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Developed here is the theory for higher order linear constant-coefficient differen-
tial equations. Besides a basic formula for the solution of such equations, exten-
sions are developed for the topics of variation of parameters and undetermined
coefficients.

Enrichment topics include the Cauchy-Euler differential equation, the Cauchy
kernel for second order linear differential equations, and a library of special meth-
ods for undetermined coefficients methods, the latter having prerequisites of only
basic calculus and college algebra. Developed within the library methods is a
verification of the method of undetermined coefficients, via Kümmer’s change of
variable.

7.1 Higher Order Homogeneous

Presented here is a solution method for higher order linear differential equations
with real constant coefficients

yn + an−1y
(n−1) + · · ·+ a0y = 0.(1)
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7.1 Higher Order Homogeneous

This topic was covered earlier, therefore the central purpose of this section is the
collection of additional exercises. The only new topics have to do with factoriza-
tion of polynomials and differential operators. The first subject has to do with
efficiency, a shortcut to speed up the process of solving a constant-coefficient
linear homogeneous differential equation.

How to Solve Higher Order Equations

The Characteristic Equation of (1) is the polynomial equation

rn + an−1r
n−1 + · · ·+ a0 = 0.(2)

The left side of (2) is called the Characteristic Polynomial. We assume the
coefficients are real numbers.

For a real root r = a of the characteristic equation, symbol k equals itsAlgebraic
Multiplicity. Then k is the maximum power such that (r − a)k divides the
characteristic polynomial.

The same symbol k is used for the algebraic multiplicity of a complex root
r = a+ ib. Complex roots always come in pairs, a± ib, because the coefficients
of the characteristic polynomial are real. This means k is the maximum power
such that ((r − a)2 + b2)k divides the characteristic polynomial.

Constructing the General Solution

The general solution y of (1) is constructed as a linear combination of n Euler
atoms. The list of n Euler atoms is found from the roots of the characteristic
equation, by iterating on Step I and Step II below.

Step I: Real Roots

Each multiplicity k real root r = a of the characteristic equation produces
a group of k Euler atoms

erx, xerx, . . . , xk−1erx

which are solutions of (1). Append the group to the list of Euler atoms for
equation (1).

Step II: Complex Root pairs

Each multiplicity k pair of complex roots z = a+ ib and z = a− ib of the
characteristic equation produces two groups of k distinct Euler atoms

group 1: eax cos bx, xeax cos bx, . . . , xk−1eax cos bx,
group 2: eax sin bx, xeax sin bx, . . . , xk−1eax sin bx,
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7.1 Higher Order Homogeneous

which are solutions to the differential equation. Append the two groups to
the list of Euler atoms for equation (1).

Exponential Solutions and Euler’s Theorem

Characteristic equation (2) is formally obtained from the differential equation by
replacing y(k) by rk. This device for remembering how to form the characteristic
equation is attributed to Euler, because of the following fact.

Theorem 7.1 (Euler’s Exponential Substitution)
Let w be a real or complex number. The function y(x) = ewx is a solution of (1) if
and only if r = w is a root of the characteristic equation (2).

Steps I and II above are justified from Euler’s basic result:

Theorem 7.2 (Euler’s Multiplicity Theorem)
Function y(x) = xpewx is a solution of (1) if and only if (r − w)p+1 divides the
characteristic polynomial.

An Illustration of the Higher Order Method

Consider the problem of solving a constant coefficient linear differential equation
(1) of order 11 having factored characteristic equation

(r − 2)3(r + 1)2(r2 + 4)2(r2 + 4r + 5) = 0.

To be applied is the solution method for higher order equations. Then Step I
loops on the two linear factors r − 2 and r + 1, while Step 2 loops on the two
real quadratic factors r2 + 4 and r2 + 4r + 5.

Hand solutions can be organized by a tabular method for generating the general
solution y. The key element is that rows are distinct factors of the characteris-
tic polynomial. This feature insures that each row contains distinct atoms not
duplicated in another row.

Factor Roots Multiplicity Atom Groups

(r − 2)3 r = 2, 2, 2 3 e2x, xe2x, x2e2x

(r + 1)2 r = 1, 1 2 ex, xex

(r2 + 4)2 r = ±2i,±2i 2 cos 2x, x cos 2x
sin 2x, x sin 2x

(r + 2)2 + 1 r = −2± i 1 e2x cosx
e2x sinx

The equation has order n = 11. Symbols c1, . . . , cn will represent arbitrary
constants in the general solution y. A real root of multiplicity k will consume k of
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7.1 Higher Order Homogeneous

these symbols, while a complex conjugate pair of roots of multiplicity k consumes
2k symbols. The number of terms added in Step I equals the multiplicity of the
root, or twice that in Step II, the case of complex roots. The symbols are used
in order, as the general solution is constructed, as follows.

Root(s) Count Solution Terms Added

r = 2, 2, 2 3 (c1 + c2x+ c3x
2)e2x

r = −1,−1 2 (c4 + c5x)e
−x

r = ±2i,±2i 4 (c6 + c7x) cos 2x+ (c8 + c9x) sin 2x

r = −2± i 2 c10e
−2x cosx+ c11e

−2x sinx

Then the general solution is

y = (c1 + c2x+ c3x
2)e2x

+(c4 + c5x)e
−x

+(c6 + c7x) cos 2x+ (c8 + c9x) sin 2x
+c10e

−2x cosx+ c11e
−2x sinx.

Computer Algebra System Solution

The system maple can symbolically solve a higher order equation. Below, @ is
the function composition operator, @@ is the repeated composition operator and
D is the differentiation operator. The coding writes the factors of

(r − 2)3(r + 1)2(r2 + 4)2(r2 + 4r + 5)

as differential operators (D − 2)3, (D + 1)2, (D2 + 4)2, D2 + 4D + 5. Then the
differential equation is the composition of the component factors. See the next
section for details about differential operators.

id:=x->x;

F1:=(D-2*id) @@ 3;

F2:=(D+id) @@ 2;

F3:=(D@D+4*id) @@ 2;

F4:=D@D+4*D+5*id;

de:=(F1@F2@F3@F4)(y)(x)=0:

dsolve({de},y(x));
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7.1 Higher Order Homogeneous

Exercises 7.1

Higher Order Factored
Solve the higher order equation with the
given characteristic equation. Display the
roots according to multiplicity and list the
corresponding solution atoms.

1. (r − 1)(r + 2)(r − 3)2 = 0

2. (r − 1)2(r + 2)(r + 3) = 0

3. (r − 1)3(r + 2)2r4 = 0

4. (r − 1)2(r + 2)3r5 = 0

5. r2(r − 1)2(r2 + 4r + 6) = 0

6. r3(r − 1)(r2 + 4r + 6)2 = 0

7. (r − 1)(r + 2)(r2 + 1)2 = 0

8. (r − 1)2(r + 2)(r2 + 1) = 0

9. (r − 1)3(r + 2)2(r2 + 4) = 0

10. (r − 1)4(r + 2)(r2 + 4)2 = 0

Higher Order Unfactored
Completely factor the given characteristic
equation, then the roots according to mul-
tiplicity and the solution atoms.

11. (r − 1)(r2 − 1)2(r2 + 1)3 = 0

12. (r + 1)2(r2 − 1)2(r2 + 1)2 = 0

13. (r + 2)2(r2 − 4)2(r2 + 16)2 = 0

14. (r + 2)3(r2 − 4)4(r2 + 5)2 = 0

15. (r3 − 1)2(r − 1)2(r2 − 1) = 0

16. (r3 − 8)2(r − 2)2(r2 − 4) = 0

17. (r2 − 4)3(r4 − 16)2 = 0

18. (r2 + 8)(r4 − 64)2 = 0

19. (r2 − r + 1)(r3 + 1)2 = 0

20. (r2 + r + 1)2(r3 − 1) = 0

Higher Order Equations
The exercises study properties of Euler
atoms and nth order linear differential
equations.

21. (Euler’s Theorem)

Explain why the derivatives of atom
x3ex satisfy a higher order equation
with characteristic equation (r − 1)4 =
0.

22. (Euler’s Theorem)

Explain why the derivatives of atom
x3 sinx satisfy a higher order equation
with characteristic equation (r2+1)4 =
0.

23. (Kümmer’s Change of Variable)

Consider a fourth order equation with
characteristic equation (r+a)4 = 0 and
general solution y. Define y = ue−ax.
Find the differential equation for u and
solve it. Then solve the original differ-
ential equation.

24. (Kümmer’s Change of Variable)

A polynomial u = c0 + c1x + c2x
2 sat-

isfies u′′′ = 0. Define y = ueax. Prove
that y satisfies a third order equation
and determine its characteristic equa-
tion.

25. (Ziebur’s Derivative Lemma)

Let y be a solution of a higher or-
der constant-coefficient linear equation.
Prove that the derivatives of y satisfy
the same differential equation.

26. (Ziebur’s Lemma: atoms)

Let y = x3ex be a solution of a higher
order constant-coefficient linear equa-
tion. Prove that Euler atoms ex, xex,
x2ex are solutions of the same differen-
tial equation.

27. (Ziebur’s Atom Lemma)

Let y be an Euler atom solution of
a higher order constant-coefficient lin-
ear equation. Prove that the Euler
atoms extracted from the expressions
y, y′, y′′, . . . are solutions of the same
differential equation.

555



7.1 Higher Order Homogeneous

28. (Differential Operators)

Let y be a solution of a differential
equation with characteristic equation
(r − 1)3(r + 2)6(r2 + 4)5 = 0. Ex-
plain why y′′′ is a solution of a differen-
tial equation with characteristic equa-
tion (r − 1)3(r + 2)6(r2 + 4)5r3 = 0.

29. (Higher Order Algorithm)

Let atom x2 cosx appear in the general
solution of a linear higher order equa-
tion. Find the pair of complex conju-
gate roots that constructed this atom,
and the multiplicity k. Report the 2k
atoms which must also appear in the
general solution.

30. (Higher Order Algorithm)

Let Euler atom xex cos 2x appear in the

general solution of a linear higher order
equation. Find the pair of complex con-
jugate roots that constructed this atom
and estimate the multiplicity k. Report
the 2k atoms which are expected to ap-
pear in the general solution.

31. (Higher Order Algorithm)

Let a higher order equation have char-
acteristic equation (r− 9)3(r− 5)2(r2+
4)5 = 0. Explain precisely using
existence-uniqueness theorems why the
general solution is a sum of constants
times Euler atoms.

32. (Higher Order Algorithm)

Explain why any higher order linear ho-
mogeneous constant-coefficient differen-
tial equation has general solution a sum
of constants times Euler atoms.
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7.2 Differential Operators

7.2 Differential Operators

A polynomial in the symbolD = d/dx is called aDifferential Operator and the
formal manipulation of these expressions is called an Operational Calculus.

The meaning of an expression such as D2 + 3D + 2 is through linearity, [D2 +
3D+2]y meaning D2y+3Dy+2y, and each term has the corresponding meaning

Dy = y′(x), D2y = y′′(x), · · ·

Products of the expressions are defined through composition. For example, (D+
1)(D+2)y means (D+1)(y′+2y), which in turn is defined to be (y′+2y)′+(y′+2y).
This example suggests that expansion of such factored products is identical to
expansion of polynomial (x+ 1)(x+ 2) into x2 + 3x+ 2.

Theorem 7.3 (Commuting Operators)
Let P = p0 + · · · + pnD

n and Q = q0 + · · · + qmDm be two differential operators

with constant coefficients. Define R = r0+ · · ·+rkD
k to be the polynomial product

expansion of P and Q. Then for every infinitely differentiable function y(x),

P (Qy) = Q(Py) = Ry.

In short, P and Q commute and their product in either order is the formal expanded
polynomial product.

Proof: Define pi = 0 for i > n and qj = 0 for j > m, so that P and Q can be written as
infinite series. The Cauchy product theorem from series implies that rℓ = p0qℓ+· · ·+pℓq0.
By definitions, and the Cauchy product theorem,

P (Qy) =
∑∞

i=0 piD
i(Qy)

=
∑∞

i=0 piD
i
(∑∞

j=0 qjy
(j)
)

=
∑∞

i=0 pi

(∑∞
j=0 qjy

(i+j)
)

=
∑∞

i=0

∑∞
j=0 piqjy

(i+j)

=
∑∞

ℓ=0

∑ℓ
j=0 pℓ−jqjy

(ℓ)

=
∑∞

ℓ=0 rℓy
(ℓ)

= Ry

Because the series product in reverse order gives the identical answer, the proof is com-
plete.

Factorization

The fundamental theorem of algebra implies that the characteristic equation of
a real nth order linear constant-coefficient differential equation has exactly n
roots, counted according to multiplicity. Some number of the roots are real and
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7.2 Differential Operators

the remaining roots appear in complex conjugate pairs. This implies that every
characteristic equation has a factored form

(r − a1)
k1 · · · (r − aq)

kqQ1(r)
m1 · · ·Qp(r)

mp = 0

where a1, . . . , aq are the distinct real roots of the characteristic equation of
algebraic multiplicities k1, . . . , kq, respectively. Factors Q1(r), . . . , Qp(r) are the
distinct real quadratic factors of the form (r − z)(r − z). Symbol z exhausts the
distinct complex roots z = a+ ib with b > 0, having corresponding algebraic
multiplicities m1, . . . , mp. The quadratic (r − z)(r − z) is normally written
(r − a)2 + b2.

General Solution

An nth order linear homogeneous differential equation with real constant coef-
ficients can be written in D-operator notation via the distinct real linear and
quadratic factors of the characteristic equation as(

(D − a1)
k1 · · · (D − aq)

kqQ1(D)m1 · · ·Qp(D)mp

)
y = 0.

For Q = (r − a)2 + b2, symbol Q(D) = (D − a)2 + b2.

Picard’s theorem on existence-uniqueness fixes the possible number of indepen-
dent solutions at exactly n, the order of the differential equation. Each factor,
real or quadratic, generates a certain number of distinct Euler solution atoms,
the union of which counts to exactly n independent atoms, forming a solution
basis for the differential equation.

Specifically, the general solution of

(D − a)k+1y = 0

is a polynomial u = c0 + c1x+ · · ·+ ckx
k with k + 1 terms times eax. This fact

is proved by Kümmer’s change of variable y = eaxu, which finds an equivalent
equation Dk+1u = 0, solvable by quadrature. Details in the exercises.

The general solution of
((D − a)2 + b2)k+1y = 0

is a real polynomial u1 = a0 + · · ·+ akx
k with k+1 terms times eax cos(bx) plus

a real polynomial u2 = b0 + · · ·+ bkx
k with k + 1 terms times eax sin(bx).

Technical details: Kümmer’s change of variable y = eaxu transforms to the
equation (D2+b2)k+1u = 0. Because D2+b2 = (D−ib)(D+ib), the work done in
the preceding paragraph applies, resulting in solutions that are polynomials with
k+1 terms times eibx and e−ibx. Taking real and imaginary parts of these solutions
give the real solutions u1 cos(bx), u2 sin(bx). Transforming back multiplies these
answers by eax.
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7.2 Differential Operators

Exercises 7.2

Operator Arithmetic
Compute the operator and solve the corre-
sponding differential equation.

1. D(D + 1) +D

2. D(D + 1) +D(D + 2)

3. D(D + 1)2

4. D(D2 + 1)2

5. D2(D2 + 4)2

6. (D − 1)((D − 1)2 + 1)2

Operator Properties.

7. (Operator Composition) Multiply
P = D2 + D and Q = 2D + 3 to get
R = 2D3 + 5D2 + 3D. Then compute
P (Qy) and Q(Py) for y(x) 3-times
differentiable, and show both equal Ry.

8. (Kernels)

The operators (D − 1)2(D + 2) and
(D− 1)(D+ 2)2 share common factors.
Find the Euler solution atoms shared
by the corresponding differential equa-
tions.

9. (Operator Multiply)

Let differential equation (D2 + 2D +
1)y = 0 be formally differentiated four
times. Find its operator and solve the
equation. What does this have to do
with operator multiply?

10. (Non-homogeneous Equation) The
differential equation (D5 + 4D3)y = 0
can be viewed as (D2 + 4)u = 0 and
u = D3y. On the other hand, y is
a linear combination of the atoms gen-
erated from the characteristic equation
r3(r2 + 4) = 0. Use these facts to
find a particular solution of the non-
homogeneous equation y′′′ = 3 cos 2x.

Kümmer’s Change of Variable
Kümmer’s change of variable y = ueax

changes a y-differential equation into a u-
differential equation. It can be used as a
basis for solving homogeneous nth order
linear constant coefficient differential equa-
tions.

11. Supply details: y = ueax changes y′′ =
0 into u′′ + 2au′ + a2u = 0.

12. Supply details: y = ueax changes
(D2 +4D)y = 0 into ((D+ a)2 +4(D+
a))u = 0.

13. Supply details: y = ueax changes the
differential equation Dny = 0 into (D+
a)nu = 0.

14. Kümmer’s substitution y = ueax

changes the differential equation (Dn +
an−1D

n−1 + · · · + a0)y = 0 into (Fn +
an−1F

n−1 + · · ·+ a0)u = 0, where F =
D + a. Write the proof.
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7.3 Higher Order Non-Homogeneous

7.3 Higher Order Non-Homogeneous

Continued here is the study of higher order linear differential equations with real
constant coefficients.

The homogeneous equation is

yn + an−1y
(n−1) + · · ·+ a0y = 0.(1)

The variation of parameters formula and the method of undetermined coefficients
are discussed for the associated non-homogeneous equation

yn + an−1y
(n−1) + · · ·+ a0y = f(x).(2)

Variation of Parameters Formula

The Picard-Lindelöf theorem implies that on (−∞,∞) there a unique solution
of the initial value problem

yn + an−1y
(n−1) + · · ·+ a0y = 0,

y(0) = · · · = y(n−2)(0) = 0, y(n−1)(0) = 1.
(3)

The unique solution is called Cauchy’s kernel, written K(x).

To illustrate, Cauchy’s kernel K(x) for y′′′ − y′′ = 0 is obtained from its general
solution y = c1 + c2x + c3e

x by computing the values of the constants c1, c2, c3
from initial conditions y(0) = 0, y′(0) = 0, y′′(0) = 1, giving K(x) = ex − x− 1.

Theorem 7.4 (Higher Order Variation of Parameters)
Let yn + an−1y

(n−1) + · · · + a0y = f(x) have constant coefficients a0, . . . , an−1

and continuous forcing term f(x). Denote by K(x) Cauchy’s kernel for the homoge-
neous differential equation. Then a particular solution is given by the Variation of
Parameters Formula

yp(x) =

∫ x

0
K(x− u)f(u)du.(4)

This solution has zero initial conditions y(0) = · · · = y(n−1)(0) = 0.

Proof: Define y(x) =
∫ x

0
K(x−u)f(u)du. Compute by the 2-variable chain rule applied

to F (x, y) =
∫ x

0
K(y − u)f(u)du the formulas

y(x) = F (x, x)
=

∫ x

0
K(x− u)f(u)du,

y′(x) = Fx(x, x, ) + Fy(x, x)
= K(x− x)f(x) +

∫ x

0
K′(x− u)f(u)du

= 0 +
∫ x

0
K′(x− u)f(u)du.

The process can be continued to obtain for 0 ≤ p < n− 1 the general relation

y(p)(x) =

∫ x

0

K(p)f(u)du.
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7.3 Higher Order Non-Homogeneous

The relation justifies the initial conditions y(0) = · · · = y(n−1)(0) = 0, because each
integral is zero at x = 0. Take p = n− 1 and differentiate once again to give

y(n)(x) = K(n−1)(x− x)f(x) +

∫ x

0

K(n)f(u)du.

Because K(n−1)(0) = 1, this relation implies

y(n) +

n−1∑
p=0

apy
(p) = f(x) +

∫ x

0

(
K(n)(x− u) +

n−1∑
p=0

apK(p)(x− u)

)
f(u)du.

The sum under the integrand on the right is zero, because Cauchy’s kernel satisfies
the homogeneous differential equation. This proves y(x) satisfies the nonhomogeneous
differential equation. ■

Undetermined Coefficients Method

The method applies to higher order nonhomogeneous linear differential equations
with real constant coefficients

y(n) + an−1y
(n−1) + · · ·+ a0y = f(x).(5)

It finds a particular solution yp of (5) without the integration steps present in vari-
ation of parameters. The theory was already presented earlier, for the special case
of second order differential equations. The contribution of this section is a higher
order example and more exercises. The term Euler atom is an abbreviation
for the phrase Euler solution atom of a constant-coefficient linear homogeneous
differential equation. A base atom is one of eax, eax cos bx, eax sin bx where
symbols a and b are real constants with b > 0. Euler atoms are xn times a base
atom n = 0, 1, 2, 3, . . ..

Requirements and limitations:

1. The coefficients on the left side of (5) are constant.

2. The function f(x) is a sum of constants times atoms.

Method of Undetermined Coefficients

Step 1. Define the list of k atoms in a trial solution using Rule I and Rule II
[details below]. Multiply these atoms by undetermined coefficients
d1, . . . , dk, then add to define trial solution y.

Step 2. Substitute y into the differential equation.

Step 3. Match coefficients of Euler atoms left and right to write out linear
algebraic equations for unknowns d1, d2, . . . , dk. Solve the equations.

Step 4. The trial solution y with evaluated coefficients d1, d2, . . . , dk becomes
the particular solution yp.
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7.3 Higher Order Non-Homogeneous

Undetermined Coefficients Rule I

Assume f(x) in the equation y(n) + · · ·+ a0y = f(x) is a sum of constants times Euler
atoms. For each atom A appearing in f(x), extract all distinct atoms that appear in A,
A′, A′′, . . . , then collect all these computed atoms into a list of k distinct Euler atoms.

If the list contains a solution of the homogeneous differential equation, then Rile
I FAILS. Otherwise, multiply the k atoms by undetermined coefficients d1, . . . , dk to
form trial solution

y = d1(atom 1) + d2(atom 2) + · · ·+ dk(atom k).

Undetermined Coefficients Rule II

Assume Rule I constructed a list of k Euler atoms but FAILED. The particular solution
yp is still a sum of constants times k atoms. Rule II changes some or all of the k atoms,
by repeated multiplication by x.

The k-atom list is subdivided into groups with the same base atom, called group 1,
group 2, and so on. Test each group for a solution of the homogeneous differential
equation. If found, then multiply each atom in the group by factor x. Repeat until no
group contains a solution of the homogeneous differential equation. The final set
of k Euler atoms is used to construct trial solution

y = d1(atom 1) + d2(atom 2) + · · ·+ dk(atom k).

A Common Difficulty

An able and earnest student working on undetermined coefficients writes:

I substituted trial solution y into the differential equation, but then I
couldn’t solve the equations. What’s wrong?

Trial solution substitution can result in a missing variable dp on the left. It
happens exactly when the trial solution contains a term dpA, where A is an Euler
solution atom of the homogeneous equation.

To illustrate, suppose y = d1x+d2x
2 is substituted into left side of the differential

equation y′′′ − y′′ = x+ x2 to get

d1[(x)
′′′ − (x)′′] + d2[(x

2)′′′ − (x2)′′] = x+ x2,
d1[0] + d2[−2] = x+ x2.

Then d1 vanishes from the left side, because (x)′′′− (x)′′ evaluates to zero! Equa-
tion (x)′′′ − (x)′′ = 0 means function y(x) = x is a solution of the homogeneous
differential equation for y′′′−y′′ = f(x). Then d1 is a free variable in the linear
algebra problem. The other coefficient d2 is determined to be zero. The nonsense
equation 0 = x+ x2 tells us we chose the wrong trial solution.

What caused the missing variable? Function y = x was a solution of the homo-
geneous differential equation for y′′′ − y′′ = x+ x2.

To prevent the error, test the trial solution before substitution:
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7.3 Higher Order Non-Homogeneous

Search the Euler atom list for trial solution y for a solution of the
homogeneous equation – there shouldn’t be any!

The test should be used before embarking upon the time–consuming task of
writing the linear algebraic equations and solving them.

Illustration: nth Order Undetermined Coefficients

Let’s solve
y′′′ − y′′ = xex + 2x+ 1 + 3 sinx

Answer:

yp(x) = −3

2
x2 − 1

3
x3 − 2xex +

1

2
x2ex +

3

2
cosx+

3

2
sinx.

Solution:
Check Applicability. The right side f(x) = xex + 2x + 1 + 3 sinx is a sum of terms
constructed from Euler atoms xex, x, 1, sinx. The left side has constant coefficients.
Therefore, the method of undetermined coefficients applies to find a particular solution
yp.

Homogeneous solution. The equation y′′′ − y′′ = 0 has general solution yh equal to a
linear combination of Euler atoms 1, x, ex.

Rule I. The Euler atoms found in f(x) are subjected to repeated differentiation. The
six distinct atoms so found are 1, x, ex, xex, cosx, sinx (drop coefficients to identify
new atoms). Three of these are solutions of the homogeneous equation: Rule I FAILS.

Rule II. Divide the list of six atoms 1, x, ex, xex, cosx, sinx into four groups with
identical base atom:

Group Euler Atoms Base Atom
group 1 : 1, x 1
group 2 : ex, xex ex

group 3 : cosx cosx
group 4 : sinx sinx

Group 1 contains a solution of the homogeneous equation y′′′ − y′′ = 0. Rule II says to
multiply group 1 by x. Rule II is repeated, because the new group x, x2 still contains a
solution of the homogeneous equation. The process stops with new group x2, x3. Group
2 contains solution ex of the homogeneous equation. Rule II says to multiply group 2
by x. The new group xex, x2ex contains no solution of the homogeneous differential
equation y′′ − y = 0 .The last two groups are unchanged, because neither contains a
solution of the homogeneous equation. Then

Group Atoms Action
New group 1 : x2, x3 multiplied by x twice
New group 2 : xex, x2ex multiplied once by x

group 3 : cosx unchanged
group 4 : sinx unchanged
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The final groups have been found. The shortest trial solution is

y = linear combination of atoms in the new groups
= d1x

2 + d2x
3 + d3xe

x + d4x
2ex + d5 cosx+ d6 sinx.

Equations for d1 to d6. Substitution of trial solution y into y′′′ − y′′ requires formulas
for y′, y′′, y′′′:

y′ = 2 d1x+ 3 d2x
2 + d3e

xx+ d3e
x + 2 d4xe

x + d4x
2ex

− d5 sin(x) + d6 cos(x),
y′′ = 2 d1 + 6 d2x+ d3e

xx+ 2 d3e
x + 2 d4e

x + 4 d4xe
x + d4x

2ex

− d5 cos(x)− d6 sin(x),
y′′′ = 6 d2 + d3e

xx+ 3 d3e
x + 6 d4e

x + 6 d4xe
x + d4x

2ex

+ d5 sin(x)− d6 cos(x)

Then

f(x) = y′′′ − y′′ Given equation.

= 6d2 − 2d1 − 6d2x+ (d3 + 4d4)e
x + 2d4xe

x Substitute, then

+ (d5 − d6) cos(x) + (d5 + d6) sin(x) collect on atoms.

Because f(x) ≡ 1 + 2x + xex + 3 sinx, then two linear combinations of the same set of
six Euler atoms are equal:

1 + 2x+ xex + 3 sinx = (6d2 − 2d1)(1) + (−6d2)x
+(d3 + 4d4)e

x + (2d4)xe
x

+(d5 − d6) cos(x) + (d5 + d6) sin(x).

Coefficients of Euler atoms on the left and right must match, by independence of atoms.
Write out the equations for matching coefficients:

−2d1 + 6d2 = 1,
−6d2 = 2,

d3 + 4d4 = 0,
2d4 = 1,

d5 − d6 = 0,
d5 + d6 = 3.

Solve. The first four equations can be solved by back-substitution to give d2 = −1/3,
d1 = −3/2, d4 = 1/2, d3 = −2. The last two equations are solved by elimination or
Cramer’s rule to give d5 = 3/2, d6 = 3/2.

Report yp. The corrected trial solution y with evaluated coefficients d1 to d6 becomes
the particular solution

yp(x) = −3

2
x2 − 1

3
x3 − 2xex +

1

2
x2ex +

3

2
cosx+

3

2
sinx.

564



7.3 Higher Order Non-Homogeneous

Exercises 7.3

Variation of Parameters
Solve the higher order equation given by its
characteristic equation and right side f(x).
Display the Cauchy kernel K(x) and a par-
ticular solution yp(x) with fewest terms.
Use a computer algebra system to evaluate
integrals, if possible.

1. (r − 1)(r + 2)(r − 3)2 = 0,
f(x) = ex

2. (r − 1)2(r + 2)(r + 3) = 0,
f(x) = ex

3. (r − 1)3(r + 2)2r4 = 0,
f(x) = x+ e−2x

4. (r − 1)2(r + 2)3r5 = 0,
f(x) = x+ e−2x

5. r2(r − 1)2(r2 + 4r + 6) = 0,
f(x) = x+ ex

6. r3(r − 1)(r2 + 4r + 6)2 = 0,
f(x) = x2 + ex

7. (r − 1)(r + 2)(r2 + 1)2 = 0,
f(x) = cosx+ e−2x

8. (r − 1)2(r + 2)(r2 + 1) = 0,
f(x) = sinx+ e−2x

9. (r − 1)3(r + 2)2(r2 + 4) = 0,
f(x) = cos 2x+ ex

10. (r − 1)4(r + 2)(r2 + 4)2 = 0,
f(x) = sin 2x+ ex

Undetermined Coefficient Method
A higher order equation is given by its char-
acteristic equation and right side f(x). Dis-
play (a) a trial solution, (b) a system of
equations for the undetermined coefficients,
and (c) a particular solution yp(x) with
fewest terms. Use a computer algebra sys-
tem to solve for undetermined coefficients,
if possible.

11. (r − 1)(r + 2)(r − 3)2 = 0,
f(x) = ex

12. (r − 1)2(r + 2)(r + 3) = 0,
f(x) = ex

13. (r − 1)3(r + 2)2r4 = 0,
f(x) = x+ e−2x

14. (r − 1)2(r + 2)3r5 = 0,
f(x) = x+ e−2x

15. r2(r − 1)2(r2 + 4r + 6) = 0,
f(x) = x+ ex

16. r3(r − 1)(r2 + 4r + 6)2 = 0,
f(x) = x2 + ex

17. (r − 1)(r + 2)(r2 + 1)2 = 0,
f(x) = cosx+ e−2x

18. (r − 1)2(r + 2)(r2 + 1) = 0,
f(x) = sinx+ e−2x

19. (r − 1)3(r + 2)2(r2 + 4) = 0,
f(x) = cos 2x+ ex

20. (r − 1)4(r + 2)(r2 + 4)2 = 0,
f(x) = sin 2x+ ex
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7.4 Cauchy-Euler Equation

The differential equation

anx
ny(n) + an−1x

n−1y(n−1) + · · ·+ a0y = 0

is called the Cauchy-Euler differential equation of order n. The symbols ai,
i = 0, . . . , n are constants and an ̸= 0.

The Cauchy-Euler equation is important in the theory of linear differential equa-
tions because it has direct application to Fourier’s method in the study of
partial differential equations. In particular, the second order Cauchy-Euler equa-
tion

ax2y′′ + bxy′ + cy = 0

accounts for the bulk of such applications in applied literature.

A second argument for studying the Cauchy-Euler equation is theoretical: it is
a single example of a differential equation with non-constant coefficients that
has a known closed-form solution. This fact is due to a change of variables
(x, y) −→ (t, z) given by equations

x = et, z(t) = y(x),

which changes the Cauchy-Euler equation into a constant-coefficient differential
equation. Since the constant-coefficient equations have closed-form solutions, so
also do the Cauchy-Euler equations.

Theorem 7.5 (Cauchy-Euler Equation)
The change of variables x = et, z(t) = y(et) transforms the Cauchy-Euler equation

ax2y′′ + bxy′ + cy = 0

into its equivalent constant-coefficient equation

a
d

dt

(
d

dt
− 1

)
z + b

d

dt
z + cz = 0.

The result is memorized by the general differentiation formula

xky(k)(x) =
d

dt

(
d

dt
− 1

)
· · ·
(

d

dt
− k + 1

)
z(t).(1)

Proof: The equivalence is obtained from the formulas

y(x) = z(t), xy′(x) =
d

dt
z(t), x2y′′(x) =

d

dt

(
d

dt
− 1

)
z(t)

by direct replacement of terms in ax2y′′ + bxy′ + cy = 0. It remains to establish the
general identity (1), from which the replacements arise.
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7.4 Cauchy-Euler Equation

The method of proof is mathematical induction. The induction step uses the chain rule
of calculus, which says that for y = y(x) and x = x(t),

dy

dx
=

dy

dt

dt

dx
.

The identity (1) reduces to y(x) = z(t) for k = 0. Assume it holds for a certain integer
k; we prove it holds for k + 1, completing the induction.

Let us invoke the induction hypothesis LHS = RHS in (1) to write

d

dt
RHS =

d

dt
LHS Reverse sides.

=
dx

dt

d

dx
LHS Apply the chain rule.

= et
d

dx
LHS Use x = et, dx/dt = et.

= x
d

dx
LHS Use et = x.

= x
(
xky(k)(x)

)′
Expand with ′ = d/dx.

= x
(
kxk−1y(k)(x) + xky(k+1)(x)

)
Apply the product rule.

= k LHS+ xk+1y(k+1)(x) Use xky(k)(x) = LHS.

= k RHS+ xk+1y(k+1)(x) Use hypothesis LHS = RHS.

Solve the resulting equation for xk+1y(k+1). The result completes the induction. The
details, which prove that (1) holds with k replaced by k + 1:

xk+1y(k+1) =
d

dt
RHS− k RHS

=

(
d

dt
− k

)
RHS

=

(
d

dt
− k

)
d

dt

(
d

dt
− 1

)
· · ·
(

d

dt
− k + 1

)
z(t)

=
d

dt

(
d

dt
− 1

)
· · ·
(

d

dt
− k

)
z(t)

Example 7.1 (How to Solve a Cauchy-Euler Equation)
Show the solution details for the equation

2x2y′′ + 4xy′ + 3y = 0,

verifying general solution

y(x) = c1x
−1/2 cos

(√
5

2
ln |x|

)
+ c2e

−t/2 sin

(√
5

2
ln |x|

)
.

Solution: The characteristic equation 2r(r− 1)+4r+3 = 0 can be obtained as follows:
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7.4 Cauchy-Euler Equation

2x2y′′ + 4xy′ + 3y = 0 Given differential equation.

2x2r(r − 1)xr−2 + 4xrxr−1 + 3xr = 0 Use Euler’s substitution y = xr.

2r(r − 1) + 4r + 3 = 0 Cancel xr.
Characteristic equation found.

2r2 + 2r + 3 = 0 Standard quadratic equation.

r = − 1
2 ±

√
5
2 i Quadratic formula complex roots.

Cauchy-Euler Substitution. The second step is to use y(x) = z(t) and x = et to
transform the differential equation. By Theorem 7.5,

2(d/dt)2z + 2(d/dt)z + 3z = 0,

a constant-coefficient equation. Because the roots of the characteristic equation 2r2 +
2r + 3 = 0 are r = −1/2±

√
5i/2, then the Euler solution atoms are

e−t/2 cos

(√
5

2
t

)
, e−t/2 sin

(√
5

2
t

)
.

Back-substitute x = et and t = ln |x| in this equation to obtain two independent solutions
of 2x2y′′ + 4xy′ + 3y = 0:

x−1/2 cos

(√
5

2
ln |x|

)
, e−t/2 sin

(√
5

2
ln |x|

)
.

Substitution Details. Because x = et, the factor e−t/2 is re-written as (et)−1/2 =
x−1/2. Because t = ln |x|, the trigonometric factors are back-substituted like this:

cos
(√

5
2 t
)
= cos

(√
5
2 ln |x|

)
.

General Solution. The final answer is the set of all linear combinations of the two
preceding independent solutions.

Exercises 7.4

Cauchy-Euler Equation
Find solutions y1, y2 of the given homoge-
neous differential equation which are inde-
pendent by the Wronskian test, page ??.

1. x2y′′ + y = 0

2. x2y′′ + 4y = 0

3. x2y′′ + 2xy′ + y = 0

4. x2y′′ + 8xy′ + 4y = 0

Variation of Parameters
Find a solution yp using a variation of pa-
rameters formula.

5. x2y′′ = x

6. x3y′′ = ex

7. y′′ + 9y = sec 3x

8. y′′ + 9y = csc 3x
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7.5 Variation of Parameters Revisited

The independent functions y1 and y2 in the general solution yh = c1y1 + c2y2 of
a homogeneous linear differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0

are used to define Cauchy’s kernel1

K(x, t) =
y1(t)y2(x)− y1(x)y2(t)

y1(t)y′2(t)− y′1(t)y2(t)
.(1)

The denominator is the Wronskian W (t) of y1, y2. Define

C1(t) =
−y2(t)

W (t)
, C2(t) =

y1(t)

W (t)
.(2)

Then Cauchy’s kernel K has these properties (proved on page 571):

K(x, t) = C1(t)y1(x) + C2(t)y2(x), K(x, x) = 0,
Kx(x, t) = C1(t)y

′
1(x) + C2(t)y

′
2(x), Kx(x, x) = 1,

Kxx(x, t) = C1(t)y
′′
1(x) + C2(t)y

′′
2(x), aKxx + bKx + cK = 0.

Theorem 7.6 (Cauchy Kernel Shortcut)
Let a, b, c be constants and let U be the unique solution of aU ′′ + bU ′ + cU = 0,
U(0) = 0, U ′(0) = 1. Then Cauchy’s kernel is K(x, t) = U(x− t).

Proof on page 572.

Theorem 7.7 (Variation of Parameters Formula: Cauchy’s Kernel)
Let a, b, c, f be continuous near x = x0 and a(x) ̸= 0. Let K be Cauchy’s kernel
for ay′′ + by′ + cy = 0. Then the non-homogeneous initial value problem

ay′′ + by′ + cy = f, y(x0) = y′(x0) = 0

has solution

yp(x) =

∫ x

x0

K(x, t)f(t)

a(t)
dt.

Proof on page 572.

Specific initial conditions y(x0) = y′(x0) = 0 imply that yp can be determined
in a laboratory with just one experimental setup. The integral form of yp shows
that it depends linearly on the input f(x).

Example 7.2 (Cauchy Kernel)
Verify that the equation 2y′′ − y′ − y = 0 has Cauchy kernel K(x, t) = 2

3(e
x−t −

e−(x−t)/2).

1Pronunciation ko–she.
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Solution: The two independent solutions y1, y2 are calculated from Theorem ??, which
uses the characteristic equation 2r2 − r− 1 = 0. The roots are −1/2 and 1. The general
solution is y = c1e

−x/2 + c2e
x. Therefore, y1 = e−x/2 and y2 = ex.

The Cauchy kernel is the quotient

K(x, t) =
y1(t)y2(x)− y1(x)y2(t)

y1(t)y′2(t)− y′1(t)y2(t)
Definition page 569.

=
e−t/2ex − e−x/2et

e−t/2et + 0.5e−t/2et
Substitute y1 = e−x/2, y2 = ex.

=
2

3
(e−tex − e−x/2et/2) Simplify.

=
2

3
(ex−t − e(t−x)/2) Final answer.

An alternative method to determine the Cauchy kernel is to apply the shortcut Theorem
7.6. We will apply it to check the answer. Solution U must be U(x) = Ay1(x) +By2(x)
for some constants A, B, determined by the conditions U(0) = 0, U ′(0) = 1. The
resulting equations for A, B are A+B = 0, −A/2+B = 1. Solving gives −A = B = 2/3
and then U(x) = 2

3 (e
x − e−x/2). The kernel is K(x, t) = U(x− t) = 2

3 (e
x−t − e−(x−t)/2).

Example 7.3 (Variation of Parameters)
Solve y′′ = |x| by Cauchy kernel methods, verifying y = c1 + c2x+ |x|3/6.

Solution: First, an independent method will be described, in order to provide a check
on the solution. The method involves splitting the equation into two problems y′′ = x
and y′′ = −x. The two polynomial answers y = x3/6 on x > 0 and y = −x3/6 on x < 0,
obtained by quadrature, are re-assembled to obtain a single formula yp(x) = |x|3/6 valid
on −∞ < x < ∞.

The Cauchy kernel method will be applied to verify the general solution y = c1 + c2x+
|x|3/6.
Homogeneous solution. Theorem ?? for constant equations, applied to y′′ = 0, gives
yh = c1 + c2x. Suitable independent solutions are y1(x) = 1, y2(x) = x.

Cauchy kernel for y′′ = 0. It is computed by formula, K(x, t) = ((1)(x)− (t)(1))/(1)
or K(x, t) = x− t.

Variation of parameters. The solution is yp(x) = |x|3/6, by Theorem 7.7, details
below.

yp(x) =
∫ x

0
K(x, t)|t|dt Theorem 7.7, page 569.

=
∫ x

0
(x− t)tdt Substitute K = x− t and |t| = t for x > 0.

= x
∫ x

0
tdt−

∫ x

0
t2dt Split into two integrals.

= x3/6 Evaluate for x > 0.

If x < 0, then the evaluation differs only by |t| = −t in the integrand. This gives
yp(x) = −x3/6 for x < 0. The two formulas can be combined into yp(x) = |x|3/6, valid
for −∞ < x < ∞.

Example 7.4 (Two Methods)
Solve y′′ − y = ex by undetermined coefficients and by variation of parameters.
Explain any differences in the answers.
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Solution:

Homogeneous solution. The characteristic equation r2 − 1 = 0 for y′′ − y = 0 has
roots ±1. The homogeneous solution is yh = c1e

x + c2e
−x.

Undetermined Coefficients Summary. The general solution is reported to be y =
yh + yp = c1e

x + c2e
−x + xex/2.

Kümmer’s polynomial × exponential method applies to give y = exY and [(D + 1)2 −
1]Y = 1. The latter simplifies to Y ′′ +2Y ′ = 1, which has polynomial solution Y = x/2.
Then yp = xex/2.

Variation of Parameters Summary. The homogeneous solution yh = c1e
x + c2e

−x

found above implies y1 = ex, y2 = e−x is a suitable independent pair of solutions, because
their Wronskian is W = −2

The Cauchy kernel is given by K(x, t) = 1
2 (e

x−t − et−x), details below. The shortcut
Theorem 7.6 also applies with U(x) = sinh(x) = (ex − e−x)/2. Variation of parameters
Theorem 7.7 gives yp(x) =

∫ x

0
K(x, t)etdt. It evaluates to yp(x) = xex/2− (ex − e−x)/4,

details below.

Differences. The two methods give respectively yp = xex/2, and yp = xex/2 − (ex −
e−x)/4. The solutions yp = xex/2 and yp = xex/2− (ex − e−x)/4 differ by the homoge-
neous solution (ex − e−x)/4. In both cases, the general solution is

y = c1e
x + c2e

−x +
1

2
xex,

because terms of the homogeneous solution can be absorbed into the arbitrary constants
c1, c2.

Computational Details.

K(x, t) =
y1(t)y2(x)− y1(x)y2(t)

y1(t)y′2(t)− y′1(t)y2(t)
Definition page 569.

=
ete−x − exe−t

et(−e−t)− ete−t
Substitute.

=
1

2
(ex−t − et−x) Cauchy kernel found.

yp(x) =

∫ x

0

K(x, t)etdt Theorem 7.7, page 569.

=
1

2

∫ x

0

(ex−t − et−x)etdt Substitute K = 1
2 (e

x−t − et−x).

=
1

2
ex
∫ x

0

dt− 1

2

∫ x

0

e2t−xdt Split into two integrals.

=
1

2
xex − 1

4
(ex − e−x) Evaluation completed.

Proofs and Technical Details

Proofs for page 569, Cauchy Kernel Properties:
The equation K(x, t) = C1(t)y1(x)+C2(t)y2(x) is an algebraic identity, using the defini-
tions of C1 and C2. Then K(x, x) is a fraction with numerator y1(x)y2(x)−y1(x)y2(x) =
0, giving the second identity K(x, x) = 0.
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The partial derivative formula Kx(x, t) = C1(t)y
′
1(x)+C2(t)y

′
2(x) is obtained by ordinary

differentiation on x in the previous identity. Then Kx(x, x) is a fraction with numera-
tor y1(x)y

′
2(x)− y′1(x)y2(x), which exactly cancels the denominator, giving the identity

Kx(x, x) = 1.

The second derivative formula Kxx(x, t) = C1(t)y
′′
1 (x) + C2(t)y

′′
2 (x) results by ordinary

differentiation on x in the formula for Kx. The differential equation aKxx+bKx+cK = 0
is satisfied, because K in the variable x is a linear combination of y1 and y2, which are
given to be solutions.

Proof of Theorem 7.6, Cauchy Kernel Shortcut:
Let y(x) = K(x, t) − U(x − t) for fixed t. It will be shown that y is a solution and
y(t) = y′(t) = 0. Already known from page 569 is the relation aKxx(x, t) + bKx(x, t) +
cK(x, t) = 0. By assumption, aU ′′(x − t) + bU ′(x − t) + cU(x − t) = 0. By the chain
rule, both terms in y satisfy the differential equation, hence y is a solution. At x = t,
y(t) = K(t, t) − U(0) = 0 and y′(t) = Kx(t, t) − U ′(0) = 0 (see page 569). Then y
is a solution of the homogeneous equation with zero initial conditions. By uniqueness,
y(x) ≡ 0, which proves K(x, t) = U(x− t).

Proof of Theorem 7.7, Variation of Parameters:
Let F (t) = f(t)/a(t). It will be shown that yp as given has two continuous derivatives
given by the integral formulas

y′p(x) =

∫ x

x0

Kx(x, t)F (t)dt, y′′p (x) =

∫ x

x0

Kxx(x, t)F (t)dt+ F (x).

Then

ay′′p + by′p + cyp =

∫ x

x0

(aKxx + bKx + cK)F (t)dt+ aF.

The equation aKxx + bKx + cK = 0, page 569, shows the integrand on the right is zero.
Therefore ay′′p + by′p + cyp = f(x), which would complete the proof.

Needed for the calculation of the derivative formulas is the fundamental theorem of

calculus relation
(∫ x

x0
G(t)dt

)′
= G(x), valid for continuous G. The product rule from

calculus can be applied directly, because yp is a sum of products:

y′p =
(
y1(x)

∫ x

x0
C1Fdt+ y2(x)

∫ x

x0
C2Fdt

)′
= y′1

∫ x

x0
C1Fdt+ y′2

∫ x

x0
C2Fdt+ y1(x)C1(x)F (x) + y2(x)C2(x)F (x)

= y′1
∫ x

x0
C1Fdt+ y′2

∫ x

x0
C2Fdt+K(x, x)F (x)

=
∫ x

x0
Kx(x, t)F (t)dt

The terms contributed by differentiation of the integrals add to zero because K(x, x) = 0
(page 569).

y′′p =
(
y′1(x)

∫ x

x0
C1Fdt+ y′2(x)

∫ x

x0
C2Fdt

)′
= y′′1

∫ x

x0
C1Fdt+ y′′2

∫ x

x0
C2Fdt+ y′1(x)C1(x)F (x) + y′2(x)C2(x)F (x)

= y′′1
∫ x

x0
C1Fdt+ y′′2

∫ x

x0
C2Fdt+Kx(x, x)F (x)

=
∫ x

x0
Kxx(x, t)F (t)dt+ F (x)

The terms contributed by differentiation of the integrals add to F (x) because Kx(x, x) =
1 (page 569).
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Exercises 7.5

Cauchy Kernel
Find the Cauchy kernelK(x, t) for the given
homogeneous differential equation.

1. y′′ − y = 0

2. y′′ − 4y = 0

3. y′′ + y = 0

4. y′′ + 4y = 0

5. 4y′′ + y′ = 0

6. y′′ + y′ = 0

7. y′′ + y′ + y = 0

8. y′′ − y′ + y = 0

Variation of Parameters
Find the general solution yh+ yp by apply-
ing a variation of parameters formula.

9. y′′ = x2

10. y′′ = x3

11. y′′ + y = sinx

12. y′′ + y = cosx

13. y′′ + y′ = ln |x|

14. y′′ + y′ = − ln |x|

15. y′′ + 2y′ + y = e−x

16. y′′ − 2y′ + y = ex
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7.6 Undetermined Coefficients Library

7.6 Undetermined Coefficients Library

The study of undetermined coefficients continues for the problem

ay′′ + by′ + cy = f(x).(1)

As in previous sections, f(x) is assumed to be a sum of constants times Euler
solution atoms and the symbols a, b, c are constants. Recorded here are special
methods for efficiently solving (1). Linear algebra is not required in any of the
special methods: only calculus and college algebra are assumed as background.

The special methods provide a justification for the trial solution method, pre-
sented earlier in this text.

The Easily-Solved Equations

The algebra problem for undetermined coefficients can involve many unknowns.
It is recommended to reduce the size of the algebra problem by breaking the
differential equation into several simpler differential equations. A particular so-
lution yp of (1) can be expressed as a sum

yp = y1 + · · ·+ yn

where each yk solves a related easily-solved differential equation.

The idea can be quickly communicated for n = 3. The superposition principle
applied to the three equations

ay′′1 + by′1 + cy1 = f1(x),
ay′′2 + by′2 + cy2 = f2(x),
ay′′3 + by′3 + cy3 = f3(x)

(2)

shows that y = y1 + y2 + y3 is a solution of

ay′′ + by′ + cy = f1 + f2 + f3.(3)

If each equation in (2) is easily solved, then solving equation (3) is also easy: add
the three answers for the easily solved problems.

To use the idea, it is necessary to start with f(x) and determine a decomposition
f = f1 + f2 + f3 so that equations (2) are easily solved.

Each Easily-Solved equation is engineered to have right side in one of the four
forms below:

p(x) polynomial,

p(x)ekx polynomial × exponential,

p(x)ekx cosmx polynomial × exponential × cosine,

p(x)ekx sinmx polynomial × exponential × sine.

(4)
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To illustrate, consider

ay′′ + by′ + cy = x+ xex + x2 sinx− πe2x cosx+ x3.(5)

The right side is decomposed as follows, in order to define the easily solved
equations:

ay′′1 + by′1 + cy1 = x+ x3 Polynomial.

ay′′2 + by′2 + cy2 = xex Polynomial × exponential.

ay′′3 + by′3 + cy3 = x2 sinx Polynomial × exponential × sine.

ay′′4 + by′4 + cy4 = −πe2x cosx Polynomial × exponential × cosine.

There are n = 4 equations. In the illustration, x3 is included with x, but it
could have caused creation of a fifth equation. To decrease effort, minimize the
number n of easily solved equations. One final checkpoint: the right sides of the
n equations must add to the right side of (5).

Library of Special Methods

It is assumed that the differential equation is already in easily-solved form: the
library methods are designed to apply directly. If an equation requires a decom-
position into easily-solved equations, then the desired solution is then the sum
of the answers to the decomposed equations.

Equilibrium and Quadrature Methods

The special case of ay′′ + by′ + cy = k where k is a constant occurs so often that
an efficient method has been isolated to find yp. It is called the equilibrium
method, because in the simplest case yp is a constant solution or an equilibrium
solution. The method in words:

Verify that the right side of the differential equation is constant.
Cancel on the left side all derivative terms except for the lowest
order and then solve for y by quadrature.

The method works to find a solution, because if a derivative y(n) is constant, then
all higher derivatives y(n+1), yn+2, etc., are zero. A precise description follows
for second order equations.
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7.6 Undetermined Coefficients Library

Differential Equation Cancelled DE Particular Solution

ay′′ + by′ + cy = k, c ̸= 0 cy = k yp =
k

c

ay′′ + by′ = k, b ̸= 0 by′ = k yp =
k

b
x

ay′′ = k, a ̸= 0 ay′′ = k yp =
k

a

x2

2

The equilibrium method also applies to nth order linear differential equations∑n
i=0 aiy

(i) = k with constant coefficients a0, . . . , an and constant right side k.

A special case of the equilibrium method is the simple quadrature method, illus-
trated in Example 7.5 page 582. The method is used in elementary physics to
solve falling body problems.

The Polynomial Method

The method applies to find a particular solution of ay′′ + by′ + cy = p(x), where
p(x) represents a polynomial of degree n ≥ 1. Such equations always have a
polynomial solution; see Theorem 7.8 page 581.

Let a, b and c be given with a ̸= 0. Differentiate the differential equation succes-
sively until the right side is constant:

ay′′ + by′ + cy = p(x),
ay′′′ + by′′ + cy′ = p′(x),
ayiv + by′′′ + cy′′ = p′′(x),

...

ay(n+2) + by(n+1) + cy(n) = p(n)(x).

(6)

Apply the equilibrium method to the last equation in order to find a polynomial
trial solution

y(x) = dm
xm

m!
+ · · ·+ d0.

It will emerge that y(x) always has n + 1 terms, but its degree can be either n,
n + 1 or n + 2. The undetermined coefficients d0, . . . , dm are resolved by
setting x = 0 in equations (6). The Taylor polynomial relations d0 = y(0), . . . ,
dm = y(m)(0) give the equations

ad2 + bd1 + cd0 = p(0),
ad3 + bd2 + cd1 = p′(0),
ad4 + bd3 + cd2 = p′′(0),

...

adn+2 + bdn+1 + cdn = p(n)(0).

(7)
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These equations can always be solved by back-substitution; linear algebra is
not required. Three cases arise, according to the number of zero roots of the
characteristic equation ar2+br+c = 0. The values m = n, n+1, n+2 correspond
to zero, one or two roots r = 0.

No root r = 0. Then c ̸= 0. There were n integrations to find the trial solution,
so dn+2 = dn+1 = 0. The unknowns are d0 to dn. The system can be solved by
back-substitution to uniquely determine d0, . . . , dn. The resulting polynomial
y(x) is the desired solution yp(x).

One root r = 0. Then c = 0, b ̸= 0. The unknowns are d0, . . . , dn+1. There
is no condition on d0; simplify the trial solution by taking d0 = 0. Solve (7) for
unknowns d1 to dn+1 as in the no root case.

Double root r = 0. Then c = b = 0 and a ̸= 0. The equilibrium method gives
a polynomial trial solution y(x) involving d0, . . . , dn+2. There are no conditions
on d0 and d1. Simplify y by taking d0 = d1 = 0. Solve (7) for unknowns d2 to
dn+2 as in the no root case.

College algebra back-substitution applied to (7) is illustrated in Example 7.7,
page 583. A complete justification of the polynomial method appears in the
proof of Theorem 7.8, page 588.

Recursive Polynomial Hybrid

A recursive method based upon quadrature appears in Example 7.8, page 584.
This method, independent from the polynomial method above, is useful when the
number of equations in (6) is two or three.

Some researchers (see [?]) advertise the recursive method as easy to remember,
easy to use and faster than other methods. In this textbook, the method is
advertised as a hybrid: equations in (6) are written down, but equations (7) are
not. Instead, the undetermined coefficients are found recursively, by repeated
quadrature and back-substitution.

Classroom testing of the recursive polynomial method reveals it is best suited to
algebraic helmsmen with flawless talents. The method should be applied when
conditions suggest rapid and reliable computation details. Error propagation
possibilities dictate that polynomial solutions of degree 4 or larger be suspect
and subjected to an answer check.

Polynomial × Exponential Method

The method applies to special equations ay′′ + by′ + cy = p(x)ekx where p(x) is
a polynomial. The idea, due to Kümmer, uses the transformation y = ekxY to
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obtain the auxiliary equation

[a(D + k)2 + b(D + k) + c]Y = p(x), D =
d

dx
.

The polynomial method applies to find Y . Multiplication by ekx gives y.

Computational details are in Example 7.9, page 584. Justification appears in
Theorem 7.9. In words, to find the differential equation for Y :

In the differential equation, replace D by D + k and cancel ekx on
the RHS.

Polynomial × Exponential × Cosine Method

The method applies to equations ay′′ + by′ + cy = p(x)ekx cos(mx) where p(x) is
a polynomial. Kümmer’s transformation y = ekxRe(eimxY ) gives the auxiliary
problem

[a(D + z)2 + b(D + z) + c]Y = p(x), z = k + im, D =
d

dx
.

The polynomial method applies to find Y . Symbol Re extracts the real part of a
complex number. Details are in Example 7.10, page 585. The formula is justified
in Theorem 7.10. In words, to find the equation for Y :

In the differential equation, replace D by D + k + im and cancel
ekx cosmx on the RHS.

Polynomial × Exponential × Sine Method

The method applies to equations ay′′ + by′ + cy = p(x)ekx sin(mx) where p(x) is
a polynomial. Kümmer’s transformation y = ekx Im(eimxY ) gives the auxiliary
problem

[a(D + z)2 + b(D + z) + c]Y = p(x), z = k + im, D =
d

dx
.

The polynomial method applies to find Y . Symbol Im extracts the imaginary
part of a complex number. Details are in Example 7.11, page 586. The formula
is justified in Theorem 7.10. In words, to find the equation for Y :

In the differential equation, replace D by D + k + im and cancel
ekx sinmx on the RHS.
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Kümmer’s Method

The methods known above as the polynomial × exponential method, the polyno-
mial × exponential × cosine method, and the polynomial × exponential × sine
method, are collectively called Kümmer’s method, because of their origin.

Trial Solution Shortcut

The library of special methods leads to a justification for the trial solution
method, a method which has been popularized by leading differential equation
textbooks published over the past 50 years.

Trial Solutions and Kümmer’s Method

Assume given ay′′ + by′ + cy = f(x) where f(x) =(polynomial)ekx cosmx, then
the method of Kümmer predicts

y = ekxRe (Y (x)(cosmx+ i sinmx)) ,

where Y (x) is a polynomial solution of a different, associated differential
equation. In the simplest case, Y (x) =

∑n
j=0Ajx

j + i
∑n

j=0Bjx
j , a polynomial

of degree n with complex coefficients, matching the degree of the polynomial in
f(x). Expansion of the Kümmer formula for y plus definitions aj = Aj − Bj ,
bj = Bj +Aj gives a trial solution

y =

cos(mx)
n∑

j=0

ajx
j + sin(mx)

n∑
j=0

bjx
j

 ekx.(8)

The undetermined coefficients are a0, . . . , an, b0,. . . , bn. Exactly the same trial
solution results when f(x) =(polynomial)ekx sinmx. If m = 0, then the trigono-
metric functions do not appear and the trial solution is either a polynomial
(k = 0) or else a polynomial times an exponential.

The characteristic equation for the associated differential equation has root r = 0
exactly when r = k+m

√
−1 is a root of ar2+br+c = 0. Therefore, Y , and hence

y, must be multiplied by x for each time k+m
√
−1 is a root of ar2+br+c = 0. In

the trial solution method, this requirement is met by multiplication by x until the
trial solution no longer contains a term of the homogeneous solution. Certainly
both correction rules produce exactly the same final trial solution.

Shortcuts using (8) have been known for some time. The results can be summa-
rized in words as follows.

If the right side of ay′′+by′+cy = f(x) is a polynomial of degree n
times ekx cos(mx) or ekx sin(mx), then an initial trial solution y is
given by relation (8), with undetermined coefficients a0, . . . , an, b0,
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. . . , bn. Correct the trial solution y by multiplication by x, once for
each time r = k + m

√
−1 is a root of the characteristic equation

ar2 + br + c = 0.

The Correction Rule

The Final Trial Solution is found by this rule:

Given an initial trial solution y for au′′+by′+cy = f(x), from Table
1 below, correct y by multiplication by x, once for each time that
r = k+m

√
−1 is a root of the characteristic equation ar2+br+c =

0. This is equivalent to multiplication by x until the trial solution
no longer contains a term of the homogeneous solution.

Once the final trial solution y is determined, then y is substituted into the
differential equation. The undetermined coefficients are found by matching terms
of the form xjekx cos(mx) and xjekx sin(mx), which appear on the left and right
side of the equation after substitution.

A Table Lookup Method

Table 1 below summarizes the form of an initial trial solution in special cases,
according to the form of f(x).

Table 1. A Table Method for Trial Solutions.

The table predicts the Initial Trial Solution y in the method of undetermined coeffi-

cients. Then the Correction Rule is applied to find the final trial solution. Symbol

n is the degree of the polynomial in column 1.

Form of f(x) Values Initial Trial Solution

constant k = m = 0 y = a0 =constant

polynomial k = m = 0 y =
∑n

j=0 ajx
j

combination of k = 0, m > 0 y = a0 cosmx+ b0 sinmx

cosmx and sinmx

(polynomial)ekx m = 0 y =
(∑n

j=0 ajx
j
)
ekx

(polynomial)ekx cosmx y =
(∑n

j=0 ajx
j
)
ekx cosmx

or m > 0

(polynomial)ekx sinmx +
(∑n

j=0 bjx
j
)
ekx sinmx

Details for lines 2-3 of Table 1 appear in Examples 7.6 and 7.13.
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Alternate Trial Solution Shortcut

The method avoids the root testing of the correction rule, at the expense of
repeated substitutions. The simplicity of the method is appealing, but a few
computations reveal that the correction rule is a more practical method.

Let y be the initial trial solution of Table 1. Substitute it into
the differential equation. It will either compute yp, or else some
coefficients cannot be determined. In the latter case, multiply y by
x and repeat, until a solution yp is found.

Key Theorems

Theorem 7.8 (Polynomial Solutions)
Assume a, b, c are constants, a ̸= 0. Let p(x) be a polynomial of degree d. Then
ay′′ + by′ + cy = p(x) has a polynomial solution y of degree d, d + 1 or d + 2.
Precisely, these three cases hold:

Case 1. ay′′ + by′ + cy = p(x)
c ̸= 0.

Then y = y0 + · · ·+ yd
xd

d!
.

Case 2. ay′′ + by′ = p(x)
b ̸= 0.

Then y =

(
y0 + · · ·+ yd

xd

d!

)
x.

Case 3. ay′′ = p(x)
a ̸= 0.

Then y =

(
y0 + · · ·+ yd

xd

d!

)
x2.

Proof on page 588.

Theorem 7.9 (Polynomial × Exponential)
Assume a, b, c, k are constants, a ̸= 0, and p(x) is a polynomial. If Y is a

solution of [a(D + k)2 + b(D + k) + c]Y = p(x), then y = ekxY is a solution of
ay′′ + by′ + cy = p(x)ekx.

Proof on page 588.

Theorem 7.10 (Polynomial × Exponential × Cosine or Sine)
Assume a, b, c, k, m are real, a ̸= 0, m > 0. Let p(x) be a real polynomial
and z = k + im. If Y is a solution of [a(D + z)2 + b(D + z) + c]Y = p(x),
then y = ekxRe(eimxY ) is a solution of ay′′ + by′ + cy = p(x)ekx cos(mx) and
y = ekx Im(eimxY ) is a solution of ay′′ + by′ + cy = p(x)ekx sin(mx).

Proof on page 589.

The theorems form the theoretical basis for the method of undetermined coeffi-
cients.
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Examples and Methods

Example 7.5 (Simple Quadrature)

Solve for yp in y′′ = 2− x+ x3 using the fundamental theorem of calculus, verifying
yp = x2 − x3/6 + x5/20.

Solution: Two integrations using the fundamental theorem of calculus give y = y0 +
y1x + x2 − x3/6 + x5/20. The terms y0 + y1x represent the homogeneous solution
yh. Therefore, yp = x2 − x3/6 + x5/20 is reported. The method works in general
for ay′′ + by′ + cy = p(x), provided b = c = 0, that is, in case 3 of Theorem 7.8. Some
explicit details:∫

y′′(x)dx =
∫
(2− x+ x3)dx Integrate across on x.

y′ = y1 + 2x− x2/2 + x4/4 Fundamental theorem.∫
y′(x)dx =

∫
(y1 + 2x− x2/2 + x4/4)dx Integrate across again on x.

y = y0 + y1x+ x2 − x3/6 + x5/20 Fundamental theorem.

Example 7.6 (Undetermined Coefficients: A Hybrid Method)

Solve for yp in the equation y′′−y′+y = 2−x+x3 by the method of undetermined
coefficients, verifying yp = −5− x+ 3x2 + x3.

Solution: Let’s begin by calculating the trial solution y = d0 + d1x+ d2x
2/2+ x3. This

is done by differentiation of y′′ − y′ + y = 2− x+ x3 until the right side is constant:

yv − yiv + y′′′ = 6.

The equilibrium method solves the truncated equation 0 + 0+ y′′′ = 6 by quadrature to
give y = d0 + d1x+ d2x

2/2 + x3.

The undetermined coefficients d0, d1, d2 will be found by a classical technique in
which the trial solution y is back-substituted into the differential equation. We begin by
computing the derivatives of y:

y = d0 + d1x+ d2x
2/2 + x3 Calculated above; see Theorem 7.8.

y′ = d1 + d2x+ 3x2 Differentiate.

y′′ = d2 + 6x Differentiate again.

The relations above are back-substituted into the differential equation y′′ − y′ + y =
2− x+ x3 as follows:

2− x+ x3 = y′′ − y′ + y Write the DE backwards.

= [d2 + 6x]
− [cd1 + d2x+ 3x2]
+ [d0 + d1x+ d2x

2/2 + x3]
Substitute for y, y′, y′′.

= [c2 − c1 + c0]
+ [6− d2 + c1]x
+ [−3 + d2/2]x

2

+ [1]x3

Collect on powers of x.
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The coefficients d0, d1, d2 are found by matching powers on the LHS and RHS of the
expanded equation:

2 = [d2 − d1 + c0] match constant term,
−1 = [6− d2 + d1] match x-term,
0 = [−3 + d2/2] match x2-term.

(9)

These equations are solved by back-substitution, starting with the last equation and
proceeding to the first equation. The answers are successively d2 = 6, d1 = −1, d0 =
−5. For more detail on back-substitution, see the next example. Substitution into
y = d0 + d1x+ d2x

2/2 + x3 gives the particular solution yp = −5− x+ 3x2 + x3.

Example 7.7 (Undetermined Coefficients: Taylor’s Method)

Solve for yp in the equation y′′ − y′ + y = 2− x+ x3 by Taylor’s method, verifying
yp = −5− x+ 3x2 + x3.

Solution: Theorem 7.8 implies that there is a polynomial solution y = d0 + d1x +
d2x

2/2 + d3x
3/6. The undetermined coefficients d0, d1, d2, d3 will be found by

a technique related to Taylor’s method in calculus. The Taylor technique requires
differential equations obtained by successive differentiation of y′′ − y′ + y = 2− x+ x3,
as follows.

y′′ − y′ + y = 2− x+ x3 The original.

y′′′ − y′′ + y′ = −1 + 3x2 Differentiate the original once.

yiv − y′′′ + y′′ = 6x Differentiate the original twice.

yv − yiv + y′′′ = 6 Differentiate the original three times. The process stops
when the right side is constant.

Set x = 0 in the above differential equations. Then substitute the Taylor polynomial
derivative relations

y(0) = d0, y′(0) = d1, y′′(0) = d2, y′′′(0) = d3.

It is also true that yiv(0) = yv(0) = 0, since y is a cubic. This produces the following
equations for undetermined coefficients d0, d1, d2, d3:

d2 − d1 + d0 = 2
d3 − d2 + d1 = −1

−d3 + d2 = 0
d3 = 6

These equations are solved by back-substitution, working in reverse order. No expe-
rience with linear algebra is required, because this is strictly a low-level college algebra
method. Successive back-substitutions, working from the last equation in reverse order,
give the answers

d3 = 6, Use the fourth equation first.

d2 = d3 Solve for d2 in the third equation.

= 6, Back-substitute d3.

d1 = −1 + d2 − d3 Solve for d1 in the second equation.
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= −1, Back-substitute d2 and d3.

d0 = 2 + d1 − d2 Solve for d0 in the first equation.

= −5. Back-substitute d1 and d2.

The result is d0 = −5, d1 = −1, d2 = 6, d3 = 6. Substitution into y = d0 + d1x +
d2x

2/2 + d3x
3/6 gives the particular solution yp = −5− x+ 3x2 + x3.

Example 7.8 (Polynomial Method: Recursive Hybrid)

In the equation y′′ − y′ = 2− x+ x3, verify yp = −7x− 5x2/2− x3 − x4/4 by the
polynomial method, using a recursive hybrid.

Solution: A Recursive Method will be applied, based upon the fundamental theorem
of calculus, as in Example 7.5.

Step 1. Differentiate y′′ − y′ = 2− x+ x3 until the right side is constant, to obtain

Equation 1: y′′ − y′ = 2− x+ x3 The original.

Equation 2: y′′′ − y′′ = −1 + 3x2 Differentiate the original once.

Equation 3: yiv − y′′′ = 6x Differentiate the original twice.

Equation 4: yv − yiv = 6 Differentiate the original three times. The pro-
cess stops when the right side is constant.

Step 2. There are 4 equations. Theorem 7.8 implies that there is a polynomial solution
y of degree 4. Then yv = 0.

The last equation yv − yiv = 6 then gives yiv = −6, which can be solved for y′′′ by the
fundamental theorem of calculus. Then y′′′ = −6x + c. Evaluate c by requiring that y
satisfy equation 3: yiv − y′′′ = 6x. Substitution of y′′′ = −6x + c, followed by setting
x = 0 gives −6− c = 0. Hence c = −6. The conclusion: y′′′ = −6x− 6.

Step 3. Solve y′′′ = −6x− 6, giving y′′ = −3x2 − 6x+ c. Evaluate c as in Step 2 using
equation 2: y′′′ − y′′ = −1 + 3x2. Then −6 − c = −1 gives c = −5. The conclusion:
y′′ = −3x2 − 6x− 5.

Step 4. Solve y′′ = −3x2−6x−5, giving y′ = −x3−3x2−5x+ c. Evaluate c as in Step
2 using equation 1: y′′− y′ = 2−x+x3. Then −5− c = 2 gives c = −7. The conclusion:
y′ = −x3 − 3x2 − 5x− 7.

Step 5. Solve y′ = −x3 − 3x2 − 5x− 7, giving y = −x4/4− x3 − 5x2/2− 7x+ c. Just
one solution is sought, so take c = 0. Then y = −7x − 5x2/2 − x3 − x4/4. Theorem
7.8 also drops the constant term, because it is included in the homogeneous solution yh.
While this method duplicates all the steps in Example 7.7, it remains attractive due to
its simplistic implementation. The method is best appreciated when it terminates at
step 2 or 3.

Example 7.9 (Polynomial × Exponential)

Solve for yp in y′′ − y′ + y = (2− x+ x3)e2x, verifying that yp = e2x(x3/3− x2 +
x+ 1/3).
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Solution: Let y = e2xY and [(D+2)2−(D+2)+1]Y = 2−x+x3, as per the polynomial
× exponential method, page 577. The equation Y ′′+3Y ′+3Y = 2−x+x3 will be solved
by the polynomial method of Example 7.7.

Differentiate Y ′′ + 3Y ′ + 3Y = 2− x+ x3 until the right side is constant.

Y ′′ + 3Y ′ + 3Y = 2− x+ x3

Y ′′′ + 3Y ′′ + 3Y ′ = −1 + 3x2

Y iv + 3Y ′′′ + 3Y ′′ = 6x
Y v + 3Y iv + 3Y ′′′ = 6

The last equation, by the equilibrium method, implies Y is a polynomial of degree 4,
Y = d0 + d1x+ d2x

2/2 + d3x
3/6. Set x = 0 and di = Y (i)(0) in the preceding equations

to get the system
d2 + 3d1 + 3d0 = 2
d3 + 3d2 + 3d1 = −1
d4 + 3d3 + 3d2 = 0
d5 + 3d4 + 3d3 = 6

in which d4 = d5 = 0. Solving by back-substitution gives the answers d3 = 2, d2 = −2,
d1 = 1, d0 = 1/3. Then Y = x3/3− x2 + x+ 1/3.

Finally, Kümmer’s transformation y = e2xY implies y = e2x(x3/3− x2 + x+ 1/3).

Example 7.10 (Polynomial × Exponential × Cosine)

Solve in y′′ − y′ + y = (3 − x)e2x cos(3x) for yp, verifying that yp = 1
507((26x −

107)e2x cos(3x) + (115− 39x)e2x sin(3x)).

Solution: Let z = 2 + 3i. If Y satisfies [(D + z)2 − (D + z) + 1]Y = 3 − x, then
y = e2x Re(e3ixY ), by the method on page 578. The differential equation simplifies into
Y ′′+(3+6i)Y ′+(9i−6)Y = 3−x. It will be solved by the recursion method of Example
7.8.

Step 1. Differentiate Y ′′+(3+6i)Y ′+(9i−6)Y = 3−x until the right side is constant,
to obtain Y ′′′ + (3 + 6i)Y ′′ + (9i− 6)Y ′ = −1. The conclusion: Y ′ = 1/(6− 9i).

Step 2. Solve Y ′ = 1/(6 − 9i) for Y = x/(6 − 9i) + c. Evaluate c by requiring Y
to satisfy the original equation Y ′′ + (3 + 6i)Y ′ + (9i − 6)Y = 3 − x. Substitution of
Y ′ = x/(6− 9i) + c, followed by setting x = 0 gives 0 + (3+ 6i)/(6− 9i) + (9i− 6)c = 3.
Hence c = (−15+33i)/(6−9i)2. The conclusion: Y = x/(6−9i)+(−15+33i)/(6−9i)2.

Step 3. Use variable y = e2x Re(e3ixY ) to complete the solution. This is the point
where complex arithmetic must be used. Let y = e2xY where Y = Re(e3ixY ). Some
details:

Y =
x

6− 9i
+

−15 + 33i

(6− 9i)2
The plan: write Y = Y1 + iY2.

= x
6 + 9i

62 + 92
+

(−15 + 33i)(6 + 9i)2

(62 + 92)2
Use 1/Z = Z/|Z|2, Z = a + ib, Z =
a− ib, |Z| = a2 + b2.

=
2x

39
+

xi

13
+

−2889− 3105i

1172
Use 62 + 92 = 117 = (9)(13).

=
26x− 107

507
+ i

39x− 115

507
Split off real and imaginary.
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7.6 Undetermined Coefficients Library

Y1 =
26x− 107

507
, Y2 =

39x− 115

507
Decomposition found.

Y = Re((cos 3x+ i sin 3x)(Y1 + iY2)) Use e3ix = cos 3x+ i sin 3x.

= Y1 cos 3x− Y2 sin 3x Take the real part.

=
26x− 107

507
cos 3x+

115− 39x

507
sin 3x Substitute for Y1, Y2.

The solution y = e2xY multiplies the above display by e2x. This verifies the formula
yp = 1

507 ((26x− 107)e2x cos(3x) + (115− 39x)e2x sin(3x)).

Example 7.11 (Polynomial × Exponential × Sine)

Solve in y′′ − y′ + y = (3− x)e2x sin(3x) for yp, verifying that a particular solution
is yp =

1
507

(
(39x− 115)e2x cos(3x) + (26x− 107)e2x sin(3x)

)
.

Solution: Let z = 2 + 3i. Kümmer’s transformation y = e2x Im(e3ixY ) as on page 578
implies that Y satisfies [(D+z)2−(D+z)+1]Y = 3−x. This equation has been solved in
the previous example: Y = Y1+iY2 with Y1 = (26x−107)/507 and Y2 = (39x−115)/507.
Let Y = Im(e3ixY ). Then

Y = Im((cos 3x+ i sin 3x)(Y1 + iY2)) Expand complex factors.

= Y2 cos 3x+ Y1 sin 3x Extract the imaginary part.

=
(39x− 115) cos 3x+ (26x− 107) sin 3x

507
Substitute for Y1 and Y2.

The solution y = e2xY multiplies the display by e2x. This verifies the formula y =
1

507

(
(39x− 115)e2x cos(3x) + (26x− 107)e2x sin(3x)

)
.

Example 7.12 (Undetermined Coefficient Library Methods)

Solve y′′ − y′ + y = 1 + ex + cos(x), verifying

y = c1e
x/2 cos(

√
3x/2) + c2e

x/2 sin(
√
3x/2) + 1 + ex − sin(x).

Solution: There are n = 3 easily solved equations: y′′1 − y′1 + y1 = 1, y′′2 − y′2 + y2 = ex

and y′′3 − y′3 + y3 = cos(x). The plan is that each such equation is solvable by one of the
library methods. Then yp = y1 + y2 + y3 is the sought particular solution.

Equation 1: y′′1 − y′1 + y1 = 1. It is solved by the equilibrium method, which gives
immediately solution y1 = 1.

Equation 2: y′′2 − y′2 + y2 = ex. Then y2 = exY and [(D + 1)2 − (D + 1) + 1]Y = 1,
by the polynomial × exponential method. The equation simplifies to Y ′′ + Y ′ + Y = 1.
Obtain Y = 1 by the equilibrium method, then y2 = ex.

Equation 3: y′′3 − y′3 + y3 = cos(x). Then [(D + i)2 − (D + i) + 1]Y = 1 and y3 =
Re(eixY ), by the polynomial × exponential × cosine method. The equation simplifies to
Y ′′+(2i−1)Y ′− iY = 1. Obtain Y = i by the equilibrium method. Then y3 = Re(eixY )
implies y3 = − sin(x).

Solution yp. The particular solution is given by addition, yp = y1 + y2 + y3. Therefore,
yp = 1 + ex − sin(x).

586



7.6 Undetermined Coefficients Library

Solution yh. The homogeneous solution yh is the linear equation solution for y′′−y′+y =
0, obtained from Theorem ??, which uses the characteristic equation r2− r+1 = 0. The
latter has roots r = (1 ± i

√
3)/2 and then yh = c1e

x/2 cos(
√
3x/2) + c2e

x/2 sin(
√
3x/2)

where c1 and c2 are arbitrary constants.

General Solution. Add yh and yp to obtain the general solution

y = c1e
x/2 cos(

√
3x/2) + c2e

x/2 sin(
√
3x/2) + 1 + ex − sin(x).

Example 7.13 (Sine–Cosine Trial solution)
Verify for y′′ + 4y = sinx− cosx that yp(x) = 5 cosx+ 3 sinx.

Solution: The lookup table method suggests to substitute y = d1 cosx + d2 sinx into
the differential equation. The correction rule does not apply, because the homogeneous
solution terms involve cos 2x, sin 2x. Use u′′ = −u for u = sinx or u = cosx to obtain
the relation

sinx− cosx = y′′ + 4y
= (−d1 + 4) cosx+ (−d2 + 4) sinx.

Comparing sides, matching sine and cosine terms, gives

−d1 + 4 = −1,
−d2 + 4 = 1.

Solving, d1 = 5 and d2 = 3. The trial solution y = d1 cosx + d2 sinx becomes yp(x) =
5 cosx+ 3 sinx.

Historical Notes

The method of undetermined coefficients presented on page ?? uses the idea of
a trial solution. Textbooks that present this method appear in the references,
especially Edwards–Penney [?] and Kreyszig [?].

If the right side f(x) is a polynomial, then the trial solution is a polynomial
y = d0 + · · · + dkx

k with unknown coefficients. It is substituted into the non-
homogeneous differential equation to determine the coefficients d0, . . . , dk, as in
Example 7.6. The Taylor method in Example 7.7 implements the same ideas.
In the some textbook presentations, the three key theorems of this section are
replaced by Table 1 and the Correction Rule on page 580. Attempts have been
made to integrate the correction rule into the table itself; see Edwards–Penney
[?], [?].

Themethod of annihilators has been used as an alternative approach; see Kreider–
Kuller–Ostberg–Perkins [?]. The approach gives a deeper insight into higher
order differential equations. It requires knowledge of linear algebra and a small
nucleus of differential operator calculus.

The idea to employ a recursive polynomial method seems to appear first in a
paper by Love [?]. A generalization and expansion of details appears in [?].
The method is certainly worth learning, but doing so does not excuse one from
learning other methods. The recursive method is a worthwhile hybrid method
for special circumstances.
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Proofs and Technical Details

Proof of Theorem 7.8: The three cases correspond to zero, one or two roots r = 0 for
the characteristic equation ar2 + br + c = 0. The missing constant and x-terms in case
2 and case 3 are justified by including them in the homogeneous solution yh, instead of
in the particular solution yp.

Assume p(x) has degree d and succinctly write down the successive derivatives of the
differential equation as

ay(2+k) + by(1+k) + cy(k) = p(k)(x), k = 0, . . . , d.(10)

Assume, to consider simultaneously all three cases, that

y = y0 + y1 + · · ·+ ym+d
xm+d

(m+ d)!

where m = 0, 1, 2 corresponding to cases 1,2,3, respectively. It has to be shown that
there are coefficients y0, . . . , ym+d such that y is a solution of ay′′ + by′ + cy = p(x).

Let x = 0 in equations (10) and use the definition of polynomial y to obtain the equations

ay2+k + by1+k + cyk = p(k)(0), k = 0, . . . , d.(11)

In case 1 (c ̸= 0), m = 0 and the last equation in (11) gives ym+d = p(d)(0)/c.
Back-substitution succeeds in finding the other coefficients, in reverse order, because
y(d+1)(0) = y(d+2)(0) = 0, in this case. Define the constants y0 to yd to be the solutions
of (11). Define yd+1 = yd+2 = 0.

In case 2 (c = 0, b ̸= 0), m = 1 and the last equation in (11) gives ym+d = p(d)(0)/b.
Back-substitution succeeds in finding the other coefficients, in reverse order, because
y(d+2)(0) = 0, in this case. However, y0 is undetermined. Take it to be zero, then define
y1 to yd+1 to be the solutions of (11). Define yd+2 = 0.

In case 3 (c = b = 0), m = 2 and the last equation in (11) gives ym+d = p(d)(0)/a.
Back-substitution succeeds in finding the other coefficients, in reverse order. However,
y0 and y1 are undetermined. Take them to be zero, then define y2 to yd+2 to be the
solutions of (11).

It remains to prove that the polynomial y so defined is a solution of the differential
equation ay′′ + by′ + cy = p(x). Begin by applying quadrature to the last differentiated
equation ay(2+d) + by(1+d) + cy(d) = p(d)(x). The result is ay(1+d) + by(d) + cy(d−1) =
p(d−1)(x)+C with C undetermined. Set x = 0 in this equation. Then relations (11) say
that C = 0. This process can be continued until ay′′+ by′+ cy = q(x) is obtained, hence
y is a solution.

Proof of Theorem 7.9: Kümmer’s transformation y = ekxY is differentiated twice to
give the formulas

y = ekxY,

y′ = kekxY + ekxY ′

= ekx(D + k)Y,

y′′ = k2ekxY + 2kekxY ′ + ekxY ′′

= ekx(D + k)2Y.

Insert them into the differential equation a(D + k)2Y + b(D + k)Y + cY = p(x). Then
multiply through by ekx to remove the common factor e−kx on the left, giving ay′′ +
by′ + cy = p(x)ekx. This completes the proof.

588



7.6 Undetermined Coefficients Library

Proof of Theorem 7.10: Abbreviate ay′′ + by′ + cy by Ly. Consider the complex
equation Lu = p(x)ezx, to be solved for u = u1 + iu2. According to Theorem 7.9,
u can be computed as u = ezxY where [a(D + z)2 + b(D + z) + c]Y = p(x). Take
the real and imaginary parts of u = ezxY and Lu = p(x)ezx. Then u1 = Re(ezxY ) and
u2 = Im(ezxY ) satisfy Lu1 = Re(p(x)ezx) = p(x) cos(mx)ekx and Lu2 = Im(p(x)ezx) =
p(x) sin(mx)ekx. ■

Exercises 7.6

Polynomial Solutions
Determine a polynomial solution yp for the
given differential equation. Apply Theorem
7.8, page 581, and model the solution after
Examples 7.5, 7.6, 7.7 and 7.8.

1. y′′ = x

2. y′′ = x− 1

3. y′′ = x2 − x

4. y′′ = x2 + x− 1

5. y′′ − y′ = 1

6. y′′ − 5y′ = 10

7. y′′ − y′ = x

8. y′′ − y′ = x− 1

9. y′′ − y′ + y = 1

10. y′′ − y′ + y = −2

11. y′′ + y = 1− x

12. y′′ + y = 2 + x

13. y′′ − y = x2

14. y′′ − y = x3

Polynomial-Exponential Solutions
Determine a solution yp for the given differ-
ential equation. Apply Theorem 7.9, page
581, and model the solution after Example
7.9.

15. y′′ + y = ex

16. y′′ + y = e−x

17. y′′ = e2x

18. y′′ = e−2x

19. y′′ − y = (x+ 1)e2x

20. y′′ − y = (x− 1)e−2x

21. y′′ − y′ = (x+ 3)e2x

22. y′′ − y′ = (x− 2)e−2x

23. y′′ − 3y′ + 2y = (x2 + 3)e3x

24. y′′ − 3y′ + 2y = (x2 − 2)e−3x

Sine and Cosine Solutions
Determine a solution yp for the given differ-
ential equation. Apply Theorem 7.10, page
581, and model the solution after Examples
7.10 and 7.11.

25. y′′ = sin(x)

26. y′′ = cos(x)

27. y′′ + y = sin(x)

28. y′′ + y = cos(x)

29. y′′ = (x+ 1) sin(x)

30. y′′ = (x+ 1) cos(x)

31. y′′ − y = (x+ 1)ex sin(2x)

32. y′′ − y = (x+ 1)ex cos(2x)

33. y′′ − y′ − y = (x2 + x)ex sin(2x)

34. y′′ − y′ − y = (x2 + x)ex cos(2x)

Undetermined Coefficients Algorithm
Determine a solution yp for the given dif-
ferential equation. Apply the polynomial
algorithm, page 576, and model the solu-
tion after Example 7.12.

35. y′′ = x+ sin(x)

36. y′′ = 1 + x+ cos(x)
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37. y′′ + y = x+ sin(x)

38. y′′ + y = 1 + x+ cos(x)

39. y′′ + y = sin(x) + cos(x)

40. y′′ + y = sin(x)− cos(x)

41. y′′ = x+ xex + sin(x)

42. y′′ = x− xex + cos(x)

43. y′′ − y = sinh(x) + cos2(x)

44. y′′ − y = cosh(x) + sin2(x)

45. y′′ + y′ − y = x2ex + xex cos(2x)

46. y′′ + y′ − y = x2e−x + xex sin(2x)

Additional Proofs
The exercises below fill in details in the
text. The hints are in the proofs in the
textbook. No solutions will be given for
the odd exercises.

47. (Theorem 7.8)

Supply the missing details in the proof
of Theorem 7.8 for case 1. In particular,
give the details for back-substitution.

48. (Theorem 7.8)

Supply the details in the proof of The-
orem 7.8 for case 2. In particular, give
the details for back-substitution and ex-
plain fully why it is possible to select
y0 = 0.

49. (Theorem 7.8)

Supply the details in the proof of Theo-
rem 7.8 for case 3. In particular, explain
why back-substitution leaves y0 and y1
undetermined, and why it is possible to
select y0 = y1 = 0.

50. (Superposition)

Let Ly denote ay′′+by′+cy. Show that
solutions of Lu = f(x) and Lv = g(x)
add to give y = u + v as a solution of
Ly = f(x) + g(x).

51. (Easily Solved Equations)

Let Ly denote ay′′ + by′ + cy. Let
Lyk = fk(x) for k = 1, . . . , n and de-
fine y = y1+ · · ·+ yn, f = f1+ · · ·+ fn.
Show that Ly = f(x).
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PDF Sources

Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and
linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the textbook
are available in two volumes at Amazon Kindle Direct Publishing for Amazon’s
cost of printing and shipping. No author profit. Volume I chapters 1-7, ISBN
9798705491124, 661 pages. Volume II chapters 8-12, ISBN 9798711123651, 479
pages. Both paperbacks have extra pages of backmatter: background topics
Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with
hyperlink navigation to displayed equations and theorems. The header in an
exercise set has a blue hyperlink  to the same section in the solutions. The
header of the exercise section within a solution Appendix has a red hyperlink
to the textbook exercises. Solutions are organized by chapter, e.g., Appendix 5
for Chapter 5. Odd-numbered exercises have a solution. A few even-numbered
exercises have hints and answers. Computer code can be mouse-copied directly
from the PDF. Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded
to a tablet, computer or phone to be viewed locally. After download, no internet
is required. Best for computer or tablet using a PDF viewer (Adobe Reader,
Evince) or web browser with PDF support (Chrome, FireFox). Smart phones
can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or
request an answer, click the link below, then create a GitHub issue and post.
Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues
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