply verifies AP = PJ , which means P is a matrix of generalized
eigenvectors for A. ■

# Exercise 17, Generalized Eigenvectors, non-diagonalizable

with(LinearAlgebra):

getBlockCounts:=proc(A,lambda) local m,N,j,r,p,txt;

m:=RowDimension(A);

N:=A-lambda*IdentityMatrix(m);

for j from 1 to m do r[j]:=Rank(N^j); od:

for p from m to 2 by -1 do

if(r[p]<>r[p-1])then break;fi:od;

printf("lambda=%d, nilpotency=p=%d\n",lambda,p);

txt:=(j,x)-> printf("Blocks B(%a,%d):%d\n",lambda,j,x):

for j from p to 2 by -1 do

txt(j,-2*r[j]+r[j-1]+r[j+1]):

od:end proc:

A:=Matrix([[2,1,0,1,0],[0,2,0,0,0],[0,1,2,0,0],

[0,0,0,2,1],[0,0,0,0,2]]);

Eigenvectors(A);lambda:=2;

getBlockCounts(A,\lambda);

J:=JordanBlockMatrix([[lambda,3],[lambda,2]]);

N:=A-2:print("N, N^2 N^3=",N,N^2,N^3);

# Exercise 17, Find the 3-chain

m:=3;B:=N^(m-1):B_transpose:=B^+;

NullSpace(B_transpose);

w:=<0,0,0,0,1>:v1:=N^2 .w: v2:=N.w:

v3:=w: print("v1,v2,v3=",v1,v2,v3);

Z:=ZeroMatrix(5,1):P:=<v1|v2|v3|Z|Z>;print("AP-PJ=",A.P - P.J);
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# Exercise 17, Find the 2-chain

# Define v4=N.w, v5=w

# Need: N^2 .w=0, N.w not zero, N.x=w has no solution x

# Let w = linear combination in nullspace((N^(m-1))^T)

# Choose linear combination weights so that N^2 .w=0

# Then test N.w <> 0

NullSpace(N^+);c1:=’c1’:c2:=’c2’:

w:=c1*<0,0,0,0,1>+c2*<0,1,0,0,0>;

# Solve N^2 .w = 0 for c1,c2;

N^2 .w=Z;# Solve it for c1,c2;choose c1=0, c2=1

w:=<0,1,0,0,0>;

N.w; N^2 .w;# Check N.w <> 0, N^2 .w = 0

# Define chain vectors

v5:=w:v4:=N.v5:

print("v4=",v4,"v5=",v5);

P:=<v1|v2|v3|v4|v5>:print("J, P, AP-PJ=",J,P,A.P-P.J);

18. A =


2 0 0 1 0
1 3 −1 0 0
1 1 1 0 0
0 0 0 2 1
0 0 0 0 2

,

Ans: J = diag(B(2, 4), 2),

P =


0 1 0 1 1
1 0 0 0 0
1 0 0 1 1
0 0 1 0 0
0 0 0 1 0


Number of Jordan Blocks. Outlined here is the derivation of

s(j) = 2k(j − 1)− k(j − 2)− k(j).

Definitions:

• s(j)= number of blocks B(λ, j)

• N = A− λI

• k(j) = dim(kernel(N j))

• Lj = kernel(N j−1)⊥ relative to kernel(N j)

• ℓ(j) = dim(Lj)

• p minimizes
kernel(Np) = kernel(Np+1)

19. Verify k(j) ≤ k(j + 1) from

kernel(N j) ⊂ kernel(N j+1).
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Solution:Given kernel(N j) ⊂ kernel(N j+1) then the number of basis elements for
subspace kernel(N j) is less than or equal to the number of basis elements for the
containing subspace kernel(N j+1). Therefore the dimensions of the two subspaces
satisfy the inequality k(j) ≤ k(j + 1). ■

20. Verify the direct sum formula

kernel(N j) = kernel(N j−1)⊕ Lj .

Then k(j) = k(j − 1) + ℓ(j).

Solution:
Symbol definition: k(j) = dim(kernel(N j)), ℓ(j) = dim(Lj) = dim(kernel(N j−1)⊥.
Let’s derive equation k(j) = k(j − 1) + ℓ(j).

k(j) = dim(kernel(N j))

= dim
(
kernel(N j−1)

)
⊕ kernel

(
(N j−1)⊥

)
by Exercise 20

= dim
(
kernel(N j−1)

)
+ dim

(
kernel(N j−1)⊥)

)
= k(j − 1) + ℓ(j)

Other details of Exercise 20 are omitted.

21. Given Nmw⃗ = 0⃗ , Nm−1w⃗ ̸= 0⃗ , define v⃗ i = Nm−iw⃗ , i = 1, . . . ,m. Prove
{v⃗ 1, . . . , v⃗m} is independent and they satisfy Jordan chain relations N v⃗ 1 = 0⃗ ,
N v⃗ i+i = v⃗ i.

Solution:
Independence:
Assume

∑m
i=1 c1v⃗ i = 0⃗ . We prove the weights are zero. Replace v⃗ i = Nm−iw⃗ then

multiply Nm−1 across the equation:∑m
i=1 c1N

m−1 (Nm−iw⃗ ) = 0⃗ .

All terms are zero except for i = m because Nm−1 (Nm−iw⃗ )
∣∣
i=m

= Nm−1w⃗ ̸= 0⃗

while all preceding terms contain factor Nm−1Nw⃗ = 0⃗ . The result is equation

cmNm−1w⃗ = 0⃗

from which we conclude cm = 0. The argument repeats: multiply next by Nm−2 and
distill the equation to one term, showing cm−1 = 0. By induction all the weights are
zero and the vectors are independent.

Chain Relations:
First, N v⃗ 1 = N Nm−1w⃗ = Nmw⃗ = 0⃗ , so v⃗ 1 is an eigenvector. Next, N v⃗ i+i =
NNm−i−1w⃗ = Nm−1w⃗ = v⃗ i. ■

22. A block B(λ, p) corresponds to a Jordan chain v⃗ 1, . . . , v⃗ p constructed from the
Jordan decomposition. Use Np−1v⃗ p = v⃗ 1 and kernel(Np) = kernel(Np+1) to show
that the number of such blocks B(λ, p) is ℓ(p). Then for p > 1, s(p) = k(p)−k(p−1).

Solution:Some of the details can be found in the solution to Exercise 23 infra.

23. Show that ℓ(j − 1)− ℓ(j) is the number of blocks B(λ, j) for 2 < j < p. Then

s(j) = 2k(j − 1)− k(j)− k(j − 2).
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Solution:
Part I.
Prove s(j) = 2k(j − 1)− k(j)− k(j − 2), j > 2.

A Jordan block B(λ,m) appearing in J is paired with a Jordan chain v⃗ 1, . . . , v⃗m

consisting of the matching columns in P . The first chain vector v⃗ 1 is an eigenvector.

Let W be the set of eigenvectors v⃗ 1 found from P , considering all Jordan blocks
in J . The columns of P are independent, so W is an independent set (subsets of
independent sets are independent). The eigenvectors in W form a basis for the kernel
of N = A − λI, but this basis is different from a standard basis found by solving
equation N x⃗ = 0⃗ .

Summary: The dimension of the eigenspace kernel(A−λI) tells you the exact number
of Jordan blocks with λ on the diagonal. It tells you nothing about the sizes of these
blocks.

It may help to have an example in mind when reading the rest of the Part I proof.
Suggestion: compute basis vectors for the nullspaces of N,N3, N3 using the matrix
A of example 11.12 page 900.

A =


3 −1 1 0 0
2 0 1 1 0
1 −1 2 1 0
−1 1 0 2 1
−3 3 0 −2 3


Fix eigenvalue λ and let N = A − λI. If nilpotency p = 1 then every Jordan block
has size 1, so assume p > 1. The subspaces kernel(N j) grow in dimension as j
increases. Let kernel(N) = span(u⃗1, . . . , u⃗ r) and extend the basis to kernel(N2),
by adding basis vectors z⃗1, . . . , z⃗ q for kernel(N)⊥ (used kernel(N2) = kernel(N)⊕
kernel(N)⊥). Then kernel(N2) = span(u⃗1, . . . , u⃗ r, z⃗1, . . . , z⃗ q). The number q of
basis vectors added to obtain kernel(N2) is q = ℓ(2). Also, q = dim(kernel(N2))−
dim(kernel(N)) = k(2) − k(1). Number q is the count of Jordan blocks of size
greater than 1, because each such block is paired with an m-chain that has a vector
in kernel(N2), but not in kernel(N). Independence of chain vectors is a key part of
this argument. Conclusion: ℓ(2) = k(2)− k(1) is the number of Jordan blocks of size
greater than 1. Then the number of Jordan blocks of exactly size 1 is k(1)− (k(2)−
k(1)) = 2k(1)− k(2).

In general, the number of Jordan blocks of size greater than k is ℓ(j + 1) =
dim(kernel(N j)⊥) = dim(kernel(N j+1)) − dim(kernel(N j)) = k(j + 1) − k(j).
The logic used above applies: the number s(j + 1) of Jordan blocks of size exactly
j + 1 equals k(j)− k(j − 1)− (k(j + 1)− k(j)) = 2k(j)− k(j + 1)− k(j − 1).

Replace j by j − 1 to obtain the claimed identity

s(j) = 2k(j − 1)− k(j)− k(j − 2), j > 2

Part II.
Show ℓ(j − 1)− ℓ(j) is the number of blocks B(λ, j) for 2 < j < p.

Direct sum decomposition kernel(N j) = kernel(N j−1) ⊕ kernel(N j−1)⊥ implies
identity k(j) = k(j − 1) + l(j). Then ℓ(j − 1)− ℓ(j) = k(j − 1)− k(j − 2)− (k(j)−
k(j − 1)) = 2k(j − 1) − k(j − 2) − k(j), which is the number of blocks B(λ, j) for
2 < j < p by Part I. ■
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24. Test the formulas above on the special matrices

A=diag(B(λ, 1), B(λ, 1), B(λ, 1)),

A=diag(B(λ, 1), B(λ, 2), B(λ, 3)),

A=diag(B(λ, 1), B(λ, 3), B(λ, 3)),

A=diag(B(λ, 1), B(λ, 1), B(λ, 3)),

Computing Jordan m-chains. Find the Jordan m-chain formulas for the given
eigenvalue. Then solve them to find the generalized eigenvectors.

25. A =


1 0 1 0 1
0 1 0 1 1
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1


Solution:The eigenvalues: 1, 1, 1, 1, 1. Let λ = 1, N = A − (1)I. Use maple (code
infra) to decide on the number of Jordan blocks:

lambda=1, nilpotency=p=3

Blocks B(1,3):1

Blocks B(1,2):1

Find a 3-chain.
Compute a basis for the nullspace of (N2)T : columns 1,3,4,5 of the identity matrix
I. Let w⃗ be a linear combination of the basis vectors with weights c1, c2, c3, c4.
Compute the expected chain N2w⃗ , Nw⃗ , w⃗ to find a choice for the weights that
makes N2w⃗ , Nw⃗ , w⃗ a 3-chain: c1 = 0, c2 = 0, c3 = 0, c4 = 1. Then a 3-chain is

v⃗ 1 =


0
1
0
0
0

 , v⃗ 2 =


1
1
0
1
0

 , v⃗ 3 =


0
0
0
0
1

 .

The common shortcut of choosing an eigenvector to start a 3-chain fails in this ex-
ample. This has to be frustrating, given the common advice in textbooks.

Find a 2-chain.
Compute a basis for the nullspace of N : columns 3, 5 of I. Write

w⃗ =


0
0
c1
0
c2

,

the plan being to find the weights c1, c2 so that v⃗ 4 = Nw⃗ , v⃗ 5 = w⃗ form a 2-chain:
N v⃗ 1 = 0⃗ , N v⃗ 2 = v⃗ 1. Solving, c1 = 1, c2 = 0 works and

v⃗ 4 =


1
0
0
0
0

 , v⃗ 5 =


0
0
1
0
0

 .

Then
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P =


0 1 1 7 1
−2 2 0 7 −1
−2 1 0 0 5
−2 −1 0 0 −2
2 −3 0 0 2

 , J =


1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 .

# Exercise 25, computing Jordan m-chains

with(LinearAlgebra):

A:=Matrix([[ 1,0,1,0,1],[0,1,0,1,1],[0,0,1,0,0],

[0,0,0,1,1],[0,0,0,0,1]]);

Eigenvectors(A);

getBlockCounts(A,1);N:=A-1;

# 3-chain

w:=<c1,0,c2,c3,c4>;N^2 .w,N.w,w;

w:=subs(c1=0,c2=0,c3=0,c4=1,<c1,0,c2,c3,c4>);N^2 .w,N.w,w;

NullSpace(N^+);

w:=<0,0,c1,0,c2>;N.w,w;

w:=subs(c1=1,c2=0,<0,0,c1,0,c2>);N.w,w;

P:=<v1|v2|v3|v4|v5>;

J:=JordanBlockMatrix([[1,3],[1,2]]);

26. A =


2 0 0 1 0
1 3 −1 0 0
1 1 1 0 0
0 0 0 2 1
0 0 0 0 2

, λ = 2

Solution:There is a 4-chain and a 1-chain. For the 4-chain choose w⃗ to be the first
column of (N3)T . This shortcut works to find a 4-chain. The 1-chain starts with an
eigenvector independent from the one used in the 4-chain. One possible answer:

P =


0 1 0 0 1
1 0 0 0 0
1 0 0 0 1
0 0 1 0 0
0 0 0 1 0

 , J =


2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 0
0 0 0 0 2

 .

Generalized Eigenspace Basis.

Let A be n × n with distinct eigenvalues λi, ni = AlgMult(λi) and Ei =
kernel((A− λiI)

ni), i = 1, . . . , k. Assume a Jordan decomposition A = PJP−1.

27. Let Jordan block B(λ,m) appear in J . Prove that a Jordan chain corresponding to
this block is a set of m independent columns of P .

Solution:The columns of P are independent because P is invertible. Subsets of in-
dependent sets are independent, therefore the Jordan chain columns isolated from P
are independent. By swapping blocks in J and corresponding columns in P we can
assume that block B(λ,m) occupies columns 1 to m of J . Matrix products AP and
PJ will be expanded as follows:

PJ = ⟨λ col(P, 1) + col(P, 2)|λ col(P, 2) + col(P, 3)| · · · |λ col(P,m)| · · ·⟩
AP = ⟨A col(P, 1)| · · · |A col(P,m)| · · ·⟩
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Match the first m columns:

λ col(P (A, 1) + col(P, 2) = A col(P, 1)
λ col(P (A, 2) + col(P, 3) = A col(P, 2)

...
λ col(P (A,m) = A col(P,m)

Define

v⃗m = col(P, 1), . . . , v⃗ 1 = col(P,m).

Write

λ col(P (A, j) + col(P, j + 1) = A col(P, j) as col(P, j + 1) = N col(P, j).

Then

col(P, 2) = N col(P, 1)
col(P, 3) = N col(P, 2)

...

0⃗ = N col(P,m)

and

v⃗m−1 = N v⃗m

v⃗m−2 = N v⃗m−1

...

0⃗ = N v⃗ 1

These are the Jordan Chain Relations in reverse order. ■

28. Let Bλ be the union of all columns of P originating from Jordan chains associated
with Jordan blocks B(λ, j). Prove that Bλ is an independent set.

29. Verify that Bλ has AlgMult(λ) basis elements.

Solution:There are j columns of P in Bλ from block B(λ, j). The block has λ on
the diagonal exactly j times. So λ is a repeated eigenvalue of A, j repeats counted
from the block. The algebraic multiplicity of λ is the number of times λ is a re-
peated eigenvalue. Adding the repeats j block-by-block has to add to the algebraic
multiplicity. ■

30. Prove that Ei = span (Bλi) and dim(Ei) = ni, i = 1, . . . , k.

Direct Sum Decomposition.

31. Let A =

(
2 1 0
0 2 1
0 0 2

)
. Let λ = 2. Compute k = AlgMult(λ) and a basis of generalized

eigenvectors for the subspace kernel((A− λI)k).

Solution:Matrix A is a Jordan block B(2, 3). The algebraic multiplicity of λ = 2 is
power of factor (λ − 2) in the characteristic polynomial (2 − λ)3. Then k = 3. The
nullspace of (A− 2I)3 is R3. There is exactly one eigenpair:2,

 1
0
0

.
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Because J = A then P = I, because AP = PJ . The columns of I are a basis for the
generalized eigenspace. ■

32. Let A =

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 4

, y⃗ =

2
0
1
9

.

Find x⃗1, x⃗2 in decomposition y⃗ = x⃗1 + x⃗2 in Theorem 11.42.

Solution:It suffices to find x1 =


2
0
1
0

, then define x⃗2 = y⃗ − x⃗1.

Exponential Matrices. Compute the exponential matrix eAt on paper. Check the
answer using maple.

33. A =

(
2 0 0
0 3 0
0 0 0

)
Solution:Using the results for diagonal matrices, eAt = diag(e2t, e3t, 1).

34. A =

(
2 1 0
0 2 0
0 0 4

)

Nilpotent matrices. Find the nilpotency of N .

35. N =

(
0 1 0
0 0 0
0 0 0

)
Solution:Nilpotency p = 2.

36. N =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


Solution:Nilpotency p = 5.

Real Jordan Decomposition
Find Jordan decomposition A = PJP−1 where J and P are real matrices.

37. A =

(
−2 6 −1
0 4 1
0 1 4

)
. Answer:

λ = −2, 4± i,

J =

(
−2 0 0
0 4 1
0 −1 4

)
, P =

(
1 0 1
0 0 1
0 1 0

)
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Solution:Matrix A is diagonalizable with a full set of complex eigenvectors:−2,
1
0
0

 ,

4 + i,

 i
i
1

 ,

4− i,

−i−i
1


The Jordan Form is obtained by replacing the conjugate pair 4 + i, 4 − i by matrix(

4 1
−1 4

)
:

J =

 −2 0 0
0 4 1
0 −1 4


Matrix P is obtained from the eigenvectors by replacing the two complex eigenvectors
respectively by the real and imaginary parts of the first eigenvector (the second
eigenvector is the conjugate of the first eigenvector).

Replace in the complex Jordan matrix P :

Pair

 i
i
1

,

−i−i
1

 is replaced by pair

0
0
1

,

1
1
0

.

The real and imaginary parts apply only to the first complex eigenvector, the second
complex conjugate eigenvector is not used!

P =

 1 0 1
0 0 1
0 1 0

, AP − PJ =

 0 0 0
0 0 0
0 0 0


How to find the real and imaginary parts of a vector: replace complex unit i by 0 to
find the real part, take the derivative on symbol i to find the imaginary part.

38. A =

(
−31 −10 18
−15 −5 10
−54 −20 32

)
. Answer:

λ = −4,±5i

J =

(
−4 0 0
0 0 5
0 −5 0

)
, P =

(
2 2 0
0 1 −1
3 4 0

)

Solving x⃗ ′ = Ax⃗
Solve for x⃗ in the differential equation.

39. x⃗ ′ =

(
−2 6 −1
0 4 1
0 1 4

)
x⃗ .

Solution: By Exercise 37, the real Jordan decomposition is

J =

 −2 0 0
0 4 1
0 −1 4

 , P =

 1 0 1
0 0 1
0 1 0

,

Then AP = PJ implies from x⃗ ′ = Ax⃗ the new equation y⃗ ′ = J y⃗ where x⃗ = P y⃗ .
Let’s solve y⃗ ′ = J y⃗ in its scalar form y′1 = −2y1,

y′2 = 4y2 + y3,
y′3 = −y2 + 4y3
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First, y⃗ 1 = c1e
−2t. The last two differential equations are solved by the Cayley-

Hamilton-Ziebur scalar 2× 2 shortcut, Theorem 11.35 page 883.

y2 = c2e
4t cos(t) + c3e

4t sin(t)
y3 = y′2 − 4y2 = −c2e4t sin(t) + c3e

4t cos(t)

Then

x⃗ = P y⃗

=

 1 0 1
0 0 1
0 1 0

 y1
y2
y3


= P y⃗

=

 1 0 1
0 0 1
0 1 0

 c1e
−2t

c2e
4t cos(t) + c3e

4t sin(t)
−c2e4t sin(t) + c3e

4t cos(t)

 ■

40. x⃗ ′ =

(
−31 −10 18
−15 −5 10
−54 −20 32

)
x⃗ .

Numerical Instability
Show directly that Jordan form J of A satisfies limϵ→0+ J(ϵ) ̸= J(0).

41. A =

(
1 1
ϵ 1

)
Solution:Matrix A has for ϵ > 0 two eigenpairs and Jordan form J(ϵ) = diag(1 +
√
ϵ, 1−

√
ϵ). The limit of J(ϵ) as ϵ→ 0 is the identity matrix

(
1 0
0 1

)
. However, J(0)

is the Jordan matrix for A|ϵ=0 =

(
1 1
0 1

)
, which is itself. ■

42. A =

(
0 1 1
0 ϵ 1
0 0 0

)

11.7 Nonhomogeneous Linear Systems

Exercises 11.7 �
Variation of Parameters

Let A(t) =

(
0 1

−c(t)/a(t) −b(t)/a(t)

)
,

F⃗ (t) =
1

a(t)

(
0

f(t)

)
, x⃗=

(
u(t)
u′(t)

)
.

1. Verify equivalence of a(t)u′′ + b(t)u′ + c(t)u = f(t) and x⃗ ′ = A(t)x⃗ + F⃗(t).

Solution:
Scalar implies vector-matrix:
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Assume a(t)u′′ + b(t)u′ + c(t)u = f(t), prove x⃗ ′ = A(t)x⃗ + F⃗(t).

x⃗ ′ = d
dt

(
u
u′

)
=

(
u′

u′′

)
=

(
u′

(−bu′ − cu+ f)/a

)
=

(
0 1
−c/a −b/a

)(
u
u′

)
+

(
0

f/a

)
= A(t)x⃗ + F⃗ (t)

Vector-matrix implies scalar:
Assume x⃗ ′ = A(t)x⃗ + F⃗(t), prove a(t)u′′ + b(t)u′ + c(t)u = f(t).

Let u(t) = x1(t) where x1(t) is the first component of x⃗ (t). Convert x⃗ ′ = A(t)x⃗+F⃗ (t)
to scalar form: {

x′
1 = x2(t),

x′
2 = −cx1/a− bx2/a+ f/a

The second scalar equation becomes

x′
2 = −cx1/a− bx2/a+ f/a

x′′
1 = −cx1/a− bx′

1/a+ f/a replace x2 by x′
1

u′′ = −cu/a− bu′/a+ f/a replace x1 by u, x′
1 by u′

u′′ + cu/a+ bu′/a = f/a collect terms to the LHS

au′′ + cu+ bu′ = f multiply by a(t) ■

2. For u′′ + 100u = sin(t), find A(t) and F⃗(t).

3. For u′′ = f(t), find A(t) and F⃗(t).

Solution:Answer: A(t) =

(
0 1
0 0

)
, F⃗(t) =

(
0

f(t)

)
.

4. For u′′ = f(t), let u1 = 1, u2 = t, Φ(t) =

(
u1 u2
u′
1 u

′
2

)
. Verify |Φ(t)| = 1, then find

A(t) = Φ′(t)Φ−1(t).

5. State Theorem 11.46 for n = 2, then explain how it applies to this special case.

Solution:
Theorem (Variation of Parameters: General Linear System)

Let A(t) be a 2× 2 matrix and F⃗ (t) a vector function, both with continuous entries
near t = t0. Let Φ(t) be the 2 × 2 matrix solution of Φ′(t) = A(t)Φ(t), Φ(t0) = I,
established by the Picard-Lindelöf Theorem.

Then the unique solution x⃗ (t) of the matrix initial value problem

x⃗ ′(t) = A(t)x⃗ (t) + F⃗(t), x⃗ (t0) = x⃗0
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is given by

x⃗ (t) = Φ(t)x⃗0 +Φ(t)

∫ t

t0

Φ−1(s)F⃗(s)ds.(1)

How it applies.

Matrix A(t) =

(
0 1

−c(t)/a(t) −b(t)/a(t)

)
and column vector F⃗ (t) =

1

a(t)

(
0

f(t)

)
have

continuous entries, therefore both A(t) and F⃗(t) are continuous near t = t0. The
theorem applies.

6. Prove Theorem 11.47 using the previous exercise.

Variation of Parameters:
Scalar 2nd Order
Let a(t)u′′ + b(t)u′ + c(t)u = 0 have
two independent solutions u1, u2.

Define Ψ(t) =

(
u1 u2
u′1 u

′
2

)
. Then:

7. Matrix Ψ(t) has an inverse.

Solution:Independence means the Wronskian determinant does not vanish, which is
|Ψ(t|, then Ψ(t) is invertible.

8. Matrix Φ(t) = Ψ(t)Ψ−1(t0) is invertible and Φ(t0) = I.

9. Let Ψ(t) =

(
1 t
0 1

)
. Define(

u
v

)
= Ψ(t)

∫ t

0
Ψ−1(s)f(s)ds.

Then u is a particular solution of u′′ = f(t).

Solution:Combine Exercise 3 and Exercise 5.

10. Let Ψ(t) =

(
et e−t

et −e−t

)
. Define(

u
v

)
= Ψ(t)

∫ t

0
Ψ−1(s)f(s)ds.

Then u is a particular solution of u′′ − u = f(t).

Variation of Parameters

Let A =

(
2 0
0 3

)
. Solve x⃗ ′ = Ax⃗+F⃗(t) using x⃗p =

∫ t
0 e

A(t−s)F⃗(s)ds and computer

assist.

11. F⃗(t) = et
(
1
2

)
, x⃗p =

(
e2t − et

e3t − et

)
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Solution:
# Exercise 11, Variation of Parameters

F:=t -> exp(t)*<1,2>;

A:=Matrix([[2,0],[0,3]]);

Phi:=s -> MatrixExponential(A,s);

map(int,Phi(t-s).F(s),s=0..t);

12. F⃗ (t) =

(
et

e−t

)
,

x⃗p=

(
e2t − et

1
4e

3t − 1
4e

−t

)

Undetermined Coefficients

Let A =

(
1 2
0 −1

)
. Solve x⃗ ′=Ax⃗+F⃗ (t) by undetermined coefficients. Assume

x⃗h(t)=c1e
t

(
1
0

)
+c2e

−t

(
−1
1

)

13. F⃗ (t) = et
(
1
2

)
,

x⃗p=

(
e−t+3tet−et

et−e−t

)
Solution:The initial trial solution: x⃗ = etc⃗ . Substitute to get equation etc⃗ = etAc⃗+

et
(
1
2

)
, then cancel et and try to solve for c⃗ :

c⃗ = Ac⃗ +

(
1
2

)
(I −A)⃗c =

(
1
2

)
(
0 −2
0 −2

)
c⃗ =

(
1
2

)
It failed. The trial solution must be modified.

Second attempt, trial solution

x⃗ = etc⃗1 + tetc⃗2

x⃗ = et
(

d1
d2

)
+ tet

(
d3
d4

)
Substitute into x⃗ ′ = Ax⃗ + F⃗ :

etc⃗1 + tetc⃗2 + etc⃗2 = etAc⃗1 + tetAc⃗2 + et
(
1
2

)
Cancel et and match coefficients (method of atoms):

c⃗1 + t⃗c2 + c⃗2 = Ac⃗1 + tAc⃗2 +

(
1
2

)
c⃗1 + c⃗2 = Ac⃗1 +

(
1
2

)
, c⃗2 = Ac⃗2
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Solve for c⃗2 =

(
k
0

)
and insert into the first vector equation:

c⃗1 +

(
k
0

)
= Ac⃗1 +

(
1
2

)
, where k is to be determined.

(I −A)⃗c1 =

(
1− k
2

)
(
0 −2
0 2

)
c⃗1 =

(
1− k
2

)
, c⃗2 =

(
k
0

)
Choose k = 3 to find solutions c⃗1 =

(
0
1

)
, c⃗2 =

(
3
0

)
. Then

x⃗ = etc⃗1 + tetc⃗2 =

(
3tet

et

)
# Exercise 13, Undetermined Coefficients

F:=t->exp(t)*<1,2>;

A:=Matrix([[1,2],[0,-1]]);

# Undetermined coefficients

trial:=exp(t)*<d1,d2> + t*exp(t)*<d3,d4>;

p:=map(diff,trial,t)-F(t)-A.trial;# Should equal zero

# Tools to match coefficients of atoms

# p:=simplify((1/exp(t))*p);# Cancel exp(t)

# q:=map(PolynomialTools[CoefficientList],p,t);convert(q,list);

solve([d3-1-2*d2, -2*d4, 2*d2+d4-2, 2*d4],{d1,d2,d3,d4});

# d1 = d1, d2 = 1, d3 = 3, d4 = 0 (let d1=0)

X:=exp(t)*<0,1> + t*exp(t)*<3,0>;# particular solution

map(diff,X,t)=A.X+F(t);# Check the answer

# Answer check scalar methods

des:=diff(u1(t),t)=u1(t)+2*u2(t)+exp(t),

diff(u2(t),t)= -u2(t)+2*exp(t);

dsolve({des},[u1(t),u2(t)]);

14. F⃗ (t) = 2

(
cos t
et

)
,

x⃗p =

(
2tet+sin(t)− cos(t)+e−t

et−e−t

)

Undetermined Coefficients

Let A =

(
2 0
0 3

)
. Solve x⃗ ′ = Ax⃗ + F⃗(t) by undetermined coefficients. Assume

x⃗h(t) =

(
c1e

2t

c2e
3t

)
.

15. F⃗ (t) = et
(
1
2

)
, x⃗p = et

(
−1
−1

)
Solution: Trial solution x⃗ = etc⃗ . Follow Exercise 13.
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16. F⃗ (t) = 4

(
et

e−t

)
, x⃗p = e−t

(
−4
−1

)

17. F⃗ (t) = 10

(
cos t
et

)
,

x⃗p =

(
−4 cos(t) + 2 sin(t)

−5et
)

Solution: Trial solution x⃗ = cos(t)⃗c1 + sin(t)⃗c2 + etc⃗3, because the atoms for F⃗ are
cos t, sin t, et. Follow Exercise 13.

18. F⃗ (t) = 2et
(
cos t
1

)
,

x⃗p = et
(
− cos(t) + sin(t)

−1

)

11.8 Second Order Systems

Exercises 11.8 �
Euler’s Substitution: u⃗ ′ = Cu⃗

1. Change variables: u⃗ = ertw⃗ . Answer: w⃗ ′ = (C − rI)w⃗

Solution: Differentiate the change of variable equation:

u⃗ ′ = rertw⃗ + ertw⃗ ′ by the product rule

Then u⃗ ′ = Cu⃗ becomes

rertw⃗ + ertw⃗ ′ = ertCw⃗

rw⃗ + w⃗ ′ = Cw⃗ divide by ert

Rearrange the equation

w⃗ ′ = (C − rI)w⃗ ■

2. Prove: (λ, v⃗ ) is an eigenpair of C if and only if (0, v⃗ ) is an eigenpair of C − λI.

3. Let |C − λI| have factor λ2. Let u⃗ ′ = Cu⃗ have solution u⃗ = d⃗1 + td⃗2. Prove:

Cd⃗2 = 0⃗ , Cd⃗1 = d⃗2. Are d⃗1, d⃗2 eigenvectors of C? Discuss.

Solution:
Substitute u⃗ = d⃗1 + td⃗2 into the differential equation u⃗ ′ = Cu⃗ :

d⃗2 = Cd⃗1 + tCd⃗2

Match vector coefficients of the Euler solution atoms 1, t:

d⃗2 = Cd⃗1 and 0⃗ = Cd⃗2

Vector d⃗2 is an eigenvector if not zero, because zero is an eigenvalue of C. Vector
d⃗1 is computed from C and d⃗2 with combo, swap and mult operations. There is no
reason to think d⃗1 is an eigenvector of C. ■
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4. Let C=

(
0 1
0 0

)
, u⃗ = d⃗1 + td⃗2. Let u⃗ solve u⃗ ′ = Cu⃗ . Find d⃗1, d⃗2 in terms of

arbitrary constants c1, c2.

Euler’s Substitution: x⃗ ′′ = Ax⃗

5. Change variables: x⃗ = erty⃗ . Answer: y⃗ ′′ + 2ry⃗ ′ = (A− r2I)y⃗

Solution:
Differentiate the change of variable equation twice:

x⃗ ′ = rerty⃗ + erty⃗ ′.

x⃗ ′′ = r2erty⃗ + 2rerty⃗ ′ + erty⃗ ′′.

Substitute into x⃗ ′′ = Ax⃗ :

r2erty⃗ + 2rerty⃗ ′ + erty⃗ ′′ = ertAy⃗

Cancel ert:

r2y⃗ + 2ry⃗ ′ + y⃗ ′′ = Ay⃗

Re-arrange the terms:

y⃗ ′′ + 2ry⃗ ′ = (A− r2I)y⃗

6. Prove: x⃗ = ertv⃗ is a nonzero solution of x⃗ ′′ = Ax⃗ if and only if (r2, v⃗ ) is an eigenpair
of A.

Solution:Suppose x⃗ = ertv⃗ is a nonzero solution of x⃗ ′′ = Ax⃗ . Apply the previous
exercise with y⃗ = constant = v⃗ . The left side is zero: 0⃗ = (A − r2I)v⃗ . Then v⃗ is
an eigenvector of A for eigenvalue λ = r2. The second half of the proof is omitted.

Repeated Root: x⃗ ′′ = Ax⃗

Let A =

(
0 1
0 0

)
, eigenvalues 0, 0.

7. Verify: Matrix A is a Jordan block with generalized eigenvectors the columns of I.

Solution:Let J = A, which is a Jordan block B(λ, 2) =

(
λ 1
0 λ

)
with λ = 0. Let

P = I. Then AP = AI = A = J = IJ = PJ , so the columns of P are generalized
eigenvectors (A is not diagonalizable). ■

8. Prove: x1 = c1 + c2t+ c3
t2

2
+ c4

t3

6
, x2 = c3 + c4t for arbitrary constants c1 to c4.

9. Prove: The solution of x⃗ ′′ = Ax⃗ is a vector linear combination of atoms 1, t, t2, t3.

Solution:The scalar equations are

x′′
1 = x2, x

′′
2 = 0. Then x2 = c1 + c2t and x1 =

∫
(
∫
(c1 + c2t)dt)dt =

∫
(c1t+ c2t

2/2+
c3)dt = c1t

2/2 + c2t
3/6 + c3t+ c4. Therefore,

x⃗ =

(
c1t

2/2 + c2t
3/6 + c3t+ c4

c1 + c2t

)
=

(
c4
c1

)
+ t

(
c3
c2

)
+ t2

(
c1/2
0

)
+ t3

(
c2/6
0

)
which is a vector linear combination of 1, t, t2, t3. ■
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10. Let x⃗ = d⃗1+ d⃗2t+ d⃗3
t2

2
+ d⃗4

t3

6
. Assume x⃗ solves x⃗ ′′ = Ax⃗ . Prove: Ad⃗3 = Ad⃗4 =

0⃗ , Ad⃗1 = d⃗3, Ad⃗2 = d⃗4. These are generalized eigenvector chains for eigenvalue
zero.

CHZ Method

11. Given a 3×3 matrix A, supply proof details for the Cayley-Hamilton-Ziebur structure
theorem.

Solution:
To prove for a real 3× 3 matrix A:

The solution x⃗ (t) of second order equation x⃗ ′′(t) = Ax⃗ (t) is a vector linear
combination of Euler solution atoms corresponding to roots of the equation
det(A− r2I) = 0.

Details: Expand |A− λI| = 0 to find the characteristic equation (−λ)3 + a(−λ)2 +
b(−λ) + c = 0, for some constants a, b, c. The Cayley-Hamilton theorem says that
−A3 + aA2 − bA + cI = 0. Let x⃗ be a solution of x⃗ ′′(t) = Ax⃗ (t). Multiply the
Cayley-Hamilton identity by vector x⃗ and simplify to obtain

A2x⃗ + cAx⃗ + dx⃗ = 0⃗ ,

−A3x⃗ + aA2x⃗ − bAx⃗ + cx⃗ = 0

Using equation x⃗ ′′(t) = Ax⃗ (t) backwards, we compute A3x⃗ = A2(Ax⃗ ) = A2x⃗ ′′ =
Ax⃗ ′′′′ = x⃗ (6), A2x⃗ = Ax⃗ ′′ = x⃗ ′′′′. Replace the terms of the displayed equation to
obtain the relation

−x⃗ (6) + ax⃗ ′′′′ − bx⃗ ′′ + cx⃗ = 0

Each component y of vector x⃗ (t) then satisfies the 6th order linear homogeneous
equation y(6) + ay(4) − by(2) + cy = 0, which has characteristic equation −r6 + ar4 −
br2 + c = 0. This equation is the expansion of determinant equation |A − r2I| = 0.
Therefore y is a linear combination of the Euler solution atoms found from the roots
of this equation. It follows then that x⃗ (t) is a vector linear combination of the Euler
solution atoms so identified. ■

12. Invent a non-diagonal 3× 3 example x⃗ ′′ = Ax⃗ and solve it by CHZ.

13. Solve x⃗ ′′ = Ax⃗ by CHZ for any 2 × 2 diagonal matrix with negative diagonal
elements.

Solution:
Expand |A − r2I| = (a − r2)(b − r2) for diagonal elements −a2,−b2 with a > 0
and b > 0. By Theorem 11.52 (CHZ Method and Negative Eigenvalues), the Euler
solution atoms are cos at, sin at, cos bt. sin bt and x⃗ (t) is a vector linear combination
of these four atoms:

x⃗ = d⃗1 cos(at) + d⃗2 sin(at) + d⃗3 cos(bt) + d⃗4 sin(bt)

Then x⃗ ′′ = Ax⃗ gives

−a2d⃗1 cos(at)− a2d⃗2 sin(at)− b2d⃗3 cos(bt)− b2d⃗4 sin(bt) =

Ad⃗1 cos(at) +Ad⃗2 sin(at) +Ad⃗3 cos(bt) +Ad⃗4 sin(bt)
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Match the coefficients of atoms left and right:

−a2d⃗1 = Ad⃗1, −a2d⃗2 = Ad⃗2, −b2d⃗3 = Ad⃗3, −b2d⃗4 = Ad⃗4

The eigenpairs of diagonal matrix A are:(
−a2,

(
1
0

))
,

(
−b2,

(
0
1

))
Equation −a2d⃗1 = Ad⃗1 implies vector d⃗1 is a multiple of the first eigenvector,
similarly for the other three equations. Then

d⃗1 = c1

(
1
0

)
, d⃗2 = c2

(
1
0

)
, d⃗3 = c3

(
0
1

)
, d⃗4 = c4

(
0
1

)
x⃗ (t) = (c1 cos(at) + c2 sin(at))

(
1
0

)
+ (c3 cos(bt) + c4 sin(bt))

(
0
1

)
■

14. Solve x⃗ ′′ = Ax⃗ by CHZ for any 3 × 3 diagonal matrix with negative diagonal
elements.

Conversion

Given x⃗ ′′ = Ax⃗ , let u⃗ =

(
x⃗
x⃗ ′

)
. Display system u⃗ ′ = Cu⃗ .

15. A =

(
1 3
−1 2

)

Solution: Answer: C =

(
0 I
A 0

)
=

 0 0 1 0
0 0 0 1
1 3 0 0
−1 2 1 0


Details:

u⃗ ′ =

(
x⃗ ′

x⃗ ′′

)
=

(
x⃗ ′

Ax⃗

)
=

(
0 I
A 0

)(
x⃗
x⃗ ′

)
=

(
0 I
A 0

)
u⃗

16. A =

(
1 1 0
0 1 1
2 −1 2

)

Eigenanalysis λ ≤ 0
Display the general solution of x⃗ ′′ = Ax⃗ .

17. A =

(
−3 3
1 −1

)
Solution:
Use Theorem 11.56 page 928:
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Eigenpairs:

(
−4,

(
3
−1

))
,

(
0,

(
1
1

))
Solution:

x⃗ (t) = (c1 + c2t)

(
1
1

)
+ (c3 cos 2t+ c4 sin 2t)

(
3
−1

)
■

# Exercise 17, Eigenanalysis nonpositive lambda

A:=<-3,3|1,-1>^+;

Eigenvectors(A);# lambda = 0,-4

Determinant(A-r^2); # r^4+4*r^2

# atoms: 1, t, cos 2t, sin 2t

18. A =

(
−3 3 0
1 −1 0
5 0 −1

)
Solution:
Use Theorem 11.56 page 928, λ = 0,−1,−4.

Earthquakes
Apply formulas from the Earthquakes subsection page 929 to find particular solu-
tion x⃗p, the natural frequencies ωj and the amplitudes of x⃗p(t) near the largest
natural frequency. Assume F (t) = F0 cos(ωt).

19. Three-floor problem, k/m = 10.

Solution:

M =

 m1 0 0
0 m2 0
0 0 m3

 , x⃗ =

 x1

x2

x3

 , H⃗ =

 E1

E2

E3

 ,

where m1,m2,m3 are the three masses of the floors at positions x1, x2, x3. Symbol
Ej = mjF

′′ = −mjF0ω
2 cos(ωt), 1 ≤ j ≤ 3. The Hooke’s matrix:

K =

 −k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4


In the last row, k4 = 0 reflects the absence of a floor above the third floor. The
second order system:

M x⃗ ′′(t) = Kx⃗ (t) + H⃗(t)

Identical Floors
Assume that all floors have the same mass m and the same Hooke’s constant k. Then
M = mI and M x⃗ ′′(t) = Kx⃗ (t) + H⃗ (t) becomes:

x⃗ ′′=
1

m

−2k k 0
k −2k k
0 k −k

 x⃗−F0ω
2 cos(ωt)

1
1
1

(2)

Assume k/m = 10 then:

x⃗ ′′=

−20 10 0
10 −20 10
0 10 −10

 x⃗−F0ω
2 cos(ωt)

1
1
1

(3)
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Particular Solution: Identical Floors
The method of undetermined coefficients predicts a trial solution x⃗ (t) = c⃗ cosωt.
Constant vector c⃗ is found by trial solution substitution. After cancel of common
factor cosωt:

−F0ω
2c⃗ =

−20 10 0
10 −20 10
0 10 −10

 c⃗ − F0ω
2

 1
1
1


The solution by maple:

c⃗ =
F0 ω2

ω6 − 50ω4 + 600ω2 − 1000

 (
ω2 − 30

) (
ω2 − 10

)
ω4 − 50ω2 + 500
ω4 − 50ω2 + 600


Natural Frequencies.
The frequencies are obtain by maple’s fsolve applied to ω6−50ω4+600ω2−1000 = 0,
because

B =

−20 10 0
10 −20 10
0 10 −10

+ ω2

 1 0 0
0 1 0
0 0 1


and |B| = ω6 − 50ω4 + 600ω2 − 1000. The frequencies ω are:

−5.698227447 −3.943295744 −1.407345957
5.698227447 3.943295744 1.407345957

Amplitudes for x⃗p:
The amplitudes are the components of vector c⃗ near ω = 5.698227447. We report

c⃗ |ω=5.698227447 = F0

 9.009688690 108

−1.123489801 109
5.000000010 108


Homogeneous Solution: Identical Floors
The equation to solve is

x⃗ ′′=

−20 10 0
10 −20 10
0 10 −10

 x⃗

Theorem 11.56 provides:

x⃗h(t) =

3∑
j=1

(aj cosωjt+ bj sinωjt)v⃗ j(4)

where r = ωj and v⃗ = v⃗ j ̸= 0⃗ satisfy the eigenpair equation:(
1

m
K + r2 I

)
v⃗ = 0⃗

Eigenpairs can be found numerically, a suitable online resource at

https://matrixcalc.org/en/
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The answers:

λ1 = −32.470, v⃗ 1 =

 1.802
−2.247

1


λ2 = −15.550, v⃗ 2 =

−1.247−0.555
1


λ3 = −1.981, v⃗ 3 =

0.445
0.802

1


Symbols ωj use in equation 4 satisfy

ω1 =
√
32.470 , ω2 =

√
15.550 , ω3 =

√
1.981. ■

# Exercise 19, Earthquakes n=3

K1:=Matrix([[-20,10,0],[10,-20,10],[0,10,-10]]);

B:=K1+omega^2*IdentityMatrix(3);

ans1:=LinearSolve(B,F0*omega^2*<1,1,1>);

q:=Determinant(B);

fsolve(q=0,omega);# Frequencies

C:=K1-lambda*IdentityMatrix(3);Determinant(C);

subs(omega=5.698227447,ans1);

# eigenpairs of K1, calculator at https://matrixcalc.org/en/

lambda1:=-32.470; v1:=<1.802,-2.247,1>;

lambda2:=-15.550;v2:=<-1.247,-0.555,1>;

lambda3:=-1.981;v3:=<0.445,0.802,1>;

20. Four-floor problem, k/m = 10.

Two Masses
Assume MKS units. Let m1 = 2, m2 = 0.5, k1 = 75, k2 = 25 in system:

m1x
′′
1=− k1x1 + k2[x2 − x1]

m2x
′′
2=− k2[x2 − x1]

21. Convert the system to the form x⃗ ′′ = Ax⃗ .

Solution:

M =

(
m1 0
0 m2

)
,

K =

(
−k1 − k2 k2

k2 −k2

)
,

M x⃗ ′ = Kx⃗(
m1 0
0 m2

)
x⃗ ′ =

(
−k1 − k2 k2

k2 −k2

)
x⃗(

2 0
0 0.5

)
x⃗ ′ =

(
−100 25

25 −25

)
x⃗

■
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22. Show details for finding the vector solution x⃗ (t).

Three Rail Cars: k=2m
Assume MKS units. Consider

x⃗ ′′ =

(−2 2 0
2 −4 2
0 2 −2

)
x⃗

23. Show eigenpair details for the 3× 3 matrix.

Solution:
Eigenvalues: −6, 0, 2

Eigenvectors:

 1
1
−1

 ,

 −21
0

 ,

 1
1
1


# Exercise 23, Three Rail Cars

A:=Matrix([[-2,2,0],[2,-4,2],[0,2,-2]]);

EigVals,EigVecs:=Eigenvectors(A);

24. Find the vector solution x⃗ (t).

Three Rail Cars: Disengagement
For x⃗ ′′ = Ax⃗ , assume FPS units and

A =

(−4 4 0
6 −12 6
0 4 −4

)

Suppose the springs disengage upon full expansion. Let the cars engage at t = 0
with x1 = x2 = x3 = 0.

25. Verify A has eigenvalues λ = −16, 0,−4 and corresponding eigenvectors 1
−3
1

 ,

1
1
1

 ,

−10
1


Solution:
# Exercise 25, Three Rail Cars

A:=Matrix([[-4,4,0],[6,-12,6],[0,4,-4]]);

EigVals,EigVecs:=Eigenvectors(A);

26. For x1=x2=x3=0 at t=0, verify:
x1(t)=c1t+c2 sin(2t)−c3 sin(4t),
x2(t) = c1t+ 3c3 sin(4t),
x3(t)=c1t−c2 sin(2t)−c3 sin(4t)

27. Let x′
1 = 48, x′

2 = 0, x′
3 = 0 at t = 0. Verify disengagement time t1 = π/2 and

determine the car velocities thereafter.
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Solution:
Exercise 26 provides equations for the solution:

x1(t) = c1t+c2 sin(2t)−c3 sin(4t),
x2(t) = c1t+ 3c3 sin(4t),
x3(t) = c1t−c2 sin(2t)−c3 sin(4t)
Differentiate the equations and set t = 0 to obtain linear algebraic equations for the
constants c1, c2, c3:

0 = x′
1(0) = c1 + 2c2 cos(0)− 4c3 cos(0),

0 = x′
2(0) = c1 + 12c3 cos(0)

48 = x′
3(0) = c1 − 2c2 cos(0)− 4c3 cos(0)

In matrix form after setting cos(0) = 1: 1 2 −4
1 0 12
1 −2 −4

 c⃗ =

 48
0
0

 , c⃗ =

 c1
c2
c3


Then

c⃗ =

 18
12

−3/2

 and components x1, x2, x3 satisfy

x1(t) = 18t+ 12 sin(2t) + 3
2 sin(4t),

x2(t) = 18t− 9
2 sin(4t),

x3(t) = 18t− 12 sin(2t) + 3
2 sin(4t)

x′
1(t) = 18 + 24 cos(2t) + 6 cos(4t),

x′
2(t) = 18− 18 cos(4t),

x′
3(t) = 18− 24 cos(2t) + 6 cos(4t)

Car 1 moves (x′
1(0) = 48) into contact with two stationary cars (x′

2(0) = x′
3(0) = 0)

using equation x⃗ ′′ = Ax⃗ on 0 ≤ t ≤ t1. Model x⃗ ′′ = Ax⃗ is valid for values of
t such that x1 − x2 and x2 − x3 are positive (no contact). To get intuition about
disengagement, plot x1− x2 and x2− x3 on 0 ≤ t ≤ π. The two graphs show a curve
starting at (0, 0) with first crossing at t = π/2. To confirm the root t = π/2, solve
x1 − x2 = 0 for t = t1 = π/2 in maple.

The speeds at t = t1 = π/2 are:

x′
1(t1) = 18 + 24 cos(π) + 6 cos(2π),

x′
2(t1) = 18− 18 cos(2π),

x′
3(t1) = 18− 24 cos(π) + 6 cos(2π)

Simplify using cos(π) = −1, cos(2π) = 1:

x′
1(t1) = 18− 24 + 6 = 0,

x′
2(t1) = 18− 18 = 0,

x′
3(t1) = 18 + 24 + 6 = 48

The meaning: car 3 after impact continues on at speed 48, while cars 1 and 2 stop.
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# Exercise 25, Three Rail Cars

A:=Matrix([[-4,4,0],[6,-12,6],[0,4,-4]]);

EigVals,EigVecs:=Eigenvectors(A);

B:=Matrix([

[1,2*cos(2*t),-4*cos(4*t)],

[1,0,12*cos(4*t)],

[1,-2*cos(2*t),-4*cos(4*t)]]);

B1:=simplify(subs(t=0,B));

LinearSolve(B1,<48,0,0>);

x_1:= t-> 18*t + 12*sin( 2*t ) + 3/2*sin( 4*t );

x_2:=t -> 18 *t - 9/2*sin( 4* t );

x_3:=t -> 18* t -12*sin( 2* t ) + 3/2*sin( 4*t );

eq1:=x_1(t)-x_2(t);eq2:=x_2(t)-x_3(t);

plot(eq1,t=0..Pi);solve(eq1,t);

plot(eq2,t=0..Pi);solve(eq2,t);

28. Let x′
1(0) = 144, x′

2(0) = 48, x′
3(0) = 48. Verify disengagement time t1 = π/2 and

determine the car velocities thereafter.
Answer: Velocities 144, 48, 48 at t = t1.

Dynamic Dashpot
Assume conventions for Figure 26 and dynamic dashpot system

msX
′′ = −k1X − d1X

′ − k2(Y −X)
− d2(Y

′ −X ′) + F (t),
mbY

′′ = k2(Y −X) + d2(Y
′ −X ′)

See page 936.

29. Assume Y = 0, ideal suspension. Derive:

msX
′′ = −k1X − d1X

′ + F (t),
d2X

′ + k2X = 0

Solution:
Use the second differential equationmbY

′′ = k2(Y−X)+d2(Y
′−X ′). Set Y = Y ′ = 0.

Then

0 = −k2X − d2X
′

which verifies equation 2: d2X
′ + k2X = 0.

Use the first differential equation msX
′′ = −k1X−d1X

′−k2(Y −X)−d2(Y
′−X ′)+

F (t). Set Y = Y ′ = 0. Then

msX
′′ = −k1X − d1X

′ + k2X − d2X
′ + F (t)

Replace d2X
′ in this result by −k2X using d2X

′ + k2X = 0. Then

msX
′′ = −k1X − d1X

′ + F (t)

which claimed equation 1: msX
′′ = −k1X − d1X

′ + F (t). ■

30. Assume Y = 0, ideal suspension and X(0) = 0.015 meters. Find X(t) and F (t).
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11.9 Numerical methods for Systems

Exercises 11.9 �
Planar Methods
Apply the Euler, Heun and RK4 methods. Compare with the exact solution in
a table.

1. x′ = x, y′ = −y, x(0) = 2, y(0) = 2. h = 0.1, 10 steps

Solution:
Exact Solution.
The differential equations are growth-decay equations with solutions x = 2et,
y = 2e−t.

Numerical Solution.
Computation by maple following Example 11.20. The maple code infra implements
the algorithms, no library functions used. Values are rounded to 6 digits. The
answers:

t− Euler x(t) y(t) x− exact y − exact
0.000000 2.000000 2.000000 2.000000 2.000000
0.100000 2.200000 1.800000 2.210342 1.809675
0.200000 2.420000 1.620000 2.442806 1.637462
0.300000 2.662000 1.458000 2.699718 1.481636
0.400000 2.928200 1.312200 2.983649 1.340640
0.500000 3.221020 1.180980 3.297443 1.213061
0.600000 3.543122 1.062882 3.644238 1.097623
0.700000 3.897434 0.956594 4.027505 0.993171
0.800000 4.287178 0.860934 4.451082 0.898658
0.900000 4.715895 0.774841 4.919206 0.813139
1.000000 5.187485 0.697357 5.436564 0.735759

t−Heun x(t) y(t) x− exact y − exact
0.000000 2.000000 2.000000 2.000000 2.000000
0.100000 2.210000 1.810000 2.210342 1.809675
0.200000 2.442050 1.638050 2.442806 1.637462
0.300000 2.698465 1.482435 2.699718 1.481636
0.400000 2.981804 1.341604 2.983649 1.340640
0.500000 3.294894 1.214152 3.297443 1.213061
0.600000 3.640857 1.098807 3.644238 1.097623
0.700000 4.023147 0.994420 4.027505 0.993171
0.800000 4.445578 0.899951 4.451082 0.898658
0.900000 4.912364 0.814455 4.919206 0.813139
1.000000 5.428162 0.737082 5.436564 0.735759
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t−RK4 x(t) y(t) x− exact y − exact
0.000000 2.000000 2.000000 2.000000 2.000000
0.100000 2.210342 1.809675 2.210342 1.809675
0.200000 2.442805 1.637462 2.442806 1.637462
0.300000 2.699717 1.481637 2.699718 1.481636
0.400000 2.983648 1.340641 2.983649 1.340640
0.500000 3.297441 1.213062 3.297443 1.213061
0.600000 3.644236 1.097624 3.644238 1.097623
0.700000 4.027503 0.993171 4.027505 0.993171
0.800000 4.451079 0.898659 4.451082 0.898658
0.900000 4.919203 0.813140 4.919206 0.813139
1.000000 5.436559 0.735760 5.436564 0.735759

■

# Exercise 1, Planar Methods Euler

f:=(t,x,y) -> x;g:= (t,x,y) -> -y;

x_0:=2;y_0:=2;h:=0.1;n:=10;t_0:=0;L:=[t_0,x_0,y_0];

for i from 1 to n do

X := x_0+h*f(t_0,x_0,y_0);

Y := y_0+h*g(t_0,x_0,y_0);

t_0:=t_0+h:x_0:=X:y_0:=Y:L:=L,[t_0,x_0,y_0];

od:

x_exact:=t->2*exp(t):y_exact:=t->2*exp(-t):

tbl:=seq([seq(L[i][j],j=1..3),

x_exact(h*i-h),y_exact(h*i-h)],i=1..n+1);

# Exercise 1, Planar Methods Heun

f:=(t,x,y) -> x;g:= (t,x,y) -> -y;

x_0:=2;y_0:=2;h:=0.1;n:=10;t_0:=0;L:=[t_0,x_0,y_0];

for i from 1 to n do

X1 := x_0+h*f(t_0,x_0,y_0);Y1:= y_0+h*g(t_0,x_0,y_0);

X:= x_0+h*(f(t_0,x_0,y_0)+f(t_0+h,X1,Y1))/2;

Y:= y_0+h*(g(t_0,x_0,y_0)+g(t_0+h,X1,Y1))/2;

t_0:=t_0+h:x_0:=X:y_0:=Y:L:=L,[t_0,x_0,y_0];

od:

x_exact:=t->2*exp(t):y_exact:=t->2*exp(-t):

tbl:=seq([seq(L[i][j],j=1..3),

x_exact(h*i-h),y_exact(h*i-h)],i=1..n+1);
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# Exercise 1, Planar Methods RK4

f:=(t,x,y) -> x;g:= (t,x,y) -> -y;

x_0:=2;y_0:=2;h:=0.1;n:=10;t_0:=0;L:=[t_0,x_0,y_0];

for i from 1 to n do

k_1 := h*f(t_0,x_0,y_0);

m_1 := h*g(t_0,x_0,y_0);

k_2 := h*f(t_0+h/2,x_0+k_1/2,y_0+m_1/2);

m_2 := h*g(t_0+h/2,x_0+k_1/2,y_0+m_1/2);

k_3 := h*f(t_0+h/2,x_0+k_2/2,y_0+m_2/2);

m_3 := h*g(t_0+h/2,x_0+k_2/2,y_0+m_2/2);

k_4 := h*f(t_0+h,x_0+k_3,y_0+m_3);

m_4 := h*g(t_0+h,x_0+k_3,y_0+m_3);

X := x_0 + ( k_1+2*k_2+2*k_3+k_4 )/6;

Y := y_0 + ( m_1+2*m_2+2*m_3+m_4 )/6;

t_0:=t_0+h:x_0:=X:y_0:=Y:L:=L,[t_0,X,Y];

od:

x_exact:=t->2*exp(t):y_exact:=t->2*exp(-t):

tbl:=seq([seq(L[i][j],j=1..3),

x_exact(h*i-h),y_exact(h*i-h)],i=1..n+1);

2. x′ = −3x+ y, y′ = x− 3y, x(0) = 2, y(0) = 0, h = 0.1, 10 steps

3. x′ = −x+ y, y′ = −x− y, x(0) = 0, y(0) = 3, h = 0.2, 5 steps

Solution: The answers:

t− Euler x(t) y(t) x− exact y − exact
0.000000 0.000000 3.000000 0.000000 3.000000
0.100000 0.300000 2.700000 0.270999 2.700951
0.200000 0.540000 2.400000 0.487970 2.407232
0.300000 0.726000 2.106000 0.656780 2.123192
0.400000 0.864000 1.822800 0.783105 1.852217
0.500000 0.959880 1.554120 0.872359 1.596842
0.600000 1.019304 1.302720 0.929647 1.358861
0.700000 1.047646 1.070518 0.959727 1.139428
0.800000 1.049933 0.858701 0.966987 0.939152
0.900000 1.030810 0.667838 0.955431 0.758183
1.000000 0.994512 0.497973 0.928680 0.596298

t−Heun x(t) y(t) x− exact y − exact
0.000000 0.000000 3.000000 0.000000 3.000000
0.100000 0.270000 2.700000 0.270999 2.700951
0.200000 0.486000 2.405700 0.487970 2.407232
0.300000 0.653913 2.121390 0.656780 2.123192
0.400000 0.779447 1.850399 0.783105 1.852217
0.500000 0.868038 1.595209 0.872359 1.596842
0.600000 0.924803 1.357564 0.929647 1.358861
0.700000 0.954503 1.138576 0.959727 1.139428
0.800000 0.961525 0.938813 0.966987 0.939152
0.900000 0.949866 0.758394 0.955431 0.758183
1.000000 0.923135 0.597067 0.928680 0.596298
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t−RK4 x(t) y(t) x− exact y − exact
0.000000 0.000000 3.000000 0.000000 3.000000
0.100000 0.271000 2.700950 0.270999 2.700951
0.200000 0.487972 2.407230 0.487970 2.407232
0.300000 0.656782 2.123189 0.656780 2.123192
0.400000 0.783107 1.852213 0.783105 1.852217
0.500000 0.872361 1.596838 0.872359 1.596842
0.600000 0.929648 1.358856 0.929647 1.358861
0.700000 0.959728 1.139423 0.959727 1.139428
0.800000 0.966987 0.939146 0.966987 0.939152
0.900000 0.955431 0.758178 0.955431 0.758183
1.000000 0.928679 0.596293 0.928680 0.596298

■

# Exercise 3, Planar Methods Euler

f:=(t,x,y) -> -x+y;g:= (t,x,y) -> -x-y;

x_0:=0;y_0:=3;h:=0.1;n:=10;t_0:=0;L:=[t_0,x_0,y_0];

# Exact solution

des:=diff(x(t),t)=f(t,x(t),y(t)),diff(y(t),t)=g(t,x(t),y(t));

ics:=x(0)=0,y(0)=3;

dsolve([des,ics],[x(t),y(t)]);

x_exact:=t->3*exp(-t)*sin(t):y_exact:=t->3*exp(-t)*cos(t):

# Numerical solution Euler

for i from 1 to n do

X := x_0+h*f(t_0,x_0,y_0);

Y := y_0+h*g(t_0,x_0,y_0);

t_0:=t_0+h:x_0:=X:y_0:=Y:L:=L,[t_0,x_0,y_0];

od:

tbl:=seq([seq(L[i][j],j=1..3),

x_exact(h*i-h),y_exact(h*i-h)],i=1..n+1);

# Exercise 3, Planar Methods Heun

for i from 1 to n do

X1 := x_0+h*f(t_0,x_0,y_0);Y1:= y_0+h*g(t_0,x_0,y_0);

X:= x_0+h*(f(t_0,x_0,y_0)+f(t_0+h,X1,Y1))/2;

Y:= y_0+h*(g(t_0,x_0,y_0)+g(t_0+h,X1,Y1))/2;

t_0:=t_0+h:x_0:=X:y_0:=Y:L:=L,[t_0,x_0,y_0];

od:

tbl:=seq([seq(L[i][j],j=1..3),

x_exact(h*i-h),y_exact(h*i-h)],i=1..n+1);
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# Exercise 3, Planar Methods RK4

for i from 1 to n do

k_1 := h*f(t_0,x_0,y_0);

m_1 := h*g(t_0,x_0,y_0);

k_2 := h*f(t_0+h/2,x_0+k_1/2,y_0+m_1/2);

m_2 := h*g(t_0+h/2,x_0+k_1/2,y_0+m_1/2);

k_3 := h*f(t_0+h/2,x_0+k_2/2,y_0+m_2/2);

m_3 := h*g(t_0+h/2,x_0+k_2/2,y_0+m_2/2);

k_4 := h*f(t_0+h,x_0+k_3,y_0+m_3);

m_4 := h*g(t_0+h,x_0+k_3,y_0+m_3);

X := x_0 + ( k_1+2*k_2+2*k_3+k_4 )/6;

Y := y_0 + ( m_1+2*m_2+2*m_3+m_4 )/6;

t_0:=t_0+h:x_0:=X:y_0:=Y:L:=L,[t_0,X,Y];

od:

tbl:=seq([seq(L[i][j],j=1..3),

x_exact(h*i-h),y_exact(h*i-h)],i=1..n+1);

4. x′ = 2x− 4y, y′ = x− 3y, x(0) = 4, y(0) = 0, h = 0.1, 10 steps

Vector Methods u⃗ ′ = Au⃗ , 2× 2
Apply vector Euler, Heun and RK4 methods for 10 steps with h = 0.1.

5. u⃗ ′ =

(
u1 + u2

−u1 + u2

)
, u⃗(0) =

(
2
2

)
.

Solution: The answers at t = 1:

Euler: x(1) = 7.58833504640000, y(1) = −0.924241606400000
Heun: x(1) = 7.53896384528113, y(1) = −1.61703014238029
RK4: x(1) = 7.51211873880302, y(1) = −1.637349161148920
Exact: x(1) = 7.512098455, y(1) = −1.637322695
■
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# Exercise 5, Vectors Methods Euler

A:=Matrix([[1, 1],[-1 , 1]]):

F0:=unapply(A.<x,y>,(t,x,y));

F0(t,x,y);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2]);# Vector variables

U0:=<2,2>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

U:=U0+h*F(t0,U0);Vals:=Vals,U;

U0:=U;t0:=t0+h;

od:

ValsEuler:=Vals[n+1];

# Exact answer

des:=diff(x(t),t)=x(t)+y(t),diff(y(t),t)= -x(t)+y(t);

ics:=x(0)=2,y(0)=2;

qexact:=dsolve([des,ics],[x(t),y(t)]);

evalf(subs(t=1,qexact));

# Exercise 5, Vectors Methods Heun

U0:=<2,2>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

w:=U0+h*F(t0,U0);

U:=U0+0.5*h*(F(t0,U0)+F(t0+h,w));

U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsHeun:=Vals[n+1];

# Exercise 5, Vectors Methods RK4

U0:=<2,2>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

k1:=h*F(t0,U0);

k2:=h*F(t0+h/2,U0+k1/2);

k3:=h*F(t0+h/2,U0+k2/2);

k4:=h*F(t0+h,U0+k3);

U:=U0+(1/6)*(k1+2*k2+2*k3+k4);U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsRK4:=Vals[n+1];

6. u⃗ ′ =

(
−3u1 + u2

u1 − 3u2

)
, u⃗(0) =

(
2
0

)
.

Solution:
# Exercise 6 Euler

A:=Matrix([[-3, 1],[1 , -3]]):

U0:=<2,0>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

# Use code from Exercise 5

Vector Methods u⃗ ′ = Au⃗ + F⃗ (t)
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Apply vector Euler, Heun and RK4 methods for 10 steps with t0 = 0, h = 0.1.
Compare results for the last step.

7. A =

(
1 2
−2 1

)
, F⃗ =

(
et

0

)
,

u⃗(0) =

(
1
1

)
.

Ans Euler: 3.81,−5.33
Solution: The answers at t = 1:

Euler: x(1) = 3.81345311556651, y(1) = −5.32607258418454
Heun: x(1) = 2.62373309709154, y(1) = −5.60474421071964
RK4: x(1) = 2.57616625457178, y(1) = −5.52765661055646
Exact: x(1) = 2.576385623, y(1) = −5.527674160
■

# Exercise 7, Vectors Methods Euler

A:=Matrix([[1, 1],[-1 , 1]]):

F0:=unapply(A.<x,y>+<exp(t),0>,(t,x,y));

F0(t,x,y);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2]);# Vector variables

U0:=<1,1>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

U:=U0+h*F(t0,U0);Vals:=Vals,U;

U0:=U;t0:=t0+h;

od:

ValsEuler:=Vals[n+1];

# Exact answer

des:=diff(x(t),t)=x(t)+2*y(t)+exp(t),

diff(y(t),t)= -2*x(t)+y(t);

ics:=x(0)=1,y(0)=1;

qexact:=dsolve([des,ics],[x(t),y(t)]);

evalf(subs(t=1,qexact));

# Exercise 7, Vectors Methods Heun

U0:=<1,1>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

w:=U0+h*F(t0,U0);

U:=U0+0.5*h*(F(t0,U0)+F(t0+h,w));

U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsHeun:=Vals[n+1];
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# Exercise 7, Vectors Methods RK4

U0:=<1,1>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

k1:=h*F(t0,U0);

k2:=h*F(t0+h/2,U0+k1/2);

k3:=h*F(t0+h/2,U0+k2/2);

k4:=h*F(t0+h,U0+k3);

U:=U0+(1/6)*(k1+2*k2+2*k3+k4);U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsRK4:=Vals[n+1];

8. A =

(
1 2 0
−2 1 0
0 0 5

)
, F⃗ =

et

0
0

,

u⃗(0) =

1
1
0


Ans RK4: 2.576,−5.528, 0.0
Solution: Modify the maple code in Exercise 9.

Vector Methods u⃗ ′ = Au⃗ , 3× 3
Apply vector Euler, Heun and RK4 methods for 10 steps with h = 0.1.

9. A =

(
1 2 0
−2 1 0
0 0 5

)
, u⃗(0) =

1
1
0


Ans Heun: 1.36,−3.67, 0.00
Solution: The answers at t = 1:

Euler: x(1) = 3.81345311556651, y(1) = −5.32607258418454, z(1) = 0

Heun: x(1) = 1.36191852014674, y(1) = −3.66635681255906, z(1) = 0

RK4: x(1) = 1.34036497702700, y(1) = −3.60288223776972, z(1) = 0

Exact: x(1) = 1.340522288, y(1) = −3.602931054, z(1) = 0

■
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# Exercise 9, Vectors Methods Euler

A:=Matrix([[1, 2,0],[-2 , 1,0],[0,0,5]]):

F0:=unapply(A.<x,y,z>,(t,x,y,z));

F0(t,x,y,z);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2],X[3]);# Vector variables

U0:=<1,1,0>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

U:=U0+h*F(t0,U0);Vals:=Vals,U;

U0:=U;t0:=t0+h;

od:

ValsEuler:=Vals[n+1];

# Exact answer

des:=diff(x(t),t)=x(t)+2*y(t),diff(y(t),t)= -2*x(t)+y(t),

diff(z(t),t)=5*z(t);

ics:=x(0)=1,y(0)=1,z(0)=0;

qexact:=dsolve([des,ics],[x(t),y(t),z(t)]);

evalf(subs(t=1,qexact));

# Exercise 9, Vectors Methods Heun

U0:=<1,1,0>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

w:=U0+h*F(t0,U0);

U:=U0+0.5*h*(F(t0,U0)+F(t0+h,w));U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsHeun:=Vals[n+1];

# Exercise 9, Vectors Methods RK4

U0:=<1,1,0>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

k1:=h*F(t0,U0);

k2:=h*F(t0+h/2,U0+k1/2);

k3:=h*F(t0+h/2,U0+k2/2);

k4:=h*F(t0+h,U0+k3);

U:=U0+(1/6)*(k1+2*k2+2*k3+k4);U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsRK4:=Vals[n+1];

10. A =

(
1 3 0
−3 1 0
0 0 1

)
, u⃗(0) =

1
1
0


Ans RK4: −2.307,−3.075, 0.00
Solution:Because z(t) = 0 then the numerical solutions match Exercise 7. The maple
code in Exercise 9 can be modified to attack the problem directly.
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# Exercise 10, Vector Methods 3x3

A:=Matrix([[1, 3,0],[-3 , 1,0],[0,0,1]]):

F0:=unapply(A.<x,y,z>,(t,x,y,z));

F0(t,x,y,z);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2],X[3]);# Vector variables

U0:=<1,1,0>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

# Exact answer

des:=diff(x(t),t)=x(t)+3*y(t),diff(y(t),t)= -3*x(t)+y(t),

diff(z(t),t)=1*z(t);

ics:=x(0)=1,y(0)=1,z(0)=0;

qexact:=dsolve([des,ics],[x(t),y(t),z(t)]);

evalf(subs(t=1,qexact));

# {x(1) = -2.307474660, y(1) = -3.074682568, z(1) = 0.}
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12.1 Review of Calculus Topics

Exercises 12.1 �
Series Convergence
Find R, the radius of convergence.

1.
∑∞

k=2
xk

k ln(k)

Solution:The radius of convergence is R = 1.

Details.

Let cn =
1

n ln(n)
. Then

cn
cn+1

=

1

n ln(n)
1

(n+ 1) ln(n+ 1)

=
(n+ 1) ln(n+ 1)

n ln(n)
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limn→∞
cn

cn+1
= limn→∞

(
1 + 1

n

)
limn→∞

ln(n+ 1)

ln(n)

= 1 · 1 = 1

# Exercise 1, Series Convergence

c:=k -> 1/(k*ln(k));

limit(c(k)/c(k+1),k=infinity); ■

2.
∑∞

k=1 ak x
k, a2n = 2, a2n+1 = 4.

Series Properties
Compute the series given by the indicated operation(s).

3. d
dx

∑∞
k=2

xk

k ln(k)

Solution:Apply term-by-term differentiation. Let S =
∑∞

k=2
xk

k ln(k)

dS

dx
=

∞∑
k=2

d

dx

(
xk

k ln(k)

)

=

∞∑
k=2

xk−1

ln(k)

■

4. 4
∑∞

k=1
1

1+k xk +
∑∞

k=2
1

1+k2 x
k

Maclaurin Series
Find the Maclaurin series expansion.

5. f(x) = 1
1+x3 for |x| < 1.

Solution: Answer:

∞∑
n=0

(−x3)n for |x| < 1.

The geometric series expansion
1

1− r
=

∞∑
n=0

rn is applied with r = −x3. It is known

that the radius of convergence is |r| < 1 (R = 1). The series must match the

Maclaurin series obtained from f(x) =
1

1 + x3 with identical radius of convergence.

Calculus texts discuss this shortcut in detail. ■

6. f(x) = arctan(x), using
d
dx arctan(x) = 1

1+x2 .

7. f(x) =
(
3
2

)x
for all x.

Solution:Write f(x) = eax with a = ln(3/2). Then the Maclaurin expansion of ex

applies:
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ex =

∞∑
n=0

xn

n!

eax =

∞∑
n=0

anxn

n!
substitute ax for x

=

∞∑
n=0

(x ln(3/2))n

n!
substitute a = ln(3/2)

■

8. f(x) =
∫ x

0
sin t
t dt, called the Sine Integral.

9. f(x) is the solution of f ′ = 1 + xf , f(0) = 0.

Solution:Computer assist is expected t0 confirm the answer f (x) = (x+ 1
3x

3+ 1
15x

5+
O
(
x6
)
).

Details by hand.
Assume f(x) is a Maclaurin series f(x) =

∑∞
n=0 cnx

n, which has to agree with the
Taylor series at x = 0: cn = f (n)(0)/n!. Use the differential equation to find the
constants cn as follows.

c0 = f(0)/0! = 0

f ′(0) = 1 + (0)f(0) = 1 Substitute x = 0 in the differential equation.

Then c1 = f ′(0)/1! = 1.

f ′′(0) = (1 + xf(x))′|x=0 Differentiate the equation and set x = 0.

f ′′(0) = (0 + f(x) + xf ′(x))|x=0 = 0

Then c2 = f ′′(0)/2! = 0.

The process continues to obtain

f (x) = (x+ 1
3x

3 + 1
15x

5 · · ·
# Exercise 9, Maclaurin series answer check

dsolve([diff(f(x),x)=1+x*f(x),f(0)=0],f(x),series);
■

10. The first 4 terms, f(x) = tanx.

Taylor Series
Find the series expansion about the given point.

11. f(x) = ln |1− x|, at x = 0.

Solution:The plan: use the Taylor expansion of ln |1 + u| at u = 0 then replace
u = −x, because x = 0 gives u = 0

ln |1 + u| =
∞∑

n=1

(−1)n+1un

n

ln |1 + (−x)| =
∞∑

n=1

(−1)n+1(−x)n

n
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ln |1− x| =
∞∑

n=1

(−1)n+1(−1)nxn

n

ln |1− x| = −
∞∑

n=1

xn

n
Because (−1)n(−1)n = 1.

■

12. f(x) = 1
x2 , at x = 1.

12.2 Algebraic Techniques

Exercises 12.2 �
Differentiation
Verify using term–by–term differentiation. Document all series and calculus
steps.

1. d
dx

∑∞
n=1

1
n xn =

∑∞
n=0 x

n.
Is this valid for x = −1?
Solution:The left side is differentiated term-by-temr:
d
dx

∑∞
n=1

1
n xn =

∑∞
n=1 xn−1

=
∑∞

k=01 xk using index change k = n− 1.

The geometric series on the right side converges for |x| < 1. Substitution of x = −1
gives alternating terms for which the nth term (−1)n does not have limit zero at ∞,
therefore the series does not converge at x = −1, violating the

Theorem. If a series
∑

n cn converges, then limn→∞ |cn| = 0.

■

2. d
dx

∑∞
n=0(−1)n x2n+1=∑∞

n=0(−1)n x2n.

Subscripts
Perform a change of variables to verify the identity.

3.
∑∞

n=0 cnx
n+2=

∑∞
k=2 ck−2 x

k

Solution: The change of index is determined by matching xn+2 and xk: n + 2 = k.
Then n = 0 to n =∞ becomes k = 2 to k =∞. The other changes in the summation
are made via the two equations n+ 2 = k and n = k − 2. Then∑∞

n=0 cnx
n+2 =

∞∑
k=2

cnx
n+2 Change summation limits.

=

∞∑
k=2

ck−2x
k Change inside the summation.

■
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4.
∑∞

n=2 n(n− 1)cn(x− x0)
n−2=∑∞

k=0(k + 2)(k + 1)ck+2 (x− x0)
k

5. −1+x+
∑∞

n=2(−1)n+1 xn=∑∞
k=0(−1)k+1 xk

Solution: No change of index is needed inside the summations, because matching xn

and xk is unnecessary. The orphan terms −1+x can be written as
∑1

n=0(−1)n+1xn.
Then

LHS = −1+x+
∑∞

n=2(−1)n+1 xn

=

1∑
n=0

(−1)n+1xn +

∞∑
n=2

(−1)n+1 xn

=

∞∑
n=0

(−1)n+1 xn Collect summations into one sum.

=

∞∑
k=0

(−1)k+1 xk Change index variable n→ k.

= RHS
■

6.
∑∞

n=0
1

n+1 x
n+
∑∞

m=1
1

m+2 x
m=

1 +
∑∞

k=1
2k+1

(k+1)(k+2) x
k

Linearity
Find the power series of the given function.

7. cos(x) + 2 sin(x)

Solution: Assemble series identities for cosx and sinx from the Library of Maclaurin
Series page 951:

cosx =

∞∑
n=0

(−1)nx2n

(2n)!
, Converges for all x.

sinx =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
, Converges for all x.

Then

cos(x) + 2 sin(x) =

∞∑
n=0

(−1)nx2n

(2n)!
+ 2

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

=

∞∑
n=0

(−1)nx2n

(2n)!
+

∞∑
n=0

2
(−1)nx2n+1

(2n+ 1)!

=

∞∑
k=0

ckx
k, for ck defined by

ck =


(−1)n

(2n)!
when k = 2n is even,

2(−1)2n+1

(2n+ 1)!
when k = 2n+ 1 is odd
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It is sometimes possible to find a compact formula for ck, but in this case there is
little to simplify. ■

8. ex + sin(x)

Cauchy Product
Find the power series.

9. (1 + x) sin(x)

Solution:Let S1 = 1+x, S2 = sinx =
∞∑

n=0

(−1)nx2n+1

(2n+ 1)!
from Exercise 7. Both S1 and

S2 are power series that converge for all x. Then

S1S2 = (1 + x)S2

= S2 + xS2

= S2 + x

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

= S2 +

∞∑
n=0

(−1)nx2n+2

(2n+ 1)!
, Constant x moves inside the summation.

=

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
+

∞∑
n=0

(−1)nx2n+2

(2n+ 2)!

=

∞∑
k=0

ckx
k, where ck is defined by

ck =


0 when k = 0
(−1)n

(2n+ 2)!
when k = 2n+ 2 is even,

(−1)n

(2n+ 1)!
when k = 2n+ 1 is odd

■

10. sin(x)
ex

Recursion Relations
Solve the given recursion.

11. xk+1 = 2xk

Solution:
Let’s solve it by ad-hoc methods. For comparison, we will afterwards apply the
general solution product formula for first order recursions found on page 957.

Ad-Hoc Method.
Let k = 0 in recursion xk+1 = 2xk:

x0+1 = 2x0 or x1 = 2x0.

Let k = 1 in recursion xk+1 = 2xk:
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x1+1 = 2x1 or x2 = 2x1. Then

x2 = 2x1 = 2(2x0) = 22x0.

Let k = 2 in recursion xk+1 = 2xk:

x2+1 = 2x2 or x3 = 2x2. Then

x3 = 2x2 = 2(4x0) = 23x0.

Conclusion: xk+1 = 2k+1x0

Consider the recursion xk+1 = 2xk as the general recursion

xk+1 = akxk + bk, k ≥ 0

where ak = 2 and bk = 0. Then the textbook general solution is

xk+1 =
(
Πk

r=0ar
)
x0 +

∑k
n=0

(
Πk

r=n+1ar
)
bn

=
(
Πk

r=0(2)
)
x0 +

∑k
n=0

(
Πk

r=n+1ar
)
(0)

=
(
Πk

r=0(2)
)
x0

=
(
2k+1

)
x0

■

12. xk+1 = 2xk + 1

13. xk+2 = 2xk + 1

Solution:
The ad-hoc method follows the ideas in Exercise 11 by dividing the problem into two
first order recursions corresponding to k = 2n and k = 2n+ 1:

x2n+2 = 2x2n + 1 and
x2n+1+2 = 2x2n+1 + 1

The textbook formulas for second order recursions win the contest of which method
is easier and more accurate. First of all, symbols x0 and x1 act like the free vari-
able symbols t1, t2 in linear algebra: the solution is in terms of these two symbols.
Therefore, the recursion solution on page 957 only shows indices k ≥ 2 (k = 2n+ 2,
k = 2n+ 3 for n ≥ 0).

Details:
Given: Recursion xk+2 = 2xk + 1, to be solved.
Given: General recursion xk+2 = akxk + bk, k ≥ 0 (ck replaced by xk).

Let ak = 2 and bk = 1 in the general recursion to match xk+2 = 2xk + 1. Then
general recursion solution

x2n+2 = (Πn
r=0a2r)x0 +

n∑
k=0

(
Πn

r=k+1a2r
)
b2r, n ≥ 0,

x2n+3 = (Πn
r=0a2r+1)x1 +

n∑
k=0

(
Πn

r=k+1a2r+1

)
b2r+1, n ≥ 0

becomes for ar = 2 and br = 1 the equations

x2n+2 = (Πn
r=02)x0 +

n∑
k=0

(
Πn

r=k+12
)
(1), n ≥ 0,

x2n+3 = (Πn
r=02)x1 +

n∑
k=0

(
Πn

r=k+12
)
(1), n ≥ 0
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which simplify to

x2n+2 = 2n+1x0 +

n∑
k=0

2n+1

2k+1
, n ≥ 0,

x2n+3 = 2n+1x1 +

n∑
k=0

2n+1

2k+1
, n ≥ 0.

A further simplification is
∑n

k=0

2n+1

2k+1
= −1 + 2n+1. ■

14. xk+3 = 2xk + 1

12.3 Power Series Methods

Exercises 12.3 �
First Order Series Method
Solve by power series.

1. y′ − 4y = 0

Solution:

Trial solution: y =

∞∑
n=0

cnx
n, a Maclaurin series. Then

y′ =

∞∑
n=0

n cnx
n−1

=

∞∑
k=0

(k + 1) ck+1x
k, using index change k = n− 1.

Let LHS stand for the left side of differential equation y′−4y = 0. Expand LHS with
the trial solution series:

LHS = y′ − 4y

=

∞∑
k=0

(k + 1) ck+1x
k − 4

∞∑
n=0

cnx
n

=

∞∑
k=0

(k + 1) ck+1x
k − 4

∞∑
k=0

ckx
k, change index k = n

=

∞∑
k=0

((k + 1) ck+1 − 4ck)x
k, add series

Then LHS = RHS = 0 means LHS is the zero Maclaurin series, so all coefficients are
zero, giving the recursion relation (k + 1) ck+1 − 4ck = 0, k ≥ 0

The recursion is solved by the general solution product formula for first order recur-
sions found on page 957:

ck+1 =
4k

(k + 1)!
c0
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Then the trial solution becomes

y =

∞∑
n=0

cnx
n

= c0 + c0

∞∑
k=0

4k

(k + 1)!
xk+1, using index n = k + 1

■

2. y′ − xy = 0

Second Order Series Method
Solve by power series using the Airy equation example.

3. y′′ = 4y

Solution:

Trial solution: y =

∞∑
n=0

cnx
n, a Maclaurin series. Following Exercise 1, or using

formulas on page 954,

y′ =

∞∑
k=0

(k + 1) ck+1x
k

y′′ =

∞∑
k=0

(k + 1)(k + 2) ck+2x
k

Write the differential equation as y′′−4y = 0. Substitute the series formulas into the
left side LHS of the differential equation. Then

LHS = y′′ − 4y

=

∞∑
k=0

(k + 1)(k + 2) ck+2x
k − 4

∞∑
n=0

cnx
n

=

∞∑
k=0

(k + 1)(k + 2) ck+2x
k − 4

∞∑
k=0

ckx
k, re-index n = k

=

∞∑
k=0

((k + 1)(k + 2) ck+2 − 4ck)x
k, add series

Then LHS = RHS = 0 gives the second order recursion relation

(k + 1)(k + 2) ck+2 − 4ck = 0, k ≥ 0

Formulas on page 957 give the recursion answers

c2k+2 =

(
Πk

r=0

4

(2r + 3) (2r + 4)

)
c0,

c2k+3 =

(
Πk

r=0

4

(2r + 4) (2r + 5)

)
c1.

The products can be written in terms of the Gamma function, Γ(n + 1) = n! for

integers n ≥ 0. For instance, c2k+3 = c1
2(4k+1)

(2k + 4)!
.
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4. y′′ + y = 0

Taylor Series Method
Solve by Taylor series about x = 0, finding the first 8 terms.

5. y′ = 16y

Solution:The exact solution is y = y0e
16x. Taylor expansion should give the series

y(x) = y0 + 16 y0x+ 128 y0x
2 +

2048 y0
3

x3 +
8192 y0

3
x4 + · · ·

Taylor method details.

y(x) =

n∑
k=0

ckx
k +Rn where ck =

f (k)(0)

k!
.

We find the first 8 terms, so n = 7.

c0 = y(0) = y0, symbol y0 being the initial value of y(x) at x = 0.

c1 = y′(0)/1! = 16y0

c2 = y′′(0)/2! = 16y′(0)/2 = 162y0/2

c3 = y′′′(0)/3! = 16y′′(0)/3! = 163y0/(3! · 2!)
Continue:

y(x) = y0 + 16y0x+ 128y0x
2 + 2048

3 y0x
3 + 8192

3 y0x
4

+ 131072
15 y0x

5 + 1048576
45 y0x

6 +R8

# Exercise 5, Tayor series method

de:=diff(y(x),x)=16*y(x);dsolve([de,y(0)=y[0] ],y(x));

dsolve([de,y(0)=y[0] ],y(x),series);

taylor(y[0]*exp(16*x), x=0, 7);

6. y′′ = y

7. y′ = (1 + x)y

Solution:

y(x) = y0 + y0x+ y0x
2 +

2 y0
3

x3 +
5 y0
12

x4 +
13 y0
60

x5 +
19 y0
180

x6 + · · ·

# Exercise 7, Tayor series method

de:=diff(y(x),x)=(1+x)*y(x);dsolve([de,y(0)=y[0] ],y(x));

dsolve([de,y(0)=y[0] ],y(x),series);

taylor(y[0]*exp((1/2)*x*(x+2)), x=0, 7);

8. y′′ = (2 + x)y

12.4 Ordinary Points

Exercises 12.4 �
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Standard Form
Convert to form y′′ + p(x)y′ + q(x)y = 0. Find the singular points and ordinary
points.

1. (x+ 1)y′′ + xy′ + y = 0

Solution:
Singular points: x = −1, because a(x) = x+1 is zero at x = −1, preventing division
into standard form.

Ordinary points: all points x ̸= −1 are ordinary points, because p(x) =
x

x+ 1
and

q(x) =
1

x+ 1
have power series expansions about x = x0 for x0 ̸= −1. ■

2. x2y′′ + 3xy′ + 4y = 0

3. x(1 + x)y′′ + xy′ + (1 + x)y = 0

Solution:
Singular points: x = −1 and x = 0, because a(x) = x(x + 1) is zero at x = −1 or
x = 0, preventing division into standard form.

Ordinary points: all points x ̸= −1 and x ̸= 0 are ordinary points, because p(x) =
1

x+ 1
and q(x) =

1

x
have power series expansions about x = x0 for x0 ̸= −1 and

x ̸= 0. ■

4. xy′′ = (1 + x)y′ + exy

Ordinary Point Method
Find a power series solution, following the method in the text for y′′−2xy′+y = 0.
Use a CAS or mathematical workbench to check the answer.

5. y′′ + xy′ = 0

Solution:
The series answers by maple answer check should be

y1 = 1,

y2 = x− 1
6x

3 + 1
40x

5 − 1
336x

7 + 1
3456x

9 +O
(
x10
)
.

Details.
Let LHS = y′′+xy′, RHS = 0. Assume trial solution y =

∑∞
n=0 cnx

n. Then formulas
on pages 954 imply

LHS = y′′ + xy′

=

∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n + x

∞∑
n=0

(n+ 1)cn+1x
n

=

∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n +

∞∑
n=0

(n+ 1)cn+1x
n+1

=

∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n +

∞∑
k=1

(k)ckx
k Index change:

k = n+ 1.
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12.4 Ordinary Points

= 2c2 +

∞∑
k=1

(k + 1)(k + 2)ck+2x
k +

∞∑
k=1

(k)ckx
k Split off term

for n = 0.
Re-index.

= 2c2 +

∞∑
k=1

((k + 1)(k + 2)ck+2x
n + (k)ck)x

k Add, then
Collect on xk.

Power series LHS equals RHS, the zero power series, which gives rise to the recursion
relations 2c2 = 0, (k + 1)(k + 2)ck+2 + (k)ck = 0, c0 and c1 given, k ≥ 1, or more
succinctly the two-termed second order recursion

ck+2 +
−k

(k + 1)(k + 2)
ck, k ≥ 1, c2 = 0, c0, c1 given.

All even coefficients c2, c4, . . . are zero because c2 = 0. The odd coefficients are
obtained from recursion

ck+2 +
−k

(k + 1)(k + 2)
ck, k ≥ 0, k odd, c0, c1 given,

Using the formulas on page 957 with ak =
−k

(k + 1)(k + 2)
, bk = 0, then the recursion

answers are

c2k = 0, k ≥ 1,

c2k+3 =
(
Πk

r=0a2r+1

)
c1 =

(
Πk

r=0

(−1)(2r + 1)

(2r + 2)(2r + 3)

)
c1, k ≥ 0.

Taking c0 = 1, c1 = 0 gives y1 and taking c0 = 0, c1 = 1 gives y2:

y1(x) = 1,

y2(x) = x+

∞∑
k=0

(
Πk

r=0

(−1)(2r + 1)

(2r + 2)(2r + 3)

)
x2k+3

= x− 1

6
x3 +

1

40
x5 − x7

336
+

x9

3456
− x11

42240
+ · · ·

The two solutions have Wronskian 1 at x = 0: they are independent and form a basis
for the solution space of the differential equation.

Coefficient c2k+3 can be simplified to

c2k+3 =
(−1)k+1

2k+1 (2k + 3)

1

(k + 2)!

# Exercise 5, Ordinary points

de:=diff(y(x),x,x)=(-x)*diff(y(x),x);

dsolve([de,y(0)=y[0],D(y)(0)=y[1] ],y(x));

p:=dsolve([de,y(0)=y[0],D(y)(0)=y[1] ],y(x),series);

subs(y[0]=1,y[1]=0,p);subs(y[0]=0,y[1]=1,p);

# Simplification

q:=k->product((-1)*(2*r+1)/((2*r+2)*(2*r+3)),r=0..k):

q(k);simplify(q(k));

sum(q(k)*x^(2*k+3),k=0..8);

1675
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6. y′′ + x2y′ + y = 0

12.5 Regular Singular Points

Exercises 12.5 �
Regular Singular Point
Test the equation for regular singular points.

1. x2y′′ + xy′ + y = 0

Solution:Regular singular point at x = 0.

2. x2(x− 1)y′′ + sin(x)y′ + y = 0

3. x3(x2 − 1)y′′ − x(x+ 1)y′ + (1− x)y = 0

Solution:Regular singular points at x = 0,−1, 1.

4. x3(x− 1)y′′ + (x− 1)y′ + 2xy = 0

Indicial Equation
Each equation is an Euler differential equation ax2y′′ + bxy′ + cy = 0 with a, b, c
replaced by power series. Find the Euler differential equation and the indicial
equation.

5. x2y′′ − 2x(x+ 1)y′ + (x− 1)y = 0
Ans: x2y′′ − 2xy′ − y = 0, r(r − 1)− 2r − 1 = 0.

Solution:The equation in standard Frobenius form is ax2y′+bxy′+cy = 0 with power
series a = 1, b = −2− 2x, c = 1− x, all with a finite number of power series terms.

The regular singular point is x = 0. Substitute x = 0 into a, b, c to get the Cauchy-
Euler equation (1)x2y′′ + (−2)xy′ + (1)y = 0. The indicial equation is the char-
acteristic equation for the associated constant-coefficient equation (1)(D − 1)Dz +
(−2)Dz + (1)z = 0. Simplify the constant equation to z′′ − 3z′ + z = 0 and report
indicial equation r2 − 3r + 1 = 0.

Shortcut: Report indicial equation (1)(r − 1)r + (−2)r + (1) = 0 by replacing D by
r. ■

6. x2y′′ − 2xy′ + y = 0
Ans: The same equation, r(r − 1)− 2r + 1 = 0.

7. xy′′ + (1− x)y′ + 2y = 0

Solution:Multiply by x to get a Frobenius equation x2y′′ + x(1 − x)y′ + 2xy = 0.
The associated Cauchy-Euler equation is x2y′′ + x(1)y′ + (0)y = 0. The indicial
equation (r − 1)r + r = 0 is obtained from the constant-coefficient operator form
(D − 1)Dz +Dz = 0 by replacement D → r. ■
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8. x2y′′ − 2xy′ + (2 + sinx)y = 0

Solution:
Let a = 1, b = −2, c = 2+sinx to identify the Frobenius equation ax2y′′+bxy′+cy =
0 with associated Cauchy-Euler equation x2y′′−2xy′+2y = 0 (replace x = 0 in a, b, c).
Remaining details and answers omitted.

Frobenius Solutions
Find two linearly independent solutions. Follow Examples 1, 2, 3 for cases (a),
(b), (c) in the Frobenius Theorem page 970. Examples: (a) page 971, (b) page
973, (c) page 977.

9. 2x2y′′ + xy′ − y = 0

Solution:This is a Frobenius equation and also a Cauchy-Euler equation. There is an
exact solution:

y1 = x, y2 = x−1/2.

It is not necessary to apply the Frobenius theorem.

# Exercise 9, Frobenius solutions

de:=2*x^2*diff(y(x),x,x)+x*diff(y(x),x)-y(x)=0;

dsolve(de,y(x));# Exact solution

Order:=10;dsolve(de,y(x),series);# Series solution
■

10. 4x2y′′ + (2x− 7)y′ + 6y = 0

11. 4x2(x+ 1)y′′ + x(3x− 1)y′ + y = 0

Solution:
There is a regular singular point at x = −1 and also at x = 0. Let’s focus on x = 0
for simplicity. Define a = 4(x + 1), b = 3x − 1, c = 1 to form Frobenius equation
ax2y′′ + bxy′ + cy = 0. The associated Cauchy-Euler equation is 4x2y′′− xy′ + y = 0
and then the indicial equation is 4r(r − 1) − r + 1 = 0 with larger root r1 = 1 and
smaller root r2 = 1

4 . The problem falls into case (a) of the Frobenius theorem page
971: r1 ̸= r2 and r1 − r2 not an integer. There are two Frobenius series solutions.

y1 = x

(
1− 3

7
x+

9x2

77
− 9x3

385
+

27x4

7315
+ · · ·

)
y2 = 4

√
x

(
1− 3

4
x+

9x2

32
− 9x3

128
+

27x4

2048
+ · · ·

)
The length details follow Example 12.1 page 971.

# Exercise 11, Frobenius solutions, type (a)

de:=4*x^2*diff(y(x),x,x)+x*(3*x-1)*diff(y(x),x)+y(x)=0;

solve(4*r*(r-1)-r+1=0,r);

dsolve(de,y(x));# Exact solution

Order:=10;dsolve(de,y(x),series);# Series solution
■
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12. 3x2y′′ + xy′ − (1 + x)y = 0

Solution:Roots 1, −1/3. Case (a) of the Frobenius theorem. Details omitted.

13. x2y′′ + 3xy′ + (1 + x)y = 0

Solution: There is a regular singular point at x = 0. Define a = 1, b = 3, c = 1 + x
to form Frobenius equation ax2y′′ + bxy′ + cy = 0. The associated Cauchy-Euler
equation is x2y′′+3xy′+y = 0 and then the indicial equation is r(r−1)+3r+1 = 0
with equal roots r1 = −1 and r2 = −1. The problem falls into case (c) of the
Frobenius theorem page 971: r1 = r2. There are two Frobenius series solutions.

y1 =
1

x

(
1− x+

1

4
x2 − 1

36
x3 +

x4

576
+ · · ·

)
y2 =

ln |x|
x

(
1− x+

1

4
x2 − 1

36
x3 +

x4

576
+ · · ·

)
+

1

x

(
2x− 3

4
x2 +

11x3

108
− 25x4

3456
+ · · ·

)
The details follow Example 12.3 page 977.

# Exercise 13, Frobenius solutions, type (c)

de:=x^2*diff(y(x),x,x)+3*x*diff(y(x),x)+(1+x)*y(x)=0;

solve(r*(r-1)+3*r+1=0,r);

dsolve(de,y(x));# Exact solution

Order:=10;dsolve(de,y(x),series);# Series solution
■

14. xy′′ + (1− x)y′ + 3y = 0

Solution:Roots 0, 0. Case (c) of the Frobenius theorem. Details omitted.

15. x2y′′ + x(x− 1)y′ + (1− x)y = 0

Solution:
There is a regular singular point at x = 0. Define A = 1, B = −1, C = 1 to form
Cauchy-Euler equation Ax2y′′ +Bxy′ + Cy = 0, which is x2y′′ − xy′ + y = 0. Then
the indicial equation is r(r− 1)− r+ 1 = 0 with equal roots r1 = 1 and r2 = 1. The
problem falls into case (c) of the Frobenius theorem page 977: r1 = r2. The exact
solution involves the exponential integral function Ei(x), not discussed in the
textbook, and not discussed here either.

There are two Frobenius series solutions:

y1 = x

y2 = x ln |x| 1 + x

(
−x+ 1/4x2 − 1/18x3 +

x4

96
+ · · ·

)
The details follow Example 12.3 page 977.
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# Exercise 15, Frobenius solutions, type (c)

de:=x^2*diff(y(x),x,x)+x*(x-1)*diff(y(x),x)+(1-x)*y(x)=0;

solve(r*(r-1)-r + 1=0,r);

dsolve(de,y(x));# Exact solution

Order:=10;dsolve(de,y(x),series);# Series solution
■

16. xy′′ + (2x+ 3)y′ + 4y = 0

Solution:Roots 0 and −2, which are unequal and differ by an integer. Case (b) of the
Frobenius theorem. The details are especially involved but follow case (b) Example
12.2 page 973.

The answers:

y1 = 1− 4

3
x+ x2 − 8x3

15
+

2

9
x4 + · · ·

y2 =
1

x2

(
−2 + 4x2 − 16

3
x3 + 4x4 + · · ·

)
The exact answer: y =

c1
x2

+
c2 e−2 x (2x+ 1)

x2

# Exercise 16, Frobenius solutions, type (b)

de:=x^2*diff(y(x),x,x)+x*(2*x+3)*diff(y(x),x)+4*x*y(x)=0;

solve(r*(r-1)+3*r + 0=0,r);

dsolve(de,y(x));# Exact solution

Order:=5;dsolve(de,y(x),series);# Series solution
■

12.6 Bessel Functions

Exercises 12.6 �
Values of J0 and J1
Use series representations and identities to find an identity for values of the
following functions. Use a computer algebra system to compute the answers.

1. J0(1)

Solution:
Identity for J0.
Let p = 0 in the series identities. Because J0(−x) = J0(x) (J0 is even), then only
even term are present in the series:

J0(x) =

∞∑
n=0

(−1)n(x/2)2n

(n!)2

Then

J0(1) =

∞∑
n=0

(−1)n(1/2)2n

(n!)2
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= 0.7651976866 by the maple code infra.

Most computer systems support GNU C library functions, which includes the
Bessel functions with function names J0, J1, Jn. A convenient online site is
https://www.wolframalpha.com/, which provides a free online calculator for Bessel
functions. The Wolfram answer:

J0(1) ≈ 0.7651976865579665514497175261026632209092742897553252418615475491

# Exercise 1, Values of J[0] and J[1]

J[0](1)=evalf(BesselJ(0,1));

sum((-1)^n * (1/2)^(2*n) / (n!)^2,n=0..infinity);

# Reported: BesselJ(0, 1)
■

2. J1(1)

3. J0(1/2)

Solution:Answer: J0(1/2) = .9384698072

# Exercise 3, Values of J[0] and J[1]

J[0](1/2)=evalf(BesselJ(0,1/2));

sum((-1)^n * (1/4)^(2*n) / (n!)^2,n=0..infinity);
■

4. J1(1/2)

Bessel Function Properties
Prove the following relations by expanding LHS and RHS in series.

5. J ′
0(x) = −J1(x)

Solution:

LHS = J ′
0(x)

=
d

dx

∞∑
n=0

(−1)n(x/2)2n

(n!)2

=

∞∑
n=1

(2n)(1/2)
(−1)n(x/2)2n−1

(n!)2
because d

dx erases the n = 0 term

=

∞∑
n=1

(−1)n(x/2)2n−1

(n− 1)! (n!)
cancel common factors n and 2

RHS = −J1(x)

= −
∞∑
k=0

(−1)k(x/2)1+2k

k!(1 + k)!
by the Jp identity page 981.

=

∞∑
k=0

(−1)k+1(x/2)1+2k

k!(1 + k)!
move minus sign inside summation

=

∞∑
n=1

(−1)n(x/2)2n−1

(n− 1)!(n)!
index change 2n− 1 = 1 + 2k (n− 1 = k)
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Then LHS = RHS, proving the identity. ■

6. J ′
1(x) = J0(x)−

1

x
J1(x)

7. (xpJp(x))
′
= xpJp−1(x),

p ≥ 1

Solution:Assume p ≥ 1. The Jp identity:

Jp =

∞∑
n=0

(−1)n(x/2)p+2n

n!(n+ p)!

Then the left side of the claimed identity is

LHS = (xpJp(x))
′

=
d

dx

∞∑
n=0

(−1)n(x/2)2p+2n 2p

n!(n+ p)!
move xp inside summation

=

∞∑
n=0

(2p+ 2n)(1/2)(−1)n(x/2)2p+2n−1 2p

n!(n+ p)!
d
dx term-by-term

=

∞∑
n=0

(−1)n(x/2)2p+2n−1 2p

n!(n+ p− 1)!
cancel common factors

RHS = xpJp=1(x)

= xp
∞∑

n=0

(−1)n(x/2)2p−1+2n

n!(n+ p− 1)!
by the Jp identity

=

∞∑
n=0

(−1)n(x/2)2p−1+2n 2p

n!(n+ p− 1)!
move xp inside summation

Then LHS = RHS, proving the identity. ■

8.
(
x−pJp(x)

)′
= −x−pJp+1(x),

p ≥ 0

Bessel Function Recursion Proofs
Add and subtract the expanded equations of the previous exercises.

9. Jp+1 =
2p

x
Jp(x)− Jp−1(x),

p ≥ 1

Solution:
1 Given (xpJp(x))

′
= xpJp−1(x), p ≥ 1 from Exercise 7. Expand and divide by xp:

J ′
p + (p/x)Jp = Jp−1

2 Given
(
x−pJp(x)

)′
= −x−pJp+1(x), p ≥ 0 from Exercise 8. Expand and divide

by x−p:

−(p/x)Jp + J ′
p = −Jp+1

Subtract 2 from 1 :
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(p/x)Jp + (p/x)Jp = Jp−1 + Jp+1

(p/x)Jp + (p/x)Jp − Jp−1 = Jp+1

which proves the claimed identity. ■

10. Jp+1(x) = −2J ′
p(x) + Jp−1(x),

p ≥ 1

Recurrence Relations
Use results of the previous exercises.

11. Express J3 and J4 in terms of J0 and J1.

Solution:

Given Jp+1 =
2p

x
Jp(x) − Jp−1(x) from Exercise 9, insert p = 1, p = 2, p = 3 to get

identities

J2 =
2

x
J1(x)− J0(x)

J3 =
4

x
J2(x)− J1(x)

=
4

x
(
2

x
J1(x)− J0(x))− J1(x)

=

(
8

x2
− 1

)
J1(x)−

4

x
J0(x)

J4 =
6

x
J3(x)− J2(x)

=
6

x

((
8

x2
− 1

)
J1(x)−

4

x
J0(x)

)
− J2(x)

=
6

x

((
8

x2
− 1

)
J1(x)−

4

x
J0(x)

)
− 2

x
J1(x) + J0(x)

=

(
48

x3
− 8

x

)
J1(x) +

(
1− 24

x2

)
J0(x)

■

12. Prove by induction that Jp(x) = c1(1/x)J0(x) + c2(1/x)J1(x) where c1 and c2 are
polynomials.

Laplace Transform

Assume Laplace identity L(Jn(t)) =
(
√
s2+1−s)

n

√
s2+1

holds for s ≥ 0. Prove the

following results.

13.
∫∞
0

Jn+1(x)dx =
∫∞
0

Jn−1(x)dx

for integers n > 0.

Solution:The integrals left and right are obtained from the corresponding Laplace
integral

∫∞
0

f(t)e−stdt by setting f(t) = Jn+1(t) or f(t) = Jn−1(t) and then s = 0.
In the Laplace identity for Jn, power n→ n+1 or n→ n−1 is applied to ((0+1)−0)n
to give factor 1, then both sides of the proposed identity match.
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The identity may also be proved from Exercise 10 by integrating the identity therein.
The catch: the additional result limx→∞ Jp(x) = 0 is required along with integrability
of all functions appearing in Exercise 10. ■

14.

∫ ∞

0

Jn(x)dx

x
=

1

n

for integers n > 0

Solution:Hint: Use the details from Exercise 13.

Bessel Function Bounds
Assume L. J. Landau’s result Jp(x) ≤ c|x|−1/3 for all x and p > 0, where c =
0.78574687 . . . is the best possible constant. Prove the following results.

15. limx→∞ J1(x) = 0

Solution:Limit x→∞ across Landau’s inequality.

16. limx→∞ J ′
0(x) = 0

12.7 Legendre Polynomials

Exercises 12.7 �
Equivalent Legendre Equations
Prove the following are equivalent to
(1−x2)y′′−2xy′+n(n+1)y=0

1. ((1− x2)y′)′ + n(n+ 1)y = 0

Solution:
Expand by the calculus product rule

((1− x2)y′)′ = (1− x2)′y′ + (1− x2)y′′

= −2xy′ + (1− x2)y′′

■

2. Let x = cos θ, ′ = d
dθ , then

sin θy′′+cos θy′+n(n+1) sin θy=0.

Solution:
Use dy

dx = dy
dθ

dx
dθ = −y′ sin(θ) and similarly for d2y

dx2 = d
dx

dy
dx . Details omitted.

Proof of Bonnet’s Recursion
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3. Define cn = 1
n!2n .

Prove cm = 2(m+ 1)cm+1.

Solution:
This is Lemma A in the proof of Bonnet’s recursion by Rodrigues’ formula.

2(m+ 1)cm+1 =
2(m+ 1)

(m+ 1)!2m+1

=
2(m+ 1)

2(m+ 1)m!2m

=
1

m!2m

= cm ■

4. Let D = d
dx , u = x2− 1. Verify D2u2 = 12x2− 4 using D and the binomial theorem.

Solution:
D2(u2) = D2((x2 − 1)2)

= D2
∑2

r=0

(
2
r

)
x2r(−1)2−r by the binomial theorem

=
∑2

r=0

(
2
r

)
D2(x2r)(−1)2−r

=
(
2
0

)
(0)(−1)2 +

(
2
1

)
(2)(−1) +

(
2
2

)
(4)(3)(x2)(−1)0

= 0 + (2)(2)(−1) + (1)(4)(3)(x2)

= 12x2 − 4 ■

5. Prove Bonnet’s recursion from the generating function equation

1√
1− 2xt+ t2

=

∞∑
n=0

Pn(x)t
n

Solution:
Historically, Bonnet’s recursion was discovered by differentiation of the generating
function on t to obtain

(x− t)

∞∑
n=0

Pn(x)t
n=

1√
1− 2xt+ t2

=(1− 2xt+ t2)

∞∑
n=1

nPn(x)t
n−1(1)

Then match coefficients of tn to find Bonnet’s recursion. Reference:

https://en.wikipedia.org/wiki/Legendre polynomials

Series techniques are used to re-write each side of equation (1) as one series indexed
on tk. This step is subject to error. The maple code below can check the work.

Coefficient matching gives the following equations:

P1 = xP0

2P2 = 3xP1 − P0

3P3 = 5xP2 − 2P1

4P4 = 7xP3 − 3P2
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12.7 Legendre Polynomials

The pattern is Bonnet’s recursion

(n+ 1)Pn+1 = (2n+ 1)xPn − nPn−1

Bonnet’s recursion can be proved by other means. The text proves the recursion
using Rodrigues’ formula for Pn. ■

# Exercise 5, Proof of Bonnet’s recursion

# Check coefficient matching, first 10 terms

A:=n->(t^2-2*x*t+1)*n*P[n]*t^(n-1);

B:=n->(x-t)*P[n]*t^n;

q := N->-sum(A(n),n=1..N)+sum(B(n),n=0..N);

seq([coeff(q(10),t,j)],j=0..10);

6. Prove that Pn(1) = 1 directly from Rodrigues’ formula.

Solution:
The trick is write (x2 − 1)n = vw where v = (x − 1)n, w = (x + 1)n. Expand with
the Leibnitz rule

Dn(vw) =

n∑
r=0

(
n

r

)
(Drv)(Dn−rw)

Then Drv at x = 1 is zero except for r = n, so the expansion at x = 1 has a single
term. Evaluate the single term to prove Pn(1) =

1
n!2n Dn((x2 − 1)n)

∣∣
x=1

= 1. ■

Boundary Data at x = ±1
Use these identities:
(1) (a+ b)k=

∑k
r=0

(
k
r

)
arbk−r

(2) (uv)(n)=
∑n

r=0

(
n
r

)
u(r)v(n−r)

7. In Rodrigues’ formula, let Let y = x− 1 to prove

Pn(y + 1)= 1
n!2n

(
d

dy

)n (
y2 + 2y

)n
Solution:
Let u = x2 − 1, D = d

dx , cn = 1
n!2n . Then u == (y + 1)2 − 1 = y2 + y and d

dy = d
dx .

The calculus chain rule then implies

n!2nPn(y + 1) = Dnun = ( d
dy )

n(y2 + y)n. ■

8. Verify from identity (1):(
y2+2y

)n
=
∑n

r=0

(
n
r

)
2ry2n−r

9. Prove Pn(1) = 1 from Bonnet’s recursion.

Solution:
Proceed by induction. Cases P0(1) = 1 and P1(1) = 1 are proved by identities
P0(x) = 1, P1(x) = x. Assume n > 1 and induction hypothesis Pk(1) = 1 for all
0 ≤ k ≤ n. Then

(n+ 1)Pn+1(1) = (2n+ 1)Pn(1)− nPn−1(1) = (2n+ 1(1)− 2n(1) = 1.

The induction is complete. ■
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10. Assume Pn(−x)=(−1)nPn(x) and P ′
n(1) =

n(n+ 1)

2
. Prove

Pn(−1) = (−1)n and

P ′
n(−1) = (−1)nn(n+ 1)

2
.

Legendre Integrals
Use Legendre properties page 986.

11. Use (2n+ 1)Pn = P ′
n+1 − P ′

n−1 to prove
∫ 1

0
Pn(x)dx = 0 for n > 0 even.

Solution:
Exercise 9 proves Pk(1) = 1 for all k ≥ 0. For k odd, Pk has only odd powers in its
series, therefore Pk(0) = 0. The fundamental theorem of calculus gives

(2n+ 1)
∫ 1

0
Pn(x)dx =

∫ 1

0
(P ′

n+1(x)− P ′
n−1(x))dx

= Pn+1(1)− Pn(0)− Pn−1(1) + Pn−1(0)

= 1− 1− 0 + 0 because n− 1 and n− 1 are both odd when n
is even. ■

12. Use Bonnet’s recursion to show that
∫ 1

0
Pn(x)dx = Pn−1(0)

n+1 for n > 0.

12.8 Orthogonality

Exercises 12.8 �
Legendre series. Establish the following results.

1. Prove using orthogonality that
∫ 1

−1
Pn(x)F (x)dx = 0 for any polynomial F (x) of

degree less than n.

Solution:Let F have degree m < n. Orthogonality makes P0, . . . , Pn−1 independent,
a basis for the vector space of all polynomials of degree less than n. Because m < n
then F (x) =

∑n−1
k=0 ckPk(x) holds for some coefficients {ck}. Use orthogonality of Pn

with P0, . . . , Pn−1:∫ 1

−1

Pn(x)F (x)dx =

n−1∑
k=0

ckPn(x)Pk(x)dx = 0

■

2. Use identity
xP ′

n(x)− P ′
n−1(x) = nPn(x)

to prove
∫ 1

−1
|Pn(x)|2dx = 2

2n+1 .

Solution:The provided identity is derived from the two basic Legendre identities

involving derivatives of Pn, found in section 12.7 page 986. Let I =
∫ 1

−1
P 2
ndx.

Integrate by parts using u = P 2
n , dv = dx to find an equation with I on both sides,

then solve for I, which depends on Pn and P ′
n. Replace factor xP ′

n in the expression
for I by using the provided identity. Use Exercise 1 to eliminate the term involving
P ′
n−1. Identities Pn(1) = 1 and Pn(−1) = (−1)n are required. Details omitted. ■
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3. Let ⟨f, g⟩ =
∫ π

0
f(x)g(x) sin(x)dx. Show that the sequence {Pn(cosx)} is orthogonal

on 0 ≤ x ≤ π with respect to inner product ⟨f, g⟩.
Solution:
The plan: change variables x = cos t in inner product ⟨f, g⟩.
⟨f, g⟩ =

∫ π

0
f(t)g(t) sin(t)dt

=
∫ −1

1
f(arccosx)g(arccosx)(−dx)

=
∫ 1

−1
f(arccosx)g(arccosx)dx

= (f(arccosx), g(arccosx)) where (F,G) =
∫ 1

−1
FGdx

Let f(t) = Pn(cos t), g(t) = Pm(cos t). Then f(arccosx) = Pn(x), g(arccosx) =
Pm(x) and

⟨f, g⟩ = (Pn, Pm)

which is zero for n ̸= m by orthogonality of the Legendre polynomials. The sequence
{Pn(cosx)} is orthogonal. ■

4. Let F (x) = sin3(x)− sin(x) cos(x). Expand F as a Legendre series
F (x) =

∑∞
n=0 cnPn(cosx).

Solution:The coefficients are shadow projections using the inner product in Exercise
3. Details omitted.

Chebyshev Series. The Chebyshev polynomials are Tn(x) = cos(n arccos(x))
with inner product (f, g) =

∫ 1
−1 f(x)g(x)(1− x2)−1/2dx.

5. Show that T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1.

Solution:
The identities are proved from trig identities.

T0(x) = cos(0 arccos(x))

= cos(0)

= 1

T1(x) = cos((1) arccos(x))

= x

T2(x) = cos(2 arccos(x))

= cos(2θ) where x = cos θ

= 2 cos2 θ − 1 by identity cos(2θ) = 2 cos2 θ − 1

= 2x2 − 1 ■

6. Show that T3(x) = 4x3 − 3x.

7. Prove that (f, g) satisfies the abstract properties of an inner product.

Solution:Singularities of the integrand present a problem, because of the division by√
1− x2. Let’s find another expression for the inner product where f , g are restricted
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to remove the singularities.

(f, g) =
∫ 1

−1
f(x)g(x)(1− x2)−1/2dx

=
∫ 0

π
f(cos t)g(cos t)(1− cos2 t)−1/2(− sin t)dt where x = cos t

=
∫ π

0
f(cos t)g(cos t)(sin2 t)−1/2 sin t dt by cos2 t+ sin2 t = 1

=
∫ π

0
F (t)G(t)| sin t|−1 sin t dt where F (t) = f(cos t), G(t) = g(cos t)

=
∫ π

0
F (t)G(t) dt because sin t > 0 on 0 < t < π.

There is an issue at t = 0 and t = π: the singularity is removable by examination of
limits. However, the resulting integral is a known inner product on the vector space
of continuous functions.

To be proved: the inner product is defined when f , g are continuous. Let ρ(x) =
(1 = x2)−1/2 on −1 < x < 1 and ρ(±1) = 0. Let |f(x)| ≤ M1, |g(x)| ≤ M2 on
−1 ≤ x ≤ 1. Then Details:∣∣∣∫ 1

−1
fgρ dx

∣∣∣ ≤ | ∫ 1

−1
|f ||g|ρ dx

≤ |
∫ 1

−1
M1M2ρ dx

= πM1M2

The integral exists for f , g continuous and (f, g) makes sense on the vector space
of continuous functions on [−1, 1]. Because compositions of continuous functions are
continuous then F,G are continuous and (f, g) is an inner product satisfying the
abstract properties. ■

8. Show that Tn is a solution of the Chebyshev equation
(1− x2)y′′ − xy′ + n2y = 0.

9. Prove that {Tn} is orthogonal relative to the weighted inner product (f, g).

Solution:
Let ρ(x) = (1− x2)−1/2. To be proved:

(1)
∫ 1

−1
TnTmρ dx = 0 for n ̸= m

(2)
∫ 1

−1
T0T0ρ dx = π

(3)
∫ 1

−1
TnTnρ dx = π

2 for n > 0

Exercise 7 provides this formula:∫ 1

−1
fgρ dx =

∫ π

0
F (t)G(t) dt where F (t) = f(cos t), G(t) = g(cos t)

Let f = Tn, g = Tm. Then

F (t) = Tn(cos t)

= cos(n arccos(cos t))

= cos(nt). Then:∫ 1

−1
fgρ dx =

∫ π

0
cos(nt) cos(mt) dt

Proof of (1)
Orthogonality of the trig functions cosnt, sinnt on [−π, π] implies∫ 1

−1
fgρ dx =

∫ π

0
cos(nt) cos(mt) dt
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= 1
2

∫ π

−π
cos(nt) cos(mt) dt because of an even integrand

= 0 for n ̸= m

Proof of (2)
The integral of 1 over [0, π] is π.

Proof of (3)
The problem reduces to the integral over [0, π] of cos2(nx), which is π/2 for integers
n > 0. ■

10. Prove: Tn(x) is an even function for n even and an odd function for n odd.

Hermite Polynomials. Define the Hermite polynomials by H0(x) = 1,

Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
.

Define the inner product
(f, g) =

∫∞
−∞ f(x)g(x)e−x2

dx.

11. Verify: H1(x) = 2x, H2(x) = 4x2−2, H3(x) = 8x3−12x, H4(x) = 16x4−48x2+12.

Solution:

Let u = e−x2

, D =
d

dx
. Then

Du = −2xu and H1 = (−1) 1
u
Du = 2x.

D2u = D(−2xu) = −2u− 2x(−2xu) = (4x2 − 2)u. Then

H2 = (−1)2 1
u
D2u = 4x2 − 2

D3u = D(D2u) = D((4x2 − 2)u) = 8xu+ (4x2 − 2)(−2xu) = (−8x3 + 12x)u. Then

H3 = (−1)3 1
u
(8x− 8x3 + 4x)u = 8x3 − 12x

D4u = D((−8x3 + 12x)u) = (−24x2 + 12)u+ (−8x3 + 12x)(−2x)u

H4 = (−1)4 1
u
((−24x2 + 12)u+ (−8x3 + 12x)(−2x)u) = −48x2 + 12 + 16x4 ■

# Exercise 11, Answer check

seq(simplify(HermiteH(i,x)),i=0..4);

12. Prove: Hn(−x) = (−1)nHn(x).

13. Prove H ′
n(x)=2xHn(x)−Hn+1(x).

Then use recursion Hn+1(x) = 2xHn(x)− 2nHn−1(x) to show H ′
n(x) = 2nHn−1(x).

Solution:

Let u = e−x2

, D =
d

dx
. Then

H ′
n = (−1)nD(u−1Dnu)

= (−1)n
(
(−1)u−2(−2xu)Dnu+ u−1Dn+1u

)
because Du = −2xu

= 2x(−1)nu−1Dnu+ (−1)nu−1Dn+1u

= 2xHn −Hn+1
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Recursion identity Hn+1(x) = 2xHn(x) − 2nHn−1(x) is inserted into the preceding
identity to give

H ′
n(x) = 2xHn(x)−Hn+1(x)

= 2xHn(x)− (2xHn(x)− 2nHn−1(x))

= 2nH(n− 1)(x) ■

14. Let y = H5 = 32x5 − 160x3 + 120x. Show y satisfies Hermite’s equation y′′ −
2xy′ + 2ny = 0 with n = 5.

Solution:Answer check:

# Exercise 14, Answer check

de:=diff(y(x),x,x) -2*x*diff(y(x),x) + 2*n*y(x)=0;

p:=subs(n=5,y(x)=32*x^5-160*x^3+120*x,de);

simplify(p);

15. Prove recursion
Hn+1(x) = 2xHn(x)− 2nHn−1(x).

Solution:

Let u = e−x2

, D =
d

dx
. Then Hn+1 = (−1)n+1u−1Dn+1u

= (−1)n+1u−1DnDu

= (−1)n+1u−1Dn(−2xu) because Du = −2xu
= 2(−1)nu−1Dn(xu)

= 2(−1)nu−1

n∑
r=0

(
n

r

)
DrxDn−ru by the Leibnitz rule

= 2(−1)nu−1

((
n

0

)
xDnu+

(
n

1

)
(1)Dn−1u

)
= 2x(−1)nu−1u−1Dnu+ 2n(−1)nu−1Dn−1u

= 2xHn + 2nHn−1 ■

16. Show that the sequence {Hn(x)} is orthogonal with respect to (f, g).

Alternate Laguerre Polynomials. Define the alternate Laguerre polynomials by
Ln(x) = ex dn

dxn (xne−x). Define (f, g) =
∫∞
0 f(x)g(x)e−xdx. A warning: La-

guerre polynomials in the literature are 1
n!Ln.

17. Prove: L1(x) = 1− x and
L2(x) = 2− 4x+ x2.

Solution:
L1 = ex(xe−x)′

= ex(e−x − xe−x) = 1− x

L2 = ex(x2e−x)′′

= ex(2e−x − 4xe−x + x2e−x)

= 2− 4x+ x2

■
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18. Prove:
L3(x) = 6− 18x+ 9x2 − x3.

19. Prove that (f, g) satisfies the abstract properties for an inner product.

Solution:
Non-negativity: (f, f) =

∫∞
0
|f(x)|2e−xdx ≥ 0

Uniqueness: (f, f) =
∫∞
0
|f(x)|2e−xdx = 0 implies integrand f = 0

Symmetry: (f, g) =
∫∞
0

f(x)g(x)e−xdx = (g, f) because fg = gf .

Homogeneity:
k(f, g) =

∫∞
0

kf(x)g(x)e−xdx

(kf, g) =
∫∞
0

(kf(x))g(x)e−xdx

Therefore k(f, g) = (kf, g).

Additivity:
(f + g, h) =

∫∞
0

(f(x) + g(x))h(x)e−xdx

=
∫∞
0

f(x)h(x)e−xdx+
∫∞
0

g(x)h(x)e−xdx

= (f, h) + (g, h)
■

20. Show that L0, L1, L2, L3 are orthogonal with respect to the inner product (f, g),
using direct integration methods.

Solution:By definition, L0 = 1. Use Exercises 17 and 18.

21. Prove:
Ln(x) =

∑n
k=0

(−1)k (n!)2

(n−k)!(k!)2x
k.

Solution:The method of proof is direct expansion of the formula for Ln using the
Leibnitz formula

Dn(vw) =

n∑
r=0

(
n

r

)
(Drv)(Dn−rw), D =

d

dx

Let v = xn and w = e−x. Then

Dn(vw) =

n∑
r=0

(
n

r

)
(Drv)(Dn−rw)

=

n∑
r=0

n!

r!(n− r)!

(
n!

(n− r)!
xn−r

)(
(−1)n−re−x

)
Change index with k = n− r. Then

Dn(vw) =

n∑
k=0

n!

(n− k)!(k)!

(
n!

(k)!
xk

)(
(−1)ke−x

)
=

n∑
k=0

(n!)2

(n− k)!(k!)2
(−1)kxke−x

Multiply by ex:
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exDn(vw) =

n∑
k=0

(n!)2

(n− k)!(k!)2
(−1)kxk

Then Ln = exDn(vw) =

n∑
k=0

(n!)2

(n− k)!(k!)2
(−1)kxk.

■

22. Show that {Ln} is an orthogonal sequence with respect to (f, g).

Solution:Hint: Use Laguerre’s differential equation and the same integration tricks
as for Legendre’s equation.

23. Find an expression for a polynomial solution to Laguerre’s equation xy′′ + (1 −
x)y′ + ny = 0 using Frobenius theory.

Solution:
The standard form is x2y′′ + x(1 − x)y′ + nxy = 0, where n ≥ 0 is an integer. The
indicial equation is r(r − 1) + (1)r + 0 = 0 with double root 0, 0. The equation falls
into case (c) of the Frobenius Theorem page 970: there are two series solutions

y1 = = x0
∑∞

k=0 ckx
k, c0 ̸= 0,

y2 = = y1(x) ln |x|+
∑∞

k=1 dkx
k.

Solution y2 is not a polynomial, it will not be used.

To be proved: Assume trial solution y = xr
∑∞

k=0 ckx
k with r = 0 the largest root

of the indicial equation. It will be shown that the recursion relation is

ck+1 =
k − n

(k + 1)2
ck

with solution

ck =
(−1)k(n!)2

(k!)2(n− k)!
, for choice c0 = n!

Find a formula for ck. The method substitutes the trial series y into the differential
equation and then resolve the coefficients. The details:

x2y′′ = x2
∞∑
k=2

k(k − 1)ckx
k−2

=

∞∑
j=0

j(j − 1)cjx
j

x(1− x)y′ = x(1− x)

∞∑
k=1

kckx
k−1

=

∞∑
k=1

kckx
k −

∞∑
k=1

kckx
k+1

=

∞∑
j=1

jcjx
j −

∞∑
j=2

(j − 1)cj−1x
j

=

∞∑
j=1

(jcj − (j − 1)cj−1)x
j 1
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nxy = x

∞∑
k=0

nckx
k

=

∞∑
k=0

nckx
k+1

=

∞∑
j=1

ncj−1x
j

An indexing trick was used at step 1 :

∞∑
j=2

(j − 1)cj−1x
j =

∞∑
j=1

(j − 1)cj−1x
j

The trick works because the j = 1 term is zero.

Substitute the trial solution into x2y′′ + x(1− x)y′ + nxy = 0:
∞∑
j=0

j(j − 1)cjx
j +

∞∑
j=1

(jcj − (j − 1)cj−1)x
j +

∞∑
j=1

ncj−1x
j = 0

∞∑
j=1

(j(j − 1)cj + jcj − (j − 1)cj−1 + ncj−1 = 0)xk = 0

The recursion is obtained by setting all coefficients on the left to zero, then simplify:

j(j − 1)cj + jcj − (j − 1)cj−1 + ncj−1 = 0

j2cj + (n− j + 1)cj−1 = 0, k ≥ 2

Solve for cj to find the recursion:

cj = −
n− j + 1

j2
cj−1, j ≥ 1, with c0 given

Replace j = k + 1:

ck+1 =
k − n

(k + 1)2
ck, k ≥ 0, with c0 given

Solve the recursion.
Apply the first order recursion formulas page 957:

xk = ck, ak = k−n
(k+1)2 , bk = 0

ck+1 = x0

∏k
r=0 ak

= c0
∏k

r=0
r−n

(r+1)2 for k ≥ 0 and k < n

= c0
(−1)k(n!)

(k!)2(n− k)!
for 0 ≤ k < n.

Choose c0 = n!, then a polynomial solution to Laguerre’s equation of order n is given
by

y(x) =
∑n

k=0

(−1)k(n!)2

(k!)2(n− k)!
xk

The alternate Laguerre polynomials are labeled L0, L1, . . ., the first few given by
equations in Exercise 25.
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# Exercise 23, Solve by Frobenius theory

# Laguerre’s equation answer check

de:=x^2*diff(y(x),x,x)+x*(1-x)*diff(y(x),x)+N*x*y(x);

c0:=n!:C:=(k,n)->(n!)*product((r-n)/(r+1)^2,r=0..k);

Y:=(x,n)->n!+sum(C(k,n)*x^(k+1),k=0..n);

N:=3;Y(x,N);

# Check de solution.

Q:=simplify(expand(subs(y(x)=Y(x,N),de)));

# High to low coefficients

koeffs:=seq(C(N-1-i,N),i=0..N-1),N!;

B:=(k,n)->(n!)*(-1)^k*(n!)/(k!)^2/(n-k)!;

Z:=(x,n)->sum(B(k,n)*x^(k),k=0..n);

Z(x,N);
■

24. Show that y = ex dn

dxn (x
ne−x) satisfies Laguerre’s equation: xy′′+(1−x)y′+ny =

0.

25. Verify by computer the Laguerre formulas

L0(x)=1
L1(x)=− x+ 1
L2(x)=x2 − 4x+ 2
L3(x)=− x3 + 9x2 − 18x+ 6

Solution:
# Exercise 25, Compute Laguerre polynomials

altLaguerreL:=(n,x)->factorial(n)*LaguerreL(n,x);

for k from 0 to 4 do

simplify(altLaguerreL(k,x)) od;
■

26. Find to 6 digits by computer the roots of L4(x).

Solution:The roots are used in Gauss-Laguerre Quadrature. Reference:
https://mathworld.wolfram.com/Laguerre-GaussQuadrature.html

27. Prove: Up to a constant, Ln is the only polynomial solution of xy′′+(1−x)y′+ny = 0,
n ≥ 0 an integer.

Solution:
The Frobenius method in Exercise 23 produces two independent solutions y1, y2:

y1 = = x0
∑∞

k=0 ckx
k, c0 ̸= 0,

y2 = = y1(x) ln |x|+
∑∞

k=1 dkx
k.

Let y be another polynomial solution of Laguerre’s equation. Then y = d1y1 + d2y2
for some constants d1, d2. Because y(0) is finite (y is a polynomial) then d2 = 0.
Therefore, y is a constant multiple of the Frobenius polynomial solution y1, which
can be selected to equal Ln. ■
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12.8 Orthogonality

28. Assume standard Laguerre polynomials {Ln} satisfy recurrence
(n+1)Ln+1(x)=(2n+1−x)Ln(x)

−nLn−1(x).
Prove: The alternate Laguerre polynomials {Ln} satisfy recurrence
Ln+1(x)=(2n+1−x)Ln(x)

−n2Ln−1(x).

Solution:Use Ln = (n!)Ln.

1695



Appendix A
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A.1 Calculus

Exercises A.1 �
Derivative notation Convert from the given notation, prime, dot, Leibniz or
operator, to the other three forms.

1.
du

dt

2. u̇(t0)

3. ü(1 + t)

4.
dx

dt
= 1 + x(t)

5. D2w(x) = 1 + w(x) + x

6. Dy(x) = y−2(x)

7. ln(w(r)) =
dw

dr

8. e−y(x) = y′(x)
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A.1 Calculus

9. ẏ(t) = 1 + t

10. ẋ(t) = e−2x(t)

Slope Compute the slope of the line tangent to the curve at the given point.

11. y = x2 − 3x+ 1, x = 0.

12. y = x5 − x+ 2, x = 2.

13. y = sinx+ x, x = π/4.

14. y = cosx− x, x = π/4.

15. y = tan−1 x+ e−x ln(1 + x), x = 1.

16. y = sin−1 x+ ex ln(2 + x), x = 1.

Tangent line equation Find the tangent line equation in the three possible forms,
point-slope, slope-intercept and parametric.

17. y = x3 − x, x = 1.

18. y = x3 + x+ 1, x = 0.

19. y = sin−1(x), x = 1/2.

20. y = tan−1(x), x = 1.

21. y = e−x, x = ln(2).

22. y = ln(1 + x), x = 0.

23. y =
1 + x

1− x
, x = 0.

24. y =
1− x2

1 + x2
, x = 0.

Rates Model as a rate of change equation.

25. The expected change in charge Q is equal to the electromotive force sin(ωt).

26. The damping force F is proportional to the instantaneous change in x(t).

27. The angular rate of change is proportional to the external force cos(ωt).

28. The amount in a bank account changes at a rate proportional to the current balance.

29. The expected population change is proportional to the present population P .
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A.1 Calculus

30. The temperature flux and the temperature difference from the surrounding medium
are proportional.

Average value Find the average value of f on [a, b],

f =
1

b− a

∫ b

a
f(x)dx.

31. xe−x, 0 ≤ x ≤ 1.

32.
1

2
ex − 1

2
e−x, 0 ≤ x ≤ 2.

33. lnx, 1 ≤ x ≤ 3.

34. secx, 0 ≤ x ≤ π/4.

35. x3 − x, 0 ≤ x ≤ 2.

36.
x− 1

x+ 1
, 0 ≤ x ≤ 1.

37.
sinx

1 + cosx
, 0 ≤ x ≤ π/4.

38. sin3 x cosx, 0 ≤ x ≤ π.

39.
1

1 + x2
on 0 ≤ x ≤ 1/2, 4/5 on 1/2 ≤ x ≤ 1.

40.
1

x
on 1 ≤ x ≤ 2,

5

8

x2

1 + x2
on 2 ≤ x ≤ 3.

41. tanx on 0 ≤ x ≤ π/4, and 1 + (x− π/4) on π/4 ≤ π/3.

42. cotx on π/4 ≤ x ≤ π/2, and x− π/2 on π/2 ≤ x ≤ π.

Integral identities Verify the given integration identity by applying the funda-
mental theorem of calculus.

43.

∫ 1

0

1 + t

2 + t
dt = 1 + ln

2

3
.

44.

∫ 1

0

1 + t2

2 + t
dt = 5 ln

3

2
− 3

2
.

45.

∫ π

0

t sin(2t)dt =
π − 2

4
.

46.

∫ π/2

0

t cos(2t)dt = −1

2
.
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A.2 Graphics

47.

∫ 1

0

te−tdt = 1− 2

e
.

48.

∫ 1

0

t2e−tdt = 2− 5

e
.

49.

∫ x

0

sin4(t) cos(t)dt =
sin5(x)

5
.

50.

∫ x

0

tan(t)dt = − ln(cosx).

Car trip Estimate the average speed R and the distance traveled D on a car trip,
given the velocity samples.

51. Every 10 minutes from t = 10 to t = 120 minutes, 51, 62, 55, 53, 60, 67, 61, 67, 55,
70, 71, 66 miles per hour.

52. Every 15 minutes from t = 15 to t = 225 minutes, 90, 92, 110, 112, 120, 113, 109,
90, 95, 97, 60, 90, 100, 105, 103 kilometers per hour.

53. Every 5 minutes from t = 5 to t = 75 minutes, 45, 60, 61, 63, 60, 58, 61, 65, 25, 40,
45, 60, 65, 59, 60 miles per hour.

54. Every 5 minutes from t = 5 to t = 100 minutes, 50, 90, 100, 120, 110, 112, 130, 120,
110, 40, 60, 100, 90, 80, 20, 55, 130, 130, 120, 125 kilometers per hour.

A.2 Graphics

Exercises A.2 �
Curve library graphics Apply the curve library method to construct by hand a
graphic of the given equations on one set of axes.

1. y = 2x+ 1, y = 3(x+ 1)2

2. y =
−1

x+ 1
, y = −2x− 1

3. y =
2

(x+ 1)2

4. y =
−1

(x+ 1)3

5. y = x2, y = (x− 1)4, y = (x− 2)6

6. y =
1

x+ 1
, y =

1

(x− 1)2
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A.2 Graphics

Factored polynomial graphics Apply the curve library method to construct by
hand a graphic of the given factored polynomial on one set of axes.

7. y = −2x(x− 1)2

8. y = 2x(x+ 1)3

9. y = −(x+ 1)2(x− 1)3

10. y = (x+ 1)3(x− 1)4

11. y = (x+ 1)(x− 1)3(x+ 2)

12. y = −x3(1− x)(1 + x)

13. y = π(x+ 1)(x− 1)(x+ 2)2

14. y = π2(x+ 1)(x− 1)(x+ 2)3

Factored rational graphics Apply the curve library method to construct by hand
a graphic of the given factored rational function on one set of axes.

15. y =
x− 1

x+ 1

16. y =
2x+ 1

x+ 2

17. y =
x(x+ 1)

(x+ 2)(x− 2)

18. y =
x(2x+ 1)

(x+ 2)(x− 2)

19. y =
−x(1− x)

(x+ 1)(x− 2)

20. y =
5x(x+ 1)

(x− 1)(x− 2)

Computer plotting of tables Make a table of values x = 0 to x = 1 in steps of
0.05 for the given approximate equation and plot the table of values. Cite the
recursion formulas applied to obtain the next table pair from the previous table
pair.

21. y(x+ 0.05) ≈ y(x) + 0.05(1− y(x)), y(0) = 1

22. y(x+ 0.05) ≈ y(x) + 0.05(1 + y(x)), y(0) = 1

23. y(x+ 0.05) ≈ y(x) + 0.05(x− y(x)), y(0) = 0
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A.3 Explicit and Implicit Answers

24. y(x+ 0.05) ≈ y(x) + 0.05(2x+ y(x)), y(0) = 0

25. y(x+ 0.05) ≈ y(x) + 0.05(sinx+ xy(x)), y(0) = 2

26. y(x+ 0.05) ≈ y(x) + 0.05(sinx− x2y(x)), y(0) = 2

Computer plots of explicit equations Plot by computer the given explicit equation
over 0 ≤ x ≤ 1.

27. y = e−x sinπx

28. y = e−x cosπx

29. y = e−x ln(1 + x)

30. y = e−x ln(1 + x2)

31. y = sin(πx) sin2(2πx)

32. y = sin(πx) cos2(πx)

Implicit plots Plot by computer or by hand the given implicit equation.

33. x2 + y2 + 3xy = 10

34. x2 + y2 − 3xy = 10

35. x2 − (y + 1)2 = 1

36. x2 − y2 + xy = 10

37. x(x− 1)y = 5

38. xy(1 + y2) = 10

A.3 Explicit and Implicit Answers

Exercises A.3 �
Verify an Explicit Solution Apply the methods in Example A.19, page 1025, to
verify the given solution of the initial value problem.

1. I(t) = I0e
−2t,

I ′ + 2I = 0, I(0) = I0.

2. Q(t) = Q0e
−0.2t,

Q′ = −0.2Q, Q(0) = Q0.
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A.3 Explicit and Implicit Answers

3. A(t) = 100ekt,
A′ = kA, A(0) = 100.

4. P (t) = 1000eht,
P ′ = hP , P (0) = 1000.

5. y(x) = −1 +
√
(4 + x2 − 2x),

y′ =
x− 1

y + 1
, y(0) = 1.

6. y(x) = −1 +
√
2 + 2ex − 2x,

y′ =
ex − 1

y + 1
, y(0) = 1.

7. y(x) = ex
2/2,

y′ = xy, y(0) = 1.

8. y(x) = ex
3/3,

y′ = x2y, y(0) = 1.

9. y(x) = e1−cos(x),
y′ = sin(x)y, y(0) = 1.

10. y(x) = esin(x),
y′ = cos(x)y, y(0) = 1.

Verify an Implicit Solution Apply the methods in Example A.20, page 1026,
to verify the given implicit solution of the differential equation. If an initial
condition is given, then verify it also.

11. xy2 + x2y + xy = c,

y′ = −y (y + 2x+ 1)

x (2 y + x+ 1)
.

12. x2y2 + x3y + xy2 = c,

y′ = −
y
(
2xy + 3x2 + y

)
x (2xy + x2 + 2 y)

.

13. x sin y + cos(xy) = c,

y′ = − − sin(y) + sin(xy)y

x (− cos(y) + sin(xy))
.

14. x2 cos(y) + sin(xy2) = c,

y′ =
2x cos(y) + cos(xy2)y2

x (x sin(y)− 2 cos(xy2)y)
.

15. x2ey + ex−y = 1 + e,

y′ = −2xey + ex−y

x2ey − ex−y
, y(1) = 0.
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A.3 Explicit and Implicit Answers

16. x3e−y + xe2x−y = 1 + e2,

y′ =
3x2 + e2 x + 2xe2 x

x (x2 + e2 x)
,

y(1) = 0.

Verify an Explicit Solution by Computer Apply the methods in Example A.21,
page 1026, to verify the given solution of the initial value problem.

17. y(x) =
3
√
3x,

y′ = 1/y2, y(1/3) = 1.

18. y(x) =
4
√
4x,

y′ = 1/y3, y(1/4) = 1.

19. y(x) = e−x2/2,
y′ = −xy, y(0) = 1.

20. y(x) = πe−x3/3,
y′ = −x2y, y(0) = π.

21. y(x) = xecos(x)−1,
y′ = (1/x− sin(x))y,
y(2π) = 2π.

22. y(x) = tanx+ esin(x),
y′ = sec2 x− sinx+ y cos(x),
y(0) = 1.

Verify Implicit Solution by Computer Apply the methods in Example A.22, page
1027, to verify the given implicit solution of the differential equation. If an initial
condition is given, then verify it also.

23. xy = 2, y′ = −y/x, y(2) = 1.

24. x2y = 2, y′ = −2y/x, y(1) = 2.

25. xey + yex = c, y′ = − ey + yex

xey + ex
.

26. xe−y + ye−x = c,

y′ =
e−y − y2e−x

xe−y − 2 ye−x
.

27. x sin y + cos(xy) = c,

y′ =
sin(y)− sin(xy)y

x (sin(xy)− cos(y))
.

28. x2 cos(y) + sin(xy2) = c,

y′ =
2x cos(y) + cos(xy2)y2

x (−x sin(y) + 2 cos(xy2)y)
.

1703



A.4 Numerical and Graphical Answers

A.4 Numerical and Graphical Answers

Exercises A.4 �
Euler Test: Spot Check Apply the methods of Example A.23, page 1033, to
compute for the given differential equation the absolute error made by Euler’s
test for the given data. Report pass or fail for each exercise. Assume absolute
error cutoff value (d− c)/1000 = 0.001.

1. y′ = 2y + sin(x),
(0.1, 0.005346),
(0.2, 0.022884),
(0.3, 0.055148).

2. y′ = −y + cos(x),
(0.1, 0.095000),
(0.2, 0.180003),
(0.3, 0.255019).

3. y′ = y(1− y) + 5,
(0.400, 1.877093),
(0.405, 1.893746),
(0.410, 1.910168).

4. y′ = y(2− y) + 10,
(0.400, 3.547216),
(0.405, 3.569489),
(0.410, 3.591196).

5. y′ = 1 + y2,
(0.100, 0.100335),
(0.105, 0.105388),
(0.110, 0.110446).

6. y′ = 4 + 4y2,
(0.100, 0.422793),
(0.105, 0.446573),
(0.110, 0.470781).

Trapezoidal Test Apply the methods of Example A.24, page 1033, to compute
for the given differential equation the relative error E = |y1 − Y |/|y1| made by
the Trapezoidal test for the given data. Report for each exercise pass or fail and
the three error values. Assume the given relative error cutoff value E∗.

7. y′ = 2y + sin(x), E∗ = 0.001,
(0.1, 0.005346), (0.2, 0.022884),
(0.3, 0.055148), (0.4, 0.105129).

8. y′ = −y + cos(x), E∗ = 0.00009,
(0.1, 0.095000), (0.2, 0.180003),
(0.3, 0.255019), (0.4, 0.320080).
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9. y′ = y(1− y) + 5, E∗ = 0.00024,
(0.100, 0.516828),
(0.125, 0.647873),
(0.150, 0.777953),
(0.175, 0.621714).

10. y′ = y(2− y) + 10, E∗ = 0.0013,
(0.100, 1.067919),
(0.125, 1.341712),
(0.150, 1.610877),
(0.175, 1.871962).

11. y′ =
1− x

1 + y
, E∗ = 0.0004,

(0.100, 0.090871),
(0.125, 0.111024),
(0.150, 0.130265),
(0.175, 0.148641).

12. y′ =
1 + x

1− y
, E∗ = 0.00047,

(0.100, 0.111181),
(0.125, 0.143043),
(0.150, 0.176896),
(0.175, 0.212996).

Simpson Test Apply the ideas in Example A.25, page 1034, to compute for the
given differential equation the relative error E = |y2 − Y |/|y2| made by the
Simpson test for the given data. Report for each exercise pass or fail and the
three error values. Assume the given relative error cutoff value E∗.

13. y′ = 2y + sin(x), E∗ = 0.0008,
(0.2, 0.022884), (0.3, 0.055148),
(0.4, 0.105129).

14. y′ = −y + cos(x), E∗ = 0.00044,
(0.2, 0.180003), (0.3, 0.255019),
(0.4, 0.320080).

15. y′ = y(1− y) + 5, E∗ = 0.000451,
(0.2, 1.031950), (0.3, 1.495883),
(0.4, 1.877093).

16. y′ = y(2− y) + 10, E∗ = 0.0004,
(0.2, 2.121932), (0.3, 2.970036),
(0.4, 3.547216).

17. y′ =
1− x

1 + y
, E∗ = 0.0004,

(0.2, 0.166190), (0.3, 0.228821),
(0.4, 0.280625).
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18. y′ =
1 + x

1− y
, E∗ = 0.00068,

(0.2, 0.251669), (0.3, 0.443224),
(0.4, 0.800000).

Simpson’s Rule The following exercises use formulas and techniques found in the
proof on page 1036 and in Example A.26, page 1035.

19. Verify with Simpson’s rule (5) for cubic polynomials the equality
∫ 2

1
(x3 + 16x2 +

4)dx = 541/12.

20. Verify with Simpson’s rule (5) for cubic polynomials the equality
∫ 2

1
(x3+x+14)dx =

77/4.

21. Let f(x) satisfy f(0) = 1, f(1/2) = 6/5, f(1) = 3/4. Apply Simpson’s rule with one

division to verify that
∫ 1

0
f(x)dx ≈ 131/120.

22. Let f(x) satisfy f(0) = −1, f(1/2) = 1, f(1) = 2. Apply Simpson’s rule with one

division to verify that
∫ 1

0
f(x)dx ≈ 5/6.

23. Verify Simpson’s equality (5), assuming Q(x) = 1 and Q(x) = x.

24. Verify Simpson’s equality (5), assuming Q(x) = x2.

Quadratic Interpolation The following exercises use formulas and techniques from
the proof on page 1037.

25. Verify directly that the quadratic polynomial y = x(7− 4x) goes through the points
(0, 0), (1, 3), (2,−2).

26. Verify directly that the quadratic polynomial y = x(8− 5x) goes through the points
(0, 0), (1, 3), (2,−4).

27. Compute the quadratic interpolation polynomial Q(x) which goes through the points
(0, 1), (0.5, 1.2), (1, 0.75).

28. Compute the quadratic interpolation polynomial Q(x) which goes through the points
(0,−1), (0.5, 1), (1, 2).

29. Verify the remaining cases in Lemma A.1, page 1038.

30. Verify the remaining cases in Lemma A.2, page 1038.

A.5 Implicit Functions

Exercises A.5 �
Modeling an Implicit Function Problem
Apply the ideas in Example A.27, page 1042 to model the given implicit equation
as an initial value problem for a function y(x) defined near x = 0.
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1. x2 + xy4 + y = 1,
x = 0, y = 1.

2. x+ xy4 + y = 1,
x = 0, y = 1.

3. x+ y2 ln(x+ 1) + y = 2,
x = 0, y = 2.

4. ex + y2 ln(x+ 1) + y = 1,
x = 0, y = 2.

5. sinx+ y3 cosx+ y2 = 2,
x = 0, y = 1.

6. tanx+ y2 secx+ y3 = 2,
x = 0, y = 1.

7. ex + y2x2 + xy + 2y = 3,
x = 0, y = 1.

8. e−x +−y2x2 + xy + 2y = 3,
x = 0, y = 1.

Solve F(x,y) = 0 Symbolically
Solve symbolically for y as a function of x in the given implicit equation both by
hand and by computer. Apply the methods of Example A.28, page 1042.

9. x2 + 5y4 = 5,
x = 0, y = 1.

10. x2 + 5y2 = 5,
x = 0, y = 1.

11. x2 + y2 + 2y = 3,
x = 0, y = 1.

12. x2 + 4y2 − 2y = 2,
x = 0, y = 1.

13. sinx+ y4 = 1,
x = 0, y = 1.

14. sinx+ y4 + 2y2 = 3,
x = 0, y = 1.

15. − sinx+ cos y = 1,
x = 0, y = 0.

16. sinx+ cos y = 1,
x = 0, y = 0.
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Solve F (x, y) = 0 Numerically
Solve numerically by computer for y as a function of x in the given implicit
equation. Plot y(x) on an interesting interval. See Example A.29, page 1043 for
methods.

17. x2 + x+ 4 + cos y = 5,
x = 0, y = 0.

18. x2 + x+ 6− cos(y) = 5,
x = 0, y = 0.

19. x2 + y3 + 2y = 3,
x = 0, y = 1.

20. x2 + 4y3 − 2y = 2,
x = 0, y = 1.

21. sinx+ y4 + y = 2,
x = 0, y = 1.

22. sinx+ y4 + 2y = 3,
x = 0, y = 1.

23. − sinx+ y + cos y = 1,
x = 0, y = 0.

24. sinx− y + cos y = 1,
x = 0, y = 0.
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A
Abel equation, 67
Abel’s formula, 854
Abel’s identity, 464
Abel, Niels Henrik, 464
Abel-Liouville formula, 854
Absolute convergence

series, 950
Absolute error, 1032
Absorption, 16
Abstract vector space, 298
Acceleration g due to gravity, 547
Acceleration of a particle, 126
Active suspension, 935
Adaptive data, 1032
Adjugate, 349
Aeroelastic Flutter, 535
Airy wave functions, 960
Algebraic eigenanalysis, 709
Algebraic independence, 381
Algebraic Multiplicity, 552
Algebraic multiplicity, 896
Algorithm

myopic or near-sighted, 943
Almost linear

phase plane, 780
Altitude conserved, 162
Amplitude, 492
Analytic geometry, 1016
Annihilator, 480
Anomaly

eccentric, 278
mean, 278

Answer
check symbol-free, 218
symbolic formula, 32

Aperiodic, 1419
Approximate solution, 247

Arbitrary constants, 706
Area

polar coordinates, 547
Area of a sector, 547
Argon-40, 20
Arrow

free vector model, 295
Asymptotically Stable, 759
Atoms, 432
Attracting node, 771
Attractor, 55, 771
Aug

augment matrices and vectors, 321
Zero column, 322

Auto loan, 22
Autonomous, 51, 751

system, planar, 751
Average, 1007

population, observable, 753
Average value, 996, 1007
Average velocity, 1008

B
Back substitution, 328
Back-substitution, 577
Balance law, 815
Barometer, 147
Basa, 284
Base atom, 561
Basis

linear algebraic system, 207
of a vector space, 370
vector functions, 840

Beats
graphical illustration, 507
heart rate, 507
sine product formula, 508
spring-mass model, 507

Beef roast, 10
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Bernoulli differential equation, 167
Bernoulli equation, 67
Bessel differential equation, 981
Bessel function, 981
Bessel function of nonnegative integral

order p, 981
Bessel series, 1003
Bessel’s inequality, 1001
Bifurcation

Qualitative information, 51
Bifurcation diagram, 56
Bifurcation point, 57
Big Oh

Landau symbol, 249
Birth-death rate, 6
Bisection method, 753
Bloodstream injection, 27
Boat trajectories, 31
Bonnet’s recursion, 985, 993
Brahe, T., 546
Braun, 9
Braun, M., 20
Brightness

intensity and Lux, 16
lumen, 16

Burst, 314
Bursting

data packages or vectors, 298

C
Cafe door

equation, 512
Calcium-40, 20
Calorie, 149
Candela, 16
Carbon-14, 19

Atmospheric ratio, 26
Atmospheric replenishment, 19

Carrying capacity, 7, 142
bifurcation diagram, 57

Catfish, 284
Cauchy product, 955
Cauchy’s kernel, 560, 569
Cauchy-Euler, 566
Cauchy-Euler conjecture, 969
Cauchy-Euler differential equation, 968
Cayley-Hamilton identity, 778, 1551
Cayley-Hamilton theorem, 841
Cayley-Hamilton-Ziebur, 840, 841
Cecchi 1822-1887

seismoscope, 510

Cent, 524, 1419
Center, 770, 808
Centroid, 125
Certificate of deposit, 23
Cgs system of units, 125
Chain rule for 2 variables, 1025
Change in Price, 827
Change of coordinates, 706
Characteristic

equation of A, 357
Characteristic Equation, 552
Characteristic equation, 432, 568, 671

systems, 880
Characteristic equation nth order, 451
Characteristic function

LaPlace pulse, 644
Characteristic Polynomial, 552, 711
Characteristic polynomial, 357, 671

nth order, 451
systems, 880

Charge in coulombs, 17
Chebyshev equation, 1004, 1687
Chebyshev polynomials, 1004, 1686
Checkerboard sign, 348
Chemical balance law, 814
Chemostat, 821
CHZ, 841
Circle

polar equation, 547
Clairaut equation, 67
Classical variation of parameters

formula, 465
Clepsydra, water clock, 160, 1168
Closure, 301
Co-exist, 799
Co-Existence, 754
Coefficient in a differential equation, 93
Coefficients of a linear system, 176
Cofactor, 348

column expansion, 349
row expansion, 349

Cohabitation, 753
ideal, 753

Color separation, 307
Column dimension, 294
Column space, 410
Column vector, 294, 304
Combination, 176, 323
Combination row operation, 323
Combo

acronym, 177
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Companion Matrix, 846
Companion matrix, 914
Compartment

analysis, 815
linear cascade, 815

Competition
Newton’s law, 828, 834
system, Newton and Hooke forces,

929
Competition in biology, 797
Competition method, 932
Competition models, 790
Complete, 673
Completeness

orthogonal series, 1002
Component

componentwise addition, 296
vector, 294

Compound Pendulum, 494
Computerization, 65
Concentration, 111

salt, 814
uniform, 816

Conduction, 148
Connect-the-dots, 35
connect-the-dots, 1031
Connectivity of a network, 831
Conservation Law, 805
Conservation law, 162, 1024
Consistent

linear algebraic system, 176
Constant coefficient, 442
Constant harvesting, 143
Control

bang-bang, 275
Controller

lunar lander, 275
Convection, 148
Convergence

absolute, series, 950
on an interval, 950

Convergent series
definition, 950

Convert
fixed vector to free vector, 297

Cooling
constant k, 31
Newton’s law of, 31

Coordinate space Rn, 298
Coordinate system, 706
Coordinates, 706

Corkscrew path, 130
Corrected trial solution, 104
Correction rule, 104
Correction Rule Illustration, 105
Corrector, 244
Coulomb’s law, 18
Coupled, see also Cross-coupled
Coupled system, 705
Coupling constant, 119
Course description

Survey, viii
Cover–up method, 624
Critical Point, 752
Critically damped, 525, 1421, 1422

example, 521
Cross-coupled, 706, 707
Cross-out determinant or minor, 348
Cross-sectional area, 148
Cross-terms, 710
Cumulative error E, 247
Current in amperes, 17
Cycle, 492

D
d’Alembert equation, 67
Daily interest rate, 23
Damped

critical, over, under, 513
second order system, 848

Damped vibration, 510
Damper

piston and cylinder, 509
Damping

critically, over, under, 513
watch balance wheel, 509

Dashpot, see also Damper
constant, 510

Data analysis
subspace, slot racer, 299

DC-gain, 655
Decay constant, 19
Decay model, 3
Defective eigenvalue, 896
Defective matrix, 896
Degenerate Node, 775
Dependence

any number of vectors, 377
Dependent, 464

abstract space, 381
geometric in R2, 380
three vectors, 380
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Wronskian test, 857
Destructive interference, see also Beats
Determinant

Adjoint, 349
Adjugate, 349
Checkerboard sign, 348
Cofactor, 348
Cofactor expansion, 349
Minor, 348
of coefficients, 344

Diagonal form
real P , 878

Diagonalizable, 674
Diagonalizable matrix, 875
Dial thermometer, 5
Differential eqaution

linear, 850
Differential equation

first order, 31
Differential Operator, 557
Digital photo, 305, 372
Digital photograph, 298
Dimension

linear algebraic system, 207
Dimension of a vector space, 405
Dinosaur fossil, 26
Dirac impulse, 601, 644
Direct Sum, 428, 1376
direct sum, 749, 1540
Direction field, 40

MAPLE, 47
MATHEMATICA, 47

Discontinuities of f or fy, 64
Discrete dynamical system, 703
Discriminant, 513
Displacement

systems, vector x, 923
vector x, 933

Displacement vector, 828
Distance

functions, 997
Distance model, 267
Distinct roots

complex, 621
real, 621

Distribution
Laurent Schwartz, 647

Divergence
on an interval, 950

Divergent series
definition, 950

Dot product, 302
Downstream drift, 78
Drag coefficient, 128
Drag factor, 130
Droplet, 147
Dsolve Engine in Maple, 66
Dynamic

state space, 703
Dynamic dashpot, 935
Dynamic fluid viscosity, 128
Dynamical equation, 162, 1025

E
Earth’s escape velocity, 131
Earthquake magnitude, 836
Easily-Solved equation, 574
Eccentricity, 278
Effective annual yield, 24
Eigenanalysis, 676
Eigenpair, 669
Eigenpair Equations, 670
Eigenpair packages, 675
Eigenspace, 699, 1498
Eigenvalue, 669
Eigenvalues, 669, 709
Eigenvector, 669
Eigenvectors, 669, 709
Electrical network, 293
Elementary Combination Matrix, 330
Elementary Multiply Matrix, 331
Elementary Swap Matrix, 331
Elimination constant of a drug, 21
Ellipse

polar equation, 547
standard form, 710

Ellipse equation, 546
Emissivity, 149
Engineering firm and retirement, 24
Entry

vector, 294
Envelope curves

underdamped case, 514
Equal matrices, 304
Equation

as an answer, 32
Equilibria, 752
Equilibrium, 83, 764, 1542
Equilibrium method, 575
Equilibrium Point, 752
Equilibrium Solution, 752
Equilibrium solution, 33, 83
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Equivalent
linear algebraic system, 176, 323

Equivalent free vectors, 295
Equivalent Integral Equation, 1030
Equivalent integral equation, 1030
Error function

erf, 230
Errors

constant coefficient equation, 433
Escape velocity, 131

Problem, 132
Euler, 553
Euler base atom, 104, 432, 441, 452,

470, 1383
Euler solution atom, 104, 432, 440, 452,

470, 1382
Euler solution atoms, 432, 623, 917
Euler’s approximation, 41
Euler’s method, 244
Euler’s numerical method, 1031
Euler’s Substitution, 432
Euler’s substitution, 432, 568
Euler’s Test, 1031
Euler’s test, 1031
Euler’s visulation

direction field, 40
Euler, L.

visualization, direction field, 40
Euler, Leonhard, 1031
Evaporative cooler, 114
Exact differential equation, 162
Exact solution, 247
Existence

Closed-form, 66
General theory, 67

Explicit
equation, 34

Explicit solution, 34, 85
Explosion

Population, 142
Explosion–extinction, 142
Exponential

properties, 2
Exponential integral function Ei, 1677
Exponential matrix, 865
Exponential order, 595
Exposure meter, 16
Extension of solutions, 61
External Force, 510
External force

systems, 930

vector F , 834, 847
External Frequency, 506
Extinction, 57, 142, 754, 799

F
Factor Theorem, 713
Factored form, 558
Factorization of Y ′ + p(x)Y , 96
Fail, 1032
Fail-safe mechanisms, 65
Falling droplet, 147
Faraday’s law, 17
Final Trial Solution, 580
Find the nullspace, 209
Finite blowup, 249
Finite blowup of solutions, 71
Finite dimensional vector space, 405
First Frame, 326
First order

differential equation, 31
First order linear, 93
First-order reaction, 21
Fisheries and Tilapia, 285
Fixed vector, 294
Fixed vector model, 294
Flame propagation, 259, 1273
Flask cooling, 5
Flow Rate, 815
Foot-candle, 16
Forced

vibration, 510
Forced Damped Spring–Mass System,

510
Forced spring-mass, 506
Forced system, 847
Forcing term, 93
Forecast, 827
Four Fundamental Subspaces, 739
Four fundamental subspaces

Gilbert Strang, 420
Fourier Coefficient Formula, 1000
Fourier replacement, 677
Fourier’s heat model, 691
Fourier’s method, 566
Fps system of units, 125
Free

vibration, 510
Free fall, 31
Free variable, 186, 188, 196
Free vector, 295

add and subtract, 297
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Addition, 295
Scalar multiplication, 295

Free vector model, 295
Free Vibration, 491
Frequency, 492
Frobenius differential equation, 968,

969
Frobenius solution, 970
Frontal area, 128
Function

exponential order, 595
Function space, 298
Fundamental theorem of calculus, 31,

1008
Fundamental Theorem of Linear

Algebra, 428, 1376
Funnel, 53

G
g

acceleration due to gravity, 547
G - universal gravitation constant, 547
Gamma function, 603, 654, 1671
Gamma function Γ, 601
Gauss-Jordan elimination, 174, 325
Gaussian elimination, 174
Gaussian quadrature, 987
General solution, 76, 194, 195, 431

2nd order, 442
differential system, 852
linear algebraic system, 370
standard, 189

General Solution vector form, 840
Generalized eigenspace, 902
Generalized eigenvectors, 895

matrix P , 894
Generalized factorial

Gamma function, 603
Generalized Fourier Coefficients, 999
Generalized Fourier series, 999
Geometric independence, 381
Geometric multiplicity, 896
Geometric sum formula, 19
Gibbs vector model, 296
Global coordinates, 707
Gompertz equation, 151
Gompertzian relation, 151
Google search, 715
Grace period, 22
Grams, 490
Graph

as an answer, 32
Graphics

symbolic solutions, 433
Gravitational acceleration g, 547
Gravitational Constant, 490
Gronwall

Lemma, 850
use in zero solution proof, 860

Group of Euler atom A, 474
Growth model, 3
Growth-decay

differential equation, 4
initial value problem, 4

Gymnast’s Equation, 494

H
Half–wave rectification, 619, 1478
Half-life, 20

Radium, 25
Half-time insulation constant, 113
Hand plot, 227
Hand-written exercise, ix
Hard force F , 805
Harmonic Oscillator, 491
Harmonic oscillator, 548
Harvest

Constant, 143
Non-constant, 143
Periodic, 143

Head Minus Tail, 297
Head minus tail rule, 380
Heaviside function, 644
Heaviside’s method, 620
Heaviside, Oliver, 620
Hermite polynomials, 1004, 1688
Hermite’s equation, 1004, 1689
Heun’s method, 244, 1031
Hidden values, 709
Hidden vectors, 709
Hoëné, Jósef Maria, 385
Homogeneous

differential system, 813, 850
linear algebraic system, 175, 176

Homogeneous class A equation, 167
Homogeneous class C equation, 167
Homogeneous first order, 67
Homogeneous solution, 95

xh, yh, uh, 95
Hooke’s constant, 490
Hooke’s Law, 490
Hooke’s matrix, 834, 846, 930
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Horizontal asymptote, 1018
Hot chocolate, 5
Hybrid course, ix
Hybrid method, 577
Hyperbolic function, 129
Hyperplane, 427, 1370

I
Ideal suspension, 939
Identity matrix, 311
Image, 410

matrix, 407
Image sensor, 305

Checker board, 305
Implicit

equation, 34
Implicit function theory, 1041
Implicit solution, 34, 85
Improper Node, 775
Improper node, 782
Improper rotation, 737
Inconsistent

linear algebraic system, 176
Inconsistent system, 204
Independence

Vectors, 369
abstract space, 381
geometric, two vectors, 379
Strang’s special solutions, 370

Independent, 370, 464
Indicial Equation, 969
Infinite dimensional vector space, 405
Infinite sequence spaces, 298
Infinitely Long Column Vectors, 374
Inhibition due to food or space, 797
Initial condition, 4, 33

2nd order, 442
Initial position, 126
Initial state, 4
Initial Trial Solution, 580
Initial Trial Solution Rule, 917
Initial value problem, 33, 431

2nd order, 442
systems, 855

Initial velocity, 126
Inner Product, 996
Inner product space

real, 996
Input forcing term, 93
Input Rate, 815
Insulation constant

Half-time, 113
Insulation constant, remarks, 119
Integral, 31
Integrating factor, 167, 447

W (x) = e
∫
p(x)dx, 94

fraction (YW )′/W , 96
Method, 96
method, 96
simplify, 97
trial, 167

Intensity
candela, 16
Lux, 16

Interest
annual interest rate, 18
compound, 18
continuous, 18
Daily, 18
Quarterly, 18
rate per annum, 18
simple interest, 18

Invariant, 709
Inverse

how to find A−1, 329
Inverse matrix, 313
Inverse problem, 656
Inverse square law, 16
Inverse Test, 336
Irregular, see Singular point
Isobar, 162
Isocline grid method, 43
Isoclines, 764, 1544
Isolated equilibrium, 768
Isotherm, 162
Isotope disintegration, 26
Iterate

in dynamical system, 703

J
Jacobian matrix, 780
Jeweler’s bench experiment, 16
Johannes Kepler (1571-1630), 546
Jordan block, 894

real, 903
Jordan chain, 895
Jordan chain relations, 895
Jordan decomposition, 894
Jordan form, 894
Jordan’s decomposition, 894
Jordan’s theorem, 741
Joules, soft drink, 149
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Jump, 600, 1458
discontinuity, 599, 1455

Jump discontinuity, 64, 595

K
Kümmer’s method, 579
Kümmer, E.E., 11
Kepler’s equation, 278
Kepler, J., 546
Kernel, 410
Kernel Theorem, 300
Kilograms, 490
Kinetic Energy, 501
Kinetic energy, 805
Kirchhoff

node law, 17
Kirchhoff’s voltage law, 17

L
Lagrange, Joseph Louis, 467
Laguerre polynomials, 1004, 1689
Laguerre’s equation, 1004, 1693
Landau

Edmund, German mathematician,
249

Landau symbol
Big Oh, 249

Laplace
linearity of transform, 595

Laplace integral, 591, 593
Laplace is zero at s =∞, 596
Laplace method, 593
Laplace transform

direct formula, 591
Laplace transform calculus, 601
Laplace’s method, 591
Last Frame, 326
Last frame algorithm, 189
Laurent Series, 628
Law of mass action, 21
Lb

lb or pound, 125
Libre, 125
Pound, pondo, pund, 125

Lead variable, 185, 196
Leading one, 324
Least squares, 299
Legendre differential equation, 985
Legendre function of the first kind, 989
Legendre function of the second kind,

989

Legendre polynomial, 985
Legendre polynomial of order n, 985
Legendre series, 1002
Leibniz notation, 1005
Length, 302

unit vector, 722
Leontief

Wassily, economist, 704
Leontief input-output models, 704
Lerch’s 1903 cancellation law, 592
Leslie matrix, 704
Leslie model, 704
Level curve, 162
Libby, 26
Libby, Willard S., 19
Libra pondo, 125
Library of Special Methods, 481
Libre, 125
Lidocaine, 822
Lie method, 67
Light flux, 16
Limited environment, 142
Linear algebra, 293
Linear Cascade, 815
Linear combination, 301

functions, 453
Linear differential equation, 93

2nd order homogeneous, 442
2nd order non-homogeneous, 442
higher order forcing term, 451
higher order homogeneous, 451
higher order input, 451
higher order non-homogeneous,

451
Linear drag, 127
Linear independence

functions, 453
Linear method, 67
Linear motion, 1006
Linear system

differential, 850
differential equations, 813

Linearization, 1006
Linearize by Jacobian, 780
Linearized pendulum, 494
Linearly Independent, 854
Linearly independent, 370
Lipschitz condition, 69
Local coordinates, 707
Logarithm

properties, 2
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Logarithmic spiral, 152
Logistic equation, 7, 142
LR-circuit, 17, 18, 22
Lumen unit, 16
Lux, 16

M
Maclaurin formula, 950
Mailbox analogy, 295, 304
Malthus

population law, 31
Malthus’ law, 6
Maple plot, 227
Mass matrix, 828, 834, 846, 923, 930,

933
Match powers, 583
Mathematical Induction, 694
Mathematical model formulation, 66
Matlab plot, 228
Matrix, 294, 304

Addition, 305
augmented, 321
Computer storage, 304
Diagonal, 311
diagonal, 311
Equality, 304
exponential, 865
generalized eigenvectors, 894
Inverse, 313
Lower triangular, 311
Multiply, 308
Scalar, 311
Scalar multiplication, 305
Square, 311
stochastic, 704
Symmetric, 314
symmetric, 722
Toolkit sequence, 325
Triangular, 311
Upper triangular, 311
Vector package, 304
Visualization of multiply, 310

Matrix algebra, 312
Matrix multiply on paper, 309
Matrix space, 298
Maxima plot, 227
Maxwell, James Clerk, 306
Mean-Square convergence, 999
Meat thermometer, 10
Mechanical energy

total, 501

Mechanical system, 293
Mercury, 277
Method

Direction field, 40
Method of atoms, 623
Method of potentials, 163
Method of Undetermined Coefficients,

104
Method of Variation of Parameters,

464, 912
Metric scaling, 669
Microtus Arvallis Pall, 9
Minimal

parametric solution, 220
Minor, 348

determinant, 348
Mixture law, 111
Mks system of units, 125
Modified Euler method, 244
Modified Euler numerical method, 1031
Mult

acronym, 177
Multiple roots

partial fractions, 622
Multiplicity, 478

algebraic, geometric, 896
Multiply, 176, 323
Multiply row operation, 323
Myopic algorithm, 943

N
Natural Frequency, 491, 506
Near point, 726
Near-sighted algorithms, 942
Negative of a matrix, 311
Newton

cooling law, 4
Second law, 125
second law, 31
Universal gravitation law, 125

Newton and Kepler, 546
Newton cooling, 148

Curious conditions, 5
solution, 5

Newton’s method, 753
Newton’s Second Law, 490
Newton’s universal gravitation law, 547
Newton-cotes rule, 269
Newtons, 125
Nilpotency of N , 905
Nilpotent matrix, 905
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Nobel Prize 1960
Libby, 19

Node, 51, 770
current, 830
proper, star, improper, 782

Non-equilibrium solution, 83
Non-homogeneous

differential system, 813, 850
non-homogeneous system, 174
Non-homogeneous term, 93
Non-linear differential equation, 97
Non-rotating phase portrait, 772
Non-uniform data, 1032
Non-uniqueness, 33
Nonhomogeneous

linear algebraic system, 175
Nonlinear drag, 128
Norm, 302

functions, 997
Normal equation, 728, 745
Normal to a plane, 178
Not geometrically independent, 380
Not separable, 84
Null

nullspace prefix, 209
Nullcline, 764, 1543
Nullity, 197, 207

of a matrix, 409
Nullspace, 410

representation, 210
Nullspace Theorem, 300
Numeric table, 35
Numerical instability, 66
Numerical method, 35
Numerical method failure, 64, 69

O
Observable, 526, 531, 753, 1426
Octave, 524, 1419
Octave plot, 228
Odd-even identities, 491
Ohm’s law, 18
Oiler

correct pronunciation of Euler, 41
Operational Calculus, 557
Optical law of reflection, 152
Orbit, 751, 754

eccentricity, 278
Orbit spirals in, 770
Orbit spirals out, 770
Order n, 251

Ordinary Point, 965
Orifice, 148
Orthogonal, 303, 383, 722, 729

functions, 997
orthogonality conditions, 383
pairwise, 383
Triad, 380

orthogonal, 996
Orthogonal complement, 428, 1375
Orthogonal projection, 724, 1000
Orthogonal series method, 999
Orthogonal triad, 295, 708
Orthonormal, 709
Orthonormal matrix, 729
Output Rate, 815
Output solution, 93
Oven, 10
Over damped, 525, 1421, 1422

example, 521
Overflow

integer, 248

P
Package

fixed vector, 294
PageRank algorithm, 715
Pangasius, 284
Paper

matrix multiply, 309
Parabolic mirror, 151
Parameter, 194, 195

linear algebraic system, 194
Parametric equations, 194, 195
Parametric form, 1007
Parametric solution, 195
Parking lot analogy, 302
Parking space, 298
Parseval’s equality, 1002
Partial fraction

real form, 621
theory, 620

Particular solution, 76
xp, yp, up, 95
yp, 95

Pass, 1032
Pass and Fail, 1032
Peano, 68
Peano existence theorem, 68
Peano’s theorem applied, 65
Pendulum

damped, 808
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linearized, 807
linearized compound, 495
nonlinear, 807
simple, compound, physical, 494

Pendulum Equation, 493
Period, 492

dynamical system, 703
Periodic input, 64
Permutation matrix, 358
Pesticide Model, 795
Pet door

equation, 512
Phase angle, 492
Phase line diagram, 51
Phase Plane, 751
Phase plane, see also Scenes
Phase Portrait, 751, 754
Phase portrait, 52
Phase shift, 492
Phase-Amplitude form, 492
Photo digital, 372
Photocell, 16
Photon, 16
Physical Pendulum, 494
Physical stability, 759
Physically Observed, 760
Physics vector model, 295
Picard

Linear first order, 102
Picard iterate example, 71
Picard iterates, 68
Picard iteration, 69
Picard-Lindelöf, 68
Pickerel, 290
Piecewise Continuous

on each finite subinterval, 595
Piecewise-defined coefficients, 67
Piecewise-defined input, 64
Pivot column, 324, 408
Pivot method, 408
Pixel, 305

digital photo, 372
Planar system

constant linear, 767
Plane equation, 178
Point-slope form, 1006
Pole, 627, 628

order, 628
Population

dynamics, 31
flux, 6

human world population, 6
non-human, 6

Position of a particle, 126
Position-Velocity substitution, 446, 845
Potassium-40, 20
Potential

Method, 163
problem and exactness, 162

Potential Energy, 501
Potential energy, 805
Pound, 125
Pounds, 490
Power method, 716
Power series, 950

solution, 960
Power series method, 67
Practical resonance, 531
Predator, 790

Walleye, 290
Predator-Prey, 753
Predator-prey models, 790
Predictor, 244
Prey, 290, 790
Price, 827
Principal coordinates, 669
Principle of Superposition, 851
Processed equation, 198
Processed row, 325
Production, 827
Projection

orthogonal, 724
shadow, orthogonal, 1000

Proper Node, 775
Proper node, 782
Proper rotation, 737
Pseudo–period, 533
Pseudo–periodic solution, 533
Pseudo-Period, 514
Pulse

Laplace, definition, 604
unit, 644

Pulse train, 619, 644, 1476
Pythagorean identities, 491

Q
Quadratic form, 710
Quadrature, 74
Quadrature method, 67, 74, 75
Quasiperiodic, 1419

R
Radiant energy, 148
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Radiation, 148
Stefan’s law, 31

Radioactive chain, 119
Radioactive decay, 19
Radium-224, 25
Radium-226, 25
Radius of convergence, 950
Radius of the earth, 8
Radon, 25
Ramp function, 602
Range, 410
Rank, 197, 207

of a matrix, 409
Rapidly Varying, 508
Rate

compartment, input, output, 815
Rate of change, 1007
Rational first order, 67
Rational Root Theorem, 713
Raw Data, 1031
raw plot data, 1031
RC-circuit, 17, 18, 22
Reaction constant, 21
Real Jordan Decomposition, 904
Rectangular Rule, 1029
Rectangular rule, 232, 1007, 1029
Recurrence

relation for a table, 226
Recursion, 37

series, 957
recursion formula, 1020
Recursive Method, 584
Reduced echelon system, 196
Reduced row-echelon form, 197
Reduced row-echelon form rref(A), 325
Redundant

parametric solution, 220
Regression

revert the mean, 744
simple linear, 744

Regressors, 744
Regular singular point, 969
Relative error, 1032
Release test

seismoscope, 511
Remarks on Simpson’s Rule, 1030
Repeller, 55, 771
Repelling spiral, 771
Residential Heating No sources, 113
Residue, 627, 628
Resonance

pure, 528
pure from an identity, 532

Rest Point, 752
Rest solution, 33, 83
Restocking, 143
Restore mass to equilibrium, 804
Restoring Force, 804
Restoring force, 490
Restriction equation, 299
RHS right hand side, 176
Ricatti equation, 67
Richter scale, 836
Richter, C., 836
Riemann–Stieltjes Integration, 644
Right hand side RHS, 176
Rigid motions, 295
rigid motions, 1015
River crossing, 77

Example, 78
Method of quadrature, 79
Special model, 78

RK4 method, 245
Roast, 10
Robotic, 298
Rodrigues’ formula, 985
Rolling Wheel Equation, 497
Roots:distinct and multiple, Laplace,

622
Rotating phase portrait, 772
Rotation, 710
Rough graphs, 1016
Row dimension, 294
Row operation

Documentation, 323
Row space, 410
Row vector, 294, 304
RREF, 324

reduced row-echelon form, 197
step, 199

RREF test
visual, 325

Runge-Kutta numerical method, 1032

S
Saddle, 770, 808
Sales, 827
Salt

uniform concentration, 816
Salt concentration, 814
Sample

matrix, 384
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Sampled product, 358
Samples, 384
Sampling

method for independence, 384
Sampling Matrix, 384
Sampling method

partial fractions, 622
Scale factor

eigenvalue and Fourier, 676
Scenes, 805
Scilab plot, 228
Second-order reaction, 21
Seismic sea wave, 150
Seismoscope

Cecchi, simple, 510
Self-Governing, 751
Self-governing, 51
Semi-axes, 708
Semi-axis directions, 708
Semi-axis lengths, 708
Semicycle, 492
Separable, 82

Form, 82
Separated form, 83

Separable method, 67
Separation test, 83
Separatrix, 773, 782
Sequence space, 298
Series

interval of convergence, 951
radius of convergence, 950
recursion relations, 957
trial solution, 953
undetermined coefficients, 953

Shadow projection, 724, 1000
vector, 724, 1000

Shear
horizontal, 679

Signal equation, 182, 187
Simple average, 1007
Simple Harmonic Motion, 491
Simple jump discontinuities, 64
Simpson test, 1032
Simpson’s Polynomial Rule, 1030
Simpson’s polynomial rule, 233, 1030
Simpson’s Rule, 1029
Simpson’s rule, 232, 1029
Simpson’s rule, remarks, 233, 1030
Simpson’s Test, 1032
Sine Integral, 952, 1665
Singular, 968

values of symmetric matrix, 733
Singular Point, 965
Singular point

regular, irregular, 969
Sink, 51
Slope, 1006
Slope-intercept form, 1007
Slot racer

subspace example, 299
Slowly Varying, 508
Slugs, 490
Sodium pentobarbital, 27
Soft force F , 805
Soft touchdown, 131, 272
Solution

as an answer, 32
Corrected trial, 104
Differential equation, 32
Equilibrium, 33
Explicit, 34
Implicit, 34
linear algebraic system, 176
Linear system, 174
Rest Point, 33
Skipped by maple, 65
standard general solution, 189
Steady State, 33

Solution structure, 432
Solve Mdx+Ndy = 0, 162
Source, 51
Space, 209

Parking, 209
Storage, 209

Span
example, 389
of a set of vectors, 369
of linear combinations, 301

Span theorem, 389
Special matrices, 311
Special solution

example, 388
Strang, 671

Special solutions, 370
Ax = 0, Strang, Gilbert, 369

Speed, 1008
general solution, 433

Spiral, 770
Spiral nonlinear, 782
spot-check, 1030
Spout, 53
Spread of a disease, 142
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Spread of rumors, 142
Spring-Mass system

forced and unforced, 506
Spurious solution, 83
Square matrix, 311
Stable, 54, 759
Stable Equilibrium, 760
Stable equilibrium, 54, 759
Stable fish population, 57
Standard basis, 851, 865

{wk}nk=1, 860
Standard basis of Rn, 405
standard curve library, 1015
Standard form

linear differential equation, 93
straight line y = mx+ b, 1007

Standard general solution, 189, 195
Standard graphic, 1032
Standard parametric equation, 195
Standard unit vector, 311
Star Node, 775
Star node, 782
Stationary Point, 752
Stationary solution, 83
Steady state, 526, 1426
Steady state gain, 655
Steady–State solution, 531
Steady-state current, 120
Steady-state solution, 33
Stefan’s radiation law, 148
Step size

numerical method, 942
Stiff, 259, 1272

differential equation, 250
stiff differential equation, 259, 1273
Stiffness matrix, 828, 923, 933
Stochatic

matrix, 704
Stocking size

minimum, bifurcation diagram, 57
Storage space, 298
Straight line equation, 178
Strang

four fundamental subspaces, 420
special solutions, 369, 370

Strang’s special solutions, 369
Stream velocity, 78
Structure

of solutions, 432
Structure of solutions, 95
Study in isolation, x

Suggestions
Hand-written exercises, ix

Sum
series, 950

Superimpose graphs
sound waves, 507

Superposition, 95
sound waves, 507

superposition, 95
superposition method shortcut, 99
Superposition of solutions, 96
Survival, 799

chemostat, 821
Suspension

active, 935
ideal, active, 939

Sustainable harvest, 57
SVD, 733
Swai, 284
Swap, 176, 323

acronym, 177
Swap row operation, 323
Swinging Rod, 495
Swinging rod

linearized, 495
Switch example existence-uniqueness,

70
Switches, 64

input, space heater, 820
Symbolic solution, 225, 433
Symbolic solution formula, 65
Symmetric matrix, 722
System

second order, 923

T
T-butyl alcohol, 27
T-butyl chloride, 27
Table

as an answer, 32
numerical method, 942

Tangent line, 1006
Tank draining, 31
Tank geometry, 147
Target equation, 177
Taylor polynomial, 963
Taylor series, 952, 963
Taylor’s method, 583
Terminal velocity, 130, 267

Finite, 128
Text Organization, viii

1722



INDEX

The Mechanical Universe, 536
Theoretical solutions, 65
Thermal

conductivity κ, 119
Three possibilities, 175
Three properties

that define a determinant, 359
Three rules

documenting, 177
Threshold population, 143
Tilapia, 284
Time constant, 121
To the student, ix
Toolkit

algebraic, vector space, 371
vector, 297

Toolkit sequence, 325
Torricelli’s law, 31
Torricelli, E., 147
Torsional Pendulum, 496
Touchdown

soft landing, 272
Trace of a matrix, 854
Trajectory, 751
Transfer function, 636, 656, 1482
Transient, 526, 1425, 1426
Transient Observations, 760
Transient solution, 530
Transit time, 78
Transition

matrix in dynamical system, 703
Trapezoidal Rule, 1029
Trapezoidal rule, 232, 1029
Trapezoidal Test, 1031
Trapezoidal test, 1031
Tree rings

Sequoia, 20
Triad

of vectors, 380
orthogonal, 380

Trial solution, 104, 561, 576, 959
Truncation error, 248
Tsunami, 150
Two-link radioactive chain, 119
Tycho Brahe (1546-1601), 546

U
Uncoupled, 706
Uncoupled system, 705
Undamped vibration, 510
Under damped, 525, 1421, 1422

example, 521
Undetermined coefficients, 104, 561,

576
2nd order, 470
First order, 104
method 2nd order, 470

Unforced
vibration, 510

Uniform grid method, 43
Uniform salt concentration, 814
Uniformly-Spaced and Adaptive Data,

1032
Uniqueness, 33

Theoretical solution, 65
Unit pulse, 644
Unit step, 644
Unit step function, 602
Unitize, 722
Unknowns in a linear system, 175
Unprocessed equation, 198
Unprocessed row, 325
Unstable, 54, 759
Unstable equilibrium, 54, 759, 760
Uranium-238, 20

V
Vandermonde determinant identities,

387
Vandermonde matrix, 386
Variable

missing or free, 188
Variable Harvesting, 143
Variable list

linear algebraic system, 321
Variables-separable method, 83
variation of constants, 95
variation of constants formula, 97
variation of parameters, 95
Variation of Parameters Formula, 560
Variation of Parameters formula, 912,

914
Vector, 294, 297

fixed, 294
Formal package, 298
Toolkit, 297

Vector addition, 294
Vector algebra, 302
Vector model comparison, 297
Vector models

comparison, 297
Vector Position, 846
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Vector scalar multiplication, 294
Vector shadow projection, 724
Vector space

Basis, 370
Dimension, 405
Finite dimensional, 405
Infinite dimensional, 405
Toolkit, 297

Vectors
Independence, 369
Span, 369

Velocity, 1008
Velocity model, 267
Velocity of a particle, 126
Ventricular Arrhythmia, 822
Verhulst, P.F., 7
Verne, Jules, 131
Veterinarian, 27
Viscous domain, see also Dashpot
Visual RREF Test, 325
Visualization

Matrix Addition, Scalar Multiply,
306

Vito Volterra, 790
Voltage

drop formulas, 17
Volterra competition system, 797
Volterra predator-prey system, 790
Volterra, V

Adriatic sea, 289
Vortex shedding, 536

W
Wall thermometer, 5
Water clock, 160, 1168
Weight, 490
Weighted dot product, 997
Weights

in a linear combination, 370

Working set, 299
Wronski, 385
Wronskian determinant, 385, 464, 854

X
X

Exponential matrix eAt, 865
X suspension system mass

displacement, 936
X, Y next table entry, 238
X ′ = Y velocity substitution, 447
→
X= P

→
x eigenanalysis, 668

x, see also Period x to y
X = Y 2 parabola, 158

from state
→
x into state

→
y , 703

xh

homogeneous solution, 95
xp

particular solution, 95

Y
Y

integrating factor fraction, 96
y

y = wv, Kümmer, 11
change variable y = ecxz, 460

from state
→
y into state

→
x , 703

yh
homogeneous solution, 95

yp
particular solution, 95

Yellow Perch, 290
Yellow pike, 290
Yuler

mis-pronunciation of Euler, 41

Z
Zero matrix, 311
Zill-Cullen, 21
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PDF Sources

Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and linear alge-
bra, book format 7 x 10 inches, 1077 pages. Copies of the textbook are available in two
volumes at Amazon Kindle Direct Publishing for Amazon’s cost of printing and shipping.
No author profit. Volume I chapters 1-7, ISBN 9798705491124, 661 pages. Volume II
chapters 8-12, ISBN 9798711123651, 479 pages. Both paperbacks have extra pages of
backmatter: background topics Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with hyper-
link navigation to displayed equations and theorems. The header in an exercise set has a
blue hyperlink � to the same section in the solutions. The header of the exercise section
within a solution Appendix has a red hyperlink � to the textbook exercises. Solutions
are organized by chapter, e.g., Appendix 5 for Chapter 5. Odd-numbered exercises have
a solution. A few even-numbered exercises have hints and answers. Computer code can
be mouse-copied directly from the PDF. Free to use or download, no restrictions for
educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded to a
tablet, computer or phone to be viewed locally. After download, no internet is required.
Best for computer or tablet using a PDF viewer (Adobe Reader, Evince) or web browser
with PDF support (Chrome, FireFox). Smart phones can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or request an
answer, click the link below, then create a GitHub issue and post. Contributions and
corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues
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