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The Laplace transform solves differential equations. Besides being a different
and efficient alternative to variation of parameters and undetermined coefficients,
Laplace’s method is especially advantageous for a forcing term that is piecewise–
defined, periodic or impulsive.

The Laplace method. It has humble beginnings as an extension of the method
of quadrature to higher order differential equations and systems. The method is
based upon ordinary calculus integrals:

Multiply the differential equation by the Laplace integrator dx = e−stdt and
integrate across the equation from t = 0 to t = ∞. Isolate left the Laplace
integral

∫ t=∞
t=0 y(t)e−stdt. Look up the answer y(t) in a Laplace integral table.

Definition 8.1 (Laplace Integral)
The Laplace integral or the direct Laplace transform of a function f(t) defined for
0 ≤ t <∞ is the answer to the Newton calculus integration problem

∫∞
0 f(t)e−stdt.

Special notation replaces the integral notation in literature:

L(f(t)) replaces

∫ ∞

0
f(t) e−st dt.
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8.1 Laplace Method Introduction

Decoding and Encoding. The L–notation recognizes that integration always
proceeds over t = 0 to t =∞ and that the integral always has a fixed integrator
e−stdt instead of the expected dx. These minor differences distinguish Laplace
integrals from the ordinary integrals found on the inside covers of calculus texts.

When reading mathematical text, replace symbol L by these words: Laplace of.
Notation L(f(t)) decodes into calculus by replacing L by

∫∞
0 , then append the

Laplace integrator e−stdt. For instance, notation L(t2) decodes to
∫∞
0 (t2) e−s t dt.

To encode
∫∞
0 (sin t) e−s t dt to L(sin t), replace

∫∞
0 by L, then erase Laplace

integrator e−stdt.

History. The first application of the Laplace method might have been in the
1910 work of H. Bateman [?], who transformed Rutherford’s radioactive decay
equation d

dtA(t) = −hA(t) by setting a(x) =
∫∞
0 e−xtA(t)dt, thereby obtaining

an equation in variable x (Laplace theory uses s instead of x). The first exam-
ple presented here will parallel Bateman’s 1910 exposition, in which he derived
several properties of the Laplace integral as well as isolating what is today called
Laplace’s method. He used Lerch’s 1903 theorem published in Acta Mathematica.
The name Laplace Transform dates back to Euler 1763 and Spitzer 1878, which
nowadays refers to the linear map f → L(f(t)) ≡

∫∞
0 e−stf(t)dt.

8.1 Laplace Method Introduction

The foundation of Laplace theory is Lerch’s 1903 cancellation law∫∞
0 y(t)e−stdt =

∫∞
0 f(t)e−stdt implies y(t) = f(t),

or
L(y(t) = L(f(t)) implies y(t) = f(t).

(1)

In differential equation applications, y(t) is the unknown appearing in the equa-
tion while f(t) is an explicit expression extracted or computed from Laplace
integral tables. See page 596.

An Illustration. Laplace’s method will be applied to solve the initial value
problem1

dy

dt
= −1, y(0) = 0.

No background in Laplace theory is assumed here, only a calculus background is
used. Calculus verifies the answer y(t) = −t.
The Plan. The method obtains an equation L(y(t)) = L(−t), then Lerch’s
cancellation law implies that the L-symbols cancel, which gives the differential
equation solution y(t) = −t.
The Laplace method is advertised as a generalization of the method of quadrature
to higher order differential equations and systems of differential equations. In
addition to quadrature, the method uses table lookup: solution y(t) is found from
a special integral table.

1Laplace theory uses t instead of x. Prime notation y′ means dy
dt
.
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8.1 Laplace Method Introduction

Laplace Integral

The integral
∫∞
0 g(t)e−stdt is called the Laplace integral of the function g(t).

It is defined by limN→∞
∫ N
0 g(t)e−stdt and depends on variable s. The ideas will

be illustrated for g(t) = 1, g(t) = t and g(t) = t2, producing the integral formulas
in Table 1, infra.

1
∫∞
0 (1)e−stdt = −(1/s)e−st

∣∣t=∞
t=0

Laplace integral of g(t) = 1.

= 1/s Assumed s > 0.

2
∫∞
0 (t)e−stdt =

∫∞
0 −

d
ds(e

−st)dt Laplace integral of g(t) = t.

= − d
ds

∫∞
0 (1)e−stdt

∫
d
dsF (t, s)dt= d

ds

∫
F (t, s)dt.

= − d
ds(1/s) By 1 .

= 1/s2 Differentiate.

3
∫∞
0 (t2)e−stdt =

∫∞
0 −

d
ds(te

−st)dt Laplace integral of g(t) = t2.

= − d
ds

∫∞
0 (t)e−stdt

= − d
ds(1/s

2) By 2 .

= 2/s3

Table 1. The Laplace Integral
∫∞
0

g(t)e−stdt for g(t) = 1, t and t2.

∫∞
0 (1)e−st dt =

1

s
,

∫∞
0 (t)e−st dt =

1

s2
,

∫∞
0 (t2)e−st dt =

2

s3
.

In summary, L(tn) = n!

s1+n

Illustration Details for y′ = −1, y(0) = 0

The Laplace method will be applied to find the solution y(t) = −t of the
problem

y′ = −1, y(0) = 0.

Laplace’s method in Table 2 is entirely different from variation of parameters
or undetermined coefficients. The method uses only basic calculus and college
algebra. In the second Table 3, a succinct version of the first Table 2 is given,
using L-notation. The briefer exposition is a model for Laplace Method details
as found in references.
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8.1 Laplace Method Introduction

Table 2. Laplace Method Details for Illustration y′ = −1, y(0) = 0.

y′(t)e−stdt = −e−stdt Multiply y′ = −1 by e−stdt.∫∞
0 y′(t)e−stdt =

∫∞
0 −e

−stdt Integrate t = 0 to t =∞.∫∞
0 y′(t)e−stdt = −1/s Use Table 1 forwards.

s
∫∞
0 y(t)e−stdt− y(0) = −1/s Integrate by parts on the left.∫∞

0 y(t)e−stdt = −1/s2 Use y(0) = 0 and divide.∫∞
0 y(t)e−stdt =

∫∞
0 (−t)e−stdt Use Table 1 backwards.

y(t) = −t Apply Lerch’s cancellation law.
Solution found.

Table 3. Laplace Method L-notation
Details for y′ = −1, y(0) = 0 translated from Table 2.

L(y′(t)) = L(−1) Apply L across y′ = −1, or multiply y′ = −1
by e−stdt, integrate t = 0 to t =∞.

L(y′(t)) = −1/s Use Table 1 forwards.

sL(y(t))− y(0) = −1/s Integrate by parts on the left.

L(y(t)) = −1/s2 Use y(0) = 0 and divide.

L(y(t)) = L(−t) Apply Table 1 backwards.

y(t) = −t Invoke Lerch’s cancellation law.

In Lerch’s law, the formal rule of erasing the integral signs is valid provided the
integrals are equal for large s and certain conditions hold on y and f — see
Theorem 8.2. The illustration in Table 2 shows that Laplace theory requires an
in-depth study of a special integral table, a table which is a true extension
of the usual table found on the inside covers of calculus books; see Table 1 and
section 8.2, Table 4 page 601.

The L-notation for the direct Laplace transform produces briefer details, as wit-
nessed by the translation of Table 2 into Table 3. It is advised to move from
Laplace integral notation to the L–notation as soon as possible, in order to high-
light goalposts in the method.

Some Transform Rules

The formal properties of calculus integrals plus the integration by parts formula
used in Tables 2 and 3 leads to these rules for the Laplace transform:

L(f(t) + g(t)) = L(f(t)) + L(g(t)) The integral of a sum is the sum of the
integrals.
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8.1 Laplace Method Introduction

L(cf(t)) = cL(f(t)) Constants c pass through the integral
sign.

L(y′(t)) = sL(y(t))− y(0) The t-derivative rule, or integration by
parts. See Theorem 8.3.

L(y(t)) = L(f(t)) implies y(t) = f(t) Lerch’s cancellation law. See Theorem
8.2.

The four rules above appear in Bateman’s 1910 publication [?]. The first two
rules are referenced as linearity of the Laplace transform, which allow ma-
nipulation of the symbol L with rules known from calculus and matrix algebra.
Laplace symbol L manipulates like matrix multiply.

Existence of the Transform

The Laplace integral
∫∞
0 e−stf(t) dt is known to exist in the sense of the improper

integral definition2 ∫ ∞

0
g(t)dt = lim

N→∞

∫ N

0
g(t)dt

provided f(t) belongs to a class of functions known in the literature as functions
of exponential order. For this class of functions the relation

lim
t→∞

f(t)

eα t
= 0(2)

is required to hold for some real number α, or equivalently, for some constants
M and α,

|f(t)| ≤Meαt.(3)

In addition, f(t) is required to be piecewise continuous on each finite subin-
terval of 0 ≤ t <∞, a term defined as follows.

Definition 8.2 (Piecewise Continuous)
A function f(t) is piecewise continuous on a finite interval [a, b] provided there
exists a partition a = t0 < · · · < tn = b of the interval [a, b] and functions f1, f2,
. . . , fn continuous on (−∞,∞) such that for t not a partition point

f(t) =


f1(t) t0 < t < t1,
...

...
fn(t) tn−1 < t < tn.

(4)

The values of f at partition points are undecided by equation (4). In particular,
equation (4) implies that f(t) has one-sided limits at each point of a < t < b and
appropriate one-sided limits at the endpoints. Therefore, f has at worst a jump
discontinuity at each partition point.

2An advanced calculus background is assumed for the Laplace transform existence proof.
Applications of Laplace theory require only a calculus background.
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8.1 Laplace Method Introduction

Theorem 8.1 (Existence of L(f))
Let f(t) be piecewise continuous on every finite interval in t ≥ 0 and satisfy |f(t)| ≤
Meαt for some constants M and α. Then:

1. Laplace integral L(f(t)) exists for s > α.

2. Laplace is zero at s =∞: lims→∞ L(f(t)) = 0.3

Proof on page 598.

Theorem 8.2 (Lerch 1903)
If f1(t) and f2(t) are continuous, of exponential order and for all s > s0∫ ∞

0
f1(t)e

−stdt =

∫ ∞

0
f2(t)e

−stdt,

then f1(t) = f2(t) for t ≥ 0.4

Proofs in French: Lerch (1903) [?] and English: Widder [?]. See also [?].

Theorem 8.3 (Parts Rule or t-Derivative Rule)
Let f(t) be continuous and of exponential order. Let f ′(t) be piecewise continu-
ous and of exponential order. Then L(f ′(t)) exists for all large s and L(f ′(t)) =
sL(f(t))− f(0).

Proof on page 639.

Theorem 8.4 (Euler Solution Atoms have Laplace Integrals)
Let f(t) be tneat or the real or imaginary part of tneat+ibt where a, b are real, b > 0
and n ≥ 0 is an integer. Briefly, f is an Euler solution atom. Then f is of
exponential order and L(f(t)) exists. Further, if g(t) is a linear combination of Euler
atoms, then L(g(t)) exists.
Proof on page 598.

Remark. Because solutions to undetermined coefficient problems are a linear
combination of Euler solution atoms, then Laplace’s method applies to all such
differential equations. This is the class of all constant-coefficient higher order lin-
ear differential equations, and all systems of differential equations with constant
coefficients, having a forcing term which is a linear combination of Euler solution
atoms.

3Literature might write F (s) for L(f(f)) and lims→∞ F (s) = 0
4The result extends to piecewise continuous functions provided the conclusion is weakened to:

at points where both f1, f2 are continuous, f1(t) = f2(t). Reference: CRC Concise Encyclopedia
of Mathematics by Weisstein.
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8.1 Laplace Method Introduction

Examples and Methods

Example 8.1 (Laplace Method)
Solve the initial value problem y′ = 5−2t, y(0) = 1 by the Laplace method to obtain
y(t) = 1 + 5t− t2.

Solution: Laplace’s method is outlined in Tables 2 and 3. The L-notation of Table 3
will be used to find the solution y(t) = 1 + 5t− t2.

L(y′(t)) = L(5− 2t) Apply L across y′ = 5− 2t.

= 5L(1)− 2L(t) Linearity of the transform.

=
5

s
− 2

s2
Use Table 1 forwards.

sL(y(t))− y(0) =
5

s
− 2

s2
Apply the parts rule, Theorem 8.3.

L(y(t)) = 1

s
+

5

s2
− 2

s3
Use y(0) = 1 and divide.

L(y(t)) = L(1) + 5L(t)− L(t2) Apply Table 1 backwards.

= L(1 + 5t− t2) Linearity of the transform.

y(t) = 1 + 5t− t2 Use Lerch’s cancellation law.

Example 8.2 (Laplace Method)
Solve by Laplace’s method the initial value problem y′′ = 10, y(0) = y′(0) = 0 to
obtain y(t) = 5t2.

Solution: The L-notation of Table 3 will be used to find the solution y(t) = 5t2.

L(y′′(t)) = L(10) Apply L across y′′ = 10.

sL(y′(t))− y′(0) = L(10) Apply the parts rule to y′, that is, replace f by y′

in Theorem 8.3.
s[sL(y(t))− y(0)]− y′(0) = L(10) Repeat the parts rule, on y.

s2L(y(t)) = L(10) Use y(0) = y′(0) = 0.

L(y(t)) = 10

s3
Use Table 1 forwards. Then divide.

L(y(t)) = L(5t2) Apply Table 1 backwards.

y(t) = 5t2 Invoke Lerch’s cancellation law.

Example 8.3 (Exponential Order)
Show that f(t) = et cos t+ t is of exponential order.

Solution: The proof must show that f(t) is piecewise continuous on every interval [a, b]
and then find an α > 0 such that limt→∞ f(t)/eαt = 0.

The given f(t) is continuous on (−∞,∞). Given interval [a, b], define t0 = a, t1 = b and
f1(t) = f(t). Then (4) holds. Definition 8.2 implies f is piecewise continuous.

From L’Hospital’s rule in calculus, limt→∞ p(t)/eαt = 0 for any polynomial p and any
α > 0. Choose α = 2, then

lim
t→∞

f(t)

e2t
= lim

t→∞

cos t

et
+ lim

t→∞

t

e2t
= 0.
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8.1 Laplace Method Introduction

Proofs and Technical Details

Proof of Theorem 8.1, Existence Laplace Integral:
Details 1. It has to be shown that the Laplace integral of f is finite for s > α.
Advanced calculus implies that it is sufficient to show that the integrand is absolutely
bounded above by an integrable function g(t). Take g(t) = Me−(s−α)t. Then g(t) ≥ 0.
Furthermore, g is integrable, because∫ ∞

0

g(t)dt =
M

s− α
.

Inequality |f(t)| ≤ Meαt implies the absolute value of the Laplace transform integrand
f(t)e−st is estimated by ∣∣f(t)e−st

∣∣ ≤Meαte−st = g(t).

Details 2. The limit statement lims→∞ L(f(t)) = 0 follows from |L(f(t))| ≤
∫∞
0

g(t)dt =
M

s− α
, because the right side of this inequality has limit zero at s =∞. ■

Proof of Theorem 8.4, Euler Atoms:
Function f(t) = tneat is everywhere continuous. By calculus, ln |x| ≤ 2x for x ≥ 1.
Define c = 2|n| + |a|. Then |f(t)| = en ln |t|+at ≤ ect for t ≥ 1, which proves f is of
exponential order. Similarly, f(t) = Re(tneat+ibt) is everywhere continuous and |f(t)| ≤
|tneat+ibt| = |tneat| ≤ ect. Details for f(t) = Im(tneat+ibt) are similar. Then f is of
exponential order in all three cases. The Laplace integral exists by Theorem 8.1 page
596. ■

Exercises 8.1 �

Laplace method
Solve the given initial value problem using
Laplace’s method.

1. y′ = −2, y(0) = 0.

2. y′ = 1, y(0) = 0.

3. y′ = −t, y(0) = 0.

4. y′ = t, y(0) = 0.

5. y′ = 1− t, y(0) = 0.

6. y′ = 1 + t, y(0) = 0.

7. y′ = 3− 2t, y(0) = 0.

8. y′ = 3 + 2t, y(0) = 0.

9. y′′ = −2, y(0) = y′(0) = 0.

10. y′′ = 1, y(0) = y′(0) = 0.

11. y′′ = 1− t, y(0) = y′(0) = 0.

12. y′′ = 1 + t, y(0) = y′(0) = 0.

13. y′′ = 3− 2t, y(0) = y′(0) = 0.

14. y′′ = 3 + 2t, y(0) = y′(0) = 0.

Exponential order
Show that f(t) is of exponential order, by
finding a constant α ≥ 0 in each case such

that lim
t→∞

f(t)

eαt
= 0.

15. f(t) = 1 + t

16. f(t) = et sin(t)

17. f(t) =
∑N

n=0 cnt
n, for any choice of the

constants c0, . . . , cN .

18. f(t) =
∑N

n=1 cn sin(nt), for any choice
of the constants c1, . . . , cN .

Existence of transforms
Let f(t) = tet

2

sin(et
2

). Establish these re-
sults.
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8.1 Laplace Method Introduction

19. The function f(t) is not of exponential
order.

20. The Laplace integral of f(t),∫∞
0

f(t)e−stdt, converges for all
s > 0.

Jump Magnitude
For f piecewise continuous, define the
jump at t by

J(t) = lim
h→0+

f(t+ h)− lim
h→0+

f(t− h).

Compute J(t) for the following f .

21. f(t) = 1 for t ≥ 0, else f(t) = 0

22. f(t) = 1 for t ≥ 1/2, else f(t) = 0

23. f(t) = t/|t| for t ̸= 0, f(0) = 0

24. f(t) = sin t/| sin t| for t ̸= nπ, f(nπ) =
(−1)n

Taylor series
The series relation L(

∑∞
n=0 cnt

n) =∑∞
n=0 cnL(tn) often holds, in which case

the result L(tn) = n!s−1−n can be em-
ployed to find a series representation of the
Laplace transform. Use this idea on the fol-
lowing to find a series formula for L(f(t)).
25. f(t) = e2t =

∑∞
n=0(2t)

n/n!

26. f(t) = e−t =
∑∞

n=0(−t)n/n!

Transfer of Radiance
The differential equation d

drN + αN =
N∗ models laser beam radiance (absorp-
tion and scattering out of the beam) in a
medium like water, where r is the distance
from the source.

27. Solve d
drN + 2N = 1, N(0) = 20 by

Laplace’s method.
Ans: N (r) = 1

2 + 39
2 e−2 r.

Hint: Obtain L(N(t)) = 1+20 s
s(s+2) = 1

2s +
39

2(s+2) using L(e
at) = 1

s−a from the For-

ward Table page 601.

28. Solve d
drN + 2N = 1− e−r, N(0) = 25

by any method.
Ans: N (r) = 1

2 − e−r + 51
2 e−2 r.

Hint: A particular solution is Np =
1
2−e

−r. Superposition applies. See also
Example 8.11 page 609.

Piecewise-Defined Functions

29. Define a piecewise continuous function

f(t) on [−1, 1] that agrees with sin(t)
|t|

except at t = 0. Suggestion: use Tay-
lor expansion sin(t) = t − t3/6 + · · ·
to define continuous functions f1, f2 on
−∞ < t <∞.

30. Explain in detail why 1/t is not piece-
wise continuous on [−1, 1]. ■

31. Find L(f(t)), given

f(t) =

{
1 1 ≤ t < 2,
0 otherwise.

32. Find L(pulse(t, a, b)), given

pulse(t, a, b) =

{
1 a ≤ t < b,
0 otherwise.

33. Define

f(t) =

 1 1 ≤ t < 2,
2 3 ≤ t < 4,
0 otherwise.

Find the weights c1, c2 such that
f(t) = c1 pulse(t, 1, 2)+

c2 pulse(t, 3, 4).

34. Let
f(t) = cos(t)pulse(t, 0, π)+

(sin(t)− 1)pulse(t, π, 2π)
Write f as a piecewise-defined function
and graph it.

Piecewise Continuous Definition
Let g(t) be zero for t < 0 and have on t ≥ 0
at most finitely many points of discontinu-
ity, at which finite right and left hand limits
exist.

This definition is an alternative way to
define piecewise continuous, crafted for
Laplace theory.

35. Let t1, t2 be consecutive points of dis-
continuity of g. Define a function g1(t)
continuous on −∞ < t < ∞ such that
g(t) = g1(t) on t1 ≤ t ≤ t2.

The whole real line is the required domain of g1,

which must be defined using g itself and right

and left hand limit values of g.
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8.1 Laplace Method Introduction

36. Let t1, t2, t3 be consecutive points of
discontinuity of g. Invent functions
g1(t), g2(t) continuous on −∞ < t <∞
such that g(t) = g1(t) on t1 ≤ t ≤ t2
and g(t) = g2(t) on t2 ≤ t ≤ t3.

37. Define g1, g2 as in Exercise 36 above.
Compute the jump at t = t2, J(t2) =
g(t2 + 0)− g(t2 − 0), in terms of g1, g2.

38. Using the preceding steps, prove that g
is piecewise continuous according to the
definition given in the text.
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8.2 Laplace Integral Table

8.2 Laplace Integral Table

The objective in developing Laplace integral Table 4 and Table 6 is to keep the
table size small. Table manipulation rules in Table 5 page 601 effectively increase
the table size manyfold, making it possible to solve typical differential equations
from electrical and mechanical models. The combination of Laplace tables plus
the table manipulation rules is called the Laplace transform calculus.

Table 4 is considered to be a table of minimum size. Table 6 adds a number of
special-use entries.

Derivations are postponed to page 650. The theory of the generalized factorial
function, the gamma function Γ(x), is on page 603. The Dirac impulse δ(t)
is defined in Section 8.6 page 644.

Table 4. Minimal Forward Laplace Integral Table with L-notation

∫∞
0

(tn)e−st dt =
n!

s1+n
L(tn) = n!

s1+n∫∞
0

(eat)e−st dt =
1

s− a
L(eat) = 1

s− a∫∞
0

(cos bt)e−st dt =
s

s2 + b2
L(cos bt) = s

s2 + b2∫∞
0

(sin bt)e−st dt =
b

s2 + b2
L(sin bt) = b

s2 + b2

Table 5. Minimal Forward and Backward Laplace Integral Tables

Forward Table

L(tn) =
n!

s1+n

L(eat) =
1

s− a

L(cos bt) =
s

s2 + b2

L(sin bt) =
b

s2 + b2

Backward Table

1

s1+n
= L

(
tn

n!

)
1

s− a
= L

(
eat

)
s

s2 + b2
= L (cos bt)

1

s2 + b2
= L

(
sin bt

b

)
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8.2 Laplace Integral Table

On first reading of LaPlace theory, learn Table 5 and back-burner the other
tables. To fully understand Table 6 below requires hours of Laplace use.

Table 6. Extended Laplace Integral Table

Forward Table

L(tn) =
n!

s1+n

L(eat) =
1

s− a

L(cos bt) =
s

s2 + b2

L(sin bt) =
b

s2 + b2

Conventions and Shortcuts

Zero Assumed on t < 0. Laplace theory assumes a given f(t) is zero for
t < 0. Therefore, a given f(t) in Laplace calculations can be formally replaced
by f(t)u(t), where u is the unit step defined by u(t) = 1 for t ≥ 0, u(t) = 0 for
t < 0.

Exponential Order. Unless specifically assumed otherwise, any f(t) in Laplace
theory is assumed to have exponential order so that L(f(t)) exists. Exceptions:
Function f(t) = tα is not of exponential order for α < 0, but L(f(t)) exists; Dirac
impulse δ(t) is in the extended table, but it is not of exponential order, because
δ(t) is not a function.

Unit Step and Ramp. Table entry f(t) = 1 is called the unit step and entry
f(t) = t is called the unit ramp. Entry f(t) = 1 is equivalent to u(t), whose
graph shape resembles a staircase step. Entry f(t) = t is equivalent to tu(t),
whose graph shape resembles a wheelchair ramp.

Step and Ramp Inputs. Digital design might refer to y′′(t) + y(t) = u(t) as
an oscillator with step input. Similarly, y′′(t) + y(t) = tu(t) is an oscillator with
unit ramp input.

Trigonometric Shortcut. Even function f(t) = cos(bt) L-transforms to an
odd fraction F (s) = s

s2+b2
. Similarly, odd function f(t) = sin(bt) transforms to

even fraction b
s2+b2

.

Trig table entries cos, sin change even-odd under L-transformation.
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8.2 Laplace Integral Table

Gamma Function

In mathematical physics, the Gamma function or the generalized factorial
function is given by the identity

Γ(x) =

∫ ∞

0
e−ttx−1 dt, x > 0.(1)

This function is tabulated and available in computer languages such as Fortran,
C, C++ and C#. It is also available in computer algebra systems and numerical
laboratories, such as maple, matlab, mathematica.

Fundamental Properties of Γ(x)

The generalized factorial function Γ(x) =
∫∞
0 e−ttx−1 dt has the following funda-

mental properties.

1 Γ(1) = 1

2 Γ(1 + x) = xΓ(x) for x > 0.

3 Γ(1 + n) = n! for integers n ≥ 1.

Details for relations 1 , 2 and 3 : Start with
∫∞
0

e−tdt = 1, which gives Γ(1) = 1,

hence 1 . Use this identity and successively relation 2 to obtain relation 3 . To prove

identity 2 , integration by parts is applied, as follows:

Γ(1 + x) =
∫∞
0

e−ttxdt Definition.

= −txe−t|t=∞
t=0 +

∫∞
0

e−txtx−1dt Use u = tx, dv = e−tdt.

= x
∫∞
0

e−ttx−1dt Boundary terms are zero
for x > 0.

= xΓ(x).

Examples and Methods

Example 8.4 (Forward Table)
Let f(t) = t(t− 5)− sin 2t+ e3t. Compute L(f(t)) using the forward Laplace table
and transform linearity properties.

Solution:

L(f(t)) = L(t2 − 5t− sin 2t+ e3t) Expand t(t− 5).

= L(t2)− 5L(t)− L(sin 2t) + L(e3t) Linearity applied.

=
2

s3
− 5

s2
− 2

s2 + 4
+

1

s− 3
Forward Table.
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Example 8.5 (Backward Table)
Use the backward Laplace table plus transform linearity properties to solve for f(t)
in the equation

L(f(t)) = s

s2 + 16
+

2

s− 3
+

s+ 1

s3
.

Solution:

L(f(t)) = s

s2 + 16
+ 2

1

s− 3
+

1

s2
+

1

2

2

s3
Convert to table entries.

= L(cos 4t) + 2L(e3t) + L(t) + 1
2L(t

2) Backward Laplace table.

= L(cos 4t+ 2e3t + t+ 1
2 t

2) Linearity applied.

f(t) = cos 4t+ 2e3t + t+ 1
2 t

2 Lerch’s cancellation law.

Example 8.6 (Unit Step and Pulses)
Find L(f(t)) in Figure 1.

1

31 5

5

Figure 1. A piecewise defined function f(t)
on 0 ≤ t < ∞: f(t) = 0 except for 1 ≤ t < 2 and
3 ≤ t < 4.

Solution: A pulse on [a, b] is defined by

pulse(t, a, b) = u(t− a)− u(t− b) =

{
1 a ≤ t < b,
0 otherwise.

The formula for f(t):

f(t) =

 1 1 ≤ t < 2,
5 3 ≤ t < 4,
0 otherwise

=

{
1 1 ≤ t < 2,
0 otherwise

+ 5

{
1 3 ≤ t < 4,
0 otherwise

= f1(t) + 5f2(t), where
f1(t) = u(t− 1)− u(t− 2) = pulse(t, 1, 2),
f2(t) = u(t− 3)− u(t− 4) = pulse(t, 3, 4).

The extended Laplace table gives

L(f(t)) = L(f1(t)) + 5L(f2(t)) Linearity.

= L(u(t− 1))− L(u(t− 2)) + 5L(f2(t)) Substitute for f1.

=
e−s − e−2s

s
+ 5L(f2(t)) Extended table used.

=
e−s − e−2s + 5e−3s − 5e−4s

s
Similarly for f2.
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Example 8.7 (Dirac Impulse)
A machine shop tool that repeatedly hammers a die is modeled by a Dirac impulse

model f(t) =
∑N

n=1 δ(t− n). Verify the formula L(f(t)) =
∑N

n=1 e
−ns.

Solution:

L(f(t)) = L
(∑N

n=1 δ(t− n)
)

=
∑N

n=1 L(δ(t− n)) Linearity.

=
∑N

n=1 e
−ns Extended Laplace table.

Example 8.8 (Square wave)
A periodic camshaft force f(t) applied to a mechanical system has the idealized
graph shown in Figure 2. Verify formulas f(t) = 1 + sqw(t) and L(f(t)) = 1

s (1 +
tanh(s/2)).

0

2

1 3

Figure 2. A periodic force f(t) applied to a
mechanical system.

Solution:

1 + sqw(t) =

{
1 + 1 2n ≤ t < 2n+ 1, n = 0, 1, . . .,
1− 1 2n+ 1 ≤ t < 2n+ 2, n = 0, 1, . . .,

=

{
2 2n ≤ t < 2n+ 1, n = 0, 1, . . .,
0 otherwise,

= f(t).

By the extended Laplace table, L(f(t)) = L(1) + L(sqw(t)) = 1

s
+

tanh(s/2)

s
.

Example 8.9 (Sawtooth wave)
Express the P -periodic sawtooth wave represented in Figure 3 as f(t) = ct/P −
cfloor(t/P ) and obtain the formula

L(f(t)) = c

Ps2
− ce−Ps

s− se−Ps
.

0

c

P 4P

Figure 3. A P -periodic sawtooth wave f(t) of
height c > 0.
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8.2 Laplace Integral Table

Solution: The representation originates from geometry, because the periodic function
f can be viewed as derived from ct/P by subtracting the correct constant from each of
intervals [P, 2P ], [2P, 3P ], etc.

The technique used to verify the identity is to define g(t) = ct/P − cfloor(t/P ) and then
show that g is P -periodic and f(t) = g(t) on 0 ≤ t < P . Two P -periodic functions equal
on the base interval 0 ≤ t < P have to be identical, hence the representation follows.

Periodicity: Let’s show g(u + P ) − g(u) = 0 for all u. Used below is the identity
floor(1 + x) = 1 + floor(x). Details: Let x = u/P , then

g(u+ P )− g(u) = cu+P
P − cfloor

(
u+P
P

)
− g(u)

= cx+ c− cfloor(1 + x)− cx+ cfloor(x)

= 0.

Base interval equality: On 0 ≤ t < P , define x = t/P so that 0 ≤ x < 1. Then
floor(x) = 0 and f(t) = ct/P = cx. Compute g(t) = ct/P − cfloor(t/P ) = cx −
cfloor(x) = cx = f(t).

Laplace Calculation:

L(f(t)) = c

P
L(t)− cL(floor(t/P )) Linearity.

=
c

Ps2
− ce−Ps

s− se−Ps
Basic and extended table applied.

Example 8.10 (Triangular wave)
Express the triangular wave f of Figure 4 in terms of the square wave sqw and obtain

L(f(t)) = 5

πs2
tanh(πs/2).

0

5

2π
Figure 4. A 2π-periodic triangular wave f(t)
of height 5.

Solution: The representation of f in terms of sqw is f(t) = 5
∫ t/π

0
sqw(x)dx.

Details: A 2-periodic triangular wave of height 1 is obtained by integrating the square
wave of period 2. A wave of height c and period 2 is given by c trw(t) = c

∫ t

0
sqw(x)dx.

Then f(t) = c trw(2t/P ) = c
∫ 2t/P

0
sqw(x)dx where c = 5 and P = 2π.

Laplace calculation: Use the extended Laplace table as follows.

L(f(t)) = 5

π
L(π trw(t/π)) =

5

πs2
tanh(πs/2).
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Exercises 8.2 �

Laplace Transform Forward Table
Using the basic Laplace table and linear-
ity properties of the transform, compute
L(f(t)). Do not use the direct Laplace
transform!

1. L(2t)

2. L(4t)

3. L(1 + 2t+ t2)

4. L(t2 − 3t+ 10)

5. L(sin 2t)

6. L(cos 2t)

7. L(e2t)

8. L(e−2t)

9. L(t+ sin 2t)

10. L(t− cos 2t)

11. L(t+ e2t)

12. L(t− 3e−2t)

13. L((t+ 1)2)

14. L((t+ 2)2)

15. L(t(t+ 1))

16. L((t+ 1)(t+ 2))

17. L(
∑10

n=0 t
n/n!)

18. L(
∑10

n=0 t
n+1/n!)

19. L(
∑10

n=1 sinnt)

20. L(
∑10

n=0 cosnt)

Laplace Backward Table
Solve the given equation for the function
f(t). Use the basic table and linearity prop-
erties of the Laplace transform.

21. L(f(t)) = s−2

22. L(f(t)) = 4s−2

23. L(f(t)) = 1/s+ 2/s2 + 3/s3

24. L(f(t)) = 1/s3 + 1/s

25. L(f(t)) = 2/(s2 + 4)

26. L(f(t)) = s/(s2 + 4)

27. L(f(t)) = 1/(s− 3)

28. L(f(t)) = 1/(s+ 3)

29. L(f(t)) = 1/s+ s/(s2 + 4)

30. L(f(t)) = 2/s− 2/(s2 + 4)

31. L(f(t)) = 1/s+ 1/(s− 3)

32. L(f(t)) = 1/s− 3/(s− 2)

33. L(f(t)) = (2 + s)2/s3

34. L(f(t)) = (s+ 1)/s2

35. L(f(t)) = s(1/s2 + 2/s3)

36. L(f(t)) = (s+ 1)(s− 1)/s3

37. L(f(t)) =
∑10

n=0 n!/s
1+n

38. L(f(t)) =
∑10

n=0 n!/s
2+n

39. L(f(t)) =
∑10

n=1

n

s2 + n2

40. L(f(t)) =
∑10

n=0

s

s2 + n2

Laplace Table Extension
Compute the indicated Laplace integral us-
ing the extended Laplace table, page 602.

41. L(u(t− 2) + 2u(t))

42. L(u(t− 3) + 4u(t))

43. L(u(t− π)(u(t) + u(t− 1)))

44. L(u(t− 2π) + 3u(t− 1)u(t− 2))

45. L(δ(t− 2))

46. L(5δ(t− π))

47. L(δ(t− 1) + 2δ(t− 2))

48. L(δ(t− 2)(5 + u(t− 1)))
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49. L(floor(3t))

50. L(floor(2t))

51. L(5 sqw(3t))

52. L(3 sqw(t/4))

53. L(4 trw(2t))

54. L(5 trw(t/2))

55. L(t+ t−3/2 + t−1/2)

56. L(t3 + t−3/2 + 2t−1/2)

Inverse Laplace, Extended Table
Solve the given equation for f(t), using the
extended Laplace integral table.

57. L(f(t)) = e−s/s

58. L(f(t)) = 5e−2s/s

59. L(f(t)) = e−2s

60. L(f(t)) = 5e−3s

61. L(f(t)) = e−s/3

s(1− e−s/3)

62. L(f(t)) = e−2s
s(1− e−2s)

63. L(f(t)) = 4 tanh(s)

s

64. L(f(t)) = 5 tanh(3s)

2s

65. L(f(t)) = 4 tanh(s)

3s2

66. L(f(t)) = 5 tanh(2s)

11s2

67. L(f(t)) = 1√
s

68. L(f(t)) = 1√
s3
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8.3 Laplace Transform Rules

8.3 Laplace Transform Rules

In Table 7, the basic table manipulation rules are summarized. Full statements
and proofs of the rules appear in section 8.5, page 637.

The rules are applied here to several key examples using the 8 rules. Partial
fraction expansions including Heaviside’s coverup method will be delayed to the
section on Heaviside’s Method page 8.4.

Table 7. Laplace transform Rules

L(f(t) + g(t)) = L(f(t)) + L(g(t))
L(cf(t)) = cL(f(t))

Linearity.
The Laplace of a sum is the sum of the Laplaces.
Constants move through the L-symbol.

L(y′(t)) = sL(y(t))− y(0) The t-derivative or parts rule.
Derivatives L(y′) are replaced in transformed equations.

L
(∫ t

0
g(x)dx

)
=

1

s
L(g(t))

1

s
L(g(t)) = L

(∫ t

0
g(x)dx

) Forward t-integral rule.

Backward t-integral rule.

L(tf(t)) = − d

ds
L(f(t))

d

ds
L(f(t)) = L((−t)f(t))

Forward s-differentiation rule.
Each erased t-factor inserts − d

ds
in front of L.

Backward s-differentiation rule.

L(eatf(t)) = L(f(t))|s→(s−a)

L(f(t))|s→(s−a) = L(e
atf(t))

Forward First Shifting rule.
Backward First Shifting rule.
Multiplying f by eat replaces s by s − a.

L(g(t)u(t− a)) = e−asL(g(t+ a)),
e−asL(f(t)) = L(f(t− a)u(t− a))

Forward Second Shifting rule.
Backward Second Shifting rule.

L(f(t)) =
∫ P

0
f(t)e−stdt

1− e−Ps
Rule for P -periodic functions.
Assumed: f(t + P ) = f(t).

L(f(t))L(g(t)) = L((f ∗ g)(t)) Convolution rule.
Define (f ∗ g)(t) =

∫ t
0 f(x)g(t − x)dx.

Examples and Methods

Example 8.11 (Rutherford Decay)
Solve the radioactive chain decay problem x′ + 2x = −e−2t, x(0) = 10 by Laplace’s
method.

Solution: The solution is x = e−2t − te−2t. The details:

L(x′ + 2x) = L(−e−2t) 1 Apply L across the equation.

L(x′) + 2L(x) = −L(e−2t) Linearity of L.
sL(x)− x(0) + 2L(x) = −L(e−2t) Parts rule.

(s+ 2)L(x) = 10− L(e−2t) Use x(0) = 10. Collect left on L(x).
(s+ 2)L(x) = 10− 1

s+2 Forward Laplace table: L(e−2t) = 1
s+2 .
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L(x) = 10
s+2 −

1
(s+2)2 Divide to isolate L(x) left.

L(x) = 10
s+2 −

1
s2

∣∣
s→s+2

2 First shifting rule preparation.

L(x) = L(e−2t)− L(t)|s→s+2 Backward Laplace table:
1

s−a = L(eat), 1
s2 = L(t).

L(x) = L(e−2t)− L(te−2t) 3 Backwards first shifting theorem.

L(x) = L(e−2t − te−2t) Linearity.

x = e−2t − te−2t Lerch’s theorem: cancel L on each side.

Laplace’s method: Multiply across by e−stdt, then integrate across t = 0 to t =∞. It
is the same as applying L across the equation.

The details used algebraic steps and Laplace rules to obtain L(x(t)) on the left and
L(some t-expression) on the right. In the last step Lerch’s theorem applies to cancel L
on each side, which isolates the solution x(t) = some t-expression.

1 : Think of L as a matrix and Laplace’s method as matrix multiply.

2 : Fraction 1
(s+2)2 is 1

w2 using substitution w = s + 2. Mentally replace w by s and

search the Backward Table for a matching entry. The intuition comes from u-substitution
in calculus, but because u is the unit step function in Laplace theory, symbol w is used
instead of u in substitution examples.

3 : The backwards first shifting theorem in words: Remove |s→s−a by inserting expo-
nential eat inside the scope of L.

Example 8.12 (Harmonic oscillator)
Solve the initial value problem x′′+x = 0, x(0) = 0, x′(0) = 1 by Laplace’s method.

Solution: The solution is x(t) = sin t. The details:

L(x′′) + L(x) = L(0) Apply L across the equation.

sL(x′)− x′(0) + L(x) = 0 The t-derivative or parts rule.

s[sL(x)− x(0)]− x′(0) + L(x) = 0 Again the parts rule.

(s2 + 1)L(x) = 1 Use x(0) = 0, x′(0) = 1.

L(x) = 1

s2 + 1
Divide to isolate L(x(t)) left.

= L(sin t) Forward Laplace table.

x(t) = sin t Lerch’s cancellation law.

Example 8.13 (Forward Table First Shifting Rule)

Show the steps for the identity L(t2 e−3t) =
2

(s+ 3)3
.

Solution:

L(t2e−3t) = L(t2)
∣∣
s→s−(−3)

First shifting rule.

=

(
2

s2+1

)∣∣∣∣
s→s−(−3)

Forward Laplace table.
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=
2

(s+ 3)3
Identity verified.

Example 8.14 (Backward Table First Shifting Rule I)

Solve for f(t) in the equation L(f(t) = s+ 7

s2 + 4s+ 8
.

Solution: The answer is f(t) = e−2t(cos 2t+ 5
2 sin 2t). The details:

L(f(t)) = s+ 7

(s+ 2)2 + 4
Complete the square.

=
w + 5

w2 + 4
Replace s+ 2 by w.

=
w

w2 + 4
+

5

2

2

w2 + 4
Split into table entries.

=
s

s2 + 4
+

5

2

2

s2 + 4

∣∣∣∣
s→w=s+2

Shifting rule preparation.

= L
(
cos 2t+ 5

2 sin 2t
)∣∣

s→w=s+2
Basic Laplace table.

= L(e−2t(cos 2t+ 5
2 sin 2t)) First shifting rule.

f(t) = e−2t(cos 2t+ 5
2 sin 2t) Lerch’s cancellation law.

Example 8.15 (Backward Table First Shifting Rule II)

Solve the equation L(f(t)) = s+ 2

22 + 2s+ 2
for f(t).

Solution: The answer is f(t) = e−t cos t+ e−t sin t. The details:

L(f(t)) = s+ 2

s2 + 2s+ 2
Signal for this method: the denom-
inator has complex roots.

=
s+ 2

(s+ 1)2 + 1
Complete the square, denominator.

=
w + 1

w2 + 1
Substitute w for s+ 1.

=
w

w2 + 1
+

1

w2 + 1
Split into Laplace table entries.

= (L(cos t) + L(sin t))|s→w=s+1 Basic Laplace table.

= L(e−t cos t) + L(e−t sin t) First shifting rule.

f(t) = e−t cos t+ e−t sin t Lerch’s cancellation law.

Example 8.16 (Damped oscillator)
Solve by Laplace’s method the initial value problem x′′ + 2x′ + 2x = 0, x(0) = 1,
x′(0) = −1.
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Solution: The solution is x(t) = e−t cos t. The details:

L(x′′) + 2L(x′) + 2L(x) = L(0) Apply L across the equation.

sL(x′)− x′(0) + 2L(x′) + 2L(x) = 0 The t-derivative rule on x′.

s[sL(x)− x(0)]− x′(0)
+2[L(x)− x(0)] + 2L(x) = 0

The t-derivative rule on x.

(s2 + 2s+ 2)L(x) = 1 + s Use x(0) = 1, x′(0) = −1.

L(x) = s+ 1

s2 + 2s+ 2
Divide to isolate L(x).

=
s+ 1

(s+ 1)2 + 1
Complete the square.

=
w

w2 + 1

∣∣∣∣
w=s+1

Replace s+ 1 by w.

= L(cos t)|s→w=s+1 Backward table: s
s2+1 = L(cos t).

= L(e−t cos t) First shifting rule.

x(t) = e−t cos t Lerch’s cancellation law.

Example 8.17 (Forward Table s-Differentiation)

Show the steps for the identity L(t2 e5t) = 2

(s− 5)3
.

Solution:

L(t2e5t) =
(
− d

ds

)(
− d

ds

)
L(e5t) Apply s-differentiation.

= (−1)2 d

ds

d

ds

(
1

s− 5

)
Basic Laplace table.

=
d

ds

(
−1

(s− 5)2

)
Calculus power rule (un)′ = nun−1u′.

=
2

(s− 5)3
Identity verified.

Example 8.18 (Backward Table s-Differentiation)

Solve the equation L(f(t)) = 2s

(s2 + 1)2
for f(t).

Solution: The solution is f(t) = t sin t. The details:

L(f(t)) = 2s

(s2 + 1)2

= − d

ds

(
1

s2 + 1

)
Calculus power rule (un)′ = nun−1u′.

= − d

ds
(L(sin t)) Basic Laplace table.
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= L(t sin t) Apply the s-differentiation rule.

f(t) = t sin t Lerch’s cancellation law.

Example 8.19 (Forward Table Second shifting rule)

Show the steps for the identity L(sin(t)u(t− π)) =
−e−πs

s2 + 1
, where u(t) is the unit

step function: u(t) = 1 for t ≥ 0, u(t) = 0 otherwise.

Solution: The second shifting rule is applied as follows, where LHS and RHS abbreviate
the left and right hand side.

LHS = L(sin t u(t− π)) Left side of the identity.

= L(g(t)u(t− a)) Choose g(t) = sin t, a = π.

= e−asL(g(t+ a)) Second form, second shifting theorem.

= e−πsL(sin(t+ π)) 1 Substitute a = π, g(t) = sin(t).

= e−πsL(− sin t) Trig rules sin(a + b) = sin a cos b +
sin b cos a and sinπ = 0, cosπ = −1.

= e−πs −1
s2 + 1

Forward Laplace table.

= RHS Identity verified.

1 : Easy for some readers, difficult for others. How did we change symbol g(t+ a) into
sin(t+ π)? For g(t) = sin t, the replacement process g → sin and a→ π can be written
as g(t+ a) = g(x)|x=t+a = sin(x)|x=t+π = sin(t+ π).

Example 8.20 (Backward Table Second Shifting Rule)

Solve the equation L(f(t)) = e−3s s+ 1

s2 + 2s+ 2
for f(t).

Solution: The answer is f(t) = e3−t cos(t−3) for t ≥ 3, f(t) = 0 otherwise. The details:

L(f(t)) = e−3s s+ 1

(s+ 1)2 + 1
Complete the square.

= e−3w+3 w

w2 + 1
Let w = s + 1, like a calculus u-
substitution.

= e−3w+3 (L(cos t))|s→w Backward table:
s

s2+1 = L(cos t)

= e3
(
e−3sL(cos t)

)∣∣
s→w

Regroup factor e−3w.

= e3 (L(cos(t− 3)u(t− 3)))|s→w=s+1 Second shifting rule, 1st form.

= e3L(cos(t− 3)u(t− 3)e−t) First shifting rule.

f(t) = e3−t cos(t− 3)u(t− 3) Lerch’s cancellation law.
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Example 8.21 (Trigonometric formulas)
Show the steps used to obtain these Laplace identities:

(a) L(t cos at) = s2 − a2

(s2 + a2)2
(c) L(t2 cos at) = 2(s3 − 3sa2)

(s2 + a2)3

(b) L(t sin at) = 2sa

(s2 + a2)2
(d) L(t2 sin at) = 6s2a− a3

(s2 + a2)3

Solution: The details for (a):

L(t cos at) = −(d/ds)L(cos at) Use s-differentiation.

= − d

ds

(
s

s2 + a2

)
Basic Laplace table.

=
s2 − a2

(s2 + a2)2
Calculus quotient rule.

The details for (c):

L(t2 cos at) = −(d/ds)L((−t) cos at) Use s-differentiation.

=
d

ds

(
− s2 − a2

(s2 + a2)2

)
Result of (a).

=
2s3 − 6sa2)

(s2 + a2)3
Calculus quotient rule.

The similar details for (b) and (d) are left as exercises.

Example 8.22 (Exponential Formulas)
Show the steps used to obtain these Laplace identities:

(a) L(eat cos bt) = s− a

(s− a)2 + b2
(c) L(teat cos bt) = (s− a)2 − b2

((s− a)2 + b2)2

(b) L(eat sin bt) = b

(s− a)2 + b2
(d) L(teat sin bt) = 2b(s− a)

((s− a)2 + b2)2

Solution: Details for (a):

L(eat cos bt) = L(cos bt)|s→s−a First shifting rule.

=

(
s

s2 + b2

)∣∣∣∣
s→s−a

Basic Laplace table.

=
s− a

(s− a)2 + b2
Verified (a).

Details for (c):

L(teat cos bt) = L(t cos bt)|s→s−a First shifting rule.

=

(
− d

ds
L(cos bt)

)∣∣∣∣
s→s−a

Apply s-differentiation.

=

(
− d

ds

(
s

s2 + b2

))∣∣∣∣
s→s−a

Basic Laplace table.
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=

(
s2 − b2

(s2 + b2)2

)∣∣∣∣
s→s−a

Calculus quotient rule.

=
(s− a)2 − b2

((s− a)2 + b2)2
Verified (c).

Left as exercises are (b) and (d).

Example 8.23 (Hyperbolic Functions)
Establish these Laplace transform facts about coshu = (eu + e−u)/2 and sinhu =
(eu − e−u)/2.

(a) L(cosh at) = s

s2 − a2
(c) L(t cosh at) = s2 + a2

(s2 − a2)2

(b) L(sinh at) = a

s2 − a2
(d) L(t sinh at) = 2as

(s2 − a2)2

Solution: The details for (a):

L(cosh at) = 1
2 (L(e

at) + L(e−at)) Definition plus linearity of L.

=
1

2

(
1

s− a
+

1

s+ a

)
Basic Laplace table.

=
s

s2 − a2
Identity (a) verified.

The details for (d):

L(t sinh at) = − d

ds

(
a

s2 − a2

)
Apply the s-differentiation rule.

=
a(2s)

(s2 − a2)2
Calculus power rule; (d) verified.

Left as exercises are (b) and (c).

Example 8.24 (Rectified sine wave)
Compute the Laplace transform of the rectified sine wave f(t) = | sinωt| and show
that it can be expressed in the form

L(| sinωt|) =
ω coth

(
πs
2ω

)
s2 + ω2

.

Solution: The periodic function formula will be applied with period P = 2π/ω. The

calculation reduces to the evaluation of J =
∫ P

0
f(t)e−stdt. Because sinωt ≤ 0 on

π/ω ≤ t ≤ 2π/ω, integral J can be written as J = J1 + J2, where

J1 =

∫ π/ω

0

sinωt e−stdt, J2 =

∫ 2π/ω

π/ω

− sinωt e−stdt.

Integral tables give the result∫
sinωt e−st dt = −ωe−st cos(ωt)

s2 + ω2
− se−st sin(ωt)

s2 + ω2
.
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8.3 Laplace Transform Rules

Then

J1 =
ω(e−π∗s/ω + 1)

s2 + ω2
, J2 =

ω(e−2πs/ω + e−πs/ω)

s2 + ω2
,

J =
ω(e−πs/ω + 1)2

s2 + ω2
.

The remaining challenge is to write the answer for L(f(t)) in terms of coth(u) = cosh(u)
sinh(u)

where cosh(u) = 1
2e

u + 1
2e

−u and sinh(u) = 1
2e

u − 1
2e

−u. The details:

L(f(t)) = J

1− e−Ps
Periodic function formula.

=
J

(1− e−Ps/2)(1 + e−Ps/2)
Apply 1 − x2 = (1 − x)(1 + x)
where x = e−Ps/2.

=
ω(1 + e−Ps/2)

(1− e−Ps/2)(s2 + ω2)
Cancel factor 1 + e−Ps/2.

=
ePs/4 + e−Ps/4

ePs/4 − e−Ps/4

ω

s2 + ω2
Factor out e−Ps/4, then cancel.

=
2 cosh(Ps/4)

2 sinh(Ps/4)

ω

s2 + ω2
Apply cosh, sinh identities.

=
ω coth(Ps/4)

s2 + ω2
Use coshu

sinhu = cothu.

=
ω coth

(
πs
2ω

)
s2 + ω2

Identity verified.

Example 8.25 (Half–wave Rectification)
Determine the Laplace transform of the half–wave rectification g(t) of sinωt, in
which the negative cycles of sinωt have been replaced by zero to define g(t). Show
in particular that

L(g(t)) = 1

2

ω

s2 + ω2

(
1 + coth

(πs
2ω

))
Solution: The half–wave rectification of sinωt is g(t) = (sinωt + | sinωt|)/2. The
Forward Table plus the result of Example 8.24 gives

L(2g(t)) = L(sinωt) + L(| sinωt|)

=
ω

s2 + ω2
+

ω cosh(πs/(2ω))

s2 + ω2

=
ω

s2 + ω2
(1 + cosh(πs/(2ω))

Dividing by 2 produces the identity.

Exercises 8.3 �

First Order Linear DE
Display the Laplace method details which
verify the supplied answer.
The first two exercises use forward and back-

ward Laplace tables plus the first shifting theo-

rems. The others require a calculus background

in partial fractions.

616



8.3 Laplace Transform Rules

1. x′ + x = e−t, x(0) = 1;
x(t) = (1 + t)e−t.

2. x′ + 2x = −e−2t, x(0) = 1;
x(t) = (1− t)e−2t.

3. x′ + x = 1, x(0) = 1; x(t) = 1.

4. x′ + 4x = 4, x(0) = 1; x(t) = 1.

5. x′ + x = t, x(0) = −1; x(t) = t− 1.

6. x′ + x = t, x(0) = 1;
x(t) = t− 1 + 2e−t.

Second Order Linear DE
Display the Laplace method details which
verify the supplied answer.
The first 4 exercises require only forward and

backward Laplace tables and the first shifting

theorems. The others require methods in par-

tial fractions beyond a calculus background.

7. x′′ + x = 0, x(0) = 1, x′(0) = 1;
x(t) = cos t+ sin t.

8. x′′ + x = 0, x(0) = 1, x′(0) = 2;
x(t) = cos t+ 2 sin t.

9. x′′ + 2x′ + x = 0, x(0) = 0, x′(0) = 1;
x(t) = te−t.

10. x′′+2x′+x = 0, x(0) = 1, x′(0) = −1;
x(t) = e−t.

11. x′′+3x′+2x = 0, x(0) = 1, x′(0) = −1;
x(t) = e−t.

12. x′′+3x′+2x = 0, x(0) = 1, x′(0) = −2;
x(t) = e−2t.

13. x′′ + 3x′ = 0, x(0) = 5, x′(0) = 0;
x(t) = 5.

14. x′′ + 3x′ = 0, x(0) = 1, x′(0) = −3;
x(t) = e−3t.

15. x′′ + x = 1, x(0) = 1, x′(0) = 0;
x(t) = 1.

16. x′′ = 2, x(0) = 0, x′(0) = 0; x(t) = t2.

Forward Integral Rule
The rule is L

(∫ t

0
g(r)dr

)
= 1

sL(g(t))

17. Relate this rule to the convolution rule
with f(t) = 1.

18. Compute L
(∫ t

0
sin(r)dr

)
.

19. Compute L
(∫ t

0
(r + 1)3 dr

)
.

20. Compute L
(∫ t

0
sqw(r)dr

)
, where sqw

is the square wave of period 2. Use the
Extended Laplace Table.

Backward Integral Rule
Apply rule 1

sL(g(t)) = L
(∫ t

0
g(r)dr

)
and Lerch’s theorem to solve for f(t).

21. L(f(t)) = 1
s(s2+1)

22. L(f(t)) = 1
s

s+1
s2+1

23. L(f(t)) = 1
s

(
1

s+1 −
1

s+2

)
24. L(f(t)) = 1

s
e−s

s
Hint: L(u(t− a)) = 1

se
−as.

The s–Integral Rule
Identity L

(
f(t)
t

)
=

∫∞
s
L(f(t)) ds

requires piecewise continuous f(t) of expo-

nential order with limt→0+
f(t)
t = L.

25. Prove the identity.

26. Compute L
(

sin(t)
t

)
.

Forward First Shifting Rule
Apply L(f(t)eat) = L(f(t))|s→s−a to find
the Laplace transform.

27. L(tet)

28. L(tet + e2t)

29. L(sin(t)et)

30. L(sin(2t)e2t + cos(t)et)

31. L(t cosh(2t)) using identity
cosh(w) = 1

2e
w + 1

2e
−w.

32. L((t+ 1)3 et)

Backward First Shifting Rule
Apply L(f(t))|s→s−a = L(f(t)eat) and
Lerch’s theorem to solve for f(t).
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33. Explain for L(t2)
∣∣
s→s−4

the rule

Erase a shift |s→s−a by inserting eat in-
side the scope of L.

34. L(f(t)) = s
s2+1

∣∣∣
s→s−1

35. L(f(t)) = s−1
(s−1)2+4

36. L(f(t)) = 8
(s+1)2+4

37. L(f(t)) = s+1
s2+2s+5

38. L(f(t)) = 4
s2+8s+17

39. L(f(t)) = 2
(s+1)2

40. L(f(t)) = 1
(s+2)101

Forward s-Differentiation
Apply L((−t)f(t)) = d

dsL(f(t)) to find the
Laplace transform.

41. Explain for L((−t) cos(t)) the rule
Multiplying by (−t) differentiates the
Laplace transform..

42. L((−t) sin(2t))

43. L((−t) sinh(2t)), using identity
sinh(w) = 1

2e
w − 1

2e
−w.

44. L(tet sin(2t) + te2t cos(t))

Backward s-Differentiation
Apply d

dsL(f(t)) = L((−t)f(t)) and
Lerch’s theorem to solve for f(t).

45. Explain for d
dsL(cos(t)) the rule

Erase d
ds by inserting factor (−t) inside

the scope of L.

46. L(f(t)) = d
ds

s
s2+4

47. L(f(t)) = d2

ds2
1

(s+1)5

48. L(f(t)) = d3

ds3
s+1

s2+2s+5

Unit Step and Pulse
Define

pulse(t, a, b) =

{
1 a ≤ t < b,
0 else,

which is a tool for encoding and decoding
piecewise-defined functions.

49. Prove the identity
pulse(t, a, b)=u(t− a)− u(t− b),
where u is the unit step.

50. Prove the Laplace formula

L(pulse(t, a, b))= e−at−e−bt

s

51. Verify that f(t) defined by2 1 ≤ t < 2,
0 else

+

3 3 ≤ t < 4,
0 else

encodes to representation
2pulse(t, 1, 2)+3pulse(t, 3, 4).

52. Decode f(t) into a piecewise–defined
function and graph it by hand, no com-
puter, given f(t) is
et pulse(t, 1, 3)+e−t pulse(t, 4, 6)

53. Decode f(t) into a piecewise–defined
function and graph it, no computer,
given f(t) is the sum∑3

n=1 | sin(nπt)|pulse(t, 2n, 2n+1)

54. Encode as a combination of pulses

f(t)=


1 1 ≤ t < 2,
−2 3 ≤ t < 4,
1 5 ≤ t < 6,
0 else,

showing all encoding details. Ans:
f(t)=pulse(t,1,2)−2pulse(t,3,4)

+pulse(t,5,6).

Alternate Second Shifting Rule
L(g(t)u(t− a)) = e−asL

(
g(w)|w=t+a

)
. No

Laplace here. The focus is on function no-
tation and finding g(t + a) = g(w)|w=t+a,
which means substitute w = t + a into the
g(w)–formula.

55. Let g(t) = te−t. Verify identity
g(w)|w=t+2 = e−2(te−t + 2e−t).

56. Let g(t) = t3. Verify identity
g(w)|w=t+2 = 8 + 12t+ 6t2 + t3.

57. Typical polynomial g(w) = 1 + 2w2 +
3w4 upon substitution w = t + a re-
quires expansions for (t + a)2 and (t +
a)4. Pascal’s Triangle can be use-
ful. Find the answer for g(t + a) =
g(w)|w=t+a.
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58. Polynomial 1+2w2+3w4 upon substi-
tution w = t− b is a Taylor polynomial
expansion

f(t) =
∑4

n=0
f(n)(b)

n! (t− b)n .
Find the Maclaurin expansion

f(t) =
∑4

n=0
f(n)(0)

n! tn.

Forward Second Shifting Rule
L(g(t)u(t− a)) = e−asL(g(t+ a))
Find L(f(t)), where u is the unit step.

59. f(t) = u(t− π)

60. f(t) = et u(t− 1)

61. f(t) = t3u(t− π)

62. f(t) = et pulse(t, 1, 2), where
pulse(t, a, b)=u(t− a)−u(t− b).

63. f(t) = tetu(t− 2)

64. f(t) = t sin(t)u(t− π)

Backward Second Shifting Rule
e−asL(f(t)) = L(f(t− a)u(t− a))
Find f(t) using the rule and Lerch’s theo-
rem, giving a piecewise–defined display and
a unit step or pulse formula.

65. L(f(t)) = 1
se

−3s

Ans: f(t)=u(t− 3)=

{
1 t ≥ 3,
0 else,

66. L(f(t)) = 1

s2
e3−3s

67. L(f(t)) = 4

s2 + 8s+ 17
e−2s

68. L(f(t)) = 4 + s

s2 + 8s+ 17
e−3s

69. L(f(t)) =
(

1

s2
+

2

s3

)
e−2s

70. L(f(t)) = 1

(s− 4)2
e−2s

Trigonometric Formulas
Supply the details in Example 8.21.

71. L(t sin at) = 2as

(s2 + a2)2

72. L(t2 sin at) = 6s2a− a3

(s2 + a2)3

Exponential Formulas
Supply the details in Example 8.22.

73. L(eat sin bt) = b

(s− a)2 + b2

74. L(teat sin bt) = 2b(s− a)

((s− a)2 + b2)2

Hyperbolic Functions
Supply the details in Example 8.23.

75. L(sinh at) = a

s2 − a2

76. L(t cosh at) = s2 + a2

(s2 − a2)2

Waves
Use Laplace ideas from Examples 8.24
and 8.25. Each f(t) can be expressed
as a pulse train, which is an expres-
sion

∑∞
n=1 fn(t)pulse(t, ai, bi) to which

the second shifting theorem applies.

77. Find L(f(t)) for the square wave
f(t)=

∑∞
n=0(−1)n pulse(t, n, n+ 1)

78. Define pulse train
f(t)=

∑∞
n=0 fn(t)pulse(t, n, n+ 1),

f2n(t)=t − 2n, f2n+1(t)=2 − t + 2n.
Show that f(t+ 2) = f(t) and

f(t)=

{
t 0 ≤ t < 1,
2− t 1 ≤ t ≤ 2.

79. Find L(f(t)) for

f(t) =

{
| sin(2t)| 0 ≤ t ≤ π,
0 π ≤ t ≤ 2π,

and f(t+ rπ) = f(t).

80. Find L(f(t)) for

f(t) =

{
1 0 ≤ t ≤ π,
| sin(t)| π ≤ t ≤ 2π,

and f(t+ 2π) = f(t).

81. Given f(t) = 1
2 (| sin t| + sin t),

called the Half–wave rectifi-
cation of the sine wave, derive
L(f(t))= 1

(s2+1)(1−e−πs)

82. Solve for 2–periodic function f(t):

L(f(t)) = 1

s
tanh

(s
2

)
.

Use the Extended Laplace Integral Ta-
ble.
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8.4 Heaviside’s Partial Fraction Method

8.4 Heaviside’s Partial Fraction Method

This clever algebraic shortcut is used to solve an equation like

L(f(t)) = 2s

(s+ 1)(s2 + 1)

for the time domain function f(t) = −e−t+cos t+sin t. The details in Heaviside’s
method involve a sequence of easy-to-learn college algebra steps. The practical
method was popularized by English electrical engineer Oliver Heaviside (1850–
1925).

More precisely, Heaviside’s method starts with a polynomial quotient

a0 + a1s+ · · ·+ ans
n

b0 + b1s+ · · ·+ bmsm
(1)

and computes an expression f(t) such that

a0 + a1s+ · · ·+ ans
n

b0 + b1s+ · · ·+ bmsm
= L(f(t)) ≡

∫ ∞

0
f(t)e−stdt.

Symbols a0, . . . , an, b0, . . . , bm are real constants. Heaviside’s method assumes
limit zero at s =∞ for polynomial quotient (1). 5

Partial Fraction Theory

It is a college algebra theorem that a rational function (1) can be expressed as
the sum of partial fractions.

Definition 8.3 (Partial Fraction)
A partial fraction is a polynomial fraction with a constant in the numerator and a
polynomial denominator having exactly one root, i.e.,

partial fraction =
C

(s− s0)k
.(2)

The numerator C in (2) is a real or complex constant. The denominator has
exactly one root s = s0, real or complex. We expect power (s − s0)

k to be a
divisor of the denominator in fraction (1).

Real Root Case. If s0 in (2) is a real number, then C is real.

Complex Root Case. If s0 = a + ib in (2), then (s − s0)
k also divides the

denominator in (1), where s0 = a − ib is the complex conjugate of s0. The
corresponding partial fractions used in the expansion turn out to be complex

5Otherwise, fraction (1) equals by long division a polynomial plus a remainder. Heaviside’s
method applies to the remainder.
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8.4 Heaviside’s Partial Fraction Method

conjugates of one another, which can be paired and re-written as a fraction with
numerator Q(s) a real polynomial.

C

(s− s0)k
+

C

(s− s0)k
=

Q(s)

((s− a)2 + b2)k
.(3)

To illustrate, if C = u+ iv, then

C

(s− 2i)2
+

C

(s+ 2i)2
=

(C + C)s2 + 4i(C − C)s− 4(C + C)

(s2 + 4)2

=
2us2 + 8vs− 8u

(s2 + 4)2
.

The numerator 2us2 + 8vs− 8u can be expanded by the college algebra division
algorithm as Q(s) = A1(s

2 + 4) + A2s + A3, with real coefficients A1, A2, A3.
Then the fraction can be written as

Q(s)

(s2 + 4)2
=

A1

s2 + 4
+

A2s+A3

(s2 + 4)2
.

Similarly, numerator 2us3−12vs2−24us+16v expands as A1(s
2+4)2+A2(s

2+
4) +A3s+A4 in the following example:

u+ iv

(s− 2i)3
+

u− iv

(s+ 2i)3
=

2us3 − 12vs2 − 24us+ 16v

(s2 + 4)3

=
A1

s2 + 4
+

A2

(s2 + 4)2
+

A3s+A4

(s2 + 4)3

for some real coefficients A1, A2, A3, A4.

This discussion generalizes to all powers k > 1. Partial fractions with denomi-
nator (s − s0)

k and (s − s0)
k with s0 = a complex number are paired and the

division algorithm is employed as in the examples to replace the pair of terms by
a sum of terms of the form

linear polynomial in s

((s− a)2 + b2)j
, 1 ≤ j ≤ k.

The numerator has the form c1+c2s with real coefficients c1, c2. This real partial
fraction form is preferred over the sum of complex fractions, because integral
tables and Laplace tables typically contain only formulas with real coefficients.
See Example 8.26, page 629.

Simple Roots

Assume that (1) has real coefficients and the denominator of the fraction (1) has
distinct real roots s1, . . . , sN and distinct complex roots α1 ± iβ1, . . . ,
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αM ± iβM . The partial fraction expansion of (1) is a sum given in terms of real
constants Ap, Bq, Cq by

a0 + a1s+ · · ·+ ans
n

b0 + b1s+ · · ·+ bmsm
=

N∑
p=1

Ap

s− sp
+

M∑
q=1

Bq + Cq(s− αq)

(s− αq)2 + β2
q

.(4)

Multiple Roots

Assume (1) has real coefficients and the denominator of the fraction (1) has
possibly multiple roots. Let Np be the multiplicity of real root sp and let Mq be
the multiplicity of complex root αq + iβq (βq > 0), 1 ≤ p ≤ N , 1 ≤ q ≤M . The
partial fraction expansion of (1) is given in terms of real constants Ap,k, Bq,k,
Cq,k by

N∑
p=1

∑
1≤k≤Np

Ap,k

(s− sp)k
+

M∑
q=1

∑
1≤k≤Mq

Bq,k + Cq,k(s− αq)

((s− αq)2 + β2
q )

k
.(5)

Summary

A polynomial quotient p/q with limit zero at infinity has a unique expansion into
partial fractions. A partial fraction is either a constant divided by a divisor of q
having exactly one real root, or else a linear function divided by a real divisor of
q, having exactly one complex conjugate pair of roots.

Sampling Method

Consider the expansion in partial fractions

s− 1

s(s+ 1)2(s2 + 1)
=

A

s
+

B

s+ 1
+

C

(s+ 1)2
+

Ds+ E

s2 + 1
.(6)

The five undetermined real constants A through E are found by clearing the
fractions, that is, multiply (6) by the denominator on the left to obtain the
polynomial equation

s− 1 = A(s+ 1)2(s2 + 1) +Bs(s+ 1)(s2 + 1)
+Cs(s2 + 1) + (Ds+ E)s(s+ 1)2.

(7)

Next, five different samples of s are substituted into (7) to obtain equations for
the five unknowns A through E.6 Always use the roots of the denominator

6The values chosen for s are called samples, that is, they are cleverly chosen values. The
number of s-values sampled equals the number of symbols A, B, . . . to be determined, which in
turn equals the degree of the denominator.
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to start: s = 0, s = −1, s = i, s = −i are the roots of s(s + 1)2(s2 + 1) = 0 .
Each complex root results in two equations, by taking real and imaginary parts.
The complex conjugate root s = −i is not used, because it duplicates equations
already obtained from s = i. The three roots s = 0, s = −1, s = i give only four
equations, so we invent another sample s = 1 to get the last equation:

−1 = A (s = 0)
−2 = −2C (s = −1)

i− 1 = (Di+ E)i(i+ 1)2 (s = i)
0 = 8A+ 4B + 2C + 4(D + E) (s = 1)

(8)

Because D and E are real, the complex equation (s = i) becomes two equations,
as follows.

i− 1 = (Di+ E)i(i2 + 2i+ 1) Expand power (i+ 1)2.

i− 1 = −2Di− 2E Simplify using i2 = −1.
1 = −2D Equate imaginary parts.

−1 = −2E Equate real parts.
Root i created 2 equations!

The 5 × 5 system of linear algebraic equations is solved for answers A = −1,
B = 3/2, C = 1, D = −1/2, E = 1/2.

Method of Atoms

Consider the expansion in partial fractions

2s− 2

s(s+ 1)2(s2 + 1)
=

a

s
+

b

s+ 1
+

c

(s+ 1)2
+

ds+ e

s2 + 1
.(9)

Clearing the fractions in (9) gives the polynomial equation

2s− 2 = a(s+ 1)2(s2 + 1) + bs(s+ 1)(s2 + 1)
+cs(s2 + 1) + (ds+ e)s(s+ 1)2.

(10)

The method of atoms expands all polynomial products and collects on powers
of s. Functions 1, s, s2, . . . are by definition called Euler solution atoms, hence
the terminology. The coefficients of the powers are matched to give 5 equations
in the five unknowns a through e. Some details:

2s− 2 = (a+ b+ d) s4 + (2a+ b+ c+ 2d+ e) s3

+(2a+ b+ d+ 2e) s2 + (2a+ b+ c+ e) s+ a
(11)

Matching powers of s implies the 5 equations

a+ b+ d = 0, 2a+ b+ c+ 2d+ e = 0, 2a+ b+ d+ 2e = 0,
2a+ b+ c+ e = 2, a = −2.

Solving, the unique solution is a = −2, b = 3, c = 2, d = −1, e = 1.
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8.4 Heaviside’s Partial Fraction Method

Heaviside’s Coverup Method

Assume distinct roots in the denominator of fraction (1). Extensions to multiple-
root cases can be made; see page 625.

To illustrate Oliver Heaviside’s 1890 ideas, consider the problem details

2s+ 1

s(s− 1)(s+ 1)
=

A

s
+

B

s− 1
+

C

s+ 1
(12)

= L(A) + L(Bet) + L(Ce−t)

= L(A+Bet + Ce−t)

The first line in (12) uses college algebra partial fractions. The second and third
lines use the basic Laplace table and linearity of L. Missing here are the values
of constants A,B,C. Heaviside’s ideas provide an efficient method to evaluate
A = −1, B = 3

2 , C = −1
2 . Then L(y) =

2s+1
s(s−1)(s+1) = L(−1 +

3
2e

t − 1
2e

−t) implies

y = −1 + 3
2e

t − 1
2e

−t.

Mysterious Details

Oliver Heaviside proposed to find A = −1, B = 3
2 , C = −1

2 in (12) by a cover-up
method. The method is completely mental, no writing at all. We explain in
detail how Heaviside found C = −1

2 .

Heaviside starts with the identity

2s+ 1

s(s− 1)(s+ 1)
=

A

s
+

B

s− 1
+

C

s+ 1
.(13)

The cover–up method finds C by mentally clearing the fraction C
s+1 , that is,

multiply (13) by the denominator s+ 1 of the partial fraction C
s+1 to obtain

the partially-cleared fraction relation

(2s+ 1) (s+ 1)

s(s− 1) (s+ 1)
=

A (s+ 1)

s
+

B (s+ 1)

s− 1
+

C (s+ 1)

(s+ 1)
.

Set (s+ 1) = 0 in the display. Cancellations left and right plus annihilation of

two terms on the right give the answer for C:

2s+ 1

s(s− 1)

∣∣∣∣
s+ 1 =0

= 0 + 0 + C.

Heaviside’s cryptic instructions are to cover–up the matching factors (s + 1) on

the left and right in (13) with box (s+ 1) (Heaviside used his fingertips), then
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8.4 Heaviside’s Partial Fraction Method

evaluate on the left at the root s which causes the box contents to be zero. The
other terms on the right are replaced by zero. Heaviside would find C = −1

2
by placing his fingers over the factors (s + 1) left and right in (13), the boxes

(s+ 1) below being his finger tips:

2s+ 1

s(s− 1) (s+ 1)

∣∣∣∣∣∣
s+1 =0

=
C

(s+ 1)
.

The factor (s+ 1) in (13) is by no means special: the same procedure applies to
find A and B. The method works for denominators with simple roots, that is,
no repeated roots are allowed. Heaviside’s method in words:7

To determine C in partial fraction C
s−s0

, multiply the relation by (s − s0), to
partially clear the fraction. Substitute root s of equation s − s0 = 0 into the
partially cleared relation.

Extension to Multiple Roots

Heaviside’s method can be extended to the case of repeated roots. The basic idea
is to factor–out the repeats. To illustrate, consider the partial fraction expansion
details

R =
1

(s+ 1)2(s+ 2)
A sample rational function having repeated
roots.

=
1

s+ 1

(
1

(s+ 1)(s+ 2)

)
Factor–out the repeats.

=
1

s+ 1

(
1

s+ 1
+
−1
s+ 2

)
Apply the cover–up method to the simple
root fraction.

=
1

(s+ 1)2
+

−1
(s+ 1)(s+ 2)

Multiply. Observe that 1
(s+1)2

is a partial

fraction!

=
1

(s+ 1)2
+
−1
s+ 1

+
1

s+ 2
Apply the cover–up method to the last frac-
tion on the right.

Term 1
(s+1)2

has constant numerator and denominator with only one root. It is

already a partial fraction.8 Therefore the work centers on expansion of quotients
in which the denominator has two or more roots.

7Root s = s0 is called a pole and the answer C is called a residue. See page 627.
8Re–read the definition of partial fraction page 620.
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8.4 Heaviside’s Partial Fraction Method

Special Methods

Heaviside’s method has a useful extension for the case of roots of multiplicity
two. To illustrate, consider these details:

R =
1

(s+ 1)2(s+ 2)
1 A fraction with multiple roots.

=
A

s+ 1
+

B

(s+ 1)2
+

C

s+ 2
2 See equation (5), page 622.

=
A

s+ 1
+

1

(s+ 1)2
+

1

s+ 2
3 Find B and C by Heaviside’s cover–up
method.

=
−1
s+ 1

+
1

(s+ 1)2
+

1

s+ 2
4 Details below.

Details 4 . Multiply the equation 1 = 2 by s+ 1 to partially clear fractions,
the same step as the cover-up method:

1

(s+ 1)(s+ 2)
= A+

B

s+ 1
+

C(s+ 1)

s+ 2
.

Don’t substitute s from s+ 1 = 0, because it gives infinity for the second term.
Instead, set s =∞ to get the equation 0 = A+C. Because C = 1 from 3 , then
A = −1.
The illustration works for one root of multiplicity two, because s =∞ will resolve
the coefficient not found by the cover–up method.

In general, if the denominator in (1) has a root s0 of multiplicity k, then the
partial fraction expansion contains terms

C1

s− s0
+

C2

(s− s0)2
+ · · ·+ Ck

(s− s0)k
.

Heaviside’s cover–up method directly finds Ck, but not C1 to Ck−1.

Cover-up Method and Complex Numbers

Consider the partial fraction expansion

10

(s+ 1)(s2 + 9)
=

A

s+ 1
+

Bs+ C

s2 + 9
.

The symbols A, B, C are real. The value of A can be found directly by the cover-
up method, giving A = 1. To find B and C, multiply the fraction expansion by
s2+9, in order to partially clear fractions, then formally set s2+9 = 0 to obtain
the two equations

10

s+ 1
= Bs+ C, s2 + 9 = 0.
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8.4 Heaviside’s Partial Fraction Method

The method applies the identical idea used for one real root. By clearing fractions
in the first, the equations become

10 = Bs2 + Cs+Bs+ C, s2 + 9 = 0.

Substitute s2 = −9 into the first equation to give the linear equation

10 = (−9B + C) + (B + C)s.

Because this linear equation has two complex roots s = ±3i, then real constants
B, C satisfy the 2× 2 system

−9B + C = 10,
B + C = 0.

Solving gives B = −1, C = 1.

The same method applies especially to fractions with 3-term denominators, like
s2 + s+1. The only change made in the details is the replacement s2 → −s− 1.
By repeated application of s2 = −s − 1, the first equation can be distilled into
one linear equation in s with two roots. As before, a 2× 2 system results.

Residues, Poles and Oliver Heaviside

The language of residues and poles invaded engineering literature years ago,
blamed in part on engineers who studied the foundations of complex variables.
The terminology formalizes the naming of partial fraction theory constants and
roots that appear in Oliver Heaviside’s cover-up method, detailed above, which
is an electrical engineering partial fraction shortcut that dates back to the year
1890.

Residues and poles do not provide any new mathematical tools for solving partial
fraction problems. The service of residues and poles is to provide a new language
for discussing the answers, a language that appears in current engineering and
science literature. If you know how to compute coefficients in partial fractions
using Heaviside’s shortcut, then you already know how to find residues and poles.

A Key Example. Heaviside’s shortcut finds the coefficients c1 = 1
2 , c2 =

−5, c3 = 5
2 in the expansion

5− 2(s+ 2)(s+ 3)

(s+ 1)(s+ 2)(s+ 3)
=

c1
s+ 1

+
c2

s+ 2
+

c3
s+ 3

by clearing the fractions one at a time, each clearing followed by substitution of
the corresponding root found in the denominator.

For instance, to clear the fraction for c2 requires multiplication by (s+2), to give
the intermediate step (Heaviside did it mentally, writing nothing)

5− 2(s+ 2)(s+ 3)

(s+ 1)(s+ 3)
=

c1(s+ 2)

s+ 1
+

c2
1

+
c3(s+ 2)

s+ 3
.
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8.4 Heaviside’s Partial Fraction Method

Root s = −2 of s+ 2 = 0 is substituted above to give c2 = −5.

Table 8. Working Definition of Pole and Residue

A pole is the same as a root of the denominator in a quotient
p(x)

q(x)
.

A residue is the same as a coefficient in the partial fraction expansion of the

quotient
p(x)

q(x)
(precise details below).

In the key example, the residue at pole s = −2 (the pole is the root of s+2 = 0)
is defined by the equation

lim
s→−2

(s+ 2)
5− (2(s+ 2)(s+ 3)

(s+ 1)(s+ 2)(s+ 3)
.

To evaluate the limit, cancel the common factor (s + 2) and substitute s = −2.
Oliver Heaviside would be surprised by the unnecessary limit.

Definition 8.4 (Poles and Residues)
A function f(z) of complex variable z has a pole at z = z0 provided there is an
integer n ≥ 0 such that g(z) = (z − z0)

nf(z) can be written as a power series

g(z) = g0 + g1(z − z0) + g2(z − z0)
2 + · · ·

convergent in a disk |z − z0| < R and g0 ̸= 0 (which means g(z0) ̸= 0).

The order of the pole is the integer n. The residue is g0.

If f(z) has a pole z = z0 of order n, then the residue g0 at the pole can be computed
from the limit formula

g0 = lim
z→z0

(z − z0)
nf(z).

In terms of series expansion, a pole of order n means that

f(z) =
g0

(z − z0)n
+ · · ·+ gn + gn+1(z − z0) + gn+2(z − z0)

2 + · · · ,

which is called a Laurent Series.

Table 9. Pole, Residue and Applications

A real pole defines the damping coefficient in a transient.

A complex pole on the imaginary axis describes frequency.

Residues are mode shape information.
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8.4 Heaviside’s Partial Fraction Method

Examples and Methods

Example 8.26 (Partial Fractions I)

Show the details of the partial fraction expansion

s3 + 2s2 + 2s+ 5

(s− 1)(s2 + 4)(s2 + 2s+ 2)
=

2/5

s− 1
+

1/2

s2 + 4
− 1

10

7 + 4 s

s2 + 2 s+ 2
.

Solution:
Background. The problem originates as equality 5 = 6 in the sequence of Example
8.28, page 632, which solves for x(t) using the method of partial fractions:

5 L(x) = s3 + 2s2 + 2s+ 5

(s− 1)(s2 + 4)(s2 + 2s+ 2)

6 =
2/5

s− 1
+

1/2

s2 + 4
− 1

10

7 + 4 s

s2 + 2 s+ 2

College algebra detail. College algebra partial fractions theory says that there exist
real constants A, B, C, D, E satisfying the identity

s3 + 2s2 + 2s+ 5

(s− 1)(s2 + 4)(s2 + 2s+ 2)
=

A

s− 1
+

B + Cs

s2 + 4
+

D + Es

s2 + 2 s+ 2
.

As explained on page 621, the complex conjugate roots ±2i and −1±i are not represented
as terms c/(s − s0), but in the combined real form seen in the above display, which is
suited for use with Laplace tables.

The sampling method applies to find the constants. In this method, the fractions are
cleared to obtain the polynomial relation

s3 + 2s2 + 2s+ 5 = A(s2 + 4)(s2 + 2s+ 2)
+(B + Cs)(s− 1)(s2 + 2s+ 2)
+(D + Es)(s− 1)(s2 + 4).

The roots of the denominator (s− 1)(s2 + 4)(s2 + 2s+ 2) to be inserted into the previous
equation are s = 1, s = 2i, s = −1 + i. The conjugate roots s = −2i and s = −1− i are
not used. Each complex root generates two equations, by equating real and imaginary
parts, therefore there will be 5 equations in 5 unknowns. Substitution of s = 1, s = 2i,
s = −1 + i gives three equations

s = 1 10 = 25A,
s = 2i −4i− 3 = (B + 2iC)(2i− 1)(−4 + 4i+ 2),
s = −1 + i 5 = (D − E + Ei)(−2 + i)(2− 2(−1 + i)).

Writing each expanded complex equation in terms of its real and imaginary parts, ex-
plained in detail below, gives 5 equations

s = 1 2 = 5A,
s = 2i −3 = −6B + 16C,
s = 2i −4 = −8B − 12C,
s = −1 + i 5 = −6D − 2E,
s = −1 + i 0 = 8D − 14E.
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8.4 Heaviside’s Partial Fraction Method

The equations are solved to give A = 2/5, B = 1/2, C = 0, D = −7/10, E = −2/5
(details for B, C below).

Complex equation to two real equations. It is an algebraic mystery how exactly
the complex equation

−4i− 3 = (B + 2iC)(2i− 1)(−4 + 4i+ 2)

gets converted into two real equations. The process is explained here.

First, the complex equation is expanded, as though it is a polynomial in variable i, to
give the steps

−4i− 3 = (B + 2iC)(2i− 1)(−2 + 4i)
= (B + 2iC)(−4i+ 2 + 8i2 − 4i) Expand.
= (B + 2iC)(−6− 8i) Use i2 = −1.
= −6B − 12iC − 8Bi+ 16C Expand, use i2 = −1.
= (−6B + 16C) + (−8B − 12C)i Convert to form x+ yi.

Next, the two sides are compared. Because B and C are real, then the real part of the
right side is (−6B + 16C) and the imaginary part of the right side is (−8B − 12C).
Equating matching parts on each side gives the equations

−6B + 16C = −3,
−8B − 12C = −4,

which is a 2× 2 linear system for the unknowns B, C.

Solving the 2 × 2 system. Such a system with a unique solution can be solved by
Cramer’s rule, matrix inversion or elimination. The answer: B = 1/2, C = 0.

The easiest method turns out to be elimination. Multiply the first equation by 4 and
the second equation by 3, then subtract to obtain C = 0. Then the first equation is
−6B + 0 = −3, implying B = 1/2.

Example 8.27 (Partial Fractions II)

Verify the partial fraction expansion

1
s5 + 8 s4 + 23 s3 + 31 s2 + 24 s+ 9

(s+ 1)2 (s2 + s+ 1)2
=

4

s+ 1
+

5− 3s

s2 + s+ 1
.

Solution:
Basic partial fraction theory implies that there are unique real constants a, b, c, d, e, f
satisfying the equation

s5 + 8 s4 + 23 s3 + 31 s2 + 24 s+ 9

(s+ 1)
2
(s2 + s+ 1)

2 =
a

s+ 1
+

b

(s+ 1)2

+
c+ ds

s2 + s+ 1
+

e+ f s

(s2 + s+ 1)2

Sanity checks apply when constructing the expansion. First, the number of real con-
stants is always the degree of the denominator, which is 6 in this example. This caused
the invention of 6 symbols a, b, c, d, e, f . Only real polynomials appear in the fraction
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denominators on the right. The following checkpoints are done mentally: we never in a
partial fraction problem write out such details:

s+ 1 divides (s+ 1)
2 (

s2 + s+ 1
)2

(s+ 1)2 divides (s+ 1)
2 (

s2 + s+ 1
)2

s2 + s+ 1 divides (s+ 1)
2 (

s2 + s+ 1
)2

(s2 + s+ 1)2 divides (s+ 1)
2 (

s2 + s+ 1
)2

The sampling method applies to clear fractions and replace the fractional equation by
the polynomial relation

s5 + 8 s4 + 23 s3 + 31 s2 + 24 s+ 9 = a(s+ 1)(s2 + s+ 1)2

+b(s2 + s+ 1)2

+(c+ ds)(s2 + s+ 1)(s+ 1)2

+(e+ f s)(s+ 1)2

However, the prognosis for the resultant algebra is grim: only three of the six required
equations can be obtained by substitution of the roots (s = −1, s = −1/2 + i

√
3/2)

of the denominator. The sampling idea is abandoned, because of the complexity of the
6× 6 system of linear equations required to solve for the six constants a through f .

Instead, the fraction R on the left of 1 is written with repeated factors extracted, as
follows:

R =
1

(s+ 1)(s2 + s+ 1)

(
p(s)

(s+ 1)(s2 + s+ 1)

)
,

p(s) = s5 + 8 s4 + 23 s3 + 31 s2 + 24 s+ 9.

Long division gives the formulas

p(s)

(s+ 1)(s2 + s+ 1)
= s2 + 6s+ 9,

R =
p(s)

(s+ 1)2(s2 + s+ 1)2
=

(s+ 3)2

(s+ 1)(s2 + s+ 1)
.

The simplified form of R has a partial fraction expansion

(s+ 3)2

(s+ 1)(s2 + s+ 1)
=

a

s+ 1
+

b+ cs

s2 + s+ 1

where a, b, c are real constants. Reuse of earlier symbols a, b, c, d, e, f has occurred,
similar to always using symbol x in a quadratic equation. Progress: the dimension of
the algebra problem went from 6× 6 to 3× 3.

Heaviside’s cover-up method gives a = 4. Applying Heaviside’s method again to the
quadratic factor implies the pair of equations

(s+ 3)2

s+ 1
= b+ cs, s2 + s+ 1 = 0.

These equations can be solved for b = 5, c = −3. The details assume that s is a root of
s2 + s+ 1 = 0, then

(s+ 3)2

s+ 1
= b+ cs The first equation.
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s2 + 6s+ 9

s+ 1
= b+ cs Expand.

−s− 1 + 6s+ 9

s+ 1
= b+ cs Use s2 + s+1 = 0.

5s+ 8 = (s+ 1)(b+ cs) Clear fractions.

5s+ 8 = bs+ cs+ b+ cs2 Expand again.

5s+ 8 = bs+ cs+ b− cs− c Use s2 + s+1 = 0.

Conclusion 5 = b and 8 = b − c follows because the last equation is linear but has two
complex roots. Solve: b = 5, c = −3.
Finally: a = 4, b = 5, c = −3, which verifies 1 .

Example 8.28 (Third Order Initial Value Problem)
Solve the third order initial value problem

x′′′ − x′′ + 4x′ − 4x = 5e−t sin t,
x(0) = 0, x′(0) = x′′(0) = 1.

Solution:
The answer is

x(t) =
2

5
et +

1

4
sin 2t− 3

10
e−t sin t− 2

5
e−t cos t.

Method. Apply L to the differential equation. In steps 1 to 3 the Laplace integral
of x(t) is isolated, by applying linearity of L, integration by parts L(f ′) = sL(f)− f(0)
and the basic Laplace table.

L(x′′′)− L(x′′) + 4L(x′)− 4L(x) = 5L(e−t sin t) 1

(s3L(x)− s− 1)− (s2L(x)− 1) + 4(sL(x))− 4L(x)= 5

(s+ 1)2 + 1
2

(s3 − s2 + 4s− 4)L(x) = 5
1

(s+ 1)2 + 1
+ s 3

Steps 5 and 6 use the college algebra theory of partial fractions, the details of which

appear in Example 8.26, page 629. Steps 7 and 8 write the partial fraction expansion

in terms of Laplace table entries. Step 9 converts the s-expressions, which are basic
Laplace table entries, into Laplace integral expressions. Algebraically, we replace s-
expressions by expressions in symbols L and t.

L(x) =
5

(s+1)2+1 + s

s3 − s2 + 4s− 4
4

=
s3 + 2s2 + 2s+ 5

(s− 1)(s2 + 4)(s2 + 2s+ 2)
5

=
2/5

s− 1
+

1/2

s2 + 4
− 1/10

7 + 4 s

s2 + 2 s+ 2
6

=
2/5

s− 1
+

1/2

s2 + 4
− 1/10

3 + 4(s+ 1)

(s+ 1)2 + 1
7

=
2/5

s− 1
+

1/2

s2 + 4
− 3/10

(s+ 1)2 + 1
− (2/5)(s+ 1)

(s+ 1)2 + 1
8
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= L
(
2

5
et +

1

4
sin 2t− 3

10
e−t sin t− 2

5
e−t cos t

)
9

The last step 10 applies Lerch’s cancellation theorem to L(x(t)) = 9 .

x(t) =
2

5
et +

1

4
sin 2t− 3

10
e−t sin t− 2

5
e−t cos t 10

Example 8.29 (Second Order System)
Solve for x(t) and y(t) in the 2nd order system of linear differential equations

2x′′ − x′ + 9x− y′′ − y′ − 3y = 0, x(0) = x′(0) = 1,
2′′ + x′ + 7x− y′′ + y′ − 5y = 0, y(0) = y′(0) = 0.

Solution: The answer is

x(t) =
1

3
et +

2

3
cos(2 t) +

1

3
sin(2 t),

y(t) =
2

3
et − 2

3
cos(2 t)− 1

3
sin(2 t).

Transform. The intent of steps 1 and 2 is to transform the initial value problem

into two equations in two unknowns. Used repeatedly in 1 is integration by parts

L(f ′) = sL(f)− f(0). No Laplace tables were used. In 2 the substitutions x1 = L(x),
x2 = L(y) are made to produce two equations in the two unknowns x1, x2.

(2s2 − s+ 9)L(x) + (−s2 − s− 3)L(y) = 1 + 2s,
(2s2 + s+ 7)L(x) + (−s2 + s− 5)L(y) = 3 + 2s,

1

(2s2 − s+ 9)x1 + (−s2 − s− 3)x2 = 1 + 2s,
(2s2 + s+ 7)x1 + (−s2 + s− 5)x2 = 3 + 2s.

2

Step 3 uses Cramer’s rule. Equations 2 are of the form ax1 + bx2 = e, cx1 + dx2 = f .
Cramer’s rule expresses answers x1, x2 by determinant fractions

x1 =

∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ , x2 =

∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .
The variable names x1, x2 stand for the Laplace integrals of the unknowns x(t), y(t),
respectively. The answers, following a tedious calculation:

x1 =
s2 + 2/3

s3 − s2 + 4 s− 4
,

x2 =
10/3

s3 − s2 + 4 s− 4
.

3

Step 4 writes each fraction resulting from Cramer’s rule as a partial fraction expansion

suited for backward Laplace table look-up (details after 6 ). Step 5 does the table

look-up and prepares for step 6 to apply Lerch’s cancellation law, in order to display
the answers x(t), y(t).
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
x1 =

1/3

s− 1
+

2

3

s

s2 + 4
+

1

3

2

s2 + 4
,

x2 =
2/3

s− 1
− 2

3

s

s2 + 4
− 1

3

2

s2 + 4
.

4


L(x(t)) = L

(
1

3
et +

2

3
cos(2 t) +

1

3
sin(2 t)

)
,

L(y(t)) = L
(
2

3
et − 2

3
cos(2 t)− 1

3
sin(2 t)

)
.

5


x(t) =

1

3
et +

2

3
cos(2 t) +

1

3
sin(2 t),

y(t) =
2

3
et − 2

3
cos(2 t)− 1

3
sin(2 t).

6

Partial fraction details. Shown below is how to obtain the expansion

s2 + 2/3

s3 − s2 + 4 s− 4
=

1/3

s− 1
+

2

3

s

s2 + 4
+

1

3

2

s2 + 4
.

The denominator s3 − s2 + 4 s− 4 factors into s−1 times s2+4. Partial fraction theory
implies that there is an expansion with real coefficients A, B, C of the form

s2 + 2/3

(s− 1)(s2 + 4)
=

A

s− 1
+

Bs+ C

s2 + 4
.

Let’s verify A = 1/3, B = 2/3, C = 2/3. Clear the fractions to obtain the polynomial
equation

s2 + 2/3 = A(s2 + 4) + (Bs+ C)(s− 1).

Instead of using s = 1 and s = 2i, which are roots of the denominator, invent samples
s = 1, s = 0, s = −1 to get a real 3× 3 system for A, B, C:

s = 1 : 1 + 2/3 = A(1 + 4) + 0,
s = 0 : 0 + 2/3 = A(4) + C(−1),
s = −1 : 1 + 2/3 = A(1 + 4) + (−B + C)(−2).

Write this system as an augmented matrix G with variables A, B, C assigned to the first
three columns of G:

G =

 5 0 0 5/3
4 0 −1 2/3
5 2 −2 5/3


Using computer assist, calculate

rref(G) =

 1 0 0 1/3
0 1 0 2/3
0 0 1 2/3


Then A, B, C are the last column entries of rref(G), which verifies the partial fraction
expansion.

Heaviside cover-up detail. It is possible to rapidly check that A = 1/3 using the
cover-up method. Less obvious is that the cover-up method also applies to the fraction
with complex roots.
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8.4 Heaviside’s Partial Fraction Method

The idea is to multiply the fraction decomposition by s2+4 to partially clear the fractions
and then set s2+4 = 0. This process formally sets s equal to one of the two roots s = ±2i.
Complex numbers are avoided entirely by solving for B, C in the pair of equations

s2 + 2/3

s− 1
= A(0) + (Bs+ C), s2 + 4 = 0.

Because s2 = −4, the first equality is simplified to
−4 + 2/3

s− 1
= Bs + C. Swap sides of

the equation, then cross-multiply to obtain Bs2 + Cs − Bs − C = −10/3 and then use
s2 = −4 again to simplify to (−B + C)s + (−4B − C) = −10/3. Because this linear
equation in variable s has two solutions, then −B+C = 0 and −4B−C = −10/3. Solve
this 2× 2 system by elimination to obtain B = C = 2/3.

The algebraic method: First, find two equations in symbols s, B, C. Next, symbol s is
eliminated to give two equations in symbols B, C. Finally, the 2× 2 system for B, C is
solved.

Exercises 8.4 �

Partial Fraction Mistakes

1. How many real constants appear in the
partial fraction expansion of the frac-

tion
s+ 1

s2(s+ 2)(s+ 3)2
?

2. How many real constants appear
in the partial fraction expansion of

s+ 1

s2(s2 + 4)(s2 + 2s+ 5)2
?

3. Guido expanded
s+ 1

s(s+ 2)(s+ 3)2

to get
a

s
+

b

s+ 2
+

c

(s+ 3)2
.

What is the mistake?

4. Helena made this expansion:
s+ 1

s(s+ 2)
=
a

s
+

b

s+ 2
+

c

s+ 3
The expansion is correct! Explain how
you know that c = 0 without comput-
ing anything.
This example explains why fractions on the

right have denominators dividing the denom-

inator on the left.

5. Marco made an expansion:
s+ 1

s(s2 + 4)
=
a

s
+

b

s+ 2
+

c

s− 2
Explain why it is a mistake.

This example explains why sanity checks have

more than one item to check.

6. Violeta made an expansion
s+ 2

s(s− 2)(s+ 2)
=
a

s
+

b

s− 2
+

c

s+ 2
Explain why c = 0 without computing
anything.

This example explains why common factors

of numerator and denominator should be re-

moved.

7. Find the mistake in expansion
(s+ 2)2

s(s− 2)
=
a

s
+

b

s− 2
This example explains why the degree of the

numerator and denominator are checkpoints.

8. Is there a mistake here?
(s+ 2)2

s2(s− 2)
=
a

s
+

b

s2
+

c

s− 2

Sampling Method
Apply the sampling method (a failsafe
method) to verify the given equation.

9.
s

s2 − 1
=

1/2

s− 1
+

1/2

s+ 1

10.
s

s4 − 1
=

1/4

s− 1
+

1/4

s+ 1
+
−s/2
s2 + 1

Method of Atoms
Apply the method of atoms to verify the
given equation.

11.
2s

s2 − 1
=

1

s− 1
+

1

s+ 1
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8.4 Heaviside’s Partial Fraction Method

12.
4s

s4 − 1
=

1

s− 1
+

1

s+ 1
+
−2s
s2 + 1

Heaviside’s 1890 Shortcut
Apply Heaviside’s shortcut to verify the
given equation.

13.
2s

s2 − 4
=

1

s− 2
+

1

s+ 2

14.
s+ 4

s3 + 4s
=
1

s
+
−s+ 1

s2 + 4

Residues and Poles
Compute the residue for the given pole.

15. Residue at s = 2 for
2s

s2 − 4
.

16. Residue at s = 0 for
s+ 4

s3 + 16s
.

Scalar Differential Equations
The transfer function of x′′ + x = f(t)
is H(s) = 1

s2+1 . A common definition is
H(s) = L(f(t)) divided by L(x(t)), assum-
ing x(0) = x′(0) = 0.

17. Verify for x′′ + x = e−t with x(0) = 0,
x′(0) = 0 that L(x)= 1

s+1
1

s2+1 . Then
compute H(s).

18. Explain the transfer function
equation
H(s) = 1

characteristic equation
.

19. Solve L(x(t))= 1
s+1

1
s2+1 by Heaviside

cover–up for output x(t) = 1
2 (e

−t −
cos t+ sin t).

20. Given x′′ + x = te−t, x(0) = x′(0) = 0,
show all steps to find
L(x(t)) = 1

(s+1)2
1

s2+1 .

First Order System
Using Example 8.29 as a guide, solve the
system for x1(t) by Laplace’s method.

21.

 x′
1=x2,

x′
2=4x1 + 12e−t,

x1(0)=x2(0)=0.

Ans: x1(t)=e2t + 3e−2t − 4e−t.

22.


x′
1=x2,

x′
2=x3,

x′
3=4x1 − 4x2 + x3 + 10e−t,

x1(0)=x2(0)=x3(0)=0.

Ans: x1(t)=et − e−t − sin(2t).

Second Order System
Using Example 8.29 as a guide, compute
x(t), y(t).

23. L(x(t))= 3s2+2
(s−1)(s2+4) ,

L(y(t))= 10
(s−1)(s2+4) .

Ans: x=2 cos(2t)+ sin(2t)+et,
y=− 2 cos(2t)− sin(2t)+2et

24. L(x(t))= 2s2+4
(s+1)(s2+1) ,

L(y(t))= 2
(s+1)(s2+1) .

Ans: x=− cos(t)+ sin(t)+3e−t,
y=− cos(t)+ sin(t)+e−t.
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8.5 Transform Properties

8.5 Transform Properties

Collected here are the major theorems for the manipulation of Laplace transform
tables along with their derivations. Those who study in isolation are advised to
dwell on the details of proof and re-read the examples of preceding sections. No
exercises are appropriate and none are supplied.

Theorem 8.5 (Linearity)
The Laplace transform has these inherited integral properties:

(a) L(f(t) + g(t)) = L(f(t)) + L(g(t)),
(b) L(cf(t)) = cL(f(t)).

Theorem 8.6 (The t-Derivative Rule or Parts Rule)
Let y(t) be continuous, of exponential order and let y′(t) be piecewise continuous
on t ≥ 0. Then L(y′(t)) exists and

L(y′(t)) = sL(y(t))− y(0+).

Theorem 8.7 (The t-Integral Rule)
Let g(t) be of exponential order and continuous for t ≥ 0. Then

L
(∫ t

0 g(x) dx
)
=

1

s
L(g(t))

or equivalently

L(g(t)) = sL
(∫ t

0 g(x) dx
)

Theorem 8.8 (The s-Differentiation Rule)
Let f(t) be of exponential order. Then

L(tf(t)) = − d

ds
L(f(t)).

Theorem 8.9 (First Shifting Rule)
Let f(t) be of exponential order and −∞ < a <∞. Then

L(eatf(t)) = L(f(t))|s→(s−a) .

Theorem 8.10 (Second Shifting Rule)
Let f(t) and g(t) be of exponential order and assume a ≥ 0. Then

(a) L(f(t− a)H(t− a)) = e−asL(f(t)),
(b) L(g(t)H(t− a)) = e−asL(g(t+ a)).
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8.5 Transform Properties

Theorem 8.11 (Periodic Function Rule)
Let f(t) be of exponential order and satisfy f(t+ P ) = f(t). Then

L(f(t)) =
∫ P
0 f(t)e−stdt

1− e−Ps
.

Theorem 8.12 (Convolution Rule)
Let f(t) and g(t) be of exponential order. Then

L(f(t))L(g(t)) = L
(∫ t

0
f(x)g(t− x)dx

)
.

Theorem 8.13 (Laplace at Infinity is Zero)
Let f(t) be of piecewise continuous and of exponential order. Then

lim
s→∞

L(f(t)) = 0.

Theorem 8.14 (Initial and Final Value Rules)
Let f(t) and f ′(t) be functions of exponential order. Then, when all indicated limits
exist,

1. f(0+) = lim
t→0+

f(t) = lim
s→∞

sL(f(t)),
2. f(∞) = lim

t→∞
f(t) = lim

s→0
sL(f(t)).

Initial and Final Value Pitfalls

In Theorem 8.14, impulses and higher order singularities at t = 0 are disallowed,
because hypotheses require sL(f(t)) to be bounded.

Examples f(t) = sin t and f(t) = et don’t satisfy hypotheses for 2 because f(∞)
is undefined, but 1 applies for both examples.

A pole, defined precisely on page 628, is a root of the denominator in a fraction
F (s) = L(f(t)). The location of the poles influences the possibility of using
Theorem 8.14:

If there are poles in the right s-plane, then f(t) will contain exponentially
growing terms, which implies f(∞) does not exist.

If there are pairs of complex conjugate poles on the imaginary axis, then
f(t) will contain sinusoids and f(∞) is not defined.

Poles in the left s-plane contribute exponentially decaying terms to f(t)
which do not affect the final value.

Signal f(t) has possibly a constant final value, the steady state of the
signal, only when there are poles at the origin of the s-plane.
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8.5 Transform Properties

Proofs and Details

Proof of Theorem 8.5 (Linearity):

LHS = L(f(t) + g(t)) Left side of the identity in (a).

=
∫∞
0

(f(t) + g(t))e−stdt Direct transform.

=
∫∞
0

f(t)e−stdt+
∫∞
0

g(t)e−stdt Calculus integral rule.

= L(f(t)) + L(g(t)) Equals RHS; identity (a) verified.

LHS = L(cf(t)) Left side of the identity in (b).

=
∫∞
0

cf(t)e−stdt Direct transform.

= c
∫∞
0

f(t)e−stdt Calculus integral rule.

= cL(f(t)) Equals RHS; identity (b) verified.

Proof of Theorem 8.6 (t-Derivative or parts rule): Already L(f(t)) exists, because
f is of exponential order and continuous. On an interval [a, b] where f ′ is continuous,
integration by parts using u = e−st, dv = f ′(t)dt gives∫ b

a
f ′(t)e−stdt = f(t)e−st|t=b

t=a −
∫ b

a
f(t)(−s)e−stdt

= −f(a)e−sa + f(b)e−sb + s
∫ b

a
f(t)e−stdt.

On any interval [0, N ], there are finitely many intervals [a, b] on each of which f ′ is
continuous. Add the above equality across these finitely many intervals [a, b]. The
boundary values on adjacent intervals match and the integrals add to give∫ N

0

f ′(t)e−stdt = −f(0+)e0 + f(N)e−sN + s

∫ N

0

f(t)e−stdt.

Take the limit across this equality as N → ∞. Then the right side has limit −f(0) +
sL(f(t)), because of the existence of L(f(t)) and limt→∞ f(t)e−st = 0 for large s.
Therefore, the left side has a limit, and by definition L(f ′(t)) exists and L(f ′(t)) =
−f(0) + sL(f(t)).

Proof of Theorem 8.7 (t-Integral rule): Let f(t) =
∫ t

0
g(x)dx. Then f is of expo-

nential order and continuous. The details:

L(
∫ t

0
g(x)dx) = L(f(t)) By definition.

=
1

s
L(f ′(t)) Because f(0) = 0 implies L(f ′(t)) = sL(f(t)).

=
1

s
L(g(t)) Because f ′ = g by the Fundamental theorem of

calculus.

Proof of Theorem 8.8 (s-Differentiation): Let’s prove L((−t)f(t)) = (d/ds)L(f(t)),
an equivalent relation. If f is of exponential order, then so is (−t)f(t), therefore
L((−t)f(t)) exists. It remains to show the s-derivative exists and satisfies the given
equality.

The proof below is based in part upon the calculus inequality∣∣e−x + x− 1
∣∣ ≤ x2, x ≥ 0.(1)
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8.5 Transform Properties

The inequality is obtained from two applications of the mean value theorem g(b)−g(a) =
g′(x)(b− a), which gives e−x + x− 1 = xxe−x1 with 0 ≤ x1 ≤ x ≤ x.

In addition, the existence of L(t2|f(t)|) is used to define s0 > 0 such that L(t2|f(t)|) ≤ 1
for s > s0. This follows from the transform existence theorem for functions of exponential
order, where it is shown that the transform has limit zero at s =∞. See also the proof
of Theorem 8.13.

Consider h ̸= 0 and the Newton quotient Q(s, h) = (F (s + h) − F (s))/h for the s-
derivative of the Laplace integral. We have to show that

lim
h→0
|Q(s, h)− L((−t)f(t))| = 0.

This will be accomplished by proving for s > s0 and s+ h > s0 the inequality

|Q(s, h)− L((−t)f(t))| ≤ |h|.

For h ̸= 0,

Q(s, h)− L((−t)f(t)) =
∫ ∞

0

f(t)
e−st−ht − e−st + the−st

h
dt.

Assume h > 0. Due to the exponential rule eA+B = eAeB , the quotient in the integrand
simplifies to give

Q(s, h)− L((−t)f(t)) =
∫ ∞

0

f(t)e−st

(
e−ht + th− 1

h

)
dt.

Inequality (1) applies with x = ht ≥ 0, giving

|Q(s, h)− L((−t)f(t))| ≤ |h|
∫ ∞

0

t2|f(t)|e−stdt.

The right side is |h|L(t2|f(t)|), which for s > s0 is bounded by |h|, completing the proof
for h > 0. If h < 0, then a similar calculation is made to obtain

|Q(s, h)− L((−t)f(t))| ≤ |h|
∫ ∞

0

t2|f(t)|e−st−htdt.

The right side is |h|L(t2|f(t)|) evaluated at s + h instead of s. If s + h > s0, then the
right side is bounded by |h|, completing the proof for h < 0.

Proof of Theorem 8.9 (First Shifting Rule): The left side LHS of the equality can
be written because of the exponential rule eAeB = eA+B as

LHS =

∫ ∞

0

f(t)e−(s−a)tdt.

This integral is L(f(t)) with s replaced by s − a, which is precisely the meaning of the
right side RHS of the equality. Therefore, LHS = RHS.

Proof of Theorem 8.10 (Second Shifting Rule): The details for (a) are

LHS = L(H(t− a)f(t− a))

=
∫∞
0

H(t− a)f(t− a)e−stdt Direct transform.
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=
∫∞
a

H(t− a)f(t− a)e−stdt Because a ≥ 0 and H(x) = 0 for x < 0.

=
∫∞
0

H(x)f(x)e−s(x+a)dx Change variables x = t− a, dx = dt.

= e−sa
∫∞
0

f(x)e−sxdx Use H(x) = 1 for x ≥ 0.

= e−saL(f(t)) Direct transform.

= RHS Identity (a) verified.

In the details for (b), let f(t) = g(t+ a), then

LHS = L(H(t− a)g(t))

= L(H(t− a)f(t− a)) Use f(t− a) = g(t− a+ a) = g(t).

= e−saL(f(t)) Apply (a).

= e−saL(g(t+ a)) Because f(t) = g(t+ a).

= RHS Identity (b) verified.

Proof of Theorem 8.11 (Periodic Function Rule):

LHS = L(f(t))
=

∫∞
0

f(t)e−stdt Direct transform.

=
∑∞

n=0

∫ nP+P

nP
f(t)e−stdt Additivity of the integral.

=
∑∞

n=0

∫ P

0
f(x+ nP )e−sx−nPsdx Change variables t = x+ nP .

=
∑∞

n=0 e
−nPs

∫ P

0
f(x)e−sxdx Because f(x) is P–periodic and eAeB =

eA+B .

=
∫ P

0
f(x)e−sxdx

∑∞
n=0 r

n The summation has a common factor. De-
fine r = e−Ps.

=
∫ P

0
f(x)e−sxdx

1

1− r
Sum the geometric series.

=

∫ P

0
f(x)e−sxdx

1− e−Ps
Substitute r = e−Ps.

= RHS Periodic function identity verified.

Left unmentioned here is the convergence of the infinite series on line 3 of the proof,
which follows from f of exponential order.

Proof of Theorem 8.12 (Convolution rule): The details use Fubini’s integration
interchange theorem for a planar unbounded region, and therefore this proof involves
advanced calculus methods that may be outside the background of the reader. Modern
calculus texts contain a less general version of Fubini’s theorem for finite regions, usually
referenced as iterated integrals. The unbounded planar region is written in two ways:

D = {(r, t) : t ≤ r <∞, 0 ≤ t <∞},
D = {(r, t) : 0 ≤ r <∞, 0 ≤ r ≤ t}.

Readers should pause here and verify that D = D.
The change of variable r = x+ t, dr = dx is applied for fixed t ≥ 0 to obtain the identity

e−st
∫∞
0

g(x)e−sxdx =
∫∞
0

g(x)e−sx−stdx

=
∫∞
t

g(r − t)e−rsdr.
(2)

The left side of the convolution identity is expanded as follows:
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LHS = L(f(t))L(g(t))
=

∫∞
0

f(t)e−stdt
∫∞
0

g(x)e−sxdx Direct transform.

=
∫∞
0

f(t)
∫∞
t

g(r − t)e−rsdrdt Apply identity (2).

=
∫
D
f(t)g(r − t)e−rsdrdt Fubini’s theorem applied.

=
∫
D f(t)g(r − t)e−rsdrdt Descriptions D and D are the same.

=
∫∞
0

∫ r

0
f(t)g(r − t)dte−rsdr Fubini’s theorem applied.

Then

RHS = L
(∫ t

0
f(u)g(t− u)du

)
=

∫∞
0

∫ t

0
f(u)g(t− u)due−stdt Direct transform.

=
∫∞
0

∫ r

0
f(u)g(r − u)due−srdr Change variable names r ↔ t.

=
∫∞
0

∫ r

0
f(t)g(r − t)dt e−srdr Change variable names u↔ t.

= LHS Convolution identity verified.

Proof of Theorem 8.13 (Laplace at Infinity is Zero): Assumed is an inequality
|f(t)| ≤Mekt for some constants M ≥ 0 and k. Then∣∣∣∣∣

∫ N

0

f(t)e−stdt

∣∣∣∣∣ ≤
∫ N

0

|f(t)|e−stdt ≤M

∫ N

0

e−(s−k)tdt.

The integral on the right is estimated for s > k and all N ≥ 0 as follows:∫ N

0

e−(s−k)tdt =
1− e−(s−k)N

s− k
≤ 1

s− k
.

Limiting as N → ∞ across the chained inequalities implies the fundamental estimate
|L(f(t))| ≤ M

s−k , s > k, therefore lims→∞ L(f(t)) = 0.

Proof of Theorem 8.14 (Initial and Final Values):
1 : Write L(f ′(t)) in two ways: (1) L(f ′(t)) = sL(f(t))−f(0+) using the parts formula,
and (2) L(f ′(t)) =

∫∞
0

f ′(t)e−stdt, using the direct Laplace definition.

A high-powered calculus theorem is needed to tell us that the integral on the right
in (2) has limit as s → 0+ equal to

∫∞
0

f ′(t)(1)dt = f(t)|t=∞
t=0 = f(∞) − f(0+).

The needed result is Lebesgue’s Bounded Convergence Theorem, which says that un-
der certain conditions (met by the assumed hypotheses here) limn→∞

∫∞
0

fn(t)dt =∫∞
0

(limn→∞ fn(t)) dt. We take fn(t) = f ′(t)e−snt where {sn} is any sequence of positive
numbers with limit zero.

Assembling the two ways to write L(f ′(t)) implies lims→0+ sL(f(f))− f(0) = f(∞)−
f(0+). Cancel f(0+) from each side of this identity. Then lims→0+ sL(f(t)) = f(∞).

2 : Theorem 8.13 implies L(f ′(t)) has limit zero as s→∞. Limit as s→∞ across the
parts formula L(f ′(t)) = sL(f(t))−f(0+) to obtain the limit lims→∞ sL(f(t))−f(0+) =
0, which is the claimed identity.
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Exercises 8.5 �

There are no exercises for this section. The
content is exclusively statements of theo-
rems and proofs, for the following theo-
rems.

Linearity

The t-Derivative Rule or Parts Rule

The t-Integral Rule

The s-Differentiation Rule

First Shifting Rule

Second Shifting Rule

Periodic Function Rule

Convolution Rule

Initial and Final Value Rules
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8.6 Heaviside Step and Dirac Impulse

8.6 Heaviside Step and Dirac Impulse

Heaviside Function

The unit step function u(t) is distinguished from the more precise clone called
the Heaviside function H(t), which is undefined at t = 0. The definitions:

u(t) =


1 for t > 0,
1 for t = 0,
0 for t < 0,

H(t) =


1 for t > 0,
undefined for t = 0,
0 for t < 0.

Functions 1,u(t), H(t) agree for t > 0 because all functions in Laplace theory are
assumed zero for t < 0.

An often–used formula involving the unit step function is the characteristic
function of the interval a ≤ t < b, or unit pulse:

pulse(t, a, b) = u(t− a)− u(t− b) =

{
1 a ≤ t < b,
0 otherwise.

(1)

To illustrate, a square wave sqw(t) = (−1)floor(t) can be written in the series
form

∑∞
n=0(−1)n pulse(t, n, n+ 1) as a pulse train.9

Trouble at t = 0. Computer algebra systems like maple distinguish between the
piecewise-defined unit step function and the Heaviside function. The Heaviside
function H(t) is left undefined at t = 0, whereas the unit step is defined every-
where. This seemingly minor distinction makes more sense when taking formal
derivatives. On the domain t ̸= 0 of H, the ordinary calculus derivative dH/dt
is defined and equals zero. In contrast, u(t) on its domain −∞ < t <∞ fails to
have a derivative at one point: t = 0.

Fundamental Theorem of Calculus. Calculus rule
∫ b
a f ′(t)dt = f(b) − f(a)

fails for f = H, due to integrand f ′(t) = dH/dt = 0. Riemann and Stieltjes
filled the gap in the theory by providing a new definition of integral and corre-
sponding theory of integration, these days called Riemann–Stieltjes Integra-
tion. In their theory, integral

∫ b
a

dH
dt dt makes sense and

∫ b
a

dH
dt dt = H(b)−H(a).

Riemann–Stieltjes theory will be used to explain a contribution of Paul Dirac
(1902-1984) to Laplace theory called the Dirac impulse, denoted δ in the liter-
ature.

Dirac Impulse

Following the 1932 work of Paul A. M. Dirac the definition should be

δ(t) =
d

dt
u(t).

9A square wave resembles a train of boxcars.
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8.6 Heaviside Step and Dirac Impulse

One year after Dirac introduced impulse δ, he received the Nobel Prize in physics
for his quantum theory work. Laurent Schwartz later justified mathematically
the use of δ.

A precise mathematical definition of the Dirac impulse is δ(t) = du(t), where
u(t) is the unit step and du(t)/dt has meaning under the integral sign in a
Riemann-Stieltjes integral. This definition restrains du(t) to have meaning only
under an integral sign. It is in this sense that the Dirac impulse δ is defined.10

Dirac Impulse in Applications. What is the meaning of the differential
equation

x′′ + 16x = 5δ(t− t0)?

The equation x′′+16x = f(t) represents an undamped spring-mass system having
Hooke’s constant 16, subject to external force f(t). In a mechanical context,
the Dirac impulse term 5δ(t − t0) is an idealization of a hammer-hit at time
t = t0 > 0 with impulse 5. The hammer-hit injects energy into the system
almost instantaneously.

Forcing term f(t) in x′′ + 16x = f(t) can be formally written as a Riemann-
Stieltjes integrator 5 du(t − t0) where u is the unit step function: u(t) = 1 on
t ≥ 0, else u(t) = 0.

The Dirac impulse or derivative of the unit step, nonsensical as it may ap-
pear, is realized in applications via the two–sided or central difference quotient
u(t+ h)− u(t− h)

2h
≈ du(t). Given t0, let a = t0 − h, b = t0 + h for h > 0 very

small. A simplistic approximation for ideal impulse 5δ(t − t0) is given by the
central difference approximation

5

2h

{
1 a ≤ t < b
0 else

= 5
u(t− a)− u(t− b)

b− a

=
5

b− a
pulse(t, a, b)

The impulse11 of the actual force f is therefore approximated by∫ ∞

−∞
f(t) dt ≈ 5

∫ b

a

1

b− a
pulse(t, a, b) dt = 5,

due to the integrand being 1/(b− a) on a ≤ t < b and otherwise 0.

10The definition of the Dirac Impulse by Laurent Schwartz uses Lebesgue integration theory.
In differential equations applications, the Riemann–Stieltjes definition δ(t) = du(t) suffices, with
an unremarkable quantity of exceptions. The presentation here requires a calculus background
but no Lebesgue theory background.

11Momentum is defined to be mass times velocity. If the force f is given by Newton’s law as
f(t) = d

dt
(mv(t)) and v(t) is velocity, then

∫ b

a
f(t)dt = mv(b)−mv(a) is the net momentum or

impulse on [a, b].
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8.6 Heaviside Step and Dirac Impulse

Modeling Impulses

One argument for the Dirac impulse idealization is that an infinity of choices exist
for modeling an impulse. There are in addition to the central difference quotient
two other popular difference quotients, the forward quotient (u(t+ h)− u(t))/h
and the backward quotient (u(t)− u(t− h))/h (h > 0 assumed). In reality, h is
unknown in any application, and the impulsive force of a hammer hit is hardly
constant, as is supposed by this naive modeling.

The modeling logic often applied for the Dirac impulse is that the external force
f(t) will be used in the model in a limited manner, in which only the momentum
p = mv is important. More precisely, only the change in momentum or impulse
is important,

∫ b
a f(t)dt = ∆p = mv(b)−mv(a).

The precise force f(t) is replaced during the modeling by a simplistic piecewise–
defined force that has exactly the same impulse ∆p. The replacement is justified
by arguing that if only the impulse is important, and not the actual details of the
force, then both models should give similar results. Most of the intuition for this
modeling magic comes from investigation of two models: (1) f(t) is piecewise–
defined and depends on h, (2) f(t) is an idealized Dirac impulse. The result
of the investigation is that answers from (1) converge as h → 0 to the single
idealized answer from (2).

Impulses in Differential Equations. In Laplace theory, there is a natural
encounter with Dirac’s ideas, because L(f(t)) routinely appears on the right of
the equation after transformation. Let a = t0 − h, b = t0 + h for small h > 0.
Then 2h = b − a. Assume t0 > 0 and t0 − h > 0 for the purpose of illustration.
If the input f(t) is a simplistic impulsive force of impulse c, then representation
f(t) = c

b−a pulse(t, a, b) permits a direct computation of the impulse:

impulse =

∫ ∞

−∞
f(t)dt =

∫ b

a

c

b− a
pulse(t, a, b)dt = c.

The Laplace integral L(f(t)) evaluates as follows:

L(f(t)) =
∫∞
0 f(t)e−stdt

=
∫ b
a

c
b−a pulse(t, a, b)e

−stdt

=
∫ b
a

c
b−a(1)e

−stdt

= c
b−a

(
e−sa−e−sb

−s

)
1

= c e−sh−esh

2sh e−s t0 2

≈ ce−s t0 3

1 : Factor the constant c
b−a outside the integral, use the definition of pulse, then

integrate the exponential.
2 : Replace a = t0 − h, b = t0 + h, simplify, then collect denominator factors s
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8.6 Heaviside Step and Dirac Impulse

and 2h = b− a.
3 : As h→ 0, factor esh−e−sh

2sh converges to 1 because of L’Hôspital’s rule applied

to ex−e−x

2x at x = 0.

Mathematical Flaw. The immediate naive modeling conclusion is that the
simplistic impulsive force f should be replaced by an equivalent one f∗ such that

L(f∗(t)) = c e−s t0 .

Unfortunately, there is no such function f∗!

The apparent mathematical flaw in this idea was resolved by the work of Laurent
Schwartz on distributions. In short, there is a solid foundation for introducing
f∗, but unfortunately the mathematics involved is not elementary nor especially
accessible to those readers whose background is just calculus.12 The theory of
distributions provides a resolution of the mathematical flaw:

L(c δ(t− t0)) = c e−s t0 .

It is mistake to write f∗(t) = c δ(t− t0) and call f∗ a function, because it is not.
Expression f∗ makes sense only under an integral sign.

Function or Operator? The work of physics Nobel prize winner Paul Dirac
(1902–1984) proceeded for about 15 years before the mathematical community
developed a sound mathematical theory for his impulsive force representations. A
systematic theory was developed in 1936 by the Soviet mathematician S. Sobolev.
The French mathematician Laurent Schwartz further developed the theory in
1945. He observed that the idealization δ is not a function but an operator or
linear functional, in particular, δ maps or associates to each function ϕ(t) its
value at t = 0, in short, δ(ϕ) = ϕ(0). This fact was observed early on by Dirac
and others, during the replacement of simplistic forces by δ.

Laplace Theory and the Dirac Impulse. When Laplace theory manipulates
the Dirac impulse δ, it does so by obeying the under the integral sign rule. The
good news is that answers can be calculated formally, as though f∗ was a func-
tion. What are we to do when applying the formal rules? We think of δ(t− t0)
as a simplistic impulse given on an interval [a, b] that shrinks to t0. A simplis-
tic impulse is a function! Laplace theory provides a transition from simplistic
impulse modeling to idealized Dirac impulse.

12Practising engineers and scientists might be able to ignore the vast literature on distribu-
tions, citing the example of physicist Paul Dirac, who succeeded in applying impulsive force
ideas without the distribution theory developed by S. Sobolev and L. Schwartz. Those who
wish to read current literature on partial differential equations have no such luxury, because the
work on distributions has forever changed the required background for reading new literature.
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8.6 Heaviside Step and Dirac Impulse

Properties of the Dirac Impulse

Theorem 8.15 (Fundamental Identities for Dirac δ)
Let u(t) denote the unit step function. Define δ(t) = du(t) as a Riemann–Stieltjes
integrator. Let g(t) be piecewise continuous and a ≥ 0. Then

(1)

∫ ∞

−∞
δ(t)dt = 1, meaning

∫∞
−∞ du(t) = 1

(2)

∫ ∞

−∞
g(t)δ(t− a)dt = g(a+), meaning

∫∞
−∞ g(t)du(t− a) = g(a+)

(3) L(δ(t− a)) = e−s a, meaning
∫∞
0 e−st du(t− a) = e−s a.

Proof:
Symbol g(a+) means limh→0+ g(a+ h), the right–hand limit at t = a.

Property (1) follows from property (2) by choosing g(t) = u(t) and a = 0.

Property (3) follows from property (2) by choosing g(t) = u(t).

Details (2): The definition of the Dirac impulse is a formal one, in which every occurrence
of δ(t−a)dt under an integrand is replaced by du(t−a). The differential symbol du(t−a)
is taken in the sense of the Riemann-Stieltjes integral, which is defined in Rudin [?] for
monotonic integrators α(x) as∫ b

a

f(x)dα(x) = lim
N→∞

N∑
n=1

f(xn)(α(xn)− α(xn−1)).

Required in the definition: x0 = a, xN = b and x0 < x1 < · · · < xN forms a partition
of [a, b] whose mesh max{|xj − xj−1| : 1 ≤ j ≤ N} approaches zero as N → ∞. Used
exclusively here is nondecreasing integrator α = u, the unit step.

Steps below verify that the left and right sides in (2) are equal.

LHS = L(g(t)δ(t− a)) Left side of (2).

=
∫∞
0

g(t)e−stδ(t− a)dt Laplace integral, a ≥ 0 assumed.

=
∫∞
0

g(t)e−stdu(t− a) Replace δ(t− a)dt by du(t− a).

= lim
M→∞

∫M

0
g(t)e−stdu(t− a) Definition of improper integral.

= g(a)e−sa Explained below.

= RHS Property (2) verified.

To explain the last step, apply the definition of the Riemann-Stieltjes integral to α = u
with given partition 0 = t0 < t1 < · · · < tN = M of [0,M ], M a large positive number.
It is assumed that the mesh approaches zero as N →∞. Then∫ M

0

g(t)e−stdu(t− a) = lim
N→∞

N−1∑
n=0

g(tn)e
−stn(u(tn − a)− u(tn−1 − a))

Given point a satisfying 0 ≤ a < M , then this point has to lie in exactly one interval:
tn−1 ≤ a < tn. Then u(tn − a)− u(tn−1 − a) = 1 and for all other intervals this factor
is zero. The sum reduces to a single term g(tn)e

−s tn . This term limits to g(a+) e−sa as
N →∞, because tn limits to a from the right. ■
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8.6 Heaviside Step and Dirac Impulse

Exercises 8.6 �

Unit Step and Heaviside

1. The unit step u(t) is defined on the
whole real line. Is it piecewise continu-
ous on the whole line?

2. Is there a continuous function on the
real line that agrees with the Heaviside
function except at t = 0?

3. The piecewise continuous function
pulse(t, a, b) is defined everywhere. Re-
define pulse(t, a, b) using H(t) instead
of u(t).

4. Write f(t) = floor(t)u(t) as a sum
of terms, each of which has the form
g(t)pulse(t, a, b).

Dirac Impulse

5. Verify
∫∞
−∞

pulse(t,a,b)
b−a dt = 1.

6. Verify by direct integration that f(t) =
10 pulse(t,−0.001, 0.001) represents a
simple impulse of 10 at t = 0 of du-
ration 0.002. Graph it without using
technology.

7. Find L(δ(t− 1) + δ(t− 2)).

8. Find L(10 δ(t− 1)− 5 δ(t− 2)).

9. Solve for f(t) in terms of δ:
L(f(t)) = 10e−s

10. Solve for f(t) in terms of δ:
L(f(t)) = 10e−s + s

s2+1 e
−2s

11. Find L
(∑10

n=1(1 + n)δ(t− n)
)
.

12. A sequence of camshaft impulses hap-
pening periodically in a finite time
interval have transform L(f(t)) =∑N

i=1 e−ci s. Find the idealized impulse
train f .

Riemann–Stieltjes Integral
Evaluate the integrals either directly from
the definition or else by using Theorem
8.15.

13.
∫ 2

0
du(t− 1)

14.
∫∞
0

du(t− 2)

15.
∫ 2

0
tanh(t2 + 1) du(t− 1)

16.
∫∞
0

t
1+t2 du(t− 2)
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8.7 Laplace Table Derivations

8.7 Laplace Table Derivations

Verified here are two Laplace tables: the minimal Laplace Table 7.2-4 and its
extension Table 7.2-6. This section is for reading, designed to enrich lectures and
to aid those who study in isolation. Due to density of proof details, there are no
exercises.

Derivation of Laplace integral formulas in Table 7.2-4, page 601.

• Proof of L(tn) = n!/s1+n:

The first step is to evaluate L(tn) for n = 0.

L(1) =
∫∞
0

(1)e−stdt Laplace integral of f(t) = 1.

= −(1/s)e−st|t=∞
t=0 Evaluate the integral.

= 1/s Assumed s > 0 to evaluate limt→∞ e−st.

The value of L(tn) for n = 1 can be obtained by s-differentiation of the relation L(1) =
1/s, as follows.

d
dsL(1) =

d
ds

∫∞
0

(1)e−stdt Laplace integral for f(t) = 1.

=
∫∞
0

d
ds (e

−st) dt Used d
ds

∫ b

a
Fdt =

∫ b

a
dF
ds dt.

=
∫∞
0

(−t)e−stdt Calculus rule (eu)′ = u′eu.

= −L(t) Definition of L(t).

Then

L(t) = − d
dsL(1) Rewrite last display.

= − d
ds (1/s) Use L(1) = 1/s.

= 1/s2 Differentiate.

This idea can be repeated to give L(t2) = − d
dsL(t) and hence L(t2) = 2/s3. The pattern

is L(tn) = − d
dsL(t

n−1) which gives L(tn) = n!/s1+n.

• Proof of L(eat) = 1/(s− a):

The result follows from L(1) = 1/s, as follows.

L(eat) =
∫∞
0

eate−stdt Direct Laplace transform.

=
∫∞
0

e−(s−a)tdt Use eAeB = eA+B .

=
∫∞
0

e−Stdt Substitute S = s− a.

= 1/S Apply L(1) = 1/s.

= 1/(s− a) Back-substitute S = s− a.

• Proof of L(cos bt) = s/(ss + b2) and L(sin bt) = b/(ss + b2):

Use will be made of Euler’s formula eiθ = cos θ + i sin θ, usually first introduced in
trigonometry. In this formula, θ is a real number in radians and i =

√
−1 is the complex

unit.
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eibte−st = (cos bt)e−st + i(sin bt)e−st Substitute θ = bt into Euler’s formula and
multiply by e−st.∫∞

0
e−ibte−stdt =

∫∞
0

(cos bt)e−stdt

+ i
∫∞
0

(sin bt)e−stdt

Integrate t = 0 to t =∞. Then use prop-
erties of integrals.

1

s− ib
=

∫∞
0

(cos bt)e−stdt

+ i
∫∞
0

(sin bt)e−stdt

Evaluate the left hand side using L(eat) =
1/(s− a), a = ib.

1

s− ib
= L(cos bt) + iL(sin bt) Direct Laplace transform definition.

s+ ib

s2 + b2
= L(cos bt) + iL(sin bt) Use complex rule 1/z = z/|z|2, z = A +

iB, z = A− iB, |z| =
√
A2 +B2.

s

s2 + b2
= L(cos bt) Extract the real part.

b

s2 + b2
= L(sin bt) Extract the imaginary part.

Derivation of Laplace integral formulas in Table 7.2-6, page 602.

• Proof of the Heaviside formula L(u(t− a)) = e−as/s.

L(u(t− a)) =
∫∞
0

u(t− a)e−stdt Direct Laplace transform. Assume a ≥ 0.

=
∫∞
a

(1)e−stdt Because u(t− a) = 0 for 0 ≤ t < a.

=
∫∞
0

(1)e−s(x+a)dx Change variables t = x+ a.

= e−as
∫∞
0

(1)e−sxdx Constant e−as moves outside integral.

= e−as(1/s) Apply L(1) = 1/s.

• Proof of the Dirac impulse formula L(δ(t− a)) = e−as.

The definition of the Dirac impulse is a formal one, in which every occurrence of δ(t−a)dt
under an integrand is replaced by du(t− a). The differential symbol du(t− a) is taken
in the sense of the Riemann-Stieltjes integral. This integral is defined in Rudin [?] for
monotonic integrators α(x) as the limit∫ b

a

f(x)dα(x) = lim
N→∞

N∑
n=1

f(xn)(α(xn)− α(xn−1))

where x0 = a, xN = b and x0 < x1 < · · · < xN forms a partition of [a, b] whose mesh
approaches zero as N → ∞. Instance α(x) = x duplicates the theory of the Riemann
integral in calculus.

The steps in computing the Laplace integral of the Dirac impulse appear below. Ad-
mittedly, the proof requires advanced calculus skills and a certain level of mathematical
maturity. The reward is a fuller understanding of the Dirac symbol δ(x). More details
and further properties of the Dirac impulse can be found in Section 8.6, page 648.

L(δ(t− a)) =
∫∞
0

e−stδ(t− a)dt Laplace integral, a ≥ 0 assumed.

=
∫∞
0

e−stdu(t− a) Replace δ(t− a)dt by du(t− a).

= limM→∞
∫M

0
e−stdu(t− a) Definition of improper integral.

= e−sa Explained below.
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To explain the last step, apply the definition of the Riemann-Stieltjes integral:∫ M

0

e−stdu(t− a) = lim
N→∞

N−1∑
n=0

e−stn(u(tn − a)− u(tn−1 − a))

where 0 = t0 < t1 < · · · < tN = M is a partition of [0,M ] whose mesh max1≤n≤N (tn −
tn−1) approaches zero as N →∞. Given a partition, then point a in 0 ≤ a < M lies in
exactly one interval: tn−1 ≤ a < tn. By the definition of unit step, u(tn − a)−u(tn−1−
a) = 1, while for any other interval this factor is zero. Therefore, the sum reduces to a
single term e−s tn . This term approaches e−s a as N →∞, because tn must approach a
from the right.

• Proof of L(floor(t/a)) = e−as

s(1− e−as)
:

The library function floor present in computer languages C and Fortran is defined by
floor(x) = greatest whole integer ≤ x, e.g., floor(5.2) = 5 and floor(−1.9) = −2. The
computation of the Laplace integral of floor(t) requires ideas from infinite series, as
follows.

F (s) =
∫∞
0

floor(t)e−stdt Laplace integral definition.

=
∑∞

n=0

∫ n+1

n
(n)e−stdt On n ≤ t < n+ 1, floor(t) = n.

=
∑∞

n=0

n

s
(e−ns − e−ns−s) Evaluate each integral.

=
1− e−s

s

∑∞
n=0 ne

−sn Common factor removed.

=
x(1− x)

s

∑∞
n=0 nx

n−1 Define x = e−s.

=
x(1− x)

s

d

dx

∑∞
n=0 x

n Term-by-term differentiation.

=
x(1− x)

s

d

dx

1

1− x
Geometric series sum.

=
x

s(1− x)
Compute the derivative, simplify.

=
e−s

s(1− e−s)
Substitute x = e−s.

To evaluate the Laplace integral of floor(t/a), a change of variables is made.

L(floor(t/a)) =
∫∞
0

floor(t/a)e−stdt Laplace integral definition.

= a
∫∞
0

floor(r)e−asrdr Change variables t = ar.

= aF (as) Apply the formula for F (s).

=
e−as

s(1− e−as)
Simplify.

• Proof of L(sqw(t/a)) = 1

s
tanh(as/2):

The square wave defined by sqw(x) = (−1)floor(x) is periodic of period 2 and piecewise-

defined. Let P =
∫ 2

0
sqw(t)e−stdt.
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P =
∫ 1

0
sqw(t)e−stdt+

∫ 2

1
sqw(t)e−stdt Apply

∫ b

a
=

∫ c

a
+
∫ b

c
.

=
∫ 1

0
e−stdt−

∫ 2

1
e−stdt Use sqw(x) = 1 on 0 ≤ x < 1 and

sqw(x) = −1 on 1 ≤ x < 2.

=
1

s
(1− e−s) +

1

s
(e−2s − e−s) Evaluate each integral.

=
1

s
(1− e−s)2 Collect terms.

An intermediate step is to compute the Laplace integral of sqw(t):

L(sqw(t)) =
∫ 2

0
sqw(t)e−stdt

1− e−2s
Periodic function formula, page 638.

=
1

s
(1− e−s)2

1

1− e−2s
. Use the computation of P above.

=
1

s

1− e−s

1 + e−s
. Factor 1− e−2s = (1− e−s)(1 + e−s).

=
1

s

es/2 − e−s/2

es/2 + e−s/2
. Multiply the fraction by es/2/es/2.

=
1

s

sinh(s/2)

cosh(s/2)
. Use sinhu = (eu − e−u)/2,

coshu = (eu + e−u)/2.

=
1

s
tanh(s/2). Use tanhu = sinhu/ coshu.

To complete the computation of L(sqw(t/a)), a change of variables is made:

L(sqw(t/a)) =
∫∞
0

sqw(t/a)e−stdt Direct transform.

=
∫∞
0

sqw(r)e−asr(a)dr Change variables r = t/a.

=
a

as
tanh(as/2) See L(sqw(t)) above.

=
1

s
tanh(as/2)

• Proof of L(a trw(t/a)) = 1

s2
tanh(as/2):

The triangular wave is defined by trw(t) =
∫ t

0
sqw(x)dx.

L(a trw(t/a)) = 1

s
(f(0) + L(f ′(t)) Let f(t) = a trw(t/a). Use L(f ′(t)) =

sL(f(t))− f(0), page 596.

=
1

s
L(sqw(t/a)) Use f(0) = 0, (a

∫ t/a

0
sqw(x)dx)′ = sqw(t/a).

=
1

s2
tanh(as/2) Table entry for sqw.

• Proof of L(tα) = Γ(1 + α)

s1+α
:

L(tα) =
∫∞
0

tαe−stdt Direct Laplace transform.

=
∫∞
0

(u/s)αe−udu/s Change variables u = st, du = sdt.
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=
1

s1+α

∫∞
0

uαe−udu

=
1

s1+α
Γ(1 + α). Where Γ(x) =

∫∞
0

ux−1e−udu, by
definition.

The generalized factorial function Γ(x) is defined for x > 0 and it agrees with the classical
factorial n! = (1)(2) · · · (n) in case x = n+1 is an integer. In literature, α! means Γ(1+α).
For more details about the Gamma function, see Abramowitz and Stegun [?], or maple
documentation.

• Proof of L(t−1/2) =

√
π

s
:

L(t−1/2) =
Γ(1 + (−1/2))

s1−1/2
Apply the previous formula.

=

√
π√
s

Use Γ(1/2) =
√
π.

8.8 Modeling

Laplace Modeling in Engineering

A differential equation model in variable t can be subjected to the Laplace trans-
form, which produces an algebraic model in transform variable s.

The possibility of equivalence of models

mx′′(t) + cx′(t) + kx(t) = 0 and
1

ms2 + cs+ k
,

can be understood because of the one-to-one correspondence of the physical pa-
rameters m, c, k. Lerch’s theorem provides a theoretical foundation which says
that the differential equation model in the t-domain and the algebraic model in
the s-domain are equivalent, that is, the solution of one model gives the solution
to the other model.

←→
mx′′ + cx′ + kx = f(t),

x(0) = x′(0) = 0
X(s) =

F (s)

ms2 + cs+ k

Figure 5. Differential Equation and Laplace Model Equivalence

In mechanical, electrical and computer engineering it is commonplace to deal
only with the Laplace algebraic model, and to back-burner discussions of the
differential equation model in the time domain.

Modeling conversations are often exclusively in terms of transforms. Differential
equations are rarely mentioned! Terminology for such modeling is necessarily
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specialized, which gives rise to new contextual meanings to the terms input and
output. For example, an RLC-circuit could be discussed with input

F (s) =
ω

s2 + ω2
,

and the listener must know that this expression is the Laplace transform of the
time input f(t) = sinωt. The audience would then know that the RLC-circuit
is driven by a sinusoidal input of natural frequency ω and amplitude one. The
output could be the Laplace transform

X(s) =
1

s+ 1
+

d1 + d2ω

s2 + ω2
.

Lerch’s equivalence provides extra information, deemed momentarily useless, that
X(s) is the Laplace transform of the time output x(t) = e−t+d1 cosωt+d2 sinωt.

It is important to know for modeling that fraction 1
s+1 is the Laplace transform

of the transient part of the output, while fraction d1+d2ω
s2+ω2 is the Laplace transform

of the steady state output.

DC Gain

Background. Gain may be voltage gain (OP-amp, V/V), power gain (RF-
amp, W/W) or sensor gain (light, e.g., 5 µV per photon). Steady state gain
and DC-gain are synonyms for the same number. Laplace theory can compute
steady-state values for a differential equation.

Signal applications might seek the signal x(t) as the output of an underdamped
model with switch at t = 0:

x′′ + 2ζωx′ + ω2x = GDC ω2 u(t).

The three parameters ζ, ω,GDC are known respectively as the damping ratio,
frequency and DC-gain. Symbol u(t) is the unit step function. Under-damped
for this equation means ζ > 1, the case for complex roots of the characteristic
equation. The Euler atoms for the homogeneous problem are exponential decay
factors times sines and cosines.

On time interval 0 ≤ t <∞ the unit step u(t) is replaced by 1:

x′′ + 2ζωx′ + ω2x = GDC ω2

Superposition implies x = xh + xp with equilibrium solution xp(t) = GDC and
homogeneous general solution xh(t) = c1e

−at cos(bt) + c2e
−at sin(bt), symbols

defined by a = ζω and b = ω
√
ζ2 − 1. Because of the exponential decay of

xh(t), the constant solution xp(t) = GDC is the signal steady state. This is why
a simulator in a lab given a constant input k has DC-gain equal to the steady
state of the output signal divided by k.
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The DC-gain can be found mathematically from fractions in the s-domain instead
of from time domain formulas. One possibility is to use the final value rule
page 638 to find the steady state gain (DC-gain) GDC. Assume the input is the
unit step function u(t). Then the steady state value is limt→∞ x(t) = x(∞) =

lim
s→0

sL(x(t)). The s-domain product sL(x(t)) =
L(x(t))
L(u(t))

equals the Laplace of

the output divided by the Laplace of the input. Evaluation of this quotient at
s = 0 is the system’s steady state gain (DC-gain) GDC.

The transfer function H(s) is the Laplace of the output x(t) with input
u(t) and zero initial data. For this special output x(t) the equation L(x(t)) =

H(s)L(u(t)) =
H(s)

s
holds. Therefore, the steady state gain (DC-gain) equals

H(0).

Illustration. An underdamped system whose transfer function is the fraction

H(s) =
2

s2 + 2s+ 2
has DC-gain H(0) = 1.

Engineering Inverse Problems

Linear time-invariant systems are used as building blocks to construct complex
systems, in which the output of one system is the input of the next system.
The systems are modeled by constant-coefficient linear differential equations.
Practical applications endeavor to find a mathematical model to represent the
block, technically an inverse problem.

What is the Inverse Problem? The terminology inverse problem applied
to x′′ + px′ + qx = f(t) means: given input f(t) and output x(t) as numerical
data, recover the values of p and q. Imagine the experimental data is in a graph
of signal x(t) viewed on an oscilloscope. The graph data is imported into a
numerical workbench in order to find the system parameters p, q in the predicted
mathematical model

x′′ + px′ + qx = f(t), transfer function =
1

s2 + ps+ q
.

Oscilloscope Experiments. It may help to think of the block as a physical
device, like part of a battery charging circuit on a mobile phone. Initial states for
a block are x(0) = 0, x′(0) = 1 or x(0) = x′(0) = 0. Possible input signals are zero
input f(t) = 0, a step input f(t) = k u(t) or an impulse input f(t) = δ(t). Zero
input means no battery. A step input can be considered a toggle which switches
in a k–volt battery at t = 0. Impulse input δ(t) is practically a simplistic impulse
1
h(u(t) − u(t − h)) with h > 0 very small; a function generator would work. A
special BNC cable carries output signal x(t) from the block to the oscilloscope for
display. Oscilloscopes can save x(t) data in text format for import into computer
software.

Graphical Recognition of Block Types. A nontrivial aspect of an inverse
problem is examination of graphical output in order to predict the block type.
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The process can be more art than science. Multiple graphics might be produced
for accurate prediction of the model type. For simplicity, there are two possibil-
ities:

Non–oscillatory x′′ + px′ + qx = 0, called over–damped in applica-
tions. It means characteristic equation r2 + pr + q = 0 has two real
distinct roots −a,−b. Assumed below is a < b.

Oscillatory x′′ + px′ + qx = 0, called under–damped in applications.
It means characteristic equation r2+pr+q = 0 has complex conjugate
roots r = −a± b i with b > 0.

Skipped in the analysis above is the critically–damped case in which the charac-
teristic equation has a double root. This case is technically non–oscillatory and
physically indistinguishable from the over–damped case. In spring–mass systems,
coefficient p is the damping constant, imagined as a tuning parameter adjusted by
a set screw, for which the critically–damped value for p separates the two phys-
ically observable classifications oscillatory (small p > 0) and non–oscillatory
(large p > 0).

The two observable cases are graphed in Figures 6 and 7. The distinction: the
first curve touches the t-axis just once, while the second curve touches the t-
axis infinitely often. In oscilloscope output, oscillations may be damped severely,
looking non–oscillatory like Figure 6. Nonlinear blocks may have output com-
pletely different from Figures 6, 7. The choice of model is then art instead of
science.

Figure 6. Block Out-
put, Over-Damped.
Non–oscillatory output x(t)
for x′′ + 3x′ + 2x = 0,
x(0) = 0, x′(0) = 1.

Figure 7. Block Out-
put, Under-Damped
Oscillatory output x(t) for
x′′+2x′+5x = 0, x(0) = 0,
x′(0) = 1.
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Second Order Models

The models can be represented by

x′′(t) + 2ζωx′(t) + ω2x(t) = 0,

where ζ is the damping ratio and ω is the undamped natural frequency. Cases
ζ < 1, ζ = 1 and ζ > 1 are named over-damped, critically-damped and
under-damped, respectively.

The over–damped and under–damped cases specialize respectively to

x′′ + (a+ b)x′ + abx = 0, a < b,
x′′ + 2ax′ +

(
a2 + b2

)
x = 0, b > 0.

Because ζ, ω can be found from a, b, then the inverse problem seeks values for
a, b instead of the damping ratio and undamped frequency.

Theorem 8.16 (Solution Formulas for Second Order Over–Damped)
The differential equation is x′′ + (a + b)x′ + abx = f(t). Assume a < b. Formulas
are for t > 0.

(1) Zero Input f(t) = 0, x(0) = 0, x′(0) = 1:

x(t) =
1

b− a

(
e−at − e−bt

)
(2) Step Input f(t) = k u(t), x(0) = 0, x′(0) = 0:

x(t) =
k

ab
+

k

a2 − ab
e−at +

k

b2 − ab
e−bt

(3) Dirac Input f(t) = kδ(t), x(0) = 0, x′(0) = 0:

x(t) =
1

2

1

b− a

(
e−at − e−bt

)
Details for Theorem 8.16: Paper and pencil solutions use Laplace theory. The
formulas can be obtained from a CAS like maple or mathematica, which use Laplace
theory to solve the equation. The maple code:

deOD:=diff(z(t),t,t)+(a+b)*diff(z(t),t)+a*b*z(t);

ic1:=z(0)=0,D(z)(0)=1;ic2:=z(0)=0,D(z)(0)=0;

dsolve({deOD=0,ic1},z(t));dsolve({deOD=k,ic2},z(t));

dsolve({deOD=Dirac(t),ic2},z(t));convert(%,piecewise);

Theorem 8.17 (Solution Formulas for Second Order Under–Damped)
The equation is x′′(t) + 2ax′(t) +

(
a2 + b2

)
x(t) = f(t). Assume b > 0. Formulas

are for t > 0.

(1) Zero Input f(t) = 0, x(0) = 0, x′(0) = 1:

x(t) = e−a t sin(b t)

b
(2) Step Input f(t) = k u(t), x(0) = 0, x′(0) = 0:
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x(t) =
k − k e−a t(ab sin(b t) + cos(b t))

a2 + b2

(3) Dirac Input f(t) = δ(t), x(0) = 0, x′(0) = 0:

x(t) =
e−a t

2

sin(b t)

b

Details for Theorem 8.17: Paper and pencil solutions use Laplace theory. The maple
code:

deUD:=diff(z(t),t,t)+2*a*diff(z(t),t)+(a^2+b^2)*z(t);

ic1:=z(0)=0,D(z)(0)=1;ic2:=z(0)=0,D(z)(0)=0;

dsolve({deUD=0,ic1},z(t));dsolve({deUD=k,ic2},z(t));

dsolve({deUD=Dirac(t),ic2},z(t));convert(%,piecewise);

System Parameters for Over-Damped Problems

It is assumed that a signal x(t) is known via a graphic with numerical data
available. The graphic must pass the following visual test:

The curve starts at t = 0, x = 0 and increases. The region of increase
may end at a maximum and after decrease to limit zero, or else the region
of increase is a half–line and x(t) limits to a nonzero steady–state value.

Expected is a rich sample of the plot data, because computations use the numeric
data, not the graphic. The initial data and the input are assumed to satisfy one
of the following three cases.

Zero Input: x(0) = 0, x′(0) = 1, f(t) = 0
Step Input: x(0) = 0, x′(0) = 0, f(t) = k u(t)
Impulse Input: x(0) = 0, x′(0) = 0, f(t) = δ(t)

A graphic that passes the visual test predicts the model

x′′ + (a+ b)x′ + abx = f(t), Transfer Function =
1

(s+ a)(s+ b)
, a < b.

The plan is to compute numerical values for a, b from the graphical data. The
product of the computation is a mathematical model for the block represented
by the graphic.

Example 8.30 (System Parameters: Over-Damped with Zero Input)

Oscilloscope data created Figure 8 from block initial state x(0) = 0, x′(0) = 1 and
zero input. Explain why the graphic predicts over–damped model

x′′(t) + (a+ b)x′(t) + abx(t) = f(t), Transfer Function =
1

(s+ a)(s+ b)
.

Then verify system parameters a = 1, b = 2 from graphical numeric data.
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Figure 8. Oscilloscope output x(t) for Example 8.30. The cyan dots are located

at (0.5, 0.2387) and (3, 0.0473).

Solution: The curve in Figure 8 passes through t = 0, x = 0, then increases to a
maximum and after decreases to zero. The curve fails to have infinity many crossings of
the x-axis, therefore the system model is non–oscillatory over–damped.

We have only numeric output data for x(t) and not the differential equation itself, so a, b
are unknown. We discuss how to find a = 1 and b = 2 directly from the numerical data
used to plot Figure 8.

Choose two points on the curve, one on the increasing section and one on the decreasing
section. For example, the cyan dots in the figure, t = 0.5, x = 0.2387 and t = 3.0, x =
0.0473. Define F (t, a, b) = 1

b−a

(
e−at − e−bt

)
, which is symbolic solution (1) in Theorem

8.16. Use a CAS like maple or mathematica, or a workbench like matlab to solve
for a, b in the equations F (0.5, a, b) = 0.2387, F (3.0, a, b) = 0.0473. The answer is
b = 1.998164793, a = 1.000799323. Due to F (t, a, b) = F (t, b, a), there are two answers,
but only one answer with requirement a < b. The maple code:

F:=(t,a,b)->(exp(-a*t)-exp(-b*t))/(b-a);

fsolve({F(0.5,a,b)=0.2387,F(3.0,a,b)=0.0473},{a,b});

Numerical computations like this might be done with algebra and shortcuts, like finding
the smaller root from x(t) ≈ e−at/(b− a) for large t.

Example 8.31 (System Parameters: Over–Damped with Step Input)

Oscilloscope data created Figure 9 from block state x(0) = 0, x′(0) = 0 and unit
step input. Explain why the graphic predicts over–damped model

x′′(t) + (a+ b)x′(t) + abx(t) = f(t), Transfer Function =
1

(s+ a)(s+ b)
.

Then verify system parameters a = 1, b = 2 from graphical numeric data.
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Figure 9. Oscilloscope output x(t) for Example 8.31. The cyan dots are located

at (2, 0.374) and (3, 0.451). The steady–state is y0 = 1/2.

Solution:
The response curve has only one t-axis crossing, which classifies it nonoscillatory. The
block type prediction is based upon seeing a response curve that starts at (0, 0) and
increases to nonzero steady–state, which is y0 = 1

2 in this example.

Choose two data points on the graphic, the cyan dots in the figure: t = 2, y = 0.374
and t = 3, y = 0.451. Let F (t, a, b) = 1

ab + 1
a2−ab e

−at + 1
b2−ab e

−bt, which is symbolic
solution (2) in Theorem 8.16. Solve the equations F (2, a, b) = 0.374, F (3, a, b) = 0.451
in a CAS or numerical workbench to get b = 1.972417640, a = 1.017736613. Because
F (t, a, b) = F (t, b, a), switching a, b values gives another solution. Only one of these
meets requirement a < b. The maple code:

F:=(t,a,b)->1/(a*b)+exp(-a*t)/(a^2-a*b)+exp(-b*t)/(b^2-a*b);

fsolve({F(2,a,b)=0.374,F(3,a,b)=0.451},{a,b});

Example 8.32 (System Parameters: Over–Damped Impulse Input)

Oscilloscope data created Figure 10 from block state x(0) = 0, x′(0) = 0 and Dirac
input. Explain why the graphic predicts over–damped model

x′′(t) + (a+ b)x′(t) + abx(t) = f(t), Transfer Function =
1

(s+ a)(s+ b)
.

Then verify system parameters a = 1, b = 2 from graphical numeric data.

Figure 10. Oscilloscope output x(t) for Example 8.32. The cyan dots are located

at (0.3, 0.0960) and (2, 0.0585).

Solution: The graphic increases from t = 0, x = 0 to a maximum and after decreases to
zero. The response curve has only one t-axis crossing, which classifies it non-oscillatory,
hence over–damped.
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Let F (t, a, b) = 1
2

1
b−a

(
e−at − e−bt

)
, which is symbolic solution (3) in Theorem 8.16

for t > 0. Choose two points on the experimental curve, for example the cyan dots
in the figure t = 0.3, x = 0.0960 and t = 2, x = 0.0585. Solve for a, b in the two
equations F (0.3, a, b) = 0.0960 and F (2, a, b) = 0.0585. The answer is a = 2.000235495,
b = 1.000004659. The maple code:

F:=(t,a,b)->(1/2)*(exp(-a*t)-exp(-b*t))/(b-a);

fsolve({F(0.3,a,b)=0.0960,F(2,a,b)=0.0585},{a,b});

System Parameters for Under-Damped Problems

It is assumed that a signal x(t) is known via numerical data for a graphic passing
the following visual test:

The curve starts at t = 0, x = 0 and has at least two local maxima on
t > 0.

The initial data and the input are assumed to satisfy one of the following three
cases.:

Zero Input: x(0) = 0, x′(0) = 1, f(t) = 0
Step Input: x(0) = 0, x′(0) = 0, f(t) = k u(t)
Impulse Input: x(0) = 0, x′(0) = 0, f(t) = δ(t)

A graphic that passes the above test predicts the model

x′′ + 2ax′ +
(
a2 + b2

)
x = f(t), Transfer Function =

1

(s+ a)(s+ b)
, b > 0.

The method computes numerical values for a, b from the graphical data. The
computation finds a mathematical model for the block represented by the graphic.

Theorem 8.18 (Parameters for an Under–Damped Model)
Let x(t) be the response curve for x′′+2ax′+

(
a2 + b2

)
x = f(t) having a maximum

at t = t1, x = x1 and next maximum at t = t2, x = x2.

If the input is f(t) = 0 or f(t) = δ(t), then the system parameters are

a =
1

t2 − t1
ln

∣∣∣∣x1x2
∣∣∣∣ and b =

2π

t2 − t1
.

If the input is f(t) = k u(t) with steady–state solution y0 different from x1 and x2,
then the formulas are

a =
1

t2 − t1
ln

∣∣∣∣x1 − y0
x2 − y0

∣∣∣∣ and b =
2π

t2 − t1
.

Proof of Theorem 8.18, Underdamped Parameters:
For zero input or impulse input, the equation is x′′ + 2ax′ +

(
a2 + b2

)
x = 0 for t > 0

with general solution x = c1e
−at cos(bt) + c2e

−at sin(bt). Convert to the form x =
Ae−at cos(bt− ϕ). For definiteness, assume x1 > 0 and x2 > 0.
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Verify b = 2π
t2−t1

. At max t = t1 the cosine factor must be a max, which is 1, so
bt1 − ϕ = nπ. At the next maximum t = t2 the cosine factor must also be 1, so
bt2− ϕ = nπ+mπ. Because the maxima are consecutive, then m = 2 (the period of the
cosine is 2π). Subtract the two equations to obtain 2π = (bt2−ϕ)− (bt1−ϕ) = b(t2− t1)
and solve for b = 2π

t2−t1
.

Verify a = 1
t2−t1

ln
∣∣∣x1

x2

∣∣∣, x1=Ae−at1 cos(bt1−ϕ). Let x2=Ae−at2 cos(bt2−ϕ). Because

cos(bt1−ϕ) = cos(bt2−ϕ) = 1, as argued above, then x1 divided by x2 gives
x1

x2
= eat2−at1 .

Take the logarithm across this equality and use ln(eu) = u, then ln
∣∣∣x1

x2

∣∣∣ = ln(eat2−at1) =

a(t2 − t1). Solve for a = 1
t2−t1

ln
∣∣∣x1

x2

∣∣∣.
Case f(t) = k u(t). The equation is x′′ + 2ax′ +

(
a2 + b2

)
x = k with steady–state

solution y0 = k/(a2 + b2) and homogeneous solution xh = c1e
−at cos(bt)+ c2e

−at sin(bt).
The change of variables y(t) = x(t) − y0 changes x′′ + 2ax′ +

(
a2 + b2

)
x = k into

y′′ + 2ay′ +
(
a2 + b2

)
y = 0. Because x′(t) = y′(t), the curves x(t) and y(t) have the

same critical points. Further, solution y(t) has consecutive local maxima at t = t1,
y = x(t1) − y0 = x1 − y0 and t = t2, y = x(t2) − y0 = x2 − y0. The zero input case

applies to compute the parameters a = 1
t2−t1

ln
∣∣∣x1−y0

x2−y0

∣∣∣, b = 2π
t2−t1

.13 ■

Example 8.33 (Parameters: Under–Damped, Zero or Impulse Input)

Oscilloscope data created Figure 11 from block state x(0) = 0, x′(0) = 1 and zero
input or block state x(0) = 0, x′(0) = 0 and impulse input. Explain why the graphic
predicts under–damped model

x′′(t) + 2ax′(t) +
(
a2 + b2

)
x(t) = f(t), Transfer Function =

1

(s+ a)2 + b2
.

Then verify system parameters a = 1, b = 2 from graphical numeric data.

Figure 11. Oscilloscope output x(t) for Example 8.33. The cyan dots are located

at (0.554, 0.257) and (3.695, 0.011).

Solution: The curve in Figure 11 passes through t = 0, x = 0, then increases to a
maximum and after decreases to a minimum. The curve crosses the t-axis twice, therefore
it will have infinity many crossings of the t-axis: the system model is oscillatory under–
damped.

13Oscilloscopes can display signal y(t) directly, which simplifies external data processing to
the zero input case. See Example 8.35.
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Only numeric data for x(t) is available and not the differential equation itself, so param-
eters a, b are unknown. Approximations to a = 1 and b = 2 are found directly from the
numerical data used to plot Figure 11.

Choose two points on the curve, one at the first maximum and one at the very next
maximum. These are the cyan dots in the figure, t1 = 0.554, x1 = 0.257 and t2 =

3.695, x2 = 0.011. Apply Theorem 8.18 to obtain a =
ln(x1/x2)

t2 − t1
= 1.003241265 and

b =
2π

t2 − t1
= 2.000377366.

Answer Check. Insert the parameters a = 1, b = 2 into the predicted model, then
plot the symbolic response x(t) for zero input (or δ(t) for impulse input). If the graphic
matches Figure 11, then the computed parameters were likely correct.

Example 8.34 (System Parameters: Under–Damped Step Input)

Oscilloscope data created Figure 12 from block state x(0) = 0, x′(0) = 0 and unit
step input. Explain why the graphic predicts under–damped model

x′′(t) + 2ax′(t) +
(
a2 + b2

)
x(t) = f(t), Transfer Function =

1

(s+ a)2 + b2
.

Then verify system parameters a = 1, b = 4 from graphical numeric data.

Figure 12. Oscilloscope output x(t) for Example 8.34. The cyan dots are located

at (0.7854, 0.0856), (2.3562, 0.0644). The steady–state is y0 = 1/17.

Solution: The curve in Figure 12 passes through t = 0, x = 0, then increases to a
local maximum and after decreases to a local minimum. The steady–state is y0 = 1/17.
The curve crosses the steady–state y0 = 1/17 twice, therefore it will have infinity many
crossings of y0 = 1/17: the system model is oscillatory under–damped.

Choose two points on the curve, one at the first local maximum and one at the very next
local maximum. These are the cyan dots in the figure, t1 = 0.7854, x1 = 0.0856,
t2 = 2.3562, x2 = 0.0644. Let y0 = 1/17. Apply Theorem 8.18 to obtain a =

1
t2−t1

ln
∣∣∣x1−y0

x2−y0

∣∣∣ = 0.9988333798 and b = 2π
t2−t1

= 3.999990646.

Answer Check. Insert the parameters a = 1, b = 4 into the predicted model, then
plot the symbolic response x(t) for x(0) = x′(0) = 0 and unit step input. If the graphic
matches Figure 12, then the computed parameters are probably correct.
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Example 8.35 (Special Case: Under–Damped Step Input)

Oscilloscope data created Figure 13 from block state x(0) = 0, x′(0) = 1 and
unit step input. Explain why the graphic is missing a nonzero steady–state and the
predicted model is

x′′(t) + 2ax′(t) +
(
a2 + b2

)
x(t) = f(t), Transfer Function =

1

(s+ a)2 + b2
.

Discuss which formula to use when verifying a = 1, b = 4.

Figure 13. Oscilloscope output x(t) for Example 8.35. The cyan dots are located

at (0.3927, 0.1580) and (1.9635, 0.0330). The steady–state is x = 0.

Solution: The oscilloscope hardware made a change of variables y = x− 1/17 prior to
display of the y–data. This changed the steady state from y0 = 1/17 to y0 = 0. The
apparent oscillation of the graphic about x = 0 predicts the under–damped case: see the
proof of Theorem 8.18 page 662.

The figure looks like the zero input case, because y satisfies the homogeneous equation
y′′+2ay′+(a2+b2)y = 0 with steady–state zero and initial state y(0) = −1/17, y′(0) = 1.
The single important distinction is that the graph fails to pass through (0, 0).

Apply Theorem 8.18 with y0 = 0 to obtain a =
1

t2 − t1
ln

∣∣∣∣x1

x2

∣∣∣∣ = 1.0006 and b =

2π

t2 − t1
= 3.999991.

Exercises 8.8 �

Oscillatory and Non–oscillatory
Assume x′′+px′+qx = 0 with p, q nonneg-
ative.

Parameter p is imagined as a set screw ad-
justment on a screen door dashpot, larger
p meaning more damping effect.

Parameter q is the Hooke’s constant for the
spring restoring force.

1. Let q = 100, p = 99. Verify that the
equation is over–damped in two ways:
(1) Graph x(t);

(2) Justify that r2 + pr+ q = 0 has real
negative roots.

2. Let q = 100. The case which is
called critically–damped happens at ex-
actly one value p = p∗ between 0 and
99. Compute p∗ numerically. Graph
x(t) using q = 100, p = p∗, x(0) = 0,
x′(0) = 1.

3. Let q = 100. Verify that p = 0 produces
the harmonic oscillator x′′+ω2 x = 0,
ω = 10.
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8.8 Modeling

Small set screw changes from p = 0 to p > 0
are still oscillatory. Under–damped means
weak dashpot reaction.

4. Let q = 100, p = 2. Justify oscillatory
under–damped from the graph of x(t)
and also by solving r2 + pr + q = 0.

Simplistic Dirac Impulse
Define g(t) = 7 e−153800 t u(t) and
f(t, a) = 1

a (u(t)− u(t− a)), a > 0.

The impulse of force h is
∫∞
−∞ h(t) dt.

5. Compute the impulse for f(t, a).
Ans: 1.

6. Plot f(t, a) for a = 0.1, 0.001, 0.0001.

7. Calculate the impulse for g(t).
Ans: About 46 times 10−6.

8. Try to find anRC discharge circuit with
10 volt emf and output g(t).

Circuit response g(t) simulates Dirac impul-

sive force 45.5
1000000

δ(t).

Parameters: Over–Damped
Find a, b, ω =

√
ab, ζ = a+b

2ω given the plot
and two dots on the graph.

9. Step input Figure 9, dots
(1, 0.1998), (4, 0.4819).
Ans: a = 1.0000, b = 1.9997, ω =
1.4141, ζ = 1.0607.

10. Impulse input Figure 10, dots
(0.5, 0.1193), (2, 0.0585).
Ans: a = 0.9991, b = 2.0021, ω =
1.4143, ζ = 1.0610.

Parameters: Under–Damped
Find a, b, ω =

√
a2 + b2, ζ = a

ω given the
plot and two dots on the graph.

11. Zero input like Figure 11, but con-
secutive maxima at (2.5107, 0.0257),
(4.6051, 0.0032).
Ans: Approximately a = 1, b = 3.

12. Step input like Figure 13, but
steady–state y0 = 1/26 and con-
secutive maxima at (0.6283, 0.0205),
(1.8850, 0.0058).
Ans: Approximately a = 1, b = 5.
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PDF Sources

Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and
linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the textbook
are available in two volumes at Amazon Kindle Direct Publishing for Amazon’s
cost of printing and shipping. No author profit. Volume I chapters 1-7, ISBN
9798705491124, 661 pages. Volume II chapters 8-12, ISBN 9798711123651, 479
pages. Both paperbacks have extra pages of backmatter: background topics
Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with
hyperlink navigation to displayed equations and theorems. The header in an
exercise set has a blue hyperlink � to the same section in the solutions. The
header of the exercise section within a solution Appendix has a red hyperlink �
to the textbook exercises. Solutions are organized by chapter, e.g., Appendix 5
for Chapter 5. Odd-numbered exercises have a solution. A few even-numbered
exercises have hints and answers. Computer code can be mouse-copied directly
from the PDF. Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded
to a tablet, computer or phone to be viewed locally. After download, no internet
is required. Best for computer or tablet using a PDF viewer (Adobe Reader,
Evince) or web browser with PDF support (Chrome, FireFox). Smart phones
can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or
request an answer, click the link below, then create a GitHub issue and post.
Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues
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