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Foreword

Organization

Each chapter of the text is organized into sections that represent one or two
classroom lectures of 50 minutes each. Outside work for these divisions requires
one to six hours, depending upon the depth of study.

Each section within a chapter consists of three distinct parts. The divisions
represent the lecture, examples and technical details. Generally, proofs of
theorems or long justifications of formulas are delayed until after the examples.
The lectures contain only the briefest examples, figures and illustrations.

A key to a successful course is a weekly session dedicated to review, drill, answers,
solutions, exposition and exam preparation. While group meetings are important,
individual effort is required to flesh out the details and to learn the subject in
depth. The textbook design supports targeted self-study through its examples,
exercises and odd exercise solutions.

There is a defense for this style of presentation, matched equally by a long list of
criticisms. The defense is that this style represents how material is presented in
classroom lectures, and how the topics are studied in the private life of a student.
It is unexpected to read everything in a textbook and the style addresses the issue
of what to skip and what to read in detail. The criticisms include a departure
from standard textbooks, which intermix theory and examples and proofs. Page
flipping criticism applies to the printed textbook. The PDF textbook has em-
bedded links.

Prerequisites

Beginning sections of chapters require college algebra, basic high school geometry,
coordinate geometry, elementary trigonometry, differential calculus and integral
calculus. Several variable calculus and linear algebra are assumed for certain
advanced topics. Instructors are the best judges of what to include and what to
skip, concerning advanced topics in this textbook.
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Survey course

A complete survey course in differential equations for engineering and science
can be constructed from the lectures and examples, by skipping the technical
details supplied in the text. A deeper introduction to the subject is obtained by
reading the details. Such survey courses will necessarily contact more chapters
and trade the depth of a conventional course for a faster pace, easier topics, and
more variety.

Conventional Course

Differential equations courses at the undergraduate level will present some or all
of the technical details in class, as part of the lecture. Deeper study with technical
details is warranted for specialties like physics and electrical engineering. Hybrid
courses that combine the conventional course and the engineering course can be
realized.

To the Student

Expertise in background topics is expected only after review and continued use
in the course, especially by writing solutions to exercises.

Instructors are advised that an exercise list and subsequent evaluation of the
work is essential for successful classroom use of the text.

The text has nearly 3,600 exercises, supported by textbook examples and odd-
numbered solutions. Solutions are located in the PDF textbook + solution man-
ual.

To learn the subject, not only is it required to solve exercises, but to write
exercises, which is not different from writing in a foreign language.

Writing exercises requires two or more drafts and a final presentation. Engineer-
ing paper and lineless duplicator paper encourage final reports with adequate
white space between equations. Pencil and eraser save time. Pens and word
processors waste time.

Contributions to legibility, organization and presentation of hand-written exer-
cises were made at The University of Utah, by numerous creative engineering,
computer science, physics, biology and mathematics students, over the years
1990-2019. Their ideas produced the suggestions below in Table 1, which were
applied to the text examples, illustrations and exercise solutions.

X
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Table 1. Suggestions for Hand-Written Exercises 1990-2019

1. A report is hand-written by pencil on lineless paper or engineering paper.
It starts with a problem statement followed perhaps by a final answer
summary. Supporting material appears at the end, like a tax return.

2. Mathematical notation is on the left, text on the right, often a 60% to
40% ratio. One equal sign per line, equations justified left or aligned on
equal signs. Vertical white space separates equation displays.

3. Text is left-justified in a column on the right. It contains explanations,
references by keyword or page number, statements and definitions, ref-
erences to delayed details like long calculations, graphics, answer checks.

4. Every report has an answer check. It is usual to see back of book as
the only detail. Proofs have no answer check.

5. No suggestion is a rule: invent and develop your own style.

Work, School and Family

The textbook and the solution manual were designed for students who study
in isolation, their university schedule driven by their jobs and family. In spite
of forced isolation from the classroom, working students with families seek help
from others through telephone calls, online search, internet messaging, email,
office visits to the university, study groups, supplemental and online instruction.




Chapter 1

Fundamentals

Contents
1.1 Exponential Modeling . . . . ... ... ....... 2
1.2 Exponential Application Library ... ... .. .. 16
1.3 Differential Equations of First Order . . . . . . .. 31
1.4 Direction Fields ... ... .............. 40
1.5 Phase Line Diagrams . ... ... .......... 51
1.6 Computing and Existence . ... .......... 64

Introduced here are notation, definitions and background results suitable for use
in differential equations.

Prerequisites include college algebra, coordinate geometry, differential calculus
and integral calculus. The examples and exercises include a review of some
calculus topics, especially derivatives, integrals, numerical integration, hand and
computer graphing. A significant part of the review is algebraic manipulation of
logarithms, exponentials, sines and cosines.

The chapter starts with differential equations applications that require only a
background from pre-calculus: exponential and logarithmic functions. No dif-
ferential equations background is assumed or used. Differential equations are
defined and insight is given into the notion of answer for differential equations in
science and engineering applications.

Basic topics: direction fields, phase line diagrams and bifurcation diagrams,
which require only a calculus background. Applications of these topics appear
later in the text, after more solution methods have been introduced.

Advanced topics: existence-uniqueness theory and implicit functions. Included
are practical computer algebra system methods to assist with finding solutions,
verifying equations, modeling, and related topics.




1.1 Exponential Modeling

1.1 Exponential Modeling

Three model differential equations are studied through a variety of specific ap-
plications. All applications use the calculus exponential function y(t) = yoe*t.

Three Examples
These applications are studied:

Growth—Decay Models
Newton Cooling
Verhulst Logistic Model

It is possible to solve a variety of differential equations without reading this
book or any other differential equations text. Given in the table below are three
exponential models and their known solutions, all of which will be derived from
principles of elementary differential calculus.

dA
Growth-Decay i kA(t), A(0) = Ao
A(t) = Aoekt
, du
Newton Cooling e —h(u(t) —u1), u(0) = ug
w(t) = up + (up — u1)e™ ™
- dP
Verhulst Logistic pr (a —bP(t))P(t), P(0) = Py

. aP()
B bPy + (a - bpo)e—at

P(t)

These models and their solution formulas form a foundation of intuition for all
of differential equation theory. Considerable use will be made of the models and
their solution formulas.

The physical meanings of the constants k, Ag, h, u1, ug, a, b, P, and the variable
names A(t), u(t), P(t) are given below, as each example is discussed.

Background

Mathematical background used in exponential modeling is limited to algebra and

basic calculus. The following facts are assembled for use in applications. Prime

notation is used: ' = % and sometimes ' = %.




1.1 Exponential Modeling

Ine® =z, MY =y In words, the exponential and the logarithm are
inverses. The domains are —oco < z < o0, 0 <
y < 00.

=1, In(1) =0 Special values, usually memorized.

el — b In words, the exponential of a sum of terms is the
product of the exponentials of the terms.

(e)? = e Negatives are allowed, e.g., (e%) ' = e~ 2.

/

(e“(t)> =o' (t)e ) The chain rule of calculus implies this formula from
the identity %ex = ¢” where x = u(t) and ‘C%" =
u'(t).

ImAB=InA+InB In words, the logarithm of a product of factors is
the sum of the logarithms of the factors.

Bln(A) =1n (A7) Negatives are allowed, e.g., —In A = In(1/A4) when

B=-1.
!/
t
(In|u(t)]) = “ (t) The identity %ln(:r) = 1/x implies this general
u(t) version by the chain rule applied with = = wu(t),
de _ 1
o = u'(1).

Applied topics using exponentials inevitably lead to equations involving loga-
rithms. Conversion of exponential equations to logarithmic equations, and the
reverse, happens to be an important subtopic of differential equations. The ex-
amples and exercises contain typical calculations.

Growth-Decay Model

Growth and decay models in science are based upon the exponential equation
(1) y =0, yo and k constant.

The exponential e** increases if k > 0 and decreases if & < 0. A model based
upon the exponential is called a growth model if £ > 0 and a decay model
if £ < 0. Examples of growth models include population growth and compound
interest. Examples of decay models include radioactive decay, radiocarbon dating
and drug elimination. Typical growth and decay curves appear in Figure 1.




1.1 Exponential Modeling

20 20
Growth Decay

Figure 1. Growth and decay
0 0 1 0 0 1 curves.

Definition 1.1 (Growth-Decay Equation)
The differential equation

dy
2 —~ =k
(2) oy = kY
is called a growth-decay differential equation.

A solution of (2) is y(x) = yoe*?; see the verification on page 10. It is possible
to show directly that the differential equation has no other solutions, hence the
terminology the solution y = ype*® is appropriate; see the verification on page
11. The solution y = yoe*® in (1) satisfies the growth-decay initial value
problem

dy B B
(3) o = kY, y(0) = o.

The initial condition y(0) = yo means y = yo at x = 0. It can be written as
y(‘r)’z:(] = Yo-

How to Solve a Growth-Decay Equation

Numerous applications to first order differential equations are based upon equa-
tions that have the general form g—g = ky. Whenever this form is encountered,
immediately the solution is known: y(z) = yoe*®. The symbol ¥ is a constant
known as the initial state, because €** = 1 at z = 0 implies y(x) equals yo at

r=0.

Newton Cooling Model

If a fluid is held at constant temperature, then the cooling of a body immersed
in the fluid is subject to Newton’s cooling law:

The rate of temperature change of the body is proportional to the
difference between the body's temperature and the fluid's constant
temperature.

Translation to mathematical notation gives the differential equation

(4) W= h(u(t) — )




1.1 Exponential Modeling

where u(t) is the temperature of the body, u; is the constant ambient temperature
of the fluid and A > 0 is a constant of proportionality.

A typical instance is the cooling of a cup of hot chocolate in a room. Here, uy
is the wall thermometer reading and wu(t) is the reading of a dial thermometer
immersed in the chocolate drink.

Theorem 1.1 (Solution of Newton’s Cooling Equation)
The change of variable y(t) = wu(t) — u; translates the cooling equation du/dt =

d
—h(u—wuq) into the growth-decay equation %y(t) = —hy(t). Therefore, the cooling

solution is given in terms of uy = u(0) by the equation
(5) u(t) = ug + (ug — up)e ",

The result is proved on page 11. It shows that a cooling model is just a translated
growth-decay model. The solution formula (5) can be expressed in words as
follows:

The dial thermometer reading of the hot chocolate equals the wall
thermometer reading plus an exponential decay term.

Cooling problems have curious extra conditions, usually involving physical mea-
surements, for example the three equations

u(0) =100, w(l)=90 and wu(oco)=22.

The extra conditions implicitly determine the actual values of the three undeter-
mined parameters h, ui, ug. The logic is as follows. Equation (5) is a relation
among 5 variables. Substitution of values for ¢ and u eliminates 2 of the 5 vari-
ables and gives an equation for w1, ug, h. The system of three equations in three
unknowns can be solved for the actual values of uy, ug, h.

Stirring Effects

Exactly how to maintain a constant ambient temperature is not addressed by
the model. One method is to stir the liquid, as in Figure 2, but the mechanical
energy of the stirrer will inevitably appear as heat in the liquid. In the simplest
case, stirring effects add a fixed constant temperature Sy to the model. For slow
stirring, Syp = 0 is assumed, which is the above model.

Figure 2. Flask Cooling with Stirring.




1.1 Exponential Modeling

Population Modeling

The human population of the world reached seven billion in 2011. The estimate
for year 2021 is more than 7.7 billion.!

World Population Estimate
2020

7,794,798,739

Source: U.S. Census Bureau

The term population refers to humans. In literature, it may also refer to bac-
teria, insects, rodents, rabbits, wolves, trees, yeast and similar living things that
have birth rates and death rates.

Malthusian Population Model

A constant birth rate or a constant death rate is unusual in a population, but
these ideal cases have been studied. The biological reproduction law is called
Malthus’ law:

The population flux is proportional to the population itself.

This biological law can be written in calculus terms as

dP

— =kP(t

i (t)
where P(t) is the population count at time ¢. The reasoning is that population
flux is the expected change in population size for a unit change in ¢, or in the
limit, dP/dt. A careful derivation of such calculus laws from English language
appears in Appendix A.1.

The theory of growth-decay differential equations implies that population studies
based upon Malthus’s law employ the exponential algebraic model

P(t) = Pyelt=t0),

The number k is the difference of the birth and death rates, or combined birth-
death rate, ty is the initial time and P, is the initial population size at
time t = .

'Reference: https://www.worldometers.info/population/




1.1 Exponential Modeling

Verhulst Logistic Model

The population model P’ = kP was studied around 1840 by the Belgian demog-
rapher and mathematician Pierre-Francois Verhulst (1804-1849) in the special
case when k depends on the population size P(t). Under Verhulst’s assumptions,
k = a— bP for positive constants a and b, so that k£ > 0 (growth) for populations
P smaller than a/b and k < 0 (decay) when the population P exceeds a/b. The
result is called the logistic equation:

(6) P' = (a —bP)P.
Verhulst established the limit formula
(7) Jim P(t) = a/b,

which has the interpretation that initial populations P(0), regardless of size, will
after a long time stabilize to size approximately a/b. The constant a/b is called
the carrying capacity of the population.

Limit formula (7) for a > 0 follows from solution formula (8) below.

Theorem 1.2 (Verhulst Logistic Solution)
The change of variable y(t) = P(t)/(a — bP(t)) transforms the logistic equation
P'(t) = (a — bP(t))P(t) into the growth-decay equation 3'(¢t) = ay(t). Then the
logistic equation solution is given by

aP(0)
bP(0) + (a — bP(0))e—at’

(8) P(t) =

The derivation appears on page 11. The impact of the result is that a logistic
model transforms to a growth-decay model via a fractional change of variable.
The Verhulst logistic model reduces to the Malthus model when b = 0.
Then solution formula (8) reduces to the solution y = ype® of growth-decay
equation y' = ay, where y = P,yo = P(0). Solution formula (8) remains valid
regardless of the signs of a and b, provided the quotient is defined. Casea =b =0
means P’(t) = 0 and constant population P(t) = P,.

Examples

Example 1.1 (Growth-Decay)
Solve the initial value problem

dy
A 0) = 4.
o = 2 y(0)

Solution: This is a growth-decay equation y’ = ky, y(0) = yo with k = 2, yo = 4. One
way to decide on the constant & is to compute y’/y from the given differential equation.
Then 3 /y = 2 implies k = 2. Therefore, the solution is y = yoe** = 4€2*. No method is
required to solve the equation y' = 2y, because of the theory on page 3.
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Example 1.2 (Newton Cooling)
Solve the initial value problem

du

— = —=3(u(t) — 72), wu(0) = 190.

dt
Solution: This is a Newton cooling equation v’ = —h(u — u1), u(0) = uo with h = 3,
up = 72, ug = 190. Therefore, the solution is u(t) = uy + (ug — uy)e " = 72 + 11873,
No method is required to solve the equation u’ = —3(u — 72), because of the theorem on

page 5.

To eliminate memorization, use the substitution y = u — u; to transform the problem
to the growth-decay model 4/ = —hy with solution y = yge ". Then back-substitute
y = u — uy to solve for u(t).

In this particular case, let y = u — 72 to get 3/ = —3y, then y = yoe™> and finally
u— 72 = yoe 3. Value yo equals y(0). It is determined by the condition y(t) + 72 =
u(t) =190 at t = 0 (supplied as u(0) = 190) to give yo = 118 and then the final answer
is u(t) = 72+ 118e 3.

Example 1.3 (Verhulst Logistic)
Solve the initial value problem

dP
— =(1—-2P)P, P(0)=500.
dt
Solution: This is a Verhulst logistic equation P’ = (a — bP)P, P(0) = Py with a = 1,
b =2, Py = 500. Therefore, the solution is
500

Pt)= ———7—.
®) 1000 — 999e—*

No method is required to solve the equation P’ = (1 — 2P)P, because of the formula
supplied by Theorem 1.2.

Because of Verhulst solution formula complexity, there is no practical shortcut to obtain
the solution. The easiest route is to use the solution formula in Theorem 1.2.

Example 1.4 (Standing Room Only)

Justify the estimate 2600 for the year in which each human has only one square foot
of land to stand upon. Assume the Malthus model P(t) = 3.34e0-02(t=1965) ' ith ¢
in years and P in billions.

Solution: The mean radius of the earth is 3965 miles or 20,935,200 feet. The surface
area formula 47r? gives 5,507,622 billion square feet. About 20% of this is land, or
1,101, 524 billion square feet.

The estimate 2600 is obtained by solving for t years in the equation
3.34¢0-02(1=1965) — 1101524,

The college algebra details:

£0-02(t-1965) _ 1101524

Isolate the exponential on the left.
3.34 P

Solving for .
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In 0-02(4=1965) — 11y 399797 .6 Simplify the right side and take the
logarithm of both sides.
0.02(t — 1965) = 12.706234 On the right, compute the loga-
rithm. Use Ine" = u on the left.
12.706234
t =1965 + 002 Solve for t.
= 2600.3. About the year 2600.

Example 1.5 (Rodent Growth)

A population of two rodents in January reproduces to population sizes 20 and 110 in
June and October, respectively. Determine a Malthusian law for the population and
test it against the data.

Solution: However artificial this example might seem, it is almost a real experiment;
see Braun [Braun1986], Chapter 1, and the reference to rodent Microtus Arvallis Pall.
The law proposed is P = 2€%'/° which is 40% growth, k = 2/5. For a 40% rate,
P(6) ~ 2¢'%/% = 22.046353 and P(10) ~ 2¢2(19)/5> = 109.1963. The agreement with the
data is reasonable. It remains to explain how this “40% law” was invented.

The Malthusian model P(t) = Pyek*, with  in months, fits the three data items P(0) = 2,
P(6) = 20 and P(10) = 110 provided Py = 2, 2¢% = 20 and 2¢'% = 110. The
exponential equations are solved for & = In(10)/6 and k& = In(55)/10, resulting in the
two growth constants k = 0.38376418 and k = 0.40073332. The average growth rate is
39.2%, or about 40%.

Example 1.6 (Flask Cooling)

A flask of water is heated to 95C and then allowed to cool in ambient room tem-
perature 21C. The water cools to 80C in three minutes. Verify the estimate of 48
minutes to reach 23C.

Solution: Basic modeling by Newton’s law of cooling gives the temperature as u(t) =
ug + (up — ul)e_kt where u1, ug and k are parameters. Three conditions are given in the
English statement of the problem.

u(oo) =21 The ambient air temperature is 21C.
u(0) =95 The flask is heated at ¢ = 0 to 95C.
u(3) = 80 The flask cools to 80C in three minutes.

In the details below, it will be shown that the parameter values are u; = 21, ug—u; = 74,
k = 0.075509216. Then u(t) = 21 + 74e~0-075509216 "¢ i minutes.

To find uq:
21 = u(c0) Given ambient temperature condition.
= lim u(t) Definition of u(00).
t—o00
= lim u; + (ug — uy)e™ ¥t Definition of u(t).
t—o0
=u The exponential has limit zero.

To calculate ug — uy = 74 from u(0) = 95:
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95 = u(0) Given initial temperature condition.
=u1 + (up — ul)efk(o) Definition of u(t) at t = 0.
=21 4+ ug —uy Use €0 = 1.

Therefore, ug — u; = 95 — 21 = 74.

Computation of k starts with the equation u(3) = 80, which reduces to 21+ 74e 3% = 80.
This exponential equation is solved for k as follows:

80 — 21

e 3k = I Isolate the exponential factor on the

left side of the equation.
_3k 80 — 21 i i

Ine =In 1 Take the logarithm of both sides.

—3k =1In(59/74) Simplify the fraction. Apply Ine* = u
on the left.

1
k= gln(74/59) Divide by —3, then on the right use

—Inz =1In(1/x).

The estimate u(48) ~ 23 will be verified. The time ¢ at which u(¢) = 23 is found by
solving the equation 21 + 74e~** = 23 for t. A checkpoint is —kt = In(2/74), from which
t is isolated on the left. After substitution of k = 0.075509216, the value is ¢t = 47.82089.

Example 1.7 (Baking a Roast)
A beef roast at room temperature 70F is put into a 350F oven. A meat thermometer
reads 100F after four minutes. Verify that the roast is done (340F) in 120 minutes.

Solution: The roast is done when the thermometer reads 340F or higher. If u(t) is the
meat thermometer reading after ¢ minutes, then it must be verified that «(120) > 340.

Even though the roast is heating instead of cooling, the beef roast temperature u(t) after
t minutes is given by the Newton cooling equation u(t) = u; + (up — u1)e ", where uy,
ug and k are parameters. Three conditions appear in the statement of the problem:

u(o0) = 350 The ambient oven temperature is 350F.

u(0) =70 The beef is 7T0F at ¢t = 0.

u(4) = 100 The roast heats to 100F in four minutes.
As in the flask cooling example, page 9, the first two relations above lead to u; = 350
and ug — u; = —280. The last relation determines k from the equation 350 — 280e ¥

100. Solving by the methods of the flask cooling example gives k = 1 In(280/250) ~
0.028332171. Then u(120) = 350 — 280~ 120F ~ 340.65418.

Details and Proofs

Growth-Decay Equation Existence Proof. It will be verified that y = yoe*® is a
solution of y’ = ky. It suffices to expand the left side (LHS) and right side (RHS) of the
differential equation and compare them for equality.

dy

d
LHS = & The left side of *Y = ky is dy/dx.
dx dx

10
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d
= — (yoe*”) Substitute y = yoek®.
dx
= yoke® Apply the rule (e*)" = u'e".
d
RHS = ky The right side of % — ky is ky.
= k(yoe™™) Substitute y = yoe*®.

Therefore, LHS = RHS. R

Growth-Decay Equation Uniqueness Proof. It will be shown that y = yoe*® is the
only solution of ¥’ = ky, y(0) = yo. The idea is to reduce the question to the application
of a result from calculus. This is done by a clever change of variables, which has been
traced back to Kiimmer (1834).

Assume that y is a given solution of y' = ky, y(0) = yo. It has to be shown that
y = yoek”.

Define v = y(x)e~**. This defines a change of variable from y into v. Then

v = (e Py Compute v’ from v = e %y,
= —ke FTy 4 ehTy/ Apply the product rule (uy)' = u'y + uy'.
= —ke *y 4 ek (ky) Use the differential equation ¢/ = ky.

=0. The terms cancel.
In summary, v’ = 0 for all z. The calculus result to be applied is:

The only function v(x) that satisfies v'(x) = 0 on an interval is v(z) = constant.

The conclusion is v(x) = vy for some constant vyg. Then v = e *%y gives y = vpek®.

Setting = = 0 implies vy = yo and finally y = yoe**. W

Newton Cooling Solution Verification (Theorem 1.1). The substitution A(t) =
u(t) — ug will be applied to find an equivalent growth-decay equation:

dA d —_

i a(u(t) —uy) Definition of A = u — u;.
=u'(t) -0 Derivative rules applied.
= —h(u(t) —uy) Cooling differential equation applied.
= —hA(t) Definition of A.

The conclusion is that A’(t) = —hA(t). Then A(t) = Age™"*, from the theory of growth-
decay equations. The substitution gives u(t) — u; = Age™ ", which is equivalent to
equation (5), provided Ag = ug —u;. W

Logistic Solution Verification (Theorem 1.2). Given a > 0, b > 0 and the logistic
equation P’ = (a — bP)P, the plan is to derive the solution formula

aP(0)e®
bP(0)e* +a —bP(0)

P(t) =

2The German mathematician E. E. Kiimmer, in his paper in 1834, republished in 1887 in J.
fir die reine und angewandte Math., considered changes of variable y = wv, where w is a given
function of z and v is the new variable that replaces y.

11
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Assume P(t) satisfies the logistic equation. Suppose it has been shown (see below) that
the variable v = P/(a — bP) satisfies v/ = au. By the exponential theory, u = uge®,
hence

P = 1 j_ubu Solve uw = P/(a — bP) for P in terms of w.
auge®t . .
- 1+ bugeat Substitute © = uge®.
at
B m Divide by .
ae®t
" (a—0bP(0))/P(0) + beot Use up = u(0) and u = P/(a — bP).
aP(0)e?

- ) F | ified.

bP(0)e" + a— bP(0) ormula verifie
The derivation using the substitution u = P/(a — bP) requires only differential calculus.
The substitution was found by afterthought, already knowing the solution; historically,
integration methods have been applied.

The change of variables (¢, P) — (¢,u) given by the equation u = P(a — bP) is used to
justify the relation v’ = au as follows.

u = <a _Pbp>/ It will be shown that v/ = au.
= Plla _(ZP_) I)_P})D?(_bpl) Quotient rule applied.
= (ailzlp)z Simplify the numerator.
_ ‘m Substitute P’ = (a — bP)P.
=au Substitute u = P/(a — bP).

This completes the motivation for the formula. To verify that it works in the differential
equation is a separate issue, which is settled in the exercises.

Exercises 1.1 (4

Growth-Decay Model 7. I' =0.0051, I(tg) = Ip
Solve the given initial value problem using
the growth-decay formula; see page 3 and 8. I' = —0.0151, I(to) = Io
Example 1.1 page 7.

9. ¢y =ay, y(to) =1
1. y' = -3y, y(0) = 20
.y =3y, y0)=1
. 3A" = A, A(0) =1

2
3
4. 44 + A =0, A(0) =3
5
6

10. ¥ = —ay, y(to) = Yo
Growth-decay Theory

11. Graph without a computer y = 10(2%)
on -3 <x<3.

. 3P —P=0, P(0)=10 .

12. Graph without a computer y =

. 4P' +3P =0, P(0) = 11 10(27%) on —3 < z < 3.

12
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13. Find the doubling time for the growth
model P = 100e%915¢,

14. Find the doubling time for the growth

model P = 1000e0-0195¢,

15. Find the elapsed time for the decay
model A = 1000e 211237 yntil |A(t)| <

0.00001.

16. Find the elapsed time for the decay
model A = 5000e~%-01247 yntil |A(t)| <

0.00005.

Newton Cooling Recipe
Solve the given cooling model. Follow Ex-
ample 1.2 on page 8.

17. o' = —10(u —4), u(0) =5
18. v/ = —5(y — 2), y(0) =10
19. v =1+ u, u(0) =100
20. vy =—-1—2y, y(0) =4
21. o' = —10 + 4u, u(0) =

22. y' =10 + 3y, y(0) =

23. 2u’' + 3 = 6u, u(0) =

24. 4y’ +y =10, y(0) =

25. ' +3(u+1) =0, u0) = -2
26. u' +5(u+2)=0,u(0) =
27. o = -2(a—3), a(0) =
28. o = -3(a—4), a(0) =

Newton Cooling Model

The cooling model u(t) = ug + Age " is
applied; see page 4. Methods parallel those
in the flask cooling example, page 9, and
the baking example, page 10.

29. (Ingot Cooling) A metal ingot cools in
the air at temperature 20C from 130C
to 75C in one hour. Predict the cooling
time to 23C.

30. (Rod Cooling) A plastic rod cools in
a large vat of 12-degree Celsius water
from 75C to 20C in 4 minutes. Predict

the cooling time to 15C.
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31. (Murder Mystery) A body discov-
ered at 1:00 in the afternoon, March
1, 1929, had temperature 80F. Assume
outdoor temperature 50F from 9am.
Over the next hour the body’s tempera-
ture dropped to 76F. Estimate the date
and time of the murder.

32. (Time of Death) A dead body found
in a 40F river had body temperature
70F. The coroner requested that the
body be left in the river for 45 minutes,
whereupon the body’s temperature was
63F. Estimate the time of death, rela-

tive to the discovery of the body.

Verhulst Model

Solve the given Verhulst logistic equation
using formula (8). Follow Example 1.3 on
page 8.

33. PP=P(2-P), P(0)=1
34. P'=P(4—P), P(0)=5
35. ¥y =yly—1),y(0)=2
36. v =y(y—2),y0)=1
37. A’ =A—2A% A(0) =3
38. A/ =2A4-542% A0)=1
39. F' =2F(3—F), F(0) =2
40. F' =3F(2—F), F(0) = 1

Inverse Modeling
Given the model, find the differential equa-
tion and initial condition.

41. A = Age*

42. A= Age 3

43. P = 1000e~0-115¢

44. P = 2000e~"t/5

45. u=1+¢"3

46. u=10—2¢"?
10

AT. P= o5
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5
48. P= ———
8 15 — 14e~t
1
49, P= ——
9 5—4et
2
50. P= — -
4 —3e7t
Populations

Use Malthusian population theory page
6 and Malthusian model P(t) = Pyekt.
Methods appear in Examples 1.4 and 1.5
page 8.

51. (World Population) The world popu-
lation of 5,500, 000,000 people was in-
creasing at a rate of 250,000 people per
day in June of 1993. Predict the date
when the population reaches 10 billion.

52. (World Population) Suppose the
world population at time ¢t = 01is 5.5 bil-
lion and increases at rate 250,000 peo-
ple per day. How many years before

that was the population one billion?

53. (Population Doubling) A population
of rabbits increases by 10% per year.
In how many years does the population

double?

54. (Population Tripling) A population
of bacteria increases by 15% per day.
In how many days does the population
triple?

55. (Population Growth) Trout in a river
are increasing by 15% in 5 years. To
what population size does 500 trout

grow in 15 years?

56. (Population Growth) A region of 400
acres contains 1000 forest mushrooms
per acre. The population is decreas-
ing by 150 mushrooms per acre every
2 years. Find the population size for

the 400-acre region in 15 years.

Verhulst Equation
Write out the solution to the given differ-
ential equation and report the carrying ca-
pacity M = lim P(t).

t—o0

14

57. P'=(1-P)P

58. P'=(2—P)P

59. P’ =0.1(3 — 2P)P
60. P’ =0.1(4 - 3P)P
61. P’ =0.1(3+2P)P
62. P’ =0.1(4+3P)P
63. P’ =0.2(5—4P)P
64. P’ =0.2(6 —5P)P
65. P/ =11P — 17P?

66. P’ =51P — 13P2

Logistic Equation

The following exercises use the Verhulst lo-
gistic equation P’ = (a — bP)P, page 6.
Some methods appear on page 11.

67. (Protozoa) Experiments on the pro-
tozoa Paramecium determined growth
rate a = 2.309 and carrying capac-
ity a/b = 375 using initial population
P(0) = 5. Establish the formula P(t) =

375

1+ T4e—2-309t°

68. (World Population) Demographers
projected the world population in the
year 2000 as 6.5 billion, which was cor-
rected by census to 6.1 billion. Use
P(1965) = 3.358 x 10%, a = 0.029 and
carrying capacity a/b = 1.0760668 x
10'° to compute the logistic equation
projection for year 2000.

69. (Harvesting) A fish population satis-
fying P’ = (a — bP)P is subjected to
harvesting, the new model being P’ =
(a — bP)P — H. Assume a = 0.04,
a/b = 5000 and H = 10. Using alge-
bra, rewrite it as P’ = a(a— P)(P — )
in terms of the roots «, 8 of ay — by? —
H = 0. Apply the change of variables
u = P — B to solve it.
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70. (Extinction)

71.

72.

Let an endangered
species satisfy P’ = bP? —aP for a > 0,
b > 0. The term bP? represents births
due to chance encounters of males and
females, while the term aP represents
deaths. Use the change of variable
u = P/(bP — a) to solve it. Show from
the answer that initial population sizes
P(0) below a/b become extinct.

(Logistic Answer Check) Let P
au/(1 + bu), u = uge*, ug = Po/(a —
bPy). Verify that P(t) is a solution the
differential equation P’ = (a — bP)P
and P(0) = P,.

(Logistic Equation) Let k, «, 5 be
positive constants, a < 8. Solve w’ =

15

k(a—w)(B—w), w(0) = wp by the sub-
stitution v = (o — w)/(8 — w), show-
ing that w = (o — Bu)/(1 —w), u =
uge @Akt g = (a0 — wg) /(B — wp).
This equation is a special case of the
harvesting equation P’ = (a—bP)P+H.

Growth-Decay Uniqueness Proof

73. State precisely and give a calculus text

74.

reference for Rolle’s Theorem, which
says that a function vanishing at z = a
and x = b must have slope zero at some
point in a < x < b.

Apply Rolle’s Theorem to prove that
a differentiable function wv(z) with
v'(z) = 0on a < & < b must be con-
stant.
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1.2 Exponential Application Library

The model differential equation vy = ky, and its variants via a change of vari-
ables, appears in various applications to biology, chemistry, finance, science and
engineering. All the applications below use the exponential model y = yoet.

Light Intensity Chemical Reactions
Electric Circuits Drug Elimination

Drug Dosage Continuous Interest
Radioactive Decay Radiocarbon Dating

Light Intensity

Physics defines the lumen unit to be the light flux through a solid unit angle
from a point source of 1/621 watts of yellow light.®> The lumen is designed for
measuring brightness, as perceived by the human eye. The intensity E = %
is the flux F per unit area A, with units Lux or Foot-candles (use A = 1m? or
A = 1ft? respectively). At a radial distance r from a point source, in which case

A = 4712, the intensity is given by the inverse square law

B F
42’

An exposure meter, which measures incident or reflected light intensity, con-
sists of a body, a photocell and a readout in units of Lux or Foot-candles. Light
falling on the photocell has energy, which is transferred by the photocell into
electrical current and ultimately converted to the readout scale.

In classical physics experiments, a jeweler’s bench is illuminated by a source
of 8000 lumens. The experiment verifies the inverse square law, by reading an
exposure meter at 1/2, 1 and 3/2 meters distance from the source.

As a variant on this experiment, consider a beaker of jeweler’s cleaning fluid
which is placed over the exposure meter photocell; see Figure 3. Successive
meter readings with beaker depths of 0, 5, 10, 15 centimeters show that fluid
absorption significantly affects the meter readings. Photons® striking the fluid
convert into heat, which accounts for the rapid loss of intensity at depth in the
fluid.

3Precisely, the wavelength of the light is 550-nm. The unit is equivalent to one candela, one
of the seven basic SI units, which is the luminous intensity of one sixtieth of a square centimeter
of pure platinum held at 1770C.

4A photon is the quantum of electromagnetic radiation, of energy hv, where v is the radiation
frequency and h is Planck’s constant.

16
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& 8000 lumen

source

beaker

exposure meter  Figure 3. Jeweler’s bench experiment.

The exposure meter measures light intensity at the
beaker’s base.

Empirical evidence from experiments suggests that light intensity I(x) at a depth
x in the fluid changes at a rate proportional to itself, that is,

dl

9 — = —kl.
(9) Tn

If Iy is the surface intensity at zero depth (z = 0) and I(x) is the intensity at
depth = meters, then the theory of growth-decay equations applied to equation
(9) gives the solution

(10) I(z) = Ipe™**.
Equation (10) says that the intensity I(x) at depth x is a percentage of the

surface intensity I(0) = Iy, the percentage decreasing with depth x.
Electric Circuits

Classical physics analyzes the RC-circuit in Figure 4 and the L R-circuit in Figure
5. The physics background will be reviewed.

~T0T0
L
Q(t) c __ @
R R
—MWA——— VW
Figure 4. An RC-Circuit, no emf. Figure 5. An LR-Circuit, no emf.

First, the charge Q(t) in coulombs and the current I(¢) in amperes are related
by the rate formula I(t) = Q'(t). We use prime notation ’ = <. Secondly, there
are some empirical laws that are used. There is Kirchhoff’s voltage law:

The algebraic sum of the voltage drops around a closed loop is zero.

Kirchhoff’s node law is not used here, because only one loop appears in the
examples.

There are the voltage drop formulas for an inductor of L henrys, a resistor of
R ohms and a capacitor of C' farads:

Faraday’s law Vi, = LI

17
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Ohm’s law VR =RI
Coulomb’s law Ve=Q/C

In Figure 4, Kirchhoff’s law implies Vg + Vo = 0. The voltage drop formulas
show that the charge Q(t) satisfies RQ'(t) + (1/C)Q(t) = 0. Let Q(0) = Q.
Crowth-decay theory, page 3, gives Q(t) = Qoe~*/(FC).

In Figure 5, Kirchhoff’s law implies that Vi + Vp = 0. By the voltage drop
formulas, LI'(t) + RI(t) = 0. Let I(0) = Iy. Growth-decay theory gives I(t) =
Ipe™ t/L.
In summary:
RC-Circuit Q = Qpe 1/ (HC),
RQ'+ (1/C)Q =0, Q(0) = Qo
LR-Circuit I = Ipe ft/L,
LI' + RI =0, I(0) = Iy.

The ideas outlined here are illustrated in Examples 1.9 and 1.10, page 22.

Interest

The notion of simple interest is based upon the financial formula
A=(1+ T)t Ap

where Ay is the initial amount, A is the final amount, ¢ is the number of years
and r is the annual interest rate or rate per annum ( 5% means r = 5/100).
The compound interest formula is

r\ nt
A= (1 + *) AQ

n
where n is the number of times to compound interest per annum. Use n = 4 for
quarterly interest and n = 360 for daily interest.
The topic of continuous interest rests on the limit formula

nt
(11) lim (1 + 5) = ¢,
n—o0 n

Replacement of simple interest by the exponential limit leads to the continuous
interest formula

A= AO ert

which by the growth-decay theory arises from the initial value problem

A'(t) = rA(t),
{ A(0) = Ap.

Shown on page 27 are the details for taking the limit as n — oo in the compound
interest formula. In analogy with population theory, the following statement can
be made about continuous interest.

18
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The amount accumulated by continuous interest increases at a rate
proportional to itself.

Applied often in interest calculations is the geometric sum formula:

rn-i—l -1

1+4r+-- 49" = —— =
r—1

Cross-multiplication of identity () by r — 1 gives a useful factorization, which for
n = 2 is the college algebra identity (1 +7 +7r2)(r — 1) =3 — 1.

Radioactive Decay

A constant fraction of the atoms present in a radioactive
isotope will spontaneously decay into another isotope of the
identical element or else into atoms of another element. Em-

pirical evidence gives the following decay law:

A radioactive isotope decays at a rate proportional to the amount
present.

In analogy with population models the differential equation for radioactive decay
is

dA
T kA
5 = —kA®),

where k > 0 is a physical constant called the decay constant, A(t) is the number
of atoms of radioactive isotope and ¢ is measured in years.

Radiocarbon Dating

The decay constant k ~ 0.0001245 is known for carbon-14 (*C). The model
applies to measure the date that an organism died, assuming it metabolized
atmospheric carbon-14.

The idea of radiocarbon dating is due to Willard S. Libby® in the late 1940s.
The basis of the chemistry is that radioactive carbon-14, which has two more
electrons than stable carbon-12, gives up an electron to become stable nitrogen-
14. Replenishment of carbon-14 by cosmic rays keeps atmospheric carbon-14 at
a nearly constant ratio with ordinary carbon-12 (this was Libby’s assumption).
After death, the radioactive decay of carbon-14 depletes the isotope in the or-
ganism. The percentage of depletion from atmospheric levels of carbon-14 gives
a measurement that dates the organism.

SLibby received the Nobel Prize for Chemistry in 1960.
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Definition 1.2 (Half-Life)

The half-life of a radioactive isotope is the time 1" required for half of the isotope
to decay. In functional notation, it means A(T") = A(0)/2, where A(t) = A(0)e* is
the amount of isotope at time t.

For carbon-14, the half-life is 5568 years plus or minus 30 years, according
to Libby (some texts and references give 5730 years). The decay constant
k = 0.0001245 for carbon-14 arises by solving for & = In(2)/5568 in the equa-
tion A(5568) = $A(0). Experts believe that carbon-14 dating methods tend to
underestimate the age of a fossil.

Uranium-238 undergoes decay via alpha and beta radiation into various nuclides,
the half-lives of which are shown in Table 1. The table illustrates the range of
possible half-lives for a radioactive substance.

Table 1. Uranium-238 Nuclides by Alpha or Beta Radiation.

Nuclide Half-Life
uranium-238 4,500,000,000 years
thorium-234 24.5 days
protactinium-234 1.14 minutes
uranium-234 233,000 years
thorium-230 83,000 years
radium-236 1,590 years
radon-222 3.825 days
polonium-218 3.05 minutes
lead-214 26.8 minutes
bismuth-214 19.7 minutes
polonium-214 0.00015 seconds
lead-210 22 years
bismuth-210 5 days
polonium-210 140 days
lead-206 stable

Tree Rings

Libby’s work was based upon calculations from se-
quoia tree rings. Later investigations of 4000-year
old trees showed that carbon ratios have been non-
constant over past centuries.

Libby’s method is advertised to be useful for material 200 years to 40,000 years
old. Older material has been dated using the ratio of disintegration byproducts
of potassium-40, specifically argon-40 to calcium-40.

An excellent reference for dating methods, plus applications and historical notes
on the subject, is Chapter 1 of Braun [Braun1986].

20




1.2 Exponential Application Library

Chemical Reactions

If the molecules of a substance decompose into smaller molecules, then an empiri-
cal law of first-order reactions says that the decomposition rate is proportional
to the amount of substance present. In mathematical notation, this means

dA
— = —hA(t
o (t)
where A(t) is the amount of the substance present at time ¢ and h is a physical

constant called the reaction constant.

The law of mass action is used in chemical kinetics to describe second-order
reactions. The law describes the amount X (¢) of chemical C' produced by the
combination of two chemicals A and B. The empirical law says that the rate of
change of X is proportional to the product of the amounts left of chemicals A
and B. which is the rate equation

(12) X' =k(a-X)(B-X), X(0)=Xo.

Symbols k, o and (3 are physical constants, o < f3; see Zill-Cullen [Zill-C], Chap-
ter 2. The substitution u = (o — X)/(6 — X) is known to transform (12) into
u' = k(a — B)u. See page 11 for the technique. More details are in the exercises.
The solution of mass—action model (12):

a — Bu(t)
1—u(t)’

(a—B)kt a — Xo

(13) X(t) = u(t) = upe ,  up = X,

Drug Elimination

Some drugs are eliminated from the bloodstream by an animal’s body in a pre-
dictable fashion. The amount D(t) in the bloodstream declines at a rate propor-
tional to the amount already present. Modeling drug elimination exactly parallels
radioactive decay, in that the translated mathematical model is

dD
— = —hD(t
= (0),

where h > 0 is a physical constant, called the elimination constant of the drug.

Oral drugs must move through the digestive system and into the gut before
reaching the bloodstream. The model D'(t) = —hD(t) applies only after the
drug has reached a stable concentration in the bloodstream and the body begins
to eliminate the drug.

Examples

Example 1.8 (Light Intensity in a Lake)
Light intensity in a lake is decreased by 75% at depth one meter. At what depth is
the intensity decreased by 95%7?
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Solution: The answer is 2.16 meters (7 feet, 1? inches). This depth will be justified by
applying the light intensity model I(x) = Ipe™"*, where I is the surface light intensity.
At one meter the intensity is I(1) = Ipe ™", but also it is given as 0.25Iy. The equation
e® = 0.25 results, to determine k = In4 ~ 1.3862944. To find the depth = when the
intensity has decreased by 95%, solve I(z) = 0.05[y for . The value Iy cancels from

this equation, leaving e~** = 1/20. The usual logarithm methods give z ~ 2.2 meters,
as follows:
Ine " =1n(1/20) Take the logarithm across e %% = 1/20.
—kz = —1In(20) Use Ine* = v and —Inwu = In(1/u).
In(2
z = n(ko) Divide by —k.
In(20)
= Use k = In(4).
() se n(4)
~ 2.16 meters. Only 5% of the surface intensity remains

at 2.16 meters.

Example 1.9 (Circuit: RC)
Solve the RC~circuit equation RQ’ + (1/C)Q = 0 when R =2, C = 1072 and the
voltage drop across the capacitor at ¢ = 0 is 1.5 volts.

Solution: The charge is Q = 0.015e7%,

To justify this equation, start with the voltage drop formula Vo = Q/C, page 17. Then
1.5 = Q(0)/C implies Q(0) = 0.015. The differential equation is Q" + 50Q = 0. The
solution from page 3 is @ = Q(0)e=°%. Then the equation for the charge in coulombs is
Q(t) = 0.015¢ 5%,

Example 1.10 (Circuit: LR)
Solve the LR-circuit equation LI’ + RI = 0 when R = 2, L = 0.1 and the resistor
voltage drop at t = 0 is 1.0 volts.

Solution: The solution is I = 0.5e~2%. To justify this equation, start with the voltage
drop formula Vg = RI, page 17. Then 1.0 = RI(0) implies 7(0) = 0.5. The differential
equation is I’ + 201 = 0; page 3 gives the solution I = I(0)e=2%¢.

Example 1.11 (Compound Interest: Auto Loan)
Compute the fixed monthly payment for a 5-year auto loan of $18,000 at 9% per
annum, using (a) daily interest and (b) continuous interest.

Solution: The payments are (a) $373.9361 and (b) $373.9360, which differ by hundredths
of a cent; details below.

Let Ayg = 18000 be the initial amount. It will be assumed that the first payment is due
after 30 days and monthly thereafter. To simplify the calculation, a day is defined to
be 1/360th of a year, regardless of the number of days in that year, and payments are
applied every 30 days. Late fees apply if the payment is not received within the grace
period, but it will be assumed here that all payments are made on time.
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Part (a). The daily interest rate is 0.09/360 applied for 1800 days (5 years). Between
payments P, daily interest is applied to the balance A(t) owed after ¢ periods. The
balance grows between payments and then decreases on the day of the payment. The
problem is to find P so that A(1800) = 0.

Payment P is subtracted every 30 days, which changes the loan balance B(n) after n days.
Define R = 0.09/360 (9% daily interest), B(0) = 18000, Z = (1 + R)3* = 1.007527251.

Then
B(30) = B(0)(1+R)* - P Balance after 1 month.
B(60) = B(30)(1+ R)* — P Balance after 2 months.
=B(0)Z? - PZ - P Expand using Z = (1+ R)3° and B(30) =
B(0)Z — P.
B(30k) = B(0)Z* — P (1+---+Z"')  Fork=1,2,3,...
zZk -1
=B(0)Z" - P Geometric sum formula page 19 with ratio
Z -1
r replaced by Z.
Z% -1
0=DB(0)2%-P Use B(1800) = 0, which corresponds to
Z -1
k = 60.
760
P = B(O)(Z — l)m SOlVe for P.

P = 373.9361355

By maple, given B(0) = 18000 and Z =

1.007527251.

Part (b). The details are the same except for the method of applying daily interest.
The daily interest rate remains R = 0.09/360. Equation (11) will be used in the form

nt
(1 + z) ~ e as n — co. Let n = 360. Define r and ¢ by the equations nt = 30
n

and £ = R. Replace Z in Part (a): Z = (1 4+ R)?° ~ ™. Then Z = enfit = ¢30F =
1.007528195 (pause here to confirm). The details:
B(30) = B(0)Z Balance after 1 month.
B(60) = B(SO) Balance after 2 months.
=B(0)Z> -PZ-P Expand using Z = (1+ R)3" and B(30) =
B(0)Z — P.
B(30k) = B(0)Z* —P(1+---+2Z"')  Fork=1,23,...
A | . , :
=B(0)Z" - P Geometric sum formula page 19 with ratio
Z -1
r replaced by Z.
Z%0 —1
0=DB(0)2%-P Use B(1800) = 0, which corresponds to
Z -1 a
k = 60.
60
P = B(O)(Z — 1)m SOlVe for P.

P = 373.9460360 By maple, given B(0) = 18000 and Z =

1.007528195.

Example 1.12 (Effective Annual Yield)
A bank advertises an effective annual yield of 5.73% for a certificate of deposit with
continuous interest rate 5.5% per annum. Justify the rate.
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Solution: The effective annual yield is the simple annual interest rate which gives
the same account balance after one year. The issue is whether one year means 365 days
or 360 days, since banks do business on a 360-day cycle.

Suppose first that one year means 365 days. The model used for a saving account is
A(t) = Ape™ where r = 0.055 is the interest rate per annum. For one year, A(1) = Age”.
Then e” = 1.0565406, that is, the account has increased in one year by 5.65%. The
effective annual yield is 0.0565 or 5.65%.

Suppose next that one year means 360 days. Then the bank pays 5.65% for only 360
days to produce a balance of A; = Ape”. The extra 5 days make 5/360 years, therefore
the bank records a balance of A;e%/360 which is Age®057/360. The rate for 365 days is
then 5.73%, by the calculation

365
—0. 406 = 0. 2 .
3600 0565406 = 0.057325886

Example 1.13 (Retirement Funds)

An engineering firm offers a starting salary of 40 thousand per year, which is expected
to increase 3% per year. Retirement contributions are 11% of salary, deposited
monthly, growing at 6% continuous interest per annum. The company advertises a
million dollars in retirement funds after 40 years. Justify the claim.

Solution: Answer: 1,108,233.90 in the retirement account after 40 years.

After 39 years of 3% yearly salary increases the initial salary of $40,000 increases to
40000(1.03)%° = $126,681. In year n > 1, the 11% retirement contribution is computed
from monthly salary %(1.03)”_1. The retirement account can be viewed as a 6% con-
tinuous interest savings account with monthly deposit. The amount deposited changes
each month, which complicates the computation.

Continuous interest rates are r = 0.06 (annual) and s = 0.06/12 (monthly). Define
R = 1.03 and Py = 40000/12. Define monthly salary P; = 40000/12 for year 1. For
year n > 1 define monthly salary P, = Py R"™!, because paychecks increase by 3% each
year. Define A, be the amount in the retirement account at the start of year n. The
retirement account has zero balance A; = 0 at the start of employment. Define the
monthly retirement contribution in year n to be R, = 0.11 P,.

During the first year, the retirement account gets 12 deposits of R; dollars. Monthly
continuous interest at s% is applied and re-deposited into the account. The account
balance is Aje® + Rje® at the end of month 1, (Aje® + Rie®)e® + Rje® at the end of
month 2, and so on. Then:

Ay = A€+ Ry (ef+ - +e') Continuous interest at monthly rate s =
0.06/12 on the retirement account balance for

months 1-12.
6125 -1
= Ay e!?® +Ri— Geometric sum with common ratio e®*. The
1= denominator is e~ *(e® — 1).
= 4546.026266. Retirement balance at the start of year 2.

12s
e -1 . . .
Apy = Apelt?s +R,L17 General recursion to be proved by induction.

The details are omitted.

—S

24




1.2 Exponential Application Library

12s n
-1
Api1 = el—? E R(k)(e'?s)n=F Solved recursion. Details below.
k=1

The advertised retirement fund after 40 years should be the amount Ay, which is ob-
tained by setting n = 40 in the last equality: A4 = 1,108, 233.904.

A solved recursion is not required if computer programming is used in a loop to evaluate

Apia.

# Maple
5:=0.06/12;P:=n->(40000/12)*(1.03) " (n-1) ;R:=n->0.11%P(n) ;
X:=0;for j from 1 to 40 do
X:=X*exp(12*s)+R(j) * (exp(12*s)-1)/(1-exp(-s)) ;end do;

Recursion Details.
The recursion is 4,11 = A,W + R, Z where W = ¢'?° and Z =
used to solve the recursion:

Ay = A\W + R Z
As = AoW + RoZ
= (AW +RiZ)W + RoZ
= AW? + Z(RiW + Ro)
= AW?+ 2357 ReW?F
Ay = AsW + R3Z
= (AW? + Z(RiW + R2))W + RsZ
= A W3 4+ Z(RiW? + RoW + R3)
=AW+ 2350 RyW3F

Induction details are omitted.

6125

-1
—. The steps
—e

Example 1.14 (Half-life of Radium)
A radium sample loses 1/2 percent due to disintegration in 12 years. Verify the
half-life of the sample is about 1,660 years.

Solution: The decay model A(t) = Age** applies. The given information A(12) =
0.995A4(0) reduces to the exponential equation e™'?* = 0.995. Solve for k with loga-
rithms: & = In(1000/995)/12. The half-life T" satisfies A(T) = £ A(0), which reduces to
e %' = 1/2. Since k is known, the value T’ can be found as T = In(2)/k ~ 1659.3909
years.

Example 1.15 (Radium Disintegration)
The disintegration reaction
R0 s o R

of radium-226 into radon has a half-life of 1700 years. Compute the decay constant
k in the decay model A" = —kA.

Solution: The half-life equation is A(1700) = 3 A(0). Since A(t) = Age~**, the equation
reduces to e~ 179% = 1/2. The latter is solved for k by logarithm methods (see page 8),
giving k = In(2)/1700 = 0.00040773364.
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Example 1.16 (Radiocarbon Dating)
The ratio of carbon-14 to carbon-12 in a dinosaur fossil is 6.34 percent of the current
atmospheric ratio. Verify the dinosaur's death was about 22,160 years ago.

Solution: The method due to Willard Libby will be applied, using his assumption that
the ratio of carbon-14 to carbon-12 in living animals is equal to the atmospheric ratio.
Then carbon-14 depletion in the fossil satisfies the decay law A(t) = Age™** for some
parameter values k and Ag.

Assume the half-life of carbon-14 is 5568 years. Then A(5568) = 1A4(0) (see page 20).
This equation reduces to Age %% = 1 A44e® or k = In(2)/5568. In short, k is known
but Ag is unknown. It is not necessary to determine Ay in order to do the verification.

At the time tg in the past when the organism died, the amount A; of carbon-14 began
to decay, reaching the value 6.34A4,/100 at time ¢t = 0 (the present). Therefore, Ay =
0.06344; and A(tg) = A;. Taking this last equation as the starting point, the final
calculation proceeds as follows.

A; = A(ty) The amount of carbon-14 at death is A1, —to
years ago.
= Age Fto Apply the decay model A = Age "t at t =t,.
= 0.0634 A4, ekt Use Ag = 6.344;/100.

The value A; cancels to give the new relation 1 = 0.0634e~%%. The value k = In(2)/5568
gives an exponential equation to solve for tg:

ekto = 0.0634 Multiply by e to isolate the exponential.
In eF*o = In(0.0634) Take the logarithm of both sides.
1
to = z In(0.0634) Apply Ine* = u and divide by k.
5568
=g In(0.0634) Substitute k& = In(2)/5568.
n
= —22157.151 years. By calculator. The fossil's age is the negative.

Example 1.17 (Percentage of an Isotope)
A radioactive isotope disintegrates by 5% in ten years. By what percentage does it
disintegrate in one hundred years?

Solution: The answer is not 50%, as is widely reported by lay persons. The correct
answer is 40.13%. It remains to justify this non-intuitive answer.

The model for decay is A(t) = Age *. The decay constant k is known because of
the information ... disintegrates by 5% in ten years. Translation to equations produces
A(10) = 0.95A, which reduces to e~ = 0.95. Solving with logarithms gives k =
0.11n(100/95) =~ 0.0051293294.

After one hundred years, the isotope present is A(100), and the percentage is 100 A}gtg?).

The common factor Ag cancels to give the percentage 100e™199% ~ 59.87. The reduction
is 40.13%.

To reconcile the lay person’s answer, observe that the amounts present after one, two
and three years are 0.95A, (0.95)%2A40, (0.95)3Ay. The lay person should have guessed
100 times 1 — (0.95)°, which is 40.126306. The common error is to simply multiply 5%
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by the ten periods of ten years each. By this erroneous reasoning, the isotope would
be depleted in two hundred years, whereas the decay model says that about 36% of the
isotope remains!

Example 1.18 (Chemical Reaction)
The manufacture of t-butyl alcohol from ¢-butyl chloride is made by the chemical

reaction
(CHg)gCCL + NaOH — (CH3)3COH + NaCL.

Model the production of ¢-butyl alcohol, when N% of the chloride remains after ¢,
minutes.

Solution: It will be justified that the model for alcohol production is A(t) = Cy(1—ek?)
where k = In(100/N)/to, Cy is the initial amount of chloride and ¢ is in minutes.

According to the theory of first-order reactions, the model for chloride depletion is C(t) =
Coe™ % where Cj is the initial amount of chloride and k is the reaction constant. The
alcohol production is A(t) = Cy — C(t) or A(t) = Co(1 — e~ ). The reaction constant k
is found from the initial data C(ty) = %Co, which results in the exponential equation
e~Ft = N/100. Solving the exponential equation gives k = In(100/N)/to.

Example 1.19 (Drug Dosage)

A veterinarian applies general anesthesia to animals by injection of a drug into the
bloodstream. Predict the drug dosage to anesthetize a 25-pound animal for thirty
minutes, given:

1. The drug requires an injection of 20 milligrams per pound of body weight in order to
work.

2. Thedrug eliminates from the bloodstream at a rate proportional to the amount present,
with a half-life of 5 hours.

Solution: The answer is about 536 milligrams of the drug. This amount will be justified
using exponential modeling.

The drug model is D(t) = Doe~"*, where Dy is the initial dosage and h is the elimination
constant. The half-life information D(5) = Do determines h = In(2)/5. Depletion of
the drug in the bloodstream means the drug levels are always decreasing, so it is enough
to require that the level at 30 minutes exceeds 20 times the body weight in pounds,
that is, D(1/2) > (20)(25). The critical value of the initial dosage Dy then occurs when
D(1/2) = 500 or Dy = 500e"/? = 500e°1"(?) which by calculator is approximately
535.88673 milligrams.

Drugs like sodium pentobarbital behave somewhat like this example, although injection
in a single dose is unusual. An intravenous drip can sustain the blood levels of the drug,
keeping the level closer to the target 500 milligrams.

Details and Proofs

Verification of Continuous Interest by Limiting. Derived here is the continuous
interest formula by limiting as n — oo in the compound interest formula.
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Exercises 1.2 (4

Light Intensity

The following exercises apply the theory of
light intensity on page 16, using the model
I(t) = Iye™"* with z in meters. Methods
parallel Example 1.8 on page 21.

1. The light intensity is I(z) = Ipe 14*
in a certain swimming pool. At what
depth x does the light intensity fall off
by 50%7

2. The light intensity in a swimming pool
falls off by 50% at a depth of 2.5 me-
ters. Find the depletion constant k in
the exponential model.

3. Plastic film is used to cover window
glass, which reduces the interior light
intensity by 10%. By what percentage
is the intensity reduced, if two layers are
used?

4. Double-thickness colored window glass
is supposed to reduce the interior light
intensity by 20%. What is the reduction
for single-thickness colored glass?

RC-Electric Circuits

In the exercises below, solve for Q(t) when
Qo = 10 and graph Q(¢) on 0 < ¢ < 5.

5. R=1,C =0.01.

6. R =0.05, C = 0.001.
R =0.05, C =0.01.
R=5,C=0.1.

© ® X

R=2,C=00l1.

28

In the exponential rule B* = ¢
B=1+r/n.

tIn B the base is

Use B* = e* B with 2 = nt.

Substitute © = r/n. Then u — 0 as n — 0.

Because In(1+u)/u =~ 1 as u — 0, by L'Hospital's

10. R =4, C = 0.15.
11. R=4, C = 0.02.
12. R =50, C = 0.001.

LR-Electric Circuits
In the exercises below, solve for I(t) when
Iy =5 and graph I(¢t) on 0 < ¢ < 5.

13. L=1, R=05.

14. L=0.1, R=0.5.
15. L =0.1, R = 0.05.
16. L =0.01, R = 0.05.
17. L =02, R =0.01.
18. L =0.03, R = 0.01.
19. L =0.05, R = 0.005.

20. L =0.04, R = 0.005.

Interest and Continuous Interest
Financial formulas which appear on page
18 are applied below, following the ideas in
Examples 1.11, 1.12 and 1.13, pages 22 and
24.

21. (Total Interest) Compute the total
daily interest and also the total contin-
uous interest for a 10-year loan of 5,000
dollars at 5% per annum.

22. (Total Interest) Compute the total
daily interest and also the total contin-
uous interest for a 15-year loan of 7,000

dollars at 53% per annum.
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23.

24.

25.

26.

27.

28.

29.

30.

(Monthly Payment) Find the
monthly payment for a 3-year loan
of 8,000 dollars at 7% per annum
compounded continuously.

(Monthly Find the
monthly payment for a 4-year loan
of 7,000 dollars at 63% per annum
compounded continuously.

Payment)

(Effective Yield) Determine the effec-
tive annual yield for a certificate of de-
posit at 7%% interest per annum, com-
pounded continuously.

(Effective Yield) Determine the effec-
tive annual yield for a certificate of de-
posit at 5%% interest per annum, com-
pounded continuously.

(Retirement Funds) Assume a start-

ing salary of 35,000 dollars per year,
which is expected to increase 3% per
year.  Retirement contributions are
10%% of salary, deposited monthly,
growing at 5%% continuous interest per
annum. Find the retirement amount af-
ter 30 years.

(Retirement Funds) Assume a start-

ing salary of 45,000 dollars per year,
which is expected to increase 3% per
year. Retirement contributions are 9%%
of salary, deposited monthly, growing
at 6%% continuous interest per annum.
Find the retirement amount after 30
years.

(Actual Cost) A van is purchased for
18,000 dollars with no money down.
Monthly payments are spread over 8
years at 12%% interest per annum, com-
pounded continuously. What is the ac-
tual cost of the van?

(Actual Cost) Furniture is purchased
for 15,000 dollars with no money down.
Monthly payments are spread over 5
years at 11%% interest per annum, com-
pounded continuously. What is the ac-
tual cost of the furniture?

Radioactive Decay
Assume the decay model A’ = —kA from

29

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

page 19. Below, A(T) = 0.5A(0) defines
the half-life T. Methods parallel Examples
1.14- 1.17 on pages 25— 26.

(Half-Life) Determine the half-life of a
radium sample which decays by 5.5% in
13 years.

(Half-Life) Determine the half-life of a
radium sample which decays by 4.5% in
10 years.

(Half-Life) Assume a radioactive iso-
tope has half-life 1800 years. Determine
the percentage decayed after 150 years.

(Half-Life) Assume a radioactive iso-
tope has half-life 1650 years. Determine
the percentage decayed after 99 years.

(Disintegration Constant) Determine
the constant k in the model A’ = —kA
for radioactive material that disinte-
grates by 5.5% in 13 years.

(Disintegration Constant) Determine
the constant k in the model A’ = —kA
for radioactive material that disinte-
grates by 4.5% in 10 years.

(Radiocarbon Dating) A fossil found
near the town of Dinosaur, Utah con-
tains carbon-14 at a ratio of 6.21% to
the atmospheric value. Determine its
approximate age according to Libby’s
method.

(Radiocarbon Dating) A fossil found
in Colorado contains carbon-14 at a ra-
tio of 5.73% to the atmospheric value.
Determine its approximate age accord-
ing to Libby’s method.

(Radiocarbon Dating) In 1950, the
Lascaux Cave in France contained char-
coal with 14.52% of the carbon-14
present in living wood samples nearby.
Estimate by Libby’s method the age of
the charcoal sample.

(Radiocarbon Dating) At an excava-
tion in 1960, charcoal from building ma-
terial had 61% of the carbon-14 present
in living wood nearby. Estimate the age
of the building.
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41. (Percentage of an Isotope) A radioac-
tive isotope disintegrates by 5% in 12
years. By what percentage is it reduced
in 99 years?

42. (Percentage of an Isotope) A radioac-
tive isotope disintegrates by 6.5% in
1,000 years. By what percentage is it
reduced in 5,000 years?

Chemical Reactions

Assume below the model A’ = kA for a
first-order reaction. See page 21 and Ex-
ample 1.18, page 27.

43. (First-Order A+ B — C) A chem-
ical reaction produces X (t) grams of
product C' from 50 grams of chemical
A and 32 grams of catalyst B. The
reaction uses 1 gram of A to 4 grams
of B. Variable t is in minutes. Justify

for some constant K the model % =

K (50 — %X) (32 — %X) and calculate
lims—, oo X (t) = 40.

44. (First-Order A + B — C) A first or-
der reaction produces product C' from
chemical A and catalyst B. Model the
production of C' using a grams of A and
b grams of B, assuming initial amounts

M of Aand N of B, M < N.

45. (Law of Mass-Action) Consider a
second-order chemical reaction X(t)
with k = 0.14, @ = 1, § = 1.75,
X (0) = 0. Find an explicit formula for

X (t) and graph it ont =0 to t = 2.

46. (Law of Mass-Action) Consider a
second-order chemical reaction X (t)
with k = 0015, a = 1, § = 1.35,
X (0) = 0. Find an explicit formula for

X (t) and graph it on t = 0 to ¢t = 10.

47. (Mass-Action Derivation) Let k, «,
B be positive constants, o < (. Solve
X' =k(a— X)(B - X), X(0) = Xo by
the substitution u = (o — X)/(8 — X),
showing that X = (a — pu)/(1 — u),
u = ugel® Pk yy = (a—Xo)/(B—Xo).

30

48. (Mass-Action Derivation) Let k, «,
8 be positive constants, « < . De-
fine X = (a — Bu)/(1 — u), where u =
upe®= Akt and ug = (a— Xo) /(8 —Xo).
Verify by calculus computation that (1)
X' =k(a—X)(B8—X) and (2) X(0) =
X,.

Drug Dosage

Employ the drug dosage model D(t) =
Dge™" given on page 21. Apply the tech-
niques of Example 1.19, page 27.

49. (Injection Dosage) Bloodstream in-
jection of a drug into an animal requires
a minimum of 20 milligrams per pound
of body weight. Predict the dosage for
a 12-pound animal which will maintain
a drug level 3% higher than the mini-
mum for two hours. Assume half-life 3
hours.
50. (Injection Dosage) Bloodstream in-
jection of an antihistamine into an ani-
mal requires a minimum of 4 milligrams
per pound of body weight. Predict the
dosage for a 40-pound animal which
will maintain an antihistamine level 5%
higher than the minimum for twelve
hours. Assume half-life 3 hours.
51. (Oral Dosage) An oral drug with half-
life 2 hours is fully absorbed into the
bloodstream in 45 minutes, blood level
63% of the dose. Assume 500 mil-
ligrams in the first dose is fully absorbed
at t = 0. A second dose is taken 1 hour
later to maintain a blood level of at least
180 milligrams for 2.5 hours. Explain
why 1 hour might be reasonable.
52. (Oral Dosage) An oral drug with half-
life 2 hours is fully absorbed into the
bloodstream in 45 minutes, blood level
63% of the dose. Determine three
(small) dosage amounts, and their ad-
ministration time, which keep the blood
level above 180 milligrams but below
280 milligrams over three hours.
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1.3 Differential Equations of First Order

The nature of a solution is studied through possible representations as explicit
or implicit equations, numeric tables and graphical visualization.

First Order Differential Equation

The equation

(1)

Y (x) = f(a,y(x))

is called a first order differential equation. The function f(x,y) is defined
in a region D of the xy-plane. In most physical applications f is continuous in
D or else it has simple discontinuities, such as those caused by switches.

Cited below are some striking examples of first order differential equations in
science and engineering.

dy
dx

— F(x)
= —k(u—u)
= K(T* -1
—hv/[y(®)|
— —kP
— F/m
= k(a® — 2?)

The fundamental theorem of calculus, Appendix A, im-
plies that y(z) = f;"o F(t)dt satisfies differential equation
y = F(x).

Cooling of a body with temperature u(t) in a medium of
temperature u; obeys Newton's law of cooling. Symbol k is
the cooling constant.

Stefan’s radiation law models the heat lost by a body of
temperature T" in a medium of temperature Ty due to thermal
radiation.

Tank draining obeys Torricelli’s law, where h is a constant
and y is the fluid depth in the tank at time ¢.

Population dynamics may assume Malthus’s reproduction
law: the population changes at a rate proportional to the
present population P.

Free fall velocity v(t) of a mass m accelerating due to
constant gravitational force F' obeys Newton's second law
F' = ma, where a is the acceleration.

Boat trajectory for a river crossing, with the fastest current
in the center, can be modelled by the distance x from the
center and the distance y(z) downstream.
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1.3 Differential Equations of First Order

Symbolic Formula for y(z) is Unlikely

A quadratic equation ax? + bz + ¢ = 0 has numerical answer x = —b/(2a) +

Vb2 — 4ac
——— . Differential equations have answers that are graphs, represented by

a
functions y(x). Sadly, it is generally impossible to write down a symbolic formula

d
for the answer y(z) to a given differential equation d—y = f(z,y(x)).
x

Applied Models

Science and engineering modelers are not much interested in solving a differen-
tial equation. They use differential equations to express or define a variable via a
mathematical model. Initially, during modeling stages, theoretical existence suf-
fices for the variable’s resultant function. After proper modeling, analytical and
numerical methods might be applied to actually find the function. In summary:

Differential equations are used in application modeling to define or
express a variable/function of the physical parameters.

Tables, Formulas and Graphs as Answers

An answer to a differential equation problem is given in various forms, suited
to the intended application. The most common forms are tables, equations
and graphs. Answers are related to the notion of a solution, which is a precise
mathematical term, defined below.

Definition 1.3 (Solution)
Let f(x,y) be defined for a < = < b and ¢ < y < d. A solution y(z) to the

d
differential equation d—y = f(z,y) on the interval (a,b) is a function y(z) defined
x
for a < x < b such that

(1) The left side y/(x) of the differential equation and the right side
f(z,y(x)) are defined for each a < z < b.

(2) Substitution of y(z) in each side gives symbolically equal expressions
for each value of x in the domain a < x < b.

Often solution formulas contain physical constants represented as symbols, like R
and L in an RL-circuit equation. In such cases the definition is modified to say each
side gives symbolically equal expressions for all symbols.

Extensions. The definition can be restated for half-open intervals, closed inter-
vals and intervals in which one or both endpoints are infinite. If f(x,y) contains
discontinuous switches, then the definition of solution is relaxed, possibly exclud-
ing points of discontinuity.
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Impulse Modeling. The definition does not apply as stated to the case when
f(z,y) contains impulses (hammer hits or instantaneous injection of energy).
Laplace Theory provides an accessible introduction.

Definition 1.4 (Equilibrium Solution)
A constant solution y(z) = k to the differential equation ¢y = f(x,y) is called an
equilibrium solution.

Equivalent terms. Literature may use rest solution and/or steady state
solution. The meaning: y(x) equals a number k for all values of x. Function
y satisfies ¥/ = 0: the motion is at rest. Steady-state behavior means after a
long time, then k is the constant limit of a time-varying solution y(z) as x — oo
(time=z). Symbol ¢ is often used instead of x for models with time domain, in
which case the differential equation becomes y/(t) = f(¢,y(t)) and ' = d/dt.

To illustrate the notion of equilibrium solution, consider y' = y(1 — y). This
equation has two equilibrium solutions y = 0 and y = 1. They are found by
formal substitution of y = k into ' = y(1 — y) and then solving for k in the
formal equation 0 = k(1 — k).

The equation ¢y’ = x(1 — y) has equilibrium solution y = 1. The equation z =0
is not an equilibrium solution: it is a red herring, often reported in error. The
formal equation 0 = z(1 — k) is solved for k with symbol z allowed to assume
all possible values. Then x # 0 forces k = 1. The expected report: equilibrium
solution y = 1.

Definition 1.5 (Initial Value Problem)

The initial value problem for a first order equation ' = f(z,y) ona < x < bis
the problem of finding a solution y(z) on a < & < b which in addition satisfies an
initial condition of the form y = yy at x = zg.

Notation. An initial condition may be given in compact notation y(zg) =
yo. Substitution notation can be used as in integration theory, e.g., fol rdr =

(372/2)‘22(1) For instance, if y = x + 10 is the expected solution, then y(0) = 10
is the same as (x +10)[,_, = 10. In general, the notation is y(z)|,—_,, = vo.

To make sense of the initial condition, f(x,y) must have (x,yp) in its domain of
definition, that is, a < zg < b and ¢ < yg < d. Similar statements apply to more

general domains.

Uniqueness

In typical applications, just one solution is isolated by the initial condition. Hav-
ing just one solution is not obvious on physical grounds; see Example 1.20. Non-
uniqueness allows modeling an answer like y = 1 + 3 through an initial value
problem, while a numerical procedure computes a different answer like y = 1.
Uniqueness forces the modeler and the solver to find the same answer. The
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jobs of scientists and engineers include keeping computers from producing non-
sense numbers and incorrect graphs. It is possible for bad modeling, which allows
non-uniqueness, to cause bad results to come off the computer. In summary:

Numerical answers and computer graphs obtained from the differ-
ential equation iy’ = f(x,y) are nonsense unless the model has a
unique solution.

Explicit and Implicit Equations

Equations that represent answers to first order differential equations are either
implicit or explicit. An equation with y isolated on the left side and right side
independent of y is called explicit. Otherwise, the equation is called implicit.
Some examples:

T

y=sinz +e” Equations treated in differential calculus are explicit

equations.

y = f(x) Equations given in abstract functional notation are ex-
plicit equations.

y=14+m7 Constant equations are explicit equations.

2y = An implicit equation (y not isolated left). Can be con-

verted to explicit equation y = 1/2.

r+y=1 As written, y is not isolated on the left, so it is an im-
plicit equation. It can be converted to the explicit equa-
tiony =1—x.

22+ =1 The equation of a circle is an implicit equation.

flz,y)=c Abstract level curve equations are assumed to be in im-
plicit form. To convert to explicit form, solve for y in
terms of x.

r+y?=1 As written, y is not isolated on the left, so it is an im-

plicit equation. It converts to two explicit equations

y=+v1—zand y=—/1—=z.

Definition 1.6 (Explicit Equation)

An xy-equation is explicit if exactly iy appears on the left, followed by an equal sign,
followed by an expression independent of y. In functional notation, the equation
must have the form y = f(z).

Any equation that is not explicit is called implicit.

Illustrations. Equations 2y =z, —y = 1 4+ x and xy = 1 are implicit, but they
can be converted by algebra into the explicit equations y = x/2, y = —1 — =z,
y = 1/z. Any explicit equation can be re-written in infinitely many ways as a
implicit equation.
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Numeric Tables

A numeric table is a list of x, y values. Tables are finite lists. Typical numeric
tables appear in Examples 1.22 and 1.23 on page 36.

A numeric table for solution y(z) of differential equation ' = f(x,y) can be
generated by a numerical method. Normally, the x-values are equally spaced
on some interval. A specific numerical method is applied to find each of the
y-values. The most elementary numerical methods are Euler’s method, Heun’s
method and the Runge-Kutta method.

A numeric table in current scientific literature may assume that x or y is a vector
variable. The effect is to allow numeric tables with multiple columns.

Graphics

Graphs of solutions to differential equations y' = f(x,y) can be generated by
hand from numeric data. The most popular method for hand-graphing is the
connect-the-dots method. This method constructs a graph as straight-line
connections of the data points. An illustration is Example 1.24, page 37.

Curve library methods and computer methods for graphing equations and numer-
ical data sets are considered elsewhere; see Appendix A.2. The methods apply
especially if the curve is given by an equation, either explicit or implicit.

Examples

Example 1.20 (IVP with Two Solutions)
Display an answer check for the initial value problem (IVP) on interval z > 0, showing
that it has two solutions: (1) y(x) = 22/4 and (2) constant solution y(z) = 0.

y, = M? y(O) =0,

Solution: The example is important, because modern computer algebra systems allow
numeric methods to be blindly applied to examples like this one. No error messages are
emitted by such computer programs. Failures, routinely blamed on computers, can be
the result of unexpected modeling intricacies.

The example is curiously close to the tank-draining equation y" = —h,/y based upon
Torricelli’s law, page 31. Arguments that an equation physically has a unique solution
are unheard by computer programs: the programs are not smarter than the humans who
employ them.

The tank draining problem has no unique solution for y(0) = 0, because solutions must
be defined on —H < z < H, not on a half-interval like > 0. Condition y(0) = 0 means
the tank is empty at time = 0. An empty tank could have occurred any time before
time z = 0. There is no way from data y(0) = 0 to determine when the tank emptied,
so there are infinitely many events that could lead to y(0) = 0, all of which are solutions
to the differential equation model.

The verification involves two steps:
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(a) The differential equation ¢y’ = \/|y| has y as a solution.
(b) The initial condition y(0) =0 (y = 0 at = 0) is satisfied.

Answer Check for Solution y(r) = 22/4.

In both steps (a) and (b), the verification amounts to expanding the left hand side (LHS)
and right hand side (RHS) of the equalities, then a check is made for equality of the LHS
and RHS, for all symbols. The details for y = 2% /4 are as follows.

LHS = ¢/ The left side of v/ = /|y is /.
= (z%/4) The solution being tested is y = 22 /4.
=2x/2, and

RHS = /|y The right side of y' = /|y|.
= +/|72/4] Because y = 22 /4.
=x/2 Because = > 0.
Therefore, LHS = RHS, and step (a) is finished.

Answer Check for Initial Condition y(0) = 0.
To complete step (b), proceed similarly:

LHS = y(0) Initial condition y(0) = 0 left side.
= ($2/4)|x=0 The solution being tested is y = 22 /4.
=0
= RHS The right side of y(0) = 0.

Answer Check for Solution y(z) = 0.

The details for the constant solution y(x) = 0 are similar. As a mental exercise, repeat
the steps above with 22/4 replaced by 0, to verify steps (a) and (b) for the constant
solution y(x) = 0.

Example 1.21 (Implicit and Explicit Equations)
Classify 1+ e¥ = 22 as implicit or explicit. If implicit, then find an explicit represen-
tation for y in terms of x.

Solution: The equation is classified as implicit, because y is not isolated on the left side.
Conversion to explicit form uses college algebra, as follows.

1+4e¥ =a? Given equation. Solving for y.

A | Isolate y-terms on the left.

Ine¥ =1In|2? — 1] Take the logarithm of both sides.

y=1In|z? — 1| Simplify the left side. Identity Ine* = u applied.

Example 1.22 (Verify a Numerical Table)
Verify Table 2 using the explicit equation y = 1 — z + 222,

Table 2. Numerical data for an explicit equation.

z|00[0.1 (02 |03 |04
y11.010.92|0.88|0.88|0.92
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Solution: Each column is verified in an identical way. For example, column 2 is checked
by substitution of x = 0.1 into y = 1 — & + 222 to obtain y = 1 — 0.1 4+ 2(0.1)? = 0.92.

Example 1.23 (Verify an Approximation Table)
Verify Table 3 using the approximation formula y(x+0.1) =~ y(x) 4+ 0.1(z +y(x)).

Table 3. Numerical data for an approximation formula.

T Y
0.0 1.0
0.1]1.1
0.2 |1.22
0.3 | 1.362
0.4 | 1.5282

Solution: The formula is applied as a recursion, which is a set of formulas which
generate from a given table pair x, y the next table pair X, Y via the relations

X=2401, Y=y+01l(z+y).

Important in the mathematical translation is the elimination of the approximation sym-
bol (=) and the use of equal signs (=) in the final relations.

Each row is verified in an identical way. For example, row 3 is checked by substitution of
data from the previous row. Items z = 0.1 and y = 1.1 from row 2 are substituted into
X =2z+0.1andY = y+0.1(x+y) to obtain X = 0.2 and Y = 1.22. The approximations
0.2, 1.22 are then copied to row 3 of the table.

Example 1.24 (Hand Graphing of Numeric Data)
Graph on engineering paper the piecewise-defined function y(x) using six data points
from z =0 to x = 1/2 in steps of 0.1.

1.1z 4+ 1.10 0.0 <x <0.1,
—1.6z+1.37 0.1 <x<0.2,

y(z) = 1.5+ 0.75 0.2 <x <0.3,
0.1z 4+0.90 03 <z <04,
—0.2x4+2.10 04 <z <0.5.

Solution: The zy-data points for y(z) are

(0.0,1.10), (0.1,1.21), (0.2,1.05),
(0.3,1.20), (0.4,1.30), (0.5,1.10).

Engineering paper divisions are set for this example at 0.1 horizontal and 0.1 vertical.
The origin will be x = 0.0, y = 1.0. The first step is to plot the points as dots. The
second step connects the dots with straight lines, just as in children’s connect-the-dot
puzzles. The graphic appears in Figure 6. The figure is correct between data points
because y(x) is piecewise linear. Generally, the connect-the-dot method makes errors
between data points.
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)
1.3
1.2 A
1.0 z
Figure 6. Engineering paper graphic of
0.0 0.5 numeric data.
Exercises 1.3 [
Solution Verification 14. 2 — 2y +sinz +cosz =0
Given the differential equation, initial con- -
dition and proposed solution y, verify that 15. y=e
y is a solution. Don’t try to solve the equa- | 1g. ¥ — 1
tion! )
E—
) dy 02 . 17. e In(1 + z)
. — = = = 2e
de Y Y 18. In|l 432 = ¢”
2.y =2y,y(0) =1,y =e** 19. tany =1+2x
3. y/ = y27 y((]) = 1’ Yy = (]. - £C)71 20. Siny = (QZ — 1)2
. W y(0) = 1, Tables and Explicit Equations
dx For the given explicit equation, make a ta-

y=(1-2z)"1/2

5. D?y(x) = y(x), y(0) = 2,
Dy(0) =2, y = 2¢*

6. D?y(z) = —y(z), y(0) =0,
Dy(0) =1, y =sinx

7.y =sec’z, y(0) =0, y = tanx

8.y = —csc’x, y(r/2) =0,
y=cotx

9.y =e " y0)=—1,y=—e"

10. ¥/ =1/z,y(1) =1,y =Inx

Explicit and Implicit Solutions

Identify the given solution as implicit or ex-

plicit. If implicit, then solve for y in terms
of = by college algebra methods.

11. y =z +sinx
12. y =z +sinx

13. 2y 422 +2+1=0

38

ble of values x = 0 to x = 1 in steps of
0.2.

21. y =22 -2z

22, y=2>-3zr+1
23. y =sinmzx

24. y = cosTx

25. y =e**

26. y=¢€e "

27. y=In(1+x)
28. y=zlIn(l+ )

Tables and Approximate Equations
Make a table of values ¢ = 0 to z = 1
in steps of 0.2 for the given approximate
equation. Identify precisely the recursion
formulas applied to obtain the next table
pair from the previous table pair.

29. y(z+0.2) = y(z)+0.2(1-y(x)), y(0) =
1
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assigned horizontally and vertically. La-
30. y(z+0.2) = y(x)+0.2(14+y(x)), ¥y(0) = | bel the axes and the center of coordinates.

1 Supply one sample hand computation per
graph. Employ a computer program or cal-

31. y(@ +02) =~ ylz) + 0.2(z - y(2)), culator to obtain the data points.

y(0)=0
32. y(z + 0.2) =~ y(zr) + 0.2(2z + y(x)), 39. y =52 x=0tox=1.
y(0)=0 40. y=3z,z=0tox = 1.
33. y(x+0.2) = y(x) + 0.2(sinx + zy(z)), 41, y=225 2 =0tox = 1.
y(0) =2 ’
34. y(z+0.2) = y(z) +0.2(sinz — zy(x)), 42. y=3", 2 =0tox=1/2
y(0) =2 43. y=2z* 2 =0toxr = 1.
35. y(z + 0.2) ~ y(z) + 0.2(” — Ty(z)), 44, y=325 1 —0tox=1.
y(0)=-1 ’

Cy(@ 4 0.2) & y(z) + 0.2(e" — 5y(x)), 45. y =sinz, =0 to z = 7/4.
y(0) =—1

(x4 0.2) = y(z) + 0.1(e** — 3y()),

46. y =cosz, z =0 to x = /4.

37.yy(0):2 47.yzii§,m=0tox:1.
38. y(z+0.2) = y(z) +0.2(sin 2z — 2y(z)), 1

y(0) =2 48.y:x+17x:0t0m:1.
Hand Graphing 49. y=In(l+z),z=0toz = 1.

Make a graphic by hand on engineering pa-
per, using 6 data points. Cite the divisions | 50. y =1In(1+2z), z =0 to = = 1.
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1.4 Direction Fields

The method of direction fields is a graphical method for displaying the general
shape and behavior of solutions to y' = f(x,y). It persists as a fundamental topic
because it does not require solving the differential equation y' = f(x,y) . The
uniform grid method and the isocline method are introduced, for computer and
hand construction of direction fields.

Euler’s Visualization

L. Euler (1707-1783) discovered a way to draw a graphic showing the behavior
of all solutions to a given differential equation, without solving the equation. The
graphic is built from a grid of points arranged on a graph window. Paired with
each grid point is a line segment centered on the grid point. The line segments
are non-overlapping. FEuler’s idea is to replace the differential equation model
y' = f(z,y) by a graphical model.

Definition 1.7 (Direction Field for v/ = f(z,v))

A graph window plus pairs of grid points and non-overlapping line segments is called
a direction field, provided the line segment at grid point (zg, yp) coincides with the
y, = f(x’y)7 The
y(@o) = yo.

line segment at grid point (x¢, yo) is forced to have slope m = f(zg,yo)-

tangent line to the solution y(x) of the initial value problem {

TSI TATIEN:
PRPPRAAIPRARIPPAR
ISR v 0 v S I - S S s L I r I e I v I v

B St Ty
RS R R R D
S e
R R
DE model T T K K T Y T KT 7 K7 R
P D T K KF o KF K o Y T
———b——b—b—b—b—b—b—b

Graphical Model

Yy :f($7y) =

Figure 7. Model Replacement.
A differential equation model y' = f(x,y) is replaced by a direction field model. The
graphic can be enriched with a few edge-to-edge solution curves.

Important: We don’t have to know a formula for y(z), because y'(zo) can be
computed from its equivalent formula y'(x¢) = f(z0,yo), a number that depends
only on the grid point (zg,yo) and the function f(z,y).
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Solution Curves and Direction Fields

Euler’s visualization idea begins with the direction field, drawn for some graph
window, with pairs of grid points and line segments dense enough to cover most
of the white space in the graph window. The theory used in Euler’s idea consists
of a short list of facts:

1. Solutions of y' = f(x,y) don't cross.

2. A tangent to an edge-to-edge solution y(z) nearly matches
tangents to nearby direction field segments.

3. Direction field segments are solutions of ' = f(x,y), to pixel
resolution.

Details 1: If solutions y; (), y2(z) cross at & = g, then let yo = y1(x0) = y2(x0) and
consider the initial value problem

{ y' = f(z,y),

y(w0) = Yo-

We assume solutions to all such initial value problems are unique. This implies y1(x) =
ya(z) for |x — x| small. Hence crossings are impossible. The analysis implies that two
solutions which touch must coalesce.

Direction field segments represent solution curves, so they must be constructed not to
touch each other. Edge-to-edge solution curves cannot cross a direction field segment,
but they may coincide with a direction field segment, to pixel resolution.

Details 2: Tangent vectors for ¥ = zi+y(z)j are drawn from ¥/ = i+y'(z)7 = 1+ f (z,y) 7.
Continuity of f implies that the vector ¥’ is to pixel resolution identical for all (x,y)
sufficiently close to a grid point (zg,yo). This is why an edge-to-edge solution passes
grid points with tangent vector nearly matching the tangent vector of nearby segments.
Details 3: Each segment is a tangent line y = yo+m(z—x¢), constructed with slope m =
y'(x0). It approximates the curve y(z) local to the contact point (xg,yo). Graphically,
a short tangent line coalesces with the solution curve near the contact point, to pixel
resolution.

The tangent line approximation is called Euler’s approximation. Correct pronuncia-
tion is Oiler. To make the audience giggle, pronounce it Yuler.

Rules for Drawing Threaded Solutions

A direction field graphic replaces all the information supplied by the equation
y' = f(z,y). The equation is tossed aside and not used.

Visualization of all solutions involves drawing a small number of edge-to-edge
solutions y(x) onto the direction field graph window. We will use just two ab-
breviated rules (see 1 and 2 in Table 4).
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Table 4. Two Rules for Drawing Edge-to-Edge Solutions

Abbreviated Threading Rules

1. Solutions don’t cross.
2. Nearby tangents nearly match.

Figure 8. Threading a Solution Edge-to-Edge.

Shown in Figure 8 is a threaded solution curve for y' = f(x,y) plus nearby grid points
and relevant line segments (arrows). The solution threads its way through the direction
field, matching tangents at nearby grid points. Arrows that touch a threaded curve must
coalesce with the curve (solutions don’t cross).

Y "~ incorrect
/I
P 1 =
,P
40 Figure 9. Threading Rules.
g / Solution curve C' threads from the left edge and
C P, meets a line at point . The line contains two
nearby grid points Py, P5. The tangent at Py must
L nearly match direction field arrows at Py, Ps.

Tangent Matching Explained.
The slopes of the tangents in Figure 9 are given by v’ = f(z,y). For points

Py = (z1,y1), Po = (%0,90) and P> = (z2,y2), the slopes are f(x1,v1), f(20,v0),
f(x2,y2). If the points Py, Py, Py are close, then continuity of f implies all three
slopes are nearly equal.

How to Construct a Direction Field Graphic

Window Invent the graph z-range and y-range.

Grid Plot a uniform grid of IV grid points within the graph window.
Invent N to populate the graphical white space, N = 50 for hand

work.
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Field

Threaded
Solutions

Draw at each grid point (z*, y*) a short tangent vector T, where
T =0+ f(a*y)].

Draw additional edge-to-edge threaded solutions into the remain-
ing white space of the graphic. E

Construction Notes.

The window should include all significant equilibrium solutions, that is,
solutions y = constant of ¥’ = f(z,y), which plot as horizontal lines. Phys-
ically interesting initial conditions (zg,y(xo)) should be added.

The isocline method might also be used to select grid points. For details
on both methods, see the next subsection.

The arrow shaft is a replacement curve for the solution of v = f(z,y)
through grid point (z*,y*) on a small z-interval, called a lineal element.

Threading is educated guesswork, discussed above, in Figures 8 and 9. If
possible, choose (zg,yp) on the left window edge, then thread the solution
until it exits the window top, bottom or right.

Direction fields are used infra in phase portraits of two-dimensional systems of
differential equations.

Two Methods for Selecting Grid Points

There are two standard methods for selecting grid points, called the uniform
grid method and the isocline grid method. The methods may be combined
in some applications.

Uniform
Grid

Isocline
Grid

Two positive increment parameters n. and m are supplied along with
a graph window a < z < b, ¢ <y < d. Hand work usually starts
with n = m = 11; computer software starts with n = m = 21.

The nm grid points are defined for: =1,...,nand 5 =1,...,m
by the equations z; = a+ (b—a)(t —1)/(n—1), y; = c+ (d —
) —1)/(m—1).

A graph window a < z < b, ¢ < y < d is given plus a list of
invented slopes Mj, ..., M), for the lineal elements.

To define the grid points, select the number n > 0 of grid points to
be drawn on each isocline. Construct n equally-spaced horizontal
lines (or vertical lines). Define grid points as intersections of the
lines with all the implicit curves f(x,y) = My, £ =1,...,p.

Along the implicit curve f(z,y) = My, within the graph window,
mark each grid point and draw a lineal element, each element of
exactly the same slope My, for £ =1,...,p.
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1.4 Direction Fields

The two methods are applied in Examples 1.27 and 1.28, page 45. Illustrated
for the isocline method are possibilities such as graph window clipping and fine-
tuning of the slopes to allow the grid points to fill the window.

Grid points in the isocline method are intersections of equally-spaced lines with
the implicit curves f(z,y) = M,. Lineal elements sketched along this curve all
have slope My and therefore they can be drawn with reduced effort.

How to Make Lineal Elements

A lineal element is a line segment centered at a grid point. They should not
touch, because they represent, to pixel resolution, non-crossing solution curves
on a short z-interval. Choose H to be not greater than the minimum distance
between pairs of grid points. Initially, one can guess the value of H, then adjust
the value after seeing the result. Define

H
h = .
2\/ 1+ |f(330;y0)|2

Then a lineal element of length H is defined by the midpoint (x,yo) and the
two endpoints (zg — h,yo — hM) and (zg + h,yo + hM), where M = f(xg,yo)-

This choice insures lineal elements do not touch. It is possible to erase the line
segment to the left or right of the grid point without losing much information.
Arrow heads can be added to show the tangent direction.

Examples

Example 1.25 (Window and Grid)

Choose a graph window for the differential equation 3’ = 3?(2 — y)(1 + %) which
includes the equilibrium solutions. Draw a 5 x 5 uniform grid on the graph window
and plot the equilibrium solutions. Do not draw the direction field nor threaded
solutions.

Solution: Let f(x,y) = y*(2—y)(1+y). Then y = k is a constant solution of y' = f(z,y)
exactly when 0 = k2(2 — k)(1 + k). The values k = —1,0, 2 give horizontal lines y = —1,
y =0, y = 2. These lines are called equilibrium solutions; they are constant solutions of
the differential equation. Accordingly, a graph window containing the equilibria is —3 <
x <3, -2 <y <3. The 25 grid points are obtained by the formulas z; = —3 + 6(k/4),
k=0,...,4and y; = —2+5(j/4), j =0,...,4. The plot is done by hand. A computer
plot appears in Figure 10.
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)

» (] (] (] [ ]

2 p ° ° ° [ ]

0 P ¢ & ¢ e Figure 10. A graph window with uniform
L e e o e grid and equilibria.

-1 Three equilibrium solutions y = —1,y = 0, y = 2
._._._._.%x appear plus 25 grid points on the graph window
-3 3 lz| <3, -2 <y <3

Example 1.26 (Threading a Solution)
Starting at the black dots in the direction field graphic of Figure 11, thread three
solution curves.

333333383%

Y R A

92 R Paielicn @@@M Figure 11. A direction
B~ s i S B s s B S S B field.
xS Sy Sy Sy SRy Ry S S Sy R A field for the differential

VIR0 A A A equation y' = y(2 — y)(1 —y)
D O Ty C C R R e ey is plotted on graph window
elietteleR ety el et elb ey ety 0<2<30<y<3 The
SRS A Bl R eBecRctich black dots are at (0.25,0.4),

0

(1.5,2.25) and (1.5,1.65).

Solution: A plot appears in Figure 12.

3333333338,
RRRRR AR

Figure 12.

Threaded solutions.

The graph window is 0 < z <
3,0 <y < 3. Threaded curves
cannot cross equilibrium solu-
tions y =0,y =1 and y = 2.

A threaded solution matches its tangents with nearby lineal elements of the
direction field in Figure 11; see page 41 for an explanation. Each threaded curve
represents a solution of the differential equation through the given dot on the
entire interval 0 < x < 3, whereas the lineal elements represent solutions through
the grid point on a very short z-interval.

Example 1.27 (Uniform Grid Method)
Make a direction field of 11 x 11 points for ¢/ = x + y(1 —y) on —1 < z < 1,
—2<y<2
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1.4 Direction Fields

Solution: Let f(z,y) = x + y(1 — y). The 121 grid points are the pairs (z,y) where
x = —1 to 1 in increments of 0.2 and y = —2 to 2 in increments of 0.4. The minimum
distance between grid points is H = 0.2.

We will generate the endpoints of the lineal element at o = —0.4, yo = 1.6. It will be
shown that the first endpoint is (—0.34076096, 1.5194349). This point can be located
from (x,yo) by traveling distance H/2 at slope M = —1.36.

M = f(z0,%0)

h =

=xo + yo(1l — o)
= —1.36,
H

2v1+ M?

= 0.059239045,

X:l’0+h

= —0.34076096

Y =yo+ hf(xo,y0)

= 1.5194349

The line segment slope for Euler’s rule.

Apply f(z,y) =z +y(1 —y).
Use the first point zg = —0.4, yo = 1.6.

Apply the formula h = (H/2)/+/1+ f(z0,0)>.

Use H =0.2 and f(xg,y0) = M = —1.36.
Compute the z-coordinate of the second point.
Use g = —0.4 and h = 0.059239045.

Compute the y-coordinate of the second point.

Use values yo = 1.6, f(xo,y0) = M —1.36, h =

0.059239045.

The second endpoint (—0.459239045,1.6805651), at distance H/2 from the grid point,
in the opposite direction, can be found by minor changes to the above calculation. Au-
tomation of this process is necessary because 121 such calculations are required. Some
basic maple code appears below which computes the 121 pairs of points for the direction
field, then plots a replica of the field. The graphic appears in Figure 13. The code adapts
to numerical laboratories like matlab, octave and scilab, which may or may not have
a suitable direction field library, depending on the version.

2
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Figure 13. Direction field for the equation
y =z+y(l—y).
The uniform grid method is used on graph window

\
\
1

—1<x<1, -2 <y < 2. There are 121 grid points.

a:=-1:b:=1:c:=-2:d:=2:n:=11:m:=11:
H:=(b-a)/(n-1) :K:=(d-c)/(m-1) :HH:=0.15:
f:=(x,y)->x+y*x(1-y): X:=t->a+H*(t-1):Y:=t->c+K*(t-1):P:=[]:
for i from 1 to n do for j from 1 to m do

x0:=X(1) :y0:=Y(j) :M:=evalf (£ (x0,y0)):

h:=evalf ((HH/2)/sqrt(1+M~2)):

Seg:=[[x0-h,y0-h*M], [xO+h,yO+h*M]] :

if (P = [1) then P:=Seg: next: fi: P:=P,Seg:
od:od:
opts:=scaling=constrained,color=black,thickness=3,axes=boxed;
plot ([P],opts);
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1.4 Direction Fields

Versions of maple since V 5.1 have a DEtools package which simplifies the process of
making a direction field. In mathematica, a similar command exists.

with(DEtools): de:=diff(y(x),x)=x+y(x)*(1-y(x)): # Maple
opts:=arrows=LINE,dirgrid=[11,11];

DEplot(de,y(x),x=-1..1,y=-2..2,0pts);

<< Graphics\PlotField.m # Mathematica

PlotVectorField[1,x+y (1-y),x,-1,1,y,-2,2]

Resources for computer-assisted direction fields with interactive threaded solutions in-

clude Maple, Mathematica, Matlab. Each system has a steep learning curve, the time
investment well worth the effort expended.

Example 1.28 (Isocline Method)
Make a direction field by hand using the isocline method for the differential equation
y=z+y(l—y)on-1<z<1 -1<y<2

Solution: Let f(x,y) = x + y(1 — y) and let M denote the slope of a replacement
lineal element. The isoclines are defined by f(z,y) = M. It has the standard equation
(y —1/2)? = 2 — M + 1/4, which is a parabola with center (M — 1/4,1/2) opening to
the right. The algebra details:

z4+y(l—y) =M The equation f(z,y) = M expanded.

v—y=z-M Multiply by —1 and move —z to the right side.

y2—y+ i =xr— M+ i Apply square completion: add the square of half the co-
efficient of y to both sides.

(y—312=a-M+1 Write the left side as a perfect square. It has the form
of the standard curve library equation Y2 = X. See Ap-
pendix A.4.

The basic requirement for slope M selection is that the set of grid points obtained below
fills the white space of the graph window. Briefly, some portion of each parabola has
to intersect the graph window. By experiment, the slopes M to be used in the isocline
method will be selected as M = 1/4 + (=3) to M = 1/4 + (1) in increments of 0.2 to
identify 21 isoclines:

Isocline Equation Slope M
(y—1/2)2 =2 —(-3) [0.25+(-3)
(y—1/2)2 =2 —(-2.8) | 0.25 + (—3) + 0.2

(y —1/2)? e (1) 0.25 + (;3) +4.0

To define the grid points, let y = —1 to 2 in increments of 0.3 to make 11 horizontal
lines. The intersections of these 11 lines with the 21 parabolas define at least 100 grid
points inside the graph window. It is possible to graph rapidly the 21 parabolas, because
they are translates of the standard parabola Y? = X.

The replacement lineal elements on each parabola are sketched rapidly as follows. Using
pencil and paper, graph accurately the first lineal element on the isocline curve, using
associated slope M. Rotate the paper until the lineal element is vertical. Draw addi-
tional lineal elements at the remaining grid points of the isocline curve as vertical lines.
Accuracy improves with the use of a drawing easel, T-square and triangle.
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1.4 Direction Fields

A computer graphic is shown in Figure 14 which closely resembles a hand-made graphic.
Compare it to the uniform grid method graphic in Figure 13, page 46.

2

Figure 14. Direction field for the differential
equation y' =z + y(1 —y).

The isocline method is applied using graph window
-1 <2 <1, -1 <y < 2. Parabolas are isoclines.
Grid points are intersections of direction field lineal
elements with isoclines. Lineal elements are com-
puted along equally-spaced horizontal lines.

—1

—

1

The maple code that produced Figure 14 is included below to show machine equivalents
of a hand computation. The ordering of the code: the lineal elements are drawn in Plot1,
then the isocline curves are drawn in Plot2. Then two graphics are superimposed. A
key detail is solving f(x,y9) = M for x = x¢ to locate a grid point (xg,yo) and then
construct the lineal element. Factor H is adjusted to keep lineal elements from touching.

with(plots):
getGridSegments:=proc(c,d,n,m,H,slopes,f)

local M,Y0,j,k,h,x0,y0,Seg,P;
Y0:=unapply(c+(d-c)*(t-1)/(m-1),t): P:=[]:

for j from 1 to n do

M:=slopes[j]:h:=evalf (H*0.5/sqrt (1+M"2)):

for k from 1 to m do # loop on m horiz lines
y0:=Y0(k): x0:=solve(f(x,y0)=M,x);# (x0,y0)=GridPoint
Seg:=[[x0-h,y0-h*M], [xO+h,yO+h*M]] : # lineal element
if P=[] then P:=Seg: next: fi:

P:=P,Seg:od:od: return P; end proc:

a:=-1:b:=1l:c:=-1:d:=2:m:=11:

H:=0.1:f:=(x,y)->x+y*(1-y):
opts:=color=BLACK,thickness=4,axes=none,scaling=constrained:
Window:=x=a..b,y=c..d: n:=21;
slopes:=[seq(-3+4*(t-1)/(n-1),t=1..n)];# guesswork
P:=getGridSegments(c,d,n,m,H,slopes,f);
Plotl:=plot([P],Window,opts):
eqs:=[seq(f(x,y)=slopes[j],j=1..n)]:
Plot2:=implicitplot(eqs,Window) :

display([Plot1,Plot2]);

Exercises 1.4 (4

Window and Grid 4. y =3y —2

Find the equilibrium solutions, then deter- ,

mine a graph window which includes them | 9 ¥ = y(1-y)

and construct a 5 x 5 uniform grid. Follow 6. 4 =2y(3 —y)
Example 1.25.

1y =2 7.y =y(l-y)(2-y)
2.y =3y 8.y =2y(1-y)(1+y)
3.y =2y +2 9.y =2y —1)(y+1)>?
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10.

Y =2y%(y — 1)

11. y

12.

y =

13. y

14. y

=(z+1)(y+

2(z + 1)y?

=(x+2yly—3)(y+2)

=(x+1yly—2)(y+3)

Threading Solutions
Each direction field below has window 0 <

r < 3,0 <y <3 Start each threaded
solution at a black dot and continue it left
and right across the field. Dotted horizon-
tal lines are equilibrium solutions. See Ex-

ample 1.26.

15.

16.

17.

18.
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24.
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Uniform Grid Method

Apply the uniform grid method as in Ex-
ample 1.27, page 45 to make a direction
field of 11 x 11 grid points for the given dif-
ferential equation on —1 < z < 1, =2 <
y < 2. If using a computer program, then
use about 20 x 20 grid points.

25. ' =2y

26. y' = 3y

27. Yy =1+y

28. y =243y

29. vy =x+y(2—vy)

30.

31.

32. ¥y =1+4+2y(2—1y)
33. Y=z —y

4. y =z+vy

35. y' =y —sin(z)

36. y' =y +sin(x)

Isocline Method

Apply the isocline method as in Example
1.28, page 47 to make a direction field of
about 11 x 11 points for the given differ-
ential equation on 0 < x < 1, 0 < y <
2. Computer programs are used on these
kinds of problems to find grid points as in-
tersections of isoclines and horizontal lines.
Graphics are expected to be done by hand.
Extra isoclines can fill large white spaces.

37. v =z — >

38. y =2z — 9>

39. ¥y =2y/(z+1)
40. ¢ = —y?/(z +1)?
41. y =sin(z —y)
42. y = cos(z —y)
43. y' =zy

44. y = 2%y

45. y' = zy + 2z

46. y = 2%y + 222
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1.5 Phase Line Diagrams

1.5 Phase Line Diagrams

Technical publications may use special diagrams to display qualitative infor-
mation about the equilibrium points of the differential equation

(1) y' (@) = f(y(x)).

The right side of this equation is independent of x, hence there are no external
control terms that depend on x. Due to the lack of external controls, the equation
is said to be self-governing or autonomous.

Definition 1.8 (Phase Line Diagram)

A phase line diagram for the autonomous equation 3’ = f(y) is a line segment with
labels sink, source or node (definitions below), one mark and label for each root y
of f(y) =0, i.e., each equilibrium; see Figure 15.

The labels sink, source, node are borrowed from the theory of fluids and they have
the following special definitions:%

Sink y = ¥ The equilibrium y = yq attracts nearby solutions at x = oc:
for some H > 0, |y(0)—yo| < H implies |y(z)—1yo| decreases
to 0 as x — oo.

Source y =11 The equilibrium y = y; repels nearby solutions at x = oo:
for some H > 0, |y(0) — y1| < H implies that |y(x) — y1|
increases as T — 00.

Node y = 9 The equilibrium y = ys is neither a sink nor a source.
_ - + 4+ o -
Yo Y2 Y1 Y3
source node sink node

Figure 15. A phase line diagram along the y-axis.
A plus sign means f(y) > 0 for y between equilibria. A minus sign means f(y) < 0 for y
between equilibria. A sign change minus to plus is a source yg , plus to minus is a sink
y1. No sign change, plus to plus or minus to minus is a node — ys, y3 are nodes.

Figure 15 shows that classifications source, sink, node (or spout, funnel,
node) can be decided from the signs of f(y) left and right of an equilibrium
point.

Scalar function f(y) must be one-signed on the y-interval between adjacent equi-
librium points, because f(y) = 0 means y is an equilibrium point.

A phase line diagram summarizes the contents of a direction field and all equi-
librium solutions. It is used to efficiently draw threaded curves across the graph

51t is for geometric intuition that the current text section requires monotonic behavior in the
definition of a sink. In applied literature a sink is defined by lims o |y(z) — yo| = 0, an easy
transition for most, although unnecessarily abstract. See page 55 for definitions of attracting
and repelling equilibria.
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1.5 Phase Line Diagrams

window, producing a phase portrait for ¢ = f(y). The drawing rules increase
in number, however for the special equation y' = f(y) neither grid points nor a
direction field are used.

Drawing Phase Portraits

A phase line diagram is used to draw a phase portrait of threaded solutions
and equilibrium solutions by using the three rules below, justified on page 54.

Three Drawing Rules for 3 = f(y)

1. Equilibrium solutions are horizontal lines in the phase dia-
gram.

2. Threaded solutions of ' = f(y) don't cross. In particular,
they don't cross equilibrium solutions.

3. A threaded non-equilibrium solution that starts at x = 0 at
a point yo must be increasing if f(yo) > 0, and decreasing

if f(yo) <O,

U3 node

) ———————— sink
Yo node
Y0 —/'/ source

Figure 16. A phase portrait for an autonomous equation y' = f(y).

The graphic is drawn directly from phase line diagram Figure 15, using rules 1, 2, 3.
While not a replica of an accurately constructed computer graphic, the general look of
threaded solutions is sufficient for intuition. Labels source, sink, node are essential.
Alternate labels: spout, funnel, node.
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Table 5. Equilibria Classification by Signs of f(y)

Classification Sign of f(y) left Sign of f(y) right

Source [Spout] MINUS PLUS
Sink [Funnel] PLUS MINUS
Node PLUS PLUS
Node MINUS MINUS

Drain and Spout

In the theory of fluids, source means fluid is created and sink means fluid is
lost. A memory device for these concepts is the kitchen water spout, which is
the source, and the kitchen drain, which is the sink.

Figure 17. A source or a spout.
A water spout from a kitchen faucet or a spray-can is a source. Pencil traces in a figure

represent flow lines in the fluid.

Figure 18. A sink or a funnel.

A funnel rotated 90 degrees has the shape of a sink. A drain in the kitchen sink has
the same geometry. The lines drawn in a funnel figure can be visualized as traces of flow
lines or dust particles in the fluid, going down the drain.
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1.5 Phase Line Diagrams

Figure 19. Video replay in reverse time.
A video of a funnel or sink played backwards looks like a source or spout.

Justification of the Three Drawing Rules:

Rule 1: The curve y = constant is a horizontal line.

Rule 2: Two solutions y;(x), yo(x) that touch at x = xg, y = yo must coalesce: both
solutions satisfy y' = f(t), y(xo) = yo, then Picard’s theorem says y;(z) = y2(z) for
small | — xg|. The Picard-Lindel6f theorem hypotheses are met by examples herein and
by the bulk of applied problems.

Rule 3: let yi(x) be a solution with ¢} (x) = f(yi1(x)) either positive or negative at
x = 0. If yj(xz1) = 0 for some z1 > 0, then let ¢ = y;(z1) and define equilibrium solution
ya2(x) = c¢. Then solution y; crosses the equilibrium solution y» at x = z1, violating rule
2.

Stability Test

The terms stable equilibrium and unstable equilibrium refer to the pre-
dictable plots of nearby solutions. The term stable means that solutions that
start near the equilibrium will stay nearby as x — co. The term unstable means
not stable. Therefore, a sink is stable and a source is unstable.

Definition 1.9 (Stable Equilibrium)

An equilibrium yo of v = f(y) is stable provided for given € > 0 there exists
some H > 0 such that |y(0) — yo| < H implies solution y(z) exists for z > 0 and
ly(x) — yo| < € for all z > 0.

The solution y = y(0)e* of the equation 3’ = ky exists for 2 > 0. Properties of
exponentials justify that the equilibrium y = 0 is a sink for k£ < 0, a source for
k > 0 and just stable for k = 0.

Definition 1.10 (Attracting and Repelling Equilibria)

An equilibrium y = yp is attracting provided lim,_,~ y(z) = yo for all initial data
y(0) with 0 < |y(0) — yo| < h and h > 0 sufficiently small. An equilibrium y = yq is
repelling provided lim,_, . y(x) = yo for all initial data y(0) with 0 < |y(0) —yo| <
h and h > 0 sufficiently small.

The stability test below in Theorem 1.3 is motivated by the vector calculus
results Div(P) < 0 for a sink and Div(P) > 0 for a source, where P is the
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velocity field of the fluid and Div is divergence. Justification is postponed to
page 60.

Theorem 1.3 (Stability and Instability Conditions)

Let f and f’ be continuous. The equation y' = f(y) has a sink at y = yo provided
f(yo) = 0 and f'(yo) < 0. An equilibrium y = y; is a source provided f(y;) =0
and f'(y1) > 0. There is no test when f’ is zero at an equilibrium. The no-test case
can sometimes be decided by an additional test:

(a) Equation ¢’ = f(y) has a sink at y = yo provided f(y) changes sign from positive
to negative at y = yo.

(b) Equation ' = f(y) has a source at y = yo provided f(y) changes sign from
negative to positive at y = 1.

Phase Line Diagram for the Logistic Equation

The model logistic equation 3y’ = (1 — y)y is used to produce the phase line
diagram in Figure 20. The logistic equation is discussed on page 6, in connection
with the Malthusian population equation 3’ = ky. The letters S and U are used
for a stable sink and an unstable source, while N is used for a node. Details are
in Example 1.30, page 58.

source sink
y=0 y=1
U S

Figure 20. A phase line diagram for y' = (1 — y)y.
The equilibrium y = 0 is an unstable source (a spout) and equilibrium y = 1 is a stable
sink (a funnel).

Arrowheads are used to display the repelling or attracting nature of the equi-
librium.

Direction Field Plots for 3 = f(y)

A direction field for an autonomous differential equation 3y’ = f(y) can be con-
structed in two steps.

Step 1. Draw grid points and line segments along the y-axis.

Step 2. Duplicate the y-axis direction field at even divisions along

the z-axis.

Duplication is justified because y' = f(y) does not depend on x, which means
that the slope assigned to a line segment at grid points (0,yo) and (x,yo) are
identical.

The following facts are assembled for reference:
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Fact 1. An equilibrium is a horizontal line. It is stable if all solutions starting
near the line remain nearby as ¢ — oc.

Fact 2. Solutions don’t cross. In particular, any solution that starts above
or below an equilibrium solution must remain above or below.

Fact 3. A solution curve of ' = f(y) rigidly moved to the left or right
will remain a solution, i.e., the translate y(z — xg) of a solution to
y' = f(y) is also a solution.

A phase line diagram is merely a summary of the solution behavior in a direction
field. Conversely, an independently made phase line diagram can be used to
enrich the detail in a direction field.

Fact 3 will create additional threaded solutions from an initial threaded solution
by translation. Threaded solutions with turning points will have translations with
turning points marching monotonically to the left, or to the right.

Bifurcation Diagrams

The phase line diagram has a close relative called a bifurcation diagram. The
purpose of the diagram is to display qualitative information about equilibria,
across all equations ¢y’ = f(y), obtained by varying physical parameters appearing
implicitly in f. In the simplest cases, each parameter change to f(y) produces one
phase line diagram and the two-dimensional stack of these phase line diagrams
is the bifurcation diagram (see Figure 21).

Fish Harvesting

To understand the reason for such diagrams, consider a
private lake with fish population y(¢). The population is
harvested at rate k fish per year. A suitable sample logistic
model is

dy

Y-y —k

where the constant harvesting rate k is allowed to change. Given some relevant
values of k, a field biologist would produce corresponding phase line diagrams,
then display them by vertical stacking to obtain a two-dimensional diagram like

Figure 21.

Y
S
Figure 21. A bifurcation diagram.
N Legend: U=Unstable, S=Stable, N=node.
U The fish harvesting diagram consists of stacked phase-line dia-
=k grams.

In Figure 21, the vertical axis represents initial values y(0) and the horizontal
axis represents the harvesting rate k. Each phase line diagram has two equilibria,
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1.5 Phase Line Diagrams

one stable and one unstable, except the rightmost diagram, which has exactly
one equilibrium.

The bifurcation diagram shows how the number of equilibria and their classifica-
tions sink, source and node change with the harvesting rate.

Shortcut methods exist for drawing bifurcation diagrams and these methods have
led to succinct diagrams that remove the phase line diagram detail. The basic
idea is to eliminate the vertical lines in the plot, and replace the equilibria dots
by a curve, essentially obtained by connect-the-dots. In current literature,
Figure 21 is ofteb replaced by the more succinct Figure 22.

q Y Figure 22. A succinct bifurcation diagram for fish har-
vesting.
N The vertical axis y represents initial population and the hori-
zontal axis k is the harvesting rate.
U k Legend: U=Unstable, S=Stable, N=node.

Stability and Bifurcation Points

Biologists call a fish population stable when the fish reproduce at a rate that
keeps up with harvesting. Bifurcation diagrams show how to stock the lake and
harvest it in order to have a stable fish population.

A point N = (ko,yp) in a bifurcation diagram is called a bifurcation point
provided small local changes to k result in a sudden change in qualitative behav-
ior. In Figure 22, the sudden change in qualitative behavior is from one unstable
equilibrium to two equilibria, one stable and one unstable. Some facts about
Figure 22:

[1] The carrying capacity M for harvesting rate k is found from a point (k, M)
on the upper curve. Symbol M is the largest population size for a stable
fish population.

[2] The minimum stocking size m for harvesting rate & is found from a point
(k,m) on the lower curve .

[3] Extinction results for harvesting rates k > ko. Extinction means all solu-
tions limit to zero at ¢ = oo.

[4] Extinction results for harvesting rates k and initial population y with (k, y)
in the region below the lower curve.

Some combinations are obvious, e.g., a harvest of 2 thousand per year from an
equilibrium population of about 4 thousand fish. Less obvious is a sustainable
harvest of about 4 thousand fish with an equilibrium population of about 2
thousand fish, detected from the portion of the curve near bifurcation point N.
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1.5 Phase Line Diagrams

Examples

Example 1.29 (No Test in Sink—Source Theorem 1.3)
Find an example ¥/ = f(y) which has an unstable node at y = 0 and no other
equilibria.

Solution: Let f(y) = y?. The equation 3’ = f(y) has an equilibrium at y = 0. In
Theorem 1.3, there is a no test condition f'(0) =0
(

1/y(0) — 2):

A computer algebra system can determine y = 1/
dsolve(diff (y(x),x)=y(x)"2,y(x)); maple
ode2(’diff(y,x) = y°2,y,x); Maxima

Solutions with y(0) < 0 limit to the equilibrium solution y = 0, but positive solutions
“blow up” before x = oo at x = 1/y(0). The equilibrium y = 0 is an unstable node, that
is, it is not a source nor a sink.

The same conclusions are obtained from basic calculus, without solving the differential
equation. The reasoning: 3’ has the sign of y2, then y’ > 0 implies y(x) increases.
The equilibrium y = 0 behaves like a source when y(0) > 0. For y(0) < 0, again y(z)
increases, but in this case the equilibrium y = 0 behaves like a sink. Accordingly, y = 0
is not a source nor a sink, but a node.

Example 1.30 (Phase Line Diagram)
Verify the phase line diagram in Figure 23 for the logistic equation y' = (1 — y)y,
using Theorem 1.3.

source sink
y=0 y=1
U S

Figure 23. Phase line diagram for y’' = (1 — y)y.

Solution: Let f(y) = (1 — y)y. To justify Figure 23, there are three steps:

1. Find the equilibria. Answer: y =0 and y = 1.
2. Find the signs PLUS and MINUS.
3. Apply Theorem 1.3 to show y = 0 is a source and y = 1 is a sink.

The plan is to first compute the equilibrium points.
1-yy=0 Solving f(y) = 0 for equilibria.
y=0y=1 Roots found.

The signs and B appearing in Figure 20 are labels that mean f is positive or negative
on the interval between adjacent equilibria.

A sign of plus or minus is determined by the sign of f(x) for = between equilibria.
To justify this statement, suppose both signs occur, f(z1) > 0 and f(z2) < 0. Then
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1.5 Phase Line Diagrams

continuity of f implies f(x) = 0 for a point & between x1, x5, which is impossible on an
interval free of roots.

The method to determine the signs, plus or minus, then reduces to evaluation of f(x)
for an invented sample = chosen between two equilibria, for instance:

f(=1)=(y— 92)‘35:71 = -2 The sign is MINUS. Chosen was z = —1, which is
in the interval —oo <z < 0.

£(0.5) = (y — y2)‘$:0_5 =0.25 The sign is PLUS. Chosen was = = 0.5, which is in
the interval 0 <z < 1.

f2)= (y— y2)|I:2 =-2 The sign is MINUS. Chosen was x = 2, which is in
the interval 1 <z < oo.

We will apply Theorem 1.3. The plan is to find f/(y) and then evaluate f’' at each
equilibrium. An alternative technique is to apply Theorem 1.3, part (a) or (b), which
is the method of choice in practise.

') =—-v?) Find f" from f(y) = (1 - y)y.
. . d
=1-2y Derivative f'(y) = d—é found.

f1(0)=1 Positive means it is a source (spout), by Theorem
1.3.

fl(1)=-1 Negative means it is a sink (funnel), by Theorem
1.3.

Yy = 1 Slnk or

Funnel

Source

=0
Y \\\ or Spout

Figure 24. Phase portrait for ' = (1 — y)y.
Drawn from the phase line diagram of Example 1.30.

Example 1.31 (Phase Portrait)
Justify the phase portrait in Figure 24 for the logistic equation y' = (1 — y)y, using
the phase line diagram constructed in Example 1.30.

Solution:

Drawing rules. The phase line diagram contains all essential information for draw-
ing threaded curves. Threaded solutions have to be either horizontal (an equilibrium
solution), increasing or decreasing. Optional is representation of turning points.
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1.5 Phase Line Diagrams

Translations. Because translates of solutions are also solutions and solutions are unique,
then the drawing of an increasing or decreasing threaded curve determines the shape of
all nearby threaded curves. There is no option for drawing nearby curves!

Explanation. The phase portrait is drawn by moving the phase line diagram to the
y-axis of the graph window 0 < z <6, —0.5 < y < 2. The graph window was selected by
first including the equilibrium solutions y = 0 and y = 1, then growing the window after
an initial graph. Each equilibrium solution produces a horizontal line, i.e., lines y = 0
and y = 1. The signs copied to the y-axis from the phase line diagram tell us how to
draw a threaded curve, either increasing (PLUS) or decreasing (MINUS).

Labels. It is customary to use labels sink, source, node or the alternates spout,
funnel, node. Additional labels are Stable and Unstable. The only stable geometry
is a sink (funnel).

Example 1.32 (Bifurcation Diagram)
Verify the fish harvesting bifurcation diagram in Figure 21.

Solution: Let f(y) = y(4 — y) — k, where k is a parameter that controls the harvesting
rate per annum. A phase line diagram is made for each relevant value of k, by applying
Theorem 1.3 to the equilibrium points. First, the equilibria are computed, that is, the
roots of f(y) = 0:

Y2 —4dy+k=0 Standard quadratic form of f(y) = 0.
4 ++/42 — 4k
y= ? Apply the quadratic formula.
=24+Vv4—k, 2—-V4—-k Evaluate. Real roots exist only for 4 — k > 0.

In preparation to apply Theorem 1.3, the derivative f’ is calculated and then evaluated
at the equilibria:

1Y) = (4y — o* — kY Computing f/ from f(y) = (4— y)y — k.
=4-—2y Derivative found.

f@+vVi—k) =-2/4—k Negative means a sink, by Theorem 1.3.

ff2—Vi-k)=2V4—k Positive means a source, by Theorem 1.3.

A typical phase line diagram then looks like Figure 15, page 51. In the ky-plane, sources
go through the curve y = 2 — /4 — k and sinks go through the curve y = 2 + /4 — k.
This justifies the bifurcation diagram in Figure 21, and also Figure 22, except for the
common point of the two curves at k =4, y = 2.

At this common point, the differential equation is 3’ = —(y—2)2. This equation is studied
in Example 1.29, page 58; a change of variable Y = 2 — y shows that the equilibrium is
a node.

Proofs and Details

Stability Test Proof: Let f and f’ be continuous. It will be justified that the equation
y' = f(y) has a stable equilibrium at y = yo, provided f(yo) = 0 and f'(yg) < 0. The
unstable case is left for the exercises.
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We show that f changes sign at y = yg from positive to negative, as follows, hence the
hypotheses of (a) hold. Continuity of f' and the inequality f'(yo) < 0 imply f'(y) < 0
on some small interval |y — yo| < H . Therefore, f(y) > 0 = f(yo) for y < yo and
fly) < 0 = f(yo) for y > yo. This justifies that the hypotheses of (a) apply. We
complete the proof using only these hypotheses.

Global existence. It has to be established that some constant H > 0 exists, such that
ly(0) — yo| < H implies y(z) exists for > 0 and lim, o y(z) = yo. To define H > 0,
assume f(yo) = 0 and the change of sign condition f(y) > 0 for yo — H < y < o,
fly) <Oforyo <y<wyo+H.

Assume that y(x) exists as a solution to ¢y’ = f(y) on 0 < 2 < h. Tt will be established
that |y(0) — yo| < H implies y(z) is monotonic and satisfies |y(z) — yo| < Hh for
0<z<h.

The constant solution yy cannot cross any other solution, therefore a solution with y(0) >
yo satisfies y(x) > yo for all z. Similarly, y(0) < yo implies y(x) < yo for all .

The equation 3y’ = f(y) dictates the sign of ¢/, as long as 0 < |y(z) — yo| < H. Then
y(x) is either decreasing (y" < 0) or increasing (y' > 0) towards yo on 0 < z < h, hence
ly(x) — yo| < H holds as long as the monotonicity holds. Because the signs endure on
0 < x < h, then |y(z) — yo| < H holds on 0 < z < h.

Extension to 0 < z < oo. Differential equations extension theory applied to vy’ = f(y)
says that a solution satisfying on its domain |y(z)| < |yo| + H may be extended to
2 > 0. This dispenses with the technical difficulty of showing that the domain of y(x) is
x > 0. Unfortunately, details of proof for extension results require more mathematical
background than is assumed for this text; see Birkhoff-Rota [BirkRota], which justifies
the extension from the Picard theorem.

Limit at x = co. It remains to show that lim, o, y(z) = y1 and y; = yo. The limit
equality follows because y is monotonic. The proof concludes when y; = g is established.

Already, y = yo is the only root of f(y) = 0 in |y — yo| < H. This follows from the
change of sign condition in (a). It suffices to show that f(y;) = 0, because then y; = yo
by uniqueness.

To verify f(y1) = 0, apply the fundamental theorem of calculus with y'(x) replaced by
f(y(z)) to obtain the identity

n+1
y(n+1) — y(n) = / (@)

The integral on the right limits as n — oo to the constant f(y;), by the integral mean
value theorem of calculus, because the integrand has limit f(y1) at £ = co. On the left
side, the difference y(n + 1) — y(n) limits to y; — y1 = 0. Therefore, 0 = f(y1).

The additional test stated in the theorem is the observation that internal to the proof
we used only the change of sign of f at y = yo, which was deduced from the sign of the
derivative f'(yo). If f/(yo) = 0, but the change of sign occurs, then the details of proof
still apply. W

Exercises 1.5 (4

Stability-Instability Test 55, to obtain a classification of each equi-
Find all equilibria for the given differential | librium as a source, sink or node. Do not
equation and then apply Theorem 1.3, page | draw a phase line diagram.
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1. P'=(2-P)P

2. P'=(1-P)(P-1)

3. ¥y =y(2-3y)

4. y' =y(1 - 5y)

5. A= A(A—1)(A—2)

6. A = (A—1)(A—2)?

T /:wl(i-ng)

8. w = 2w
14wt

10. o — (1-v)(14+0v)

24 v?

Phase Line Diagram
Draw a phase line diagram, with detail sim-
ilar to Figure 20.

11. ¥ =y(2—y)
12. ¢/ = (y+1)(1 —y)
13. ¢y = (y—1)(y—2)
14. ¥ = (y — 2)(y +3)
15. ¥ =y(y—2)(y — 1)
16. ¥ =y(2—-y)(y—1)
17. 4 = (y —121(212— 1)
18, o = 2=9H 1)
T 142
19. y/ _ (y _122555/2_ 1)
—9)(y —1)2
20. y,:(y 1Z£yyz )

Phase Portrait

Draw a phase portrait of threaded curves,
using the phase line diagram constructed in
the previous ten exercises.

21. ¥ =y(2-y)
22. ' =(y+1)(1—y)
23. ¥ =(y—-1)(y—-2)
24. y' = (y—2)(y +3)
25. ¥y =yly—2)(y — 1)
26. ' =y(2—-y)(y—1)

, y=2)y—-1)
27, Y = T+ 42

92— 1

28. y — ( 1yJ)r(z2 )
29. y/ — (y _12)5(52_1)
30. y' = W —121(222— v

Bifurcation Diagram

Draw a stack of phase line diagrams and
construct from it a succinct bifurcation di-
agram with abscissa & and ordinate y(0).
Don’t justify details at a bifurcation point.

3. y =(2-yy—k

32. Yy =B-yy—k

33. ¥ =Q2-yly-1)—k
34. vy =B -y)y—2)—k
35. v = (0.5 —0.001ly) — k
36. vy = y(0.4—0.045y) — k

Details and Proofs
Supply details for the following statements.

37. (Stability Test)
Verify (b) of Theorem 1.3, page 55, by
altering the proof given in the text for

(a).

(Stability Test)

Verify (b) of Theorem 1.3, page 55, by
means of the change of variable x —
—z.

38.
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39. (Autonomous Equations)

Let ¥ = f(y) have solution y(z) on
a < x < b. Then for any ¢, a < ¢ < b,
the function z(z) = y(z+c) is a solution

of 2/ = f(z2).

40. (Autonomous Equations)

63

The method of isoclines can be applied
to an autonomous equation y' = f(y)
by choosing equally spaced horizontal
lines y = ¢;, i = 1,...,k. Along each
horizontal line y = ¢; the slope is a con-
stant M; = f(¢;), and this determines
the set of invented slopes {M,}¥_; for
the method of isoclines.




1.6 Computing and Existence

1.6 Computing and Existence

The initial value problem

(1) Y = f(z,y), ylxo) =wo

is studied here from a computational viewpoint. Answered are some basic ques-
tions about practical and theoretical computation of solutions:

e Why can numerical methods fail in problem (1)?

e What hypotheses for (1) make it possible to use numerical
methods?

e When does (1) have a symbolic solution, that is, a solution
described by an xy-equation?
Three Key Examples

The range of unusual behavior of solutions to ' = f(z,y), y(xg) = yo can be
illustrated by three examples.

(A) o =3(y-— 1)2/3, The right side f(x,y) is continuous. It has two
y(0) = 1. solutions y =1+ 23 and y = 1.
2
(B) ¢ = yl’ The right side f(z,y) is discontinuous. It has in-
y(0) v 1 finitely many piecewise-defined solutions

(x—1)72 2z<1,
y= 2
clr—1)* z>1.
(C) o =1+ The right side f(x,y) is differentiable. It has
y(0) = 0. unique solution y = tan(x), but y(xzy) = oo at
finite time 2o = 7/2.

N—
I

Numerical method failure can be caused by multiple solutions to problem
(1), e.g., examples (A) and (B), because a numerical method is going to compute
just one answer; see Example 1.33, page 69. Multiple solutions are often signaled
by discontinuity of either f or its partial derivative f,. In (A), the right side
3(y —1)?/3 has an infinite partial at y = 1, while in (B), the right side 2y/(z — 1)
is infinite at z = 1.

Simple jump discontinuities, or switches, appear in modern applications of
differential equations. Therefore, it is important to allow f(z,y) to be discon-
tinuous, in a limited way, but multiple solutions must be avoided, e.g., example
(B). An important success story in electrical engineering is circuit theory with
periodic and piecewise-defined inputs. See Example 1.34, page 70.

Discontinuities of f or f, in problem (1) should raise questions about the ap-
plicability of numerical methods. Exactly why there is not a precise and foolproof
test to predict failure of a numerical method remains to be explained.
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Theoretical solutions exist for problem (1), if f(x,y) is continuous. See
Peano’s theorem, page 68. This solution may blow up in a finite interval, e.g.,
y = tan(x) in example (C). See Example 1.35, page 71.

No symbolic closed-form solution formula exists as a result of the basic
theory. In part, this dilemma is due to the possibility of multiple solutions, if
f is only continuous, e.g., example (A). Picard’s iteration provides assumptions
to give a symbolic solution formula. However, Picard’s formula is currently im-
practical for applied mathematics. Additional general assumptions do not seem
to help. There is in general no symbolic solution formula available for use in
applied mathematics.

Exactly one theoretical solution exists in problem (1), provided f(z,y) and
fy(z,y) are continuous; see the Picard-Lindelof theorem, page 68. The situation
with numerical methods improves dramatically: the most popular methods work
on a computer.

Why Not “Put it on the computer?”

Typically, scientists and engineers rely upon computer algebra systems and nu-
merical laboratories, e.g., maple, mathematica and matlab.

Computerization for differential equation models constantly improves, with
the advent of computer algebra systems and ever-improving numerical methods.
Indeed, neither an advanced degree in mathematics nor a wizard’s hat is required
to query these systems for a closed-form solution formula. Many cases are checked
systematically in a few seconds.

Fail-safe mechanisms usually do not exist for applying modern software to the
initial value problem

% = f(z,y(@)), y(zo) = vo.

For instance, the initial value problem 3y = 3(y — 1)?/3, y(0) = 1 entered into
computer algebra system maple reports the solution y = 1+ 3. But the obvious
equilibrium solution y = 1 is unreported. The maple numeric solver silently
accepts the same problem and solves to obtain the solution y = 1. To experience
this, execute the maple code below.

de:=diff (y(x),x)=3*(y(x)-1)"(2/3): ic:=y(0)=1:
dsolve({de,ic},y(x)); # Symbolic sol
p:=dsolve({de,ic},y(x) ,numeric); p(1); # Numerical sol

There was a report improvement in maple version 10. In later versions, y(x) = 1
was reported for both. The inference for the maple user is that there is a unique
solution, but the model has multiple solutions, making both reports incorrect.
Computer algebra system Maxima has similar issues.
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Numerical instability is typically not reported by computer software. To
understand the difficulty, consider the differential equation

Y =y—2e" y(0)=1.

The symbolic solution is y = e~ *. Attempts to solve the equation numerically

will inevitably compute the nearby solutions y = ce® + e~*, where c¢ is small. As
x grows, the numerical solution grows like e*, and |y| — co. For example, maple
computes y(30) ~ —72557, but e 30 ~ 0.94 x 1073, In reality, the solution
y = e~ " cannot be computed. The maple code:

de:=diff (y(x),x)=y(x)-2xexp(-x): ic:=y(0)=1:
sol:=dsolve({de,ic},y(x) ,numeric): s01(30);

Mathematical model formulation seems to be an essential skill which does
not come in the colorfully decorated package from the software vendor. It is this
creative skill that separates the practicing scientist from the person on the street
who has enough money to buy a computer program.

Closed-Form Existence-Uniqueness Theory

The closed-form existence-uniqueness theory describes models

(2) Y = flz,y), ylzo) =m0

for which a closed-form solution is known, as an equation of some sort. The
objective of the theory for first order differential equations is to obtain existence
and uniqueness by exhibiting a solution formula. The mathematical literature
which documents these models is too vast to catalog in a textbook. We discuss
only the most popular models.

Dsolve Engine in Maple

The computer algebra system has an implementation for some specialized equa-
tions within the closed-form theory. Below are some of the equation types ex-
amined by maple for solving a differential equation using classification methods.
Not everything tried by maple is listed, e.g., Lie symmetry methods, which are
beyond the scope of this text.

Equation Type Differential Equation

Quadrature y = F(x)

Linear Y +p(@)y =r(z)

Separable v = f(x)g(y)

Abel y' = fo(z) + fil)y + fa(x)y® + fa(2)y®
Bernoull y' +p(z)y = r(x)y"
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Clairaut y=uzy +g)

d’Alembert y=zf)+9)

Chini y = f(@)y" — g(x)y + h(z)

Homogeneous y’ = fy/x), Y =y/z+g(x)f(y/x),
y (y/)F(y/z%),
y' = F((a1x + aoy + a3)/(asx + asy + ag))

Rational y = Pi(z,y)/Pa(x,y)

Ricatti v = f(@)y* + g(z)y + h(z)

Not every equation can be solved as written — restrictions are made on the
parameters. Omitted from the above list are power series methods and dif-
ferential equations with piecewise-defined coefficients. They are part of the
closed-form theory using specialized representations of solutions.

Special Equation Preview

The program here is to catalog a short list of first order equations and their
known solution formulas. The formulas establish existence of a solution to the
given initial value problem. They preview what is possible; details and examples
appear elsewhere in the text. The issue of uniqueness is often routinely settled,
as a separate issue, by applying the Picard-Lindelof theorem. See Theorem 1.5,
page 68, infra.

First Order Linear Let p and r be continuous on a < x < b. Choose any

v +p(x)y =r(x) (x0,y0) with a < xo < b. Then

y(@o) = yo Yy = yoe Jeo (0t f (t)el P)ds gy

First Order Separable Let F(z) and G(y) be continuous on a < = < b

y' = F(2)G(y) c <y < d Assume G(y) # 0 on c < y < d.

y(zo0) = Yo Choose any (:co,yo) with a < g < b, ¢ < yo < d
Then W (Y f du/G(u) is invertible and y(z) =

-1
(szF
First Order Analytic Assume a and b have power series expansions in |z —
vy = a(z)y + b(x) x| < h. Then the power series y(z) = > 7 (yn(z —
y(zo) = Yo xo)"™ is convergent in |z — x9| < h and the co-
efficients y, are found from the recursion nly, =

()" (a(@)y(w) + b(x))

T=x0

General Existence-Uniqueness Theory

The general existence-uniqueness theory describes the features of a differ-
ential equation model which make it possible to compute both theoretical and
numerical solutions.
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Modelers who create differential equation models generally choose the differential
equation based upon the intuition gained from the closed-form theory and the
general theory. Sometimes, modelers are lucky enough to refine a model to some
known equation with closed-form solution. Other times, they are glad for just a
numerical solution to the problem. In any case, they want a model that is tested
and proven in applications.

General Existence Theory in Applications

For scientists and engineers, the results can be recorded as the following state-
ment:

In applications it is usually enough to require f(z,y) and f,(x,y) to
be continuous. Then the initial value problem ¢/ = f(z,y), y(x¢) =
Yo is a well-tested model to which classical numerical methods apply.

The general theory results to be stated are due to Peano and to Picard-
Lindel6f. The techniques of proof require advanced calculus, perhaps graduate
real-variable theory as well.

Theorem 1.4 (Peano)

Let f(z,y) be continuous in a domain D of the xy-plane and let (xo,yo) belong to
the interior of D. Then there is a small A > 0 and a function y(z) continuously
differentiable on |x — x| < h such that (z,y(x)) remains in D for |z — x¢| < h and
y(z) is one solution (many more might exist) of the initial value problem

y,:f($>y)7 y($0) = Yo.

Definition 1.11 (Picard Iteration)
Define the constant function yo(z) = yo and then define by iteration

Yn+1(z) = yo + /zf(t, yn(t))dt.

The sequence yo(z), y1(x), ...is called the sequence of Picard iterates for y' =
f(z,y), y(zo) = yo. See Example 1.36 for computational details.

Theorem 1.5 (Picard-Lindelof)
Let f(z,y) and fy(z,y) be continuous in a domain D of the zy-plane. Let (xq, yo)
belong to the interior of D. Then there is a small h > 0 and a wnique function
y(x) continuously differentiable on |z —x¢| < h such that (z, y(x)) remains in D for
|z — x0| < h and y(z) solves
y' = f(z,y),  y(zo) = yo.

The equation

lim g () = y(x)

n—oo

is satisfied for |z — z9| < h by the Picard iterates {yy}.
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The Picard iteration is the replacement for a closed-form solution formula
in the general theory, because the Picard-Lindelof theorem gives the uniformly
convergent infinite series solution

(3) y(@) =g+ Y (Wns1(x) — yn(@)) .
n=0

WEell, yes, it is a solution formula, but from examples it is seen to be currently
impractical. There is as yet no known practical solution formula for the general
theory.

The condition that f, be continuous can be relaxed slightly, to include such
examples as y' = |y|. The replacement is the following.

Definition 1.12 (Lipschitz Condition)

Let M > 0 be a constant and f a function defined in a domain D of the zy-plane. A
Lipschitz condition is the inequality |f(z,y1) — f(x, y2)| < M|y1 — y2|, assumed to
hold for all (z,y1) and (x,y2) in D. The most common way to satisfy this condition
is to require the partial derivative fy(z,y) to be continuous (Exercises page 1087).
A key example is f(x,y) = |y|, which is non-differentiable at y = 0, but satisfies a
Lipschitz condition with M = 1.

Theorem 1.6 (Extended Picard-Lindelof)

Let f(x,y) be continuous and satisfy a Lipschitz condition in a domain D of the
xy-plane. Let (z9,yo) belong to the interior of D. Then there is a small h > 0 and a
unique function y(x) continuously differentiable on |z — x| < h such that (z,y(x))
remains in D for |z — x| < h and y(x) solves

y = f(z,y), ylxo) = vo.

The equation
lim y,(z) = y(z)
n—oo

is satisfied for |z — xo| < h by the Picard iterates {y,}.

Example 1.33 (Numerical Method Failure)
A project models y = 142 as the solution of the problem ¢/ = 3(y—1)%/3, y(0) = 1.
Computer work gives the solution as y = 1. Is it bad computer work or a bad model?

Solution: 1t is a bad model, explanation to follow.

Solution verification. One solution of the initial value problem is given by the equi-
librium solution y = 1. Another is y = 1 + 23. Both are verified by direct substitution,
using methods similar to Example 1.20, page 35.

Bad computer work? Technically, the computer made no mistake. Production nu-
merical methods use only f(z,y) = 3(y — 1)>/% and the initial condition y(0) = 1. They
apply a fixed algorithm to find successive values of y. The algorithm is expected to
be successful, that is, it will compute a list of data points which can be graphed by
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1.6 Computing and Existence

“connect-the-dots.” The majority of numerical methods applied to this example will
compute y = 1 for all data points.

Bad model? Yes, it is a bad model, because the model does not define the solution
y = 1423, The lesson here is that knowing a solution to an equation does not guarantee
a numerical laboratory will be able to compute it.

Detecting a bad model. The right side f(z,y) of the differential equation is con-
tinuous, but not continuously differentiable, therefore Picard’s theorem does not apply,
although Peano’s theorem says a solution exists. Peano’s theorem allows multiple solu-
tions, but Picard’s theorem does not. Sometimes, the only signal for non-uniqueness is
the failure of application of Picard’s theorem.

Physically significant models can have multiple solutions. A key example
is the tank draining equation of E. Torricelli (1608-1647). A simple instance is
y' = —2y/|y|, in which y(z) is the water height in some cylindrical tank at time
z. No water in the tank means the water height is y = 0. An initial condition
y(0) = 0 does not determine a unique solution, because the tank could have
drained at some time in the past. For instance, if the tank drained at time
x = —1, then a piecewise defined solution is y(x) = (z + 1)? for —00 < x < —1
and y(z) = 0 for x > —1. Most numerical methods applied to y = —2+/]y|,
y(0) = 0, compute y(z) = 0 for all x, which illustrates the inability of computer
software to detect multiple solution errors.

Example 1.34 (Switches)
The problem ¢/ = f(z,y), y(0) = yo with

0 0<x<1,
f(x’y)_{l 1<z < oo,

has a piecewise-defined discontinuous right side f(x,y). Solve the initial value prob-
lem for y(z).

Solution: The solution y(z) is found by dissection of the problem according to the two
intervals 0 <z <1 and 1 < x < oo into the two differential equations ¢y’ = 0 and 3’ = 1.
By the fundamental theorem of calculus, the answers are y = yo and y = = + y;1, where
y1 is to be determined. At the common point z = 1, the two solutions should agree (we
ask y to be continuous at x = 1), therefore yo = 1 + y;, giving the final solution

(x)— Yo on0<x <1,
Y\ = x—14 1y onl<z<oo.

The function y(z) is continuous, but y’ is discontinuous at * = 1. The differential
equation y' = f(x,y) and initial condition y(0) = yo are formally satisfied.

Is there another continuous solution? No, because the method applied here assumed
that y(z) worked in the differential equation, and if it did, then it had to agree with
y=yoon0<z<landy=z—14yponl<x < oo, by the fundamental theorem of
calculus.

Technically adept readers will find a flaw in the solution presented here, because of the
treatment of the point x = 1, where 3’ does not exist. The flaw vanishes if we agree to
verify the differential equation except at finitely many z-values where y’ is undefined.
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1.6 Computing and Existence

Example 1.35 (Finite Blowup)
Verify that dz/dt = 2+ 222, (0) = 0 has the unique solution x(¢) = tan(2t), which
approaches infinity in finite time ¢ = /4.

Solution: The function z(t) = tan(2t) works in the initial condition z(0) = 0, because
tan(0) = sin(0)/cos(0) = 0. The well-known trigonometric identity sec?(2t) = 1 +
tan?(2t) and the differentiation identity ’(t) = 2sec?(2t) shows that the differential
equation z’ = 2 + 222 is satisfied. The equation x(7/4) = oo is verified from tan(2t) =
sin(2t)/ cos(2t). Uniqueness follows from Picard’s theorem, because f(t,z) = 2 + 222
and f,(t,x) = 4z are continuous everywhere.

Example 1.36 (Picard lterates)
Compute the Picard iterates yg, ..., y3 for the initial value problem y' = f(z,vy),

y(0) =1, given f(x,y) =x —v.

Solution: The answers are

o(z) =1,

1(2) =1—2+22/2,

yo(z) =1 — 2 + 2% — 23 /6,

ys(x) =1 -2+ 22 —23/3 +2*/24.

The details for all computations are similar. A sample computation appears below.

T

RSN

T

Yo =1 This follows from y(0) = 1.

y1 =1+ [y f(t,yo(t))dt  Use the formula with n = 1.
=1+ [j(t—1)dt Substitute yo(z) =1, f(z,y) =z — .
=1—x+2?/2 Evaluate the integral.

The exact answer is y = x — 1+ 2e~*. A Taylor series expansion of this function
motivates why the Picard iterates converge to y(x). See the exercises for details,
page 1085.

The maple code which does the various computations appears below. The code
involving dsolve is used to compute the exact solution and the series solution.

yO:=x->1:f:=(x,y)->x-y:
yl:=x->1+int (£ (t,y0(t)),t=0..x):
y2:=x->1+int (£ (t,y1(t)),t=0..x):
y3:=x->1+int (£ (t,y2(t)),t=0..x):
yo(x),y1(x),y2(x),y3(x);

de:=diff (y(x),x)=f(x,y(x)): ic:=y(0)=1:
dsolve({de,ic},y(x)); dsolve({de,ic},y(x),series);

Exercises 1.6 (4

Multiple Solution Example y' = f(x,y), y(0) = 1.
Define f(x,y) = 3(y — 1)?/3.  Consider
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1. Do an answer check for y(z) = 1. Do a
second answer check for y(z) =1 + 23.

2. Let yx) = 1 on 0 < z < 1 and
y(z) = 1+ (x — 1)3 for x > 1. Do an
answer check for y(x).

3. Does fy(z,y) exist for all (z,y)?

4. Verify that Picard’s theorem does not

apply to y' = f(2,y), y(0) = 1, due to
discontinuity of f,.

5. Verify that Picard’s theorem applies to
y' = f(z,y), y(0) =2.

6. Let y(x) = 1+ (x + 1)3. Do an answer
check for y' = f(x,y), y(0) = 2. Does
another solution exist?

Discontinuous Equation Example
1 y(0) = 1. Define

yi(z) = (z —1)* and ya(z) = c(z — 1)%
Define y(z) = yi(z) on —o00 < z < 1
and y(x) = y2(z) on 1 < & < oo. Define
y(1) = 0.

Consider y' =

7. Do an answer check for y;(x) on —oco <
x < 1. Do an answer check for y,(z) on
1 < x < oo. Skip condition y(0) = 1.

8. Justify one-sided limits y(14) =
y(1—) = 0. The functions y; and ys
join continuously at * = 1 with com-
mon value zero and the formula for y(x)
gives one continuous formal solution for
each value of ¢ (co-many solutions).

9. (a) For which values of ¢ does y5(1) ex-
ist? (b) For which values of ¢ is ya(x)
continuously differentiable?

10. Find all values of ¢ such that ys(x)
is a continuously differentiable function
that satisfies the differential equation

and the initial condition.

Finite Blowup Example
Consider 3y = 1+ 2, y(0) = 0.
y(x) = tanzx.

Let

11. Do an answer check for y(z).

72

12. Find the partial derivative f, for
flx,y) = 1+ y2  Justify that f and
fy are everywhere continuous.

13. Justify that Picard’s theorem applies,
hence y(z) is the only possible solution
to the initial value problem.

14. Justify for a = —7/2 and b = 7/2 that
y(a+) = —o0, y(b—) = co. Hence y(x)
blows up for finite values of x.

Numerical Instability Example
Let f(z,y) =y — 2e*.

15. Do an answer check for y(z) = e~ as

a solution of the initial value problem
y' = flz,y), y(0) =1

16. Do an answer check for y(z) = ce® +
e~ * as a solution of ¥/ = f(x,y).

Multiple Solutions
Consider the initial value problem y’ =
5y —2)*°, y(0) = 2.

17. Do an answer check for y(z) =2. Do a
second answer check for y(z) = 2 + 5.

18. Verify that the hypotheses of Picard’s
theorem fail to apply.

19. Find a formula which displays in-
finitely many solutions to y' = f(x,y),

y(0) = 2.

20. Verify that the hypotheses of Peano’s
theorem apply.

Discontinuous Equation

%, y(0) = 1. Define
y(x) piecewise by y(x) = —(x — 1) on
—00 < x < 1 and y(z) = ¢(x — 1) on
1 <z < 00. Leave y(1) undefined.

Consider y' =

21. Do an answer check for y(z). The ini-
tial condition y(0) = 1 applies only to
the domain —oo < x < 1.

22. Justify one-sided limits y(14+) =
y(1—=) = 0. The piecewise definitions
of y(x) join continuously at = 1 with
common value zero and the formula for
y(z) gives one continuous formal solu-
tion for each value of ¢ (co-many solu-

tions).




1.6 Computing and Existence

23. (a) For which values of ¢ does y'(1) ex-
ist? (b) For which values of ¢ is y(x)
continuously differentiable?

24. Find all values of ¢ such that y(z)
is a continuously differentiable function
that satisfies the differential equation

and the initial condition.

Picard lteration
Find the Picard iterates yo, y1, y2, ys-

25. y' =y +1,y(0) =2

26. vy =2y+1,450)=0

27. ¢ =y? y(0) =1
28. y' =y*, y(0) =2

29. v =92 +1,y(0)=0

30. y =4y% +4,y(0) =0

31. vy =y+uz,y(0)=0

32. vy =y+2z,y0)=0

Picard Iteration and Taylor Series
Find the Taylor polynomial P, (z) = y(0)+
v (0)z + -+ + ™ (0)z"/n! and compare
with the Picard iterates. Use a computer
algebra system, if possible.

33. v =y, y(0) =
y(z) = e”

34. vy =2y, y(0)=1,n=4,
(o) = e

35. Y =z —y,y(0)=1,n=4,
y(z)=—-1+z+ 2"

36. vy =2z —y,y(0)=1,n=4,
y(r)=—-2+2x+3e"

Numerical Instability
Use a computer algebra system or numeri-

x

cal laboratory. Let f(z,y) =y — 2e™*.

37. Solve y = f(z,y), y(0) = 1 numeri-
cally for y(30).
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38. Solvey’ = f(x,y), y(0) = 14+0.0000001
numerically for y(30).

Closed—Form Existence
Solve these initial value problems using a
computer algebra system.

39. v =y, y(0) =1
40. y' =2y, y(0) =2
41. y =2y +1,y(0) =1

)
42. y =3y +2, y(0)
43. y' =y(y—1), y(0
44. y' = y(1 —y), y(0
45. y' =
46. 1 =
47. ' = -10(1 —y), y(0) =0
48. y = —10(2 — 3y), y(0) = 0

Lipschitz Condition
Justify the following results.

49. The function f(x,y) = x — 10(2 — 3y)
satisfies a Lipschitz condition on the
whole plane.

50. The function f(z,y) = ax + by + ¢ sat-
isfies a Lipschitz condition on the whole

plane.

51. The function f(z,y) = xy(l — y) sat-

isfies a Lipschitz condition on D =
{(,y) [zl <1, |yl <1}

The function f(x,y) = 2?y(a — by)
satisfies a Lipschitz condition on D =
{(z,y) 1 2* +y? < R*}.

52.

53. If f, is continuous on D and the
line segment from (z,y1) to (z,y2)
is in Da then f(xvyl) - f(iEva) =

yyf fy(z, u)du.

54. If f and f, are continuous on a disk
D, then f is Lipschitz with M =

maxD{|fy(357u)|}-




Chapter 2

First Order Differential
Equations
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The subject of the chapter is the first order differential equation
y' = f(z,y).

The study includes closed-form solution formulas for special equations and some
applications to science and engineering.

2.1 Quadrature Method

The method of quadrature refers to the technique of integrating both sides of
an equation, hoping thereby to extract a solution formula.

The term quadrature originates in ancient geometry, where it means finding
area of a plane figure, by constructing a square of equal area.! Numerical quadra-
ture computes areas enclosed by plane curves from approximating rectangles, by

!See Katz, Victor J. (1998) A History of Mathematics: An Introduction (2nd edition) Addison
Wesley Longman, ISBN 0321016181, and Wikipedia: http://en.wikipedia.org/wiki/Quadrature.
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2.1 Quadrature Method

algorithms such as the rectangular rule and Simpson’s rule. For symbolic prob-
lems, the task is overtaken by Newton’s integral calculus. The naming convention
follows computer algebra system maple.

Fundamental Theorem of Calculus

The foundation of the study of differential equations rests with Isaac Newton’s
discovery on instantaneous velocities. Details of the calculus background required
appears in Appendix A.1, page 1005.

Theorem 2.1 (Fundamental Theorem of Calculus 1)
Let G be continuous and let F' be continuously differentiable on [a, b]. Then

b
@ FO) - Fl)= [ @

@);i/wG@Mﬁ:Gm)

Theorem 2.2 (Fundamental Theorem of Calculus 1)
Let G(z) be continuous and let y(z) be continuously differentiable on [a,b]. Then
for some constant c,

@ (o) = [P+

@)i/ammzam.

Part (a) of the fundamental theorem is used to find a candidate solution to a
differential equation.

Part (b) of the fundamental theorem is used in differential equations to do an
answer check.

The Method of Quadrature

The method is applied to differential equations y' = f(z,y) in which f is in-
dependent of y. Then symbol y is absent from f(x,y), which implies f(x,y) is
constant or else f(x,y) depends only on the symbol z. The model differential
equation then has the form ¢y’ = F(x) where F is a given function of the single
variable F'.

(i) To solve for y(z) in Z—y = F(z), integrate on variable x

across the equation, then use the Fundamental Theorem
of Calculus.

(i) Check the answer.
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2.1 Quadrature Method

Indefinite Integral Shortcut. Integrate across the equation with indefinite
integrals, then collect all integration constants into symbol c.

Solution with Symbol c. Symbol ¢ initially appears in the expression obtained
for y. If no initial condition was given, then the answer for ¥ is this expression,
which contains the unresolved symbol c. Experts call this expression the general
solution.

Solution with No symbol c. If an initial condition is given in the form y = yg
at © = xo (same as y(rp) = yo), then symbol ¢ can be resolved. For instance,
if the answer is y = 2(x — 1) + ¢ and the initial condition is y(—1) = 3, then
y=2(x—1)+cwithx=-1,y =3 becomes 3 =2(—1—1) + ¢, and then ¢ = 7.
Experts call the ry—expression with ¢ eliminated a particular solution.

Theorem 2.3 (Existence-Uniqueness for Quadrature Equations)
Let F'(x) be continuous on a < z < b. Assume a < 29 < b and —o0 < gy < 0.
Then the initial value problem

(1) y' = F(x), ylxo)=wo

has on interval a < & < b the unique solution
€T

(2) y(@) = yo + / F(t)dt.

o

Details of proof appear on page 79.

Examples

Example 2.1 (Quadrature)
Solve y' = 3e*, y(0) = 0.

Solution:
The final answer is y = 3e* — 3. An answer check appears in the next example.

Details. The shortcut is applied.

% = 3e” Copy the differential equation.

il %daz = [3e"dx Integrate across the equation on z.
y(x)+c1 = f3e“’d:v Fundamental theorem of calculus, page 75.
y(x) + 1 = 3e” + ¢ Integral table.

y(x) = 3e® + ¢ Where ¢ = ca — ¢; is a constant.

The answer is y = 3e” + ¢. The symbol c is to be resolved from the initial condition
y(0) = 0, as follows.
0=y(0) Copy the initial condition (sides reversed).
= (3e" + )|,
=3 +¢ Substitute z = 0.

Insert y = 3e® + ¢, the proposed solution.
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=3+c Use e = 1.
c=-1 Equation 0 = 3 + ¢ solved for c.
Candidate solution. Back-substitute the symbol ¢ value ¢ = —1 into the answer

y = 3e” + ¢ to obtain the candidate solution y = 3e® 4+ (—3). This answer can contain
errors, in general, due to integration and arithmetic mistakes.

Example 2.2 (Answer Check)
Given y' = 3e®, y(0) = 0 and candidate solution y(z) = 3e® — 3, display an answer
check.

Solution: There are two panels in this answer check: Panel 1: differential equation
check, Panel 2: initial condition check.

Panel 1. We check the answer y = 3e* — 3 for the differential equation y’ = 3e*.
The steps are:

LHS = ¢/ Left side of the differential equation.
= (3¢* — 3)’ Substitute the expression for y.
=3e" -0 Sum rule, constant rule and (e*)’ = u’e®.
= RHS Solution verified.

Panel 2. Let’s check the answer y = 3e* — 3 against the initial condition y(0) = 0.
Expected is an immediate mental check that e’ = 1 implies the correctness of y(0) = 0.

The steps will be shown in order to detail the algorithm for checking an initial condi-
tion. The algorithm applies when checking complex algebraic expressions. Abbreviated
versions of the algorithm are used on simple expressions.

LHS = y(0) Left side of the initial condition y(0) = 0.

= (3¢ —3)|,_ Notation y(xg) means substitute x = z
into the expression for y.

=3’ -3 Substitute = 0 into the expression.
= Because e® = 1.

= RHS Initial condition verified.

River Crossing

A boat crosses a river at fixed speed with power applied perpendicular to the
shoreline. Is it possible to estimate the boat’s downstream location?

The answer is yes. The problem’s variables are

T Distance from shore, w Width of the river,
Yy Distance downstream, Up Boat velocity (dz/dt),
t Time in hours, Uy River velocity (dy/dt).
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2.1 Quadrature Method

The calculus chain rule dy/dz = (dy/dt)/(dxz/dt) is applied, using the symbols
vy and vy, instead of dy/dt and dz/dt, to give the model equation

dy v

3) =

dr vy

Stream Velocity. The downstream river velocity will be approximated by v, =
kx(w — z), where k > 0 is a constant. This equation gives velocity v, = 0 at
the two shores x = 0 and x = w, while the maximum stream velocity at the
center x = w/2 is (see page 79)

kw?
4 . = ——.
(4) ve="2

Special River-Crossing Model. The model equation (3) using v, = kx(w—x)
and the constant k defined by (4) give the initial value problem

dy 4v,
5 _— =
() I

vbwzx(’w —z), y(0)=0.

The solution of (5) by the method of quadrature is

4 1 1
® S Vi)

 nw? 3 2

where w is the river’s width, v, is the river’s midstream velocity and v, is the
boat’s velocity. In particular, the boat’s downstream drift on the opposite
shore is 2w(ve/vy). See Technical Details page 79.

Example 2.3 (River Crossing)

A boat crosses a mile-wide river at 3 miles per hour with power applied perpendicular
to the shoreline. The river's midstream velocity is 10 miles per hour. Find the transit
time and the downstream drift to the opposite shore.

Solution: The answers, justified below, are 20 minutes and 20/9 miles.

Transit time. This is the time it takes to reach the opposite shore. The layman answer
of 20 minutes is correct, because the boat goes 3 miles in one hour, hence 1 mile in 1/3
of an hour, perpendicular to the shoreline.

Downstream drift. This is the value y(1), where y is the solution of equation (5), with
ve. = 10, v, = 3, w = 1, all distances in miles. The special model is

dy 40

— =—z(1- 0)=0.
The solution given by equation (6) is y = % (—%373 + %x2) and the downstream drift is
then y(1) = 20/9 miles. This answer is 2/3 of the layman’s answer of (1/3)(10) miles.
The explanation is that the boat is pushed downstream at a variable rate from 0 to 10
miles per hour, depending on its position x.
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Details and Proofs

Proof of Theorem 2.3:

Uniqueness. Let y(z) be any solution of (1). It will be shown that y(z) is given by the
solution formula (2).

y(z) = y(0) + ffo y'(t)dt Fundamental theorem of calculus, page 1008.
=yo + [, F(t)dt Use (1). This verifies equation (2).
Answer Check. Let y(z) be given by solution formula (2). It will be shown that y(z)

solves initial value problem (1).

!

y'(z) = (yo + f;} F(t)dt) Compute the derivative from (2).

= F(x) Apply the fundamental theorem of calculus.

The initial condition is verified in a similar manner:
y(x0) = yo + ffoo F(t)dt Apply (2) with = = x.
=1 The integral is zero: [ F(z)dz = 0.

Technical Details for (4): The maximum of a continuously differentiable function
f(z) on 0 < 2 < w can be found by locating the critical points (i.e., where f’(z) = 0)
and then testing also the endpoints = 0 and = w. The derivative f'(z) = k(w — 2x)
is zero at * = w/2. Then f(w/2) = kw?/4. This value is the maximum of f, because
f =0 at the endpoints.

. . 4v,
Technical Details for (6): Let a = Y 5 Then
VpW
y=y(0)+ [y (t)dt Method of quadrature.
=0+4a [) t(w—t)dt By (5), ¥/ = at(w —t).
=a(—32® + Jwa?). Integral table.
w? 2w v,
To compute the downstream drift, evaluate y(w) = @~ or y(w) = R
b
Exercises 2.1 (£
Quadrature 5. ¢y =sin2z, y(0) = 1.
Find a candidate solution for each initial ,
value problem and verify the solution. See 6. y' = cos2z, y(0) = 1.
Example 2.1 and Example 2.2, page 76. 7.y = ze®, y(0) = 0.
1. y/ = 4€2x, y(O) =0. 8. y/ — 586_12, y(o) — O
2. y' =2¢e*, y(0) = 0. 9. ¢y =tanz, y(0) =0.
3. 1+x)y ==, y(0)=0. 10. 3 = 1 +tan®z, y(0) = 0.
4. 1—=z)y =z,y(0) =0 11. (1+2%)y =1, y(0) =0.
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12. (1+42?)y’ =1, y(0) = 0.

13. 3 = sin® z, y(0) = 0.

14. y' = cos®z, y(0) = 0.

15. (1+2)y’' =1, y(0)=0.

16. (2+z)y =2, y(0) =0.

17. 2+2)(1+2z)y =2, y(0) =0.
18. 2+ =z)(3+x)y =3, y(0)=0.
19. y' =sinz cos 2z, y(0) = 0.

20. y' = (1 + cos2z)sin2z, y(0) = 0.

River Crossing

A boat crosses a river of width w miles at v,
miles per hour with power applied perpen-
dicular to the shoreline. The river’s mid-
stream velocity is v, miles per hour. Find
the transit time and the downstream drift
See Example 2.3,

to the opposite shore.
page 78, and the details for (6).

21. w=1,vp=4,v. =12

22. w=1,v,=95,v. =15

23. w=12,v,=3,v. =13
24. w=12,v=5,v.=9

25. w=15v,=7,v.=16
26. w=2,v,="7,v. =10

27. w=1.6, v, =4.5, v. = 14.7

28. w=1.6, v, =5.5, v. =17

Fundamental Theorem |

Verify the identity. Use the fundamental

theorem of calculus part (b), page 75.
29. [J(1+t)%dt =5 ((1+2)*—1).
30. [f(1+t)tdt=1%((1+2)°-1).
31. [Jteldt = —we " —e " + 1.

32. [ teldt = ze” —e” + 1.
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33.

34.

35.

36.

37.
38.
39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Fundamental Theorem Il
Differentiate.
rem of calculus part (b), page 75.

Use the fundamental theo-

2
Iy t? tan(t3)dt.
3x
Iy 3 tan(t?)dt.
S pett g,

S 01 4 63)dt.

Fundamental Theorem IlI

Integrate fol f(z)dz. Use the fundamen-
tal theorem of calculus part (a), page 75.
Check answers with computer or calculator
assist. Some require a clever u-substitution
or an integral table.

f@) = 1
fla) =




2.1 Quadrature Method

53. f(z) =

54. f(z) = ——

55. f(z) =sec’z

56. f(z) =sec’z —tan’z
57. f(z) =csc’z

58. f(z) = csc®x — cot®
59. f(x) =cscxcotx

60. f(z) =secztanz

Integration by Parts

Integrate fol f(z)dz by parts, [udv = uv—
J vdu. Check answers with computer or
calculator assist.

61. f(z) =xe”

62. f(z) =xze™ "

63. f(z) =1n|z|

64. f(z)=zln|z|

65. f(r) =az%e*®

66. f(z) = (1 + 2x)e?”

67. f(z) =xzcoshx
68. f(z) = zsinhx
69. f(z) = xarctan(z)

70. f(x) = zarcsin(x)

Partial Fractions
Integrate f by partial fractions. Check an-

swers with computer or calculator assist.
z+4
71. f(x) =
1) 45

72. f(z) = i:i

73. f(x) = @f;m

74. f(z) = m

75. f(z) = #ﬁ;m

76. f(x) = #@12»

77. f(x) = @ l)éig)(:c%)
78. f(z) = @+ 1;7((;!21))@ +3)
160 = e
0. o) - z(z - 1)

(x+1D)(z+2)(x—1)

Special Methods

with computer or calculator assist.

2 +2
2242
82. f(z) = (x—l)Q’u_x_l
2x
83. f(fl?) = m, U7$2+1
322
84. f(l') = m, u=x3—|—1
23
85. f(z) = e long division.
4
2
86. f(z) = %, use long division.
T
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Integrate f by using the suggested wu-
substitution or method. Check answers



2.2 Separable Equations

2.2 Separable Equations

An equation y' = f(x,y) is called separable provided algebraic operations,
usually multiplication, division and factorization, allow it to be written in a
separable form y' = F(z)G(y) for some functions F' and G. This class includes
the quadrature equations y' = F(x). Separable equations and associated solution
methods were discovered by G. Leibniz in 1691 and formalized by J. Bernoulli in
1694.

Finding a Separable Form

Given differential equation y' = f(z,y), invent values xg, yo such that f(xg,yo) #
0. Define F', G by the formulas

f(xvy())
f(zo,y0)’

Because f(zo,y0) # 0, then (1) makes sense.

(1) Fx) = G(y) = f(z0,).

Theorem 2.4 (Separability Test)
Let ' and G be defined by equation (1). Compute F(2)G(y). Then

(a) F(z)G(y) = f(x,y) implies ¢ = f(x,y) is separable.
(b) F(x)G(y) # f(x,y) implies ¥ = f(x,y) is not separable.

Proof: Conclusion (b) follows from separability test I, infra. Conclusion (a) follows
because two functions F(x), G(y) have been defined in equation (1) such that f(x,y) =
F(x)G(y) (definition of separable equation).

Invention and Application. Initially, let (xo,y0) be (0,0) or (1,1) or some
suitable pair, for which f(zo,y0) # 0; then define F' and G by (1). Multiply F’
and G to test the equation FFG = f. The algebra will discover a factorization
f = F(z)G(y) without having to know algebraic tricks like factorizing multi-
variable equations. But if F'G # f, then the algebra proves the equation is not
separable.

Non-Separability Tests

Test | Equation 3’ = f(z,y) is not separable if
(2) f(x7y0)f(x0a y) - f(x()v y())f(m7y) 7& 0
for some pair of points (zg, o), (z,y) in the domain of f.
Test The equation 3y’ = f(z,y) is not separable if either f,.(x,y)/f(z,y)

is non-constant in y or fy(x,y)/f(x,y) is non-constant in x.

Illustration. Consider ¢/ = xy 4 y2. Test I implies it is not separable, because
f(@,1)f(0,y) = £(0,1) f(2,y) = (@ + 1)y* — (zy +y?) = x(y® —y) # 0. Test II
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2.2 Separable Equations

implies it is not separable, because f,/f = 1/(x+y) is not constant as a function
of y.

Test I details. Assume f(z,y) = F(x)G(y), then equation (2) fails because
each term on the left side of (2) evaluates to F'(z)G(yo)F(z9)G(y) for all choices
of (zo,yo) and (z,y) (hence contradiction 0 # 0).

Test II details. Assume f(z,y) = F(z)G(y) and F, G are sufficiently differen-
tiable. Then f,(x,y)/f(x,y) = F'(x)/F(x) is independent of y and the fraction
fy(z,y)/f(z,y) = G'(y)/G(y) is independent of .

Separated Form Test
A separated equation y'/G(y) = F(z) is recognized by this test:

Left Side Test. The left side of the equation has factor ¢’ and it is
independent of symbol x.

Right Side Test. The right side of the equation is independent of
symbols y and 7/.

Variables-Separable Method

Determined by the method are the following kinds of solution formulas.

Equilibrium Solutions. They are the constant solutions y = ¢ of ¢/ = f(z,y).
Find them by substituting y = ¢ in ¢’ = f(z,y), followed by solving for ¢,
then report the list of answers y = ¢ so found.

Non-Equilibrium Solutions. For separable equation 3y’ = F(z)G(y), it is a
solution y with G(y) # 0. It is found by dividing by G(y) and applying the
method of quadrature.

The term equilibrium is borrowed from kinematics. Alternative terms are rest
solution and stationary solution; all mean 3 = 0 in calculus terms.

Spurious Solutions. If F(z)G(y) = 0 is solved instead of G(y) = 0, then
both x and y solutions might be found. The z-solutions are ignored: they are
not equilibrium solutions. Only solutions of the form y = constant are called
equilibrium solutions.

It is important to check the solution to a separable equation, because certain
steps used to arrive at the solution may not be reversible.

For most applications, the two kinds of solutions suffice to determine all possible
solutions. In general, a separable equation may have non-unique solutions to
some initial value problem. To prevent this from happening, it can be assumed
that F', G and G’ are continuous; see the Picard-Lindelof theorem, page 68.
If non-uniqueness does occur, then often the equilibrium and non-equilibrium
solutions can be pieced together to represent all solutions.
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2.2 Separable Equations

Finding Equilibrium Solutions

The search for equilibria can be done without finding the separable form of 3/ =
f(x,y). It is enough to solve for y in the equation f(z,y) = 0, subject to the
condition that x is arbitrary. An equilibrium solution y cannot depend upon x,
because it is constant. If y turns out to depend on x, after solving f(z,y) = 0
for y, then this is sufficient evidence that y' = f(z,y) is not separable. Some
examples:

y = ysin(z —y) It is not separable. The solutions of ysin(z —y) = 0 are
y = 0 and x — y = nx for any integer n. The solution
Yy = x —nm is non-constant, therefore the equation cannot

be separable.
/

y' = xy(l —y?) It is separable. The equation 2y(1 — 3?) = 0 has three
equilibrium solutions y = 0, y = 1, y = —1. Equilibrium
solutions must be constant solutions.

Algorithm. To find equilibrium solutions, formally substitute ¥y = ¢ into the
differential equation, then solve for ¢, and report all constant solutions y = ¢ so
found. There can be zero solutions, or just one solution, or some finite number
of solutions, or infinitely many solutions.

Shortcut. In a given problem, a formal substitution is not used, but instead 3/ is
replaced by zero (the result when y = constant). For y' = f(x,y), the equation
f(x,y) = 0 is to be solved for y. For example, ¢/ = (z + 1)(y?> — 4) becomes
0 = (z+ 1)(y* — 4), equivalent to y> —4 = 0 or y = 2, y = —2. The spurious
solution x = —1 is ignored, because we are looking for constant solutions of the
form y = ¢, which in this example are y = 2 and y = —2.

The problem of finding all equilibrium solutions is known to be technically un-
solvable, that is, there is no proven algorithm for finding all the solutions of
G(y) = 0. However, there are some very good numerical methods that apply,
including Newton’s method and the bisection method. Modern computer
algebra systems make it practical to find equilibrium solutions, both symbolic
(like y = ) and numeric (like y = 3.14159), in a single effort.

Finding Non-Equilibrium Solutions

A given solution y(x) satisfying G(y(x)) # 0 throughout its domain of definition
is called a non-equilibrium solution. Then division by G(y(z)) is allowed in the
differential equation y'(x) = F(x)G(y(x)). The method of quadrature applies to
the separated equation y'/G(y(z)) = F(x). Some details:

"(t)dt
AU = [T F(t)dt Integrate both sides of the separated equation
o G(y(t o

(y(®) over rg <t < .

fy!i)( )Giu = [2 F(t)dt Apply on the left the change of variables u =
(u) y(t). Define yo = y(xo).
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2.2 Separable Equations

y(r) = W1 (f;o F(t)dt) Define W (y) = f;{) du/G(u). Take inverses to
isolate y(x).

The calculation produces a formula which is strictly speaking a candidate solution
y. It does not prove that the formula works in the equation: checking the solution
is required.

Theoretical Inversion

The function W~! appearing in the last step above is generally not given by a
formula. Therefore, W~! rarely appears explicitly in applications or examples.
It is the method that is memorized:

Prepare a separable differential equation by transforming it to sep-
arated form. Then apply the method of quadrature.

The separated form y' = F(2)G(y) is checked by the separated form test, page
83. For example, ¢/ = (1 4+ 2%)y® has F = 1 + 2% and G = y3; quadrature is
applied to the divided equation y'/y% = 1 + z2.

The theoretical basis for using W' is a calculus theorem which says that a
strictly monotone continuous function has a continuous inverse. The fundamen-
tal theorem of calculus implies that W (y) is continuous with nonzero derivative
W'(y) = 1/G(y). Therefore, W (y) is strictly monotone. The cited calculus
theorem implies that W (y) has a continuously differentiable inverse W1,

Explicit and Implicit Solutions

The variables-separable method gives equilibrium solutions which are already
explicit, that is:

Definition 2.1 (Explicit Solution)
A solution of y' = f(x,y) is called explicit provided it is given by an equation

1 = an expression independent of y.

To elaborate, on the left side must appear exactly the symbol y followed by an
equal sign. Symbols iy and = are followed by an expression which does not contain
the symbol 3. Examples of explicit equations are y = 0, y = —1, y = = + 27,
y = sinx + 22 + 10. The definition is strict, for example y + 1 = 0 is not explicit
because it fails to have y isolated left. Yes, it can be converted into an explicit
equation y = —1.

Definition 2.2 (Implicit Solution)
A solution of v/ = f(x,y) is called implicit provided it is not explicit.
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2.2 Separable Equations

Equations like 2y = x are not explicit (they are called implicit) because the
coefficient of y on the left is not 1. Similarly, y =  + y? is not explicit because
the right side contains symbol y. Equation y = €™ is explicit because the right
side fails to contain symbol y (symbol z may be absent). Applications can leave
the non-equilibrium solutions in implicit form fy%(x) du/G(u) = ffo F(t)dt, with
serious effort being expended to do the indicated integrations.

In special cases, it is possible to find an explicit solution from the implicit one
by algebraic methods. The required algebraic methods might appear to be un-
motivated tricks. Computer algebra systems can make this step look like science
instead of art.

Examples

Example 2.4 (Non-separable Equation)
Explain why yy' = 2 — y? is not separable.

Solution: It is tempting to try manipulations like adding 2 to both sides of the equation,
in an attempt to obtain a separable form, but every such trick fails. The failure of such
attempts is evidence that the equation is perhaps not separable. Failure of attempts
does not prove non-separability.

Test I applies to verify that the equation is not separable. Let f(z,y) = z/y — y and
choose g =0, yo = 1. Then f(zg,y0) # 0. Compute as follows:

LHS = f(z,y0) f(z0,y) — f(z0,v0) f(x,y) Identity (2) left side.
= f(z,1)f(0,y) — f(0,1) f(z,y) Use 29 =0, yo = L.
= (= 1)(=y) = (=)(z/y —y) Substitute f(z,y) = z/y —y.
=—zy+a/y Simplify.

This expression fails to be zero for all (z,y) (e.g., z = 1, y = 2), therefore the equation
is not separable, by Test I.
Test II also applies to verify the equation is not separable: % =2 =z —y?is

non-constant in x.

Example 2.5 (Separated Form Test Failure)
Given 3y’ = 1 — 42, explain why the equivalent equation yy’ 4+ y? = 1, obtained by
adding 32 across the equation, fails the separated form test, page 83.

Solution: The test requires the left side of yy’ + y2 = 1 to contain the factor 3. It

doesn’t, so it fails the test. Yes, yy’ + 32 = 1 does pass the other checkpoints of the test:
the left side is independent of z and the right side is independent of y and y/'.

Example 2.6 (Separated Equation)
Find for (x + 1)yy’ = x — xy? a separated equation using the test, page 83.
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2.2 Separable Equations

. . . yy' x .
Solution: The equation usually reported is = . It is found b
4 Y rep 1-y)(1+y) r+1 Y

factoring and division.

The given equation is factored into (1 + z)yy’ = 2(1 — y)(1 + y). To pass the test, the
objective is to move all factors containing only y to the left and all factors containing only
x to the right. This is technically accomplished using division by (z + 1)(1 — y)(1 + y).

To the result of the division is applied the test on page 83: the left side contains factor
y" and otherwise involves the factor y/(1 — y?), which depends only on y; the right side
is ¢/(x 4 1), which depends only on z. In short, the candidate separated equation passes
the test.

There is another way to approach the problem, by writing the differential equation in
standard form y’' = f(z,y) where f(z,y) = (1 — y?)/(1 + x). Then f(1,0) = 1/2 #
0. Define F(z) = f(x,0)/f(1,0), G(y) = f(1,y). We verify F(z)G(y) = f(z,y). A
separated form is then y'/G(y) = F(x) or 2y’ /(1 — y?) = 2z/(1 + z).

Example 2.7 (Equilibria)
Given ¢ = z(1 —y)(1 + y), find all equilibria.

Solution: The constant solutions ¥y = —1 and y = 1 are the equilibria, as will be
justified.

Equilibria are found by substituting y = ¢ into the differential equation y' = z(1—y)(1+
y), which gives the equation
z(l=c)(1+¢)=0.

The formal college algebra solutions are © = 0, ¢ = —1 and ¢ = 1. However, we do
not seek these college algebra answers! Equilibria are the solutions y = ¢ such that
(1 —¢)(1 4 ¢) = 0 for all . The conditional for all z causes the algebra problem to
reduce to just two equations: 0 = 0 (from x = 0) and (1 —¢)(1 4 ¢) = 0 (from x # 0).
We solve for ¢ = 1 and ¢ = —1, then report the two equilibrium solutions y = 1 and
y = —1. Spurious algebraic solutions like z = 0 can appear, which must be removed
from equilibrium solution reports.

Example 2.8 (Non-Equilibria)
Given y' = 2%(1 + y), y(0) = yo, find all non-equilibrium solutions.

Solution: The unique solution is y = (1 + yo)€w3/3 — 1. Details follow.

The separable form y' = F(x)G(y) is realized for F(z) = 2% and G(y) = 1 + y. Sought
are solutions with G(y) # 0, or simply 1+ y # 0.

y' =221 +y) Original equation.
/
Y2 Divide by 1 4 y. Separated form found.
1+y
/
i LA - [ z2dx Method of quadrature.
1+y
du 9 .
Ik Tra= [ 2?dx Change variables u = y(z) on the left.
u
In|1+y(x)|=23/3+c¢ Evaluate integrals. Implicit solution found.
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2.2 Separable Equations

Applications might stop at this point and report theSimplicit solution. This illustration
continues, to find the explicit solution y = (1 + yo)e® /3 — 1.

11+ y(z)| = e’ /3+e By definition, Inu = w means u = €.
1+ y(x) = ket /3+e Drop absolute value, k = +1.
y(z) = ke’ /3+e _ 1 Candidate solution. Constants unresolved.

The initial condition y(0) = yo is used to resolve the constants ¢ and k. First, |[14yo| = e°
from the first equation. Second, 1+ yo and 1 + y(x) must have the same sign (they are
never zero), so k(1 + yo) > 0. Hence, 1 + yo = ke, which implies the solution is
y= kece®”/3 — 1 or y=(1+ yo)e”3/3 —1.

Example 2.9 (Equilibria)
Given y' = xsin(1 — y) cos(1 + y), find all equilibrium solutions.

Solution: The infinite set of equilibria are justified below to be
il
2 )
A separable form ¢y = F(x)G(y) is verified by defining F(z) = = and G(y) = sin(1 —

y) cos(1+y). Equilibria y = ¢ are found by solving for ¢ in the equation G(c) = 0, which
is

y=1l4nm, y=-14+2n+1) n=0,+1,42,...

sin(1 — ¢) cos(1 +¢) = 0.

This equation is satisfied when the argument of the sine is an integer multiple of 7 or
when the argument of the cosine is an odd integer multiple of /2. The solutions are
c—1=0,%+m,+2m,... and 1 + ¢ = £7/2,+£37/2,.. ..

Multiple solutions and maple. Equations having multiple solutions may require CAS
setup. Below, the first code fragment returns two solutions, y = 1 and y = —1 + /2.
The second returns all solutions.

# The default returns two solutions
G:=y->sin(1l-y)*cos(1+y):
solve(G(y)=0,y);

# Special setup returns all solutions
_EnvAllSolutions := true:
G:=y->sin(1-y)*cos(1l+y):
solve(G(y)=0,y);

Example 2.10 (Non-Equilibria)
Given ' = x?sin(y), y(0) = yo, justify that all non-equilibrium solutions are given
by?
y = 2 Arctan (tan(y0/2)ex3/3> + 2nm.
Solution: A separable form y’ = F(2)G(y) is defined by F(z) = 2? and G(y) = sin(y).

A non-equilibrium solution will satisfy G(y) # 0, or simply sin(y) # 0. Define n by
yo/2 = Arctan(tan(yo/2)) + nm, where |Arctan(u)| < 7/2. Then

*While 6 = arctan u gives any angle, § = Arctan(u) gives |8] < 7/2.
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2.2 Separable Equations

y' = 2% sin(y) The original equation.

csc(y)y’ = 22 Separated form. Divided by sin(y) # 0.
[ esc(y)y'de = [ a*da Quadrature using indefinite integrals.
Jesc(w)du = [ 2?dx Change variables u = y() on the left.
In|cscy(z) — coty(z)| = 2a® + ¢ Integral tables. Implicit solution found.

Trigonometric Identity. Integral tables make use of the identity tan(y/2) = cscy —
cot y, which is derived from the relations 26 = y, 1—cos 20 = 2sin” 6, sin 26 = 25sin 6 cos 6.
Tables offer an alternate answer for the last integral above, In |tan(y/2)|.

The solution obtained at this stage is called an implicit solution, because y has not been
isolated. It is possible to solve for y in terms of z, an explicit solution. The details:

|cscy — coty| = e’ /3+c By definition, Inu = w means u = .

cscy —coty = ke’ /3+c Assign k = +1 to drop absolute values.

1 — cos

2T OBY _ g /3+e Then k has the same sign as sin(y), because 1 —
sy cosy > 0.

tan(y/2) = ke*’/3+¢ Use tan(y/2) = cscy — cot y.

y = 2Arctan (ke””s/3+c) + 2nm Candidate solution, n = 0,£1,£2, ...

Resolving the Constants. Constants ¢ and k are uniquely resolved for a given initial
condition y(0) = yo. Values z = 0 and y = yo determine constant ¢ by the equation
tan(yo/2) = ke® (two equations back). The condition & sin(yg) > 0 determines &, because
sinyp and siny have identical signs. If n is defined by yo/2 = Arctan(tan(yo/2)) + n«
and K = ke® = tan(yo/2), then the explicit solution is

y = 2Arctan (Ke“s/?’) +2nm, K =tan(yo/2).

Trigonometric identities and maple. Using the identity cscy — coty = tan(y/2),
maple finds the same relation. Complications occur without it.

_EnvAllSolutions := true:
solve(csc(y)-cot (y)=k*exp(x~3/3+c),y);
solve(tan(y/2)=k*xexp(x~3/3+c),y);

Example 2.11 (Independent of z)
Solve y' = y(1 — Iny), y(0) = yo.

Solution: There is just one equilibrium solution y = e ~ 2.718. Not included is y = 0,
because y(1 — Iny) is undefined for y < 0. Details appear below for the explicit solution
(which includes y = e)
y= el —(1—Inyo)e™

An equation ¥’ = f(z,y) independent of = has the form y' = F(z)G(y) where F(x) = 1.
Divide by G(y) to obtain a separated form y'/G(y) = 1. In the present case, G(y) =
y(1—1Iny) is defined for y > 0. To require G(y) # 0 means y > 0, y # e. Non-equilibrium
solutions will satisfy y > 0 and y # e.
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/

Y

— =1 Separated form. Assume y > 0 and y # e.
y(1 —Iny)
y/

——dr = | dr Method of quadrature.
/ y(1 —Iny) 4

—d
Ik U [ dx Substitute u = 1 — Iny on the left. Chain rule (Iny) =

u y'/y applied; du = —y'dz/y.
—In|]1 —Iny(z)|=z+c Evaluate the integral using u = 1 —Iny. Implicit solution
found.

The remainder of the solution contains college algebra details, to find from the implicit
solution all explicit solutions y.

|1 —Iny(x)|=e*¢ Use Inu = w equivalent to u = e.
1—Ilny(z) = ke *¢ Drop absolute value, k = £1.

Iny(x) =1—ke *¢ Solved for Iny.

y(z) = el — ke 7" Candidate solution; ¢ and k unresolved.

To resolve the constants, start with y9 > 0 and yy # e. To determine k, use the
requirement G(y) # 0 to deduce that k(1 —Iny(z)) > 0. At x = 0, it means k|1 —Inyg| =
1—1Inyp. Then k=1 for 0 < yp < e and k = —1 otherwise.

Let y = yo, * = 0 to determine ¢ through the equation |1 — Ingyg| = e~ . Combining
with the value of k gives 1 — Inyg = ke™°.
Assembling the answers for k and ¢ produces the relations
y=-el— ke™ "¢ Candidate solution.
— el —ke %™ Exponential rule e¢t? = e2¢?.
— el = (L—Inyg)e™ Explicit solution. Used ke™¢ = 1 — Inyp.

Even though the solution has been found through legal methods, it remains to verify the
solution. See the exercises.

Exercises 2.2 (4

Separated Form Test
Test the given equation by the separated
form test on page 83.

gy =2—x
L2y =+ 2
or fails, as written. In this test, algebraic

operations on the equation are disallowed.
See Examples 2.4 and 2.5, page 86.

5
6
Report whether or not the equation passes | 7. yy' +sin(y’) =2 — =z
8. 2yy’ +cos(y) =x
9

. 2yy’ =y cos(y) +x

r_
Ly =2 10. (2y +tan(y))y ==
2. ¢y = .
g Separated Equation
3.y +y=2 Determine the separated form y'/G(y) =
F(z) for the given separable equation. See
4.