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Chapter 9

Eigenanalysis

Contents
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9.1 Matrix Eigenanalysis

Studied here is eigenanalysis for matrix equations. The topics are eigenanalysis,
eigenvalue, eigenvector, eigenpair and diagonalization.

What’s Eigenanalysis?

The term eigenanalysis refers to the identification and computation of a new
coordinate system and scale factors. There is one scale factor per coordinate
direction. The new coordinate system has axes with measurement units defined
by the scale factors. This coordinate system is employed to simplify the ex-
pression of the original mathematical model, be it a matrix model, a differential
equation model, or otherwise.

Matrix eigenanalysis is a tool for a matrix equation y⃗ = Ax⃗ .

Eigenanalysis was born from ideas in the 1822 work of J. B. Fourier on heat
conduction for an insulated rod, which resulted in a simple algebraic re-scaling
formula for the rod temperature: Fourier’s idea is explained on page 676. His
ideas apply to data analysis matrix equations y⃗ = Ax⃗ , systems of linear ordinary
differential equations and partial differential equations of mathematical physics.
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9.1 Matrix Eigenanalysis

Larry Page and Sergey Brin in 1996 created from eigenanalysis a search algorithm
which became Google search. Eigenanalysis is part of the mathematical toolset
for research areas like machine learning and data mining.

Simplification of Linear Algebraic Equations

Consider the matrix equation y⃗ = Ax⃗ , where symbol A is a square matrix of
constants and symbols x⃗ , y⃗ are column vectors. The matrix equation is equiv-
alent to simultaneous linear algebraic equations. For a 3 × 3 matrix A = (aij),
y⃗ = Ax⃗ is equivalent to linear algebraic equations

a11x1 + a12x2 + a13x3 = y1,
a21x1 + a22x2 + a23x3 = y2,
a31x1 + a32x2 + a33x3 = y3.

Table 1. Simplification of 3× 3 Linear Algebraic Equations

Matrix eigenanalysis is a tool for A⃗ x⃗ = b⃗ , a system of linear simul-
taneous algebraic equations. It invents a change of variable x⃗ → X⃗ ,
b⃗ → B⃗ that simplifies the system of equations.

A change of variables X⃗ = P x⃗ , B⃗ = P b⃗ with eigenanalysis vectors
v⃗ 1, v⃗ 2, v⃗ 3 for the columns of P simplifies a 3 × 3 system of linear
algebraic equations Ax⃗ = b⃗ into the diagonal form λ1X1 = B1,

λ2X2 = B2,
λ3X3 = B3.

(1)

Scalar values λ1, λ2, λ3 are scale factors (measurement units) corre-
sponding to the directions v⃗ 1, v⃗ 2, v⃗ 3. Precise definitions are on page
669.

Coordinate Change using Eigenanalysis

Technically, matrix eigenanalysis is an opportunistic change of coordinates,
which means the analysis must compute a set of independent column vectors
that span Rn. Linear algebra calls such a set of vectors a basis. Eigenanalysis
constructs from square matrix A a special basis. This special basis defines a
change of coordinates x⃗ → P x⃗ where P is the augmented matrix of constructed
basis vectors.

Consider vectors v⃗ 1, v⃗ 2, v⃗ 3 which form a basis for R3. To be a basis means that
each possible vector x⃗ in R3 can be uniquely expressed as a linear combination
x⃗ = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3. Geometrically, the triad v⃗ 1, v⃗ 2, v⃗ 3 must define a
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9.1 Matrix Eigenanalysis

parallelepiped of positive volume. For a triad basis v⃗ 1, v⃗ 2, v⃗ 3, each possible x⃗
in R3 can be constructed from the triad using solely the geometric parallelogram
law for vector addition.

The claimed simplifying change of coordinates1 is defined by:

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩ = augmented matrix,

X⃗ = P x⃗ , B⃗ = P b⃗ , a change of Ax⃗ = b⃗ into DX⃗ = B⃗ ,
D = diag(λ1, λ2, λ3) a diagonal matrix of scale factors

(2)

Details on page 675.

Eigenvalue, Eigenvector and Eigenpair Defined

Eigenanalysis for the matrix equation y⃗ = Ax⃗ when matrix A is 3 × 3 is
an algebraic method for discovering basis vectors v⃗ 1, v⃗ 2, v⃗ 3 and scale factors
λ1, λ2, λ3. The vectors are called eigenvectors and the scale factors are called
eigenvalues.

A scale factor λ is thought to be a measurement unit along an axis v⃗ , therefore
the eigenvectors and eigenvalues occur in pairs, called eigenpairs. Pairing is due
to fundamental equation (3) below, which is used in references to define and/or
compute an eigenpair.

Definition 9.1 (Eigenpair)
An Eigenpair (λ, v⃗ ) is defined to be a solution of the problem

Av⃗ = λv⃗ , v⃗ ̸= 0⃗ .(3)

Vector v⃗ is called an eigenvector. The value λ is called the eigenvalue correspond-
ing to the eigenvector v⃗ .

Important. Because v⃗ ̸= 0⃗ in equation (3), then an eigenvector is never the
zero vector: an eigenvector is a direction. Otherwise stated:

An eigenvector answer of zero signals an algebra error.

Motivation for the rather abstract definition of eigenpair appears below. Ex-
cuses aside, definition (3) must be learned and memorized, because of explicit use
in computations and implicit use in literature.

1The triad v⃗ 1, v⃗ 2, v⃗ 3 in principal coordinate analysis and metric scaling simplifies
the data set to find trends and important parameters.
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9.1 Matrix Eigenanalysis

Why the Equation Av⃗ = λv⃗ ?

The pattern is Av⃗ = λv⃗ . However, it is not the problem being solved. The
maddening historical event of algebraists stripping away the problem from the
definition impacts everyone trying to learn eigenanalysis.

The algebraists’ Definition 9.1 is a sub-problem. It is madness to try to learn
eigenanalysis from it. Learning from it parallels trying to learn about trees by
crawling on the ground through the forest examining tree trunks.

Assume matrix A is 3 × 3. The problem to be solved is computation of
independent vectors v⃗ 1, v⃗ 2, v⃗ 3 to find an opportunistic change of variables that
simplifies the linear algebraic system of equations Ax⃗ = b⃗ .

Algebraists were quick to discover that the problem is solved by finding a basis
v⃗ 1, v⃗ 2, v⃗ 3 of R3 satisfying the three equations (4) infra. They isolated Av⃗ =
λv⃗ as a sub-problem to be solved many times, in order to find the basis.

History of Eigenvector and Eigenvalue Terminology

James J. Sylvester in 1883 coined the term latent root for what has become the term
eigenvalue:

. . . the latent roots of a matrix – latent in a somewhat similar sense as vapour
may be said to be latent in water or smoke in a tobacco-leaf.

The German term eigenwert was coined by David Hilbert in 1904. By 1967, Paul Halmos
gave up the battle over which words to use in his new book A Hilbert Space Problem
Book. The battle: German eigen means proper, wert means value.

For many years I have battled for proper values and against the one and a
half times translated German-English hybrid (Halmos means eigenvalue) that
is often used to refer to them. I have now become convinced that the war is
over, and eigenvalues have won it; in this book I use them.

No longer used are the historical terms hidden value, proper value, characteristic value

and latent root. The term hidden arose because the vectors and scale factors are generally

impossible to determine from matrix A without computation. What has persisted in

literature is the characteristic equation, the equation which determines eigenvalues. See

Theorem 9.2.

Eigenpair Equations and AP = PD

Eigenpair equations for a square matrix A can be written by matrix multiply as
a single equation.

Theorem 9.1 (Eigenpairs and AP = PD)
Assume v⃗ 1, v⃗ 2, v⃗ 3 independent in R3. Let matrix A be 3× 3. Then relations

Av⃗ 1 = λ1v⃗ 1,
Av⃗ 2 = λ2v⃗ 2, (Eigenpair Equations)
Av⃗ 3 = λ3v⃗ 3.

(4)
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9.1 Matrix Eigenanalysis

hold if and only if AP = PD where P and D are defined by equations

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩, D =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
.(5)

The result holds for dimension n. Proof on page 693.

Computing Eigenpairs of a Matrix

To compute an eigenpair (λ, v⃗ ) of a square matrix A requires finding scalar λ
and a nonzero vector v⃗ satisfying the homogeneous matrix–vector equation

Av⃗ = λv⃗ .

Write it as Ax⃗ − λx⃗ = 0⃗ , then replace λx⃗ by λIx⃗ to obtain the standard
homogeneous linear algebraic system form2

(A− λI)v⃗ = 0⃗ , v⃗ ̸= 0⃗ .

Definition 9.2 (Characteristic Equation)
Determinant equation |A − λI| = 0 is called the characteristic equation. The
characteristic polynomial is the polynomial obtained by determinant evaluation on
the left, normally by cofactor expansion or the triangular rule.

Theorem 9.2 (Eigenvalues of A)
The eigenvalues of a square matrix A are exactly all the roots λ of the polynomial
equation

det(A− λI) = 0.

Proof on page 693

Theorem 9.3 (Find Eigenvectors of Matrix A)
For each root λ of the characteristic equation |A−λI| = 0, form matrix B = A−λI.

Write a toolkit sequence to rref(B). Solve the homogeneous equation Bv⃗ = 0⃗ for
v⃗ in terms of invented symbols t1, t2, . . . .

A basis of eigenvectors of A for eigenvalue λ is the list of vectors ∂t1 v⃗ , ∂t2 v⃗ , . . . .
They are Strang’s special solutions of Bv⃗ = 0⃗ , known to be independent.

These eigenvectors span the nullspace (kernel) of B: if Aw⃗ = λw⃗ , then w⃗ is a
linear combination of these basis vectors.

Proof on page 694.

2Identity I is required to factor out the matrix A − λI. It is wrong to factor out A − λ,
because A is 3× 3 and λ is 1× 1, incompatible sizes for matrix addition.
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9.1 Matrix Eigenanalysis

Characteristic Equation Illustration.

det

((
1 3
1 2

)
− λ

(
1 0
0 1

))
=

∣∣∣∣ 1− λ 3
1 2− λ

∣∣∣∣
= (1− λ)(2− λ)− 6
= λ2 − 3λ− 4
= (λ+ 1)(λ− 4).

The characteristic equation λ2 − 3λ − 4 = 0 has roots λ1 = −1, λ2 = 4. The
characteristic polynomial is λ2 − 3λ− 4.

Table 2. Shortcut for the Characteristic Polynomial

To find the characteristic polynomial |A − λI|, subtract symbol λ from the
diagonal of A and then evaluate the determinant.

Key Examples for Finding Eigenvectors

Assume given a 3× 3 matrix A. Found after at most 3 applications of Theorem
9.3 is a list of eigenpairs with independent eigenvectors.

There might not be 3 answers!

The amount of work on paper and pencil varies with the number of repeated
eigenvalues. Key examples:

1

(
1 0 1
0 2 4
0 0 3

)
, 2

(
1 0 1
0 1 4
0 0 1

)
, 3

(
1 0 1
0 1 4
0 0 2

)

1 Matrix A has eigenvalues 1, 2, 3. Apply Theorem 9.3 three times to write
three different matrices B. Each B has a toolkit sequence to rref(B), a
total of 3 toolkit sequences. Each sequence produces one eigenvector: there
are 3 answers.

2 Matrix A has eigenvalues 1, 1, 1. Apply Theorem 9.3 one time to write one
matrix B. There is just 1 toolkit sequence to rref(B). Because of 2 free
variables, there are 2 answers. In general, the number of free variables is
1, 2 or 3 with correspondingly 1,2 or 3 answers.

3 Matrix A has eigenvalues 1, 1, 2. Apply Theorem 9.3 two times to write
two matrices B. Each B has a toolkit sequence to rref(B), a total of 2
toolkit sequences. Eigenvalue 1 has a basis of 2 eigenvectors, caused by 2
free variables. Eigenvalue 2 has a basis of just one eigenvector, caused by
only 1 free variable.

In general, the number of answers for a repeated eigenvalue equals the number
of free variables for the toolkit sequence B to rref(B).
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9.1 Matrix Eigenanalysis

Independence of Eigenvectors

Theorem 9.4 (Independence of Eigenvectors)
If (λ1, v⃗ 1) and (λ2, v⃗ 2) are two eigenpairs of A and λ1 ̸= λ2, then v⃗ 1, v⃗ 2 are linearly
independent vectors.

More generally, if (λ1, v⃗ 1), . . . , (λk, v⃗ k) are eigenpairs of A corresponding to distinct
eigenvalues λ1, . . . , λk, then v⃗ 1, . . . , v⃗ k are independent.

Proof on page 694

Theorem 9.5 (Unions of Eigenvectors)
Let A be an n×n matrix A. Let variable λ denote an arbitrary eigenvalue of A. Let
λ1, . . . , λk be a list of distinct eigenvalues of A.

Let B(λ) be some basis for the eigenpair equation Av⃗ = λv⃗ . Then

(1) For λ ̸= µ, subspaces span(B(λ)) and span(B(µ)) intersect in
only the zero vector.

(2) The union U of bases B(λ1), . . . , B(λk) is a list of independent
vectors in Cn.3

(3) If all eigenvalues are real, then Cn can be replaced by Rn in results
(1), (2).

Proof on page 694

Complete Set of Eigenvectors

Definition 9.3 (Complete Set of Eigenvectors)
A list U = {v⃗ 1, . . . , v⃗ k} of independent eigenvectors of an n× n matrix A is called
complete provided k = n.

Lemma 9.1 (Invertible Change of Variables) Let U = {v⃗ 1, . . . , v⃗n} be a list of
independent eigenvectors of an n × n matrix A. Assume all eigenvalues are real.
Define augmented n× n matrix P = ⟨v⃗ 1| · · · |v⃗n⟩. Then:

The eigenvectors span Rn: span(U) = Rn.

Matrix P is invertible.

Proof: A list U of n independent vectors in Rn is a basis. Then U spans Rn. An n×n
matrix with independent columns is invertible. ■

3Symbol Cn is the vector space of n-vectors with complex entries.
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9.1 Matrix Eigenanalysis

Theorem 9.6 (Finding Independent Eigenvectors)
Let n× n matrix A be given. Solve the characteristic equation |A− λI| = 0 for all

eigenvalues λ. For each λ, let B = A − λI and solve Bv⃗ = 0⃗ for general solution
v⃗ , which contains invented symbols t1, t2, . . .. Let B(λ) be the list of vector partial
derivatives ∂t1 v⃗ , ∂t2 v⃗ , . . .. Then the union U of all lists B(λ) is a set of independent
eigenvectors. Examples exist where U is not a basis for Rn.

Proof on page 696.

Eigenanalysis Facts

1. An eigenvalue λ of a triangular matrix A is one of the diagonal entries.
If A is non-triangular, then an eigenvalue is found as a root λ of the char-
acteristic equation |A− λI| = 0.

2. An eigenvalue of a square matrix A can be zero, positive, negative or even
complex. It is a pure number, with a physical meaning inherited from the
model, e.g., a scale factor or measurement unit.

3. An eigenvector for eigenvalue λ (a scale factor) is a nonzero direction v⃗
of application satisfying Av⃗ = λv⃗ . It is found from a toolkit sequence
starting at B = A − λI and ending at rref(B). Independent eigenvectors
are computed from the general solution of Bv⃗ = 0⃗ as partial derivatives
∂v⃗ /∂t1, ∂v⃗/∂t2, . . . .

4. If a 3× 3 matrix has three independent real eigenvectors, then they collec-
tively form a basis of R3 (a coordinate system).

Diagonalization and Eigenpair Packages

Definition 9.4 (Diagonalizable Matrix)
An n× n matrix A which has n independent eigenvectors is called diagonalizable.
The eigenvalues are not required to be distinct.

Given a diagonalizable 3 × 3 system y⃗ = Ax⃗ , the augmented matrix P =

⟨v⃗ 1|v⃗ 2|v⃗ 3⟩ of eigenvectors and diagonal matrix D =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
provide a vari-

able change X⃗ = P x⃗ , Y⃗ = P y⃗ to transform system y⃗ = Ax⃗ into the simplified
diagonal system Y⃗ = DX⃗ .

Theorem 9.7 (Diagonalization and Diagonal Matrices)

A 3× 3 diagonal matrix A =

(
a 0 0
0 b 0
0 0 c

)
has eigenvalues on the diagonal. The eigen-
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9.1 Matrix Eigenanalysis

vectors are the columns of the 3× 3 identity matrix:

λ1 = a, λ2 = b, λ3 = c,

v⃗ 1 =

1
0
0

 , v⃗ 2 =

0
1
0

 , v⃗ 3 =

0
0
1

 .

The theorem extends to n×n matrices. Every n×n diagonal matrix is diagonalizable.

Definition 9.5 (Eigenpair Packages)
Let A be a diagonalizable 3× 3 matrix with eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2), (λ3, v⃗ 3).
Define eigenpair packages by:4

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩, D =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
.(6)

Package definitions for an n× n matrix:

P = ⟨v⃗ 1|v⃗ 2| · · · |v⃗n⟩, D =


λ1 0 · · · 0
0 λ2 · · · 0

...
0 0 · · · λn


If all eigenvalues are real then both P and D are real. Otherwise, matrices P and D
will have complex entries.

Theorem 9.8 (Diagonalization)
Let A be a diagonalizable n× n matrix with eigenpair packages P , D.

1. The matrix A is completely determined by its eigenpairs:

A = PDP−1.

2. The change of variables X⃗ = P x⃗ , Y⃗ = P y⃗ transforms the equation
y⃗ = Ax⃗ into the diagonal system Y⃗ = DX⃗ .

3. The equation A(c1v⃗ 1 + · · ·+ cnv⃗ n) = c1λ1v⃗ 1 + · · ·+ cnλnv⃗ n holds for
any constants c1, . . . , cn with matrix form

AP c⃗ = PDc⃗ , c⃗ =

c1
...
cn

 .(7)

See Fourier Replacement page 676.

4Eigenpair packages are not unique. For 3 × 3, there are six (6) permutations of the pairs,
leading to six different packages. In addition, eigenvectors are not unique, leading to infinitely
many possible eigenpair packages.

675



9.1 Matrix Eigenanalysis

Proof on page 696.

Theorem 9.9 (Distinct Eigenvalues implies Diagonalizable)
If an n × n matrix A has n distinct eigenvalues, real or complex, then it has n
eigenpairs (λi, v⃗ i), i = 1, . . . , n. The eigenpair packages

P = ⟨v⃗ 1| · · · |v⃗n⟩, D =

λ1 · · · 0
...

...
...

0 · · · λn


satisfy AP = PD and matrix A is diagonalizable.

Proof on page 697.

Fourier Replacement

The subject of eigenanalysis was popularized by J. B. Fourier in his 1822 pub-
lication on the theory of heat, Théorie analytique de la chaleur. Fourier’s ideas
can be summarized for the n× n matrix equation y⃗ = Ax⃗ :

Vector Ax⃗ is obtained from x⃗ and a complete set of eigenpairs (λ1, v⃗ 1),
(λ2, v⃗ 2), . . . , (λn, v⃗ n) by replacing the eigenvectors by their scaled versions
λ1v⃗ 1, . . . , λnv⃗ n:

x⃗ = c1v⃗ 1 + c2v⃗ 2 + · · · + cnv⃗ n implies
Ax⃗ = c1λ1v⃗ 1 + c2λ2v⃗ 2 + · · · + cnλnv⃗ n.

(8)

See Example 9.10 page 690 for details about the heat problem.

For the case of R3, basis vectors v⃗ 1, v⃗ 2, v⃗ 3 are re-scaled by invented scale fac-
tors λ1, λ2, λ3, which we imagine as measurement units along the three directions
v⃗ 1, v⃗ 2, v⃗ 3. Fourier’s 1822 idea: vector x⃗ is replaced by a new vector y⃗ = Ax⃗ ,
according to the rule

x⃗ = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3 implies
y⃗ = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3.

(9)

Table 3. Fourier’s 1822 Re-Scaling Idea

Replace v⃗ 1, v⃗ 2, v⃗ 3 by re-scaled vectors λ1v⃗ 1, λ2v⃗ 2, λ3v⃗ 3.

Criticism: Table 3 makes no mention of a matrix A. Fourier’s re-scaling idea
does not need a matrix A, but it resurfaces:
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9.1 Matrix Eigenanalysis

Theorem 9.10 (Matrix Form of Fourier Replacement)
Let vectors v⃗ 1, v⃗ 2, v⃗ 3 be independent. Let λ1, λ2, λ3 be scalars. Define

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩, D =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
, c⃗ =

c1
c2
c3


Fourier replacement is defined by

x⃗ = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3 implies
y⃗ = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3

for all scalars c1, c2, c3

The statement has vector-matrix forms

x⃗ = P c⃗ implies y⃗ = PDc⃗
y⃗ = Ax⃗ where A = PDP−1

A (c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3) = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3

The theorem extends to n× n. Proof on page 697.

Theorem 9.11 (Fourier Re-scaling and Diagonalization)
Let vectors v⃗ 1, v⃗ 2, v⃗ 3 be independent. Let λ1, λ2, λ3 be scalars. Define P =

⟨v⃗ 1|v⃗ 2|v⃗ 3⟩, D =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
.

(a) Matrix A = PDP−1 has 3 eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2), (λ3, v⃗ 3) and A is
diagonalizable.

(b) If a diagonalizable 3× 3 matrix has eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2), (λ3, v⃗ 3) with
independent eigenvectors, then Fourier replacement (8) holds.

(c) Fourier replacement for matrix equation y⃗ = Ax⃗ defined in (8) is equivalent to
diagonalizability of matrix A.

Proof on page 697.

Re-scaling Example: Data Conversion

Let x⃗ in R3 be a data set variable with coordinates x1, x2, x3 recorded respec-
tively in units of meters, millimeters and centimeters. Imagine the data being
recorded every few milliseconds from three different sensors.

The x⃗ -data set is converted into a y⃗ -data set with meter, kilogram, second units
(MKS units) via the equations

y1 = x1,
y2 = 0.001x2,
y3 = 0.01x3.

(10)
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9.1 Matrix Eigenanalysis

Equations (10) are an instance of Fourier’s re-scaling process, Table 3. The paired
scale factors and vectors are

λ1 = 1, λ2 = 0.001, λ3 = 0.01,

v⃗ 1 =

1
0
0

 , v⃗ 2 =

0
1
0

 , v⃗ 3 =

0
0
1

 .

Then equations (10) can be written as the replacement process

x⃗ = x1

1
0
0

+ x2

0
1
0

+ x3

0
0
1

 implies

y⃗ = x1λ1

1
0
0

+ x2λ2

0
1
0

+ x3λ3

0
0
1

 .

(11)

Vectors v⃗ 1, v⃗ 2, v⃗ 3 are the data directions (or axes) re-scaled by the measurement
units λ1, λ2, λ3, respectively. In particular, data direction v⃗ 2 is for millimeters
and scale factor λ2 = 0.001 is the measurement unit along axis v⃗ 2. Theorem 9.10

applied to (11) gives y⃗ = Ax⃗ where A =

(
1 0 0
0 1

1000 0
0 0 1

100

)
, agreeing with conversion

of (10) to matrix form.

Fourier Replacement: Matrix Example

Let

A =

 1 3 0
0 2 −1
0 0 −5


λ1 = 1, λ2 = 2, λ3 = -5,

v⃗ 1 =

 1
0
0

 , v⃗ 2 =

 3
1
0

 , v⃗ 3 =

 1
−2
−14

 .

(12)

Then Fourier’s model (9) holds, details in Example 9.3:

x⃗ = c1

1
0
0

 + c2

3
1
0

 + c3

 1
−2

−14


implies

Ax⃗ = c1(1)

1
0
0

 + c2(2)

3
1
0

 + c3(-5)

 1
−2

−14


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Eigenanalysis and Geometry

In case the matrix A is 2× 2 or 3× 3, geometry can provide additional intuition
about eigenanalysis.

Fourier’s 2× 2 replacement A(c1v⃗1 + c2v⃗2) = c1λ1v⃗1 + c2λ2v⃗2 can be interpreted
as the action of the transformation T : x⃗ → Ax⃗ between two copies of the plane
R2; see Figure 1.

Original Coordinates Re−scaled Coordinates

Ax⃗

c1λ1v⃗ 1

c2λ2v⃗ 2
x⃗

c1v⃗ 1

c2v⃗ 2

Figure 1. Transformation T : R2 → R2.
Vector x⃗ is obtained geometrically from v⃗ 1, v⃗ 2 by changing their lengths by
c1, c2, then add with the parallelogram rule. Vector Ax⃗ is obtained from the
two changed vectors by re-scaling by λ1, λ2, then apply the parallelogram rule.

Algebraically, A is replaced by the scale factors λ1, λ2 and the coordinate system
v⃗1, v⃗2. The eigenvalues are the scale factors λ1, λ2. Vectors v⃗ 1, v⃗ 2 used in the
parallelogram rule are the eigenvectors.

Shear is not Equivalent to Scaling along Axes

The important geometrical operations are scaling, shears, rotations, projections,
reflections and translations. Fourier replacement describes scaling along coordi-
nate axes.

A planar horizontal shear (x1, x2) → (y1, y2) is a set of equations

y1 = x1 + kx2, (k = shear factor ̸= 0),
y2 = x2.

The eigenvalues of A =

(
1 k
0 1

)
are λ1 = λ2 = 1. Assume it is possible to view

this shear as a re-scaling. Then it must be feasible to change coordinates to new
independent axes v⃗ 1, v⃗ 2 and express the shear as

A = PDP−1, D =

(
λ1 0
0 λ2

)
=

(
1 0
0 1

)
, P = ⟨v⃗ 1|v⃗ 2⟩.

Then

(
1 k
0 1

)
= A = PDP−1 = P

(
1 0
0 1

)
P−1 =

(
1 0
0 1

)
, a contradiction to the

shear factor requirement k ̸= 0.

Conclusion: A shear is not equivalent to scaling along axes. Fourier replacement
fails.
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Examples and Methods

Example 9.1 (Computing 2× 2 Eigenpairs)

Find all eigenpairs of the 2× 2 matrix A =

(
1 0
2 −1

)
.

Solution:
The method used to solve for eigenpairs in given in Theorem 9.3 page 671.

College Algebra. The eigenvalues are λ1 = 1, λ2 = −1. Details:

0 = det(A− λI) Characteristic equation.

=

∣∣∣∣ 1− λ 0
2 −1− λ

∣∣∣∣ Subtract λ from the diag-
onal.

= (1− λ)(−1− λ) Sarrus’ rule.

Linear Algebra. The eigenpairs are

(
1,

(
1
1

))
,

(
−1,

(
0
1

))
. Details:

Eigenvector for λ1 = 1.

A− λ1I =

(
1− λ1 0

2 −1− λ1

)
=

(
0 0
2 −2

)
≈
(

1 −1
0 0

)
Swap and multiply rules.

= rref(A− λ1I) Reduced echelon form.

The vector partial derivative ∂t1 v⃗ of the scalar general solution x = t1, y = t1 is

eigenvector v⃗ 1 =

(
1
1

)
.

Eigenvector for λ2 = −1.

A− λ2I =

(
1− λ2 0

2 −1− λ2

)
=

(
2 0
2 0

)
≈
(

1 0
0 0

)
Combination and multiply.

= rref(A− λ2I) Reduced echelon form.

The vector partial derivative ∂t1 v⃗ of the scalar general solution x = 0, y = t1 is eigen-

vector v⃗ 2 =

(
0
1

)
.

Example 9.2 (Computing 2× 2 Complex Eigenpairs)

Find all eigenpairs of the 2× 2 matrix A =

(
1 2

−2 1

)
.
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Solution:
Reference: Theorem 9.3 page 671.

College Algebra. The eigenvalues are λ1 = 1 + 2i, λ2 = 1− 2i. Details:

0 = det(A− λI) Characteristic equation.

=

∣∣∣∣ 1− λ 2
−2 1− λ

∣∣∣∣ Subtract λ from the diagonal.

= (1− λ)2 + 4 Sarrus’ rule.

The roots λ = 1±2i are found from the quadratic formula after expanding (1−λ)2+4 = 0.
Alternatively, use (1− λ)2 = −4 and take square roots.

Linear Algebra. The eigenpairs are

(
1 + 2i,

(
−i
1

))
,

(
1− 2i,

(
i
1

))
.

Eigenvector for λ1 = 1 + 2i.

A− λ1I =

(
1− λ1 2
−2 1− λ1

)
=

(
−2i 2
−2 −2i

)
≈
(

i −1
1 i

)
Multiply rule.

≈
(

0 0
1 i

)
Combination rule, multiplier=−i.

≈
(

1 i
0 0

)
Swap rule.

= rref(A− λ1I) Reduced echelon form.

The partial derivative ∂t1 v⃗ of the general solution x = −it1, y = t1 is eigenvector

v⃗ 1 =

(
−i
1

)
.

Eigenvector for λ2 = 1− 2i.

The answer is eigenvector v⃗ =

(
i
1

)
. See Lemma 9.2 page 685 for the expected

shortcut, which obtains the answer from the eigenvector for λ1 = 1 + 2i. The shortcut
creates no matrix B = A− λI and no toolkit sequence B to rref(B).

The shortcut eliminates the following steps:

A− λ2I =

(
1− λ2 2
−2 1− λ2

)
=

(
2i 2
−2 2i

)
≈
(

i 1
1 −i

)
Multiply rule.

≈
(

0 0
1 −i

)
Combination rule, multiplier=−i.

≈
(

1 −i
0 0

)
Swap rule.

= rref(A− λ2I) Reduced echelon form.
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The partial derivative ∂t1 v⃗ of the general solution x = it1, y = t1 is eigenvector v⃗ 2 =(
i
1

)
.

Example 9.3 (Computing 3× 3 Eigenpairs: Real Eigenvalues)

Find all eigenpairs of the 3× 3 matrix

A =

 1 3 0
0 2 −1
0 0 −5

 .(13)

Solution:
Reference: Theorem 9.3 page 671.

The answers are

λ1 = 1, λ2 = 2, λ3 = −5,

v⃗ 1 =

 1
0
0

 , v⃗ 2 =

 3
1
0

 , v⃗ 3 =

 1
−2
−14

 .

College Algebra. The eigenvalues are λ1 = 1, λ2 = 2, λ3 = −5, because matrix A is
triangular and the eigenvalues of a triangular matrix appear on the diagonal.

Linear Algebra. There are three toolkit sequences B to rref(B) to compute, one for
each distinct eigenvalue λ where B = A− λI.

Eigenvector for λ1 = 1.

Subtract λ1 = 1 from the diagonal of A to obtain the equation Bv⃗ = 0⃗ , where

B = A− λ1I =

(
0 3 0
0 1 −1
0 0 −6

)
.

A toolkit sequence with swap, combo, multiply will find

rref(B) =

(
0 1 0
0 0 1
0 0 0

)
.

The lead variables are v2, v3 and the free variable is v1. Assign invented symbol t1 to
the free variable and back-substitute into Bv⃗ = 0⃗ to obtain the scalar equations

v1 = t1,
v2 = 0,
v3 = 0.

Take the partial derivative on invented symbol t1 across these equations to obtain the
eigenvector

v⃗ 1 =


∂v1
∂t1
∂v2
∂t1
∂v3
∂t1

 =

 1
0
0

 .
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Eigenvector for λ2 = 2.

Subtract λ2 = 2 from the diagonal of A to obtain the equation Bv⃗ = 0⃗ , where

B = A− λ2I =

(
−1 3 0
0 0 −1
0 0 −7

)
.

A toolkit sequence finds

rref(B) =

(
1 −3 0
0 0 1
0 0 0

)
.

The lead variables are v1, v3 and the free variable is v2. Assign invented symbol t1 to
the free variable and back-substitute into Bv⃗ = 0⃗ to obtain the scalar equations

v1 = 3t1,
v2 = t1,
v3 = 0.

Take the partial derivative on invented symbol t1 across these equations to obtain the
eigenvector

v⃗ 2 =


∂v1
∂t1
∂v2
∂t1
∂v3
∂t1

 =

 3
1
0

 .

The eigenpair is (λ2, v⃗ 2) =

2,

3
1
0


Eigenvector for λ3 = −5.

Subtract λ3 = −5 from the diagonal of A to obtain the equation Bv⃗ = 0⃗ , where

B = A− λ2I =

 6 3 0
0 7 −1
0 0 0

 .

A toolkit sequence finds

rref(B) =

 1 0 1/14
0 1 −1/7
0 0 0

 .

The lead variables are v1, v2 and the free variable is v3. Assign invented symbol t1 to
the free variable and back-substitute into Bv⃗ = 0⃗ to obtain the scalar equations

v1 = − 1
14 t1,

v2 = 1
7 t1,

v3 = 0.

Take the partial derivative on invented symbol t1 across these equations to obtain the
eigenvector

v⃗ 3 =


∂v1

∂t1
∂v2

∂t1
∂v3

∂t1

 =

 − 1
14

1
7

1

 .
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It is usual when encountering fractions in an eigenvector to replace the answer v⃗ by
cv⃗ where c ̸= 0 is chosen to make the answer fraction-free and the first nonzero entry
positive. In this case, c = −14 is used, and we replace v⃗ 3 by −14v⃗ 3. The eigenpair is

(λ3, v⃗ 3) =

−5,

 1
−2
−14

.

This completes the computation of all three eigenpairs.

Answer Check. The eigenpair equations are equivalent to the matrix identity AP =
PD where P is the matrix of eigenvectors and D is the diagonal matrix of corresponding
eigenvalues:

P =

(
1 3 1
0 1 −2
0 0 −14

)
, D =

(
1 0 0
0 2 0
0 0 −5

)
.

Eigenpairs are checked by expanding AP and PD, then compare for equality. The two
calculations give

AP =

(
1 6 −5
0 2 10
0 0 70

)
= PD.

Fourier Replacement page 676 is explicitly

x⃗ = c1

1
0
0

 + c2

3
1
0

 + c3

 1
−2
−14


implies

Ax⃗ = c1(1)

1
0
0

 + c2(2)

3
1
0

 + c3(−5)

 1
−2
−14



Example 9.4 (Computing 3× 3 Eigenpairs: Complex Eigenvalues)

Find all eigenpairs of the 3× 3 matrix A =

 1 2 0
−2 1 0
0 0 3

.

Solution:
Reference: Theorem 9.3 page 671.

College Algebra. The eigenvalues are λ1 = 1 + 2i, λ2 = 1− 2i, λ3 = 3. Details:

0 = det(A− λI) Characteristic equation.

=

∣∣∣∣∣∣
1− λ 2 0
−2 1− λ 0
0 0 3− λ

∣∣∣∣∣∣ Subtract λ from the diagonal.

= ((1− λ)2 + 4)(3− λ) Cofactor rule and Sarrus’ rule.

Root λ = 3 is found from the factored form above. The roots λ = 1± 2i are found from
the quadratic formula after expanding (1− λ)2 + 4 = 0. Alternatively, take roots across
(λ− 1)2 = −4.

Linear Algebra.
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The eigenpairs are

1 + 2i,

 −i
1
0

,

1− 2i,

 i
1
0

,

3,

 0
0
1

.

Eigenvector for λ1 = 1 + 2i.

A− λ1I =

 1− λ1 2 0
−2 1− λ1 0
0 0 3− λ1


=

 −2i 2 0
−2 −2i 0
0 0 2− 2i

 Subtract λ1 = 1+2i from the diagonal.

≈

 i −1 0
1 i 0
0 0 1

 Multiply rule.

≈

 0 0 0
1 i 0
0 0 1

 Combination rule, factor=−i.

≈

 1 i 0
0 0 1
0 0 0

 Swap rule.

= rref(A− λ1I) Reduced echelon form.

The vector partial derivative ∂t1 v⃗ of the scalar general solution x = −it1, y = t1, z = 0

is eigenvector v⃗ 1 =

 −i
1
0

.

Eigenvector for λ2 = 1− 2i.

There is no need for a toolkit sequence to find the eigenvector for a conjugate eigenvalue:

see Lemma 9.2 infra. Answer: (1− 2i, v⃗ 2), v⃗ 2 =

i
1
0

.

Details. To see why, take conjugates5 across the equation (A − λ2I)v⃗ 2 = 0⃗ to give
(A − λ2I)v⃗ 2 = 0⃗ . Then A = A (A is real) and λ1 = λ2 gives (A − λ1I)v⃗ 2 = 0⃗ . Then

v⃗ 2 = v⃗ 1. Finally, v⃗ 2 = v⃗ 2 = v⃗ 1 =

 i
1
0

. These details prove:

Lemma 9.2 If (a + ib, v⃗ ) is an eigenpair of A, then formally replacing i by −i in this
eigenpair finds a second eigenpair for the conjugate eigenvalue.

Eigenvector for λ3 = 3.

A− λ3I =

 1− λ3 2 0
−2 1− λ3 0
0 0 3− λ3


5The complex conjugate is defined by a+ ib = a − ib (replace i by −i). Two useful rules

are z1 + z2 = z1 + z2 and z1z2 = z1 z2. Conjugation rules extend to vectors and matrices by
applying scalar rules componentwise, e.g., u⃗ + v⃗ = u⃗ + v⃗ and Ax⃗ = A x⃗ .
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=

 −2 2 0
−2 −2 0
0 0 0


≈

 1 −1 0
1 1 0
0 0 0

 Multiply rule.

≈

 1 0 0
0 1 0
0 0 0

 Combination and multiply.

= rref(A− λ3I) Reduced echelon form.

The partial derivative ∂t1 v⃗ of the general solution x = 0, y = 0, z = t1 is eigenvector

v⃗ 3 =

 0
0
1

.

Example 9.5 (Data Conversion)
The data conversion problem 

y1 = x1,
y2 = 0.001x2,
y3 = 0.01x3.

is diagonalizable. The three eigenpairs of A are defined by

λ1 = 1, λ2 = 0.001, λ3 = 0.01,

v⃗ 1 =

1
0
0

 , v⃗ 2 =

0
1
0

 , v⃗ 3 =

0
0
1

 .

Solution: References: Theorem 9.3 page 671 and Theorem 9.7 page 674.

The example was introduced in equation (10) page 677. The equations can be written

as y⃗ = Ax⃗ , where A =

(
1 0 0
0 0.001 0
0 0 0.01

)
is already a diagonal matrix, eigenpairs given by

Theorem 9.7 page 674.

Answers can be verified directly from the eigenpair equation Av⃗ = λv⃗ without using

theorems. For instance, when v⃗ =

0
1
0

 and λ = 0.001, then the two sides Av⃗ and λv⃗

are computed from matrix multiply, each giving the same answer

 0
0.001
0

, therefore

Av⃗ = λv⃗ is valid and (λ, v⃗ ) is an eigenpair of A.

Example 9.6 (Decomposition A = PDP−1)

Decompose A = PDP−1 where P , D are eigenvector and eigenvalue packages,
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respectively, for the 3× 3 matrix

A =

 1 2 0
−2 1 0
0 0 3

 .

Illustrate Fourier replacement for this matrix.

Solution: By the preceding example, the eigenpairs are1 + 2i,

 −i
1
0

 ,

1− 2i,

 i
1
0

 ,

3,

 0
0
1

 .

The packages are therefore

D = diag(1 + 2i, 1− 2i, 3), P =

 −i i 0
1 1 0
0 0 1

 .

Fourier replacement. The model:

A (c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3) = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3

It means Ax⃗ changes x⃗ by replacing the basis v⃗ 1, v⃗ 2, v⃗ 3 by scaled vectors λ1v⃗ 1, λ2v⃗ 2,
λ3v⃗ 3. Explicitly,

x⃗ = c1

 −i
1
0

+ c2

 i
1
0

+ c3

 0
0
1

 implies

Ax⃗ = c1(1 + 2i)

 −i
1
0

+ c2(1− 2i)

 i
1
0

+ c3(3)

 0
0
1

 .

Example 9.7 (Diagonalization I)

Report diagonalizable or non-diagonalizable for the 4× 4 matrix

A =


1 2 0 0

−2 1 0 0
0 0 3 1
0 0 0 3

 .

If A is diagonalizable, then report eigenvector and eigenvalue packages P , D.

Solution: Reference: page 674 for definitions and theorems.

The matrix A is non-diagonalizable, because it fails to have 4 eigenpairs. The details:

Eigenvalues.

0 = det(A− λI) Characteristic equation.
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=

∣∣∣∣∣∣∣∣
1− λ 2 0 0
−2 1− λ 0 0
0 0 3− λ 1
0 0 0 3− λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣ 1− λ 2
−2 1− λ

∣∣∣∣ (3− λ)2 Cofactor expansion applied twice.

=
(
(1− λ)2 + 4

)
(3− λ)2 Sarrus’ rule.

The roots are 1± 2i, 3, 3, listed according to multiplicity.

Eigenpairs. They are1 + 2i,


−i
1
0
0


 ,

1− 2i,


i
1
0
0


 ,

3,


0
0
1
0


 .

Matrix A is non-diagonalizable, because only three eigenpairs exist, instead of four.
Details:

Eigenvector for λ1 = 1 + 2i.

A− λ1I =


1− λ1 2 0 0
−2 1− λ1 0 0
0 0 3− λ1 1
0 0 0 3− λ1



=


−2i 2 0 0
−2 −2i 0 0
0 0 2− 2i 1
0 0 0 2− 2i



≈


−i 1 0 0
−1 −i 0 0
0 0 2− 2i 1
0 0 0 1

 Multiply rule, three times.

≈


−i 1 0 0
−1 −i 0 0
0 0 1 0
0 0 0 1

 Combination and multiply rule.

≈


1 i 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 Combination and multiply rule.

= rref(A− λ1I) Reduced echelon form.

The general solution is x1 = −it1, x2 = t1, x3 = 0, x4 = 0. Then ∂t1 applied to this
solution gives the reported eigenpair for λ = 1 + 2i.

Eigenvector for λ2 = 1− 2i.
Because λ2 is the conjugate of λ1 and A is real, then an eigenpair for λ2 is found from
the eigenpair for λ1 by replacing i by −i throughout. See Lemma 9.2 page 685.

Eigenvector for λ3 = 3. In theory, there can be one or two eigenpairs to report. It
turns out there is only one, because of the following details. This single toolkit sequence
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establishes that A is non-diagonalizable. The other toolkit sequences could have been
skipped, if only diagonalizability was the issue and we were clever enough to examine
this case first.

A− λ3I =


1− λ3 2 0 0
−2 1− λ3 0 0
0 0 3− λ3 1
0 0 0 3− λ3



=


−2 2 0 0
−2 −2 0 0
0 0 0 1
0 0 0 0



≈


1 −1 0 0
1 1 0 0
0 0 0 1
0 0 0 0

 Multiply rule, two times.

≈


1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

 Combination and multiply rule.

= rref(A− λ3I) Reduced echelon form.

Apply ∂t1 to the general solution x1 = 0, x2 = 0, x3 = t1, x4 = 0 to give the eigenvector
matching the eigenpair reported above for λ = 3.

Example 9.8 (Diagonalization II)

Report diagonalizable or non-diagonalizable for the 4× 4 matrix

A =


1 2 0 0

−2 1 0 0
0 0 3 0
0 0 0 3

 .

If A is diagonalizable, then assemble and report eigenvalue and eigenvector packages
D, P .

Solution: Reference: page 674 for definitions and theorems.

The matrix A is diagonalizable, because it has 4 eigenpairs1 + 2i,


−i
1
0
0


 ,

1− 2i,


i
1
0
0


 ,

3,


0
0
1
0


 ,

3,


0
0
0
1


 .

Then the eigenpair packages are given by

D =


−1 + 2i 0 0 0

0 1− 2i 0 0
0 0 3 0
0 0 0 3

 , P =


−i i 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 .
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The details parallel the previous example, except for the calculation of eigenvectors
for λ3 = 3. In this case, the reduced echelon form of A − λ3I has two rows of zeros
and parameters t1, t2 appear in the general solution. The answers given above for
eigenvectors correspond to the partial derivatives ∂t1 , ∂t2 applied to the general solution
of (A− 3I)x⃗ = 0⃗ .

Example 9.9 (Non-diagonalizable Matrices)

Verify that the matrices

(
0 1
0 0

)
,

 0 0 1
0 0 0
0 0 0

 ,


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


are all non-diagonalizable.

Solution: References: page 674 for definitions and theorems; Theorem 9.1 page 670 for
AP = PD and eigenpair equations.

Let A denote any one of these matrices and let n be its dimension.

Without computing eigenpairs, diagonalization will be decided. Assume, in order to
reach a contradiction, that eigenpair packages D, P exist with D diagonal and P invert-
ible such that AP = PD. Because A is triangular, its eigenvalues appear already on
the diagonal of A. Only 0 is an eigenvalue and its multiplicity is n. Then the package
D of eigenvalues is the zero matrix and an equation AP = PD reduces to AP = 0.
Multiply AP = 0 on the right by P−1 to obtain A = 0. But A is not the zero matrix, a
contradiction. Conclusion: A is not diagonalizable.

Secondly, attack the diagonalization question directly, by solving for the eigenvectors
corresponding to λ = 0. The toolkit sequence starts with B = A − λI, but B equals
rref(B) and no computations are required. The resulting reduced echelon system is just
x1 = 0, giving n − 1 free variables. Therefore, the eigenvectors of A corresponding to
λ = 0 are the last n − 1 columns of the identity matrix I. Because A does not have n
independent eigenvectors, then A is not diagonalizable.

Similar examples of non-diagonalizable matrices A can be constructed with A having
from 1 up to n − 1 independent eigenvectors. The examples with ones on the super-
diagonal and zeros elsewhere have exactly one eigenvector.

Example 9.10 (Fourier’s 1822 Heat Model)

Fourier’s 1822 treatise Théorie analytique de la chaleur studied dissipation of heat
from a laterally insulated welding rod with ends held at 0◦C (ice-packed ends). As-
sume the initial heat distribution along the rod at time t = 0 is given as a linear
combination

f = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3.

Symbols v⃗ 1, v⃗ 2, v⃗ 3 are in the vector space V of all twice continuously differentiable
functions on 0 ≤ x ≤ 1, given explicitly as

v⃗ 1 = sinπx, v⃗ 2 = sin 2πx, v⃗ 3 = sin 3πx.
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Fourier’s heat model re-scales6 each of these vectors to obtain the temperature
u(t, x) at position x along the rod and time t > 0 as the model equation

u(t, x) = c1e
−π2tv⃗ 1 + c2e

−4π2tv⃗ 2 + c3e
−9π2tv⃗ 3.

Verify that u(t, x) solves Fourier’s partial differential equation heat model

∂u

∂t
=

∂2u

∂x2
,

u(0, x) = f(x), 0 ≤ x ≤ 1, initial temperature,
u(t, 0) = 0, zero Celsius at rod’s left end,
u(t, 1) = 0, zero Celsius at rod’s right end.

Solution: First, let’s prove that the partial differential equation is satisfied by Fourier’s
solution u(t, x). This is done by expanding the left side (LHS) and right side (RHS) of
the differential equation separately, then comparing the two answers for equality.

Trigonometric functions v⃗ 1, v⃗ 2, v⃗ 3 are solutions of three different linear ordinary dif-
ferential equations: u′′ + π2u = 0, u′′ + 4π2u = 0, u′′ + 9π2u = 0. Because of these
differential equations, calculus derivatives can be computed:

∂2u

∂x2
= −π2c1e

−π2tv⃗ 1 − 4π2c2e
−4π2tv⃗ 2 − 9π2c3e

−9π2tv⃗ 3.

Similarly, computing ∂tu(t, x) involves just the differentiation of exponential functions,
giving

∂u

∂t
= −π2c1e

−π2tv⃗ 1 − 4π2c2e
−4π2tv⃗ 2 − 9π2c3e

−9π2tv⃗ 3.

Because the second display is exactly the first, then LHS = RHS, proving that the partial
differential equation is satisfied.

The relation u(0, x) = f(x) holds because each exponential factor becomes e0 = 1 when
t = 0.

The two relations u(t, 0) = u(t, 1) = 0 hold because each of v⃗ 1, v⃗ 2, v⃗ 3 vanish at x = 0
and x = 1. The verification is complete.

Example 9.11 (Powers and Fourier Replacement)

Let 3 × 3 matrix A have eigenpairs (λ1, v⃗ i), i = 1, 2, 3 and (9) holds. Find the
powers Akx⃗ by Fourier’s Replacement equation (8) with just the basic vector space
toolkit, showing

Akx⃗ = x1λ
k
1v⃗ 1 + x2λ

k
2v⃗ 2 + x3λ

k
3v⃗ 3

Solution: The vector toolkit for R3 is used to compute powers:

Ax⃗ = x1λ1v⃗ 1 + x2λ2v⃗ 2 + x3λ3v⃗ 3

A2x⃗ = A(x1λ1v⃗ 1 + x2λ2v⃗ 2 + x3λ3v⃗ 3)
= x1λ

2
1v⃗ 1 + x2λ

2
2v⃗ 2 + x3λ

2
3v⃗ 3 by (8)

...
Akx⃗ = x1λ

k
1 v⃗ 1 + x2λ

k
2 v⃗ 2 + x3λ

k
3 v⃗ 3

6The scale factors are not constants nor are they eigenvalues, but rather, they are exponential
functions of t for fixed t, as is the case for matrix differential equations x⃗ ′ = Ax⃗ . See Example
9.13
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The calculations do not use matrix multiply and the answer does not depend upon finding
previous powers A2, A3, A4, . . . .

Fourier replacement reduces computational effort. Matrix–vector multiplication to pro-
duce y⃗ k = Akx⃗ requires 9k multiply operations whereas Fourier replacement gives the
answer with 3k + 9 multiply operations.

Example 9.12 (Change of Variable x⃗ = P u⃗ for Differential Equations)

Matrix A =

(
1 3 0
0 2 −1
0 0 −5

)
has eigenpairs (v⃗ 1, λ1), (v⃗ 2, λ2), (λ3, v⃗ 3) with three inde-

pendent eigenvectors given by equation (12). Define x⃗ = P u⃗ , P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩,
D = diag(λ1, λ2, λ3). Show that x⃗ = P u⃗ changes x⃗ ′ = Ax⃗ into u⃗ ′ = Du⃗ , which
is the diagonal system of growth-decay equations

u′1 = u1,
u′2 = 2u2,
u′3 = −5u3.

Solution: The calculus derivative of a vector function is performed componentwise.
Matrix multiply as a linear combination of columns shows that equation x⃗ (t) = P u⃗(t)
has derivative x⃗ ′(t) = P u⃗ ′(t), because entries of P are constants. Then equation x⃗ (t) =
P u⃗ (t) can change x⃗ ′ = Ax⃗ into a differential equation in variable u⃗ . The details:

x⃗ ′(t) = Ax⃗ (t) Given.

P u⃗ ′(t) = AP u⃗ (t) Use x⃗ ′(t) = P u⃗ ′(t), x⃗ (t) = P u⃗(t).

P u⃗ ′(t) = PDu⃗ (t) because AP = PD (A is diagonalizable).

u⃗ ′(t) = Du⃗(t) because P has an inverse.

The eigenvalues of triangular matrix A are the diagonal entries: 1,2,-5. Then D =
diag(1, 2,−5) and u⃗ ′ = Du⃗ is the reported system of growth-decay differential equations.

Example 9.13 (Differential Equations and Fourier Replacement)

Solve by Fourier re-scaling x⃗ ′ = Ax⃗ with A =

(
1 3 0
0 2 −1
0 0 −5

)
. The scalar form:


x′1 = x1 + 3x2,
x′2 = 2x2 − x3,
x′3 = − 5x3.

The answer uses the eigenpairs (v⃗ 1, λ1), (v⃗ 2, λ2), (λ3, v⃗ 3) of matrix A in equation
(12): 

x⃗ (t) = c1e
λ1tv⃗ 1 + c2e

λ2tv⃗ 2 + c3e
λ3tv⃗ 3, realized asx1

x2
x3

 = c1e
t

 1
0
0

+ c2e
2t

 3
1
0

+ c3e
−5t

 1
−2
−14

 .
(14)
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Solution: Fourier’s re-scaling idea applies to linear differential equations, as follows.
First, expand the initial condition x⃗ (0) in terms of basis elements:

x⃗ (0) = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3.

Fourier’s re-scaling replaces each v⃗ i by the re-scaled vector eλitv⃗ i. The result:

y⃗ = c1e
λ1tv⃗ 1 + c2e

λ2tv⃗ 2 + c3e
λ3tv⃗ 3(15)

How is this related to Fourier re-scaling? Answer: at each fixed instant t, the basis
vectors v⃗ 1, v⃗ 2, v⃗ 3 are replaced by Λ1v⃗ 1, Λ2v⃗ 2, Λ3v⃗ 3 where

Λ1 = eλ1t, Λ2 = eλ2t, Λ3 = eλ3t.

Why is the solution x⃗ (t) = c1e
λ1tv⃗ 1 + c2e

λ2tv⃗ 2 + c3e
λ3tv⃗ 3? Answer: Evaluate the

LHS and RHS of the differential equation x⃗ ′ = Ax⃗ and compare formulas.

LHS = x⃗ ′(t)

= c1λ1e
λ1tv⃗ 1 + c2λ2e

λ2tv⃗ 2 + c3λ3e
λ3tv⃗ 3

= c1λ1Λ1v⃗ 1 + c2λ2Λ2v⃗ 2 + c3λ3Λ3v⃗ 3

RHS = Ax⃗ (t)

= A(c1Λ1v⃗ 1 + c2Λ2v⃗ 2 + c3Λ3v⃗ 3)

= c1λ1Λ1v⃗ 1 + c2λ2Λ2v⃗ 2 + c3λ3Λ3v⃗ 3 by Theorem 9.10.

The last equality is tricky: equation

A (c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3) = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3

in Theorem 9.10 is applied with c1, c2, c3 replaced by c1Λ1, c2Λ2, c3Λ3.

Justification of the solution is done with Example 9.12 after inserting exponential solu-
tions for the growth-decay equations. A summary of the re-scaling method:

1. Expand x⃗ (0) as a linear combination of eigenvectors.

2. Change on the left x⃗ (0) to x⃗ (t), then re-scale the linear combination on
the right with scale factors Λ1 = eλ1t, Λ2 = eλ2t, Λ3 = eλ3t.

Proofs and Details

Proof of Theorem 9.1, Eigenpairs and AP = PD:
Let

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩, D =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
.

Write the two matrix multiply equations AP and PD in expanded form

AP = ⟨Av⃗ 1|Av⃗ 2|Av⃗ 3⟩, PD = ⟨λ1v⃗ 1|λ2v⃗ 2|λ3v⃗ 3⟩.(16)

AP = PD implies equation (4). Assume AP = PD. Because equal matrices have
equal columns, the columns left and right in the equation AP = PD must match, using
expansion (16). Then

Av⃗ 1 = λ1v⃗ 1, Av⃗ 2 = λ2v⃗ 2, Av⃗ 3 = λ3v⃗ 3,
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which means equation (4) holds.

Equation (4) implies AP = PD. Assume eigenpair equations (4) hold. Then the
two matrices AP and PD in expansion (16) have equal columns. Equality of matrices
implies AP = PD. ■

Proof of Theorem 9.2, Eigenvalues of A:
An eigenvalue λ is a number such that equation Ax⃗ = λx⃗ has a nonzero solution x⃗ .
Let B = A − λI. Then λ is an eigenvalue means Bx⃗ = 0⃗ has a nonzero solution
x⃗ . Homogeneous equation Bv⃗ = 0⃗ has a nonzero solution v⃗ if and only if there are
infinitely many solutions. Because the matrix is square, infinitely many solutions occur
if and only if rref(B) has a row of zeros. Determinant theory gives a more concise
statement: Bv⃗ = 0⃗ has infinitely many solutions if and only if det(B) = 0. ■

Proof of Theorem 9.3, Find Eigenvectors:
Question: Why does the solution of Bv⃗ = 0⃗ have invented symbols? Isn’t there just
one solution?

Answer: According to the three possibilities, homogeneous equation Bv⃗ = 0⃗ should have
unique solution v⃗ = 0⃗ or else infinitely many solutions. An eigenvector cannot be zero.
To get infinitely many solutions there has to be at least one free variable, causing the
last frame algorithm to be applied with invented symbols t1, t2, . . ..

The equation Av⃗ = λv⃗ is equivalent to Bv⃗ = 0⃗ . Because λ is a root of characteristic
equation |A−λI| = 0, then det(B) = 0 and B has no inverse, equivalent to rref(B) ̸= I.
Then square matrix rref(B) must have a row of zeros, which means there is at least
one free variable. The last frame algorithm applies with invented symbols t1, t2, . . . . A
vector basis v⃗ 1, v⃗ 2, . . . for the nullspace of B is obtained from the list of vector partial
derivatives on symbols t1, t2, . . . . These vectors are Strang’s special solutions, which are
known to be collectively independent. The nullspace of B is the span of Strang’s special
solutions v⃗ 1, v⃗ 2, . . .. If Aw⃗ = λw⃗ , then Bw⃗ = 0⃗ , so w⃗ belongs to the nullspace of B:

w⃗ = a linear combination of v⃗ 1, v⃗ 2, . . . ■

Proof of Theorem 9.4, Independence of Eigenvectors:
Let’s solve c1v⃗ 1 + c2v⃗ 2 = 0⃗ for c1, c2. The vectors are independent provided the only
solution is c1 = c2 = 0. Apply A to this equation, obtaining c1Av⃗ 1 + c2Av⃗ 2 = 0⃗ . Use
Av⃗ 1 = λ1v⃗ 1 and Av⃗ 2 = λ2v⃗ 2 to obtain c1λ1v⃗ 1+c2λ2v⃗ 2 = 0⃗ . Multiply c1v⃗ 1+c2v⃗ 2 = 0⃗
by λ1 and subtract it from c1λ1v⃗ 1+c2λ2v⃗ 2 = 0⃗ to get c1(λ1−λ1)v⃗ 1+c2(λ2−λ1)v⃗ 2 = 0⃗ .
Because λ2 ̸= λ1, cancel λ2 − λ1 to give c2v⃗ 2 = 0⃗ . The assumption v⃗ 2 ̸= 0⃗ implies
c2 = 0. Return to the first equation and use c2 = 0 to obtain c1v⃗ 1 = 0⃗ . Because v⃗ 1 ̸= 0⃗ ,
then c1 = 0. This proves v⃗ 1, v⃗ 2 are independent.

The general case is proved by Mathematical Induction on k (see the footnote in the
proof of Theorem 9.5). The case k = 1 follows because a nonzero vector is an independent
set. Assume it holds for k−1 and let’s prove it for k, when k > 1. To prove independence,
we must solve for c1, . . . , ck in the test equation

c1v⃗ 1 + · · ·+ ckv⃗ k = 0⃗ .

Create a second equation by multiplication of the test equation by A, effectively replacing
each ci by λici, due to the eigenpair equation Av⃗ i = λiv⃗ i. Then multiply the test
equation by λ1 and subtract the two equations to get the new equation

c1(λ1 − λ1)v⃗ 1 + c2(λ1 − λ2)v⃗ 2 + · · ·+ ck(λ1 − λk)v⃗ k = 0⃗ .
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The first term is zero. Apply the induction hypothesis to the remaining k − 1 vectors,
then independence implies all coefficients (λ1 − λi)ci are zero. Because λ1 − λi ̸= 0 for
i > 1, then c2 through ck are zero. Substitute the zero values into the test equation to
obtain c1v⃗ 1 = 0⃗ . Because v⃗ 1 ̸= 0⃗ , then c1 = 0. Therefore all ci = 0. The induction is
complete. ■

Proof of Theorem 9.5, Unions of Eigenvectors:
Details (1). Assume there is a nonzero vector v⃗ in the intersection, which must be an
eigenvector for both λ and µ. Then two eigenpairs(λ, v⃗ 1) and (µ, v⃗ 2) have been found,
v⃗ 1 = v⃗ 2 = v⃗ , which violates Theorem 9.4, because v⃗ 1, v⃗ 2 must be independent.

Details (2). Let’s proceed by induction on the number k of eigenvalues used to construct
U .7 Let Sk be the statement that U = union of B(λ1), . . . , B(λk) has independent
elements, no matter how the k distinct eigenvalues {λi}ki=1 are selected and no matter
how the bases are chosen.

Statement S1 is true, because B(λ1) is a list of independent elements.

Assume Sk is true. The proof that Sk+1 is true will be deferred to the exercises. Revealed
here are the fundamental ideas, by examining the cases k = 2 and k = 3.

Case k = 2. Then U is a list of vectors, some from B(λ1) and some from B(λ2). The test
equation for independence of this list of vectors is a linear combination of the vectors
equal to the zero vector. The objective is to prove that the coefficients in this linear
combination are all zero. Rearrange the test equation in the form

Terms using vectors from B(λ1) = Terms using vectors from B(λ2)

The left side of the above equation is an eigenvector v⃗ 1 for eigenvalue λ1, giving eigenpair
(λ1, v⃗ 1). Similarly, the right side determines an eigenpair (λ2, v⃗ 2). The previous theorem
says that v⃗ 1 and v⃗ 2 are independent, if nonzero. Analyzing cases, then both v⃗ 1 and v⃗ 2

are the zero vector. By independence of bases B(λ1) and B(λ2), all coefficients are zero,
proving independence of the list U .

Case k = 3. Let U2 be the union of bases B(λ1),B(λ2), which is a list of vectors v⃗ 1,
. . . , v⃗ q. Given is U = the union of bases B(λ1), B(λ2), B(λ3). The test equation for
independence of the vectors in list U is a linear combination equal to the zero vector.
This equation has a summation left and the zero vector on the right. Isolate left in this
equation those terms that involve basis vectors from B(λ3), then move the remaining
terms to the right. The rearranged equation looks like

Sum of terms from B(λ3) = Sum of terms from U2

The left side is an eigenvector v⃗ for λ3. The right side is a linear combination from U2,
which means v⃗ =

∑q
j=1 cjv⃗ j . Write two equations for λ3v⃗ , using the eigenpair equation

Av⃗ = λ3v⃗ :

λ3v⃗ =

q∑
j=1

cjλ3v⃗ j , λ3v⃗ = Av⃗ =

q∑
j=1

cjAv⃗ j =

q∑
j=1

cjλ(v⃗ j)v⃗ j ,

7Mathematical induction is this theorem:
(1) For each counting number n, Sn is a statement that is either true or false.
(2) Statement S1 is true.
(3) If statement Sk is true, then statement Sk+1 is true.
Conclusion: All the statements are true.
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where λ(v⃗ j) is the eigenvalue for eigenvector v⃗ j . Put these two equations together, then
move the right side to the left and collect terms:

q∑
j=1

cj(λ3 − λ(v⃗ j))v⃗ j = 0⃗ .

Because S2 is true, then the vectors {v⃗ j}qj=1 are independent. Therefore, all coefficients
cj(λ3 − λ(v⃗ j)) = 0. Reminder: symbols λ1, . . . , λk are distinct values and list all

eigenvalues of A. Then λ3 ̸= λ(v⃗ j) implies all cj = 0. This implies v⃗ = 0⃗ , which in
turn implies that all coefficients in the independence test are zero. Therefore, U is a
list of independent vectors. The induction proof is completed by the exercises of this
section. ■

Proof of Theorem 9.6, Finding Independent Eigenvectors:
Exercises of this section show that ∂t1 v⃗ , ∂t2 v⃗ , . . . are independent vectors which consti-
tute a basis B(λ) for the solution set of the eigenpair equation Av⃗ = λv⃗ . These are
Strang’s special solutions for Bv⃗ = 0⃗ . Theorem 9.5 says that the union U of bases
B(λ1), . . . , B(λk) so constructed from the distinct eigenvalues λ1, . . . , λk of A is an

independent set. For an example where U does not span Rn, let n = 2 and A =

(
1 1
0 1

)
,

a matrix with just one eigenpair. ■

Proof of Theorem 9.8, Diagonalization:
Details 1. To prove A = PDP−1, multiply right across AP = PD by matrix P−1,
which isolates A on the left. Then A = AI = APP−1 = PDP−1.

Details 2. Define the change of variables X⃗ = P x⃗ , Y⃗ = P y⃗ . Substitute into the
equation y⃗ = Ax⃗ as follows:

Y⃗ = P y⃗ = PAx⃗ = PAP−1P x⃗ = DX⃗ .

The result is the diagonal system Y⃗ = DX⃗ .

Details 3. Let column vector c⃗ have components c1, . . . , cn. To be proved: the left
side of A(c1v⃗ 1 + · · · + cnv⃗n) = c1λ1v⃗ 1 + · · · + cnλnv⃗n is the expansion of AP c⃗ , while
the right side is the expansion of PDc⃗ . Assume these statements are proved, for the
moment, details delayed. Then AP = PD implies AP c⃗ = PDc⃗ for all vectors c⃗ , which
means (7) holds. It remains to expand AP c⃗ and PDc⃗ , assuming AP = PD, or what is
the same, the eigenpair equations hold: Ac⃗ i = λiv⃗ i for 1 ≤ i ≤ n.

The expansion of AP c⃗ :

AP c⃗ = A < v⃗ 1| · · · |v⃗n > c⃗ Use definition P =< v⃗ 1| · · · |v⃗n >.

= A(c1v⃗ 1 + . . .+ cnv⃗n) Matrix multiply as a linear combination of the
columns.

= c1Av⃗ 1 + . . .+ cnAv⃗n Linearity of matrix multiply.

= c1λ1v⃗ 1 + . . .+ cnλnv⃗n Eigenpair equations Av⃗ i = λiv⃗ i for 1 ≤ i ≤
n.

The expansion of PDc⃗ :

PDc⃗=P


λ1 0 · · · 0
0 λ2 · · · 0

...
0 0 · · · λn

 c⃗ Definition of D.
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=P

 c1λ1

...
cnλn

 Matrix multiply as a dot product.

= < v⃗ 1| · · · |v⃗n >

 c1λ1

...
cnλn

 Definition of P .

=c1λ1v⃗ 1 + . . .+ cnλnv⃗n Matrix multiply as a linear combination of
columns.

■

Proof of Theorem 9.9, Distinct Eigenvalues:
Each eigenvalue λ has at least one eigenvector. Because there are n distinct eigenvalues,
then there are n eigenvectors. The list of these eigenvectors must be independent, by
Theorem 9.5. Therefore, matrix A is diagonalizable. The remaining statements in the
theorem are a consequence of Theorem 9.8. ■

Proof of Theorem 9.10, Matrix Form Fourier Replacement:
1 Let’s prove x⃗ = P c⃗ implies y⃗ = PDc⃗ , assuming the Fourier replacement equation.
Let x⃗ = P c⃗ . Expand the product P c⃗ viewing matrix multiply as a linear combination
of the columns. Then x⃗ = P c⃗ = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3. Because Fourier replacement
holds, then

y⃗ = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3 Re-scale x⃗ .

= P

 c1λ1

c2λ2

c3λ3

 Matrix multiply as a linear combination of
columns.

= P

(
λ1 0 0
0 λ2 0
0 0 λ3

) c1
c2
c3

 Matrix multiply as a dot product.

= PDc⃗ Definition of D.

2 Definition A = PDP−1 was discovered by solving for A in equation AP = PD
(AP = PD means A is diagonalizable). To prove y⃗ = Ax⃗ , first solve x⃗ = P c⃗ for

c⃗ = P−1x⃗ . Then Ax⃗ = PDP−1x⃗ = PDc⃗ = y⃗ by 1 .

3 To prove A (c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3) = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3, replace its left side
by Ax⃗ and right side by y⃗ . Then it suffices to prove Ax⃗ = y⃗ , which has already been
proved in 2 . ■

Proof of Theorem 9.11, Re-scaling and Diagonalization:
(a) Use relation A (c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3) = c1λ1v⃗ 1 + c2λ2v⃗ 2 + c3λ3v⃗ 3 from Theorem
9.10. Choose c1 = 1, c2 = c3 = 0 to get Av⃗ 1 = λ1v⃗ 1. Similarly, choose zeros and ones
for c1, c2, c3 to get Av⃗ 2 = λ2v⃗ 2 and Av⃗ 3 = λ3v⃗ 3. Then three eigenpair equations hold
with independent eigenvectors and by definition A is diagonalizable.

(b) By Theorem 9.10 it suffices to prove x⃗ = P c⃗ implies Ax⃗ = PDc⃗ . If A is diagonal-
izable, then AP = PD, which gives Ax⃗ = AP c⃗ = PDc⃗ as required.

(c) If A is given and (8) holds, then (a) applies to prove A is diagonalizable. Conversely,
if A is diagonalizable, then (b) applies and Fourier replacement (8) holds. ■
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Exercises 9.1 �

Eigenanalysis
Classify as true or false. If false, then ex-
plain.

1. The purpose of eigenanalysis is to dis-
cover a new coordinate system.

2. Eigenanalysis can discover an oppor-
tunistic change of coordinates.

3. A matrix can have eigenvalue 0.

4. Eigenvalues are scale factors, imagined
to be measurement units.

5. Eigenvectors are directions.

6. For each eigenvalue of a matrix A, there
always exists at least one eigenpair.

7. If A−1 has eigenvalue λ, then A has
eigenvalue 1/λ.

8. Eigenvectors cannot be 0⃗ .

9. The transpose of A has the same eigen-
values as A.

10. Eigenpairs (λ, v⃗ ) of A satisfy the equa-
tion (A− λI)v⃗ = 0⃗ .

Eigenpairs of a Diagonal Matrix
Find eigenpairs of A without computation.
Use Theorem 9.7.

11.

(
2 0
0 3

)

12.

(
1 0
0 4

)

13.

(
2 0 0
0 3 0
0 0 1

)

14.

(
2 0 0
0 1 0
0 0 1

)

15.

(
7 0 0
0 2 0
0 0 −6

)

16.

(
2 0 0
0 −4 0
0 0 −1

)

Fourier Replacement
Let symbols c1, c2 represent arbitrary con-
stants. Let 2 × 2 matrix A have Fourier
replacement equation

A

(
c1

(
1
1

)
+c2

(
1
2

))
= 2c1

(
1
1

)
−5c2

(
1
2

)
17. Display the eigenpairs of A.

18. Display the replacement equation if the
eigenvalues 2,−5 are replaced by 1, 0.

19. Display the eigenpair packages P,D
such that AP = PD.

20. Find A.

Eigenanalysis Facts
Mark as true or false, then explain your an-
swer.

21. If matrix A has all eigenvalues zero,
then A is the zero matrix.

22. If 2 × 2 matrix A has all eigenvalues
zero, then Fourier’s replacement equa-
tion is

A (c1v⃗ 1+c2v⃗ 2) = 0⃗ .

23. There are infinitely many 2×2 matrices
A with complex eigenvalues 1 + i, 1− i.

24. A real 2× 2 matrix A with eigenvalues
2 + 3i, 2 − 3i cannot have a real eigen-
vector.

25. A real 2× 2 matrix A with real eigen-
values has only real eigenvectors.

26. A real 2 × 2 matrix A with complex
eigenvalues has only complex eigenvec-
tors.

Eigenpair Packages and equation
AP = PD

27. Suppose A has eigenpair packages. Ex-
plain why there are so many different
answers for P,D.
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28. Suppose AP = PD and AQ = QD
hold (same diagonal matrix D). Does
P = Q?

29. Find one choice of P and D for A =
2× 2 diagonal matrix.

30. Given A = 3× 3 zero matrix, find one
choice of P and D with column one of

P equal to

(
1

−1
1

)
.

Matrix Eigenanalysis Method

31. The eigenvalues of

(
1 3
1 4

)
satisfy a

quadratic equation. Find the equation
and solve for the eigenvalues.

32. Find the eigenvalues of

(
1 3
2 4

)
.

33. Find all eigenpairs of

(
1 2 0
0 2 2
0 0 3

)
.

34. A triangular n×n matrix with distinct
diagonal entries has n eigenpairs. Pro-
vide a detailed proof for the case n = 3.

35. Find all eigenpairs of

(
1 2 0
0 1 2
0 0 1

)
.

36. A triangular n×nmatrix may not have
n eigenpairs. Provide a series of exam-
ples for dimensions n = 2, 3, 4, 5.

37. Prove that equations Ax⃗ = λx⃗ and
(A − λI)x⃗ = 0⃗ have exactly the same
solutions x⃗ .

38. Cite basic linear algebra theorems to
prove that (A−λI)x⃗ = 0⃗ has a nonzero
solution x⃗ if and only if λ is a root of
the characteristic equation |A−λI| = 0.

Basis of Eigenvectors
The problem Ax⃗ = λx⃗ has a standard
general solution x⃗ with invented symbols
t1, t2, t3, . . .. Strang’s special solutions
are defined to be the vector partial deriva-
tives of x⃗ with respect to the invented sym-
bols.

39. Why are Strang’s special solutions in-
dependent?

40. Prove that linear combinations of
Strang’s special solutions provide all
possible solutions of Ax⃗ = λx⃗ .

Independence of Eigenvectors
Eigenvectors of matrix A for eigenvalue λ
are the nonzero solutions of Ax⃗ = λx⃗ .

41. Invent a 2 × 2 example A with eigen-

pairs

(
2,

(
1
1

))
,

(
2,

(
5
5

))
. Then ex-

plain why an eigenvector for eigenvalue
λ is never unique.

42. Explain: For a given eigenvalue λ,
there are infinitely many eigenvectors.

43. Explain: Each solution x⃗ of Ax⃗ = λx⃗
is a linear combination of Strang’s spe-
cial solutions for B = A− λI.

44. Let P be an invertible 3 × 3 matrix.
Construct a matrix A which has eigen-
vectors equal to the columns of P and
corresponding eigenvalues −1, 0, 0.

Eigenspaces
Let B(λ) denote some basis of eigenvec-
tors for the eigenpair equation Av⃗ = λv⃗ .
The eigenspace for λ is the subspace
span(B(λ)).

45. Explain: The eigenspace of λ does not
depend on the choice of basis.

46. Every nonzero vector in eigenspace
span(B(λ)) is an eigenvector of A for
eigenvalue λ. Provide details of proof.

47. Justify that span(B(λ)) is a vector
subspace of Rn, one possible basis be-
ing Strang’s special solutions for matrix
B = A− λI.

48. Find a 4 × 4 matrix A with only one
eigenvalue λ = 1 such that eigenspace
B(λ) (defined above) has dimension
two.

Independence of Unions of Eigenvec-
tors
Denote by B(λ) some basis for the eigenpair
equation Av⃗ = λv⃗ .
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49. Define U1 to be the union of lists B(λ1),
B(λ2) and define U2 to be the union of
lists B(λ3), B(λ4), where λ1, λ2, λ3, λ4

is a list of distinct eigenvalues of A.
Prove that subspaces V1 = span(U1)
and V2 = span(U2) intersect in only the
zero vector.

50. Complete the details of the induction
proof of Theorem 9.5, using the text-
book details for k = 3.

51. Let U∗ be a subset of the list U of in-
dependent vectors in Theorem 9.5. Ex-
plain why U∗ is an independent set.

52. Let Bi be a subset of the list of inde-
pendent vectors in B(λi), i = 1, . . . , p.
Explain why the union U∗ of B1, . . . , Bp

is an independent set.

Diagonalization Theory

53. Let A =

(
2 0 0
0 5 0
0 0 8

)
.

(a) Find Strang’s special solutions for
each eigenvalue.
(b) Compare to Theorem 9.7 on diago-
nal matrices.

54. Let v⃗ !, v⃗ 2, v⃗ 3 be independent vectors
in R3. Explain why (0, v⃗ 1), (0, v⃗ 2),
(0, v⃗ 3) is a complete set of eigenpairs
for the 3 × 3 zero matrix. Does this
contradict Theorem 9.7?

55. Write a proof of Theorem 9.7 for n = 3.

56. State Theorem 9.7 for n × n diagonal
matrices and outline a proof.

Non-diagonalizable Matrices
Verify that the matrix is not diagonalizable
by using the equation AP = PD.

57. A =

(
5 2
0 5

)

58. A =

(
5 2 1
0 5 1
0 0 5

)

Distinct Eigenvalues
Find the eigenvalues.

59. A =

(
2 6
5 3

)
Ans: 8,−3

60. A =

(
1 2
2 4

)
Ans: 0, 5

61. A =

(
2 6 2
9 3 9
1 3 1

)
Ans: 0, 12,−6

62. A =

(
0 2 0
0 1 0
3 0 3

)
Ans: 0, 1, 3

63. A =

(
7 12 6
2 2 2

−7 −12 −6

)
Ans: 0, 1, 2

64. A =

(
2 2 −6

−3 −4 3
−3 −4 −1

)
Ans: 0, 1, 4

Computing 2× 2 Eigenpairs

65. Verify eigenpairs:

(
1 2
4 3

)
,(

−1,

(
−1
1

))
,

(
5,

(
1
2
1

))

66. Verify eigenpairs:

(
1 6
2 −3

)
,(

−5,

(
−1
1

))
,

(
3,

(
3

−1

))

67. Verify eigenpairs:

(
1 6
4 3

)
,(

7,

(
1
1

))
,

(
−3,

(
−3
2

))

68. Verify eigenpairs:

(
7 4

−1 3

)
,(

5,

(
1
2

))
, only one eigenpair

Computing 2× 2 Complex Eigenpairs

69. Verify eigenpairs:

(
−2 −6
3 4

)
,(

1 + 3i,

(
−1 + i

1

))
,(

1− 3i,

(
−1− i

1

))
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70. Verify eigenpairs:

(
2 3

−3 2

)
,(

2 + 3i,

(
−i
1

))
,

(
2− 3i,

(
i
1

))
71. Let a, b be real with b ̸= 0. As-

sume n× n real matrix A has eigenpair
(a+ ib, v⃗ ). Replace i by −i throughout
expression v⃗ to obtain vector w⃗ . Prove
that (a− ib, w⃗ ) is an eigenpair.

72. Explain: Eigenpairs of a 2 × 2 real
matrix A with complex eigenvalues are
computed with just one row-reduction
sequence.

Computing 3× 3 Eigenpairs

73. Show algorithm steps to compute

eigenpairs of A =

(
2 1 0
1 0 0
0 0 3

)
.

Answers:

(
1,

(
−1
1
0

))
,

(
3,

(
0
0
1

))
74. Show algorithm steps to compute

eigenpairs of A =

(
1 −2 0
0 −1 0
4 −4 −1

)
.

Answers:(
1,

(
1
0
2

))
,

(
−1,

(
1
1
0

))
,(

−1,

(
0
0
1

))
75. Suppose A is row-reduced to a trian-

gular form B. Are the eigenvalues of B
also the eigenvalues of A? Give a proof
or a counter-example.

76. Suppose A−λI is row-reduced to a tri-
angular form B. Explain: The eigen-
values of A are usually unrelated to the
roots λ of |B| = 0.

Decomposition A = PDP−1

Compute the eigenpairs. If diagonalizable,
then display D, P and Fourier’s replace-
ment equation.

77. A =

 7 4 0
−1 3 0
0 0 3


Ans: only 2 eigenpairs

.

78. A =

 1 6 0
2 −3 0
0 0 3


Ans:

(
3 0 0
0 3 0
0 0 −5

)
,

(
3 0 −1
1 0 1
0 1 0

)
Fourier equation: AP c⃗ = PDc⃗ .

Diagonalization
Report diagonalizable or not and explain
why.

79. A =


1 2 0 0
2 1 0 0
0 0 3 1
0 0 0 −3


Ans: diagonalizable

80. A =


1 2 0 0
2 1 0 0
0 0 3 1
0 0 0 3


Ans: not diagonalizable

Non-diagonalizable Matrices

81. Verify A =

(
1 2

−8 9

)
is not diagonaliz-

able.

82. Verify A =

(
1 2 0

−8 9 1
0 0 5

)
is not diagonal-

izable.

83. Invent a 3×3 matrix which has exactly
one eigenpair.

84. Invent a 4×4 matrix which has exactly
two eigenpairs.

Fourier’s Heat Model
Define
v⃗ 1=sinπx, v⃗ 2=sin 2πx, v⃗ 3=sin 3πx
considered as vectors in the vector space
V of twice continuously differentiable func-
tions on 0 ≤ x ≤ 1.

85. Verify that v⃗ 1, v⃗ 2, v⃗ 3 are independent
vectors in V .

86. Verify that v⃗ 1, v⃗ 2, v⃗ 3 vanish at x = 0
and x = 1.
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87. Define u(x) = sinπx (from v⃗ 1). Ex-
plain: Function u satisfies differential

equation
d2u

dx2
+ π2u = 0.

88. Write vector expression

c1e
−π2tv⃗ 1 + c2e

−4π2tv⃗ 2

+c3e
−9π2tv⃗ 3

as a scalar function u(t, x). Find initial
heat distribution u(0, x). Explain how
Fourier replacement (re-scaling) con-
structs future state u(t, x) from initial
state u(0, x).

702



9.2 Eigenanalysis Applications

9.2 Eigenanalysis Applications

Discrete Dynamical Systems

The matrix equation

y⃗ = Ax⃗ , A =
1

10

 5 4 0
3 5 3
2 1 7

(1)

predicts the state y⃗ of a system initially in state x⃗ after some fixed elapsed time.
The 3× 3 matrix A in (1) represents the dynamics which changes state x⃗ into
state y⃗ .

An equation y⃗ = Ax⃗ like equation (1) is called a discrete dynamical system.
The fixed elapsed time for changing x⃗ to y⃗ is called the period of the discrete
dynamical system. Matrix A is called a transition matrix, provided A has
nonnegative entries and column sums equal to one. See stochastic matrices
page 704

The eigenpairs of matrix A in (1) are shown on page 713 to be (1, v⃗ 1), (1/2, v⃗ 2),
(1/5, v⃗ 3) with eigenvectors

v⃗ 1 =

 12
15
13

 , v⃗ 2 =

 −1
0
1

 , v⃗ 3 =

 −4
3
1

 .(2)

Market Shares

A model application of discrete dynamical systems is telephone long distance
company market shares x1, x2, x3, which are fractions of the total market for
long distance service. If three companies provide all the services, then their
market fractions add to one: x1 + x2 + x3 = 1. Equation y⃗ = Ax⃗ in (1) with
eigenpairs (2) predicts the market shares of the three companies after a fixed
time period, say one year. Market shares after one, two and three years are given
by the iterates

y⃗ 1 = Ax⃗ ,
y⃗ 2 = A2x⃗ ,
y⃗ 3 = A3x⃗ .

Fourier’s replacement model (8) page 676 gives succinct and useful formulas for
the iterates. If x⃗ = a1v⃗ 1 + a2v⃗ 2 + a3v⃗ 3, then

y⃗ 1 = Ax⃗ = a1λ1v⃗ 1 + a2λ2v⃗ 2 + a3λ3v⃗ 3,
y⃗ 2 = A2x⃗ = a1λ

2
1v⃗ 1 + a2λ

2
2v⃗ 2 + a3λ

2
3v⃗ 3,

y⃗ 3 = A3x⃗ = a1λ
3
1v⃗ 1 + a2λ

3
2v⃗ 2 + a3λ

3
3v⃗ 3.

(3)
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The eigenpairs of A in (2) show that λ1 = 1 and limn→∞ |λ2|n = limn→∞ |λ3|n =
0. Then for large n

y⃗n ≈ a1(1)v⃗ 1 + a2(0)v⃗ 2 + a3(0)v⃗ 3 =

 12a1
15a1
13a1

 .

The numbers a1, a2, a3 are related to x1, x2, x3 in the expansion x⃗ = a1v⃗ 1 +
a2v⃗ 2+a3v⃗ 3 by the equations 12a1−a2−4a3 = x1, 15a1+3a3 = x2, 13a1+a2+a3 =
x3. Because x1 + x2 + x3 = 1, then a1 = 1/40. The three market shares after a
long time period are predicted to be 3/10, 3/8, 13/40. The market share identity
3
10 +

3
8 +

13
40 = 1 holds because approximating terms from (3) are sums of market

shares adding to one.

Stochastic Matrices

The special matrix A in (1) is a stochastic matrix8, defined by the properties

n∑
i=1

aij = 1, akj ≥ 0, k, j = 1, . . . , n.

The definition is memorized by the phrase each column sum is one.

Leontief input-output models are stochastic models, popularized by 1973
Nobel Prize economist Wassily Leontief. A typical model is A = RT where

R =

 1 0 0
.2 .3 .5
.4 .4 .2

 .

The rows of R add to one, therefore the columns of A add to one. Row 1 is
the bank, Row 2 is Factory 1, Row 3 is Factory 2. Matrix R tracks the money
as it is being passed back and forth between the factories and the bank.

Leslie Models in population biology are similar to stochastic models. It is
a discrete time model v⃗ i+1 = Av⃗ i of an age-structured population describing
mortality, reproduction and development. The Leslie matrix A for n = 4 looks
like

A =


f1 f2 f3 f4
s1 0 0 0
0 s2 0 0
0 0 s3 0

 .

Neither the row sums nor the column sums are one. However, some stochastic
matrix results have analogs for Leslie matrices. Population vector v⃗ i contains
counts of age classes. Number fi ≥ 0 is the average number of female births for
a mother of age class i. Number si ≥ 0 is the fraction of individuals of age class
i that survive to age class i+ 1.

8Technically, a right stochastic matrix, which means columns add to one. A left stochastic
matrix has rows adding to one. The term transition matrix is also used.
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Theorem 9.12 (Stochastic Matrix Properties)
Let A be a stochastic matrix. Then

(a) If x⃗ is a vector with x1+ · · ·+xn = 1, then y⃗ = Ax⃗ satisfies y1+ · · ·+
yn = 1.

(b) If the components of v⃗ are all 1, then AT v⃗ = v⃗ . Therefore, (1, v⃗ ) is
an eigenpair of AT .

(c) One root of the characteristic equation det(A − λI) = 0 is λ = 1. All
other roots satisfy |λ| ≤ 1.

Proof on page 715.

Theorem 9.13 (Perron-Frobenius: Positive Stochastic Matrix)
Let A be a stochastic matrix all of whose entries are strictly positive. Then

(a) There exists an eigenpair (1, w⃗ ) of A such that w⃗ has nonnegative
components and limn→∞An = ⟨w⃗ |w⃗ | · · · |w⃗⟩.

(b) If (1, v⃗ ) is an eigenpair of A, then v⃗ = cw⃗ for c =
∑n

i=1 vi. Briefly, the
eigenspace for λ = 1 has dimension one.

(c) If λ ̸= 1 is a real or complex eigenvalue of A, then |λ| < 1.

(d) If (λ, v⃗ ) is an eigenpair of A and v⃗ has nonnegative components, then
all components of v⃗ are strictly positive, λ = 1 and v⃗ = cw⃗ for some
constant c.

Proof on page 715.

Coupled and Uncoupled Systems

The linear system of differential equations

x′1 = −x1 − x3,
x′2 = 4x1 − x2 − 3x3,
x′3 = 2x1 − 4x3,

(4)

is called coupled, whereas the linear system of growth-decay equations

y′1 = −3y1,
y′2 = −y2,
y′3 = −2y3,

(5)

is called uncoupled. The terminology uncoupled means that each differential
equation in system (5) depends on exactly one variable, e.g., y′1 = −3y1 depends
only on variable y1. In a coupled system, one of the differential equations must
involve two or more variables.
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Matrix Formulation

Coupled system (4) and uncoupled system (5) can be written in matrix form,
x⃗ ′ = Ax⃗ and y⃗ ′ = Dy⃗ , with coefficient matrices

A =

(
−1 0 −1
4 −1 −3
2 0 −4

)
and D =

(
−3 0 0
0 −1 0
0 0 −2

)
.

If the coefficient matrix is diagonal, then the system is uncoupled. If the
coefficient matrix is not diagonal, then one of the corresponding differential
equations involves two or more variables and the system is called coupled or
cross-coupled.

Solving Uncoupled Systems

An uncoupled system consists of independent growth-decay equations of the form
u′ = au. The solution formula u = ceat then leads to the general solution of the
system of equations. For instance, system (5) has general solution

y1 = c1e
−3t,

y2 = c2e
−t,

y3 = c3e
−2t,

(6)

where c1, c2, c3 are arbitrary constants. The number of constants equals the
dimension of the diagonal matrix D.

Coordinates and Coordinate Systems

If vectors v⃗ 1, v⃗ 2, v⃗ 3 are independent in R3, then augmented matrix

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩
is invertible. The columns v⃗ 1, v⃗ 2, v⃗ 3 of P are called a coordinate system.
The matrix P is called a change of coordinates.

Independence of v⃗ 1, v⃗ 2, v⃗ 3 means every vector v⃗ inR3 can be uniquely expressed
as

v⃗ = t1v⃗ 1 + t2v⃗ 2 + t3v⃗ 3.

The values t1, t2, t3 are called the coordinates of v⃗ relative to the basis v⃗ 1, v⃗ 2,
v⃗ 3, or the coordinates of v⃗ relative to P .

Viewpoint of a Driver

The physical meaning of a coordinate system v⃗ 1, v⃗ 2, v⃗ 3 can be understood by
considering an auto traveling up a mountain road. Choose orthogonal v⃗ 1 and
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v⃗ 2 to give positions in the driver’s seat and define v⃗ 3 be the seat-back direction.
These are local coordinates as viewed from the driver’s seat. The road map
coordinates x, y and the altitude z define the global coordinates for the auto’s
position p⃗ = x⃗ı+ yȷ⃗+ zk⃗.

v⃗ 1

v⃗ 3

v⃗ 2

Figure 2. Driver’s coordinates.
The vectors v⃗ 1(t), v⃗ 2(t), v⃗ 3(t) form an or-
thogonal triad which is a local coordinate
system from the driver’s viewpoint. The or-
thogonal triad changes continuously in t.

Change of Coordinates x⃗ = P y⃗

A coordinate change from y⃗ to x⃗ is a linear algebraic equation x⃗ = P y⃗ where
the n × n matrix P is required to be invertible (det(P ) ̸= 0). To illustrate, an
instance of a change of coordinates from y⃗ to x⃗ is given by the linear equations

x⃗ =

(
1 0 1
1 1 −1
2 0 1

)
y⃗ or


x1 = y1 + y3,
x2 = y1 + y2 − y3,
x3 = 2y1 + y3.

(7)

Constructing Coupled Systems

A general method exists to construct rich examples of coupled systems. The idea
uses a change of variables for a given uncoupled system. Consider a diagonal
system y⃗ ′ = Dy⃗ , like (5), and a change of variables x⃗ = P y⃗ , like (7). Differential
calculus applies to give

x⃗ ′ = (P y⃗ )′

= P y⃗ ′

= PDy⃗
= PDP−1 x⃗ .

(8)

The matrix A = PDP−1 is not triangular in general, and therefore the change
of variables produces a cross-coupled system.

An illustration. To give an example, substitute into uncoupled system (5) the
change of variable equations (7). Use equation (8) to obtain

x⃗ ′ =

 −1 0 −1
4 −1 −3
2 0 −4

 x⃗ or


x′1 = −x1 − x3,
x′2 = 4x1 − x2 − 3x3,
x′3 = 2x1 − 4x3.

(9)

This cross-coupled system (9) can be solved using relations (7), (6) and x⃗ = P y⃗
to give the general solution x1

x2
x3

 =

 1 0 1
1 1 −1
2 0 1

 c1e
−3t

c2e
−t

c3e
−2t

 .(10)
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Changing Coupled Systems to Uncoupled

A question, motivated by the above calculations:

Can every coupled system x⃗ ′(t) = Ax⃗ (t) be subjected to a change
of variables x⃗ = P y⃗ which converts the system into a completely
uncoupled system for variable y⃗ (t)?

Answer: A coupled system can be so transformed if and only if matrices P
and D are eigenpair packages of A. Then AP = PD and A is diagonalizable.
Conversely, if A is diagonalizable, then the packages P , D exist and x⃗ = P y⃗
changes x⃗ ′ = Ax⃗ into diagonal system y⃗ ′ = Dy⃗ . The connection between x⃗ and
y⃗ is like (10).

Eigenanalysis provides the opportunity to simultaneously calculate from cross-
coupled system x⃗ ′ = Ax⃗ a change of variable x⃗ = P y⃗ and a diagonal matrix
D for an uncoupled system y⃗ ′ = Dy⃗ . System y⃗ ′ = Dy⃗ consists of uncoupled
scalar growth-decay equations like (5).

Matrices A that fail to be diagonalizable present a problem, because eigenanalysis
does not apply. The demand to obtain an uncoupled system y⃗ ′ = Dy⃗ leaves no
alternative, because if there is a change of variables x⃗ = P y⃗ into diagonal system
y⃗ ′ = Dy⃗ , then AP = PD and A is diagonalizable, a contradiction.

There does exist a change of coordinates P to change x⃗ ′ = Ax⃗ into a triangu-
lar system y⃗ ′ = T y⃗ . This system in scalar form can be solved by the linear
integrating factor method. There is again an answer x⃗ = P y⃗ like (5). See page
721.

Eigenanalysis and Footballs

An ellipsoid or football is a geometric object described by
its semi-axes (see Figure 3). In the vector representa-
tion, the semi-axis directions are unit vectors v⃗ 1, v⃗ 2,
v⃗ 3 and the semi-axis lengths are the constants a, b, c.
The vectors av⃗ 1, bv⃗ 2, cv⃗ 3 form an orthogonal triad.
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cv⃗ 3

av⃗ 1

bv⃗ 2

Figure 3. Ellispoid.
An ellipsoid is built from
orthonormal semi-axis
directions v⃗ 1, v⃗ 2, v⃗ 3 and
the semi-axis lengths a, b,
c. The semi-axis vectors
are av⃗ 1, bv⃗ 2, cv⃗ 3.

Two vectors u⃗ , w⃗ are orthogonal if both are nonzero and their dot product u⃗ · w⃗
is zero. Vectors are orthonormal if each has unit length and they are pairwise
orthogonal. The orthogonal triad v⃗ 1, v⃗ 2, v⃗ 3 is an invariant of the ellipsoid’s
algebraic representations. Algebra does not change the triad: the invariants av⃗ 1,
bv⃗ 2, cv⃗ 3 must somehow be hidden in the equations that represent the ellipsoid.

Algebraic eigenanalysis finds the hidden invariant triad av⃗ 1, bv⃗ 2, cv⃗ 3 from
the ellipsoid’s algebraic equations. Suppose, for instance, that the equation of
the ellipsoid is supplied as

x2 + 4y2 + xy + 4z2 = 16.

A symmetric matrix A is constructed in order to write the equation in the form
X⃗T A X⃗ = 16, where X⃗ has components x, y, z. The replacement equation is9

(
x y z

)  1 1/2 0
1/2 4 0
0 0 4

  x
y
z

 = 16.(11)

It is the 3×3 symmetric matrix A in (11) that is subjected to algebraic eigenanal-
ysis. The matrix calculation will compute the unit semi-axis directions v⃗ 1, v⃗ 2,
v⃗ 3, called the eigenvectors or hidden vectors. The semi-axis lengths a, b, c
are computed at the same time, by finding the eigenvalues or hidden values10

λ1, λ2, λ3, known to satisfy the relations

λ1 =
16

a2
, λ2 =

16

b2
, λ3 =

16

c2
.

For the illustration, the football dimensions are a = 2, b = 1.98, c = 4.17. Details
of the computation are delayed until page 711.

9Multiply matrices to verify this statement. Halving of the entries corresponding to cross-
terms generalizes to any ellipsoid.

10The terminology hidden arises because neither the semi-axis lengths nor the semi-axis di-
rections are revealed directly by the ellipsoid equation.
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Ellipse and Eigenanalysis

An ellipse equation in standard form is λ1u
2 + λ2v

2 = 1, where λ1 = 1/a2,
λ2 = 1/b2 are expressed in terms of the semi-axis lengths a, b. The expression
λ1u

2+λ2v
2 is called a quadratic form. The study of the ellipse λ1u

2+λ2v
2 = 1

is equivalent to the study of the quadratic form equation

r⃗TDr⃗ = 1, where r⃗ =

(
u
v

)
, D =

(
λ1 0
0 λ2

)
.

Cross-terms. An ellipse may be represented by an equation in a xy-coordinate
system having a cross-term xy, e.g., 4x2 + 8xy + 10y2 = 5. The expression
4x2 + 8xy + 10y2 is again called a quadratic form. Calculus courses provide
methods to eliminate the cross-term and represent the equation in standard form,
by a rotation by angle θ of the xy-system into the uv-system:(

u
v

)
= R

(
x
y

)
, R =

(
cos θ sin θ

− sin θ cos θ

)
.

Eigenanalysis computes angle θ through the columns of R, which are the unit
semi-axis directions v⃗ 1, v⃗ 2 for the ellipse 4x2 +8xy+10y2 = 5. If the quadratic
form 4x2 + 8xy + 10y2 is represented as r⃗T A r⃗ , then

r⃗ =

(
x
y

)
, A =

(
4 4
4 10

)
, R =

1√
5

(
1 −2
2 1

)
,

λ1 = 12, v⃗ 1 =
1√
5

(
1
2

)
, λ2 = 2, v⃗ 2 =

1√
5

(
−2
1

)
.

Ellipse equations. There are two coordinate systems, the xy-system and the
rotated uv-system. The equations in each system, each divided by 5:

4
5x

2 + 8
5xy + 2y2 = 1,

2
5u

2 + 12
5 v

2 = 1.
(12)

The rotation relation

(
u
v

)
= R

(
x
y

)
is the set of equations

{
u = = 1√

5
x− 2√

5
y,

v = = 2√
5
x+ 1√

5
y,

(13)

which upon substitution into the uv-equation in (12) gives

2

5

(
1√
5
x− 2√

5
y

)2

+
12

5

(
2√
5
x+

1√
5
y

)2

= 1.

The reader can verify that this is the first equation in (12).
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Rotation matrix angle θ. The components of unit eigenvector v⃗ 1 can be used
to determine θ = −63.4◦:(

cos θ
− sin θ

)
=

1√
5

(
1
2

)
or

{
cos θ = 1√

5
,

− sin θ = 2√
5
.

The interpretation of angle θ: rotate the orthonormal basis v⃗ 1, v⃗ 2 by angle
θ = −63.4◦ in order to obtain the standard unit basis vectors ı⃗ , ȷ⃗ . Calculus texts
might discuss only the inverse rotation, where x, y are given in terms of u, v.
In these references, θ is the negative of the value given here, due to a different
geometric viewpoint.11

Semi-axis lengths. The lengths a ≈ 1.55, b ≈ 0.63 for the ellipse 4x2 + 8xy +
10y2 = 5 are computed from the eigenvalues λ1 = 12, λ2 = 2 of matrix A by the
equations

λ1

5
=

1

a2
,

λ2

5
=

1

b2
.

Geometry. The ellipse 4x2 + 8xy + 10y2 = 5 is completely determined by the
orthogonal semi-axis vectors av⃗ 1, bv⃗ 2. The rotation R is a rigid motion mapping
xy-plane vectors av⃗ 1, bv⃗ 2 into uv-plane vectors a⃗ı, bȷ⃗.

The θ-rotation R maps 4x2+8xy+10y2 = 5 into the uv-equation λ1u
2+λ2v

2 = 5,

where λ1, λ2 are the eigenvalues of A. To see why, let r⃗ =

(
u
v

)
, s⃗ =

(
x
y

)
in the

equation r⃗ = Rs⃗ . Then r⃗TAr⃗ = s⃗T (RTAR)⃗s . Using RTR = I gives R−1 = RT

and RTAR = diag(λ1, λ2). Finally, r⃗
TAr⃗ = λ1u

2 + λ2v
2.

Orthogonal Triad Computation

Let’s compute the semiaxis directions v⃗ 1, v⃗ 2, v⃗ 3 for the ellipsoid x2+4y2+xy+
4z2 = 16. To be applied is Theorem 9.3. As explained on page 709, the starting
point is to represent the ellipsoid equation as a quadratic form W⃗TAW⃗ = 16,
where the symmetric matrix A and vector W⃗ are defined by

A =

 1 1
2 0

1
2 4 0
0 0 4

 , W⃗ =

 x
y
z

 .

College algebra. TheCharacteristic Polynomial det(A−λI) = 0 determines
the eigenvalues or hidden values of the matrix A. By cofactor expansion, this
polynomial equation is

(4− λ)((1− λ)(4− λ)− 1/4) = 0

with roots 4, 5/2 +
√
10/2, 5/2−

√
10/2.

11Rod Serling, author and playwright for the SciFi series The Twilight Zone, enjoyed the view
from the other side.
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Eigenpairs. It will be shown that three eigenpairs are

λ1 = 4, x⃗ 1 =

 0
0
1

 ,

λ2 =
5 +

√
10

2
, x⃗ 2 =

 √
10− 3
1
0

 ,

λ3 =
5−

√
10

2
, x⃗ 3 =

 √
10 + 3
−1
0

 .

The vector norms of the eigenvectors are given by ∥x⃗ 1∥ = 1, ∥x⃗ 2∥ =
√
20 + 6

√
10,

∥x⃗ 3∥ =
√

20− 6
√
10. The orthonormal semi-axis directions v⃗ k = x⃗k/∥x⃗k∥,

k = 1, 2, 3, are then given by the formulas

v⃗ 1 =

 0
0
1

 , v⃗ 2 =


√
10−3√

20−6
√
10

1√
20−6

√
10

0

 , v⃗ 3 =


√
10+3√

20+6
√
10

−1√
20+6

√
10

0

 .

Eigenpair Details.

⟨A− λ1I, 0⃗⟩ =

 1− 4 1/2 0 0
1/2 4− 4 0 0
0 0 4− 4 0


≈

 1 0 0 0
0 1 0 0
0 0 0 0

 Used Toolkit rules combination, multiply
and swap. Found rref.

⟨A− λ2I, 0⃗⟩ =

 −3−
√
10

2
1
2 0 0

1
2

3−
√
10

2 0 0

0 0 3−
√
10

2 0


≈

 1 3−
√
10 0 0

0 0 1 0
0 0 0 0

 Toolkit rules applied.
Found rref.

⟨A− λ3I, 0⃗⟩ =

 −3+
√
10

2
1
2 0 0

1
2

3+
√
10

2 0 0

0 0 3+
√
10

2 0


≈

 1 3 +
√
10 0 0

0 0 1 0
0 0 0 0

 Toolkit rules applied.
Found rref.
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Solving the corresponding reduced echelon systems gives the preceding formulas
for the eigenvectors x⃗ 1, x⃗ 2, x⃗ 3. The equation for the ellipsoid is λ1X

2 +λ2Y
2 +

λ3Z
2 = 16, where the multipliers of the square terms are the eigenvalues of A

and X, Y , Z define the new coordinate system determined by the eigenvectors
of A. This equation can be re-written in the form X2

a2
+ Y 2

b2
+ Z2

c2
= 1, provided

the semi-axis lengths a, b, c are defined by the relations a2 = 16/λ1, b
2 = 16/λ2,

c2 = 16/λ3. After computation, a = 2, b = 1.98, c = 4.17.

Proofs, Methods and Details

Eigenpairs of (1), Telephone Carriers:
To be computed are the eigenvalues λ and eigenvectors v⃗ for the 3× 3 matrix

A =
1

10

 5 4 0
3 5 3
2 1 7

 .

The eigenpairs are (1, v⃗ 1) ,
(
1
2 , v⃗ 2

)
,
(
1
5 , v⃗ 3

)
where

v⃗ 1 =

 12
15
13

 , v⃗ 2 =

 −1
0
1

 , v⃗ 3 =

 −4
3
1

 .(14)

Eigenvalues. The roots λ = 1, 1/2, 1/5 of the characteristic equation det(A − λI) = 0
are found by these details:

0 = det(A− λI)

=

∣∣∣∣∣∣
.5− λ .4 0
.3 .5− λ .3
.2 .1 .7− λ

∣∣∣∣∣∣
=

1

10
− 8

10
λ+

17

10
λ2 − λ3 Expand by cofactors.

= − 1

10
(λ− 1)(2λ− 1)(5λ− 1) Factor the cubic.

The factorization was found by long division of the cubic by λ − 1, the idea born from
the fact that 1 is a root and therefore λ− 1 is a factor, by the Factor Theorem of college
algebra. The root λ = 1 was discovered from the Rational Root theorem of college
algebra.12

Eigenpairs. To each eigenvalue λ = 1, 1/2, 1/5 corresponds one rref calculation, to
find the eigenvectors paired to λ. The three eigenvectors are given by (2). The details:

Eigenvalue λ = 1.

A− (1)I =

 .5− 1 .4 0
.3 .5− 1 .3
.2 .1 .7− 1


≈

 −5 4 0
3 −5 3
2 1 −3

 Multiply rule, multiplier=10.

12A rational root x of anx
n + · · ·+ a0 = 0 is a rational factor of a0/an.
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≈

 0 0 0
3 −5 3
2 1 −3

 Combination rule twice.

≈

 0 0 0
1 −6 6
2 1 −3

 Combination rule.

≈

 0 0 0
1 −6 6
0 13 −15

 Combination rule.

≈

 0 0 0
1 0 − 12

13
0 1 − 15

13

 Multiply rule and combination rule.

≈

 1 0 − 12
13

0 1 − 15
13

0 0 0

 Swap rule.

= rref(A− (1)I)

An equivalent reduced echelon system is x − 12z/13 = 0, y − 15z/13 = 0. The free
variable assignment is z = t1 and then x = 12t1/13, y = 15t1/13.

An eigenvector can be selected as the partial derivative on variable t1 across the general
solution x = 12t1/13, y = 15t1/13, z = t1 (equivalent here to setting t1 = 1). This
computation gives eigenvector x = 12/13, y = 15/13, z = 1.

An eigenvector can be multiplied by a constant c ̸= 0 to obtain another eigenvector. To
eliminate fractions in the answer, the practice is to multiply by an integer c to eliminate
all fractions. Choose constant c = 13 to obtain eigenvector x = 12, y = 15, z = 13.

Eigenvalue λ = 1/2.

A− (1/2)I =

 .5− .5 .4 0
.3 .5− .5 .3
.2 .1 .7− .5


≈

 0 4 0
3 0 3
2 1 2

 Multiply rule, factor=10.

≈

 0 1 0
1 0 1
0 0 0

 Combination and multiply rules.

= rref(A− .5I)

An eigenvector is found from the equivalent reduced echelon system y = 0, x+ z = 0 to
be x = −1, y = 0, z = 1.

Eigenvalue λ = 1/5.

A− (1/5)I =

 .5− .2 .4 0
.3 .5− .2 .3
.2 .1 .7− .2


≈

 3 4 0
1 1 1
2 1 5

 Multiply rule.
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≈

 1 0 4
0 1 −3
0 0 0

 Combination rule.

= rref(A− (1/5)I)

An eigenvector is found from the equivalent reduced echelon system x+4z = 0, y−3z = 0
to be x = −4, y = 3, z = 1.

An answer check in maple:

with(LinearAlgebra):

A:=(1/10)*Matrix([[5,4,0],[3,5,3],[2,1,7]]);

B:=A-lambda*IdentityMatrix(3);

DD,P:=Eigenvectors(A);

factor(Determinant(B));

Proof of Theorem 9.12, Stochastic Matrix Properties:
(a)

∑n
i=1 yi =

∑n
i=1

∑n
j=1 aijxj =

∑n
j=1 (

∑n
i=1 aij)xj =

∑n
j=1(1)xj = 1.

(b) Entry j of AT v⃗ is given by
∑n

i=1(aij)(1) = column sum = 1.

(c) The determinant rule det(BT ) = det(B) applied to B = A − λI implies A and
AT have the same eigenvalues. Apply (b) to verify that A has eigenvalue 1. Any other
root λ of |A − λI| = 0 is also a root of |AT − λI| = 0 with corresponding eigenvector
x⃗ satisfying AT x⃗ = λx⃗ . Because x⃗ ̸= 0⃗ , then x⃗ has a component xj with largest
magnitude |xj | > 0. Isolate index j across equation λx⃗ = AT x⃗ , then divide by |xj |, to
obtain λ =

∑n
i=1 aij

xi

xj
. Because aji ≥ 0 and 0 ≤

∣∣∣ xi

xj

∣∣∣ ≤ 1, then |λ| ≤ 1, because

|λ| ≤
n∑

i=1

aij

∣∣∣∣xi

xj

∣∣∣∣ ≤ n∑
i=1

(aij)(1) = column sum = 1.

Proof of Theorem 9.13, Perron-Frobenius:13

Proof of (a)

Definition 9.6 (Positive Matrix)
Notation A > 0 means all aij > 0. Notation A ≤ B means aij ≤ bij , also written B ≥ A.

Definition 9.7 (Max, Min and Ones Matrices)
Matrix maxr(A) (resp. minr(A)) is obtained from A by replacing each entry aij by the
maximum (resp. minimum) element of row i. Symbol δ = mini,j aij is the least element in
matrix A. Matrix O is the n× n matrix of all ones.

The proof is organized as five lemmas. Assume throughout that A > 0 is stochastic with
least element δ, B ≥ 0 and O is the matrix of all ones.

Lemma 1a. If A,B are stochastic, then BA is stochastic.

Lemma 2a. minr(B) ≤ minr(BA) ≤ BA ≤ maxr(BA) ≤ maxr(B).

13Perron-Frobenius theory is a basis for the Google Search PageRank algorithm.
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Proof: The maximum along row i of C = BA is some cij =
∑n

k=1 bikakj . Let M
denote the maximum along row i of B. Because columns of A sum to 1, then cij =∑n

k=1 bikakj ≤
∑n

k=1 Makj = M . Then BA ≤ maxr(BA) ≤ maxr(B). Details for
inequality minr(B) ≤ minr(BA) ≤ BA are similar.

Lemma 3a. maxr(BA)−minr(BA) ≤ (1− δ) (maxr(B)−minr(B)).

Proof: Let C = BA have row i maximum at cij and row minimum at cik. Then all
elements in row i of matrix maxr(BA) − minr(BA) have value S = cij − cik. Let M
(resp. m) be the common entry along row i of maxr(B) (resp. minr(B)). We’ll verify
S ≤ (1− δ) (M −m), which proves the lemma.

Re-write S = cij−cik =
∑n

p=1 bipapj−
∑n

p=1 bipapk =
∑n

p=1 bip(apj−apk). Let p1, . . . , pr
be the set of indices p such that apj − apk > 0 and let q1, . . . , qs be the set of indices
q such that aqj − aqk < 0. Indices p that satisfy apj − apk = 0 contribute zero to S.
In cases r = 0 and/or s = 0 we have S ≤ 0, so the conclusion follows. Henceforth,
assume r ≥ 1 and s ≥ 1. The column sums of A are 1, which implies for instance∑r

ℓ=1 apℓj +
∑s

ℓ=1 aqℓj = 1. We estimate:

S =
∑n

p=1 bip(apj − apk)

=
∑r

ℓ=1 bip(apℓj − apℓk) +
∑s

ℓ=1 bip(aqℓj − aqℓk)
≤ M

∑r
ℓ=1(apℓj − apℓk) +m

∑s
ℓ=1(aqℓj − aqℓk)

= M (1−
∑s

ℓ=1 aqℓj − 1 +
∑s

ℓ=1 aqℓk) +m
∑s

ℓ=1(aqℓj − aqℓk)
= (M −m) (−

∑s
ℓ=1 aqℓj +

∑s
ℓ=1 aqℓk)

≤ (M −m) (−sδ + 1)
≤ (M −m) (−δ + 1) .

Lemma 4a. maxr(A
k+1)−minr(A

k+1) ≤ (1− δ)kO.

Proof: Let B = Ak and apply Lemmas 1a and 3a. Then maxr(A
k+1)−minr(A

k+1) ≤
(1− δ)

(
maxr(A

k)−minr(A
k)
)
. Induction on k implies the result, because maxr(A)−

minr(A) ≤ O.

Lemma 5a. There exists a vector w⃗ with all positive components such that limk→∞ Ak =

⟨w⃗ |w⃗ | · · · |w⃗⟩. Then Aw⃗ = w⃗ and (1, w⃗ ) is an eigenpair.14

Proof: The preceding lemmas and the calculus squeeze theorem for limits imply that
maxr(A

k) and minr(A
k) converge as k → ∞ to some matrix P . Because maxr(A

k)
has identical elements in each row, then so does P . Therefore, the columns of P are
the same vector w⃗ . Take limits across inequality minr(A

k) ≥ δO to prove w⃗ > 0⃗ .
Vector w⃗ equals P u⃗ , where u⃗ = column 1 of the identity matrix. Then w⃗ = P u⃗ =
limk→∞ Ak+1u⃗ = A

(
limk→∞ Aku⃗

)
= Aw⃗ , which is the eigenpair equation w⃗ = Aw⃗ .

Proof of (b)
Eigenpair equation v⃗ = Av⃗ is multiplied repeatedly by A to give v⃗ = Ak+1v⃗ . Take the

limit using part (a): v⃗ = P v⃗ , where P = ⟨w⃗ |w⃗ | · · · |w⃗⟩. Then v⃗ = P v⃗ = (
∑n

i=1 vi) w⃗ .

Proof of (c)
Consider an eigenpair (λ, v⃗ ). Apply A across λv⃗ = Av⃗ to obtain λkv⃗ = Akv⃗ . Use part
(a) to take the limit as k → ∞. Then, as in part (b), limk→∞ λkv⃗ = (

∑n
i=1 vi) w⃗ . This

limit exists only in case |λ| ≤ 1. If |λ| = 1, then λ = eiθ for some angle θ. The limit fails
to exist unless θ = 0 modulo 2π. Therefore, λ = 1 and v⃗ = (

∑n
i=1 vi) w⃗ .

Proof of (d)
Let’s suppose some vj = 0, in order to reach a contradiction. Component j of the identity

14The numerical power method can be used to approximate eigenvector w⃗ .
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Av⃗ = λv⃗ says that
∑n

k=1 ajkvk = 0. Because v⃗ ̸= 0⃗ , then at least one vk ̸= 0. Because
ajk > 0, then

∑n
k=1 ajkvk > 0, a contradiction.

Perron-Frobenius proof completed. ■

Exercises 9.2 �

Discrete Dynamical Systems
Define matrix A via equation

y⃗ =
1

10

 5 1 0
3 4 3
2 5 7

 x⃗(15)

1. Find eigenpair packages of A.
Answers:

D=

 0.5 0 0
0 0.1 0
0 0 1


P=

 −1 1 1
0 −4 5
1 3 9


2. Explain: A is a transition matrix.15

3. Assume y⃗ = Ax⃗ has period one year.
Find the system state after two years.

4. Explain: Anx⃗ is the system state after
n periods.

Market Shares
Define matrix A via equation

y⃗ =
1

10

(
5 4 0
3 5 3
2 1 7

)
x⃗(16)

5. Find with software the eigenpairs of A
given by equation 2.

6. Compute A2, A3, A4 using software.
Predict the limit of An as n approaches
infinity.

7. Compute with software (rounded)

A10=

(
.30 .30 .30
.37 .38 .37
.32 .32 .33

)
(17)

8. Let x⃗= 1
3

(
1
1
1

)
. Compute

A10x⃗ =

(
0.30
0.37
0.33

)
(rounded)

in two ways by calculator:
(1) Fourier replacement (3).
(2) Matrix multiply using (17).

Stochastic Matrices
Reference: Perron-Frobenius proof on page
715.

9. Establish the identity |A−λI| = |AT −
λI|.

10. Explain why A and AT have the same
eigenvalues but not necessarily the same
eigenvectors.

11. Verify maxr(A) = ⟨w⃗ |w⃗ | · · · |w⃗ ⟩,
where w⃗ has components wi =
max{aij , 1 ≤ j ≤ n}.

12. Verify maxr(A) = DO, where D is the
diagonal matrix of row maxima and O
is the matrix of all ones.

Perron-Frobenius Theorem
Let A > 0 be n× n stochastic with unique
eigenpair (1, w⃗ ), all wi > 0 and

∑n
i=1 wi =

1. Assume v⃗ ≥ 0⃗ ,
∑n

i=1 vi = 1 and
δ = mini,j aij .

13. Apply inequality minr(A
n)v⃗ ≤ Anv⃗ ≤

maxr(A
n)v⃗ to prove limn→∞ Anv⃗ =(∑n

i=1 vi
)
w⃗ = w⃗ .

14. Verify Euclidean norm inequality
∥Ak+1v⃗ − w⃗∥ ≤

√
n (1− δ)k

Weierstrass Proof
These exercises establish existence of an
eigenpair (1, v⃗ ) for stochastic matrix A
having only nonnegative entries.

15Perron-Frobenius theory extensions in the literature apply to transition matrices. See the
Weierstrass Proof exercises.
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Weierstrass Compactness Theorem

A sequence of vectors {v⃗ i}∞i=1 contained in a

closed, bounded set K in Rn has a subsequence

converging in the vector norm of Rn to some

vector v⃗ in K.

Define set K to be all vectors v⃗ with non-
negative components adding to 1. Let v⃗ 0

be any element of K. Assume stochas-
tic A with aij ≥ 0 and define v⃗N =
1
N

∑N−1
j=0 Ajv⃗ 0.

15. Verify K is closed and bounded in Rn.
Then prove λx⃗ + (1 − λ)y⃗ is in K for
0 ≤ λ ≤ 1 and x⃗ , y⃗ in K.

16. Prove identity
v⃗N+1 = λv⃗N + (1− λ)AN v⃗ 0

where λ = N
N+1 and then prove by in-

duction that v⃗N is in K.

17. Verify all hypotheses in the Weierstrass
theorem applied to {v⃗N}∞N=0. Apply-
ing the theorem produces a subsequence
{v⃗Np}∞p=1 limiting to some v⃗ in K.

18. Verify identity
v⃗N −Av⃗N = 1

N (v⃗ 0 −AN v⃗ 0).

19. Explain why Av⃗ = limp→∞ Av⃗Np .
Then prove v⃗ = Av⃗ .

20. The claimed eigenpair (1, v⃗ ) has been
found, provided v⃗ ̸= 0⃗ . Explain why
v⃗ ̸= 0⃗ .

Coupled Systems
Find the coefficient matrix A. Identify as
coupled or uncoupled and explain why.

21. x′ = 2x+ 3y, y′ = x+ y

22. x′ = 3y, y′ = x

23. x′ = 3x, y′ = 2y

24. x′ = 3x, y′ = 2y, z′ = z

Solving Uncoupled Systems
Solve for the general solution.

25. x′ = 3x, y′ = 2y

26. x′ = 3x, y′ = 2y, z′ = z

Change of Coordinates
Given the change of coordinates y⃗ = Ax⃗ ,
find the matrix B for the inverse change
x⃗ = By⃗ .

27. y⃗ =

(
1 0 0
1 0 1
0 1 0

)
x⃗

28. y⃗ =

(
−1 1 0
1 1 0
0 0 1

)
x⃗

Constructing Coupled Systems
Given the uncoupled system and change of
coordinates y⃗ = P x⃗ , find the coupled sys-
tem.

29. x′
1 = 2x1, x

′
2 = 3x2, P =

(
1 1
2 −1

)
30. x′

1 = x1, x
′
2 = −x2, P =

(
1 −1
2 1

)
Uncoupling a System
Change the given coupled system into an
uncoupled system using the eigenanalysis
change of variables y⃗ = P x⃗ .

31. x′
1 = 2x1, x

′
2 = x1 + x2, x

′
3 = x3

Ans: P =

(
1 0 0
1 0 1
0 1 0

)
, y′1 = 2y1, y

′
2 = y2,

y′3 = y3

32. x′
1 = x1 + x2, x

′
2 = x1 + x2, x

′
3 = x3

Ans: P =

(
−1 1 0
1 1 0
0 0 1

)
, y′1 = 0, y′2 = 2y2,

y′3 = y3

Solving Coupled Systems
Report the answers for x(t), y(t).

33. x′ = −x− 2y, y′ = −4x+ y

34. x′ = 8x− y, y′ = −2x+ 7y

Eigenanalysis and Footballs
The exercises study the ellipsoid
17x2 + 8y2 − 12xy + 80z2 = 80.

35. Let A =

(
17 −6 0
−6 8 0
0 0 80

)
. Expand equa-

tion W⃗TAW⃗ = 80, where W⃗ has com-
ponents x, y, z.
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36. Find the eigenpairs of

A =

(
17 −6 0
−6 8 0
0 0 80

)
.

37. Verify the semi-axis lengths 4, 2, 1.

38. Verify that the ellipsoid has semi-axis
unit directions0
0
1

 , 1√
5

1
2
0

 , 1√
5

−2
1
0


The Ellipse and Eigenanalysis
The exercises study the ellipse
2x2 + 4xy + 5y2 = 24.

39. Let A =

(
2 2
2 5

)
. Expand equation

W⃗TAW⃗ = 24, where W⃗ =

(
x
y

)
.

40. Find the eigenpairs of A =

(
2 2
2 5

)
.

41. Verify the semi-axis lengths 2, 2
√
6.

42. Verify that the ellipse has semi-axis
unit directions
1√
5

(
1
2

)
, 1√

5

(
−2
1

)
.

Orthogonal Triad Computation
The exercises fill in details from page 711.
The ellipsoid equation:
x2+4y2+xy+4z2=16 or x⃗TAx⃗=16,

A =

 1 1
2 0

1
2 4 0
0 0 4


43. Find the characteristic equation of A.

Then verify the roots are 4, 5/2 +√
10/2, 5/2−

√
10/2.

44. Show the steps from rref to second
eigenvector x⃗2:

rref =

 1 3−
√
10 0

0 0 1
0 0 0

,

x⃗2 =

√
10−3
1
0


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Diagonalization and Jordan’s Theorem

A system of differential equations x⃗ ′ = Ax⃗ can be transformed to an uncoupled
system y⃗ ′ = diag(λ1, . . . , λn)y⃗ by a change of variables x⃗ = P y⃗ if and only if A
is diagonalizable and P is an invertible matrix of independent eigenvectors of
A from eigenpairs (λk, v⃗ k), 1 ≤ k ≤ n.

If A fails to be diagonalizable, then eigenanalysis does not help. Jordan’s theorem
9.14 is a possible generator of a change of coordinates x⃗ = P y⃗ . System y⃗ ′ = T y⃗
is not uncoupled, but triangular: the linear integrating factor method applies to
solve the triangular system, details forthcoming.

The sad truth about Jordan’s theorem: matrix P has no algorithm for construc-
tion. The matrix P used as replacement is a matrix of generalized eigenvec-
tors constructed from an algorithm for the Jordan normal form page ??. See
page ?? for a maple example.

Theoretical existence of P for a change of variables may be enough for proofs.
Computation requires a formula for P . What has emerged historically are math-
ematical algorithms to solve system x⃗ ′ = Ax⃗ independent of both Jordan’s theo-
rem and the Jordan normal form page ??. The foundation for computer algebra
algorithms and low dimensional hand algorithms is the Cayley-Hamilton theorem
9.16 on page 721.

Theorem 9.14 (Jordan’s theorem)
Any n× n matrix A can be represented in the form

A = PTP−1

where P is invertible and T is upper triangular. The diagonal entries of T are
eigenvalues of A.

Proof on page 740.

Theorem 9.15 (Jordan’s Extension)
Any n× n matrix A can be represented in the block triangular form

A = PTP−1, T = diag(T1, . . . , Tk),

where P is invertible and each matrix Ti is upper triangular with diagonal entries
equal to a single eigenvalue of A.
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Remarks. An induction proof of the theorem can be based upon Jordan’s Theorem
9.14. No proof is supplied. The theorem is presented again in Proposition 9.15 page 720
as a special case of the Jordan decomposition A = PJP−1, in which J is the Jordan
Form of n × n matrix A. Because the Jordan form is a triangular matrix, then T = J
gives an algorithm for generation of columns in matrix P . Jordan form is largely used
in proofs and theoretical investigations and rarely in computation.
Computer algebra systems can find matrices J and P in the Jordan form of matrix A.
With limitations, there is a constructible matrix P for Jordan’s two theorems 9.14 and
9.15. See page ?? for a maple example.

Cayley-Hamilton Identity

A celebrated and deep result for powers of matrices was discovered by Cayley
and Hamilton (see Birkhoff–MacLane [?]), which says that an n × n matrix A
satisfies its own characteristic equation. More precisely:

Theorem 9.16 (Cayley-Hamilton)
Let det(A− λI) be expanded as the nth degree polynomial

p(λ) =
n∑

j=0

cjλ
j ,

for some coefficients c0, . . . , cn−1 and cn = (−1)n. Then A satisfies the equation
p(λ) = 0, that is,

p(A) ≡
n∑

j=0

cjA
j = 0.

In factored form in terms of the eigenvalues {λj}nj=1 (duplicates possible), the matrix
equation p(A) = 0 can be written as

(−1)n(A− λ1I)(A− λ2I) · · · (A− λnI) = 0.

Proof on page 741.

Solving Block Triangular Differential Systems

A matrix differential system y⃗ ′(t) = T y⃗ (t) with T block upper triangular splits
into scalar equations which can be solved by elementary methods for first order
scalar differential equations. To illustrate, consider the system

y′1 = 3y1 + x2 + y3,
y′2 = 3y2 + y3,
y′3 = 2y3.

The techniques that apply are the growth-decay formula for u′ = ku and the
integrating factor method for u′ = ku + p(t). Working backwards from the last
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equation with back-substitution gives

y3 = c3e
2t,

y2 = c2e
3t − c3e

2t,
y1 = (c1 + c2t)e

3t.

What has been said here applies to any triangular system y⃗ ′(t) = T y⃗ (t), in order
to write an exact formula for the solution y⃗ (t).

If A is an n× n matrix, then Jordan’s theorem gives A = PTP−1 with T block
upper triangular and P invertible. The change of variable x⃗ (t) = P y⃗ (t) changes
x⃗ ′(t) = Ax⃗ (t) into the block triangular system y⃗ ′(t) = T y⃗ (t).

There is no special condition on A, to effect the change of variable x⃗ (t) = P y⃗ (t).
The solution x⃗(t) of x⃗ ′(t) = Ax⃗ (t) is a product of the invertible matrix P and
a column vector y⃗ (t); the latter is the solution of the block triangular system
y⃗ ′(t) = T y⃗ (t), obtained by growth-decay and integrating factor methods.

The importance of this idea is to provide a theoretical method for solving any
system x⃗ ′(t) = Ax⃗ (t).

Matrices P and T in Jordan’s extensionA = PTP−1 can be found using computer
algebra systems. See page ?? for a maple example in which T is the Jordan
normal form of A and P is the matrix of generalized eigenvectors.

Symmetric Matrices and Orthogonality

A symmetric matrix A is defined by the identity AT = A. In applications the
symmetric matrix A might be obtained as A = BTB for some non-square matrix
B. Studied here is the eigenanalysis of symmetric matrices, which reproduces
AP = PD from classical eigenanalysis with a difference: the eigenvectors in
columns of P are of unit length, meaning ∥x⃗∥ = 1, and also orthogonal,
meaning dot product zero or 90 degrees apart. See Chapter 5 Section 1.

Definition 9.8 (Unitize)
A vector x⃗ is said to be unitized into vector y⃗ if y⃗ = cx⃗ for some scalar c and
∥y⃗∥ = 1.

An eigenpair (λ, x⃗ ) of A can always be selected so that ∥x⃗∥ = 1: replace eigenvector
x⃗ by 1

∥x⃗∥ x⃗ .

Theorem 9.17 (Orthogonality of Eigenvectors)
Assume that n × n matrix A is symmetric, AT = A. If (α, x⃗ ) and (β, y⃗ ) are
eigenpairs of A with α ̸= β, then x⃗ and y⃗ are orthogonal: x⃗ · y⃗ = 0. Proof on page
741.

Theorem 9.18 (Real Eigenvalues)
If AT = A, then all eigenvalues of A are real. Consequently, matrix A has n real
eigenvalues counted according to multiplicity. Proof on page 741.

722



9.3 Advanced Topics in Linear Algebra

Proposition 9.1 (Independence of Orthogonal Sets) Let v⃗ 1, . . . , v⃗ k be a set
of nonzero orthogonal vectors. Then this set is independent.

Duplicated by the orthogonal vector test Chapter 5 Section 3, Theorem 5.33.

The Gram-Schmidt process

The eigenvectors of a symmetric matrix A may be constructed to be orthogo-
nal. First of all, observe that eigenvectors corresponding to distinct eigenvalues
are orthogonal by Theorem 9.17. It remains to construct from k independent
eigenvectors x⃗ 1, . . . , x⃗k, corresponding to a single eigenvalue λ, another set of
independent eigenvectors y⃗ 1, . . . , y⃗ k for λ which are pairwise orthogonal. The
idea, due to Gram-Schmidt, applies to any set of k independent vectors.

Theorem 9.19 (Gram-Schmidt)
Let x⃗ 1, . . . , x⃗k be independent n-vectors. The set of vectors y⃗ 1, . . . , y⃗ k constructed
below as linear combinations of x⃗ 1, . . . , x⃗k are pairwise orthogonal, independent
and span(x⃗ 1, . . . , x⃗k) = span(y⃗ 1, . . . , y⃗ k).

y⃗ 1 = x⃗ 1

y⃗ 2 = x⃗ 2 −
x⃗ 2 · y⃗ 1

y⃗ 1 · y⃗ 1
y⃗ 1

y⃗ 3 = x⃗ 3 −
x⃗ 3 · y⃗ 1

y⃗ 1 · y⃗ 1
y⃗ 1 −

x⃗ 3 · y⃗ 2

y⃗ 2 · y⃗ 2
y⃗ 2

...

y⃗ k = x⃗k −
x⃗k · y⃗ 1

y⃗ 1 · y⃗ 1
y⃗ 1 − · · · − x⃗k · y⃗ k−1

y⃗ k−1 · y⃗ k−1
y⃗ k−1

Proof on page 742.

Example 9.14 (Gram-Schmidt on Four Eigenvectors)

Let (−1, v⃗ 1), (2, v⃗ 2), (2, v⃗ 3), (2, v⃗ 4) be eigenpairs of a 4× 4 symmetric matrix A.
Apply the Gram-Schmidt process to find 4 pairwise orthogonal eigenvectors of A.

Solution: Because eigenvector v⃗ 1 is for eigenvalue 1 and the others are for eigenvalue 2,
then Theorem 9.17 implies that v⃗ 1 is orthogonal to v⃗ 2, v⃗ 3, v⃗ 4. Eigenvectors v⃗ 2, v⃗ 3, v⃗ 4

belong to eigenvalue λ = 2, but they are not assumed orthogonal. The Gram-Schmidt
process applied to eigenvectors v⃗ 2, v⃗ 3, v⃗ 4 finds pairwise orthogonal vectors y⃗ 2, y⃗ 3,
y⃗ 4 that are linear combinations of eigenvectors v⃗ 2, v⃗ 3, v⃗ 4. Then y⃗ 2, y⃗ 3, y⃗ 4 are also
eigenvectors for λ = 2. The four eigenvectors v⃗ 1, y⃗ 2, y⃗ 3, y⃗ 4 are pairwise orthogonal, as
required.
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Orthogonal Projection

Reproduced here for reference is the basic material on shadow projection. The
ideas are then extended to obtain the orthogonal projection onto a subspace V
of Rn. Finally, the orthogonal projection formula will be related to the Gram-
Schmidt equations.

The shadow projection of vector X⃗ onto the direction of vector Y⃗ is the number
d defined by

d =
X⃗ · Y⃗
|Y⃗ |

.

The triangle determined by X⃗ and d
Y⃗

|Y⃗ |
is a right triangle.

d

X⃗

Y⃗
Figure 4. Shadow projection d of vector X⃗
onto the direction of vector Y⃗ .

The vector shadow projection of X⃗ onto the line L through the origin in the
direction of Y⃗ is the vector representing the shadow, direction Y⃗ and length d,
defined by

projY⃗ (X⃗) = d
Y⃗

|Y⃗ |
=

X⃗ · Y⃗
Y⃗ · Y⃗

Y⃗ .

Definition 9.9 (One-Dimensional Orthogonal Projection)
Let V be the line through the origin in the direction of nonzero vector Y⃗ . Then

V = span{Y⃗}. Define the orthogonal projection:

ProjV (x⃗ ) = (u⃗ · x⃗ )u⃗ , u⃗ = Y⃗/∥Y⃗∥

Is Definition 9.9 the same as vector shadow projection? Yes. Does the definition
depend on Y⃗ ? No, because of Theorem 9.20 below.

Definition 9.10 (Orthogonal Projection onto a Subspace)
Let subspace V of Rn be spanned by orthonormal vectors u⃗ 1, . . . , u⃗k. Define the
orthogonal projection of vector x⃗ in Rn onto subspace V by the formula (justified
in Theorem 9.20):

ProjV (x⃗ ) =
∑k

j=1(u⃗ j · x⃗ )u⃗ j ,

=
∑k

j=1 vector shadow projection x⃗ onto u⃗ j
(1)
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Theorem 9.20 (Formula ProjV (x⃗ ) is Well-Defined)
Orthogonal projection formula ProjV (x⃗ ) =

∑k
j=1(u⃗ j · x⃗)u⃗ j is independent of the

choice of orthonormal vectors u⃗ 1, . . . , u⃗k that span V .

Proof on page 742

Important: Formula ProjV (x⃗ ) =
∑k

j=1(u⃗ j · x⃗ )u⃗ j requires a basis which is
orthonormal. An orthogonal basis suffices with the shadow projection sum-
mation in (1). Applications might use either formula.

Orthogonal Projection and Gram-Schmidt. Define y⃗ 1, . . . , y⃗ k by the
Gram-Schmidt relations on page 723. Define

u⃗ j = y⃗ j/∥y⃗ j∥

for j = 1, . . . , k. Then Vj−1 = span{u⃗ 1, . . . , u⃗ j−1} is a subspace of Rn of
dimension j − 1 with orthonormal basis u⃗ 1, . . . , u⃗ j−1 and

y⃗ j = x⃗ j −
(
x⃗ j · y⃗ 1

y⃗ 1 · y⃗ 1
y⃗ 1 + · · ·+ x⃗k · y⃗ j−1

y⃗ j−1 · y⃗ j−1
y⃗ j−1

)
= x⃗ j −ProjVj−1

(x⃗ j)

The Gram-Schmidt relations are memorized by the formula

y⃗ j = x⃗ j −
∑
k<j

(vector shadow projection of x⃗ j onto y⃗ k)

Near Point Theorem

Developed here is the characterization of the orthogonal projection of a vector x⃗
onto a subspace V as the unique point v⃗ in V which minimizes ∥x⃗ − v⃗∥, that is,
the point in V which is nearest to x⃗ .

Theorem 9.21 (Orthogonal Projection Properties)
Let subspace V be the span of orthonormal vectors u⃗ 1, . . . , u⃗k.

(a) Each vector v⃗ in V has an orthogonal expansion v⃗ =
∑k

j=1(u⃗ j · v⃗ )u⃗ j .

(b) The orthogonal projection ProjV (x⃗ ) is a vector in V .

(c) Vector w⃗ = x⃗ −ProjV (x⃗) is orthogonal to every vector in V .

(d) Among all vectors v⃗ in V , the minimum value of ∥x⃗ − v⃗∥ is uniquely obtained
by the orthogonal projection v⃗ = ProjV (x⃗ ).

(e) Let n × k matrix A have independent columns that span V . If vector w⃗ is
orthogonal to every vector in V , then AT w⃗ = 0⃗ .

Proof on page 743.
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Theorem 9.22 (Near Point to a Subspace)
Let V be a subspace of Rn and x⃗ a vector not in V . The near point to x⃗ in V is
the orthogonal projection of x⃗ onto V . This point is characterized as the minimum
of ∥x⃗ − v⃗∥ over all vectors v⃗ in the subspace V .

Proof by part (d) of Theorem 9.21.

Theorem 9.23 (Cross Product and Projections)
The cross product a⃗ × b⃗ is a constant multiple of c⃗ −ProjV (⃗c ), where vector c⃗ is

not in V = span{a⃗ , b⃗}.

Proof: The cross product makes sense only in R3. Subspace V is two dimensional when
a⃗ , b⃗ are independent, and Gram-Schmidt applies to find an orthonormal basis u⃗1, u⃗2.
By (c) of Theorem 9.21, the vector c⃗ −ProjV (⃗c) has the same or opposite direction to
the cross product. ■

Linear Least Squares

A primary application of linear least squares is fitting of large data sets to an
equation. Desired is a simple equation which can be used to interpolate or ex-
trapolate missing data items or to find trends in the data.

Example 9.15 (Height-Weight Data)
Verify that slope m = 61.27 and intercept b = −39, 05 best fit equation y = mx+ b
to the 15 data items in Table 4, where x=height, y=weight. Graphic in Figure 5.

The solution is on page 744.

Table 4. Height-Weight Data for 15 women ages 30− 39 years.

Source: The World Almanac and Book of Facts, 1975.

Height (m) 1.47 1.50 1.52 1.55 1.57 1.60 1.63 1.65
Weight (kg) 52.21 53.12 54.48 55.84 57.20 58.57 59.93 61.29

Height (m) 1.68 1.70 1.73 1.75 1.78 1.80 1.83
Weight (kg) 63.11 64.47 66.28 68.10 69.92 72.19 74.46

Figure 5. Best fit
The least squares fit straight line
in blue y = 61.27x− 39.06.
Red dots are the 15 data points
from Table 4.
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Least Squares Normal Equation

Let m× n matrix A and vector b⃗ be given. Assume hereafter that the problem
Ax⃗ = b⃗ has no solution. The discussion will be guided by the unsolvable system{

x+ y = 1,
x+ y = 0.

(2)

System (2) is the special case b∗1 = 1, b∗2 = 0 for system{
x+ y = b∗1,
x+ y = b∗2.

(3)

Least squares chooses two values b∗1, b
∗
2 such that system (3) is solvable for x, y.

The choice requires that substitution of x, y into the original unsolvable equation
(2) gives the least error, in some well-defined sense.

Mathematically, the least error for a trial solution x, y in (5) might be realized
16 by choosing x, y to minimize the vector norm ∥E⃗∥ for error vector

E⃗ =

(
1 1
1 1

)(
x
y

)
−
(
1
0

)
.(4)

Minimization leads to the geometry problem solved in Figure 6. By geometry,
points on the line x + y = 1

2 are half way between the two lines of the original
system. Point x = 1

2 , y = 0 is isolated as a proper candidate for a best solution
to original unsolvable problem (2).

x+ y = 1

x+ y = 0

x+ y = 1
2

Figure 6. Black dot x∗ = 1
2 , y

∗ = 0 is one best solution to system x + y = 1,

x + y = 0. Any point along the red line x + y = 1
2 makes minimum vector norm error

between the two lines x+ y = 1, x+ y = 0.

Warning: The isolated point x = 1
2 , y = 0 does not actually work in the original

equations! The geometrical solution invents one possible solvable replacement

16The expression to minimize is controversial: at the very least, it depends on the intended
application.
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system (3) with best fit to the original unsolvable equations (2):{
x+ y = 1

2 ,

x+ y = 1
2 .

(5)

System (5) has a name:

Definition 9.11 (Normal Equation for Linear Least Squares)
The normal equation for unsolvable problem Ax⃗ = b⃗ is the solvable system

ATAx⃗ = AT b⃗(6)

It is not implied that a solution x⃗ of (6) is also a solution of Ax⃗ = b⃗ : the original
equation is assumed to have no solution.

System (3) has matrix form Ax⃗ = b⃗ ∗. If vector x⃗ solves Ax⃗ = b⃗ ∗, then b⃗ ∗

equals Ax⃗ , which means b⃗ ∗ is a linear combination of the columns of A, or b⃗ ∗

belongs to subspace S = colspace(A). Overloaded symbol x⃗ is not the same as
in equation Ax⃗ = b⃗ : the latter has no solution.

Geometrically, b⃗ ∗ is a specific given vector in S and equation Ax⃗ = b⃗ ∗ can
have infinitely many solutions x⃗ , or just one. Important: the no solution case
has been eliminated from the three possibilities.

Error minimization seeks a best solution x⃗ = x⃗ ∗ to the unsolvable problem
Ax⃗ = b⃗ . Applied literature suggests to find x⃗ = x⃗ ∗ as a minimizer for a function
which measures the error between Ax⃗ and b⃗ .

Proposition 9.2 Ax⃗ = b⃗ ∗ has a solution x⃗ if and only if b⃗ ∗ belongs to subspace
S = colspace(A).

Proposition 9.3 Let x⃗ = x⃗ ∗ achieve the minimum for vector norm ∥Ax⃗−b⃗∥, taken
over all x⃗ in Rn. Then x⃗ = x⃗ ∗ is a best possible solution of unsolvable equation
Ax⃗ = b⃗ , because it minimizes the vector norm error ∥Ax⃗ − b⃗∥ over all possible x⃗ .

Theorem 9.24 (Least Squares Solution of Unsolvable Ax⃗ = b⃗)
Let x⃗ ∗ satisfy

∥Ax⃗ ∗ − b⃗∥ = min
x⃗

∥Ax⃗ − b⃗∥

Then x⃗ = x⃗ ∗ is a solution of Normal Equation ATAx⃗ = AT b⃗ . Vector x⃗ = x⃗ ∗ is
a best possible solution for unsolvable equation Ax⃗ = b⃗ .
Proof on page 743.
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Data Fitting

Assume given experimentally measured values y1, y2, . . . , ym taken at indepen-
dent variable values x1, x2, . . . , xm. Data fitting invents a model equation of the
form17

y =

n∑
j=1

cjfj(x).

The invented functions fj will have additional requirements, for example they
could be polynomials 1, x, x2, . . . or trigonometric functions, e.g., a model moti-
vated by truncation of Taylor series or Fourier series. The problem: find values
for the constants c1, . . . , cn.

Ideally, the model equation fits the data exactly. What actually holds is an exact
equation with error terms E1, . . . , Em:

yi =
n∑

j=1

cjfj(xi) + Ej

Linear least squares minimizes the sum of squares of the errors:

min

m∑
j=1

|Ej |2 over all choices of c1, . . . , cn

Minimization is assumed to return special values c∗1, . . . , c
∗
n giving the best fit.

The predicted model for the data set is then:

y =
n∑

j=1

c∗jfj(x).

The QR Decomposition

Matrix multiply can express Gram-Schmidt formulas as A = QR, where A has
independent columns x⃗ 1, . . . , x⃗n and the columns of Q are the unitized Gram-
Schmidt orthonormal vectors u⃗ 1, . . . , u⃗n.

Definition 9.12 (Orthogonal Matrix)
A matrix Q having pairwise orthogonal columns of unit length is called orthogonal.
Alternatively, QTQ = I. If Q is square, then QQT = I.18

17Statistical experiments might use vector variables. For instance a 3-vector x⃗ with compo-
nents of sex, age and height replaces scalar variable x. Scalars yj could be vectors. Symbol cj
is replaced by symbol βj , these parameters called regressors.

18Non-square matrices with orthonormal columns certainly exist. A warning: terminology
orthonormal matrix usually means the matrix A is square and has orthonormal columns:
ATA = AAT = I.
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Theorem 9.25 (The QR-Decomposition)
Let the m × n matrix A have independent columns x⃗ 1, . . . , x⃗n. Then there is an
upper triangular matrix R with positive diagonal entries and an orthogonal matrix Q
such that

A = QR.

Proof: Let y⃗ 1, . . . , y⃗n be the Gram-Schmidt orthogonal vectors given by relations
on page 723. Define u⃗k = y⃗ k/∥y⃗ k∥ and rkk = ∥y⃗ k∥ for k = 1, . . . , n, and otherwise

rij = u⃗ i · x⃗ j . Let Q = ⟨u⃗1| · · · |u⃗n⟩. Then
x⃗1 = r11u⃗1,
x⃗2 = r22u⃗2 + r21u⃗1,
x⃗3 = r33u⃗3 + r31u⃗1 + r32u⃗2,

...
x⃗n = rnnu⃗n + rn1u⃗1 + · · ·+ rnn−1u⃗n−1.

(7)

It follows from (7) and matrix multiplication that A = QR. The columns of Q have unit
length and they are pairwise orthogonal: Q is orthogonal. ■

Theorem 9.26 (Matrices Q and R in A = QR)
Let m × n matrix A have independent columns x⃗ 1, . . . , x⃗n. Let y⃗ 1, . . . , y⃗n be
the Gram-Schmidt orthogonal vectors from page 723. Define u⃗k = y⃗ k/∥y⃗ k∥. Then
AQ = QR is satisfied by Q = ⟨u⃗ 1| · · · |u⃗n⟩ and

R =


∥y1∥ u⃗ 1 · x⃗ 2 u⃗ 1 · x⃗ 3 · · · u⃗ 1 · x⃗n

0 ∥y2∥ u⃗ 2 · x⃗ 3 · · · u⃗ 2 · x⃗n
...

...
... · · ·

...
0 0 0 · · · ∥yn∥

 .

Proof: Details are contained in the proof of Theorem 9.25 above. ■

Some references cite the diagonal entries as ∥x⃗ 1∥, ∥x⃗⊥
2 ∥, . . . , ∥x⃗⊥

n ∥, where x⃗⊥
j =

x⃗ j − ProjVj−1
(x⃗ j), Vj−1 = span{v⃗ 1, . . . , v⃗ j−1}. Because y⃗ 1 = x⃗ 1 and y⃗ j =

x⃗ j −ProjVj−1
(x⃗ j), the formulas for the entries of R are identical.

Theorem 9.27 (Uniqueness of Q and R)
Let m × n matrix A have independent columns and satisfy the decomposition A =
QR. If Q is m×n orthogonal and R is n×n upper triangular with positive diagonal
elements, then Q and R are uniquely determined.

Proof: The problem is to show that A = Q1R1 = Q2R2 implies R2R
−1
1 = I and

Q1 = Q2. We start with Q1 = Q2R2R
−1
1 . Define P = R2R

−1
1 . Then Q1 = Q2P .

Because I = QT
1 Q1 = PTQT

2 Q2P = PTP , then P is orthogonal. Matrix P is the product
of square upper triangular matrices with positive diagonal elements, which implies P
itself is square upper triangular with positive diagonal elements. The only orthogonal
matrix with these properties is the identity matrix I. Then R2R

−1
1 = P = I, which

implies R1 = R2 and Q1 = Q2. ■
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Theorem 9.28 (The QR Decomposition and Least Squares)
Letm×nmatrix A have independent columns and satisfy the decomposition A = QR
with Q orthogonal and R invertible. Then the normal equation

ATAx⃗ = AT b⃗

in the theory of least squares can be represented as

Rx⃗ = QT b⃗ .

Proof: Because Q is orthogonal, then QTQ = I. Let’s use the identity (CD)T = DTCT ,
the equation A = QR, and assumed RT invertible to obtain

ATAx⃗ = AT b⃗ Normal equation

RTQTQRx⃗ = RTQT x⃗ Substitute A = QR.

Rx⃗ = QT x⃗ Multiply by the inverse of RT .

■

The formula Rx⃗ = QT b⃗ can be solved by back-substitution, which accounts for
its popularity in numerical solution of least squares problems.

Theorem 9.29 (Spectral Theorem)
Let A be a given n × n real matrix. Then A = QDQ−1 with Q orthogonal and D
diagonal if and only if AT = A.

Proof: Requirement Q is orthogonal means that the columns of Q are orthonormal
and n× n. The equation A = AT means A is symmetric.

Assume first that A = QDQ−1 with Q = QT orthogonal (QTQ = I) and D diagonal.
Then QT = Q = Q−1. This implies AT = (QDQ−1)T = (Q−1)TDTQT = QDQ−1 = A.

Conversely, assume AT = A. Then the eigenvalues of A are real and eigenvectors cor-
responding to distinct eigenvalues are orthogonal. The proof proceeds by induction on
the dimension n of the n× n matrix A.

For n = 1, let Q be the 1 × 1 identity matrix. Then Q is orthogonal and AQ = QD
where D is 1× 1 diagonal.

Assume the decomposition AQ = QD for dimension n. Let’s prove it for A of dimension
n + 1. Choose a real eigenvalue λ of A and eigenvector v⃗ 1 with ∥v⃗ 1∥ = 1. Complete
a basis v⃗ 1, . . . , v⃗n+1 of Rn+1. By Gram-Schmidt, we assume as well that this basis is

orthonormal. Define P = ⟨v⃗ 1| · · · |v⃗n+1⟩. Then P is square, orthogonal and satisfies

PT = P−1. Define B = P−1AP . Then B is symmetric (BT = B) and col(B, 1) =
λ col(I, 1). These facts imply that B is a block matrix

B =

(
λ 0
0 C

)
where C is symmetric (CT = C). The induction hypothesis applies to C to obtain the
existence of an orthogonal matrix Q1 such that CQ1 = Q1D1 for some diagonal matrix
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D1. Define block diagonal matrix D, block matrix W and square matrix Q as follows:

D =

(
λ 0
0 D1

)
,

W =

(
1 0
0 Q1

)
,

Q = PW.

Then Q is the product of two orthogonal matrices, which makes Q orthogonal. Compute

W−1BW =

(
1 0

0 Q−1
1

)(
λ 0
0 C

)(
1 0
0 Q1

)
=

(
λ 0
0 D1

)
.

Then Q−1AQ = W−1P−1APW = W−1BW = D. This completes the induction, ending
the proof of the theorem. ■

Spectral Theorem Consequence: The eigenpair equation AP =
PD with A ̸= AT (A not symmetric) cannot be converted to AQ = QD
with Q orthogonal.

Theorem 9.30 (Schur’s Theorem)
Given any real n× n matrix A, possibly non-symmetric, there is an upper triangular
matrix T , whose diagonal entries are the eigenvalues of A, and a complex matrix Q

satisfying Q
T
= Q−1 (Q is unitary), such that

AQ = QT.

If A = AT , then Q is real orthogonal (QT = Q).

Schur’s theorem can be proved by induction, following the induction proof of
Jordan’s theorem, or the induction proof of the Spectral Theorem. The result
can be used to prove the Spectral Theorem in two steps. Indeed, Schur’s Theorem
implies Q is real, T equals its transpose, and T is triangular. Then T must equal
a diagonal matrix D.

Theorem 9.31 (Eigenpairs of a Symmetric A)
Let A be a symmetric n × n real matrix. Then A has n eigenpairs (λ1, v⃗ 1), . . . ,
(λn, v⃗n), with independent eigenvectors v⃗ 1, . . . , v⃗n.

Proof: Apply the Spectral Theorem 9.29, page 731, to prove the existence of an orthog-
onal matrix Q and a diagonal matrix D such that AQ = QD. The diagonal entries of D
are the eigenvalues of A, in some order. For a diagonal entry λ of D appearing in row j,
the relation A col(Q, j) = λ col(Q, j) holds, which implies that A has n eigenpairs. The
eigenvectors are the columns of Q, which are orthogonal and hence independent. ■

Theorem 9.32 (Diagonalization of Symmetric A)
Let A be a symmetric n×n real matrix. Then A has n eigenpairs (λi, x⃗ i). Assume the
eigenvalues are listed with duplicates grouped together. For each distinct eigenvalue
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λ, replace its eigenvectors by orthonormal eigenvectors, using the Gram-Schmidt
process. Let u⃗ 1, . . . , u⃗n be the orthonormal vectors so obtained and define

Q = ⟨u⃗ 1| · · · |u⃗n⟩ D = diag(λ1, . . . , λn).

Then Q is an orthogonal matrix and AQ = QD.

Proof: Theorem 9.31 justifies the eigenanalysis result. Already, eigenpairs correspond-
ing to distinct eigenvalues are orthogonal. Within the set of eigenpairs with the same
eigenvalue λ, the Gram-Schmidt process produces a replacement basis of orthonormal
eigenvectors. Then the union of all the eigenvectors is orthonormal. The process de-
scribed here does not disturb the ordering of eigenpairs, because it only replaces an
eigenvector. ■

The Singular Value Decomposition

Coined the SVD in literature, the singular value decomposition A = UΣV T has
some interesting algebraic properties and it conveys important geometrical and
theoretical insights about linear transformations.

Data science uses the SVD as a compression algorithm. Machine vision uses the
SVD to find the nearest orthogonal matrix to A. Linear regression modeling uses
the SVD to find the pseudo-inverse. Signal processing noise reduction and image
processing size reduction use the SVD. Latent semantic indexing in natural-
language text processing uses the SVD to identify patterns in unstructured text.
Geometric interpretations of the SVD appear in a later subsection.

Theorem 9.33 (Positive Eigenvalues of ATA)
Given an m×n real matrix A, then ATA is a real symmetric matrix whose eigenpairs
(λ, v⃗ ) satisfy19

λ =
∥Av⃗∥2

∥v⃗∥2
≥ 0.(8)

Proof: Symmetry follows from (ATA)T = AT (AT )T = ATA. An eigenpair (λ, v⃗ )

satisfies λv⃗T v⃗ = v⃗TATAv⃗ = (Av⃗ )T (Av⃗ ) = ∥Av⃗∥2, hence (8). ■

Definition 9.13 (Singular Values of A)
Let the real symmetric matrix ATA have real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0 =
λr+1 = · · · = λn. The numbers

σk =
√
λk, 1 ≤ k ≤ n,

are called the singular values of the matrix A. The ordering of the singular values
is always with decreasing magnitude.

19Can a real symmetric matrix have negative or complex eigenvalues?
The answer is NO.
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Theorem 9.34 (Orthonormal Set
→
u1, . . . ,

→
um)

Let the real symmetric matrix ATA have real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0 =
λr+1 = · · · = λn and corresponding orthonormal eigenvectors v⃗ 1,. . . ,v⃗n, obtained
by the Gram-Schmidt process. Define the vectors

u⃗ 1 =
1

σ1
Av⃗ 1, . . . , u⃗ r =

1

σr
Av⃗ r.

Because ∥Av⃗ k∥ = σk, then {u⃗ 1, . . . , u⃗ r} is orthonormal. Gram-Schmidt can extend
this set to an orthonormal basis {u⃗ 1, . . . , u⃗m} of Rm.

Proof of Theorem 9.34: Compute ∥u⃗k∥2 = v⃗ k · (ATAv⃗ k)/λk = ∥v⃗ k∥2 = 1, because
{v⃗ k}nk=1 is an orthonormal set. Then the vectors u⃗k are nonzero. Given i ̸= j, then
σiσju⃗ i · u⃗ j = (Av⃗ i)

T (Av⃗ j) = λjv⃗
T
i v⃗ j = 0, showing that the vectors u⃗k are orthogonal.

The extension of the u⃗k to an orthonormal basis of Rm is not unique, because it depends
upon a choice of independent spanning vectors y⃗ r+1, . . . , y⃗m for the set {x⃗ : x⃗ · u⃗k =
0, 1 ≤ k ≤ r}. Once selected, Gram-Schmidt is applied to u⃗1, . . . , u⃗ r, y⃗ r+1, . . . , y⃗m

to obtain the desired orthonormal basis.

Computer algebra systems can compute the orthonormal basis {u⃗1, . . . , u⃗m} of Rm

by appending all columns of the identity matrix to columns {u⃗1, . . . , u⃗ r} to define an
augmented matrix Z. Then the reduced row echelon form of Z identifies the pivot
columns of Z. The first r pivot columns are u⃗1, . . . , u⃗ r. The remaining pivot columns
are columns of the identity. Apply Gram-Schmidt to the pivot columns to obtain the
orthonormal basis {u⃗1, . . . , u⃗m}. ■

Theorem 9.35 (The Singular Value Decomposition (svd))
Let A be a given real m×n matrix. Let (λ1, v⃗ 1),. . . ,(λn, v⃗n) be a set of orthonormal
eigenpairs for ATA such that σk =

√
λk (1 ≤ k ≤ r) defines the positive singular

values of A and λk = 0 for r < k ≤ n. Complete u⃗ 1 = (1/σ1)Av⃗ 1, . . . , u⃗ r =
(1/σr)Av⃗ r to an orthonormal basis {u⃗k}mk=1for Rm. Define

U = ⟨u⃗ 1| · · · |u⃗m⟩, Σ =

(
diag(σ1, . . . , σr) 0

0 0

)
,

V = ⟨v⃗ 1| · · · |v⃗n⟩.
Then the columns of U and V are orthonormal and

A = UΣV T

= σ1u⃗ 1v⃗
T
1 + · · ·+ σru⃗ rv⃗

T
r

= A(v⃗ 1)v⃗
T
1 + · · ·+A(v⃗ r)v⃗

T
r

Proof of Theorem 9.35: The product of U and Σ is the m× n matrix

UΣ = ⟨σ1u⃗1| · · · |σru⃗ r|0⃗ | · · · |0⃗⟩
= ⟨A(v⃗ 1)| · · · |A(v⃗ r)|0⃗ | · · · |0⃗⟩.
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Let v⃗ be any vector in Rn. It will be shown that UΣV T v⃗ ,
∑r

k=1 A(v⃗ k)(v⃗
T
k v⃗ ) and Av⃗

are the same column vector. We have the equalities

UΣV T v⃗ = UΣ

 v⃗T
1 v⃗
...

v⃗T
n v⃗


= ⟨A(v⃗ 1)| · · · |A(v⃗ r)|0⃗ | · · · |0⃗⟩

 v⃗T
1 v⃗
...

v⃗T
n v⃗


=

r∑
k=1

(v⃗T
k v⃗ )A(v⃗ k).

Because v⃗ 1, . . . , v⃗n is an orthonormal basis of Rn, then v⃗ =
∑n

k=1(v⃗
T
k v⃗ )v⃗ k. Addi-

tionally, A(v⃗ k) = 0⃗ for r < k ≤ n implies

Av⃗ = A

(
n∑

k=1

(v⃗T
k v⃗ )v⃗ k

)
=

r∑
k=1

(v⃗T
k v⃗ )A(v⃗ k)

Then Av⃗ = UΣV T v⃗ =
∑r

k=1 A(v⃗ k)(v⃗
T
k v⃗ ), which proves the theorem. ■

Singular Values and Geometry

Discussed here is how to interpret singular values geometrically, especially in
low dimensions 2 and 3. Conics will be reviewed, adopting the viewpoint of
eigenanalysis.

Standard Equation of an Ellipse

Calculus courses consider ellipse equations like

85x2 − 60xy + 40y2 = 2500

and discuss removal of the cross term −60xy. The objective is to obtain a
standard ellipse equation

X2

a2
+

Y 2

b2
= 1.

We re-visit this old problem from a different point of view, and in the derivation
establish a connection between the ellipse equation, the symmetric matrix ATA,
and the singular values of A.

Example 9.16 (Image of the Unit Circle)
Let A =

(
−2 6
6 7

)
.

Verify that the invertible matrix A maps the unit circle into the ellipse

85x2 − 60xy + 40y2 = 2500.
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Solution: The unit circle has parameterization θ → (cos θ, sin θ), 0 ≤ θ ≤ 2π.

The unit circle is mapped by matrix A via the set of dual relations(
x
y

)
= A

(
cos θ
sin θ

)
,

(
cos θ
sin θ

)
= A−1

(
x
y

)
.

The Pythagorean identity cos2 θ+ sin2 θ = 1 used on the vector norm of second relation
implies

85x2 − 60xy + 40y2 = 2500.

Example 9.17 (Removing the xy-Term in an Ellipse Equation)
After a rotation (x, y) → (X,Y ) to remove the xy-term in

85x2 − 60xy + 40y2 = 2500,

verify that the ellipse equation in the new XY -coordinates is

X2

25
+

Y 2

100
= 1.

Solution: The xy-term removal is accomplished by a change of variables (x, y) → (X,Y )
which transforms the ellipse equation 85x2−60xy+40y2 = 2500 into the ellipse equation
100X2+25Y 2 = 2500, details below. It’s standard form is obtained by dividing by 2500,
to give

X2

25
+

Y 2

100
= 1.

Analytic geometry says that the semi-axis lengths are
√
25 = 5 and

√
100 = 10.

In previous discussions of the ellipse, the equation 85x2 − 60xy + 40y2 = 2500 was
represented by the vector-matrix identity

(
x y

)( 85 −30
−30 40

)(
x
y

)
= 2500.

The program used earlier to remove the xy-term was to diagonalize the coefficient matrix

B =

(
85 −30

−30 40

)
by calculating the eigenpairs of B:

(
100,

(
−2
1

))
,

(
25,

(
1
2

))
.

Because B is symmetric, then the eigenvectors are orthogonal. The eigenpairs above are
replaced by unitized pairs:(

100,
1√
5

(
−2
1

))
,

(
25,

1√
5

(
1
2

))
.

Then the diagonalization theory for B can be written as

BQ = QD, Q =
1√
5

(
−2 1
1 2

)
, D =

(
100 0
0 25

)
.
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The single change of variables (
x
y

)
= Q

(
X
Y

)
then transforms the ellipse equation 85x2−60xy+40y2 = 2500 into 100X2+25Y 2 = 2500
as follows:

85x2 − 60xy + 40y2 = 2500 Ellipse equation.

u⃗TBu⃗ = 2500 Where B =

(
85 −30

−30 40

)
and u⃗ =

(
x
y

)
.

(Qw⃗ )TB(Qw⃗ ) = 2500 Change u⃗ = Qw⃗ , where w⃗ =

(
X
Y

)
.

w⃗T (QTBQ)w⃗ ) = 2500 Expand, ready to use BQ = QD.

w⃗T (Dw⃗ ) = 2500 Because D = Q−1BQ and Q−1 = QT .

100X2 + 25Y 2 = 2500 Expand w⃗TDw⃗ .

Rotations, Reflections and Scaling

The 2 × 2 singular value decomposition A = UΣV T can be used to decompose
the change of variables (x, y) → (X,Y ) into three distinct changes of variables,
each with a geometrical meaning:

(x, y) −→ (x1, y1) −→ (x2, y2) −→ (X,Y ).

Table 5. Three Changes of Variable

Domain Equation Image Meaning

Circle 1

(
x1
y1

)
= V T

(
cos θ
sin θ

)
Circle 2 Proper Rotation

Circle 2

(
x2
y2

)
= Σ

(
x1
y1

)
Ellipse 1 Scale axes

Ellipse 1

(
X
Y

)
= U

(
x2
y2

)
Ellipse 2 Improper Rotation

Proper Rotation. Matrix R =

(
cos θ sin θ

− sin θ cos θ

)
satisfies RTR = I and |R| = 1,

called a proper rotation. The rotation is clockwise about the origin, following
use in computer graphics. Replace θ by −θ for a counterclockwise rotation about
the origin.

Improper Rotation. Matrix R =

(
0.936 0.352
0.352 −0.936

)
is orthogonal with |R| =

−1, called an improper rotation. It represents a reflection, which inverts
orientation. Reference:

https://en.wikipedia.org/wiki/Rotation matrix
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Geometry

Figure 7 provides a geometrical interpretation for the singular value decomposi-
tion

A = UΣV T .

For illustration, the matrix A is assumed 2× 2 and invertible.

Circle 1 Circle 2 Ellipse 1 Ellipse 2

Rotate Scale Rotate

(x, y) (x1, y1) (X,Y )−→ −→(x2, y2)

v⃗ 2

v⃗ 1

−→

ΣV T U
σ1u⃗ 1

σ2u⃗ 2

Figure 7. Mapping the unit circle.

• Invertible matrix A maps Circle 1 into Ellipse 2.

• Orthonormal vectors v⃗ 1, v⃗ 2 are mapped by matrix A = UΣV T into orthog-
onal vectors Av⃗ 1 = σ1u⃗ 1, Av⃗ 2 = σ2u⃗ 2, which are exactly the semi-axes
vectors of Ellipse 2.

• The semi-axis lengths of Ellipse 2 equal the singular values σ1, σ2 of matrix
A.

• The semi-axis directions of Ellipse 2 are equal to the basis vectors u⃗ 1, u⃗ 2.

• The process is a rotation (x, y) → (x1, y1), followed by an axis-scaling
(x1, y1) → (x2, y2), followed by (x2, y2) → (X,Y ), a rotation.

Example 9.18 (Mapping and the SVD)
The singular value decomposition A = UΣV T for A =

(
−2 6
6 7

)
is given by

U =
1√
5

(
1 2
2 −1

)
, Σ =

(
10 0
0 5

)
, V =

1√
5

(
1 −2
2 1

)
.

• Invertible matrix A =

(
−2 6
6 7

)
maps the unit circle into an ellipse.

• The columns of V are orthonormal vectors v⃗ 1, v⃗ 2, computed as eigenpairs
(λ1, v⃗ 1), (λ2, v⃗ 2) of A

TA, ordered by λ1 ≥ λ2.(
100,

1√
5

(
1
2

))
,

(
25,

1√
5

(
−2
1

))
.
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• The singular values are σ1 =
√
λ1 = 10, σ2 =

√
λ2 = 5.

• The image of v⃗ 1 is Av⃗ 1 = UΣV T v⃗ 1 = U

(
σ1
0

)
= σ1u⃗ 1.

• The image of v⃗ 2 is Av⃗ 2 = UΣV T v⃗ 2 = U

(
0
σ2

)
= σ2u⃗ 2.

v⃗ 2

v⃗ 1

Unit Circle Ellipse
σ2u⃗2

σ1u⃗1

A Figure 8.
Mapping the unit circle into
an ellipse.

The Four Fundamental Subspaces

The subspaces appearing in the Fundamental Theorem of Linear Algebra are
called the Four Fundamental Subspaces. They are:

Subspace Notation

Row Space of A Image
(
AT
)

Nullspace of A kernel(A)

Column Space of A Image(A)

Nullspace of AT kernel
(
AT
)

The singular value decomposition A = UΣV T computes orthonormal bases for
the row and column spaces of of A. In the table below, symbol r = rank(A).
Matrix A is assumed m× n, which implies A maps Rn into Rm.

Table 6. Four Fundamental Subspaces and the SVD

Orthonormal Basis Subspace Name

First r columns of U (m× n) Image(A) Column Space of A

Last n− r columns of U kernel
(
AT
)

Nullspace of AT

First r columns of V (n×m) Image
(
AT
)

Row Space of A

Last m− r columns of V kernel(A) Nullspace of A
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Table 7. Fundamental Subspaces by Columns of U and V

m× n A = U ΣV T Singular Value Decomposition

m×m U =
colspace(A) nullspace(AT )

r columns m− r columns

m× n Σ =

 σ1 · · · 0
...

0 · · · σr

 0

0 0

n× n V =
rowspace(A) nullspace(A)

r columns n− r columns

A Change of Basis Interpretation of the SVD

The singular value decomposition can be described as follows:

For every m× n matrix A of rank r, orthonormal bases

{v⃗ i}ni=1 and {u⃗ j}mj=1

can be constructed such that

• Matrix A maps basis vectors v⃗ 1, . . . , v⃗ r to nonnegative multi-
ples of basis vectors u⃗ 1, . . . , u⃗ r, respectively.

• The n − r left-over basis vectors v⃗ r+1, . . . v⃗ n map by A into
the zero vector.

• With respect to these bases, matrix A is represented by a real
diagonal matrix Σ with non-negative entries.

Proofs, Methods and Details

Proof of Theorem 9.14, Jordan’s Theorem:
Proceed by induction on the dimension n of A. For n = 1 there is nothing to prove.
Assume the result for dimension n. Assume A is (n+1)×(n+1). To prove the induction
step, choose an eigenpair (λ1, v⃗ 1) of A with v⃗ 1 ̸= 0⃗ . Complete a basis v⃗ 1, . . . , v⃗n+1 for
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Rn+1 and define V = ⟨v⃗ 1| · · · |v⃗n+1⟩. Then V −1AV =

(
λ1 B

0⃗ A1

)
for some matrices

B and A1. The induction hypothesis implies there is an invertible n× n matrix P1 and

an upper triangular matrix T1 such that A1 = P1T1P
−1
1 . Let R =

(
1 0
0 P1

)
and

T =

(
λ1 BT1

0 T1

)
. Then T is upper triangular and (V −1AV )R = RT , which implies

A = PTP−1 for P = V R. The induction is complete. ■

Proof of Theorem 9.16, Cayley-Hamilton:
An algebraic proof was given in Chapter 5 Section 3. It depended on the adjugate
identity adj(A)A = A adj(A) = |A|I. Below is a different proof which suggests how the
theorem might have been discovered.

If A is diagonalizable, AP = P diag(λ1, . . . , λn), then the proof is obtained from the
expansion

Aj = P diag(λj
1, . . . , λ

j
n)P

−1,

because summing across this identity leads to

p(A) =
∑n

j=0 cjA
j

= P
(∑n

j=0 cj diag(λ
j
1, . . . , λ

j
n)
)
P−1

= P diag(p(λ1), . . . , p(λn))P
−1

= P diag(0, . . . , 0)P−1

= 0.

If A is not diagonalizable, then this proof fails. To handle the general case, apply
Jordan’s theorem 9.14 to write A = PTP−1 where T is upper triangular (instead of
diagonal) and the not necessarily distinct eigenvalues λ1, . . . , λn of A appear on the
diagonal of T . Define

Aϵ = P (T + ϵdiag(1, 2, . . . , n))P−1.

For small ϵ > 0, the matrix Aϵ has distinct eigenvalues λj + jϵ, 1 ≤ j ≤ n. Then
the diagonalizable case implies that Aϵ satisfies its characteristic equation. Let pϵ(λ) =
det(Aϵ − λI). Use 0 = limϵ→0 pϵ(Aϵ) = p(A) to complete the proof.

Proof of Theorem 9.17, orthogonality: Compute αx⃗ · y⃗ = (Ax⃗ )T y⃗ = x⃗TAT y⃗ =
x⃗TAy⃗ . Analogously, βx⃗ · y⃗ = x⃗TAy⃗ . Subtract the relations, then (α − β)x⃗ · y⃗ = 0.
Because α ̸= β, then x⃗ · y⃗ = 0. ■

Proof of Theorem 9.18, real eigenvalues: The second statement is due to the
fundamental theorem of algebra. To prove the eigenvalues are real, it suffices to prove
λ = λ when Av⃗ = λv⃗ with v⃗ ̸= 0⃗ . A complex conjugate is computed by replacing i by
−i. Conjugates of vectors and matrices are found componentwise. Assume that v⃗ may
have complex entries. Because A is real, then A = A. Take the complex conjugate across
Av⃗ = λv⃗ to obtain Av⃗ = λv⃗ . Transpose Av⃗ = λv⃗ to obtain v⃗TAT = λv⃗T and then
conclude v⃗TA = λv⃗T from AT = A. Multiply this equation by v⃗ on the right to obtain
v⃗TAv⃗ = λv⃗T v⃗ . Then multiply Av⃗ = λv⃗ by v⃗T on the left to obtain v⃗TAv⃗ = λv⃗T v⃗ .
The result:

λv⃗T v⃗ = λv⃗T v⃗ .

Because v⃗T v⃗ =
∑n

j=1 |vj |2 > 0, then it cancels: λ = λ and λ is real. ■
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Proof of Theorem 9.19, Gram-Schmidt relations: Induction will be applied on
k to show that y⃗ 1, . . . , y⃗ k are nonzero and orthogonal. If k = 1, then there is just one
nonzero vector constructed y⃗ 1 = x⃗1. Orthogonality for k = 1 is not discussed because
there are no pairs to test. Assume the result holds for k − 1 vectors. Let’s verify that it
holds for k vectors, k > 1. Assume orthogonality y⃗ i · y⃗ j = 0 for i ̸= j and y⃗ i ̸= 0⃗ for

1 ≤ i, j ≤ k − 1. It remains to test y⃗ i · y⃗ k = 0 for 1 ≤ i ≤ k − 1 and y⃗ k ̸= 0⃗ . The test
depends upon the identity

y⃗ i · y⃗ k = y⃗ i · x⃗k −
k−1∑
j=1

x⃗k · y⃗ j

y⃗ j · y⃗ j
y⃗ i · y⃗ j ,

which is obtained from the formula for y⃗ k by taking the dot product with y⃗ i. In the
identity, y⃗ i · y⃗ j = 0 by the induction hypothesis for 1 ≤ j ≤ k− 1 and j ̸= i. Therefore,
the summation in the identity contains just the term for index j = i, and the contribution
is y⃗ i ·x⃗k. This contribution cancels the leading term on the right in the identity, resulting
in the orthogonality relation y⃗ i · y⃗ k = 0. If y⃗ k = 0⃗ , then x⃗k is a linear combination
of y⃗ 1, . . . , y⃗ k−1. But each y⃗ j is a linear combination of {x⃗ i}ji=1, therefore y⃗ k = 0⃗
implies x⃗k is a linear combination of x⃗1, . . . , x⃗k−1, a contradiction to the independence
of {x⃗ i}ki=1. ■

Proof of Theorem 9.20, Formula ProjV (x⃗ ) is Well-Defined:
Suppose that {w⃗ j}kj=1 is another orthonormal basis of V . Define u⃗ =

∑k
i=1(u⃗ i · x⃗ )u⃗ j

and w⃗ =
∑k

j=1(w⃗ j · x⃗ )w⃗ j . It will be established that u⃗ = w⃗ , which justifies that the
projection formula is independent of basis. First, two lemmas.

Lemma 9.3 (Orthonormal Basis Expansion)
Let {v⃗ j}kj=1 be an orthonormal basis of a subspace V in Rn. Then each vector v⃗ in
V is represented as

v⃗ =

k∑
j=1

(v⃗ j · v⃗ )v⃗ j .

Proof: First, v⃗ has a basis expansion v⃗ =
∑k

j=1 cjv⃗ j for some constants
c1, . . . , ck. Take the inner product of this equation with vector v⃗ i to prove
that ci = v⃗ i · v⃗ , hence the claimed expansion is proved.

Lemma 9.4 (Orthogonality) Let {u⃗ i}ki=1 be an orthonormal basis of a subspace V in
Rn. Let x⃗ be any vector in Rn and define u⃗ =

∑k
i=1(u⃗ i ·x⃗ )u⃗ i. Then y⃗ ·(x⃗−u⃗ ) = 0

for all vectors y⃗ in V .

Proof: The first lemma implies u⃗ can be written a second way as a linear
combination of u⃗1, . . . . u⃗k. Independence implies equal basis coefficients,
which gives u⃗ j · u⃗ = u⃗ j · x⃗ . Then u⃗ j · (x⃗ − u⃗) = 0. Because y⃗ is in V , then

y⃗ =
∑k

j=1 cju⃗ j , which implies y⃗ · (x⃗ − u⃗) =
∑k

j=1 cj u⃗ j · (x⃗ − u⃗) = 0. ■

Justification of w⃗ = u⃗

The justification of Formula (1) is concluded here, showing that w⃗ = u⃗ .

w⃗ =
∑k

j=1(w⃗ j · x⃗ )w⃗ j

=
∑k

j=1(w⃗ j · u⃗)w⃗ j Because w⃗ j · (x⃗ − u⃗) = 0 by the second
lemma.
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=
∑k

j=1

(
w⃗ j ·

∑k
i=1(u⃗ i · x⃗ )u⃗ i

)
w⃗ j Definition of u⃗ .

=
∑k

j=1

∑k
i=1(w⃗ j · u⃗ i)(u⃗ i · x⃗ )w⃗ j Dot product properties.

=
∑k

i=1

(∑k
j=1(w⃗ j · u⃗ i)w⃗ j

)
(u⃗ i · x⃗ ) Switch summations.

=
∑k

i=1 u⃗ i(u⃗ i · x⃗ ) First lemma with v⃗ = u⃗ i.

= u⃗ Definition of u⃗ .

Proof of Theorem 9.21, Projection properties: Properties (a), (b) and (c) were
proved in preceding lemmas. Details are outlined here, in case the lemmas were skipped.

(a): Write a basis expansion v⃗ =
∑k

j=1 cju⃗ j for some constants c1, . . . , ck. Take the
inner product of this equation with vector u⃗ i to prove that ci = u⃗ i · v⃗ .
(b): Vector ProjV (x⃗ ) is a linear combination of basis elements of V .

(c): Represent a given vector v⃗ in V by the orthogonal expansion ofv⃗ from (a). Let’s
compute the dot product of w⃗ and v⃗ :

w⃗ · v⃗ = (x⃗ −ProjV (x⃗ )) · v⃗

= x⃗ · v⃗ −

 k∑
j=1

(x⃗ · u⃗ j)u⃗ j

 · v⃗

=

k∑
j=1

(u⃗ j · v⃗ )(x⃗ · u⃗ j)−
k∑

j=1

(x⃗ · u⃗ j)(u⃗ j · v⃗ )

= 0.

(d): Begin with the Pythagorean identity

∥a⃗∥2 + ∥b⃗∥2 = ∥a⃗ + b⃗∥2

valid exactly when a⃗ · b⃗ = 0 (a right triangle, θ = 90◦). Using an arbitrary v⃗ in V ,

define a⃗ = ProjV (x⃗ )− v⃗ and b⃗ = x⃗ −ProjV (x⃗ ). By (b), vector a⃗ is in V . Because of

(c), then a⃗ · b⃗ = 0. This gives the identity

∥ProjV (x⃗ )− v⃗∥2 + ∥x⃗ −ProjV (x⃗ )∥2 = ∥x⃗ − v⃗∥2,

which establishes ∥x⃗ − ProjV (x⃗ )∥ < ∥x⃗ − v⃗∥ except for the unique v⃗ such that
∥ProjV (x⃗ )− v⃗∥ = 0.

(e): Let w⃗ be orthogonal to all vectors in V . Because the columns of A are in V , then
w⃗ is orthogonal to the columns of A, which are rows of AT . Equation AT w⃗ = 0⃗ means
w⃗ is orthogonal to the rows of AT . ■

Proof of Theorem 9.24, Least Squares Solution:
Let V = colspace(A). Let y⃗ = projV (b⃗). Let w⃗ = b⃗ − y⃗ . Because y⃗ is in the column
space of A, then y⃗ = Ax⃗∗ for some x⃗∗. By Theorem 9.21 (c), w⃗ · u⃗ = 0 for every vector
u⃗ in V . This means w⃗ u⃗T = 0 for every column u⃗ of A, which in turn means AT w⃗ = 0⃗ .
Then AT (b⃗ − y⃗ ) = 0⃗ or equivalently AT b⃗ = ATAx⃗∗. The Normal Equation has been

verified for any x⃗∗ such that Ax⃗∗ = y⃗ = projV (b⃗). Theorem 9.21 (d) says that x⃗ = x⃗∗

is a minimizer for ∥Ax⃗ − b⃗∥ over all x⃗ . Then

∥Ax⃗∗ − b⃗∥ = min
x⃗

∥Ax⃗ − b⃗∥
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■

Solution to Example 9.15, Height-Weight Best Fit:
The answer with 10 digits is y = 61.2721865421106x− 39.0619559188439, using assump-
tions made below for what is meant by best fit. A plot of the data and this straight
line are in Figure 5.

Literature for the example might use the statistical term simple linear regression.
The regressors in the example are unknowns m, b. The regression line y = mx + b
gives the expected weight y for height x, so y is the average or mean weight for a given
height. Historically, regression abbreviates regress back to the mean, attributed to
Sir Francis Galton (1822-1911) in work on genetics.

Linear algebraic equations in the unknowns m, b are discovered by inserting Table 4
data into y = mx+ b, x=height, y=weight:

52.21 = 1.47m+ b 53.12 = 1.50m+ b 54.48 = 1.52m+ b 55.84 = 1.55m+ b
57.20 = 1.57m+ b 58.57 = 1.60m+ b 59.93 = 1.63m+ b 61.29 = 1.65m+ b
63.11 = 1.68m+ b 64.47 = 1.70m+ b 66.28 = 1.73m+ b 68.10 = 1.75m+ b
69.92 = 1.78m+ b 72.19 = 1.80m+ b 74.46 = 1.83m+ b

Define height vector H⃗ and weight vector W⃗ from Table 4, both vectors in R15. Let

vector O⃗ in R15 have all entries 1. Define augmented matrix A = ⟨H⃗ |O⃗⟩. The fifteen
linear algebraic equations become:

A

(
m
b

)
= W⃗(9)

Among the three possibilities for a system of linear algebraic equations (Chapter 3 Section
1), system (9) has no solution. Terminology best fit has multiple possibilities, from
which a single interpretation is isolated:

Best Fit

Find m, b to minimize the error between vectors A

(
m
b

)
and W⃗ .

The two vectors are the LHS and RHS of equation (9).

The answers m = 61.2721865421106, b = −39.0619559188439 are found by solving 2× 2
matrix equation (12) on page 745. Details follow.

The idea for solving the unsolvable equation (9) is geometric: replace it with a solvable
equation:

A

(
m
b

)
= Z⃗(10)

Mystery vector Z⃗ in (10) is the unique near point in V = span(H⃗ , O⃗) to W⃗ given by
near point Theorem 9.22.

Uniqueness of Z⃗ means that the new equation A

(
m
b

)
= Z⃗ has a unique solution for

m, b. The solution is efficiently found by multiplication of equation (10) by AT :

ATA

(
m
b

)
= AT Z⃗ = ATW⃗ .(11)

Equality AT Z⃗ = ATW⃗ results from Theorem 9.21 (c): vector w⃗ = W⃗ − ProjV (W⃗ )
is orthogonal to the columns of A and by Theorem 9.21 (e) AT w⃗ = 0⃗ . The simplified
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equation

ATA

(
m
b

)
= ATW⃗(12)

is called the normal equation for unsolvable system (9).

The new system is a 2× 2 system with a unique solution m, b given by matrix inversion:(
m
b

)
=

(
ATA

)−1
ATW⃗

=

(
41.0532 24.76
24.76 15

)−1(
1548.245
931.17

)
=

(
61.2721865421106
−39.0619559188439

)
.

with(LinearAlgebra):# Maple check

H:=Vector([ 1.47,1.50,1.52,1.55,1.57,1.60,1.63,1.65,

1.68,1.70,1.73,1.75,1.78,1.80,1.83]);

W:=Vector([ 52.21,53.12,54.48,55.84,57.20,58.57,59.93,61.29,

63.11,64.47,66.28,68.10,69.92,72.19,74.46]);

ONE:=Vector([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]);

A:=<H|ONE>;

LinearSolve(A,W);Rank(A);# fail expected

B:=A^+ . A; Z:=A^+ . W; (1/B) . Z;

Exercises 9.3 �

Diagonalization
Find the eigenpair packages P and D in the
relation AP = PD.

1. A =

(
−4 2
0 −1

)

2. A =

(
7 5

10 −7

)

3. A =

(
1 2
2 4

)

4. A =

(
1 0
2 −1

)

5. A =

 −1 0 3
3 4 −9

−1 0 3



6. A =

 1 1 0
1 1 0
0 0 −3



7. A =


1 1 0 1
1 1 0 1
0 0 −3 0
0 0 0 −1



8. A =


4 0 0 1
12 −2 0 0
0 0 −3 0
21 −6 1 0


Jordan’s Theorem
Given matrices P and T , verify Jordan’s
relation AP = PT .

9. A =

(
−4 2
0 −1

)
, P = I, T = A.

10. A =

(
0 1

−2 3

)
, P =

(
1 0
1 1

)
, T =(

1 1
0 2

)

Cayley-Hamilton Theorem
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11. Verify that A =

(
a b
c d

)
satisfies

A2=(a+d)A−(ad− bc)

(
1 0
0 1

)
.

12. Verify

(
1 0
2 1

)20

=

(
1 0
40 1

)
by induction

using Cayley-Hamilton.

Gram-Schmidt Process
Find the Gram–Schmidt orthonormal basis
from the given independent set.

13.

1
0
0

,

0
1
0

,

−1
0
1

.

Ans: Columns of I.

14.

 1
2

−1

,

2
0
3

,

0
4
1

.

15.


1
0
0
1

,


−1
0
2
1

,


0
1
2
0

,


0
0

−1
1

.

16.


1
0
0
0

,


1
1
0
0

,


1
1
1
0

,


1
1
1
1

.

Ans: Columns of I.

Gram-Schmidt on Polynomials
Define V = span(1, x, x2) with inner prod-

uct
∫ 1

0
f(x)g(x)dx. Find a Gram–Schmidt

orthonormal basis.

17. 1, 1 + x, x2

18. 1− x, 1 + x, 1 + x2

Gram-Schmidt: Coordinate Map
Define V = span(1, x, x2) with inner prod-

uct
∫ 1

0
f(x)g(x)dx. The coordinate map is

T : c1 + c2x+ c3x
2 →

c1
c2
c3


19. Find the images of 1− x, 1 + x, 1 + x2

under T .

20. Assume column vectors x⃗1, x⃗2, x⃗3

in R3 orthonormalize under Gram-
Schmidt to u⃗1, u⃗2, u⃗3. Are the pre-
images T−1(u⃗1), T

−1(u⃗2), T
−1(u⃗3) or-

thonormal in V ?

Shadow Projection
Compute shadow vector (x⃗ · u⃗)u⃗ for direc-
tion u⃗ = v⃗

|v⃗ | . Illustrate with a hand–drawn

figure.

21. x⃗ =

(
1

−1

)
, v⃗ =

(
1
2

)
Ans: − 1

5

(
1
2

)

22. x⃗ =

(
1
1

)
, v⃗ =

(
1
3

)

23. x⃗ =

1
1
2

, v⃗ =

1
0
2


Ans:

1
0
2



24. x⃗ =


1
1
2
1

, v⃗ =


1
0
2
1


Orthogonal Projection
Find an orthonormal basis {u⃗k}nk=1 for
V = span(1 + x, x, x + x2), inner product∫ 1

0
f(x)g(x)dx. Then compute the orthog-

onal projection p⃗ =
∑n

k=1(x⃗ · u⃗k)u⃗k.

25. x⃗ = 1 + x+ x2

26. x⃗ = 1 + 2x+ x2 + x3

Orthogonal Projection: Theory

27. Prove that the orthogonal projection
ProjV (x⃗ ) on V = span{Y⃗} is the vec-
tor shadow projection projY⃗ (x⃗ ).

28. (Gram-Schmidt Construction)

Define x⃗⊥
j = x⃗ j −ProjWj−1

(x⃗ j),
and Wj−1 = span(x⃗1, . . . , x⃗ j−1).
Prove these properties.
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(a) Subspace Wj−1 is equal
to the Gram-Schmidt
Vj−1 = span(u⃗1, . . . , u⃗ j).

(b) Vector x⃗⊥
j is orthogonal to all vec-

tors in Wj−1.

(c) The vector x⃗⊥
j is not zero.

(d) The Gram-Schmidt vector is

u⃗ j =
x⃗⊥

j

∥x⃗⊥
j ∥

.

Near Point Theorem
Find the near point to the subspace V .

29. x⃗ =

(
1
1

)
, V = span

((
1
2

))

30. x⃗ =

(
1
1

)
, V = span

((
0
1

))

31. x⃗=

1
1
0

,V= span

1
2
0

 ,

1
0
1



32. x⃗=

1
0
1

,V= span

1
1
0

 ,

1
1
1


QR-Decomposition
Give A, find an orthonormal matrix Q and
an upper triangular matrix R such that
A = QR.

33. A=


5 9
1 7
1 5
3 5

, Ans: R =

(
6 12
0 6

)

34. A=


2 1
2 0
2 0
2 1

, Ans: R =

(
4 1
0 1

)

35. A=


1 0 0
1 1 0
1 1 0
1 0 0

, Ans: R=

(
2 1 0
0 1 0

)

36. A=


1 0 0
1 1 1
1 1 1
1 0 0

, Ans: R=

(
2 1 1
0 1 1

)

Linear Least Squares: 3× 2

Let A=

2 0
0 2
1 1

, b⃗=

1
0
5

.

37. Find the normal equations for Ax⃗ = b⃗ .

38. Solve Ax⃗ = b⃗ by least squares.

Linear Least Squares: 4× 3

Let A=


4 0 1
1 0 1
0 1 0
1 1 1

, b⃗=


3
0
0
0

.

39. Find the normal equations for Ax⃗ = b⃗ .

40. Solve Ax⃗ = b⃗ by least squares.

Orthonormal Diagonal Form
Let A = AT . The spectral theorem im-
plies AQ = QD where D is diagonal and Q
has orthonormal columns. Find Q and D.

41. A=

(
7 2
2 4

)

42. A=

(
1 5
5 1

)

43. A=

(
1 5 0
5 1 0
0 0 2

)
Ans: Eigenvalues −4, 2, 6, orthonormal
eigenvectors

1√
2

−1
1
0

,

minicolvectorC001, 1√
2

1
1
0


44. A=

(
1 5 0
5 1 1
0 1 1

)

Eigenpairs of Symmetric Matrices:
Spectral Theorem.

45. Let A=

(
3 −1 1

−1 3 −1
1 −1 3

)
. Eigenvalues are

2, 2, 5. Find three orthonormal eigen-
pairs.
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46. Let A=

(
5 −1 1

−1 5 −1
1 −1 5

)
. Then

|A−λI|=(4 − λ)2(7 − λ). Find
three orthonormal eigenpairs.

47. Let A=

(
6 −1 1

−1 6 −1
1 −1 6

)
. Eigenvectors(

1
0

−1

)
,

(
1
1
0

)
,

(
1

−1
1

)
are for λ = 5, 5, 8.

Illustrate AQ = QD with D diagonal
and Q orthogonal.

48. Matrix A for λ = 1, 1, 4 has orthogonal
eigenvectors(
1
1
0

)
,

(
1
0

−1

)
,

(
1

−1
1

)
.

Find A and directly verify A = AT .

Singular Value Decomposition
Find the SVD A = UΣV T .

49. A=

−1 1
−2 2
2 −2

.

Ans: U=3× 3, V=2× 2. Matrix

Σ=

3
√
2 0

0 0
0 0

=3× 2, the size of A.

50. A=

−1 1
−2 2
1 1

.

Ans: σ1 =
√
10, σ2 =

√
2.

51. A=

−3 3
0 0
1 1

.

52. A=

1 1
0 1
1 −1

.

Ellipse and the SVD
Repeat Example 9.17, page 736 for the
given ellipse equation.

53. 50x2 − 30xy + 10y2 = 2500

54. 40x2 − 16xy + 10y2 = 2500

Mapping and the SVD
Reference: Example 9.18, page 738.

Let w⃗=

(
x
y

)
=c1v⃗ 1+c2v⃗ 2,

U= 1√
5

(
1 2
2 −1

)
, Σ=

(
10 0
0 5

)
, V= 1√

5

(
1 −2
2 1

)
,

A=

(
−2 6
6 7

)
. Then A=UΣV T .

55. Verify ∥w⃗∥2 = w⃗ · w⃗ = c21 + c22.

56. Verify V T w⃗=

(
c1
c2

)
from the general

identity V TV = I. Then show that

ΣV T w⃗=

(
10c1
5c2

)
.

Therefore, coordinate map w⃗ →
(
c1
c2

)
under-

goes re-scaling by 10 in direction v⃗ 1 and 5 in

direction v⃗ 2.

57. Find the angle θ of rotation for V T and
the reflection axis for U .

58. Assume |w⃗∥ = 1, a point on the unit
circle. Is Aw⃗ on an ellipse with semi-
axes 10 and 5? Justify your answer ge-
ometrically, no proof expected. Check
your answer with a computer plot.

Four Fundamental Subspaces

Compute matrices S1, S2 such that the col-
umn spaces of S1, S2 are the nullspaces of
A and AT . Verify the two orthogonality re-
lations of the four subspaces page 739 from
the matrix identities AS1 = 0, ATS2 = 0.

59. A =

(
1 0 0
1 1 0
2 1 0

)
. Answer:

S1 =

0
0
1

, S2 =

−1
−1
1

.

60. A =

1 0 0
1 1 0
2 1 0
3 2 0

. Answer:

S1 =

0
0
1

, S2 =

−1 −1
−2 −1
0 1
1 0


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61. A =

(
1 0 0 0
1 1 0 1
2 2 0 2

)
Answer:

S1 =

 0 0
−1 0
0 1
1 0

, S2 =

−1
−1
1



62. A =

1 0 0 0
2 0 0 2
0 0 0 0
0 0 0 2

 Answer:

S1 =

0 0
0 1
1 0
0 0

, S2 =

 2 0
−1 0
0 1
1 0

,

Fundamental Theorem of Linear Alge-
bra
Strang’s Theorem says that the four sub-
spaces built from n×m matrix A and m×n
matrix AT satisfy

colspace(AT ) ⊥ nullspace(A),
colspace(A) ⊥ nullspace(AT ).

Let r = rank(A) = rank(AT ). The four
subspace dimensions are:

dim(colspace(A)) = r,
dim(nullspace(A)) = n− r,
dim(colspace(AT )) = r,
dim(nullspace(AT )) = m− r.

63. Explain why dim(colspace(A)) =
dim(colspace(AT )) = r from the Pivot
Theorem.

64. Suppose A is 10× 4. What are the di-
mensions of the four subspaces?

65. Invent a 4×4 matrix A where one of the
four subspaces is the zero vector alone.

66. Prove that the only vector in common
with rowspace(A) and nullspace(A)
is the zero vector.

67. Prove that each vector x⃗ in Rn can
be uniquely written as x⃗ = x⃗1 + x⃗2

where x⃗1 is in colspace(AT ) and x⃗2 is
in nullspace(A). See direct sum in
exercise ?? page ??.

68. Prove that each vector y⃗ in Rm can
be uniquely written as y⃗ = y⃗ 1 + y⃗ 2

where y⃗ 1 is in colspace(A) and y⃗ 2 is
in nullspace(AT ).
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Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and
linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the textbook
are available in two volumes at Amazon Kindle Direct Publishing for Amazon’s
cost of printing and shipping. No author profit. Volume I chapters 1-7, ISBN
9798705491124, 661 pages. Volume II chapters 8-12, ISBN 9798711123651, 479
pages. Both paperbacks have extra pages of backmatter: background topics
Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with
hyperlink navigation to displayed equations and theorems. The header in an
exercise set has a blue hyperlink � to the same section in the solutions. The
header of the exercise section within a solution Appendix has a red hyperlink �
to the textbook exercises. Solutions are organized by chapter, e.g., Appendix 5
for Chapter 5. Odd-numbered exercises have a solution. A few even-numbered
exercises have hints and answers. Computer code can be mouse-copied directly
from the PDF. Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded
to a tablet, computer or phone to be viewed locally. After download, no internet
is required. Best for computer or tablet using a PDF viewer (Adobe Reader,
Evince) or web browser with PDF support (Chrome, FireFox). Smart phones
can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or
request an answer, click the link below, then create a GitHub issue and post.
Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues
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