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Chapter A

Background Topics

Introduction

The appendices to follow contain a short list of topics extracted from pre-calculus
and calculus courses.

Contents

A.1 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 1005

A.2 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . 1015

A.3 Explicit and Implicit Answers . . . . . . . . . . . . 1024

A.4 Numerical and Graphical Answers . . . . . . . . . 1029

A.5 Implicit Functions . . . . . . . . . . . . . . . . . . . 1041

A.1 Calculus

The selected topics from differential and integral calculus are used in differential
equations. The special notation of differential equations is introduced, along with
some ideas of Isaac Newton concerning the elementary kinetics formula D = RT ,
which has the physical interpretation Distance = Rate × Time.

Derivative

The calculus derivative f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
makes sense provided

the indicated limit exists. Implicit in the formula is the assumption that f is
defined in an open interval of the form |x − x0| < H. Differential equations use
this standard notation, plus the Leibniz notation

df

dx
= f ′(x).

1005



A.1 Calculus

Variable names used in science and engineering often follow this standard:

y = dependent variable,
x = independent variable.

Within certain disciplines, such as kinetics, the variable names change, and the
following standard exists:

x = displacement, dependent variable,
t = time, independent variable,

dx

dt
= velocity

= x′(t)

= ẋ(t)

= Dx(t),

d2x

dt2
= acceleration

= x′′(t)

= ẍ(t)

= D2x(t).

The functional notation y(x) means y is a dependent variable which depends on
the independent variable x. For example, x(t) means displacement x depends
on time t. In a graphic, it is expected that x is the vertical axis and t is the
horizontal axis. The dot-notation ẋ(t) and ẍ(t), instead of x′(t) and x′′(t), is
common in literature on statics and dynamics. Operator notation Dx, D2x
appears in differential equations literature and in computer algebra systems, e.g.,
maple and mathematica.

Slope, Rates and Averages

The derivative can be interpreted geometrically as the slope of the line tangent
to a curve at a point; see Figure 1.

slope m = f ′(x0)

y

x

(x0, y0)

Figure 1. Slope of the tangent line.

The tangent line itself can be viewed as the linearization of the curve. For
example, if the curve is the path of an automobile which at speedometer reading
v instantly skids off the road, then the car follows the tangent line with constant
speed v. Travel along the tangent line is linear motion at constant speed.

The line equation tangent to y = f(x) at x = x0 is given by the point-slope
form of a line

y − y0 = m(x− x0),

y0 = f(x0), m = f ′(x0).
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A.1 Calculus

The notation y(x), usual in differential equations, conflicts with the notation from
geometry. In handwritten and blackboard work it is recommended to change x
and y to capital letters X and Y , then replace f by y, as follows:

Y − y0 = m(X − x0),
y0 = y(x0), m = y′(x0).

Other forms of a straight line in coordinate geometry are the slope-intercept
form y = mx + b, the standard form Ax + By + C = 0 and the parametric
form {

x = x0 + at,
y = y0 + bt, −∞ < t < ∞.

In the parametric form, the vector a⃗i + b⃗j is tangent to the line. For example,
a = 0 and b = 1 gives a vertical line through (x0, y0).

Applied sciences interpret the derivative f ′(x) as the rate of change of y = f(x)
with respect to x. Typical interpretations appear below.

ẋ(t) ≈ change in displacement x for a unit change in t
dQ

dt
≈ change in charge Q for a unit change in t

Q̈(t) ≈ change in current I = Q̇ for a unit change in t

A′(t) ≈ expected decrease in the amount A of radioac-
tive material for time interval [t, t+ 1]

The average of n samples y1, . . . , yn is defined to be

y1 + y2 + · · ·+ yn
n

.

The term simple average is sometimes used. The average value f of a con-
tinuous function f(x) on [a, b] is defined by

f =

∫ b
a f(x)dx

b− a
.

This abstract notion has connections with the simple average. The theory of
the integral

∫ b
a f(x)dx includes the rectangular rule for numerical integration.

For step size h = (b − a)/n and sample values y1 = f(a), y2 = f(a + h), . . . ,
yn = f(a+ nh− h) it gives the approximation formula∫ b

a
f(x)dx ≈ h(y1 + y2 + · · ·+ yn).

Multiply this relation by 1/(b− a) and replace the left side by the average value
f . Then

f ≈ y1 + y2 + · · ·+ yn
n

,

or in words,
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A.1 Calculus

The average value f is approximately a simple average of n samples
of f , taken at equi-spaced points in [a, b].

In the language of kinetics, f is velocity and f is the average velocity or the
speed.

The language of kinetics agrees with common public notions of speed. For exam-
ple, the average of various speedometer reading samples during an automobile
trip give a good indication of the average speed of the car on the trip. The av-
erage speed R = f is related to the trip time T = b − a and the trip mileage D
by the classical formula D = RT , which is taught in elementary school.

The expression for the trip mileage D in terms of the instantaneous velocity f ,

D =

∫ b

a
f(x)dx,

is due to the creative genius of Isaac Newton. This relation of Newton today
appears in texts as the fundamental theorem of calculus.

Fundamental Theorem of Calculus

The foundations of the study of differential equations rests with Newton’s discov-
ery of a way to state the relation D = RT using instantaneous velocities instead
of speed averages.

Theorem A.1 (Fundamental theorem of calculus)
Let G be continuous and let F be continuously differentiable on [a, b]. Then

(a) F (b)− F (a) =

∫ b

a
F ′(x)dx,

(b)
d

dx

∫ x

a
G(t)dt = G(x).

Part (a) of the fundamental theorem is used by calculus students to evaluate
integrals. In differential equations, it is applied to find solutions.

Part (b) of the fundamental theorem computes the instantaneous rate of an aver-
aging process. Calculus students use it to check answers to integration problems.
In differential equations it is used to verify solutions.

The justification of D = RT for instantaneous rates f(x) = F ′(x) is contained
in part (a): divide both sides by b− a and interpret the right side as the average
velocity or speed to get the formula D/T = R.

Example A.1 (Leibniz Notation)
Change y′′(x) + y(x) into Leibniz notation.

Solution:
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A.1 Calculus

y′′(x) =
d

dx
y′(x) Definition of second derivative.

=
d

dx

dy

dx
Leibniz notation for the first derivative.

=
d2y

dx2
Leibniz notation.

Therefore, the converted expression is
d2y

dx2
+ y.

Example A.2 (Notation Conversion)
Convert the equation

du

dt
= u+ et sin t to dot notation.

Solution: By convention,
du

dt
= u̇(t) and u = u(t). Therefore, the converted equation is

u̇(t) = u(t) + et sin t.

Example A.3 (Slope of the Tangent Line)
Compute the slope m of the line tangent to y = x sinx at x = π/2.

Solution:

m = y′ Definition of slope and derivative.

= (x sinx)′ Definition of y.

= sinx+ x cosx Product rule and derivative tables.
Variable x to be replaced by π/2.

= sin(π/2) +
1

2
π cos(π/2) Replacement x = π/2.

= 1 Identities cos(π/2) = 0, sin(π/2) = 1
applied.

Example A.4 (Tangent Line Equation)
Find the tangent line equation at x = π/2 for y = x sinx in point-slope form and in
slope-intercept form.

Solution: The point-slope equation in an XY -system is Y − y0 = m(X − x0). In this
formula, x0 = π/2, y0 = x0 sinx0 = π/2. Example A.3 gives m = 1. The tangent
line equation in point-slope form is Y − π/2 = (1)(X − π/2), which simplifies to the
slope-intercept form Y = X.

Example A.5 (Line Equations)
Convert the line equation y− 2 = 5(x− 3) to slope-intercept and parametric forms.

Solution: The slope-intercept form y = 5x − 13 is found by expansion to an explicit
equation for y. A parametric form can be found by setting x = t and then y = 5x−13 =
5t− 13. The vector form is(

x
y

)
=

(
t

5t− 13

)
, −∞ < t < ∞.
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A.1 Calculus

Example A.6 (Decay Law Derivation)
Derive the decay law

dA

dt
= kA(t) from the sentence

Radioactive material decays at a rate proportional to the amount
present.

Solution: The sentence is first dissected into English phrases 1 to 4.

1: Radioactive material The phrase causes the invention of a symbol A for the
amount present at time t.

2: decays at a rate It means A undergoes decay. Then A changes. Calculus
conventions imply the rate of change is dA/dt.

3: proportional to Literally, it means equal to a constant multiple of. Let k
be the proportionality constant.

4: the amount present The amount of radioactive material present is A(t).

The four phrases are translated into mathematical notation as follows.

Phrases 1 and 2 Symbol dA/dt.

Phrase 3 Equal sign ‘=’ and a constant k.

Phrase 4 Symbol A(t).

Let A(t) be the amount present at time t. The translation is
dA

dt
= kA(t).

Example A.7 (Average Value)
Given f(x) = xex + sin2(πx), find the average value on 0 ≤ x ≤ 2.

Solution: The value is 1
2e

2 + 1. The details:

f =
1

2

∫ 2

0

f(x)dx Definition of average value, page 1007.

=
1

2

∫ 2

0

[xex + sin2(πx)]dx Substitute for f(x).

=
1

2
(x− 1)ex

∣∣∣∣x=2

x=0

Integral tables.

+
1

4π
(− cosπx sinπx+ πx)

∣∣∣∣x=2

x=0

=
1

2
e2 + 1 Use sin(nπ) = 0.

Example A.8 (Speed)
Find the speed for a car trip of 2 hours, given the velocity profile

ẋ(t) =

{
1200t 0 ≤ t ≤ 0.05,
60 0.05 ≤ t ≤ 2.

Solution: The speed R is given by
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A.1 Calculus

R =
1

2

∫ 2

0

ẋ(t)dt Average value of ẋ, page 1007.

=
1

2

(∫ 0.05

0

1200tdt+

∫ 2

0.05

60dt

)
Use

∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

=
1

2

(
600(0.05)2 + 60(2− 0.05)

)
Evaluate integrals.

=
237

4
. About 59.25 mph.

The unrealistic 3-minute acceleration to 60 mph can be replaced by a more realistic
18-second acceleration to give 59.925 mph.

Example A.9 (Speed Estimation)
Estimate the average speed of a car which accelerates from 0 to 65 miles per hour
in 12 seconds.

Solution: The purpose of this example is to explain the layman’s answer of 65/2 mph.
The answer must be justified in the context of calculus.

If the acceleration is constant, then ẍ(t) = a = constant. Therefore, ẋ(t) = at, since
ẋ(0) = 0. Let t0 = 12/3600 hours. The average speed R for time interval 0 ≤ t ≤ t0 is

R =
1

t0

∫ t0

0

ẋ(t)dt Definition of average speed, page 1007.

=
a

t0

t20
2

Evaluate integral with ẋ = at.

=
65

2
Because 65 = ẋ(t0) = at0.

It can be argued on physical grounds that no car has constant acceleration, so the answer
65/2 is merely an estimate. The layman’s answer can be obtained by averaging the two
speeds 0 and 65.

Example A.10 (Integral Identity)
Verify the integral evaluation

∫ 1

0
xexdx = 1.

Solution:

I =

∫ 1

0

xexdx Integral I to be evaluated.

=

∫ 1

0

(xex − ex)
′
dx Identity xex = (xex − ex)

′ derived below.

= (xex − ex)|x=1
x=0 Apply the fundamental theorem of calcu-

lus, part (a). See page 1008.

= 1 Use e0 = 1.

The identity xex = (xex − ex)
′
applied in the solution above is obtained by experiment,

as follows.

(xex)
′
= (1)ex + xex Product rule (uv)′ = u′v + uv′.
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A.1 Calculus

= (ex)
′
+ xex Term xex isolated on the right.

Solving the last equation for xex gives the identity xex = (xex − ex)
′
. A more systematic

method for finding such identities is integration by parts.

Example A.11 (Integral Answer Check)
Verify the identity∫ x

0
t ln(1 + t)dt =

1

2

(
x2 − 1

)
ln(1 + x) +

x

2
− x2

4
.

Solution: Both sides evaluate to zero at x = 0, because ln(1) = 0. According to the
fundamental theorem of calculus, part (b), page 1008, it is sufficient to differentiate the
answer on the right and verify that the derivative so obtained matches the integrand on
the left. Let RHS denote the right hand side. Then

RHS′ =

(
x2 − 1

2
ln(1 + x) +

x

2
− x2

4

)′

The Right Hand Side of the identity, to be
differentiated.

= x ln(1 + x) +
x2 − 1

2x+ 2
+

1

2
− x

2
Product rule, power rule and the identity
(ln(u))′ = u′/u.

= x ln(1 + x). Simplified derivative of the RHS.

The derivative of RHS matches the integrand of the left side, which completes the veri-
fication.

Example A.12 (Distance Estimate)
Estimate the distance D traveled by an automobile in two hours, and its average
speed R, given that for t = 20 to t = 120 the speedometer readings every 20
minutes are 55, 70, 66, 71, 72, 65 miles per hour.

Solution: The answers are 133 miles and 66.5 mph. To estimate the values of R and D,
it will be assumed that the speed was constant during the 20-minute period before the
reading. The actual velocity ẋ(t) of the automobile is related to the average velocity R
by the formula

R =
1

120

∫ 120

0

ẋ(t)dt.

The samples are used to find the average R as follows.

R ≈ 55 + 70 + 66 + 71 + 72 + 65

6
Used f ≈ y1 + · · ·+ yn

n
, page 1007.

=
399

6
About 66.5 miles per hour.

Then D = RT implies D ≈ 399
6

120
60 = 133 miles.
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A.1 Calculus

Exercises A.1

Derivative notation Convert from the
given notation, prime, dot, Leibniz or op-
erator, to the other three forms.

1.
du

dt

2. u̇(t0)

3. ü(1 + t)

4.
dx

dt
= 1 + x(t)

5. D2w(x) = 1 + w(x) + x

6. Dy(x) = y−2(x)

7. ln(w(r)) =
dw

dr

8. e−y(x) = y′(x)

9. ẏ(t) = 1 + t

10. ẋ(t) = e−2x(t)

Slope Compute the slope of the line tan-
gent to the curve at the given point.

11. y = x2 − 3x+ 1, x = 0.

12. y = x5 − x+ 2, x = 2.

13. y = sinx+ x, x = π/4.

14. y = cosx− x, x = π/4.

15. y = tan−1 x+ e−x ln(1 + x), x = 1.

16. y = sin−1 x+ ex ln(2 + x), x = 1.

Tangent line equation Find the tangent
line equation in the three possible forms,
point-slope, slope-intercept and paramet-
ric.

17. y = x3 − x, x = 1.

18. y = x3 + x+ 1, x = 0.

19. y = sin−1(x), x = 1/2.

20. y = tan−1(x), x = 1.

21. y = e−x, x = ln(2).

22. y = ln(1 + x), x = 0.

23. y =
1 + x

1− x
, x = 0.

24. y =
1− x2

1 + x2
, x = 0.

Rates Model as a rate of change equation.

25. The expected change in charge Q is
equal to the electromotive force sin(ωt).

26. The damping force F is proportional
to the instantaneous change in x(t).

27. The angular rate of change is propor-
tional to the external force cos(ωt).

28. The amount in a bank account changes
at a rate proportional to the current
balance.

29. The expected population change is pro-
portional to the present population P .

30. The temperature flux and the temper-
ature difference from the surrounding
medium are proportional.

Average value Find the average value of
f on [a, b],

f =
1

b− a

∫ b

a

f(x)dx.

31. xe−x, 0 ≤ x ≤ 1.

32.
1

2
ex − 1

2
e−x, 0 ≤ x ≤ 2.

33. lnx, 1 ≤ x ≤ 3.

34. secx, 0 ≤ x ≤ π/4.

35. x3 − x, 0 ≤ x ≤ 2.

36.
x− 1

x+ 1
, 0 ≤ x ≤ 1.

37.
sinx

1 + cosx
, 0 ≤ x ≤ π/4.

38. sin3 x cosx, 0 ≤ x ≤ π.
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A.1 Calculus

39.
1

1 + x2
on 0 ≤ x ≤ 1/2, 4/5 on 1/2 ≤

x ≤ 1.

40.
1

x
on 1 ≤ x ≤ 2,

5

8

x2

1 + x2
on 2 ≤ x ≤

3.

41. tanx on 0 ≤ x ≤ π/4, and 1+(x−π/4)
on π/4 ≤ π/3.

42. cotx on π/4 ≤ x ≤ π/2, and x − π/2
on π/2 ≤ x ≤ π.

Integral identities Verify the given inte-
gration identity by applying the fundamen-
tal theorem of calculus.

43.

∫ 1

0

1 + t

2 + t
dt = 1 + ln

2

3
.

44.

∫ 1

0

1 + t2

2 + t
dt = 5 ln

3

2
− 3

2
.

45.

∫ π

0

t sin(2t)dt =
π − 2

4
.

46.

∫ π/2

0

t cos(2t)dt = −1

2
.

47.

∫ 1

0

te−tdt = 1− 2

e
.

48.

∫ 1

0

t2e−tdt = 2− 5

e
.

49.

∫ x

0

sin4(t) cos(t)dt =
sin5(x)

5
.

50.

∫ x

0

tan(t)dt = − ln(cosx).

Car trip Estimate the average speed R and
the distance traveled D on a car trip, given
the velocity samples.

51. Every 10 minutes from t = 10 to t =
120 minutes, 51, 62, 55, 53, 60, 67, 61,
67, 55, 70, 71, 66 miles per hour.

52. Every 15 minutes from t = 15 to t =
225 minutes, 90, 92, 110, 112, 120, 113,
109, 90, 95, 97, 60, 90, 100, 105, 103
kilometers per hour.

53. Every 5 minutes from t = 5 to t = 75
minutes, 45, 60, 61, 63, 60, 58, 61, 65,
25, 40, 45, 60, 65, 59, 60 miles per hour.

54. Every 5 minutes from t = 5 to t = 100
minutes, 50, 90, 100, 120, 110, 112, 130,
120, 110, 40, 60, 100, 90, 80, 20, 55, 130,
130, 120, 125 kilometers per hour.
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A.2 Graphics

A.2 Graphics

Engineers and scientists prefer a computer approach to graphing solutions to
differential equations y′ = f(x, y). In special cases, the fastest graph generation
is by hand or by calculator. Experience with hand calculations and calculators
is useful for judging the accuracy of a computer graphic.

Small numeric data sets may be graphed by hand using graph paper or en-
gineering paper. Large data sets are best graphed using a computer spread-
sheet program, e.g., Microsoft Excel, a computer algebra system, e.g., maple or
mathematica, a numerical laboratory, e.g., matlab, octave or scilab, or a freely
available graphing program, e.g., gnuplot.

The Standard Curve Library

Feasibility for hand graphing of equations in explicit form is tested using the
standard curve library, which includes the following equation types.

y = mx+ b Equation of a line in slope-intercept form. Includes constant
equations. Increases for m > 0, decreases for m < 0.

y = xn,

y =
1

xn

Power curves. Even for n even, odd for n odd. Reciprocal
powers have asymptote at x = 0. Special cases y = x2, y = 1/x
occur often.

y = sinx,
y = tanx

The sine is 2π-periodic and the cosine graph is a translation by
π/2. The tangent is a π-periodic curve with asymptotes at odd
multiples of π/2.

y = ex,
y = lnx

All exponential and logarithmic curves are obtained from these
basic graphs.

Four Transformations

The standard curve library is modified for use by allowing four transformations.
The first two transformations are rigid motions, that is, the shape is unchanged.
The last two are not rigid motions.

(1) Replace x by x − x0 and y by y − y0. The effect is to change the origin of
coordinates in the graph from (0, 0) to (x0, y0).

(2) Replace y by −y. The effect on a paper graphic is to turn the paper over,
swapping horizontal edges. Examples are y = x2 and y = −x2.

(3) Replace y by 1/y. The effect is to swap the roles of 0 and ∞ in the original
graph. Examples are y = x2 and y = 1/x2.

(4) Replace y by ky with k > 0. The effect is to change the y-axis scale. Examples
are y = x2 and y = 4x2 (k = 1/4).
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A.2 Graphics

Special Equations

The standard curve library includes some special equations in implicit form
F (x, y) = c. Recognized from the subject of analytic geometry are the follow-
ing.

(x− x0)
2 + (y − y0)

2 = r2 Circle. Radius r and center (x0, y0).

(x− x0)
2

a2
+

(y − y0)
2

b2
= 1 Ellipse. Semiaxes a, b and center (x0, y0).

(x− x0)
2

a2
− (y − y0)

2

b2
= 1 Hyperbola. Center (x0, y0).

Polynomial Quotients

Rough graphs of polynomials and rational functions can be made with curve
library methods. The graphs are accurate for the sign of y and the general shape.
The following equation types are suited for use with the library.

y = (x− a1)
n1 · · · (x− ak)

nk Factored polynomial curves. Roots at a1,
. . . , ak.

y =
(x− a1)

n1 · · · (x− ak)
nk

(x− b1)m1 · · · (x− bℓ)mℓ
Factored rational curve. The roots are at
a1, . . . , ak and the vertical asymptotes are
at b1, . . . , bℓ.

The curve graphic at each root looks like a power curve Y = Xn and at each
vertical asymptote it looks like an inverse power curve Y = 1/Xn, subject to the
four transformations on page 1015.

Example A.13 (Curve Library Graphing Methods)
Apply curve library methods to graph on one set of axes for −2 ≤ x ≤ 2 the equations

y = 2x− 1, y = (x− 1)2, y = −(x+ 1)4, y = −1/x.

Solution: The curve library templates for the given graphs are

Y = X, Y = X2, Y = −X4, Y = −1/X.

Transformation of the four types described on page 1015 are applied to change the
templates into the correct figures. They are:

Y = X Replace X by 2x and Y by y+1 to obtain y = 2x− 1.

Y = X2 Replace X by x−1 and Y by y to obtain y = (x−1)2.

Y = −X4 Replace X by x+ 1 and Y by y to get y = −(x+ 1)4.

Y = −1/X Replace X by x and Y by −y to obtain y = −1/x.
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A.2 Graphics

The transformations amount to changing the origin and/or flipping the curve compared
to the template graphic from the curve library. The graphics to be assembled onto one
set of axes appear in Figure 2.

y = (x− 1)2

.
y = −(x+ 1)4

.

y = −1/x

.

y = 2x− 1

.

Figure 2. Transformed template graphics
with centers (0,−1), (1, 0), (−1, 0), (0, 0).

The final graphic is completed by assembling the transformed template graphics onto a
single set of axes, locating each template onto its center. In the intermediate stage of
completion, Figure 3, some portions of the graphic are left incomplete. The final graphic
is Figure 4.

. . .
−1 1

.

0

−1 Figure 3. Combined graphic
made from the four templates.

−2 2 Figure 4. Combined graphic on
−2 ≤ x ≤ 2 for curves y = 2x − 1,
y = (x−1)2, y = −(x+1)4 and y = −1/x.

Example A.14 (Factored Polynomial Graphs)
Apply curve library methods to make a rough graph of the factored polynomial

y = −3x(x− 1)2(x− 2)3(x− 3), 0 ≤ x ≤ 4.

Solution: The distinct factors correspond to the template graphics to be used in the
assembly of the final graphic:

y = c1x, y = c2(x− 1)2, y = c3(x− 2)3, y = c3(x− 3).

The constants c1, c2, c3, c4 are evaluated from the original curve equation y = −3x(x−
1)2(x−2)3(x−3) by arguing that, for (x, y) close to the center of each template graphic,
the template and the original should be graphically the same. For example, if x is close
to x = 2, then

y = −3x(x− 1)2(x− 2)3(x− 3) Original equation. Analysis near x = 2.

=
(
−3x(x− 1)2(x− 3)

)
(x− 2)3 Isolate all factors not containing the factor

(x− 2).

≈
[
−3x(x− 1)2(x− 3)

∣∣
x=2

]
(x− 2)3 Isolated factors are nearly constant close to

x = 2.

= 6(x− 2)3 Found template y = 6(x− 3)3.
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By this process, y = −3x(x− 1)2(x− 2)3(x− 3) has template equations

y = −72x, y = −3(x− 1)2, y = 6(x− 2)3, y = −36(x− 3).

As will be seen, the equalities c1 = −72, c2 = −3, c3 = 6, c4 = −36 are not actually
used, only the signs matter. Therefore, knowing c1 < 0, c2 < 0, c3 > 0, c4 < 0 is enough
for a rough graphic. This information is rapidly obtained by counting signs of the factors
involved. The graphics for the templates, taken from the standard curve library, appear
in Figure 5.

.
.

. .

y = −3(x− 1)2y = −72x y = 6(x+ 1)3 y = −36(x− 3)

Figure 5. Template graphics for y = −3x(x− 1)2(x− 2)3(x− 3).

To make the final graphic in Figure 6, the templates are located at their respective
centers on one set of axes, then they are connected with a smooth curve (boldface). The
connections stay either in the upper or the lower half-plane, because all zeros of y are
accounted for by the template graphics.

y

x
−2 1 2 3 Figure 6. Final graph for the

polynomial y = −3x(x − 1)2(x −
2)3(x− 3).

The graphic is accurate for the sign of y. The general shape is correct, but details like
maxima, minima and slopes are flawed. Nevertheless, the hand graphic is perhaps more
useful than a computer graphic.

Polynomial graphs exit the paper at x = ±∞ in the same way as their leading term,
which could be called the horizontal asymptote. In the present example, the leading
term is y = −3x7, which is a curve from the standard curve library. This information
can be used to detect fundamental graphing errors.

Example A.15 (Graphing Polynomial Fractions)
Apply curve library methods to make a rough graph of the rational function

y =
−3x(x− 1)2(x− 4)

(x+ 1)2(x− 2)(x− 3)
.

Solution: The rational function is a the quotient of two quadrics. By long division of
the polynomials it follows that y = −3+r/q where the degree of r is less than the degree
of q. Therefore, r/q ≈ 0 at ±∞, and this means y = −3 is the horizontal asymptote.

The effect of these remarks about asymptotes is to declare that the graph exits the paper
left and right along the line y = −3.

The vertical asymptotes x = −1, x = 2, x = 3 similarly cause the graph to exit the
paper top and/or bottom. The curve library method uses this information implicitly.
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A rough graphic can be drawn immediately from this basic information. The portions of
the graph that appear in Figure 7 are approximate only, valid for values of x very close
to x = −∞ or x = ∞. In Figure 7, vertical asymptotes are shown, even though they
already appear in library templates. It is a matter of taste to add vertical asymptotes
to this figure. If added, then just portions of the vertical lines near |y| = ∞ are valid.

y = −3 Figure 7. Rough graphic near x = ±∞
and y = ±∞.

The remainder of the graphic is obtained from the assembly of curve library templates.
The distinct factors of the numerator and denominator of the rational function become
the templates:

y = c1x, y = c2(x− 1)2, y = c3(x− 4),

y =
d1

(x+ 1)2
, y =

d2
x− 2

, y =
d3

x− 3
.

Calculation of the constants c1, c2, c3, d1, d2, d3 is unnecessary, only the signs matter
for template selection. For example, to compute d1:

y =
−3x(x− 1)2(x− 4)

(x+ 1)2(x− 2)(x− 3)
Given rational function. Analysis near
x = −1.

=

[
−3x(x− 1)2(x− 4)

(x− 2)(x− 3)

]
1

(x+ 1)2
Isolate all factors not containing (x+ 1).

≈ −3(−1)(−1− 1)2(−1− 4)

(−1− 2)(−1− 3)

1

(x+ 1)2
Substitute x = −1 into the isolated fac-
tors.

= −5
1

(x+ 1)2
Template equation found.

The logic of the substitution x = −1 into the isolated factors is that they are nearly
constant for x ≈ −1. The template equation y = −5/(x + 1)2 at center (−1, 0) will be
used to plot the final graphic. Just the sign of d1 = −5 is needed, which can be obtained
by counting signs, the actual value 5 being irrelevant for the graphic.

By similar methods, the signs of the constants are found to be c1 > 0, c2 > 0, c3 < 0,
d1 < 0, d2 < 0, d3 > 0. The six templates arise from four different library curves.

The six templates are placed at their centers and joined by a smooth curve (boldface)
to produce the final graphic. See Figure 8. The plot needs some explanation. First,
nothing is to scale, although the signs are correct for y and the general shape is valid.
The curve goes off the paper left and right at |x| = ∞, the exit curve being y = −3. The
curve also goes off the paper on the bottom edge at x = −1, 2, 3 and on the top edge
at x = 2, 3, in the manner shown. The maxima and minima of the curve have not been
computed, so this information is not to scale either.

−1 1 2 3
4 x

y

Figure 8. Graphic for y =
−3x(x− 1)2(x− 4)

(x+ 1)2(x− 2)(x− 3)
.
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Computer algebra systems like maple and mathematica can produce similar plots, with
limitations. Below is the maple code for the resulting plot in Figure 9. The unwanted and
incorrect vertical lines in the plot are an artifact of the discontinuities. It is especially
difficult to see some of the fine features, e.g., the double zero of y at x = 1 and the
horizontal asymptote values.

# Maple V 5.1

F:=x-> -3*x*(x-1)^2*(x-4)/((x+1)^2*(x-2)*(x-3));

plot(F(x),x=-infinity..infinity);

−∞ ∞

∞

−∞

Figure 9. Graphic by maple for y =
−3x(x− 1)2(x− 4)

(x+ 1)2(x− 2)(x− 3)
.

Example A.16 (Computer Graphing)
Graph the 20 data points generated by the approximation formula

y(x+ 0.05) ≈ y(x) + 0.05(x+ y(x)), y(0) = 1,

from x = 0 to x = 1 in uniform steps of 0.05, using a computer.

Solution: The formula is applied as a recursion formula, which details how to generate
from a given table pair x, y the next table pair X, Y via the formulas

X = x+ 0.05, Y = y + 0.05(x+ y).

Mathematical translation includes elimination of the approximation symbol (≈) and the
use of equal signs (=) in the final formulas.

The first step is to generate a table of values. Then the table is plotted by a standard
method. The process of determining the data pairs can be done by hand as follows.

x = 0, y = 1 The first data pair arises from y(0) = 1, which
means y = 1 at x = 0.

X = x+ 0.05 The next x-value is the old one plus 0.05.

Y = y + 0.05(x+ y) Approximation formula for the next y-value.

= 1 + 0.05(0 + 1) Use x = 0, y = 1.

= 1.05. The second data pair is X = 0.05, Y = 1.05.

The first three pairs of values are verified to be

(0.00, 1.000), (0.05, 1.050), (0.10, 1.105).

A maple plot of the data uses the following code, resulting in Figure 10. Similar mech-
anisms for plotting data points are available in matlab, mathematica, gnuplot and
scilab. Libreoffice CALC and Microsoft Excel can be used for such graphics.
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x
0 1

1

3
y

Figure 10. Sample computer graphic for the ap-
proximation formula
y(x+ 0.05) ≈ y(x) + 0.05(x+ y(x)), y(0) = 1.

# Maple V, plot data points in list L

L:=[0.00,1.000],[0.05,1.050],[0.10,1.105],

[0.15,1.165],[0.20,1.231],[0.25,1.303],

[0.30,1.380],[0.35,1.464],[0.40,1.555],

[0.45,1.653],[0.50,1.758],[0.55,1.870],

[0.60,1.992],[0.65,2.121],[0.70,2.260],

[0.75,2.408],[0.80,2.566],[0.85,2.734],

[0.90,2.913],[0.95,3.104],[1.00,3.307]:

plot([L]);

In computer algebra systems, it is possible to avoid typing the numeric data, because of
the formulas X = x+0.05, Y = y+0.05(x+ y). To generate the list L in maple, execute
the two code groups below.

# Execute the first group once

X:=0:Y:=1:L:=[X,Y]:

# Execute the second group 20 times

Y:=Y+0.05*(X+Y):X:=X+0.05:L:=L,[X,Y]:

Example A.17 (Computer Plotting)
Graph by computer the explicit equation y = e−x sin(x) on 0 ≤ x ≤ 2π.

Solution: Plot commands for five plotting systems are given below. The graphic in
Figure 11 represents the maple output.

plot(exp(-x)*sin(x),x=0..2*Pi); maple

Plot[{exp(-x) sin(x)}, {x,0,2 Pi} ]; mathematica

plot [0:2*pi] exp(-x)*sin(x) gnuplot

x=0:0.1:2*PI; y=exp(-x).*sin(x); plot(x,y) matlab and scilab

y

0 2π

x
0.00

0.32

−0.02

Figure 11. Computer plot of y =
e−x sin(x) on 0 ≤ x ≤ 2π.

Example A.18 (Computer Plotting)
Plot by computer the implicit equation x2 + 2y2 + xy = 10.
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Solution: Some background will be reviewed, which provides the source of intuition for
plotting similar implicit equations. Quadratic forms Ax2+2Bxy+Cy2 = D are studied
in analytic geometry, and it is known how to classify the graphic based upon the sign of
B2 − AC. A change of variables to eliminate the cross term xy would result in a hand
solution to this example, an ellipse with semiaxes a ≈ 3.55 and b ≈ 2.13 rotated about
−22.5 degrees with major axis along the line y = (1−

√
2)x. The exact semiaxis lengths

are given by
1

a2
=

3−
√
2

20
,

1

b2
=

3 +
√
2

20
.

The graphic in Figure 12 is the result of the maple code below. Plots of implicit equations
require tweaking of the domain and various plot parameters. The feature is not available
in some programs, e.g., gnuplot.

# Maple V

with(plots):

eq:=x^2+2*y^2 + x*y = 10:

opt:=scaling=constrained,grid=[40,40]:

implicitplot(eq,x=-4..4,y=-4..4,opt);

0

y

x

Figure 12. Implicit plot of x2 + 2y2 + xy = 10.

Exercises A.2

Curve library graphics Apply the curve
library method to construct by hand a
graphic of the given equations on one set
of axes.

1. y = 2x+ 1, y = 3(x+ 1)2

2. y =
−1

x+ 1
, y = −2x− 1

3. y =
2

(x+ 1)2

4. y =
−1

(x+ 1)3

5. y = x2, y = (x− 1)4, y = (x− 2)6

6. y =
1

x+ 1
, y =

1

(x− 1)2

Factored polynomial graphics Apply the
curve library method to construct by hand
a graphic of the given factored polynomial
on one set of axes.

7. y = −2x(x− 1)2

8. y = 2x(x+ 1)3

9. y = −(x+ 1)2(x− 1)3

10. y = (x+ 1)3(x− 1)4

11. y = (x+ 1)(x− 1)3(x+ 2)

12. y = −x3(1− x)(1 + x)

13. y = π(x+ 1)(x− 1)(x+ 2)2

14. y = π2(x+ 1)(x− 1)(x+ 2)3
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Factored rational graphics Apply the
curve library method to construct by hand
a graphic of the given factored rational
function on one set of axes.

15. y =
x− 1

x+ 1

16. y =
2x+ 1

x+ 2

17. y =
x(x+ 1)

(x+ 2)(x− 2)

18. y =
x(2x+ 1)

(x+ 2)(x− 2)

19. y =
−x(1− x)

(x+ 1)(x− 2)

20. y =
5x(x+ 1)

(x− 1)(x− 2)

Computer plotting of tables Make a ta-
ble of values x = 0 to x = 1 in steps
of 0.05 for the given approximate equation
and plot the table of values. Cite the re-
cursion formulas applied to obtain the next
table pair from the previous table pair.

21. y(x + 0.05) ≈ y(x) + 0.05(1 − y(x)),
y(0) = 1

22. y(x + 0.05) ≈ y(x) + 0.05(1 + y(x)),
y(0) = 1

23. y(x + 0.05) ≈ y(x) + 0.05(x − y(x)),
y(0) = 0

24. y(x + 0.05) ≈ y(x) + 0.05(2x + y(x)),
y(0) = 0

25. y(x+0.05) ≈ y(x)+0.05(sinx+xy(x)),
y(0) = 2

26. y(x + 0.05) ≈ y(x) + 0.05(sinx −
x2y(x)), y(0) = 2

Computer plots of explicit equations
Plot by computer the given explicit equa-
tion over 0 ≤ x ≤ 1.

27. y = e−x sinπx

28. y = e−x cosπx

29. y = e−x ln(1 + x)

30. y = e−x ln(1 + x2)

31. y = sin(πx) sin2(2πx)

32. y = sin(πx) cos2(πx)

Implicit plots Plot by computer or by
hand the given implicit equation.

33. x2 + y2 + 3xy = 10

34. x2 + y2 − 3xy = 10

35. x2 − (y + 1)2 = 1

36. x2 − y2 + xy = 10

37. x(x− 1)y = 5

38. xy(1 + y2) = 10
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A.3 Explicit and Implicit Answers

Important to engineers and scientists are methods by which an existing answer
can be tested for correctness. Given here are tests for explicit and implicit equa-
tions, as applied to the initial value problem{

y′ = f(x, y),
y(x0) = y0.

(1)

It is possible to test mathematical equations of the form y = y(x) and F (x, y) = 0,
to see if they represent a solution to the problem (1). Both methods rely upon
the expansion of the left side (LHS) and the right side (RHS) of equations. The
two sides are compared for equality, either symbolically or else as constants. A
proposed answer passes the test if the two sides are equal, that is, LHS = RHS.

Explicit Equations

An explicit equation y = y(x) represents a solution of (1) provided checkpoints
(a), (b) hold below.

(a) The equation y′ = f(x, y) is expanded using y = y(x) to produce a LHS
and a RHS that depend on x. The expressions LHS and RHS are tested
for symbolic equality at each x in the domain of y(x).

(b) The equation y(x0) = y0 has a constant LHS, evaluated using the given
expression for y(x) and the value x = x0. The constant RHS is y0. The
expressions LHS and RHS are tested for numerical equality.

Implicit Equations

A given implicit equation F (x, y) = 0 represents a solution of (1) provided check-
points (c), (d) hold below.

(c) Briefly, implicit differentiation of F (x, y) = 0 reproduces (1).

Technically, the equation f(x, y) = −Fx(x, y)/Fy(x, y) is expanded us-
ing the formulas for F and its partial derivatives Fx and Fy, to pro-
duce a LHS and a RHS which are expressions in the two symbols x, y.
The symbolic equality LHS = RHS must hold for all (x, y) satisfying
F (x, y) = 0.

(d) Initial condition y(x0) = y0 is tested by expansion of the equation
F (x0, y0) = 0 into LHS and RHS. The constant expressions must be
equal, LHS = RHS.

The equation F (x, y) = 0 can be viewed as a conservation law, e.g., if F is
energy, then F = 0 says the energy is constant along the path of a particle.
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Implicit differentiation results in the dynamical equation for the conservation
law. This equation describes the dynamics or change, hence it is expressed in
terms of the rate of change dy/dx.

The formal verification of (c) depends upon the chain rule for 2 variables

dF (x, y)

dt
=

∂F

∂x

dx

dt
+

∂F

∂y

dy

dt
.

Technical assumptions which allow y to be found as a function of x in the equation
F (x, y) = 0 appear in the implicit function theorem, page 1041, where the critical
assumption Fy(x0, y0) ̸= 0 is made.

The chain rule is applied to the equation F (x, y) = 0, setting x = t, y = y(t), to
give

Fx(t, y(t))(1) + Fy(t, y(t))
dy(t)

dt
= 0.

Substitution of t = x and y′ = f(x, y) into this equation justifies Part (c) of the
test.

Computer Algebra Methods

The ideas outlined above for checking an explicit or implicit equation can be
implemented in most computer algebra systems (abbreviation CAS). It suffices
to create the two CAS symbols LHS and RHS and then test for equality of LHS
and RHS in all the relevant variables.

It sometimes transparent that LHS and RHS are equal, due to automatic CAS

simplifications. There are instances where equality is completely opaque, because
of insufficient CAS simplifications. To the rescue comes this idea: define ZERO to
be the difference of LHS and RHS. The CAS symbol ZERO should reduce to zero,
after simplifications are performed. See Examples A.21, A.22, page 1026 for
details.

Realistically, engineers and scientists will migrate to CAS verifications, after in-
tuition has been gained from many hand computations. Even in the simplest
applications, something can go wrong, so experts advise: verify the results by
hand and by machine, verify it more than once, and check it from different view-
points.1

Example A.19 (Verify an Explicit Solution)
Verify the explicit solution y = x− 1 + 2e−x for y′ = x− y, y(0) = 1.

Solution: The initial condition y(0) = 1 is verified as follows.

y(0) =
(
x− 1 + 2e−x

)∣∣
x=0

Compute the left side of y(0) = 1 where y(x) = x −
1 + 2e−x.

= 0− 1 + 2e0 Evaluate.

1Picture a person walking in the rain, dripping wet, holding in one hand a closed umbrella.
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= 1. Therefore, the two sides of y(0) = 1 are equal.

The differential equation is verified in a slightly different way, by independent expansion
of the left and right sides.

LHS = y′ The left side of y′ = x− y is y′.

= (x− 1 + 2e−x)′ Insert y(x) = x− 1 + 2e−x.

= 1− 2e−x, Apply derivative rules.

RHS = x− y The right side of y′ = x− y is x− y.

= x− (x− 1 + 2e−x) Insert y(x) = x− 1 + 2e−x.

= 1− 2e−x. Simplified RHS.

Therefore, LHS=RHS.

Example A.20 (Verify an Implicit Solution)
Verify the implicit solution 3x2 + y2 = c for the equation y′ = −3x/y.

Solution:

f(x, y) = −3x/y The right side of y′ = −3x/y is called f(x, y).

F (x, y) = 3x2 + y2 The level curve F (x, y) = c duplicates the proposed
solution 3x2 + y2 = c.

Fx(x, y) = 6x Partial derivative in x.

Fy(x, y) = 2y Partial derivative in y.

Z = Fx(x, y) + Fy(x, y)f(x, y) Test the differential equation. Expect Z to be zero.

= 6x+ 2y(−3x/y) Substitute partials and f(x, y) = −3x/y.

= 0. Simplify.

Therefore, implicit differentiation of F (x, y) = c reproduces the differential equation
y′ = −3x/y; see page 1025.

Example A.21 (Verify Explicit Solution by Computer)
Verify the explicit solution y = e−x for y′ = −y, y(0) = 1 using a computer algebra
system.

Solution: The illustration will be for maple.

y:=x->exp(-x): The maple code for solution y = e−x.

LHS:=diff(y(x),x): The left side of y′ = −y is y′(x).

RHS:=-y(x): The right side of y′ = −y is −y(x).

ZERO:=LHS-RHS; The expression ZERO depends symbolically on x.

Z:=y(0)-1; Write Z as the difference of the left and right sides of the
equation y(0) = 1.

Evaluation of ZERO should give the symbolic answer 0, because LHS = RHS is equivalent
to LHS − RHS = 0. Evaluation of the constant Z should give constant 0. This verifies
the differential equation and initial condition by computer algebra methods. In unusual
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cases, it may be necessary to force simplifications or to interpret the answers. Simpli-
fication is forced by the maple command simplify(ZERO) while interpretation may be
required to conclude that an expression, e.g., sin(n*Pi), evaluates to zero.

Since maple V 5.1, there is a special function odetest, designed to do the above test.
It is valuable because it eliminates errors made by re-typing formulas.

Example A.22 (Verify Implicit Solution by Computer)
Verify the implicit solution x2+y2 = c for the equation y′ = −x/y using a computer
algebra system.

Solution: The illustration will be for maple.

F:=(x,y)->x*x+y*y-c Write x2 + y2 = c as F = 0 where F = x2 +
y2 − c.

f:=(x,y)->-x/y The right side of y′ = −x/y is f(x, y).

Fx:=(x,y)->diff(F(x,y),x) Partial derivative in x.

Fy:=(x,y)->diff(F(x,y),y) Partial derivative in y.

ZERO:=Fx(x,y)+f(x,y)*Fy(x,y) Variable ZERO is the left side of Fx + Fyy
′ = 0

with y′ = f(x, y).

Evaluation of ZERO should give the answer 0. This verifies the implicit solution of the
differential equation by computer algebra methods.

In maple V 5.1, the function odetest will test implicit solutions.

Exercises A.3

Verify an Explicit Solution Apply the
methods in Example A.19, page 1025, to
verify the given solution of the initial value
problem.

1. I(t) = I0e
−2t,

I ′ + 2I = 0, I(0) = I0.

2. Q(t) = Q0e
−0.2t,

Q′ = −0.2Q, Q(0) = Q0.

3. A(t) = 100ekt,
A′ = kA, A(0) = 100.

4. P (t) = 1000eht,
P ′ = hP , P (0) = 1000.

5. y(x) = −1 +
√
(4 + x2 − 2x),

y′ =
x− 1

y + 1
, y(0) = 1.

6. y(x) = −1 +
√
2 + 2ex − 2x,

y′ =
ex − 1

y + 1
, y(0) = 1.

7. y(x) = ex
2/2,

y′ = xy, y(0) = 1.

8. y(x) = ex
3/3,

y′ = x2y, y(0) = 1.

9. y(x) = e1−cos(x),
y′ = sin(x)y, y(0) = 1.

10. y(x) = esin(x),
y′ = cos(x)y, y(0) = 1.

Verify an Implicit Solution Apply the
methods in Example A.20, page 1026, to
verify the given implicit solution of the dif-
ferential equation. If an initial condition is
given, then verify it also.

11. xy2 + x2y + xy = c,

y′ = −y (y + 2x+ 1)

x (2 y + x+ 1)
.

12. x2y2 + x3y + xy2 = c,

y′ = −
y
(
2xy + 3x2 + y

)
x (2xy + x2 + 2 y)

.
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13. x sin y + cos(xy) = c,

y′ = − − sin(y) + sin(xy)y

x (− cos(y) + sin(xy))
.

14. x2 cos(y) + sin(xy2) = c,

y′ =
2x cos(y) + cos(xy2)y2

x (x sin(y)− 2 cos(xy2)y)
.

15. x2ey + ex−y = 1 + e,

y′ = −2xey + ex−y

x2ey − ex−y
, y(1) = 0.

16. x3e−y + xe2x−y = 1 + e2,

y′ =
3x2 + e2 x + 2xe2 x

x (x2 + e2 x)
,

y(1) = 0.

Verify an Explicit Solution by Com-
puter Apply the methods in Example A.21,
page 1026, to verify the given solution of
the initial value problem.

17. y(x) =
3
√
3x,

y′ = 1/y2, y(1/3) = 1.

18. y(x) =
4
√
4x,

y′ = 1/y3, y(1/4) = 1.

19. y(x) = e−x2/2,
y′ = −xy, y(0) = 1.

20. y(x) = πe−x3/3,
y′ = −x2y, y(0) = π.

21. y(x) = xecos(x)−1,
y′ = (1/x− sin(x))y,
y(2π) = 2π.

22. y(x) = tanx+ esin(x),
y′ = sec2 x− sinx+ y cos(x),
y(0) = 1.

Verify Implicit Solution by Computer
Apply the methods in Example A.22, page
1027, to verify the given implicit solution of
the differential equation. If an initial con-
dition is given, then verify it also.

23. xy = 2, y′ = −y/x, y(2) = 1.

24. x2y = 2, y′ = −2y/x, y(1) = 2.

25. xey + yex = c, y′ = − ey + yex

xey + ex
.

26. xe−y + ye−x = c,

y′ =
e−y − y2e−x

xe−y − 2 ye−x
.

27. x sin y + cos(xy) = c,

y′ =
sin(y)− sin(xy)y

x (sin(xy)− cos(y))
.

28. x2 cos(y) + sin(xy2) = c,

y′ =
2x cos(y) + cos(xy2)y2

x (−x sin(y) + 2 cos(xy2)y)
.
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A.4 Numerical and Graphical Answers

Given here are tests for numeric tables and graphics, as applied to the initial
value problem

y′ = f(x, y),
y(x0) = y0.

(1)

The numerical tests are based upon numerical integration methods from calculus.
The ideas lead to the numerical methods of Euler, Heun and Runge-Kutta, which
are studied in the text.

Numerical Integration Approximations

Reproduced here for future reference are calculus topics: the rectangular rule
, the trapezoidal rule and Simpson’s rule for the numerical approximation
of an integral

∫ b
a F (x)dx. The approximations are valid for b − a small. Larger

intervals must be subdivided, then the rule applies to the small subdivisions.

Rectangular Rule. The approximation uses Euler’s idea of
replacing the integrand by a constant. The value of the integral
is approximately the area of a rectangle of width b − a and
height F (a).

F

x
a b

y

∫ b

a
F (x)dx ≈ (b− a)F (a).(2)

Trapezoidal Rule. The rule replaces the integrand F (x)
by a linear function L(x) which connects the planar points
(a, F (a)), (b, F (b)). The value of the integral is approximately
the area under the curve L, which is the area of a trapezoid.

F

x
a b

y

L

∫ b

a
F (x)dx ≈ b− a

2
(F (a) + F (b)) .(3)

Simpson’s Rule. The rule replaces the integrand F (x) by
a quadratic polynomial Q(x) which connects the planar points
(a, F (a)), ((a + b)/2, F ((a + b)/2)), (b, F (b)). The value of the
integral is approximately the area under the quadratic curve Q.

F

x

y

a b

Q

∫ b

a
F (x)dx ≈ b− a

6
(F (a) + 4F ((a+ b)/2) + F (b)) .(4)
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Simpson’s Polynomial Rule. If Q(x) is a linear, quadratic or cubic poly-
nomial, then (proof on page 1036)∫ b

a
Q(x)dx =

b− a

6
(Q(a) + 4Q((a+ b)/2) +Q(b)) .(5)

Integrals of linear, quadratic and cubic polynomials can be evaluated exactly
using Simpson’s polynomial rule (5); see Example A.26, page 1035.

Remarks on Simpson’s Rule. The right side of (4) is exactly the integral
of Q(x), which is evaluated by equation (5). The appearance of F instead of Q
on the right in equation (4) is due to the relations Q(a) = F (a), Q((a+ b)/2) =
F ((a + b)/2), Q(b) = F (b), which arise from the requirement that Q connect
three points along curve F .

The quadratic interpolation polynomial Q(x) is determined uniquely from the
three data points; see page 1037 for a formula for Q and a derivation. It is
interesting that Simpson’s rule depends only upon the uniqueness and not upon
the actual formula for Q!

Graphic and Numeric Table Test

Studied here is a general problem:

Find a test which verifies a given graphic or numeric table, given
only the xy-pairs and y′ = f(x, y).

The test should work with a hand calculator, a spreadsheet or a computer algebra
system. Important to the test is the ability to spot-check the graphic or table,
testing just one or two data items.

To be presented here are the Euler, trapezoidal and Simpson tests. They detect
errors in graphics by pixel criteria; see page 1032 for details. All tests have
limitations and flaws. If the data items are far apart, then the approximation is
poor and the test fails. Use is limited to detection of gross errors.

Equivalent Integral Equation. Fundamental to understanding the tests
is the equivalent integral equation

y(x) = y(x0) +

∫ x

x0

f(t, y(t))dt(6)

for the first order initial value problem y′ = f(x, y), y(x0) = y0. Equation (6) is
justified on page 1036.
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Raw Data. Graphics produced in computer algebra systems or in computer
spreadsheets require raw plot data, either implicitly or explicitly supplied. It will
be assumed that this data is available as a table of xy-values, or equivalently, as
a list of pairs

(X0, Y0), (X1, Y1), . . . , (Xn, Yn).

It is necessary in the tests to evaluate f(x, y) at the points of this list. No other
evaluations of f are used, for the simple tests.

A linear connection (“connect-the-dots”) of the data points is used by many
computer programs; many points are required for a smooth result. Typical detail
is shown in Figure 13.

y

(X0, Y0) (Xn, Yn)

x

Figure 13. Linear connection of raw
data points (X0, Y0), (X1, Y1), . . ., (Xn, Yn)
in a computer graphic.

Euler’s Test. The test applies to one pair of consecutive
points from the raw plot data list. Euler’s test is related to
Euler’s numerical method, which is the oldest and sim-
plest numerical method for first order differential equations.

y
(x1, y1)

(x1, Y )
(x0, y0) x

The test is named after Leonhard Euler2 (1707-1783), Swiss physicist and math-
ematician. The test is justified on page 1037.

Step 1. Let (x0, y0) and (x1, y1) denote consecutive pairs from the raw plot
data list (X0, Y0), (X1, Y1), . . . , (Xn, Yn).

Step 2. Compute h = x1 − x0 and Y = y0 + hf(x0, y0).

Step 3. Test equality of y1 and Y .

Trapezoidal Test. The tests applies to a consecutive
pair of points from the raw plot data list. The trapezoidal
test is related to the modified Euler numerical method ,
or Heun’s method. The justification appears on page 1037.

y

(x0, y0)

(x1, y1)
(x1, Y )

x

Step 1. Let (x0, y0) and (x1, y1) denote consecutive pairs from the raw plot
data list (X0, Y0), (X1, Y1), . . . , (Xn, Yn).

Step 2. Compute h = x1 − x0 and Y = y0 +
h

2
(f(x0, y0) + f(x1, y1)).

Step 3. Test equality of y1 and Y .

2His name is pronounced Oiler, and not Yuler.
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Simpson’s Test. The test is applied to three consecu-
tive pairs from the raw plot data list. Assume uniformly-
spaced X-data. The Simpson test is related to the
Runge-Kutta numerical method for first order dif-
ferential equations. Justification is on page 1037.

(x0, y0)

(x2, Y )

y (x2, y2)
(x1, y1)

x

Step 1. Let (x0, y0), (x1, y1) and (x2, y2) denote three consecutive pairs from
the raw plot data list. It is assumed that x1 = (x0 + x2)/2.

Step 2. Let Y = y0 +
x2 − x0

6
(f(x0, y0) + 4f(x1, y1) + f(x2, y2)).

Step 3. Test equality of y2 and Y .

Pass and Fail. A given test can pass or fail according to how the resulting
approximation is judged. A graph passes the test if the ideal data point (x, y)
and the approximate data point (x, Y ) land on the same pixel, that is, the dots
cannot be distinguished in the graphic. Arithmetically, the test is an inequality

|y − Y |
|d− c|

<
1

M
,

where M is the number of y-pixels in the graphic on c ≤ y ≤ d. Otherwise, the
graph fails.

Exercises in this text use the standard graphic , a 31
4 -inch square graphic at

300 dots per inch, which is about 1000×1000 pixels. The same graphic displayed
on a video monitor uses considerably fewer pixels.

There are two standard ways to measure the approximations:

Absolute Error. The absolute error is E = |y − Y |. The standard graphic
of 1000 pixels on c ≤ y ≤ d will pass the test if E < d−c

1000 .

Relative Error. The relative error is E = |y − Y |/|y|. Since Y = (1 ± E)y,
it measures the percentage error.

Mostly, it is used for y-ranges c ≤ y ≤ d where c > 0 or d < 0 (division by
zero is problematic). The standard graphic of 1000 pixels on 0 < c ≤ y ≤ d
will pass the test if E < d−c

1000d .

To distinguish the two measurements, apply the definitions to y = 1000 and
Y = 1001: the absolute error is 1 and the relative error is 1/1000.

Uniformly-Spaced and Adaptive Data. In computer workbenches like
matlab or scilab, the x-values will be uniformly spaced. In other systems,
uniform spacing can be arranged, but the default may be non-uniform data or
adaptive data , e.g., maple. Graphics systems normally document how to print
out the plot data used for the graphic, even if the plot was done by implicit or
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automatic means. To get uniformly spaced data in maple, some preparation is
required, as the following illustration shows. Uniformly spaced data is required
in the Simpson test, page 1032.

y:=x->20*exp(-3*x):a:=0.0: b:=1.0:

# Adaptive plot saved in variable P

P:=plot(y(x),x=a..b);

# Uniform x-data plot saved in Q. Maple V 5.1

Q:=plot(y(x),x=a..b,adaptive=false,

sample=[seq(i*h,i=0..(b-a)/h)]);

Example A.23 (Spot Check)
A graphic for the differential equation y′ = x+y has window 0 ≤ x ≤ 0.5, 1 ≤ y ≤ 2
and uses 1000 × 1000 pixels. Two adjacent plot data entries are (0.180, 1.21443)
and (0.195, 1.23562). Spot-check these entries with Euler’s test.

Solution: The plot data passes Euler’s test, page 1031, because the target value 1.23562
is close to the Euler approximation 1.2353464, with less than one pixel difference in the
plot. The steps of the justification appear below.

x0 = 0.180, y0 = 1.21443 The first data point (0.180, 1.21443).

x1 = 0.195, y1 = 1.23562 The second data point (0.195, 1.23562).

h = x1 − x0 = 0.015 Define the step size.

Y = y0 + h(x0 + y0) Apply Euler’s test, page 1031.

= 1.21443
+ 0.015(0.18 + 1.21443)

Substitute x0, y0, h.

= 1.2353464. Expected to be close to y1 = 1.23562.

The absolute error is E = 0.0002736, which is less than the cutoff value of E∗ = (d −
c)/1000 = 0.001. The data passes Euler’s test.

Example A.24 (Trapezoidal Test)
A graphic for the differential equation y′ = x+y has window 0 ≤ x ≤ 0.5, 1 ≤ y ≤ 2
and uses 1000× 1000 pixels. Find the worst absolute error |y1 − Y | made according
to the trapezoidal test for the associated plot data below and report pass or fail.

(0.180, 1.21443), (0.195, 1.23562), (0.210, 1.25736),

(0.225, 1.27965), (0.240, 1.30250), (0.255, 1.32592).

Solution: The cutoff value for the absolute error is (d − c)/1000 = 0.001. It will
be justified below that the worst absolute error according to the Trapezoidal test is
0.0000057. In short, the data passes the test.

The first pair of points in the plot data passes the Trapezoidal test, page 1031, because
the target value y1 = 1.23562 is close to the test’s value Y = 1.2356179, with absolute
error |y1 − Y | = 0.0000021. The steps of the justification appear below.
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x0 = 0.180, y0 = 1.21443 Initial point (0.180, 1.21443).

x1 = 0.195, y1 = 1.23562 Next point (0.195, 1.23562).

h = 0.015 The value h = x1 − x0 should be small.

f(x, y) = x+ y Right side of the differential equation.

Y = y0 +
h

2
(f(x0, y0) + f(x1, y1)) Trapezoidal test, page 1031.

= y0 +
h

2
(x0 + y0 + x1 + y1) Expand functional expressions.

= 1.21443 +
0.015

2
(2.82505) Expand expressions.

= 1.2356179. Calculator result. The absolute error E = |y1−Y |
is 0.0000021.

This process can be carried out on the other four pairs of points, in a similar way, to find
the five absolute errors

0.0000021, 0.0000052, 0.000000075, 0.0000036, 0.0000057.

The largest error is 0.0000057.

Details of a maple implementation appear below. The errors made with its ten-digit
exact arithmetic may differ from those of a calculator.

# Execute the first group once.

f:=(x,y)->x+y:

L:=[[.180, 1.21443],[.195, 1.23562],

[.210, 1.25736],[.225, 1.27965],

[.240, 1.30250],[.255, 1.32592]]:

n:=1:

# Execute the second group 5 times.

x0:=L[n][1]:y0:=L[n][2]:

x1:=L[n+1][1]:y1:=L[n+1][2]:

Y:=y0+(x1-x0)*0.5*(f(x0,y0)+f(x1,y1)):

n:=n+1: ABSerror:=abs(y1-Y);

New to the maple code is the list L of pairs of points. The syntax L[n] refers to item n
of the 6 items in the list, a pair. Syntax L[n][1] means the first entry of that pair.

Example A.25 (Simpson Test)
A graphic for the differential equation y′ = x+y has window 0 ≤ x ≤ 0.5, 1 ≤ y ≤ 2
and uses 1000 × 1000 pixels. Given the data set below, compute the Simpson test
prediction for each triple of data points. Report the four absolute errors and judge
pass or fail.

(0.180, 1.21443), (0.195, 1.23562), (0.210, 1.25736),

(0.225, 1.27965), (0.240, 1.30250), (0.255, 1.32592).
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Solution: The cutoff value for the absolute error is (d − c)/1000 = 0.001. It will be
justified below that the four absolute errors according to the Simpson test are 0.0000087,
0.0000065, 0.0000023 and 0.0000079. The data passes Simpson’s test.

The first three pairs of points in the plot data pass the Simpson test, page 1032, because
the target value y1 = 1.25736 is close to the test’s value Y = 1.257351350, with absolute
error |y1 − Y | = 0.0000087. The steps of the justification are below.

x0 = 0.180, y0 = 1.21443 Initial point (0.180, 1.21443).

x1 = 0.195, y1 = 1.23562 Second point (0.195, 1.23562).

x2 = 0.210, y2 = 1.25736 Third point (0.210, 1.23562).

f(x, y) = x+ y The right side of the differential equation.

Y = y0 +
x2 − x0

6
(f(x0, y0)

+4f(x1, y1) + f(x2, y2))

Simpson test, page 1032.

= y0 + 0.005 (x0 + y0
+4(x1 + y1) + x2 + y2)

Expand functional expressions.

= 1.21443 + 0.005 (8.58427) Substitute constants.

= 1.2573513. Absolute error E = |y2 − Y | = 0.0000087.

This process can be carried out in a similar way on the other triples of points:

Second: (0.195, 1.23562), (0.210, 1.25736), (0.225, 1.27965),

Third: (0.210, 1.25736), (0.225, 1.27965), (0.240, 1.30250),

Fourth: (0.225, 1.27965), (0.240, 1.30250), (0.255, 1.32592).

The absolute errors for these last three cases are 0.0000065, 0.0000023 and 0.0000079.

Details of a maple implementation appear below.

# Execute the first group once.

f:=(x,y)->x+y:

L:=[[.180, 1.21443],[.195, 1.23562],

[.210, 1.25736],[.225, 1.27965],

[.240, 1.30250],[.255, 1.32592]]:

n:=1:

# Execute the second group 4 times.

x0:=L[n][1]:y0:=L[n][2]:

x1:=L[n+1][1]:y1:=L[n+1][2]:

x2:=L[n+2][1]:y2:=L[n+2][2]:

Y:=y0+(x2-x0)*(f(x0,y0)+

4*f(x1,y1)+f(x2,y2))/6:

n:=n+1: ABSerror:=abs(y2-Y);

Example A.26 (Polynomial Quadrature)
Apply Simpson’s polynomial rule (5) to verify

∫ 2
1 (x

3 − 16x2 + 4)dx = −355/12.

Solution: The application proceeds as follows:

I =
∫ 2

1
Q(x)dx Evaluate integral I usingQ(x) = x3−16x2+4.
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=
2− 1

6
(Q(1) + 4Q(3/2) +Q(2)) Apply Simpson’s polynomial rule (5).

=
1

6
(−11 + 4(−229/8)− 52) Use Q(x) = x3 − 16x2 + 4.

= −355

12
. Equality verified.

Integral Equation Justification. Let f(x, y) be continuous for a < x < b, −∞ < y <
∞. Assume (x0, y0) is in the domain. It will be justified that the initial value problem
y′ = f(x, y), y(x0) = y0 is equivalent to the integral equation

y(x) = y0 +

∫ x

x0

f(t, y(t))dt.

The case x ≥ x0 will be considered, the other case x ≤ x0 being similar. Equivalence
means a solution of the initial value problem is a solution of the integral equation, and
conversely.

The integral equation is obtained from the initial value problem as follows: details.

y′(t) = f(t, y(t)) The given equation with x replaced by t.∫ x

x0
y′(t)dt =

∫ x

x0
f(t, y(t))dt Integrate both sides on x0 ≤ t ≤ x. It is assumed that

y, y′, f are continuous, which insures both integrals
are defined.

y(x)− y(x0) =
∫ x

x0
f(t, y(t))dt Apply the fundamental theorem of calculus, page 1008,

part (a).

Conversely, if the integral equation is assumed, then y(x) is differentiable by the funda-
mental theorem of calculus, page 1008, part (b). Differentiate across both sides of the
integral equation to obtain y′ = f(x, y). Finally, substitute x = x0 into the integral
equation to obtain the initial condition y(x0) = y0.

Simpson’s Polynomial Rule Proof. Let Q(x) be a linear, quadratic or cubic polyno-
mial. It will be verified that∫ b

a

Q(x)dx =
b− a

6
(Q(a) + 4Q((a+ b)/2) +Q(b)) .(7)

If the formula holds for polynomial Q and c is a constant, then the formula also holds
for the polynomial cQ. Similarly, if the formula holds for polynomials Q1 and Q2, then
it also holds for Q1 + Q2. Consequently, it suffices to show that the formula is true
for the special polynomials 1, x, x2 and x3, because then it holds for all combinations
Q(x) = c0 + c1x+ c2x

2 + c3x
3.

Only the special case Q(x) = x3 will be treated here. The other cases are left to the
exercises. The details:

RHS =
b− a

6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
Evaluate the right side of equation
(7).

=
b− a

6

(
a3 +

1

2
(a+ b)3 + b3

)
Substitute Q(x) = x3.

=
b− a

6

3

2

(
a3 + a2b+ ab2 + b3

)
Expand (a+b)3 = a3+3a2b+3ab2+
b3 and simplify.
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=
3

12

(
b4 − a4

)
Multiply and simplify.

LHS =
∫ b

a
Q(x)dx Evaluate the left hand side (LHS) of

equation (7).

=
∫ b

a
x3dx Substitute Q(x) = x3.

= (b4 − a4)/4 Evaluate.

= RHS. Compare with the RHS.

Euler Test Proof: To justify Euler’s test, page 1031, apply the equivalent integral
equation (6) and the rectangular rule (2) with F (t) = f(t, y(t)), a = x0 and b = x0+h =
x1. This gives a first approximation

y(x0 + h) ≈ y(x0) + hF (x0).(8)

Then apply approximation y(x0) ≈ y0 to the right side of (8) to give the approximation
Y = y0 + hf(x0, y0).

Trapezoidal Test Proof: To justify the trapezoidal test, page 1031, begin with the
equivalent integral equation (6) and approximate the integral using the trapezoidal rule
(3), with F (t) = f(t, y(t)), a = x0 and b = x0 +h = x1. This gives a first approximation

y(x0 + h) ≈ y(x0) +
h

2
(F (x0) + F (x1))(9)

Then apply approximations y(x0) ≈ y0 and y(x1) ≈ y1 to the right side of (9) to give

the approximation Y = y0 +
h

2
(f(x0, y0) + f(x1, y1)).

Simpson Test Proof: To justify the Simpson test, page 1032, begin with the equivalent
integral equation (6) and approximate the integral using Simpson’s rule (4), with F (t) =
f(t, y(t)), a = x0 and b = x2. This gives a first approximation

y(x0 + h) ≈ y(x0) +
x2 − x0

6
(F (x0) + 4F (x1) + F (x2))(10)

Then apply approximations y(x0) ≈ y0, y(x1) ≈ y1 and y(x2) ≈ y2 to the right side of
(10) to give the approximation

Y = y0 +
x2 − x0

6
(f(x0, y0) + 4f(x1, y1) + f(x2, y2)).

Quadratic Interpolation Proof: Given a < b and the three data points (a, Y0), ((a+
b)/2, Y1)), (b, Y2)), it will be verified that the quadratic curve Q(X) which connects the
points is given by

Q(X) = Y0 + (4Y1 − Y2 − 3Y0)
X − a

b− a

+ (2Y2 + 2Y0 − 4Y1)
(X − a)2

(b− a)2
.

The term quadratic is meant loosely: it can be a constant or linear function as well. The
solution is presented as two lemmas.3 The first lemma contains the essential ideas. The
second simply translates the variables.

3What’s a lemma? It’s a helper theorem, used to dissect long proofs into short pieces.
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Lemma A.1 Given y1 and y2, define A = y2 − y1, B = 2y1 − y2. Then the quadratic
y = x(Ax+B) fits the data items (0, 0), (1, y1), (2, 2y2).

Lemma A.2 Given Y0, Y1 and Y2, define y1 = Y1 − Y0, y2 = 1
2 (Y2 − Y0), A = y2 − y1,

B = 2y1 − y2 and x = 2(X − a)/(b− a). Then quadratic Y (X) = Y0 + x(Ax+B) fits the
data items (a, Y0), ((a+ b)/2, Y1), (b, Y2).

To verify the first lemma, the formula y = x(Ax+ B) is tested to go through the given
data points (0, 0), (1, y1) and (2, 2y2). For example, the last pair is tested by the steps

y(2) = 2(2A+B) Apply y = x(Ax+B) with x = 2.

= 4y2 − 4y1 + 4y1 − 2y2 Use A = y2 − y1 and B = 2y1 − y2.

= 2y2. Therefore, the quadratic fits data item (2, 2y2).

The other two data items are tested similarly, details omitted here.

To verify the second lemma, observe that it is just a change of variables in the first
lemma, Y = Y0 + y. The data fit is checked as follows:

Y (b) = Y0 + y(2) Apply formulas Y (X) = Y0+y(x), y(x) = x(Ax+B)
with X = b and x = 2.

= Y0 + 2y2 Apply data fit y(2) = 2y2.

= Y2. The quadratic fits the data item (b, Y2).

The other two items are checked similarly, details omitted here. This completes the
proof of the two lemmas. The formula for Q is obtained from the second lemma as
Q = Y0 + Bx + Ax2 with substitutions for A, B and x performed to obtain the given
equation for Q in terms of Y0, Y1, Y2, a, b and X.
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Exercises A.4

Euler Test: Spot Check Apply the meth-
ods of Example A.23, page 1033, to com-
pute for the given differential equation the
absolute error made by Euler’s test for the
given data. Report pass or fail for each ex-
ercise. Assume absolute error cutoff value
(d− c)/1000 = 0.001.

1. y′ = 2y + sin(x),
(0.1, 0.005346),
(0.2, 0.022884),
(0.3, 0.055148).

2. y′ = −y + cos(x),
(0.1, 0.095000),
(0.2, 0.180003),
(0.3, 0.255019).

3. y′ = y(1− y) + 5,
(0.400, 1.877093),
(0.405, 1.893746),
(0.410, 1.910168).

4. y′ = y(2− y) + 10,
(0.400, 3.547216),
(0.405, 3.569489),
(0.410, 3.591196).

5. y′ = 1 + y2,
(0.100, 0.100335),
(0.105, 0.105388),
(0.110, 0.110446).

6. y′ = 4 + 4y2,
(0.100, 0.422793),
(0.105, 0.446573),
(0.110, 0.470781).

Trapezoidal Test Apply the methods of
Example A.24, page 1033, to compute for
the given differential equation the relative
error E = |y1−Y |/|y1| made by the Trape-
zoidal test for the given data. Report for
each exercise pass or fail and the three er-
ror values. Assume the given relative error
cutoff value E∗.

7. y′ = 2y + sin(x), E∗ = 0.001,
(0.1, 0.005346), (0.2, 0.022884),
(0.3, 0.055148), (0.4, 0.105129).

8. y′ = −y + cos(x), E∗ = 0.00009,
(0.1, 0.095000), (0.2, 0.180003),
(0.3, 0.255019), (0.4, 0.320080).

9. y′ = y(1− y) + 5, E∗ = 0.00024,
(0.100, 0.516828),
(0.125, 0.647873),
(0.150, 0.777953),
(0.175, 0.621714).

10. y′ = y(2− y) + 10, E∗ = 0.0013,
(0.100, 1.067919),
(0.125, 1.341712),
(0.150, 1.610877),
(0.175, 1.871962).

11. y′ =
1− x

1 + y
, E∗ = 0.0004,

(0.100, 0.090871),
(0.125, 0.111024),
(0.150, 0.130265),
(0.175, 0.148641).

12. y′ =
1 + x

1− y
, E∗ = 0.00047,

(0.100, 0.111181),
(0.125, 0.143043),
(0.150, 0.176896),
(0.175, 0.212996).

Simpson Test Apply the ideas in Exam-
ple A.25, page 1034, to compute for the
given differential equation the relative er-
ror E = |y2−Y |/|y2| made by the Simpson
test for the given data. Report for each ex-
ercise pass or fail and the three error values.
Assume the given relative error cutoff value
E∗.

13. y′ = 2y + sin(x), E∗ = 0.0008,
(0.2, 0.022884), (0.3, 0.055148),
(0.4, 0.105129).

14. y′ = −y + cos(x), E∗ = 0.00044,
(0.2, 0.180003), (0.3, 0.255019),
(0.4, 0.320080).

15. y′ = y(1− y) + 5, E∗ = 0.000451,
(0.2, 1.031950), (0.3, 1.495883),
(0.4, 1.877093).
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16. y′ = y(2− y) + 10, E∗ = 0.0004,
(0.2, 2.121932), (0.3, 2.970036),
(0.4, 3.547216).

17. y′ =
1− x

1 + y
, E∗ = 0.0004,

(0.2, 0.166190), (0.3, 0.228821),
(0.4, 0.280625).

18. y′ =
1 + x

1− y
, E∗ = 0.00068,

(0.2, 0.251669), (0.3, 0.443224),
(0.4, 0.800000).

Simpson’s Rule The following exercises
use formulas and techniques found in the
proof on page 1036 and in Example A.26,
page 1035.

19. Verify with Simpson’s rule (5) for cubic

polynomials the equality
∫ 2

1
(x3+16x2+

4)dx = 541/12.

20. Verify with Simpson’s rule (5) for cu-

bic polynomials the equality
∫ 2

1
(x3+x+

14)dx = 77/4.

21. Let f(x) satisfy f(0) = 1, f(1/2) =
6/5, f(1) = 3/4. Apply Simpson’s
rule with one division to verify that∫ 1

0
f(x)dx ≈ 131/120.

22. Let f(x) satisfy f(0) = −1, f(1/2) =
1, f(1) = 2. Apply Simpson’s rule with

one division to verify that
∫ 1

0
f(x)dx ≈

5/6.

23. Verify Simpson’s equality (5), assum-
ing Q(x) = 1 and Q(x) = x.

24. Verify Simpson’s equality (5), assum-
ing Q(x) = x2.

Quadratic Interpolation The following
exercises use formulas and techniques from
the proof on page 1037.

25. Verify directly that the quadratic poly-
nomial y = x(7 − 4x) goes through the
points (0, 0), (1, 3), (2,−2).

26. Verify directly that the quadratic poly-
nomial y = x(8 − 5x) goes through the
points (0, 0), (1, 3), (2,−4).

27. Compute the quadratic interpolation
polynomial Q(x) which goes through
the points (0, 1), (0.5, 1.2), (1, 0.75).

28. Compute the quadratic interpolation
polynomial Q(x) which goes through
the points (0,−1), (0.5, 1), (1, 2).

29. Verify the remaining cases in Lemma
A.1, page 1038.

30. Verify the remaining cases in Lemma
A.2, page 1038.
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A.5 Implicit Functions

The subject of implicit function theory treats the problem of solving an equa-
tion F (x, y) = 0 for y in terms of x. In differential equations, it is the theoretical
basis for extracting an explicit solution y(x) from an implicit solution F (x, y) = 0.

Theorem A.2 (Implicit Function Theorem)
Let F (x, y), Fx(x, y), Fy(x, y) be defined and continuous in an open region D in
the plane. Assume (x0, y0) is the center of a disk contained entirely in D and
Fy(x0, y0) ̸= 0. Then there is a number H > 0 and a function y = y(x) such that

[1] y(x0) = y0,

[2] y is continuous on |x− x0| < H,

[3] (x, y(x)) is in D for |x− x0| < H,

[4] F (x, y(x)) = 0 for |x− x0| < H.

Further, if another function y = Y (x) satisfies [1]–[4] on |x− x0| < H, then y(x) =
Y (x) for |x− x0| < H.

The proof of Theorem A.2 appears in various references, for example, see Taylor-
Mann [?] and Marsden-Tromba [?]. Results of this type are theoretical, that is,
devoid of a method for finding the function y(x).

Practical Numerical Methods

Item [4] in Theorem A.2 together with the chain rule d
dtF (x(t), y(t)) = Fxx

′(t)+
Fyy

′(t) implies that y(x) satisfies the initial value problem

y′ = −Fx(x, y)

Fy(x, y)
, y(x0) = y0.(1)

Problem (1) is the basis for practical numerical methods which are used in
applications to calculate and graph the implicit solution y(x) of the equation
F (x, y) = 0. See Example A.27, page 1042.

Computer Algebra Methods

Computer algebra systems maple and mathematica have facilities for solving an
equation F (x, y) = 0 for y in terms of x. Limited support exists for making
graphics directly from the implicit equation F (x, y) = 0. See Example A.28,
page 1042.

Work-alike systems such as matlab, octave and scilab can be applied to solve
implicit equations, although the work involved is always more tedious. One idea
of merit is to model the implicit equation F (x, y) = 0 as several initial value
problems, then apply differential equation numerical solution methods to graph
the solutions. See Example A.29, page 1043.
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Example A.27 (Modeling an Implicit Function Problem)
Model the implicit equation x2+4y4 = 4 at x = 0, y = 1 as an initial value problem
for a function y(x) defined near x = 0.

Solution: Let F (x, y) = x2+4y4. Then x2+4y4 = 4 can be written as F (x, y) = 4. We
verify F (0, 1) = 4. The chain rule (d/dt)F (x(t), y(t)) = Fxx

′(t)+Fyy
′(t) with x = t and

y = y(t) gives from F (x, y) = 4 the equation
dy

dt
= −Fx(t, y(t))/Fy(t, y(t)). Compute

Fx = 2x and Fy = 16y3. The initial value problem is

dy

dt
= − t

8y3
, y(0) = 1.

Example A.28 (Solving F(x,y) = 0 Symbolically)
Solve symbolically for y as a function of x in the implicit equation x2 + 4y4 = 4 at
x = 0, y = 1 both by hand and by computer.

Solution: College algebra methods apply to solve x2 + 4y4 = 4 for y in terms of x,
giving y(x) = 4

√
1− x2/4. The graph is defined on −2 ≤ x ≤ 2; see Figure 14. The

college algebra details:

4y4 = 4− x2 Start with x2 + 4y4 = 4 and isolate y on the left.

|y| = 4
√

1− x2/4 Divide by 4 and take the fourth root of both sides.

y = 4
√
1− x2/4 Replace |y| by ±y and resolve the sign with y = 1 at x = 0.

x

y

−2 0 2
Figure 14. Implicit solution y(x) of
x2 + 4y4 = 4 at x = 0, y = 1.

The computer algebra system maple partially solves the problem with the command

solve(x^2+4*y^4=4,y));

Reported are four answers:

1

2
4
√
−4x2 + 16,

1

2

√
−1

4
√
−4x2 + 16,

−1

2
4
√
−4x2 + 16, −1

2

√
−1

4
√
−4x2 + 16.

Only one satisfies y = 1 at x = 0, namely the first. It is typical in computer algebra
systems to spend time sorting out the system’s answer.

Remark on Algebraic Complexity. The more complicated implicit equation x2 +
4y4+xy = 4 does not have a useful or simple college algebra solution. To understand the
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complications, execute the following maple code, which displays several pages of answers
involving cube roots of sixth degree polynomials. None of the answers are useful, it being
easier to employ the ideas of Example A.27, page 1042.

allvalues([solve(x^2+4*y^4+x*y=4,y)]);

Example A.29 (Solving F (x, y) = 0 Numerically)
Solve numerically by computer for y as a function of x in the implicit equation
x2 + 4y4 = 4 at x = 0, y = 1. Plot y(x) on 0 ≤ x ≤ 2.

Solution: It was shown in Example A.27, page 1042, that the problem is equivalent to
the differential equation problem

dy

dx
= − x

8y3
, y(0) = 1.

The plot on 0 ≤ x ≤ 2 will look like the right half of Figure 14. The maple code:

with(DEtools):

de:=diff(y(x),x)=-x/(8*y(x)^3):

DEplot(de,y(x),x=0..2,[[y(0)=1]],arrows=NONE);

A more simplistic approach, which is also capable of direct computation of values of
y(x), is to use the maple function dsolve.

# Maple V 5.1

de:=diff(y(x),x)=-x/(8*y(x)^3):ic:=y(0)=1:

p:=dsolve({de,ic},y(x),numeric);

Y:=x->rhs(p(x)[2]);

plot(Y,0..2);
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Exercises A.5

Modeling an Implicit Function Prob-
lem
Apply the ideas in Example A.27, page
1042 to model the given implicit equation
as an initial value problem for a function
y(x) defined near x = 0.

1. x2 + xy4 + y = 1,
x = 0, y = 1.

2. x+ xy4 + y = 1,
x = 0, y = 1.

3. x+ y2 ln(x+ 1) + y = 2,
x = 0, y = 2.

4. ex + y2 ln(x+ 1) + y = 1,
x = 0, y = 2.

5. sinx+ y3 cosx+ y2 = 2,
x = 0, y = 1.

6. tanx+ y2 secx+ y3 = 2,
x = 0, y = 1.

7. ex + y2x2 + xy + 2y = 3,
x = 0, y = 1.

8. e−x +−y2x2 + xy + 2y = 3,
x = 0, y = 1.

Solve F(x,y) = 0 Symbolically
Solve symbolically for y as a function of x
in the given implicit equation both by hand
and by computer. Apply the methods of
Example A.28, page 1042.

9. x2 + 5y4 = 5,
x = 0, y = 1.

10. x2 + 5y2 = 5,
x = 0, y = 1.

11. x2 + y2 + 2y = 3,
x = 0, y = 1.

12. x2 + 4y2 − 2y = 2,
x = 0, y = 1.

13. sinx+ y4 = 1,
x = 0, y = 1.

14. sinx+ y4 + 2y2 = 3,
x = 0, y = 1.

15. − sinx+ cos y = 1,
x = 0, y = 0.

16. sinx+ cos y = 1,
x = 0, y = 0.

Solve F (x, y) = 0 Numerically
Solve numerically by computer for y as a
function of x in the given implicit equa-
tion. Plot y(x) on an interesting interval.
See Example A.29, page 1043 for methods.

17. x2 + x+ 4 + cos y = 5,
x = 0, y = 0.

18. x2 + x+ 6− cos(y) = 5,
x = 0, y = 0.

19. x2 + y3 + 2y = 3,
x = 0, y = 1.

20. x2 + 4y3 − 2y = 2,
x = 0, y = 1.

21. sinx+ y4 + y = 2,
x = 0, y = 1.

22. sinx+ y4 + 2y = 3,
x = 0, y = 1.

23. − sinx+ y + cos y = 1,
x = 0, y = 0.

24. sinx− y + cos y = 1,
x = 0, y = 0.

1044



PDF Sources

Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and
linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the textbook
are available in two volumes at Amazon Kindle Direct Publishing for Amazon’s
cost of printing and shipping. No author profit. Volume I chapters 1-7, ISBN
9798705491124, 661 pages. Volume II chapters 8-12, ISBN 9798711123651, 479
pages. Both paperbacks have extra pages of backmatter: background topics
Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with
hyperlink navigation to displayed equations and theorems. The header in an
exercise set has a blue hyperlink  to the same section in the solutions. The
header of the exercise section within a solution Appendix has a red hyperlink
to the textbook exercises. Solutions are organized by chapter, e.g., Appendix 5
for Chapter 5. Odd-numbered exercises have a solution. A few even-numbered
exercises have hints and answers. Computer code can be mouse-copied directly
from the PDF. Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded
to a tablet, computer or phone to be viewed locally. After download, no internet
is required. Best for computer or tablet using a PDF viewer (Adobe Reader,
Evince) or web browser with PDF support (Chrome, FireFox). Smart phones
can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or
request an answer, click the link below, then create a GitHub issue and post.
Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues
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