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Studied here are linear differential equations of the second order

a(x)y′′ + b(x)y′ + c(x)y = f(x)(1)

and corresponding nth order models. Important to the theory is continuity of
the coefficients a(x), b(x), c(x) and the non-homogeneous term f(x), which
is also called the forcing term or the input.

6.1 Linear 2nd Order Constant

Studied is the homogeneous 2nd order equation

Ay′′ +By′ + Cy = 0

where A ̸= 0, B and C are constants. An explicit formula for the general so-
lution is developed. Prerequisites are the quadratic formula, complex numbers,
Cramer’s rule for 2×2 linear algebraic equations and first order linear differential
equations.
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6.1 Linear 2nd Order Constant

Theorem 6.1 (How to Solve Second Order Constant Equations)
In the differential equation Ay′′+By′+Cy = 0, let A ̸= 0, B and C be real constants.
Let r1, r2 denote the two roots of the quadratic equation Ar2 +Br+C = 0. If the
roots are complex, then let r1 = a + ib with b > 0, and r2 = r1 = a − ib. Define
solutions y1(x), y2(x) of Ay

′′+By′+Cy = 0 according to the following three cases,
which are organized by the sign of the college algebra discriminant D = B2 − 4AC:

Case 1. D > 0 (Real distinct) y1(x) = er1x, y2(x) = er2x.

Case 2. D = 0 (Real equal) y1(x) = er1x, y2(x) = xer1x.

Case 3. D < 0 (Conjugate roots) y1(x)=eax cos(bx), y2(x)=eax sin(bx).

Then each solution of Ay′′ + By′ + Cy = 0 is obtained, for some specialization of
the constants c1, c2, from the expression

y(x) = c1y1(x) + c2y2(x).

Proof on page 437. Examples 6.1–6.3, page 434, consider the three cases.

A general solution is an expression that represents all solutions of the differ-
ential equation. Theorem 6.1 gives an expression of the form

y(x) = c1y1(x) + c2y2(x)

where c1 and c2 are symbols representing constants and y1, y2 are special solu-
tions of the differential equation, determined by the roots of the characteristic
equation Ar2 +Br + C = 0 as in Theorem 6.1.

The initial value problem for Ay′′ +By′ +Cy = 0 selects the constants c1, c2
in the general solution y = c1y2 + c2y2 from initial conditions of the form

y(x0) = g1, y′(x0) = g2.

In these conditions, x0 is a given point in −∞ < x < ∞ and g1, g2 are two real
numbers, e.g., g1 = position, g2 = velocity at x = x0.

Theorem 6.2 (Picard-Lindelöf Existence-Uniqueness)
Let A ̸= 0, B, C, x0, g1 and g2 be constants. Then the initial value problem
Ay′′ +By′ +Cy = 0, y(x0) = g1, y

′(x0) = g2 has one and only one solution, found
from the general solution y = c1y1 + c2y2 by applying Cramer’s rule or the method
of elimination. The solution is defined on −∞ < x < ∞.

Proof on page 437. Cramer’s rule details are in Example 6.4, page 435.

Working Rule to solve Ay′′ +By′ + Cy = 0.

Find the roots of the characteristic equation Ar2 + Br + C = 0.
Apply Theorem 6.2 to write down y1, y2. The general solution
is then y = c1y1 + c2y2. If initial conditions are given, then
determine c1, c2 explicitly, otherwise c1, c2 remain symbols.
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6.1 Linear 2nd Order Constant

Theorem 6.3 (Superposition)
In differential equation Ay′′ + By′ + Cy = 0, let A ̸= 0, B and C be constants.
Assume y1, y2 are solutions and c1, c2 are constants. Then y = c1y1 + c2y2 is a
solution of Ay′′ +By′ + Cy = 0.

A proof appears on page 438. The result is implicitly used in Theorem 6.1, in
order to show that a general solution satisfies the differential equation.

Structure of Solutions

The special solutions y1, y2 constructed in Theorem 6.1 have the form

eax, xeax, eax cos bx, eax sin bx.

These functions will be called Euler solution atoms or briefly Atoms.

Definition 6.1 (Euler Solution Atoms)
Define an Euler base atom to be one of the functions

eax, eax cos bx, eax sin bx,

where a, b > 0 are real constants with b > 0. Define

Euler solution atom = xn(base atom), n = 0, 1, 2, . . . .

L. Euler (1707-1783) discovered these special solutions by substitution of y = erx

into the differential equation Ay′′+By′+Cy = 0, which results in the equations

Ar2erx +Brerx + Cerx = 0 Euler’s Substitution y = erx.

Ar2 +Br + C = 0 Characteristic equation, found by canceling
erx.

The same equations can also be found for the substitution y = xerx, called
Euler’s substitution. Together, the equations imply:

Theorem 6.4 (Euler’s Exponential Substitution)
Euler atom y = erx is a solution of Ay′′ + By′ + Cy = 0 if and only if r is a
root of characteristic equation Ar2 +Br + C = 0.

Euler atom y = xerx is a solution of Ay′′ +By′ +Cy = 0 if and only if r is a
double root of characteristic equation Ar2 +Br + C = 0.

Euler atoms y = eax cos bx and y = eax sin bx are real solutions of Ay′′ +
By′ + Cy = 0 if and only if r = a + ib and r = a − ib are complex roots of
characteristic equation Ar2 +Br + C = 0.

Proof on page 439.

Theorem 6.1 may be succinctly summarized as follows.
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6.1 Linear 2nd Order Constant

The general solution y of a second order linear homogeneous constant-
coefficient differential equation is a sum of constants times Euler solution
atoms. The atoms are found from Euler’s Theorem.

Speed

The time taken to write out the general solution varies among individuals and
according to the algebraic complexity of the characteristic equation. Judge your
understanding of the Theorem by these statistics: most persons can write out the
general solution in under 60 seconds. Especially simple equations like y′′ = 0,
y′′ + y = 0, y′′ − y = 0, y′′ + 2y′ + y = 0, y′′ + 3y′ + 2y = 0 are finished in less
than 30 seconds.

Graphics

Computer programs can produce plots for initial value problems. Computers
cannot plot symbolic solutions containing unevaluated symbols c1, c2 that
appear in the general solution.

Errors

Recorded below in Table 1 are some common but fatal errors made in displaying
the general solution.

Table 1. Errors in Applying Theorem 6.1.

Bad equation For y′′ − y = 0, the correct characteristic equation is
r2 − 1 = 0. A common error is to write r2 − r = 0.

Sign reversal For factored equation (r + 1)(r + 2) = 0, the roots are
r = −1, r = −2. A common error is to claim r = 1
and/or r = 2 is a root.

Miscopy signs The equation r2+2r+2 = 0 has complex conjugate roots
a ± bi, where a = −1 and b = 1 (b > 0 is required). A
common error is to miscopy signs on a and/or b.

Copying ±i The equation r2 + 2r + 5 = 0 has roots a ± ib where
a = −1 and b = 2. A common mistake is to display
e−x cos(±2ix) and e−x sin(±2ix). These expressions are
not real solutions: neither ± nor the complex unit i
should be copied.
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6.1 Linear 2nd Order Constant

Examples

Example 6.1 (Case 1)
Solve y′′ + y′ − 2y = 0.

Solution: The general solution is y = c1e
x + c2e

−2x. Ordering is not important; an
equivalent answer is y = c1e

−2x + c2e
x. The answer will be justified below, by finding

the two solutions y1, y2 in Theorem 6.1.

The characteristic equation r2 + r − 2 = 0 is found formally by replacements y′′ → r2,
y′ → r and y → 1 in the differential equation y′′ + y′ − 2y = 0.1

A college algebra method2 called inverse-FOIL applies to factor r2 + r − 2 = 0 into
(r − 1)(r + 2) = 0. The roots are r = 1, r = −2. Used implicitly here are the college
algebra factor theorem and root theorem3.

Applying case D > 0 of Theorem 6.1 gives solutions y1 = ex and y2 = e−2x.

Example 6.2 (Case 2)
Solve 4y′′ + 4y′ + y = 0.

Solution: The general solution is y = c1e
−x/2 + c2xe

−x/2. To justify this formula, find
the characteristic equation 4r2 +4r+1 = 0 and factor it by the inverse-FOIL method
or square completion to obtain (2r + 1)2 = 0. The roots are both −1/2.

Case D = 0 of Theorem 6.1 gives y1 = e−x/2, y2 = xe−x/2. Then the general solution is
y = c1y1 + c2y2, which completes the verification.

Example 6.3 (Case 3)
Solve 4y′′ + 2y′ + y = 0.

Solution: The solution is y = c1e
−x/4 cos(

√
3x/4) + c2e

−x/4 sin(
√
3x/4). This formula

is justified below, by showing that the solutions y1, y2 of Theorem 6.1 are given by
y1 = e−x/4 cos(

√
3x/4) and y2 = e−x/4 sin(

√
3x/4).

The characteristic equation is 4r2 + 2r + 1 = 0. The roots by the quadratic formula are

r =
−B ±

√
B2 − 4AC

2A
College algebra formula for the roots of the quadratic
Ar2 +Br + C = 0.

=
−2±

√
22 − (4)(4)(1)

(2)(4)
Substitute A = 4, B = 2, C = 1.

= −1

4
±

√
−1

√
12

8
Simplify. Used

√
(−1)(12) =

√
−1

√
12.

= −1

4
± i

√
3

4
Convert to complex form, i =

√
−1.

1Some history. Euler’s formal substitution y = erx into the differential equation y′′+y′−2y =
0 produces r2 + r − 2 = 0 directly. Formal replacement y′′ → r2, y′ → r and y → 1 gives the
same characteristic equation r2 + r− 2 = 0, with a reduction in errors. We prefer the shortcut,
to increase the speed.

2FOIL is an abbreviation for First=AC, Outside=AD, Inside=BC, Last=BD in the ex-
pansion of the algebraic product (A+B)(C +D).

3Theorem. r = r0 is a root of p(r) = 0 if and only if (r − r0) is a factor of p(r).

434



6.1 Linear 2nd Order Constant

The real part of the root is labeled a = −1/4. The two imaginary parts are
√
3/4 and

−
√
3/4. Only the positive one is labeled, the other being discarded: b =

√
3/4.

Theorem 6.1 applies in the discriminant case D < 0 to give solutions y1 = eax cos(bx)
and y2 = eax sin(bx). Substitution of a = −1/4 and b =

√
3/4 results in the formulas

y1 = e−x/4 cos(
√
3x/4), y2 = e−x/4 sin(

√
3x/4). The verification is complete.

The substitutions of a, b are remembered from the following diagram.

−1/4
√
3/4

↓ ↓

e a x cos
(
b x
)

−1/4
√
3/4

↓ ↓

e a x sin
(
b x
)

e−x/4 cos
(√

34x
)
, e−x/4 sin

(√
34x
)

It is recommended to perform the a, b substitution to find the first atom, which is

e−x/4 cos
(√

34x
)
. Then replace cos by sin in that expression to obtain the second

atom e−x/4 sin
(√

34x
)
.

Example 6.4 (Initial Value Problem)
Solve y′′ + y′ − 2y = 0, y(0) = 1, y′(0) = −2 and graph the solution on 0 ≤ x ≤ 2.

Solution: The solution to the initial value problem is y = e−2x. The graph appears in
Figure 1.

Details. The general solution is y = c1e
x + c2e

−2x, from Example 6.1. The prob-
lem of finding c1, c2 uses the two equations y(0) = 1, y′(0) = −2 and the general
solution to obtain expanded equations for c1, c2. For instance, y(0) = 1 expands to
(c1e

x + c2e
−2x)

∣∣
x=0

= 1, which is an equation for symbols c1, c2. The second equation
y′(0) = −2 expands similarly, to give the two equations

e0c1 + e0c2 = 1,
e0c1 − 2e0c2 = −2.

The equations will be solved by the method of elimination. Because e0 = 1, the equations
simplify. Subtracting them eliminates the variable c1 to give 3c2 = 3. Therefore, c2 = 1
and back-substitution finds c1 = 0. Then y = c1e

x + c2e
−2x reduces, after substitution

of c1 = 0, c2 = 1, to the equation y = e−2x.

Graph. The solution y = e−2x is graphed by a routine application of curve library
methods, which appear in the appendices, page ??. No hand-graphing methods will be
discussed here. To produce a computer graphic of the solution, the following code is
offered. Calculator plots are similar.

plot(exp(-2*x),x=0..2); Maple

plot2d(exp(-2*x),[x,0,2]); Maxima

Plot[{exp(-2 x)},{x,0,2}]; Mathematica

plot [0:2] exp(-2*x) Gnuplot

x=0:0.05:2; plot(x,exp(-2*x)) Matlab and Scilab

1

0
20

Figure 1. Exponential solution y = e−2x.
The graph decreases to zero at x = ∞.
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6.1 Linear 2nd Order Constant

Example 6.5 (Euler Solution Atoms)
Consider the list

1, x2, 2, 3x+ 4x2, x3ex/π, 2x+ 3 cosx,
x

1 + x2
.

Box each entry that is precisely an atom and identify its base atom. Double-box the
non-atom list entries that are a sum of constants times atoms.

Solution:
The answers and explanations:

1 An atom. Base atom = 1.

x2 An atom. Base atom = 1.

2 X Not an atom. Constant 2 times the atom 1, which is a linear
combination of atoms.

3x+ 4x2 X Not an atom. Linear combination of atoms x, x2.

ex/π An atom. Base atom = eax where a = 1/π.

2x+ 3 cosx X Not an atom. Linear combination of atoms x, cosx.

x

1 + x2
X Not an atom. Not a linear combination of atoms.

Example 6.6 (Inverse Problem)
Consider a 2nd order differential equation Ay′′ + By′ + Cy = 0, the coefficients
A,B,C initially unknown. Find a set of coefficients for each of the following three
examples, given the supplied information about the differential equation.

(a) The characteristic equation is r2 + 2r + 5 = 0.

(b) The characteristic equation has roots r = −1, 2.

(c) Two solutions are ex and xex.

Solution:
(a) The characteristic equation of Ay′′+By′+Cy = 0 is Ar2+Br+C = 0. Comparing
terms to r2 + 2r + 5 = 0 implies a differential equation is y′′ + 2y′ + 5y = 0. The
substitutions y → 1, y′ → r, y′′ → r2 are used here in reverse.

(b) The characteristic polynomial Ar2 + Br + C factors into A(r − r1)(r − r2) where
r1, r2 are the two roots of the quadratic equation. Given r1 = −1 and r2 = 2, then
the characteristic equation has to be A(r − (−1))(r − 2) = 0 for some number A ̸= 0.
Assume A = 1 to find one equation. Multiply out the product (r + 1)(r − 2) to give
characteristic equation r2 − r− 2 = 0. This reduces the problem to methods in part (a).
Then a differential equation is y′′ − y′ − 2y = 0.

(c) The two given solutions are Euler solution atoms created from root r = 1. Consulting
Theorem 6.4, these two atoms are solutions of a second order equation with characteristic
equation roots r = 1, 1 (a double root). The method in (b) is then applied: multiply out
the product (r− 1)(r− 1) to get characteristic equation r2 − 2r+1 = 0. Then apply the
method of (a). A differential equation is y′′ − 2y′ + y = 0.
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6.1 Linear 2nd Order Constant

Proofs and Details

Proof of Theorem 6.1: To show that y1 and y2 are solutions is left to the exercises.
For the remainder of the proof, assume y is a solution of Ay′′ +By′ +Cy = 0. It has to
be shown that y = c1y1 + c2y2 for some real constants c1, c2.

Algebra background. In college algebra it is shown that the polynomial Ar2+Br+C
can be written in terms of its roots r1, r2 as A(r − r1)(r − r2). In particular, the sum
and product of the roots satisfy the relations B/A = −r1 − r2 and C/A = r1r2.

Case D > 0. The equation Ay′′+By′+Cy = 0 can be re-written in the form y′′− (r1+
r2)y

′ + r1r2y = 0 due to the college algebra relations for the sum and product of the
roots of a quadratic equation. The equation factors into (y′ − r2y)

′ − r1(y
′ − r2y) = 0,

which suggests the substitution u = y′ − r2y. Then Ay′′ +By′ +Cy = 0 is equivalent to
the first order system

u′ − r1u = 0,
y′ − r2y = u.

Growth-decay theory, page ??, applied to the first equation gives u = u0e
r1x. The second

equation y′− r2y = u is then solved by the integrating factor method, as in Example ??,
page ??. This gives y = y0e

r2x+u0e
r1x/(r1− r2). Therefore, any possible solution y has

the form c1e
r1x + c2e

r2x for some c1, c2. This completes the proof of the case D > 0.

Case D = 0. The details follow the case D > 0, except that y′ − r2y = u has a different
solution, y = y0e

r1x+u0xe
r1x (exponential factors er1x and er2x cancel because r1 = r2).

Therefore, any possible solution y has the form c1e
r1x + c2xe

r1x for some c1, c2. This
completes the proof of the case D = 0.

Case D < 0. The equation Ay′′+By′+Cy = 0 can be re-written in the form y′′− (r1+
r2)y

′ + r1r2y = 0 as in the case D > 0, even though y is real and the roots are complex.
The substitution u = y′ − r2y gives the same equivalent system as in the case D > 0.
The solutions are symbolically the same, u = u0e

r1x and y = y0e
r1x + u0e

r1x/(r1 − r2).
Therefore, any possible real solution y has the form C1e

r1x + C2e
r2x for some possibly

complex C1, C2.

Taking the real part of both sides of this equation gives y = c1e
ax cos(bx)+ c2e

ax sin(bx)
for some real constants c1, c2. Details follow.

y = Re(y) Because y is real.

= Re(C1e
r1x + C2e

r2x) Substitute y = C1e
r1x + C2e

r2x.

= eax Re(C1e
ibx + C2e

−ibx) Use eu+iv = eueiv.

= eax Re (C1 cos bx+ iC1 sin bx
+C2 cos bx− iC2 sin bx)

Use eiθ = cos θ + i sin θ.

= eax Re(C1 + C2)) cos bx
+ eax Re(iC1 − iC2) sin bx

Collect on trigonometric factors.

= c1e
ax cos(bx) + c2e

ax sin(bx) Where c1 = Re(C1+C2) and c2 = Im(C2−C1)
are real.

This completes the proof of the case D < 0.

Proof of Theorem 6.2: The left sides of the two requirements y(x0) = g1, y
′(x0) =

g2 are expanded using the relation y = c1y1 + c2y2 to obtain the following system of
equations for the unknowns c1, c2:

y1(x0)c1 + y2(x0)c2 = g1,
y′1(x0)c1 + y′2(x0)c2 = g2.
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6.1 Linear 2nd Order Constant

If the determinant of coefficients

∆ = y1(x0)y
′
2(x0)− y′1(x0)y2(x0)

is nonzero, then Cramer’s rule says that the solutions c1, c2 are given as quotients

c1 =
g1y

′
2(x0)− g2y2(x0)

∆
, c2 =

y1(x0)g2 − y′1(x0)g1
∆

.

The organization of the proof is made from the three cases of Theorem 6.1, using x
instead of x0, to simplify notation. The issue of a unique solution has now been reduced
to verification of ∆ ̸= 0, in the three cases.

Case D > 0. Then

∆ = er1xr2e
r2x − r1e

r1xer2x Substitute for y1, y2.

= (r2 − r1)e
r1x+r2x Simplify.

̸= 0 Because r1 ̸= r2.

Case D = 0. Then

∆ = er1x(er1x + r1xe
r1x)− r1e

r1xxer1x Substitute for y1, y2.

= e2r1x Simplify.

̸= 0

Case D < 0. Then r1 = r2 = a+ ib and

∆ = be2ax(cos2 bx+ sin2 bx) Two terms cancel.

= be2ax Use cos2 θ + sin2 θ = 1.

̸= 0 Because b > 0.

In applications, the method of elimination is sometimes used to find c1, c2. In some
references, it is called Gaussian elimination.

Proof of Superposition Theorem 6.3: The three terms of the differential equation
are computed using the expression y = c1y1 + c2y2:

Term 1: cy = cc1y1 + cc2y2

Term 2: by′ = b(c1y1 + c2y2)
′

= bc1y
′
1 + bc2y

′
2

Term 3: ay′′ = a(c1y1 + c2y2)
′′

= ac1y
′′
1 + ac2y

′′
2

The left side of the differential equation, denoted LHS, is the sum of the three terms. It
is simplified as follows:

LHS = c1[ay
′′
1 + by′1 + cy1] Add terms 1,2 and 3,

+ c2[ay
′′
2 + by′2 + cy2] then collect on c1, c2.

= c1[0] + c2[0] Both y1, y2 satisfy ay′′ + by′ + cy = 0.

= RHS The left and right sides match.
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6.1 Linear 2nd Order Constant

Proof of Euler’s Theorem 6.4 The substitution y = erx requires the derivative
formulas y′ = rerx, y′′ = r2erx, which then imply from Ay′′ +By′ +Cy = 0 the relation

Ar2erx +Brerx + Cerx = 0.(2)

Assume that y = erx is a solution of the differential equation. Then relation (2) holds.
Cancel erx to obtain Ar2 +Br + C = 0, then r is a root of the characteristic equation.

Conversely, if r is a root of the characteristic equation, then multiply Ar2 +Br+C = 0
by erx to give relation (2). Then y = erx is a solution of the differential equation.

This completes the proof of the first statement in Euler’s theorem, in the special case
for r real. Examination of the details reveals it is also valid for complex r = a+ ib, with
y = erx a complex solution.

We go on to prove the third statement in Euler’s theorem. A complex exponential
solution y = erx, with r = a + ib, can be expanded as y = erx = eax+ibx = eax cos bx +
ieax sin bx, because of Euler’s formula eiθ = cos θ + i sin θ. Write u = eax cos bx and
v = eax sin bx, then y = u + iv with u, v real. Expand the differential equation Ay′′ +
By′ + Cy = 0 using y = u+ iv as

(Au′′ +Bu′ + Cu) + i(Av′′ +Bv′ + Cv) = 0 + 0i.

Then A,B,C, u, v all real implies, by equality of complex numbers, the two equations

Au′′ +Bu′ + Cu = 0,
Av′′ +Bv′ + Cv = 0.

Together, these equations imply that u = eax cos bx and v = eax sin bx are solutions of
the differential equation. Conversely, if both u and v are solutions, then the steps can
be reversed to show y = erx is a solution, which in turn implies r = a + ib is a root of
the characteristic equation. Finally, if a+ ib is a root and A,B,C are real, then college
algebra implies a− ib is a root. This completes the proof of the last statement of Euler’s
theorem.

The second statement of Euler’s theorem will be proved. Substitute y = xerx into the
differential equation using the formulas y′ = erx + rxerx, y′′ = 2rerx + r2xerx to obtain
the relation

(Ar2 +Br + C)xerx + (2Ar +B)erx = 0.(3)

If y = xerx is a solution of the differential equation, then relation (3) holds for all x.
Cancel erx to get the polynomial relation

(Ar2 +Br + C)x+ (2Ar +B) = 0, for all x.

Substitute x = 0 and then x = 1 to obtain 2Ar + B = 0 and Ar2 + Br + C = 0.
These equations say that r is a double root of the characteristic equation, because the
polynomial p(t) = At2 +Bt+ C then satisfies p(r) = p′(r) = 0.

Conversely, suppose that r is a double root of Ar2+Br+C = 0. Then p(t) = At2+Bt+C
must satisfy the relations p(r) = p′(r) = 0, which imply Ar2+Br+C = 0 and 2Ar+B =
0. Then for all x, relation (3) holds, which in turn implies that y = xerx is a solution. ■
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6.1 Linear 2nd Order Constant

Exercises 6.1

General Solution 2nd Order
Solve the constant equation using Theorem
6.1, page 430. Report the general solution
using symbols c1, c2. Model the solution
after Examples 6.1–6.3, page 434.

1. y′′ = 0
Ans: y = c1 + c2x

2. 3y′′ = 0

3. y′′ + y′ = 0

4. 3y′′ + y′ = 0

5. y′′ + 3y′ + 2y = 0

6. y′′ − 3y′ + 2y = 0

7. y′′ − y′ − 2y = 0

8. y′′ − 2y′ − 3y = 0

9. y′′ + y = 0

10. y′′ + 4y = 0

11. y′′ + 16y = 0

12. y′′ + 8y = 0

13. y′′ + y′ + y = 0

14. y′′ + y′ + 2y = 0

15. y′′ + 2y′ + y = 0

16. y′′ + 4y′ + 4y = 0

17. 3y′′ + y′ + y = 0

18. 9y′′ + y′ + y = 0

19. 5y′′ + 25y′ = 0

20. 25y′′ + y′ = 0

21. 2y′′ + y′ − y = 0

22. 2y′′ − 3y′ − 2y = 0

23. 2y′′ + 7y′ + 3y = 0

24. 4y′′ + 8y′ + 3y = 0

25. 6y′′ + 7y′ + 2y = 0

26. 6y′′ + y′ − 2y = 0

27. y′′ + 4y′ + 8y = 0

28. y′′ − 2y′ + 4y = 0

29. y′′ + 2y′ + 4y = 0

30. y′′ + 4y′ + 5y = 0

31. 4y′′ − 4y′ + y = 0

32. 4y′′ + 4y′ + y = 0

33. 9y′′ − 6y′ + y = 0

34. 9y′′ + 6y′ + y = 0

35. 4y′′ + 12y′ + 9y = 0

36. 4y′′ − 12y′ + 9y = 0

Initial Value Problem 2nd Order
Solve the given problem, modeling the so-
lution after Example 6.4.

37. 6y′′+7y′+2y = 0, y(0) = 0, y′(0) = −1

38. 2y′′+7y′+3y = 0, y(0) = 5, y′(0) = −5

39. y′′ − 2y′ + 4y = 0, y(0) = 1, y′(0) = 1

40. y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 1

41. 9y′′ − 6y′ + y = 0, y(0) = 3, y′(0) = 1

42. 4y′′+12y′+9y = 0, y(0) = 2, y′(0) = 1

Detecting Euler Solution Atoms
A Euler solution atom is defined in Def-
inition 6.1 page 432. Box each list entry
that is precisely an atom. Double-box non-
atom list entries that are a sum of constants
times atoms. Follow Example 6.5 page 436.

43. 1, ex/5, −1, e1.1x, 2ex

44. −x cosπx, x2 sin 2x, x3, 2x3

45. e2x, e−x2/2, cos2 2x, sin 1.57x

46. x7ex cos 3x, x10ex sin 4x

47. x7ex cosh 3x, x10e−x sinh 5x

48. cosh2 x, x(1 + x), x1.5,
√
xe−x

440
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49. x1/2ex/2,
1

x
ex, ex(1 + x2)

50.
x

1 + x
,
1

x
(1 + x2), ln |x|

Euler Base Atom
An Euler base atom is defined in Defini-
tion 6.1 page 432. Find the base atom for
each Euler solution atom in the given list.

51. x cosπx, x3, x10e−x sin 5x

52. x6, x4e2x, x2e−x/π, x7ex cos 1.1x

Inverse Problems
Find the homogeneous 2nd order differen-
tial equation, given the supplied informa-
tion. Follow Example 6.6.

53. e−x/5 and 1 are solutions.
Ans: 5y′′ + y′ = 0.

54. e−x and 1 are solutions.

55. ex + e−x and ex − e−x are solutions.

56. e2x + xe2x and xe2x are solutions.

57. x and 2 + x are solutions.

58. 4ex and 3e2x are solutions.

59. The characteristic equation is r2+2r+
1 = 0.

60. The characteristic equation is 4r2 +
4r + 1 = 0.

61. The characteristic equation has roots
r = −2, 3.

62. The characteristic equation has roots
r = 2/3, 3/5.

63. The characteristic equation has roots
r = 0, 0.

64. The characteristic equation has roots
r = −4,−4.

65. The characteristic equation has com-
plex roots r = 1± 2i.

66. The characteristic equation has com-
plex roots r = −2± 3i.

Details of proofs

67. (Theorem 6.1, Background) Expand
the relationAr2+Br+C = A(r−r1)(r−
r2) and compare coefficients to obtain
the sum and product of roots relations

B

A
= −(r1 + r2),

C

A
= r1r2.

68. (Theorem 6.1, Background)

Let r1, r2 be the two roots of Ar2 +
Br + C = 0. The discriminant is D =
B2−4AC. Use the quadratic formula to
derive these relations for D > 0, D = 0,
D < 0, respectively:

r1 = −B+
√
D

2A , r2 = −B−
√
D

2A ,

r1 = r2 =
√
D

2A .

r1 = −B+i
√
−D

2A , r2 = −B−i
√
−D

2A .

69. (Theorem 6.1, Case 1)

Let y1 = er1x, y2 = er2x. Assume
Ar2+Br+C = A(r−r1)(r−r2). Show
that y1, y2 are solutions of Ay′′+By′+
Cy = 0.

70. (Theorem 6.1, Case 2)

Let y1 = er1x, y2 = x er1x. Assume
Ar2 +Br + C=A(r − r1)(r − r1).
Show that y1, y2 are solutions of Ay′′ +
By′ + Cy = 0.

71. (Theorem 6.1, Case 3)

Let a, b be real, b > 0. Let y1 =
eax cos bx, y2 = eax sin bx. Assume fac-
torization
Ar2+Br+C=A(r−a−ib)(r−a+ib)
then show that y1, y2 are solutions of
Ay′′ +By′ + Cy = 0.
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6.2 Continuous Coefficient Theory

The existence, uniqueness and structure of solutions for the equation

a(x)y′′ + b(x)y′ + c(x)y = f(x)(1)

will be studied, guided in part by the first order theory.

Continuous–Coefficient Equations

The homogeneous equation is a(x)y′′ + b(x)y′ + c(x)y = 0 while the non-
homogeneous equation is a(x)y′′+ b(x)y′+ c(x)y = f(x). An equation is said
to have constant coefficients if a, b and c are scalars.

A linear combination of two functions y1, y2 is c1y1(x)+c2y2(x), where c1 and
c2 are constants. The natural domain is the common domain of y1 and y2.

The general solution of a(x)y′′ + b(x)y′ + c(x)y = f(x) is an expression which
describes all possible solutions of the equation. Exactly how to write such an
expression is revealed in the theorems below.

An initial value problem is the problem of solving a(x)y′′ + b(x)y′ + c(x)y =
f(x) subject to initial conditions y(x0) = g1, y

′(x0) = g2. It is assumed that
x0 is in the common domain of continuity of the coefficients and that g1, g2 are
prescribed numbers.

Theorem 6.5 (Superposition)
The homogeneous equation a(x)y′′ + b(x)y′ + c(x)y = 0 has the superposition
property:

If y1, y2 are solutions and c1, c2 are constants, then the linear combina-
tion y(x) = c1y1(x) + c2y2(x) is a solution.

Proof on page 445.

Theorem 6.6 (Picard-Lindelöf Existence-Uniqueness)
Let the coefficients a(x), b(x), c(x), f(x) be continuous on an interval J containing
x = x0. Assume a(x) ̸= 0 on J . Let g1 and g2 be constants. Then the initial value
problem

a(x)y′′ + b(x)y′ + c(x)y = f(x), y(x0) = g1, y′(x0) = g2

has a unique solution y(x) defined on J .

Proof on page 446.

Theorem 6.7 (Homogeneous Structure)
The homogeneous equation a(x)y′′ + b(x)y′ + c(x)y = 0 has a general solution of
the form yh(x) = c1y1(x) + c2y2(x), where c1, c2 are arbitrary constants and y1(x),
y2(x) are solutions.

Proof on page 447.
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Theorem 6.8 (Non-Homogeneous Structure)
The non-homogeneous equation a(x)y′′+b(x)y′+c(x)y = f(x) has general solution
y = yh + yp, where yh(x) is the general solution of the homogeneous equation
a(x)y′′+b(x)y′+c(x)y = 0 and yp(x) is a particular solution of the non-homogeneous
equation a(x)y′′ + b(x)y′ + c(x)y = f(x).

Proof on page 447.

Theorem 6.9 (Reduction of Order)
Let y1(x) be a solution of a(x)y′′ + b(x)y′ + c(x)y = 0 on an interval J . Assume
a(x) ̸= 0, y1(x) ̸= 0 on J . Let all coefficients be continuous on J . Select x0 in J .
Then the general solution has the form yh(x) = c1y1(x) + c2y2(x) where c1, c2 are
constants and

y2(x) = y1(x)

∫ x

x0

e
−

∫ t
x0

(b(r)/a(r))dr

y21(t)
dt.

Proof on page 448.

Theorem 6.10 (Equilibrium Method)
A non-homogeneous equation

ay′′ + by′ + cy = f

has an easily-found particular solution yp(x) in the special case when all coefficients
a, b, c, f are constant. The solution can be found by the equilibrium method. The
answers:

c ̸= 0 yp(x) =
f

c
,

c = 0, b ̸= 0 yp(x) =

∫
f

b
dx =

f

b
x,

c = b = 0, a ̸= 0 yp(x) =

∫ (∫
f

a
dt

)
dx =

f

a

x2

2
.

See Example 6.11 page 445.

Equilibrium Method. The method applies to non-homogeneous equations
with constant coefficients ay′′ + by′ + cy = f . The method:

Truncate the LHS of the differential equation to just the lowest order term,
then solve the resulting equation by the method of quadrature.

Examples and Methods

Example 6.7 (Superposition)
Verify that y = c1y1 + c2y2 is a solution, given equation y′′ + 4y′ + 4y = 0 and
solutions y1(x) = e2x, y2(x) = xe2x.
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6.2 Continuous Coefficient Theory

Solution: The answer check details can be simplified as follows.

LHS = y′′ + 4y′ + 4y Given differential equation LHS.

LHS = c1y
′′
1 + c2y

′′
2+

4(c1y
′
1 + c2y

′
2)+

4(c1y1 + c2y2)
Substitute y = c1y1 + c2y2.

LHS = c1(y
′′
1 + 4y′1 + 4y1)+

c2(y
′′
2 + 4y′2 + 4y2)

Collect on c1, c2.

LHS = c1(0)+
c2(0)

Because y1, y2 are solutions of the equation y′′+
4y′ + 4y = 0.

Then y = c1y1 + c2y2 satisfies y′′ + 4y′ + 4y = 0, as claimed.

Example 6.8 (Continuous Coefficients)
Determine all intervals J of existence of y(x), according to Picard’s theorem, for the
differential equation y′′ + 1

1+xy
′ + x

2+xy = 0.

Solution: The challenge is describe the open intervals J where 1+x ̸= 0 and 2+x ̸= 0,
because the coefficients are continuous whenever both inequalities hold. The real line
is divided by the exceptions x = −1, x = −2. Then −∞ < x < −2, −2 < x < −1,
−1 < x < ∞ are the possible intervals J in Picard’s theorem.

Example 6.9 (Recognizing yh)
Consider y′′ + 4y = x. Extract from the solution y = 2 cos 2x + 3 sin 2x + x/4 a
particular solution yp with fewest terms.

Solution: The homogeneous equation y′′+4y = 0 has characteristic equation r2+4 = 0
with complex roots ±2i and Euler solution atoms cos 2x, sin 2x. Then 2 cos 2x+3 sin 2x is
a solution yh of the homogeneous equation and y = yh+x/4. Subtract the homogeneous
solution to obtain a particular solution x/4. By Theorem 6.8, this is a particular solution
yp. It has the fewest possible terms.

Example 6.10 (Reduction of Order)
Given solution y1 = 1, find an independent solution y2 of y′′ + 4y′ = 0 by reduction
of order.

Solution: The answer is y2 = 1
4

(
1− e−4x

)
. The method is Theorem 6.9.

We apply the theorem by inserting the formula y1 = 1 into

y2(x) = y1(x)

∫ x

x0

e
−

∫ t
x0

(b(r)/a(r))dr

y21(t)
dt.

Then, using x0 = 0, a(x) = 1, b(x) = 4, c(x) = 0 gives

y2(x) = (1)

∫ x

0

e−
∫ t
0
(4/1)dr

(1)2
dt

= (1)

∫ x

0

e−4t

(1)2
dt

=
e−4x − 1

−4
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Example 6.11 (Equilibrium Method)
Apply the equilibrium method to find yp, then find the general solution y = yh + yp.
This method works only for constant coefficients. meaning a(x), b(x), c(x), f(x) in
equation (1) are constant.

(a) y′′ + 4y′ + 4y = π

(b) 2y′′ + 3y′ = −5

(c) 3y′′ = 20

Solution: All equations have constant coefficients, therefore the method applies. The
method selects a trial solution for yp which makes all terms zero except the lowest
derivative term. Then solve for the trial solution by quadrature to obtain yp. The
answer should be verified due to the possibility of integration and algebra errors.

(a) Truncate all but the lowest term to obtain 4y = π, then yp(x) = π/4. The ho-
mogeneous solution yh is the solution of y′′ + 4y′ + 4y = 0 with characteristic equa-
tion r2 + 4r + 4 = 0, factoring into (r + 2)(r + 2) = 0. Then the atoms are e−2x,
xe−2x and yh(x) = c1e

−2x + c2xe
−2x. The general solution is y(x) = yh(x) + yp(x) =

c1e
−2x + c2xe

−2x +
π

4
.

(b) Truncate to 3y′ = −5 and integrate to obtain yp(x) = −5
3 x. The characteristic

equation of 2y′′ + 3y′ = 0 is (2r + 3)r = 0 with roots r = 0,−3/2. The atoms are e0x,
e−3x/2 and then yh(x) = c1e

0x+c2e
−3x/2. The general solution is y(x) = yh(x)+yp(x) =

c1 + c2e
−3x/2 + −5

2 x, because e0x is written as 1.

(c) The quadrature solution is yp(x) = 20
3

x2

2 . The characteristic equation for 3y′′ = 0
is 3r2 = 0 with double root r = 0, 0. The atoms are e0x, xe0x and the homogeneous
solution is yh(x) = c1e

0x + c2xe
0x = c1 + c2x. Then the general solution is y(x) =

yh(x) + yp(x) = c1 + c2x+ 20
3

x2

2 .

Example 6.12 (Equilibrium Method Failure)
The equation y′′ + y′ = 2x fails to have constant coefficients, meaning a(x), b(x),
c(x), f(x) are not all constant. Blind application of the equilibrium method gives
y = x2, not a solution. Explain.

Solution: The error: y′′+ y′ = 2x does not have constant coefficients, which is required
to apply the equilibrium method. What went wrong? The equilibrium method blindly
applied gives the equation 0+y′ = 2x, which by quadrature implies y(x) = x2. It appears
to work! Let’s test y = x2. Insert y = x2 into y′′ + y′ = 2x, then (x2)′′ + (x2)′ = 2x,
which implies 2 + 2x = 2x and finally the false equation 2 = 0. Therefore, y = x2 is not
a solution of y′′ + y′ = 2x.

Proofs and Details

Proof of Theorem 6.5: The three terms of the differential equation, c(x)y, b(x)y′

and a(x)y′′, are computed using the expression y = c1y1+ c2y2. The formulas are added
to obtain the left hand side LHS of the differential equation:
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LHS = c1[ay
′′
1 + by′1 + cy1] Add terms c(x)y, b(x)y′, a(x)y′′

+ c2[ay
′′
2 + by′2 + cy2] and then collect on c1, c2.

= c1[0] + c2[0] Both y1, y2 satisfy ay′′ + by′ + cy = 0.

= RHS The left and right sides match.

Proof of Theorem 6.6: The basic ideas for the proof appear already in the proof of
the Picard-Lindelöf theorem, page ??. Additional proof is required, because the solution
is supposed to be defined on all of J , whereas the basic Picard-Lindelöf theorem supplies
only local existence.

Existence. Picard’s ideas write the solution y(x) on J as the sum of an infinite series
of continuous functions. This is accomplished by using the Position-Velocity substi-
tution x = t, X = y(t), Y = y′(t) and definitions t0 = x0, X0 = g1, Y0 = g2 to re-write
the differential equation and initial conditions in the new form

X ′ = Y, Y ′ = (f(t)− b(t)Y − c(t)X)/a(t),
X(t0) = X0, Y (t0) = Y0.

The Picard iterates are defined by

Xn(t) =

∫ t

t0

Yn−1(x)dx,

Yn(t) =

∫ t

t0

(f(x)− b(x)Yn−1(x)− c(x)Xn−1(x))
dx

a(x)
.

The new bit of information provided by these formulas is significant: because X0 and
Y0 are defined everywhere on J , so also are Xn and Yn. This explains why the series
equality

y(x) = X0 +

∞∑
n=1

(Xn(x)−Xn−1(x))

provides a formula for y(x) on all of interval J , instead of on just a local section of the
interval.

The demand that the series converge on J creates new technical problems, to be solved
by modifying Picard’s proof. Suffice it to say that Picard’s ideas are sufficient to give
series convergence and hence existence of y(x) on J .

Uniqueness. An independent proof of the uniqueness will be given, based upon calculus
ideas only.

Let two solutions y1 and y2 of the differential equation be given, having the same initial
conditions. Then their difference y = y1 − y2 satisfies the homogeneous differential
equation a(x)y′′+b(x)y′+c(x)y = 0 and the initial conditions y(x0) = y′(x0) = 0. Some
details:

LHS = ay′′ + by′ + cy Left side of ay′′ + by′ + cy = f .

= ay′′1 + by′1 + cy1 Substitute y = y1 − y2.

− (ay′′2 + by′2 + cy2)

= f(x)− f(x) Both y1, y2 satisfy ay′′ + by′ + cy = f .

= 0 The homogeneous equation is satisfied.
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To prove y1 = y2, it suffices to show y(x) ≡ 0. This will be accomplished by showing
that the non-negative function

z(t) = (y(t))2 + (y′(t))2

satisfies z(t) ≤ 0, which implies z(t) ≡ 0 and then y(x) ≡ 0. The argument depends
upon the following inequality.

Lemma. The function z(t) satisfies |z′| ≤ Mz for some constant M ≥ 0.

To finish the uniqueness proof, observe first that initial conditions y(x0) = y′(x0) = 0
imply z(t0) = 0. By the lemma, |z′| ≤ Mz for some constant M , or equivalently −Mz ≤
z′ ≤ Mz. Multiply z′ ≤ Mz by the integrating factor e−Mt to give (e−Mtz(t))′ ≤ 0.
Integration over [t0, t] shows e−Mtz(t) ≤ 0. Then z(t) = 0 for t ≥ t0. Similarly,
−z′ ≤ Mz implies z(t) = 0 for t ≤ t0. This concludes the uniqueness proof, except
for the proof of the lemma.

Proof of the lemma. Compute the derivative z′ as follows, using notation X = y(t)
and Y = y′(t) to re-write z(t) = (y(t))2 + (y′(t))2 = X2 + Y 2.

z′ = 2XX ′ + 2Y Y ′ Power and product rules.

= 2XY + 2Y (−cX − bY )/a Use X ′ = Y and the homogeneous equation
aY ′ + bY + cX = 0.

= (2− 2c/a)XY + (−2b/a)Y 2 Collect terms.

Let M = 2maxA≤x≤B{|1 − c(x)/a(x)| + | − 2b(x)/a(x)|}, where [A,B] is an arbitrary
subinterval of J containing x0. The estimate |z′| ≤ Mz will be established.

|z′| = |(2− 2c/a)XY + (−2b/a)Y 2| Estimate modulus of z′.

≤ |1− c/a||2XY |+ | − 2b/a||Y |2 Apply |c+ d| ≤ |c|+ |d| and |uv| = |u||v|.
≤ (M/2)|2XY |+ (M/2)|Y |2 Definition of maximum M applied.

≤ Mz Use |2XY | ≤ X2 + Y 2, proved from (|X| −
|Y |)2 ≥ 0.

Proof of Theorem 6.7: To define y1 and y2 requires application of Picard’s existence-
uniqueness Theorem 6.6, page 442. Select them by their initial conditions, y1(x0) = 1,
y′1(x0) = 0 and y2(x0) = 0, y′2(x0) = 1.

To complete the proof, a given solution y(x) must be expressed as a linear combination
y(x) = c1y1(x) + c2y2(x) for some values of c1, c2.

Define c1 = y(x0), c2 = y′(x0). Let u(x) = y(x) − c1y1(x) − c2y2(x). The equation
y(x) = c1y1(x) + c2y2(x) will be verified by showing u(x) ≡ 0.

First, u is a solution of a(x)y′′ + b(x)y′ + c(x)y = 0, by the superposition principle,
Theorem 6.5. It has initial conditions u(x0) = y(x0) − c1(1) − c2(0) = 0 and u′(x0) =
y′(x0) − c1(0) − c2(1) = 0. By uniqueness of initial value problems, u(x) ≡ 0, which
completes the proof.

Proof of Theorem 6.8: Let yp(x) be a given particular solution of a(x)y′′ + b(x)y′ +
c(x)y = f(x). Let y(x) be any other solution of this equation and define u(x) =
y(x) − yp(x). Subtract the two differential equations to verify that u is a solution of
the homogeneous equation a(x)u′′ + b(x)u′ + c(x)u = 0. By Theorem 6.7, u = yh(x) for
some choice of constants c1, c2. Then y(x) = u(x) + yp(x) = yh(x) + yp(x), as was to be
shown, completing the proof.
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Proof of Theorem 6.9: . Let W (x) = e
−

∫ x
x0

(b(r)/a(r))dr
. By the chain rule and the

fundamental theorem of calculus, W ′ = −bW/a. Let u(x) = 1/y21(x) to simplify displays.
The successive derivatives of y2 are

y2(x) = y1(x)
∫ x

x0
Wudt Definition of y2, u and W .

y′2(x) =
(
y1(x)

∫ x

x0
Wudt

)′
Apply the product rule.

= y′1(x)
∫ x

x0
Wudt+ y1(x)W (x)u(x) Use (

∫ x

x0
G(t)dt)′ = G(x).

= y′1(x)
∫ x

x0
Wudt+

W (x)

y1(x)

y′′2 (x) =

(
y′1(x)

∫ x

x0
Wudt+

W (x)

y1(x)

)′

= y′′1 (x)
∫ x

x0
Wudt+ y′1(x)W (x)u(x)

+
W ′(x)y1(x)−W (x)y′1(x)

y21(x)

Apply the sum and quotient rules.

= y′′1 (x)
∫ x

x0
Wudt+

W ′(x)

y1(x)
Simplify non-integral terms.

= y′′1 (x)
∫ x

x0
Wudt− b(x)W (x)

a(x)y1(x)
Use W ′ = −(b/a)W .

The derivative formulas are multiplied respectively by c, b and a to obtain an expression
E = ay′′2 + by′2 + cy2, which must be shown to be zero. The details:

E = cy2 + by′2 + ay′′2
= c

(
y1
∫
Wu

)
+ b

(
y′1
∫
Wu+W/y1

)
+ a

(
y′′1
∫
Wu− bW/(ay1)

)
= (cy1 + by′1 + ay′′1 )

∫
Wu

+ bW/y1 − bW/y1

Collect all integral terms.

= 0 Because ay′′1 + by′1 + cy1 = 0.

General Solution. To show that c1y1 + c2y2 is the general solution, for this choice of
y1, y2, let y(x) be a solution of the homogeneous equation and define

c1 =
y(x0)

y1(x0)
, c2 = y1(x0)(y

′(x0)− c1y
′
1(x0)).

It will be shown that y(x) = c1y1(x)+ c2y2(x) by verifying that u(x) = y(x)− c1y1(x)−
c2y2(x) is zero. Superposition implies u is a solution of the homogeneous equation. It
has initial conditions u(x0) = 0, u′(x0) = 0, because y′2(x0) = 1/y1(x0). Uniqueness of
initial value problems implies u(x) ≡ 0, completing the proof.

Proof of Theorem 6.10, Equilibrium Method: In the case c ̸= 0, find an equilib-
rium solution y = constant by substitution of y = k into the differential equation (the
equilibrium method). Then ck = f and yp(x) =

f
c .

For case c = 0, b ̸= 0, observe that the differential equation in terms of the velocity
v = y′ is av′+ bv = f . Apply the equilibrium method to this equation to obtain v = f/b
and finally y =

∫
vdx = f

b x.

For the last case b = c = 0 and a ̸= 0, then the equation is in terms of the acceleration
p = y′′ the new equation ap = f . Then p = f/a is the quadrature equation y′′ = f/a

with solution yp(x) =
f
a
x2

2 .
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Exercises 6.2

Continuous Coefficients
Determine all intervals J of existence of
y(x), according to Picard’s theorem.

1. y′′ + y = ln |x|

2. y′′ = ln |x− 1|

3. y′′ + (1/x)y = 0

4. y′′ + 1
1+xy

′ + 1
xy = 0

5. x2y′′ + y = sinx

6. x2y′′ + xy′ = 0

Superposition
Verify that y = c1y1 + c2y2 is a solution.

7. y′′ = 0, y1(x) = 1, y2(x) = x

8. y′′ = 0, y1(x) = 1 + x, y2(x) = 1− x

9. y′′′ = 0, y1(x) = x, y2(x) = x2

10. y′′′ = 0, y1(x) = 1 + x, y2(x) = x+ x2

Structure
Verify that y = yh + yp is a solution.

11. y′′ + y = 2, yh(x) = c1 cosx + c2 sinx,
yp(x) = 2

12. y′′ + 4y = 4, yh(x) = c1 cos 2x +
c2 sin 2x, yp(x) = 1

13. y′′ + y′ = 5, yh(x) = c1 + c2e
−x,

yp(x) = 5x

14. y′′ + 3y′ = 5, yh(x) = c1 + c2e
−3x,

yp(x) = 5x/3

15. y′′ + y′ = 2x, yh(x) = c1 + c2e
−x,

yp(x) = x2 − 2x

16. y′′ + 2y′ = 4x, yh(x) = c1 + c2e
−2x,

yp(x) = x2 − x

Initial Value Problems
Solve for constants c1, c2 in the general so-
lution yh = c1y1 + c2y2.

17. y′′ = 0, y1 = 1, y2 = x, y(0) = 1,
y′(0) = 2

18. y′′ = 0, y1 = 1+x, y2 = 1−x, y(0) = 1,
y′(0) = 2

19. y′′ + y = 0, y1 = cosx, y2 = sinx,
y(0) = 1, y′(0) = −1

20. y′′ + y = 0, y1 = sinx, y2 = cosx,
y(0) = 1, y′(0) = −1

21. y′′ + 4y = 0, y1 = cos 2x, y2 = sin 2x,
y(0) = 1, y′(0) = −1

22. y′′ + 4y = 0, y1 = sin 2x, y2 = cos 2x,
y(0) = 1, y′(0) = −1

23. y′′+y′ = 0, y1 = 1, y2 = e−x, y(0) = 1,
y′(0) = −1

24. y′′+y′ = 0, y1 = 1, y2 = e−x, y(0) = 2,
y′(0) = −3

25. y′′ + 3y′ = 0, y1 = 1, y2 = e−3x,
y(0) = 1, y′(0) = −1

26. y′′ + 5y′ = 0, y1 = 1, y2 = e−5x,
y(0) = 1, y′(0) = −1

Recognizing yh
Extract from the given solution y a partic-
ular solution yp with fewest terms.

27. y′′ + y = x,
y = c1 cosx+ c2 sinx+ x

28. y′′ + y = x,
y = cosx+ x

29. y′′ + y′ = x,
y = c1 + c2e

−x + x2/2− x

30. y′′ + y′ = x,
y = e−x − x+ 1 + x2/2

31. y′′ + 2y′ + y = 1 + x,
y = (c1 + c2x)e

−x + x− 1

32. y′′ + 2y′ + y = 1 + x,
y = e−x + x+ xe−x − 1

Reduction of Order
Given solution y1, find an independent so-
lution y2 by reduction of order.
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33. y′′ + 2y′ = 0, y1(x) = 1

34. y′′ + 2y′ = 0, y1(x) = e−2x

35. 2y′′ + 3y′ + y = 0, y1(x) = e−x

36. 2y′′ − y′ − y = 0, y1(x) = ex

Equilibrium Method
Apply the equilibrium method to find yp,
then find the general solution y = yh + yp.

37. 2y′′ = 3

38. y′′ + 4y′ = 5

39. y′′ + 3y′ + 2y = 3

40. y′′ − y′ − 2y = 2

41. y′′ + y = 1

42. 3y′′ + y′ + y = 7

43. 6y′′ + 7y′ + 2y = 5

44. y′′ − 2y′ + 4y = 8

45. 4y′′ − 4y′ + y = 8

46. 4y′′ − 12y′ + 9y = 18
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6.3 Higher Order Linear Constant Equations

6.3 Higher Order Linear

Constant-Coefficient Equations

Discussed here are structure results for the n-th order linear differential equation

any
(n) + · · ·+ a0y = f(x).

It is assumed that each coefficient is constant and the leading coefficient an is
not zero. The forcing term or input f(x) is assumed to either be zero, in
which case the equation is called homogeneous, or else f(x) is nonzero and
continuous, and then the equation is called non-homogeneous. The charac-
teristic equation is

anr
n + · · ·+ a0 = 0.

It is obtained from Euler’s substitution y = erx or by the shortcut substitutions
y(k) → rk. The left side of the characteristic equation is called the characteristic
polynomial.

Picard-Lindelöf Theorem

The foundation of the theory of linear constant coefficient differential equations
is the existence-uniqueness result of Picard-Lindelöf, which says that, given con-
stants g1, . . . , gn, the initial value problem

any
(n) + · · ·+ a0y = f(x),

y(0) = g1, . . . , y
n−1(0) = gn,

has a unique solution y(x) defined on each open interval for which f(x) is defined
and continuous.

General Solution

A linear homogeneous constant coefficient differential equation has a general
solution yh(x) written in terms of n arbitrary constants c1, . . . , cn and n solutions
y1(x), . . . , yn(x) as the linear combination

yh(x) = c1y1(x) + · · ·+ cnyn(x).

Discussed here is one way to define the solutions y1, . . . , yn.

Consider the case of n = 2, already discussed. The Picard-Lindelöf theorem
applies with initial values y(0) = 1, y′(0) = 0 to define solution y1(x). The initial
values are changed to y(0) = 0, y′(0) = 1, then Picard-Lindelöf applies again to
define solution y2(x). Solution y(x) = c1y1(x)+c2y2(x) satisfies initial conditions
y(0) = g1, y

′(0) = g2 when c1 = g1, c2 = g2.
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6.3 Higher Order Linear Constant Equations

In the n = 2 case, solutions y1, y2 are defined using initial conditions which
form the columns of the 2 × 2 identity matrix. In a similar way, for general n,
solutions y1(x), . . . , yn(x) are defined by applying the Picard-Lindeöf theorem,
with initial conditions g1, . . . , gn successively taken as the columns of the n× n
identity matrix.

The expression yh(x) is called a general solution, because any solution of the
differential equation is equal to yh(x) for a unique specialization of the constants
c1, . . . , cn.

Solution Structure

An Euler base atom is one of the functions

eax, eax cos bx, eax sin bx

where a and b are real numbers, b > 0.

An Euler solution atom is a power xn times a base atom, where n ≥ 0 is an
integer.

Complex Numbers and Atoms. An Euler solution atom can alternatively
be defined as the nonzero real or imaginary part of xnerx where r = a+ ib with
symbols a and b ≥ 0 are real and n ≥ 0 is an integer, provided minus signs are
stripped off, leaving coefficient 1. Euler’s formula

eiθ = cos θ + i sin θ

facilitates taking real and imaginary parts of the complex exponential term xnerx.
For instance,

x7e(2+3i)x = x7e2x cos 3x+ ix7e2x sin 3x

has real and imaginary parts x7e2x cos 3x, x7e2x sin 3x, which are themselves
atoms.

A complete list of all possible atoms appears in the rightmost section of the table
below, in which a, b are real, b > 0 and n ≥ 0 is an integer.

r = 0 1, x, x2, . . . , xn, . . .
r = a eax, xeax, x2eax, . . . , xneax, . . .
r = ib cos bx, x cos bx, x2 cos bx, . . . , xn cos bx, . . .
r = ib sin bx, x sin bx, x2 sin bx, . . . , xn sin bx, . . .
r = a+ ib eax cos bx, xeax cos bx, x2eax cos bx, . . . , xneax cos bx, . . .
r = a+ ib eax sin bx, xeax sin bx, x2eax sin bx, . . . , xneax sin bx, . . .

The table only uses b > 0, because Euler atoms must have coefficient 1. For
instance, xe(1−2i)x = xex cos 2x − ixex sin 2x does not have atoms for real and
imaginary parts (coefficient −1 is the problem). Yes, stripping the minus sign
gives xex sin 2x, which is an atom (coefficient 1).
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6.3 Higher Order Linear Constant Equations

Detecting Euler Solution Atoms

A term that makes up an atom has coefficient 1, therefore 2 and 2ex are not
atoms, but the 2 can be stripped off to expose atoms 1 and ex. Combinations
like 2x + 3x2 are not atoms, but individual stripped terms x and x2 are atoms.
Terms like ex

2
, ln |x| and x/(1+x2) are not atoms, nor are they sums of constants

times atoms. The expressions coshx, sinhx and sin4 x are not atoms, but they
are combinations of atoms. Fractional powers may not appear in atoms, for
instance, neither xπ nor x5/2 sinx is an atom.

Linear Algebra Background

Borrowed from the subject of linear algebra is the terminology linear combina-
tion, which in the case of two functions f1, f2 is the expression f = c1f1 + c2f2.
More generally, given functions f1, . . . , fk, and constants c1, . . . , ck, the expres-
sion f = c1f1 + · · ·+ ckfk is called a linear combination of the functions f1, . . . ,
fk.

A function list f1, . . . , fk is called linearly independent provided every linear
combination is uniquely represented by the constants c1, . . . , ck.

Independence is tested by solving for constants c1, . . . , ck in the equation c1f1(x)+
· · ·+ ckfk(x) = 0, assumed satisfied for all x in a common domain of f1, . . . , fk.
Independence holds if and only if the constants are all zero.

Theorem 6.11 (Independence and Euler Solution Atoms)
A list of finitely many distinct Euler solution atoms is linearly independent.

Outline of the proof on page ??.

Because subsets of independent sets are independent, then list x2, x5, x8 is
independent by virtue of independence of the powers 1, x, . . . , xn.

Solution methods for linear constant differential equations implicitly use Theorem
6.11.

Fundamental Results

Theorem 6.12 (Homogeneous Solution yh and Atoms)
Linear homogeneous differential equations with constant coefficients have general
solution yh(x) equal to a linear combination of Euler atoms.

Theorem 6.13 (Particular Solution yp and Atoms)
Linear non-homogeneous differential equations with constant coefficients having forc-
ing term f(x) equal to a linear combination of atoms have a particular solution yp(x)
which is a linear combination of Euler atoms.
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6.3 Higher Order Linear Constant Equations

Theorem 6.14 (General Solution y and Atoms)
Linear non-homogeneous differential equations with constant coefficients having forc-
ing term f(x) = a linear combination of Euler atoms have general solution

y(x) = yh(x) + yp(x) = a linear combination of Euler atoms.

The first result, for the special case of second order differential equations, can be
justified from Theorem 6.1, page 430. The solutions er1x, er2x, xer1x, eax cos bx
and eax sin bx in the theorem are Euler atoms.

The third theorem easily follows from the first two. The first and second theo-
rems follow directly from Euler’s Theorem 6.15 and the method of undetermined
coefficients, infra.

How to Solve Equations of Order n

Picard’s existence–uniqueness theorem says that y′′′ + 2y′′ + y = 0 has general
solution y constructed from linear combinations of 3 independent solutions of
this differential equation. The general solution of an n-th order linear differential
equation is constructed from linear combinations of n independent solutions of
the equation.

Linear algebra defines the dimension of the solution set to be this same fixed
number n. Once n independent solutions are found for the differential equation,
the search for the general solution has ended: the general solution y must be a
linear combination of these n independent solutions.

Because of the preceding structure theorems, we have reduced the search for the
general solution to the following:

Find n distinct Euler solution atoms of the nth order differential
equation.

Euler’s basic result tells us how to find the list of distinct atoms.

Theorem 6.15 (Euler’s Theorem)
Assume r0 is a real or complex root of the characteristic equation. If complex, write
r0 = a+ ib with a, b real.

(a) The functions er0x, xer0x, . . . , xker0x are solutions of a linear homogeneous
constant–coefficient differential equation if and only if (r − r0)

k+1 is a factor of the
characteristic polynomial.

(b) Assume b > 0. Functions eax cos bx, xeax cos bx, . . . , xkeax cos bx, eax sin bx,
xeax sin bx, . . . , xkeax sin bx (a, b real, b > 0) are solutions of a linear homogeneous
constant–coefficient differential equation if and only if ((r− a)2 + b2)k+1 is a factor
of the characteristic polynomial.

Proof on page 459.
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Theorem 6.16 (Real and Complex Solutions)
Let y(x) = u(x) + iv(x) be a solution of a linear constant-coefficient differential
equation (a0,. . . ,an assumed real), with u(x) and v(x) both real. Then u(x) and
v(x) are both real solutions of the differential equation. Briefly stated, the real and
imaginary parts of a solution are also solutions.

Proof on page 460

Root Multiplicity

A polynomial equation p(r) = 0 is defined in college algebra to have a root r = r0
of multiplicity m provided (r − r0)

m divides p(r) but (r − r0)
m+1 does not. For

instance, (r − 1)3(r + 2)(r2 + 4)2 = 0 has roots 1, −2, 2i, −2i of multiplicity 3,
1, 2, 2, respectively.

Atom Lists

Let r = r0 be a real root of the characteristic equation p(r) = 0, of multiplicity
k + 1. Then Euler’s theorem finds a base atom solution er0x. A total of k + 1
solutions are obtained from this base atom by multiplying the base atom by
the powers 1, x, . . . , xk:

er0x, xer0x, . . . , xker0x.

A special case occurs when r0 = 0. Then e0x = 1 is the base atom and the k+ 1
solution atoms are the powers

1, x, . . . , xk.

The number of Euler solution atoms expected for a given root r = r0 equals
the multiplicity of the root r0.

Let r = a + ib be a complex root of the characteristic equation p(r) = 0, of
multiplicity k + 1. Euler’s Theorem implies that eax+ibx is a solution, and the
theorem on complex solutions implies that the differential equation has two base
solution atoms

eax cos bx, eax sin bx.

Euler’s Theorem implies that we should multiply these base atoms by powers 1,
x, . . . , xk to obtain k + 1 solution atoms for each of the base atoms, giving the
atom list for a complex root

eax cos(bx), xeax cos(bx), . . . , xkeax cos(bx),
eax sin(bx), xeax sin(bx), . . . , xkeax sin(bx).
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A special case occurs when a = 0. Then the base atoms are pure harmonics
cos bx, sin bx and the list has no visible exponentials:

cos(bx), x cos(bx), . . . , xk cos(bx),
sin(bx), x sin(bx), . . . , xk sin(bx).

Shortcut Explained. A remaining mystery is the skipped complex root a− ib.
We explain why we focused on a+ ib with b > 0 and ignored its conjugate a− ib.
Euler’s formula eiθ = cos θ + i sin θ using θ = rx = ax+ ibx implies

xjerx =
(
xjeax cos(bx)

)
+ i
(
xjeax sin(bx)

)
.

The real and imaginary parts of this complex linear combination are Euler atoms.
If r is replaced by its complex conjugate r = a − ib, then the same two atoms
are distilled from the linear combination. Picard’s Theorem dictates that we find
2k+2 atoms from the pair of roots a± ib. Because the process above finds 2k+2
atoms, the second conjugate root is ignored, as a shortcut.

Examples and Methods

Example 6.13 (First Order)
Solve 2y′ + 5y = 0, showing yh = c1e

−5x/2.

Solution: Euler’s Theorem 6.15 will be applied. The characteristic equation is 2r+5 = 0
with real root r = −5/2. The corresponding atom erx is given explicitly by e−5x/2.
Because the order of the differential equation is 1, then all atoms have been found. Write
the general solution yh by multiplying the atom list by constant c1, then yh = c1e

−5x/2.

Example 6.14 (Second Order Distinct Real Roots)
Solve y′′ + 3y′ + 2y = 0, showing yh = c1e

−x + c2e
−2x.

Solution: The factored characteristic equation is (r + 1)(r + 2) = 0. The distinct real
roots are r1 = −1, r2 = −2. Euler’s Theorem 6.15 applies to find the atom list e−x,
e−2x. All atoms have been found, because the order of the differential equation is 2.
The general solution yh is written by multiplying the atom list by constants c1, c2, then
yh = c1e

−x + c2e
−2x.

Example 6.15 (Second Order Double Real Root)
Solve y′′ + 2y′ + y = 0, showing yh = c1e

−x + c2xe
−x.

Solution: The factored characteristic equation is (r+1)(r+1) = 0, with double real root
r = −1,−1. The root multiplicity is 2, so we must find two atoms for the root r = −1.
Euler’s Theorem 6.15 applies to find a base atom e−x. Multiply the base atom by 1, x
to find two solution atoms e−x, xe−x. Because the order of the differential equation is 2,
then all atoms have been found. Write the general solution yh by multiplying the atom
list by constants c1, c2, then yh = c1e

−x + c2xe
−x.
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Example 6.16 (Second Order Complex Conjugate Roots)
Solve the differential equation y′′ + 2y′ + 5y = 0, verifying the equation yh =
c1e

−x cos 2x+ c2e
−x sin 2x.

Solution: The characteristic equation r2 + 2r + 5 = 0 factors into (r + 1)2 + 4 = 0,
therefore it has complex conjugate roots r1 = −1 + 2i, r2 = −1 − 2i. There are two
methods for finding the atoms associated with these roots. We discuss both possibilities.

Method 1. The first statement in Euler’s Theorem 6.15 applies to report two complex
solutions e−x+2xi, e−x−2xi. These solutions are not atoms, but linear combinations of
atoms, from which a list of two atoms is determined. The atoms are e−x cos 2x, e−x sin 2x.
This process uses the two identities

eiθ = cos θ + i sin θ, e−iθ = cos θ − i sin θ.

Write
e−x+2xi =

(
e−x cos 2x

)
+ i
(
e−x sin 2x

)
,

e−x−2xi =
(
e−x cos 2x

)
− i
(
e−x sin 2x

)
,

then extract the two distinct atoms that appear in these two linear combinations:

e−x cos 2x, e−x sin 2x.

Method 2. The second statement in Euler’s Theorem 6.15 is more efficient. Character-
istic equation root r = −1 + 2i was found from the factorization (r+ 1)2 + 4 = 0, which
by Euler’s theorem implies there are two distinct solution atoms

e−x cos 2x, e−x sin 2x.

General Solution. Because the order of the differential equation is 2, then all atoms
have been found. Write the general solution yh by multiplying the atom list by constants
c1, c2, then yh = c1e

−x cos 2x+ c2e
−x sin 2x.

The example uses a shortcut. Euler’s theorem applied to the second conjugate root
−1 − 2i will produce no new atoms. The step of finding the distinct atoms can be
shortened by observing that the outcome is exactly the real and imaginary parts of the
first complex exponential eax+ibx with b > 0. The preferred method for finding the atoms
is to use the second statement in Euler’s theorem.

Example 6.17 (Third Order Distinct Roots)
Solve y′′′ − y′ = 0, showing yh = c1 + c2e

x + c3e
−x.

Solution: The factored characteristic equation is r(r − 1)(r + 1) = 0 with real roots
r1 = 0, r2 = 1, r3 = −1. Euler’s Theorem 6.15 applies to report the atom list e0x, ex,
e−x. The general solution yh is written by multiplying the atom list by constants c1, c2,
c3, giving yh = c1e

0x + c2e
x + c3e

−x. Convention replaces e0x by 1 in the final equation.

Example 6.18 (Third Order with One Double Root)
Solve y′′′ − y′′ = 0, verifying that yh = c1 + c2x+ c3e

x.

Solution: The characteristic equation is r3 − r2 = 0. It factors into r2(r − 1) = 0 with
real roots r1 = 0, r2 = 0, r3 = 1. Euler’s Theorem 6.15 applies to find the base atom
list e0x, ex. Because root r = 0 has multiplicity 2, we must multiply base atom e0x by 1
and x to find the required 2 atoms e0x, xe0x. Then the completed list of 3 atoms is 1,
x, ex. The general solution yh is written by multiplying the atom list by constants c1,
c2, c3 to give yh = c1 + c2x+ c3e

x.
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Example 6.19 (Fourth Order)
Solve yiv − y′′ = 0, showing yh = c1 + c2x+ c3e

x + c4e
−x.

Solution: Notation: Define yiv =
d4y

dx4
, the fourth derivative of y. The factored charac-

teristic equation is r2(r − 1)(r + 1) = 0 with real roots r1 = 0, r2 = 0, r3 = 1, r4 = −1.
Euler’s Theorem 6.15 applies to obtain the base atom list e0x, ex, e−x. The first base
atom e0x comes from root r = 0, which has multiplicity 2. Euler’s Theorem requires
that this base atom be multiplied by 1, x. The atom list of 4 atoms is then 1, x, ex,
e−x. All atoms have been found, because the order of the differential equation is 4. The
general solution yh is written by multiplying the atom list by constants c1, c2, c3, c4 to
obtain the general solution yh = c1 + c2x+ c3e

x + c4e
−x.

Example 6.20 (Tenth Order)
A linear homogeneous constant coefficient differential equation has characteristic
equation

r2(r − 1)2(r2 − 1)(r2 + 1)2 = 0.

Solve the differential equation, showing that

yh = c1 + c2x+ c3e
x + c4xe

x + c5x
2ex + c6e

−x

+c7 cosx+ c8x cosx+ c9 sinx+ c10x sinx.

Solution: The factored form of the characteristic equation is

r3(r − 1)2(r − 1)(r + 1)(r − i)2(r + i)2 = 0.

The roots, listed according to multiplicity, make the list of roots

L = {0, 0, 1, 1, 1, −1, i, i, −i,−i}.

There are two methods for finding the atoms from list L.

Method 1. The first statement in Euler’s theorem gives the exponential-type solutions

e0x, xe0x, ex, xex, x2ex, e−x, eix, xeix, e−ix, xe−ix.

The first six in the list are atoms, but the last four are not. Because eix = cosx+ i sinx,
we can distill from the complex exponentials the additional four atoms cosx, x cosx,
sinx, x sinx. Then the list of 10 distinct atoms is

1, x, ex, xex, x2ex, e−x, cosx, x cosx, sinx, x sinx.

Method 2. The above list can be obtained directly from the second statement in Euler’s
theorem. The real exponential atoms are obtained from the first statement in Euler’s
theorem:

1, x, ex, xex, x2ex, e−x.

The second statement of Euler’s theorem applies to the complex factor (r2+1)2 to obtain
the trigonometric atoms

cosx, x cosx, sinx, x sinx.

General Solution. Then yh is a linear combination of the 10 atoms:

yh = c1 + c2x+ c3e
x + c4xe

x + c5x
2ex + c6e

−x

+c7 cosx+ c8x cosx+ c9 sinx+ c10x sinx.
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Example 6.21 (Differential Equation from General Solution)
A linear homogeneous constant coefficient differential equation has general solution

yh = c1 + c2x+ c3e
x + c4xe

x + c5x
2ex + c6 cosx+ c7 sinx.

Find the differential equation.

Solution: Take the partial derivative of yh with respect to the symbols c1, . . . , c7 to
give the atom list

1, x, ex, xex, x2ex, cosx, sinx.

This atom list is constructed from exponential solutions obtained from Euler’s theorem,
applied to the root list

0, 0, 1, 1, 1, i,−i.

There are 7 roots, hence by the root-factor theorem of college algebra the characteristic
polynomial has individual factors r, r, r−1, r−1, r−1, r− i, r+ i. Then the differential
equation is of order 7 with characteristic polynomial

p(r) = (r − 0)2(r − 1)3(r − i)(r + i)
= r6 − 2r5 + 2r4 − 2r3 + r2.

The differential equation is obtained by the translation rj → y(j):

y(6) − 2y(5) + 2y(4) − 2y′′′ + y′′ = 0.

Proofs and Details

Proof of Euler’s Theorem 6.15: The first statement will be proved for n = 2. The
details for the general case are left as an exercise.

Let y = erx. Then
y = erx, y′ = rerx, y′′ = r2erx.

Substitute into the differential equation to obtain the following.

a2y
′′ + a1y

′ + a0y = 0

a2r
2erx + a1re

rx + a0e
rx = 0(

a2r
2 + a1r + a0

)
erx = 0

Then y = erx is a solution if and only if a2r
2 + a1r + a0 = 0, that is, the characteristic

equation is satisfied.

To prove the second statement, assume a differential equation of order n

any
(n) + · · ·+ a0y = 0.

Perform a change of variables y = ecxz, which changes dependent variable y into z. If y
is a solution, then

y = ecxz, y′ = cecxz + ecxz′, y′′ = c2ecxz + 2cecxz′ + ecxz′′, · · ·
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6.3 Higher Order Linear Constant Equations

Because each derivative of y is a multiple of ecx, then, after substitution of the relations
into the differential equation, the common factor ecx cancels, giving a new constant
coefficient differential equation for z.

To illustrate, in the case n = 2, the new differential equation for z is

a2z
′′ + (2a2c+ a1)z

′ + (a2c
2 + a1c+ a0)z = 0.

The coefficients of the z-equation are the Taylor series coefficients
pk(0)

k!
of the charac-

teristic polynomial p(r) = a2r
2 + a1r + a0:

a2 =
p′′(c)

2!
,

(2a2c+ a1) =
p′(c)

1!
,

(a2c
2 + a1c+ a0) =

p(c)

0!
.

By induction, the change of variables y = ecxz produces from any
(n) + · · · + a0y = 0 a

new constant-coefficient differential equation bnz
(n)+ · · ·+b0z = 0 whose coefficients are

given by

bk =
pk(c)

k!
.

Assume now characteristic polynomial p(r) = anr
n + · · · + a0 and let r = c be a root

of p(r) = 0 of algebraic multiplicity k + 1. Then p(c) = p′(c) = · · · = p(k)(c) = 0. This
means that b0 = · · · = bk = 0. Therefore, the z-equation is a differential equation in the
variable v = z(k+1). Because the selections z = 1, x, . . . , xk all imply v = 0, then the
polynomials 1, x, . . . , xk are solutions of the z-equation. Hence, y = ecxz implies ecx,
xecx, . . . , xkecx are solutions of the y-equation.

Conversely, assume that ecx, xecx, . . . , xkecx are solutions of the y-equation. We will
verify that r = c is a root of p(r) = 0 of algebraic multiplicity k + 1. First, 1, . . . , xk

are solutions of the z-equation. Setting z = 1 implies b0 = 0 Then setting z = x implies
b1 = 0 (because b0 = 0 already). Proceeding in this way, b0 = · · · = bk = 0. Therefore,
the characteristic polynomial of the z-equation is

q(r) = bnr
n + · · ·+ bk+1r

k+1.

The reader can prove the following useful result; see the exercises.

Lemma 6.1 (Kümmer’s Lemma) Under the change of variables y = ecxz, the character-
istic polynomials p(r), q(r) of the y-equation and the z-equation, respectively, satisfy the
relation q(r) = p(r + c).

Assuming Kümmer’s Lemma, we can complete the proof. Already, we know that rk+1

divides q(r). Then rk+1 divides p(r + c), or equivalently, (r − c)k+1 divides p(r). This
implies r = c is a root of p(r) = 0 of algebraic multiplicity k + 1. ■

Proof of Theorem 6.16: Substitute y = u + iv into the differential equation and
separate terms as follows:

(anu
(n) + · · ·+ a0u) + i(anv

(n) + · · ·+ a0v) = 0.
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6.3 Higher Order Linear Constant Equations

For each x, the left side of the preceding relation is a complex number a + ib with a, b
real. The right side is 0 + 0i. By equality of complex numbers, a = 0 and b = 0, which
implies

anu
(n) + · · ·+ a0u = 0,

anv
(n) + · · ·+ a0v = 0.

Therefore, u and v are real solutions of the differential equation. ■

Exercises 6.3

Constant Coefficients
Solve for y(x). Proceed as in Examples
6.13–6.20.

1. 3y′ − 2y = 0

2. 2y′ + 7y = 0

3. y′′ − y′ = 0

4. y′′ + 2y′ = 0

5. y′′ − y = 0

6. y′′ − 4y = 0

7. y′′ + 2y′ + y = 0

8. y′′ + 4y′ + 4y = 0

9. y′′ + 3y′ + 2y = 0

10. y′′ − 3y′ + 2y = 0

11. y′′ + y = 0

12. y′′ + 4y = 0

13. y′′ + y′ + y = 0

14. y′′ + 2y′ + 2y = 0

15. y′′ = 0

16. y′′′ = 0

17. d4y
dx4 = 0

18. d5y
dx5 = 0

19. y′′′ + 2y′′ = 0

20. y′′′ + 4y′ = 0

21. d4y
dx4 + y′′ = 0

22. d5y
dx5 + y′′′ = 0

Detecting Atoms
Decompose each atom into a base atom
times a power of x. If the expression fails
to be an atom, then explain the failure.

23. −x

24. x

25. x2 cosπx

26. x3/2 cosx

27. x1000e−2x

28. x+ x2

29.
x

1 + x2

30. ln |xe2x|

31. sinx

32. sinx− cosx

Higher Order
A homogeneous linear constant-coefficient
differential equation can be defined by (1)
coefficients, (2) the characteristic equation,
(3) roots of the characteristic equation. In
each case, solve the differential equation.

33. y′′′ + 2y′′ + y′ = 0

34. y′′′ − 3y′′ + 2y′ = 0

35. y(4) + 4y′′ = 0

36. y(4) + 4y′′′ + 4y′′ = 0

37. Order 5, r2(r − 1)3 = 0

38. Order 5, (r3 − r2)(r2 + 1) = 0.

39. Order 6, r2(r2 + 2r + 2)2 = 0.

461



6.3 Higher Order Linear Constant Equations

40. Order 6, (r2 − r)(r2 + 4r + 5)2 = 0.

41. Order 10, (r4+r3)(r2−1)2(r2+1) = 0.

42. Order 10, (r3+r2)(r−1)3(r2+1)2 = 0.

43. Order 5, roots r = 0, 0, 1, 1, 1.

44. Order 5, roots r = 0, 0, 1, i,−i.

45. Order 6, roots r = 0, 0, i,−i, i,−i.

46. Order 6, roots r = 0,−1, 1 + i, 1 −
i, 2i,−2i.

47. Order 10, roots r =
0, 0, 0, 1, 1,−1,−1,−1, i,−i.

48. Order 10, roots r =
0, 0, 1, 1, 1,−1, i,−i, i,−i.

Initial Value Problems
Given in each case is a set of independent
solutions of the differential equation. Solve
for the coefficients c1, c2, . . . in the general
solution, using the given initial conditions.

49. ex, e−x, y(0) = 0, y′(0) = 1

50. xex, ex, y(0) = 1, y′(0) = −1

51. cosx, sinx, y(0) = −1, y′(0) = 1

52. cos 2x, sin 2x, y(0) = 1, y′(0) = 0

53. ex, cosx, sinx, y(0) = −1, y′(0) = 1,
y′′(0) = 0

54. 1, cosx, sinx, y(0) = −1, y′(0) = 1,
y′′(0) = 0

55. ex, xex, cosx, sinx, y(0) = −1, y′(0) =
1, y′′(0) = 0, y′′′(0) = 0

56. 1, x, cosx, sinx, y(0) = 1, y′(0) = −1,
y′′(0) = 0, y′′′(0) = 0

57. 1, x, x2, x3, x4, y(0) = 1, y′(0) = 2,
y′′(0) = 1, y′′′(0) = 3, y(4)(0) = 0

58. ex, xex, x2ex, 1, x, y(0) = 1, y′(0) = 0,
y′′(0) = 1, y′′′(0) = 0, y(4)(0) = 0

Inverse Problem
Find a linear constant-coefficient homoge-
neous differential equation from the given
information. Follow Example 6.21.

59. The characteristic equation is (r +
1)3(r2 + 4) = 0.

60. The general solution is a linear com-
bination of the Euler solution atoms
ex, e2x, e3x, cosx, sinx.

61. The roots of the characteristic polyno-
mial are 0, 0, 2 + 3i, 2− 3i.

62. The equation has order 4. Known so-
lutions are ex + 4 sin 2x, xex.

63. The equation has order 10. Known so-
lutions are sin 2x, x7ex.

64. The equation ismy′′+cy′+ky = 0 with
m = 1 and c, k positive. A solution is
y(x) = e−x/5 cos(2x− θ) for some angle
θ.

Independence of Euler Atoms

65. Apply the independence test page ??
to atoms 1 and x: form equation 0 =
c1 + c2x, then solve for c1 = 0, c2 = 0.
This proves Euler atoms 1, x are inde-
pendent.

66. Show that Euler atoms 1, x, x2 are in-
dependent using the independence test
page ??,

67. A Taylor series is zero if and only if its
coefficients are zero. Use this result to
give a complete proof that the list 1, . . . ,
xk is independent. Hint: a polynomial
is a Taylor series.

68. Show that Euler atoms ex, xex, x2ex

are independent using the independence
test page ??.

Wronskian Test
Establish independence of the given lists of
functions by using the Wronskian test page
??:

Functions f1, f2, . . . , fn are independent if
W (x0) ̸= 0 for some x0, where W (x) is the
n× n determinant∣∣∣∣∣∣∣

f1(x) · · · fn(x)
...

f
(n−1)
1 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣
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69. 1, x, ex

70. 1, x, x2, ex

71. cosx, sinx, ex

72. cosx, sinx, sin 2x

Kümmer’s Lemma

73. Compute the characteristic polynomi-
als p(r) and q(r) for

y′′ + 3y′ + 2y = 0 and
z′′ + z′ = 0.

Verify the equations are related by y =
e−xz and p(r − 1) = q(r).

74. Compute the characteristic polynomi-
als p(r) and q(r) for

ay′′ + by′ + cy = 0 and
az′′ + (2ar0 + b)z′+
(ar20 + br0 + c)z = 0.

Verify the equations are related by y =
er0xz and p(r + r0) = q(r).
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6.4 Variation of Parameters

The Method of Variation of Parameters applies to solve

a(x)y′′ + b(x)y′ + c(x)y = f(x).(1)

Continuity of a, b, c and f is assumed, plus a(x) ̸= 0. The method is important
because it solves the largest class of equations. Specifically included are func-
tions f(x) like ln |x|, |x|, ex2

, x/(1 + x2), which are excluded in the method of
undetermined coefficients.

Homogeneous Equation

The method of variation of parameters uses facts about the homogeneous differ-
ential equation

a(x)y′′ + b(x)y′ + c(x)y = 0.(2)

Success in the method depends upon a general solution expression for (2). As-
sumed are two known solutions y1, y2, Symbols c1, c2 represent arbitrary con-
stants. The general solution:

y = c1y1(x) + c2y2(x)(3)

If a, b, c are constants, then Theorem 6.1, page 430, applied to (2) implies y1
and y2 can be selected as independent Euler solution atoms.

Independence

Two solutions y1, y2 of (2) are called independent if neither is a constant
multiple of the other. The term dependent means not independent, in which
case either y1(x) = cy2(x) or y2(x) = cy1(x) holds for all x, for some constant
c. Independence can be tested through the Wronskian determinant of y1, y2,
defined by

W (x) =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ = y1(x)y
′
2(x)− y′1(x)y2(x).

Theorem 6.17 (Wronskian and Independence)
The Wronskian of two solutions satisfies a(x)W ′+b(x)W = 0, which implies Abel’s
identity

W (x) = W (x0)e
−

∫ x
x0

(b(t)/a(t))dt
.

Two solutions of (2) are independent if and only if W (x) ̸= 0.

Proof on page 466.

Niels Henrik Abel (1802–1829) was born in Nedstrand, Norway. He made major
contributions to mathematics, especially elliptic functions, dying from tubercu-
losis at age 26.
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6.4 Variation of Parameters

Theorem 6.18 (Variation of Parameters Formula)
Let a, b, c, f be continuous near x = x0 and a(x) ̸= 0. Let y1, y2 be two
independent solutions of homogeneous equation a(x)y′′+ b(x)y′+ c(x)y = 0 and let
W (x) = y1(x)y

′
2(x)− y′1(x)y2(x). Then the non-homogeneous differential equation

a(x)y′′ + b(x)y′ + c(x)y = f

has a particular solution

yp(x) =

(∫
y2(x)(−f(x))

a(x)W (x)
dx

)
y1(x) +

(∫
y1(x)f(x)

a(x)W (x)
dx

)
y2(x).(4)

If both integrals have limits x0 and x, then yp(x0) = 0.

Proof on page 467.

History of Variation of Parameters

The solution yp was discovered by varying the constants c1, c2 in the homogeneous
solution yh = c1y1 + c2y2, assuming c1, c2 depend on x. This results in formulas

c1(x) =
∫
C1F , c2(x) =

∫
C2F where F (x) = f(x)/a(x), C1(t) =

−y2(t)

W (t)
,C2(t) =

y1(t)

W (t)
; see the historical details on page 467. Then

y = c1y1(x) + c2y2(x) Formula for yh.

y =

(∫
C1F

)
y1(x) +

(∫
C2F

)
y2(x) Substitute for c1, c2.

=

(∫
−y2

F

W

)
y1(x) +

(∫
y1

F

W

)
y2(x) Use (??) for C1, C2.

=

∫
(y2(x)y1(t)− y1(x)y2(t))

F (t)

W (t)
dt Collect on F/W .

=

∫
y1(t)y2(x)− y1(x)y2(t)

y1(t)y′2(t)− y′1(t)y2(t)
F (t)dt Expand W = y1y

′
2 − y′1y2.

Any one of the last three equivalent formulas is called a Classical variation
of parameters formula. The fraction in the last integrand is called Cauchy’s
kernel. We prefer the first, equivalent to equation (4), for ease of use.

Examples and Methods

Example 6.22 (Independence)
Consider y′′ − y = 0. Show the two solutions sinh(x) and cosh(x) are independent
using Wronskians.
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6.4 Variation of Parameters

Solution: Let W (x) be the Wronskian of sinh(x) and cosh(x). The calculation below
shows W (x) = −1. By Theorem 6.17, the solutions are independent.

Background. The calculus definitions for hyperbolic functions are sinhx = (ex−e−x)/2,
coshx = (ex + e−x)/2. Their derivatives are (sinhx)′ = coshx and (coshx)′ = sinhx.
For instance, (coshx)′ stands for 1

2 (e
x+ e−x)′, which evaluates to 1

2 (e
x− e−x), or sinhx.

Wronskian detail. Let y1 = sinhx, y2 = coshx. Then

W = y1(x)y
′
2(x)− y′1(x)y2(x) Definition of Wronskian W .

= sinh(x) sinh(x)− cosh(x) cosh(x) Substitute for y1, y
′
1, y2, y

′
2.

= 1
4 (e

x − e−x)2 − 1
4 (e

x + e−x)2 Apply exponential definitions.

= −1 Expand and cancel terms.

Example 6.23 (Wronskian)
Given 2y′′ − xy′ + 3y = 0, verify that a solution pair y1, y2 has Wronskian W (x) =

W (0)ex
2/4.

Solution: Let a(x) = 2, b(x) = −x, c(x) = 3. The Wronskian is a solution of W ′ =

−(b/a)W , hence W ′ = xW/2. The solution is W = W (0)ex
2/4, by the linear integrating

factor method or the homogeneous equation shortcut.

Example 6.24 (Variation of Parameters)
Solve y′′ + y = secx by variation of parameters, verifying y = c1 cosx + c2 sinx +
x sinx+ cos(x) ln | cos(x)|.

Solution:
Homogeneous solution yh. Theorem 6.1 is applied to the constant equation y′′+y = 0.
The characteristic equation r2+1 = 0 has roots r = ±i and then yh = c1 cosx+ c2 sinx.

Wronskian. Suitable independent solutions are y1 = cosx and y2 = sinx, taken from
the formula for yh. Then W (x) = cos2 x+ sin2 x = 1.

Calculate yp. The variation of parameters formula (4) is applied. The integration
proceeds near x = 0, because sec(x) is continuous near x = 0.

yp(x) = −y1(x)
∫
y2(x) sec(x)dx+ y2(x)

∫
y1(x) secxdx 1

= − cosx
∫
tan(x)dx+ sinx

∫
1dx 2

= x sinx+ cos(x) ln | cos(x)| 3

Details: 1 Use equation (4). 2 Substitute y1 = cosx, y2 = sinx. 3 Integral tables
applied. Integration constants set to zero.

Proofs and Details

Proof of Theorem 6.17: The function W (t) given by Abel’s identity is the unique
solution of the growth-decay equation W ′ = −(b(x)/a(x))W ; see page ??. It suffices
then to show that W satisfies this differential equation. The details:
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W ′ = (y1y
′
2 − y′1y2)

′ Definition of Wronskian.

= y1y
′′
2 + y′1y

′
2 − y′′1 y2 − y′1y

′
2 Product rule; y′1y

′
2 cancels.

= y1(−by′2 − cy2)/a− (−by′1 − cy1)y2/a Both y1, y2 satisfy (2).

= −b(y1y
′
2 − y′1y2)/a Cancel common cy1y2/a.

= −bW/a Verification completed.

The independence statement will be proved from the contrapositive: W (x) = 0 for all x
if and only if y1, y2 are not independent. Technically, independence is defined relative
to the common domain of the graphs of y1, y2 and W . Henceforth, for all x means for
all x in the common domain.

Let y1, y2 be two solutions of (2), not independent. By re-labelling as necessary, y1(x) =
cy2(x) holds for all x, for some constant c. Differentiation implies y′1(x) = cy′2(x). Then
the terms in W (x) cancel, giving W (x) = 0 for all x.

Conversely, let W (x) = 0 for all x. If y1 ≡ 0, then y1(x) = cy2(x) holds for c = 0 and y1,
y2 are not independent. Otherwise, y1(x0) ̸= 0 for some x0. Define c = y2(x0)/y1(x0).
Then W (x0) = 0 implies y′2(x0) = cy′1(x0). Define y = y2 − cy1. By linearity, y is a
solution of (2). Further, y(x0) = y′(x0) = 0. By uniqueness of initial value problems,
y ≡ 0, that is, y2(x) = cy1(x) for all x, showing y1, y2 are not independent.

Proof of Theorem 6.18: Let F (t) = f(t)/a(t), C1(x) = −y2(x)/W (x), C2(x) =
y1(x)/W (x). Then yp as given in (4) can be differentiated twice using the product rule
and the fundamental theorem of calculus rule (

∫
g)′ = g. Because y1C1 + y2C2 = 0 and

y′1C1 + y′2C2 = 1, then yp and its derivatives are given by

yp(x) = y1
∫
C1Fdx+ y2

∫
C2Fdx,

y′p(x) = y′1
∫
C1Fdx+ y′2

∫
C2Fdx,

y′′p (x) = y′′1
∫
C1Fdx+ y′′2

∫
C2Fdx+ F (x).

Let F1 = ay′′1 + by′1 + cy1, F2 = ay′′2 + by′2 + cy2. Then

ay′′p + by′p + cyp = F1

∫
C1Fdx+ F2

∫
C2Fdx+ aF.

Because y1, y2 are solutions of the homogeneous differential equation, then F1 = F2 = 0.
By definition, aF = f . Therefore,

ay′′p + by′p + cyp = f.

■

Historical Details. The original variation ideas, attributed to Joseph Louis Lagrange
(1736-1813), involve substitution of y = c1(x)y1(x) + c2(x)y2(x) into (1) plus imposing
an extra unmotivated condition on the unknowns c1, c2:

c′1y1 + c′2y2 = 0.

The product rule gives y′ = c′1y1 + c1y
′
1 + c′2y2 + c2y

′
2, which then reduces to the two-

termed expression y′ = c1y
′
1 + c2y

′
2. Substitution into (1) gives

a(c′1y
′
1 + c1y

′′
1 + c′2y

′
2 + c2y

′′
2 ) + b(c1y

′
1 + c2y

′
2) + c(c1y1 + c2y2) = f

which upon collection of terms becomes

c1(ay
′′
1 + by′1 + cy1) + c2(ay

′′
2 + by′2 + cy2) + ay′1c

′
1 + ay′2c

′
2 = f.
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The first two groups of terms vanish because y1, y2 are solutions of the homogeneous
equation, leaving just ay′1c

′
1+ay′2c

′
2 = f . There are now two equations and two unknowns

X = c′1, Y = c′2:
ay′1X + ay′2Y = f,
y1X + y2Y = 0.

Solving by elimination,

X =
−y2f

aW
, Y =

y1f

aW
.

Then c1 is the integral of X and c2 is the integral of Y , which completes the historical
account of the relations

c1(x) =

∫
−y2(x)f(x)

a(x)W (x)
dx, c2(x) =

∫
y1(x)f(x)

a(x)W (x)
dx.

Exercises 6.4

Independence: Constant Equation
Find solutions y1, y2 of the given homoge-
neous differential equation using Theorem
6.1 page 430. Then apply the Wronskian
test page 464 to prove independence, fol-
lowing Example 6.22.

1. y′′ − y = 0

2. y′′ − 4y = 0

3. y′′ + y = 0

4. y′′ + 4y = 0

5. 4y′′ = 0

6. y′′ = 0

7. 4y′′ + y′ = 0

8. y′′ + y′ = 0

9. y′′ + y′ + y = 0

10. y′′ − y′ + y = 0

11. y′′ + 8y′ + 2y = 0

12. y′′ + 16y′ + 4y = 0

Independence for Euler’s Equation
Change variables, x = et, u(t) = y(x)
in Ax2y′′(x) + Bxy′(x) + Cy(x) = 0
to obtain a constant-coefficient equation

A

(
d2u

dt2
− du

dt

)
+B

du

dt
+Au = 0. Solve for

u(t) and then substitute t = ln |x| to obtain
y(x). Find two solutions y1, y2 which are
independent by the Wronskian test page
464.

13. x2y′′ + y = 0

14. x2y′′ + 4y = 0

15. x2y′′ + 2xy′ + y = 0

16. x2y′′ + 8xy′ + 4y = 0

Wronskian
Compute the Wronskian, up a constant
multiple, without solving the differential
equation: Example 6.23 page 466.

17. y′′ + y′ − xy = 0

18. y′′ − y′ + xy = 0

19. 2y′′ + y′ + sin(x)y = 0

20. 4y′′ − y′ + cos(x)y = 0

21. x2y′′ + xy′ − y = 0

22. x2y′′ − 2xy′ + y = 0

Variation of Parameters
Find the general solution yh + yp by ap-
plying a variation of parameters formula:
Example 6.24 page 466.

23. y′′ = x2

24. y′′ = x3
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25. y′′ + y = sinx

26. y′′ + y = cosx

27. y′′ + y′ = ex

28. y′′ + y′ = −ex

29. y′′ + 2y′ + y = e−x

30. y′′ − 2y′ + y = ex
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6.5 Undetermined Coefficients

Themethod of undetermined coefficients applies to solve constant-coefficient
differential equations

ay′′ + by′ + cy = f(x).(1)

It finds a particular solution yp without the integration steps present in variation
of parameters. The method’s importance is argued from its direct applicability to
second order differential equations in mechanics and circuit theory. Requirements
for f(x) appear below.

Everything said here for second order differential equations applies unchanged to
higher order differential equations

y(n) + pn−1y
(n−1) + · · ·+ p0y = f(x).

Definition 6.2 (Euler Solution Atom)
The term atom is an abbreviation for the phrase Euler solution atom of a constant-
coefficient linear homogeneous differential equation. Assume symbols a and b are
real constants with b > 0. Define an Euler base atom as one of the functions

eax, eax cos bx, eax sin bx.

Define an Euler solution atom as a power xm times a base atom, for integers
m = 0, 1, 2, . . .:

Euler solution atom = xm(base atom).

Requirements

The method of undetermined coefficients has special requirements:

• Equation ay′′ + by′ + cy = f(x) has constant coefficients a, b, c.

• The function f(x) is a sum of constants times Euler solution atoms.

Method of Undetermined Coefficients

Step 1. Define the list of k Euler atoms in a trial solution using Rule I and Rule II
[details below]. Multiply these atoms by undetermined coefficients d1,
. . . , dk, then add to define trial solution y.

Step 2. Substitute y into the differential equation.

Step 3. Match coefficients of Euler atoms left and right to write out linear algebraic
equations for unknowns d1, d2, . . . , dk. Solve the equations.

Step 4. The trial solution y with evaluated coefficients d1, d2, . . . , dk becomes
the particular solution yp.
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The Trial Solution Method

Central to the method of undetermined coefficients is the concept of a trial
solution y, which is formally a linear combination of functions with coefficients
yet to be determined. The method uses a guess of the form of a particular
solution, then finds it explicitly without actually solving the differential equation.
Knowing one particular solution yp is enough to give the general solution of the
differential equation (1), due to the superposition principle

y = yh + yp.

Example 6.25 (Trial Solution Illustration)

Consider the equation y′′ = 6x+ ex and a trial solution

y = d1x
3 + d2e

x.

Derive the equation
yp = x3 + ex,

by calculating the undetermined coefficients d1, d2.

Solution: We first discuss how to solve the differential equation, because this background
is needed to understand how the trial solution method works.

Answer check. The method of quadrature also applies to find y = c1 + c2x+ x3 + ex

instead of y = x3 + ex. Superposition y = yh + yp implies that the shortest answer for
a particular solution is yp = x3 + ex, obtained by dropping the homogeneous solution
c1 + c2x.

Details.

We will show how to find d1, d2 in the trial solution y = d1x
3 + d2e

x without solv-
ing the differential equation. The idea is to substitute the trial solution into the
differential equation. This gives from equation y′′ = 6x+ ex the successive relations

(d1x
3 + d2e

x)′′ = 6x+ ex

6d1x+ d2e
x = 6x+ ex

The last relation implies, by independence of the atoms x, ex, the coefficient-matching
equations 4

6d1 = 6,
d2 = 1.

The solution to this 2 × 2 linear system of equations is d1 = d2 = 1. Then the trial
solution is

y = d1x
3 + d2e

x = x3 + ex.

We write yp = x3 + ex.

That yp is actually a solution of y′′ = 6x+ ex can be justified by computing the second
derivative of x3 + ex.

4Euler atoms are independent in the sense of linear algebra. See Theorem 6.11, page 453.
Independence means unique representation of linear combinations, which provides coefficient
matching.
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Why the Trial Solution has only Atoms x3 and ex

The differential equation y′′ = 6x + ex can also be solved by answering this
question:

What expression y is differentiated twice to obtain 6x+ ex?

Calculus suggests differentiating some cubic polynomial and some expression con-
taining ex. This is the central idea behind choosing a trial solution. Any trial
solution, when substituted into the left side y′′ of the differential equation, has to
produce the terms in 6x+ ex. Therefore, Euler atoms in the trial solution must
have base atoms which appear in terms of the right side 6x+ ex.

Explained is why terms in the trial solution y = d1x
3+d2e

x are limited to base
atoms 1 and ex.

Unexplained is why atoms 1, x, x2 were not included in the trial solution.
Insight can be gained by substitution of a combination d3 + d4x+ d5x

2 into the
differential equation. Consider these steps:

(trial solution)′′ = 6x+ ex

(d3 + d4x+ d5x
2)′′ = 6x+ ex

d3(1)
′′ + d4(x)

′′ + d5(x
2)′′ = 6x+ ex

d3(0) + d4(0) + d5(2) = 6x+ ex

The coefficients d3 and d4 are multiplied by zero, because 1, x are solutions
of the homogeneous equation y′′ = 0. In general, homogeneous solution terms
should not be added to a trial solution, because upon substitution these terms
vanish from the left side of the differential equation. More succinctly, the missing
variables d3, d4 are free variables in the language of linear algebra. We would
choose d3 = d4 = 0 for simplicity. Term 2d5 is a multiple of base atom 1 = e0x.
Because that atom does not appear on the right side 6x+ ex, then d5 = 0. The
conclusion for this experiment: the trial solution y = d3 + d4x + d5x

2 has three
useless terms which do not contribute to terms on the right side of y′′ = 6x+ ex.

Euler Solution Atoms in the General Solution

Superposition y = yh + yp is used to describe the structure of solutions in dif-
ferential equations solved by the method of undetermined coefficients. The ho-
mogeneous solution yh of ay′′ + by′ + cy = 0 is constructed from atoms found
by Euler’s theorem. Therefore, yh is a sum of constants times atoms. For the
nonhomogeneous equation ay′′+by′+cy = f(x), the method of undetermined co-
efficients finds yp as a sum of constants times atoms. The plan here is to describe
completely the atoms in solutions yh and yp.

Theorem 6.19 (Solution Structure)
A differential equation ay′′ + by′ + cy = f(x) with constant coefficients a, b, c and
right side f(x) a sum of constants times Euler atoms has general solution y = yh+yp
which is a sum of constants times Euler atoms. In the language of linear algebra:
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6.5 Undetermined Coefficients

Solutions y(x) of ay′′ + by′ + cy = f(x) are a linear combination of
Euler atoms.

Euler Atoms in the Homogeneous Solution

The atoms in yh are found from Euler’s theorem applied to the characteristic
equation ar2+br+c = 0. To illustrate, the characteristic equation r2+2r+1 = 0
has double root −1, −1 and the corresponding atoms are e−x, xe−x.

Euler atoms can be extracted from a general solution yh = c1e
x+c2xe

x by taking
partial derivatives on the symbols c1, c2. Conversely, two distinct Euler atoms
are sufficient to form the general solution yh. Euler atoms for the homogeneous
equation can therefore be prescribed by any one of the following means:

1. The characteristic equation ar2 + br + c = 0.

2. The roots of the characteristic equation.

3. The general solution expression yh, with symbols c1, c2.

Euler Atoms in a Particular Solution yp

The Euler atoms that appear in yp may be assumed to not duplicate any atoms in
yh. The logic is that yp can be shortened in length by moving any homogeneous
solution into the terms of yh, due to superposition y = yh + yp.

Explained below is how to construct the k atoms in yp directly from the right
side f(x) of the differential equation. This is done by two rules, called Rule I
and Rule II. We always proceed under the assumption that Rule I will work,
and if it fails, then we go on to apply Rule II.

Undetermined Coefficients Rule I

Assume f(x) in the equation ay′′ + by′ + cy = f(x) is a sum of constants times Euler
atoms. For each atom A appearing in f(x), extract all distinct atoms that appear in A,
A′, A′′, . . . , then collect all computed atoms into a list of k distinct Euler atoms.

Test for a Valid Trial Solution

If the list contains no solution of the homogeneous differential equation, then
multiply the k Euler atoms by undetermined coefficients d1, . . . , dk to form the trial
solution

yp = d1(atom 1) + d2(atom 2) + · · ·+ dk(atom k).
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Undetermined Coefficients Rule II

Assume Rule I constructed a list of k atoms, but Rule I FAILED the TEST. The
particular solution yp is still a sum of constants times k Euler atoms. Rule II changes
some or all of the k atoms, by repeated multiplication by x.

The k-atom list is subdivided into groups with the same base atom, called group 1,
group 2, and so on. Each group is tested for a solution of the homogeneous differential
equation. If found, then multiply each Euler atom in the group by factor x. Repeat until
no group contains a solution of the homogeneous differential equation. The final
set of k Euler atoms is used to construct

yp = d1(atom 1) + d2(atom 2) + · · ·+ dk(atom k).

Grouping Atoms

The Rule I process of finding derivatives A, A′, A′′,. . . can be replaced by the
simpler task of forming the group of each atom A. The idea can be seen from
the example A = x2ex. Each differentiation A,A′A′′, . . . causes one lower power
of x to appear, then we can predict that the distinct atoms that appear in the
derivatives of A are

ex, xex, x2ex.

This set is called the group of Euler atom A. In this example, B = ex is the
base atom for atom A = x2ex and the group is base atom B multiplied by the
powers 1, x, x2.

Assume Euler atom A is base atom B times a power xm, for some integer m ≥ 0.
The Group of Euler atom A is the base atom B multiplied successively by the
m + 1 powers 1, x, . . . , xm. The group starts with the base atom B and ends
with the atom A = xmB.

B = any base atom
group of xmB ≡ B, xB, x2B, . . . , xmB.

Differentiation of an atom A with a sine or cosine factor produces two groups,
not one. For example, A = x2 sinx upon differentiation produces two groups

cosine group : cosx, x cosx, x2 cosx
sine group : sinx, x sinx, x2 sinx.

Key Examples of Atom Grouping

1. The atom x2e0x has base atom e0x = 1 and group 1, x, x2. The group size is 3.

2. The atom e−πx has base atom e−πx and group e−πx. A base atom has group size
1.

3. Atom x3ex cosx has base atom ex cosx and two 4-element groups:
ex cosx, xex cosx, x2ex cosx, x3ex cosx and
ex sinx, xex sinx, x2ex sinx, x3ex sinx.
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4. Atom x2ex has base atom ex. The group is the set of 3 atoms ex, xex, x2ex.

5. If A = xex cos 2x, then the Rule I process of extracting atoms from A, A′, A′′,
. . . causes two groups to be formed, group 1: ex cos 2x, xex cos 2x and group 2:
ex sin 2x, xex sin 2x. A shortcut for writing the second group is to change cosine
to sine in the first group.

Undetermined Coefficient Method Details

The undetermined coefficients trial solution y uses Rule I and Rule II. Then a
particular solution, according to the method, is

yp = a linear combination of atoms.

The discussion here is restricted to second order equations n = 2.

Superposition. The relation y = yh + yp suggests solving ay′′ + by′ + cy = f(x)
in two stages:

(a) Apply Euler’s Theorem to find yh as a sum of constants times atoms.

(b) Apply the method of undetermined coefficients to find yp as a sum of
constants times atoms.

Symbols. The symbols c1, c2 are reserved for use as arbitrary constants in the
general solution yh of the homogeneous equation. Symbols d1, d2, . . . are reserved
for use in the trial solution y of the non-homogeneous equation. Abbreviations:
c = constant, d = determined.

Expect to find two arbitrary constants c1, c2 in the solution yh, but in contrast,
no arbitrary constants appear in yp. The literature’s terminology undetermined
coefficients is misleading, because in fact symbols d1, d2, . . . are determined.

Algebra Background. The trial solution method requires background in the
solution of simultaneous linear algebraic equations, as is often taught in college
algebra. A linear algebra background will make the details seem even easier.

Example 6.26 (Undetermined Coefficients Illustration)

Solve the differential equation y′′ − y = x + xex by the method of undetermined
coefficients, verifying

yh = c1e
x + c2e

−x, yp = −x− 1

4
xex +

1

4
x2ex.

Solution:
Homogeneous Solution. The homogeneous equation

y′′ − y = 0
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has characteristic equation r2 − 1 = 0. The roots r = ±1 produce by Euler’s theorem
the list of atoms ex, e−x. Then the homogeneous solution is a linear combination of the
Euler atoms: yh = c1e

x + c2e
−x.

Trial Solution. The shortest trial solution is

y = (d1 + d2x) + (d3xe
x + d4x

2ex),

to be justified below.

Rule I. Let f(x) = x + xex. The derivatives f, f ′, f ′′, . . . are linear combinations of
the four Euler atoms 1, x, ex, xex. Because ex is a solution of the homogeneous equation
y′′ − y = 0, then Rule I FAILS the TEST.

Rule II. Divide the list 1, x, ex, xex into two groups with identical base atom:

Group Euler Atoms Base Atom
group 1 : 1, x 1
group 2 : ex, xex ex

Group 1 contains no solution of the homogeneous equation y′′ − y = 0, therefore Rule
II changes nothing. Group 2 contains solution ex of the homogeneous equation. Rule
II says to multiply group 2 by x, until the modified group contains no solution of the
homogeneous differential equation y′′ − y = 0 .Then

Group Euler Atoms Action
New group 1 : 1, x no change
New group 2 : xex, x2ex multiplied once by x

In New Group 2, xex is not a solution of the homogeneous problem, because if it is,
then 1 is a double root of the characteristic equation r2 − 1 = 0 [it isn’t].

The final groups have been found in Rule II. The shortest trial solution is

y = linear combination of Euler atoms in the new groups
= d1 + d2x+ d3xe

x + d4x
2ex.

Equations for the undetermined coefficients. Substitute y = d1 + d2x + d3xe
x +

d4x
2ex into y′′ − y = x+ xex. The details:

LHS = y′′ − y Left side of the equation.

= [y′′1 − y1] + [y′′2 − y2] Let y = y1 + y2, y1 = d1 + d2x, y2 = d3xe
x +

d4x
2ex.

= [0− y1]+
[2d3e

x + 2d4e
x + 4d4xe

x]
Use y′′1 = 0 and y′′2 = y2+2d3e

x+2d4e
x+4d4xe

x.

= (−d1)1 + (−d2)x+
(2d3 + 2d4)e

x + (4d4)xe
x

Collect on distinct Euler atoms.

Then y′′ − y = f(x) simplifies to

(−d1)1 + (−d2)x+ (2d3 + 2d4)e
x + (4d4)xe

x = f(x).

Write out a 4×4 system. Because f(x) = x+xex, the last display gives the expansion
below, which has been written with each side a linear combination of the atoms 1, x, ex,
xex.

(−d1)1 + (−d2)x+
(2d3 + 2d4)e

x + (4d4)xe
x = (0)1 + (1)x+ (0)ex + (1)xex.

(2)
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Equate coefficients of matching atoms 1, x, ex, xex left and right to give the system of
equations

−d1 = 0, match on 1
−d2 = 1, match on x

2d3 +2d4 = 0, match on ex

4d4 = 1. match on xex

(3)

Atom matching effectively removes x and changes the equation into a 4×4 linear algebraic
nonhomogeneous system of equations for d1, d2, d3, d4.

The technique is independence. To explain, linear independence of atoms means that a
linear combination of atoms is uniquely represented. Then two such equal representations
must have matching coefficients. Relation (2) says that two linear combinations of the
same list of atoms are equal. Then coefficients of 1, x, ex, xex left and right in (2) must
match, giving system (3).

Solve the equations. The 4× 4 system by design always has a unique solution. In the
language of linear algebra, there are zero free variables. In the present case, the system
is triangular, solved by back-substitution to give the unique solution d1 = 0, d2 = −1,
d4 = 1/4, d3 = −1/4.

Report yp. The trial solution y = d1+d2x+d3xe
x+d4x

2ex with determined coefficients
d1 = 0, d2 = −1, d3 = −1/4, d4 = 1/4 becomes the particular solution

yp = −x− 1

4
xex +

1

4
x2ex.

General solution. Superposition implies the general solution is y = yh + yp. From
above, yh = c1e

x + c2e
−x and yp = −x− 1

4xe
x + 1

4x
2ex. Then y = yh + yp is given by

y = c1e
x + c2e

−x − x− 1

4
xex +

1

4
x2ex.

Answer Check. Computer algebra system maple is used.

yh:=c1*exp(x)+c2*exp(-x);

yp:=-x-(1/4)*x*exp(x)+(1/4)*x^2*exp(x);

de:=diff(y(x),x,x)-y(x)=x+x*exp(x):

odetest(y(x)=yh+yp,de); # Success is a report of zero.

Further examples: pages 481, 482, 484, 484.

Constructing Euler Atoms from Roots

An Euler atom is constructed from a real number a or a complex number a+ ib.
The number used for the construction is called a root for the atom. Euler’s
theorem page 454 provides the rules:

Real root r = a constructs the exponential base atom eax. If a = 0, then
the base atom is e0x = 1.

For a complex root r = a + ib, b > 0, construct two base atoms eax cos bx
and eax sin bx.
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Atoms constructed from roots a or a+ ib using Euler’s multiplicity theorem gives
the complete list of all possible atoms:

Root Euler Atoms (b > 0)

r = a eax, xeax, x2eax, . . . , xneax

r = a+ ib eax cos bx, xeax cos bx, x2eax cos bx, . . . , xneax cos bx

r = a+ ib eax sin bx, xeax sin bx, x2eax sin bx, . . . , xneax sin bx

Constructing Roots from Euler Atoms

An Euler atom can be viewed as having been constructed from a unique real
root a or a unique pair of complex roots a ± ib. The reverse process considers
an atom and finds the possible root (or roots) used for its construction plus the
root’s multiplicity. Details in the following table:

Euler Atom Base Atom Root Multiplicity

xneax eax a n+ 1

xneax cos(bx) eax cos(bx) a± ib n+ 1

xneax sin(bx) eax sin(bx) a± ib n+ 1

Examples of Atoms and Roots

The atoms for root r = 0 of multiplicity 4 are 1, x, x2, x3. The atoms for root
r = 2 + 3i of multiplicity 3 are

e2x cos(3x), xe2x cos(3x), x2e2x cos(3x)
e2x sin(3x), xe2x sin(3x), x2e2x sin(3x).

The roots for atom x3 are r = 0, 0, 0, 0 (quad root). The roots for atom xex are
r = 1, 1. The roots for atom x cosx are r = i,−i, i,−i (double complex root).

Polynomials and Root Multiplicity

In college algebra, roots of polynomials are studied through the theory of equa-
tions, which includes the root and factor theorem, the rational root theorem, the
division algorithm and Descarte’s rule of signs.

The multiplicity of a polynomial root r = r0 is defined in college algebra to be
the unique integer m such that (r−r0)

m divides the polynomial, but (r−r0)
m+1

does not.

The algebra topic is enriched by calculus:

Theorem 6.20 (Multiplicity of a Root)
Let p(r) be the characteristic polynomial for a given linear homogeneous differential
equation with constant coefficients. The Multiplicity of a root r = r0 of p(r) = 0
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can be determined by calculus as follows.

Multiplicity 1 p(r0) = 0, p′(r0) ̸= 0
Multiplicity 2 p(r0) = p′(r0) = 0, p′′(r0) ̸= 0
Multiplicity 3 p(r0) = p′(r0) = p′′(r0) = 0, p′′′(r0) ̸= 0

...
...

Multiplicity m p(r0) = · · · = p(m−1)(r0) = 0, p(m)(r0) ̸= 0

Factorization of the characteristic polynomial may be possible. If so, then the
roots and their multiplicities are all known at once. Factorization is not needed
at all to test if r = r0 is a root, and only basic calculus is required to determine
the multiplicity of a root.

Computing the Shortest Trial Solution

Described here is are two alternatives to Rule I and Rule II, to construct the short-
est trial solution in the method of undetermined coefficients. The first method
uses Laplace theory. The second method uses differential operator techniques,
presented here assuming minimal background.

Laplace’s Method

Readers who are unfamiliar with Laplace theory should skip this subsection and
go on to the next.

The idea will be communicated by example, which hopefully is enough for a
reader already familiar with Laplace theory. Suppose we are going to solve the
equation

d2y

dt2
+ y = t+ et

using the theory of undetermined coefficients. Then Rule I applies and we don’t
need Rule II, giving y = yh + yp where

yh = c1 cos t+ c2 sin t, yp = d1 + d+ 2t+ d3e
t.

Laplace theory can quickly find yp by assuming zero initial data y(0) = y′(0) = 0,
in which case another candidate y for yp is found by the transfer function method:

L(y) = (Transfer function)(Laplace of t+ et) =
s2 + s− 1

s2(s− 1)(s2 + 1)
.

Partial fraction theory applies:

L(y) = a+ bs

s2 + 1
+

c

s
+

d

s2
+

f

s− 1
= L(a sin t+ b cos t+ c+ dt+ fet).
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Lerch’s theorem applies:

y = a sin t+ b cos t+ c+ dt+ fet.

The term a sin t + b cos t represents a solution yh of the homogeneous problem
y′′ + y = 0. Remove the homogeneous solution, then report a particular solution
as having the form

yp = c+ dt+ fet.

This is the shortest trial solution, obtained by Laplace theory.

The Method of Annihilators

Suppose that f(x) is a sum of constants times Euler atoms. The Annihilator of
f(x) is the unique minimal-order homogeneous constant-coefficient higher order
differential equation of leading coefficient one which has f(x) as a particular
solution.

For example, if f(x) = x + ex, then the annihilator of f(x) is the third order
constant-coefficient homogeneous differential equation [details in examples below]

y′′′ − y′′ = 0

Required is that f(x) is a particular solution of the differential equation, related
to the general solution y(x) by specialization of constants.

Examples of annihilators: The differential equation y′′+y = 0 is the annihila-
tor for sinx, but also the annihilator for 2 cosx− sinx. The differential equation
y′′′ + 4y′ = 0 is the annihilator for any of sin 2x, 1 + cos 2x, 7− 5 sin 2x.

An annihilator can be given by its characteristic equation, e.g., r3 + 4r = 0
generates annihilator y′′′ + 4y′ = 0.

Characteristic Polynomial of the Annihilator

Let f(x) be a given linear combination of atoms. The algorithm:

1. Determine the list of atoms for f(x).

2. Find the root(s) for each base atom B. Then find the corresponding highest
power real factors in the characteristic equation, using Euler’s theorem.

3. The characteristic polynomial is the product of the highest power distinct
factors so found.

For instance, f(x) = 2ex + cos 3x − x − x3 has base atoms ex, cos 3x, 1 with
corresponding roots 1, ±3i, 0, 0, 0, 0, listed according to multiplicity. By Euler’s
theorem, the corresponding factors with highest powers are r−1, r2+9, (r−0)4,
which implies the characteristic polynomial is (r − 1)(r2 + 9)r4.
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Annihilator Method Algorithm

Assume that the non-homogeneous differential equation of order n has constant
coefficients and the right side f(x) is a linear combination of atoms. The method
arises by applying the annihilator of f , as a differential operator, to the non-
homogeneous differential equation

y(n) +
n−1∑
k=0

aky
(k) = f(x).

Because the annihilator applied to f(x) is zero, then any solution y = yp(x)
satisfies a higher-order homogeneous equation, whose characteristic equation is
known [see item 3 below].

1. Find the homogeneous equation characteristic polynomial p(r).

2. Find the characteristic polynomial q(r) for the annihilator of f(x).

3. The shortest trial solution is a linear combination of the atoms obtained from
p(r)q(r) = 0, after removing those atoms which correspond to the roots of
p(r) = 0.

Further examples pages 486, 486.

Further study

The trial solution method is enriched by developing a Library of Special Meth-
ods for finding yp, which includes Kümmer’s method; see page ??. The library
provides an independent justification of the trial solution method. The only
background required is college algebra and polynomial calculus. The trademark
of the library method is the absence of linear algebra, tables or special cases, that
can be found in other literature on the subject.

Examples

Example 6.27 (Polynomial Trial Solution)

Solve for yp in y′′ = 2 − x + x3 using the method of undetermined coefficients,

verifying yp = x2 − 1

6
x3 +

1

20
x5.

Solution:
Homogeneous solution. The homogeneous equation y′′ = 0 has characteristic equa-
tion r2 = 0 with roots r = 0, 0. Euler’s theorem generates the two atoms 1, x. Then the
homogeneous solution is yh = c1 + c2x.

Trial solution. Let’s justify the selection of the trial solution

y = d1x
2 + d2x

3 + d3x
4 + d4x

5.
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Rule I applied to the right side f(x) = 2− x+ x3 gives a single group of four atoms

group 1 : 1, x, x2, x3.

Because 1 is a solution of the homogeneous equation y′′ = 0, then Rule I FAILS the
TEST. Rule II is applied to group 1, which modifies the group by multiplication by
x. The correction by x-multiplication must be applied twice, because both 1 and x are
solutions of the homogeneous differential equation y′′ = 0. Then the new group is

New group 1 : x2, x3, x4, x5.

The trial solution is then a linear combination of four Euler atoms from the new group,
y = d1x

2 + d2x
3 + d3x

4 + d4x
5.

Equations for the undetermined coefficients. The details:

2− x+ x3 = y′′ Reverse sides.

= 2d1 + 6d2x+ 12d3x
2 + 20d4x

3 Substitute y.

Equate coefficients of Euler atoms on each side of the equal sign to obtain the system of
equations

2d1 = 2,
6d2 = −1,
12d3 = 0,
20d4 = 1.

Solve the equations. This is a triangular system of linear equations for unknowns d1,
d2, d3, d4. Solving gives d1 = 1, d2 = −1/6, d3 = 0, d4 = 1/20.

Report yp. The trial solution expression y = d1x
2+d2x

3+d3x
4+d4x

5 after substitution
of the values found for d1 to d4 gives the particular solution

yp = x2 − 1

6
x3 +

1

20
x5.

Example 6.28 (Undetermined Coefficient Method)

Solve y′′+y = 2+ex+sin(x) by the trial solution method, verifying y = c1 cos(x)+
c2 sin(x) + 2 + 1

2e
x − 1

2x sinx.

Solution:

Homogeneous solution. The characteristic equation for the homogeneous equation
y′′ + y = 0 is r2 + 1 = 0. It has roots r = ±i and atom list cosx, sinx. Then yh is a
linear combination of the two atoms:

yh = c1 cosx+ c2 sinx.

Symbols c1 and c2 are arbitrary constants.

Rule I. The right side f(x) = 2 + ex + sinx of the differential equation is differentiated
a few times to discover the atom list 1, ex, cosx, sinx. Because cosx is a solution of the
homogeneous equation y′′ + y = 0, then Rule I FAILS the TEST.

Rule II. The Euler atoms are grouped by equal base atom as follows.
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6.5 Undetermined Coefficients

Group Euler Atoms Rule II action New Group
group 1: 1 no change 1
group 2: ex no change ex

group 3: cosx multiply once by x x cosx
group 4: sinx multiply once by x x sinx

Group 1 and Group 2 are unchanged by Rule II, because they do not contain a
solution of the homogeneous equation y′′ + y = 0. Group 3 and Group 4 do contain a
homogeneous solution, therefore each group is multiplied by x. The resulting new groups
3 and 4 do not contain a homogeneous solution. It is expected, in general, to iterate on
x-multiplication on a group until the first time that the new group contains no solution
of the homogeneous equation.

The trial solution is a linear combination of the four Euler atoms in the new groups:

y = d1 + d2e
x + d3x cosx+ d4x sinx.

Equations for the undetermined coefficients.

LHS = y′′ + y Left side of the equation y′′ + y =
2 + ex + sin(x).

= d1 + 2d2e
x − 2d3 sin(x) + 2d4 cos(x) Substitute trial solution y.

The equation y′′ + y = 2 + ex + sin(x) becomes

d1 + 2d2e
x − 2d3 sin(x) + 2d4 cos(x) = 2 + ex + sin(x).

Equating coefficients of atoms left and right implies the equations

d1 = 2,
2d2 = 1,

−2d3 = 1,
2d4 = 0.

Solve the equations. There are no details, because the system is diagonal. The
displayed answers are d1 = 2, d2 = 1/2, d3 = −1/2, d4 = 0.

Particular solution yp. The particular solution is obtained from the trial solution
y = d1 + d2e

x + d3x cosx+ d4x sinx by replacing the undetermined coefficients d1 to d4
by their values determined above:

yp = 2 +
1

2
ex − 1

2
x cos(x).

General Solution. Add yh and yp to obtain the general solution

y = c1 cos(x) + c2 sin(x) + 2 +
1

2
ex − 1

2
x cos(x).

Answer check. Computer algebra system maple checks the answer as follows.

dsolve(diff(y(x),x,x)+y(x)=2+exp(x)+sin(x),y(x));

# y(x) = 2+1/2*exp(x)-1/2*cos(x)*x+_C1*cos(x)+_C2*sin(x)
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Example 6.29 (Two Methods)

Solve y′′ − y = ex by undetermined coefficients and by variation of parameters.
Explain any differences in the answers.

Solution: The general solution is reported to be y = yh + yp = c1e
x + c2e

−x + xex/2.
Details follow.

Homogeneous solution. The characteristic equation r2 − 1 = 0 for y′′ − y = 0 has
roots ±1 with atom list ex, e−x. The homogeneous solution is yh = c1e

x + c2e
−x.

Undetermined Coefficients Summary. The right side of the differential equation,
f(x) = ex, contains only the single atom ex, therefore the Rule I atom list is ex. Rule I
FAILS the TEST, because ex is a solution of the homogeneous equation. Rule II applies,
then x multiplies the group ex to obtain the new group xex. This atom is not a solution
of the homogeneous equation, therefore the trial solution is y = d1xe

x. Substitute it into
y′′ − y = ex to obtain 2d1e

x + d1xe
x − d1xe

x = ex. Match coefficients of ex to compute
d1 = 1/2. Then yp = xex/2.

Variation of Parameters Summary. The homogeneous solution yh = c1e
x + c2e

−x

found above implies y1 = ex, y2 = e−x is a suitable independent pair of solutions. Their
Wronskian is

W =

∣∣∣∣ ex e−x

ex −e−x

∣∣∣∣ = −2.

The variation of parameters formula (6.18) applies:

yp(x) =

(∫
−e−x

−2
exdx

)
ex +

(∫
ex

−2
exdx

)
e−x.

Integration with zero constants of integration gives yp(x) = xex/2− ex/4.

Differences. The two methods give respectively yp = xex/2 and yp = xex/2 − ex/4.
The solutions y1 = xex/2 and y2 = xex/2 − ex/4 differ by the homogeneous solution
yh = y2 − y1 = −xex/4. In both cases, the general solution is y = c1e

x + c2e
−x + 1

2xe
x,

because homogeneous solution terms can be absorbed into the arbitrary constants c1, c2.

Example 6.30 (Sine–Cosine Trial solution)
Verify for y′′ + 4y = sinx− cosx that yp(x) = 5 cosx+ 3 sinx, using trial solution
y = A cosx+B sinx.

Solution: Let’s justify the trial solution. Rule I differentiates f(x) = sinx − cosx
to determine the atom list cosx, sinx. Because cosx and sinx are not solutions of
the homogeneous equation y′′ + 4y = 0, then Rule I succeeds and the trial solution is
y = d1 cosx + d2 sinx. Replace d1, d2 by symbols A, B to agree with the given trial
solution.

Equations for the undetermined coefficients. Substitute y = A cosx+B sinx into
the differential equation and use u′′ = −u for u = sinx or u = cosx to obtain the relation

sinx− cosx = y′′ + 4y
= (−A+ 4) cosx+ (−B + 4) sinx.

Matching coefficients of sine and cosine terms on the left and right gives the system of
equations

−A+ 4 = −1,
−B + 4 = 1.
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Solve the equations. The system is diagonal, therefore A = 5 and B = 3.

Report yp. The trial solution y = A cosx + B sinx after substitution of found values
for A, B becomes the particular solution yp(x) = 5 cosx+ 3 sinx.

Generally, the method of undetermined coefficients applied to similar second order prob-
lems produces linear algebraic equations that must be solved by linear algebra techniques.
Sometimes, the most convenient is Cramer’s 2× 2 rule.

Example 6.31 (Exponential Trial Solution)

Solve for yp in
y′′ − 2y′ + y = (1 + x− x2)ex

by the method of undetermined coefficients, verifying that

yp =
1

2
x2ex +

1

6
x3ex − 1

12
x4ex.

Solution:

Homogeneous solution. The homogeneous equation is y′′ − 2y′ + y = 0. The char-
acteristic equation r2 − 2r + 1 = 0 has a double root r = 1 and by Euler’s theo-
rem the corresponding atom list is ex, xex. Then the homogeneous general solution is
yh = c1e

x + c2xe
x, where c1 and c2 are arbitrary constants.

Trial solution. Let’s apply Rule I. The derivatives of f(x) = (1 + x − x2)ex are
combinations of the list of distinct Euler atoms ex, xex, x2ex. Because the first two
atoms are solutions of the homogeneous equation, then Rule I FAILS the TEST. Rule II
applies: the list of atoms for f(x) has just one group:

group 1 : ex, xex, x2ex.

Rule II modifies the list of three atoms by x-multiplication. It is applied twice, because
both ex and xex are solutions of the homogeneous differential equation. The new group
of three atoms is

New group 1 : x2ex, x3ex, x4ex.

A trial solution according to Rule II is a linear combination of the new group atoms:

y = d1x
2ex + d2x

3ex + d3x
4ex.

Equations for the undetermined coefficients. Substitute the trial solution y =
d1x

2ex+d2x
3ex+d3x

4ex solution into y′′− 2y′+ y = (1+x−x2)ex, in order to find the
undetermined coefficients d1, d2, d3. To present the details, let q(x) = d1x

2+d2x
3+d3x

4,
then y = q(x)ex implies

LHS = y′′ − 2y′ + y
= [q(x)ex]′′ − 2[q(x)ex]′ + q(x)ex

= q(x)ex + 2q′(x)ex + q′′(x)ex − 2q′(x)ex − 2q(x)ex + q(x)ex

= q′′(x)ex

= [2d1 + 6d2x+ 12d2x
2]ex.

Matching coefficients of Euler atoms left and right gives the 3× 3 system of equations

2d1 = 1,
6d2 = 1,
12d3 = −1.
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6.5 Undetermined Coefficients

Solve the equations. The 3 × 3 system is diagonal and needs no further analysis:
d1 = 1/6, d2 = 1/6, d3 = −1/12.

Report yp. The trial solution after substitution of found coefficients d1, d2, d3 becomes
the particular solution

yp =
1

2
x2ex +

1

6
x3ex − 1

12
x4ex.

General solution. The superposition relation y = yh + yp is the general solution

y = c1e
x + c2xe

x +
1

2
x2ex +

1

6
x3ex − 1

12
x4ex.

Answer check. The maple code:

de:=diff(y(x),x,x)-2*diff(y(x),x)+y(x)=(1+x-x^2)*exp(x);

dsolve(de,y(x));

# y(x) = 1/2*exp(x)*x^2 + 1/6*exp(x)*x^3

# -1/12*exp(x)*x^4+_C1*exp(x)+_C2*exp(x)*x

Example 6.32 (Annihilator)
Find the annihilator for f(x) = x− 4 sin 3x.

Solution: First, identify f(x) = x − 4 sin 3x as a linear combination of the atoms
x, sin 3x. Euler’s theorem implies that the characteristic polynomial must have roots
0, 3i,−3i. Then the characteristic polynomial must contain these factors:

Roots r = 0, 0 Atoms 1, x Factor r2

Roots ±3i Atoms cos 3x, sin 3x Factors r − 3i, r + 3i

Multiply the factors r2 and (r − 3i)(r + 3i) = r2 + 9 to generate the characteristic
polynomial

(factor r2) times (factor r2 + 9) = r4 + 9r2.

The annihilator is y(4) + 9y′′ = 0, obtained by translation of characteristic equation
r4 + 9r2 = 0 into a differential equation.

Example 6.33 (Annihilator)
Find the annihilator for f(x) = ex(x2 − 2 cos 3x).

Solution: Function f(x) = ex(x2 − 2 cos 3x) is a linear combination of the atoms x2ex,
ex cos 3x. Euler’s theorem implies that the roots are r = 1, 1, 1, 1± 3i. Then the charac-
teristic polynomial must contain factors as follows.

Roots Atoms Factor
r = 1, 1, 1 ex, xex, x2ex (r − 1)3

1± 3i ex cos 3x, ex sin 3x (r − 1− 3i)(r − 1 + 3i)

Multiply the factors (r − 1)3 and (r − 1)2 + 9 to generate the characteristic equation

(r − 1)3((r − 1)2 + 9) = 0.

Expanding, the characteristic polynomial is r5 − 5 r4 + 19 r3 − 37 r2 + 32 r − 10. In
applications, we would stop here, with the characteristic polynomial. If we continue,
then the annihilator is the differential equation y(5)−5y(4)+19y′′′−37y′′+32y′−10y = 0.
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Example 6.34 (Annihilator Method)
Find the shortest trial solution for the differential equation y′′ − y = x + xex using
the Method of Annihilators.

Solution: The example was solved previously using Rule I and Rule II with answer

yp = d1 + d2x+ d3xe
x + d4x

2ex.

Homogeneous equation. The characteristic polynomial for homogeneous equation
y′′− y = 0 is p(r) = r2− 1. It has roots r = 1, r = −1 and corresponding atoms ex, e−x.

Annihilator for f(x). The right side of the differential equation is f(x) = x + xex.
We compute the characteristic polynomial q(r) of an annihilator of f(x). The atoms
for f, f ′, f ′′, . . . are 1, x, ex, xex with corresponding roots 0, 0, 1, 1. The factors of the
characteristic polynomial q(r) are then r2, (r− 1)2, by Euler’s theorem. Specifically, we
used these specialized conclusions from Euler’s theorem:

1. Root r = 0 of q(r) = 0 has multiplicity 2 if and only if r2 is a factor of q(r);

2. Root r = 1 of q(r) = 0 has multiplicity 2 if and only if (r− 1)2 is a factor of q(r).

The conclusion of this analysis is that q(r) = product of the factors = r2(r − 1)2.

Trial solution. Let

w(r) = p(r)q(r) = (r2 − 1)r2(r − 1)2 = r2(r + 1)(r − 1)3.

Then yp must be a solution of the differential equation with characteristic equation
w(r) = 0, which implies that yp is a linear combination of the atoms

1, x, e−x, ex, xex, x2ex.

Atoms e−x and ex are solutions of the homogeneous equation, therefore they are removed.
The shortest trial solution is a linear combination of the Euler atoms

1, x, xex, x2ex.

Then
yp = d1 + d2x+ d5xe

x + d6x
2ex,

which agrees with the shortest trial solution obtained by Rule I and Rule II.

Exercises 6.5

Polynomial Solutions
Determine a polynomial solution yp for the
given differential equation.

1. y′′ = x

2. y′′ = x− 1

3. y′′ = x2 − x

4. y′′ = x2 + x− 1

5. y′′ − y′ = 1

6. y′′ − 5y′ = 10

7. y′′ − y′ = x

8. y′′ − y′ = x− 1

9. y′′ − y′ + y = 1

10. y′′ − y′ + y = −2

11. y′′ + y = 1− x

12. y′′ + y = 2 + x
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13. y′′ − y = x2

14. y′′ − y = x3

Polynomial-Exponential Solutions
Determine a solution yp for the given dif-
ferential equation.

15. y′′ + y = ex

16. y′′ + y = e−x

17. y′′ = e2x

18. y′′ = e−2x

19. y′′ − y = (x+ 1)e2x

20. y′′ − y = (x− 1)e−2x

21. y′′ − y′ = (x+ 3)e2x

22. y′′ − y′ = (x− 2)e−2x

23. y′′ − 3y′ + 2y = (x2 + 3)e3x

24. y′′ − 3y′ + 2y = (x2 − 2)e−3x

Sine and Cosine Solutions
Determine a solution yp for the given dif-
ferential equation.

25. y′′ = sin(x)

26. y′′ = cos(x)

27. y′′ + y = sin(x)

28. y′′ + y = cos(x)

29. y′′ = (x+ 1) sin(x)

30. y′′ = (x+ 1) cos(x)

31. y′′ − y = (x+ 1)ex sin(2x)

32. y′′ − y = (x+ 1)ex cos(2x)

33. y′′ − y′ − y = ex sin(2x)

34. y′′ − y′ − y = (x2 + x)ex cos(2x)

Undetermined Coefficients
Algorithm
Determine a solution yp for the given dif-
ferential equation.

35. y′′ = x+ sin(x)

36. y′′ = 1 + x+ cos(x)

37. y′′ + y = x+ sin(x)

38. y′′ + y = 1 + x+ cos(x)

39. y′′ + y = sin(x) + cos(x)

40. y′′ + y = sin(x)− cos(x)

41. y′′ = x+ xex + sin(x)

42. y′′ = x− xex + cos(x)

43. y′′ − y = sinh(x) + cos2(x)

44. y′′ − y = cosh(x) + sin2(x)

45. y′′ + y′ − y = x2ex

46. y′′ + y′ − y = xex sin(2x)

Roots and Related Atoms
Euler atoms A and B are said to be re-
lated if and only if the derivative lists A,
A′, . . . and B, B′, . . . share a common Euler
atom.

47. Find the roots, listed according to mul-
tiplicity, for the atoms 1, x, x2, e−x,
cos 2x, sin 3x, x cosπx, e−x sin 3x.

48. Find the roots, listed according to
multiplicity, for the atoms 1, x3, e2x,
cosx/2, sin 4x, x2 cosx, e3x sin 2x.

49. Let A = xe−2x and B = x2e−2x. Ver-
ify that A and B are related.

50. Let A = xe−2x and B = x2e2x. Verify
that A and B are not related.

51. Prove that atoms A and B are related
if and only if their base atoms have the
same roots.

52. Prove that atoms A and B are re-
lated if and only if they are in the same
group. See page 474 for the definition
of a group of atoms.

Modify a Trial Solution
Apply Rule II to modify the given Rule I
trial solution into the shortest trial solu-
tion.
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53. The characteristic equation has factors
r3, (r3 + 2r2 + 2), (r − 1)2, (r + 1),
(r2 + 4)3 and the Rule I trial solution
is constructed from atoms 1, x, ex, xex,
e−x, cos 2x, sin 2x, cosx, sinx.

54. The characteristic equation has factors
r2, (r3 +3r2 +2), (r+1), (r2 +4)3 and
the Rule I trial solution is constructed
from atoms 1, x, ex, xex, e−x, cos 2x,
sin 2x.

Annihilators and Laplace Theory
Laplace theory can construct the annihila-
tor of f(t). The example y′′ + 4y = t+ 2t3

is used to discuss the techniques. Formu-
las to be justified: p(s) = L(f)/L(y) and
q(s) = denom(L(f(t))).

55. (Transfer Function) Find the charac-
teristic polynomial q(r) for the homo-
geneous equation y′′ + 4y = 0. The
transfer function for y′′ + 4y = f(t) is
L(y)/L(f), which equals 1/q(s).

56. (Laplace of yp(t))

The Laplace of y(t) for problem
y′′ + 4y = f(t), y(0) = y′(0) = 0
must equal the Laplace of f(t) times the
transfer function. Justify and explain
what it has to do with finding yp.

57. (Annihilator of f(t))

Let g(t) = t+2t3. Verify that L(g(t)) =
s2 + 12

s4
, which is a proper fraction with

denominator s4. Then explain why
one annihilator of g(t) has character-
istic polynomial r4. The result means
that y = g(t) = t + 2t3 is a solution of
y′′′′ = 0.

58. (Laplace Theory finds yp)

Show that the problem y′′+4y = t+2t3,
y(0) = y′(0) = 0 has Laplace transform

L(y) = s2 + 12

(s2 + 4)s4
.

Explain why y(t) must be a solution
of the constant-coefficient homogeneous
differential equation having characteris-
tic polynomial w(r) = (r2 + 4)r4.

Annihilator Method Justified
The method of annihilators can be justi-
fied by successive differentiation of a non-
homogeneous differential equation, then
forming a linear combination of the re-
sulting formulas. It is carried out here,
for exposition efficiency, for the non-
homogeneous equation y′′ + 4y = x + 2x3.
The right side is f(x) = x + 2x3 and the
homogeneous equation is y′′ + 4y = 0.

59. (Homogeneous equation)

Verify that y′′ +4y = 0 has characteris-
tic polynomial q(r) = r2 + 4.

60. (Annihilator)

Verify that y(4) = 0 is an annihilator
for f(x) = x + 2x3, with characteristic
polynomial q(r) = r4.

61. (Composite Equation)

Differentiate four times across the equa-
tion y′′ + 4y = f(x) to obtain y(6) +
4y(4) = f (4)(x). Argue that f (4)(x) = 0
because y(4) = 0 is an annihilator of
f(x). This proves that yp is a solution
of higher order equation y(6)+4y(4) = 0.
Then argue that w(r) = r4(r2+4) is the
characteristic polynomial of the equa-
tion y(6) + 4y(4) = 0.

62. (General Solution)

Solve the homogeneous composite equa-
tion y(6)+4y(4) = 0 using its character-
istic polynomial w(r) = r4(r2 + 4).

63. (Extraneous Atoms)

Argue that the general solution from
the previous exercise contains two terms
constructed from atoms derived from
roots of the polynomial q(r) = r2 + 4.
Remove these terms to obtain the short-
est expression for yp and explain why it
works.

64. (Particular Solution)

Report the form of the shortest particu-
lar solution of y′′+4y = f(x), according
to the previous exercise.

489



6.6 Undamped Mechanical Vibrations

6.6 Undamped Mechanical Vibrations

The study of vibrating mechanical systems begins here with examples for un-
damped systems with one degree of freedom. The main example is a mass on a
spring. The undamped, unforced cases are considered in a number of physical
examples, which include the following: simple pendulum, compound pendulum,
swinging rod, torsional pendulum, shockless auto, sliding wheel, rolling wheel.

Simple Harmonic Motion

Consider the spring-mass system of Figure 2, where x measures the signed dis-
tance from the equilibrium position of the mass. The spring is assumed to exert
a force under both compression and elongation. Such springs are commonly used
in automotive suspension systems, notably coil springs and leaf springs. In the
case of coil springs, there is normally space between the coils, allowing the spring
to exert bidirectional forces.

k

mx > 0

x < 0
x = 0

Figure 2. An Undamped Spring-Mass Sys-
tem.
Compression, equilibrium and elongation of the
spring are shown with corresponding positions of the
mass m.

Hooke’s Law. The basic physical law to be applied is:

The linear restoring force F exerted by a spring is proportional to
the signed elongation X, briefly, F = −kX.

The number k is called Hooke’s constant for the spring. In the model of Figure
2, X = x(t) and k > 0. The minus sign accounts for the action of the force: the
spring tries to restore the mass to the equilibrium state, so the vector force is
directed toward the equilibrium position x = 0.

Newton’s Second Law. Specialized to the model in Figure 2, Newton’s second
law says:

The force F exerted by a mass m attached to a spring is F = ma
where a = d2x/dt2 is the acceleration of the mass.

The Weight W = mg is defined in terms of the Gravitational Constant
g = 32 ft/s2, 9.8 m/s2 or 980 cm/s2 where the mass m is given respectively in
slugs, kilograms or grams. The weight is the force due to gravity and it has
the appropriate units for a force: pounds in the case of the fps system of units.
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Method of Force Competition

Hooke’s law F = −kx(t) and Newton’s second law F = mx′′(t) give two inde-
pendent equations for the force acting on the system. Equating competing forces
implies that the signed displacement x(t) satisfies the Free Vibration equation

mx′′(t) + kx(t) = 0.

It is also called the Harmonic Oscillator in its equivalent form

x′′(t) + ω2x(t) = 0, ω2 =
k

m
.

In this context, ω is theNatural Frequency of the free vibration. The harmonic
oscillator is said to describe a Simple Harmonic Motion x(t). By Theorem
6.1 page 430:

x(t) = c1 cosωt+ c2 sinωt

Background: Fundamental Trigonometric Identities

The identities used repeatedly in differential equations applications are:

cos2 θ + sin2 θ = 1
1 + tan2 θ = sec2 θ
cot2 θ + 1 = csc2 θ

Pythagorean identities. 1

sin(−θ) = − sin(θ)
cos(−θ) = cos(θ)

Odd-even identities. 2

1 : Divide the first by cos2 θ or sin2 θ to derive the others.

2 : Identities like tan(−θ) = − tan(θ) can be derived as needed from these two
identities, e.g., tan θ = sin θ/ cos θ.

sin(a+ b) = sin(a) cos(b) + sin(b) cos(a)
cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

Sum identities. 3

sin(a− b) = sin(a) cos(b)− sin(b) cos(a)
cos(a− b) = cos(a) cos(b) + sin(a) sin(b)

Difference identities. 4

3 : Obtain the second from the first by differentiation on symbol a, holding b
constant.

4 : Both follow from the sum identities by replacing symbol b by −b, then apply
the even-odd relations.
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Background: Harmonic Motion

It is known from trigonometry that

x(t) = A cos(ωt− α)

has Amplitude A, Period 2π/ω and Phase shift α/ω. A full period is called
a Cycle and a half-period a Semicycle. The Frequency ω/(2π) is the number
of complete cycles per second, or the reciprocal of the period.

−A 2π
ω

A

α
ω Figure 3. Simple Harmonic Motion.

Shown is x(t) = A cos(ωt − α), period 2π/ω, phase
shift α/ω and amplitude A.

Visualization of Harmonic Motion

A simple harmonic motion can be obtained graphically by means of the ex-
periment shown in Figure 4, in which an undamped spring-mass system has an
attached pen that writes on a moving paper chart. The chart produces the simple
harmonic motion x(t) = c1 cosωt+ c2 sinωt or equivalently x(t) = A cos(ωt−α).

paper

pen

mass
motion

Figure 4. A Chart from Harmonic Motion.
A moving paper chart records the vertical motion of
a mass on a spring using an attached pen.

Phase-Amplitude Conversion

Given a simple harmonic motion x(t) = c1 cosωt+c2 sinωt, as in Figure 3, define
Amplitude A and Phase angle α by the formulas

A =
√
c21 + c22, c1 = A cosα and c2 = A sinα.

Then the simple harmonic motion has the Phase-Amplitude form

x(t) = A cos(ωt− α).(1)

Details. Equation (1) is derived from the cosine difference identity page 491 and
basic triangle definitions of sine and cosine.

x(t) = c1 cosωt+ c2 sinωt Harmonic oscillator x′′ + ω2x = 0,
general solution.
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x(t) = A cosα cosωt+A sinα sinωt Insert identities c1 = A cosα and c2 =
A sinα.

x(t) = A cos(ωt− α) Use a = ωt and b = α in the cosine
difference identity.

Phase Shift Calculations. The phase shift is the amount of horizontal trans-
lation required to shift the cosine curve cos(ωt − α) so that its graph is atop
cos(ωt). To find the phase shift from equation (1), set the argument of the cosine
term to zero, then solve for t.

To solve for α ≥ 0 and less than 2π, the expected range, form equations c1 =
A cosα, c2 = A sinα, then compute numerically by calculator the radian angle
ϕ = arctan(c2/c1), |ϕ| < π/2. Quadrantial angle rules are applied when c1 = 0
or c2 = 0. Calculators return a division by zero error for c1 = 0 and maybe ϕ = 0
for c2 = 0, the latter incorrect if c1 < 0. Computers should have atan2, a C
library function that accepts c1, c2 and returns angle |ϕ| < π/2. A calculator or
computer answer that is negative requires correction by adding 2π to the radian
answer. The corrected answer would give cos(ωt−α−2π) instead of cos(ωt−α),
however the cosine has period 2π: the phase-amplitude answers are equal.

Applications

Considered below are a variety of models with pendulum-like motion. The il-
lustrations start with the simple pendulum and end with applications to auto
suspension systems and rolling wheels.

Simple Pendulum

A pendulum is constructed from a thin massless wire or rod of length L and a
body of mass m, as in Figure 5.

m

θ

mg⃗ Figure 5. A Simple Pendulum

Derived below is the Pendulum Equation

θ′′(t) +
g

L
sin θ(t) = 0.(2)

Details: Along the circular arc traveled by the mass, the velocity is ds/dt where
s = Lθ(t) is arclength. The acceleration is Lθ′′(t). Newton’s second law for the
force along this arc is F = mLθ′′(t). Another relation for the force can be found
by resolving the vector gravitational force mg⃗ into its normal and tangential
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components. By trigonometry, the tangential component gives a second force
equation F = −mg sin θ(t). Equate competing forces and cancel m to obtain (2).

Because the mass m cancels from the equation, the pendulum oscillation depends
only upon the length of the string and not upon the mass!

The Linearized pendulum equation is

Θ′′(t) +
g

L
Θ(t) = 0.(3)

Details: Approximation sinu ≈ u is valid for small angles u. Apply the approx-
imation to (2). The result is the linearized pendulum (3).

Equation (2) is indistinguishable from the classical harmonic oscillator, except
for variable names. The solution of (3):

Θ(t) = A cos(ωt− α), ω2 = g/L

Gymnast Swinging about a Horizontal Bar

The mass m of the gymnast is assumed concentrated at the center of the gym-
nast’s physical height H. The problem is then simplified to a pendulum motion
with L = H/2. The resulting equation of motion for the angle θ between the
gravity vector and the gymnast is by equation (2) the Gymnast’s Equation

θ′′(t) +
2g

H
sin θ(t) = 0.(4)

The linearized version of this equation is not interesting, because the angle θ is
never small. Commonly, θ(t) goes through many multiples of 2π radians, during
an exercise.

Physical Pendulum

The Compound Pendulum or Physical Pendulum is a rigid body of total
mass m having center of mass C which is suspended from a fixed origin O – see
Figure 6.

mg⃗

θ

O

C

Figure 6. A Physical Pendulum

Derived by force competition is the Compound Pendulum equation

θ′′(t) +
mgd

I
sin θ(t) = 0.(5)
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Details: The vector r⃗ from O to C has magnitude d = ∥r⃗∥ > 0. The gravity force
vector G⃗ = mg⃗ (mass × acceleration due to gravity) makes angle θ with vector
r⃗. The restoring torque r⃗× G⃗ has magnitude F = −∥r⃗× G⃗∥ = −∥r⃗∥∥G⃗∥ sin θ =
−mgd sin θ. Newton’s second law gives a second force equation F = Iθ′′(t) where
I is the torque of the rigid body about O. Force competition results in equation
(5).

Approximation sinu ≈ u applied to equation (5) gives a harmonic oscillator
known as the linearized compound pendulum:

Θ′′(t) + ω2Θ(t) = 0, ω =

√
mgd

I
.(6)

Swinging Rod

As depicted in Figure 7, a swinging rod is a special case of the compound pendu-
lum. Assumed for the modeling is a rod of length L and mass m, with uniform
mass density.

Figure 7. A Swinging Rod

The Swinging Rod equation

θ′′(t) +
3g

2L
sin θ(t) = 0(7)

will be derived from the compound pendulum equation (5).

Details: The center of mass distance d = L/2 appears in the calculus torque
relation I = mL2/3. Then:

mgd

I
=

3mgL

2mL2
=

3g

2L

Insert this relation into the compound pendulum equation (5). The result is the
swinging rod equation (7).

If equation (6) is used instead (5), then the result is the linearized swinging
rod equation

Θ′′(t) + ω2Θ(t) = 0, ω =

√
3g

2L
.(8)

Torsional Pendulum

A model for a balance wheel in a watch, a gavanometer or a Cavendish torsional
balance is the torsional pendulum, which is a rigid body suspended by a solid
wire – see Figure 8.
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θ0

Figure 8. A Torsional Pendulum.
An example is a balance wheel in a watch. The wheel
rotates angle θ0 about the vertical axis, which acts as a
spring, exerting torque I against the rotation.

The Torsional Pendulum equation:

θ′′0(t) + ω2θ0(t) = 0, ω =

√
κ

I
.(9)

Details: The wire undergoes twisting, which exerts a restoring force F = −κθ0
when the body is rotated through angle θ0. There is no small angle restriction on
this restoring force, because it acts in the spirit of Hooke’s law like a linear spring
restoring force. The model uses Newton’s second law force relation F = Iθ′′0(t),
as in the physical pendulum. Force competition against the restoring force F =
−κθ0 gives the torsional pendulum equation (9).

Shockless Auto

An automobile loaded with passengers is supported by four coil springs, as in
Figure 9, but all of the shock absorbers are worn out. The simplistic linear
model mx′′(t) + kx(t) = 0 will be applied. The plan is to estimate the number
of seconds it takes for one complete oscillation. This is the time between two
consecutive bottom–outs of the automobile.5

Figure 9. Car on Four Springs: Linear Model

Assume the car plus occupants has mass 1350 Kg. Let each coil spring have
Hooke’s constant k = 20000 Newtons per meter. The load is divided among
the four springs equally, so each spring supports m = 1350/4 Kg. Let ω be the
natural frequency of vibration. Then the number of seconds for one complete
oscillation is the period T = 2π/ω seconds. The free vibration model for one
spring is

1350

4
x′′(t) + 20000x(t) = 0.

The harmonic oscillator form is x′′ + ω2x = 0, where ω2 = 20000(4)
1350 = 59.26.

Therefore, ω = 7.70. Then the period is T = 2π/ω = 0.82 seconds. The inter-
pretation: the auto bottoms-out every 0.82 seconds.

5Teenagers popularized late-night cruising of Los Angeles boulevards in shockless 4-door
sedans. They disabled the shock absorbers and modified the suspension to give a completely
undamped ride.
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Rolling Wheel on a Spring

A wheel of total mass m and radius R is attached at its center to a spring of
Hooke’s constant k, as in Figure 10. The wheel rolls without slipping. The spring
is assumed to have negligible mass and zero kinetic energy. Let k be the Hooke’s
constant for the spring. Let x(t) be the elongation of the spring from equilibrium,
x > 0 corresponding to the wheel rolling to the right and x < 0 corresponding to
the wheel rolling to the left.

k

0 x Figure 10. A Rolling Wheel on a Spring.

Derived below is the Rolling Wheel Equation

mx′′(t) +
2

3
kx(t) = 0.(10)

Details: The spring does not react only to tension, but it reacts like a coil spring
with spacing that restores bi-directionally to equilibrium.

Figure 11. Restoring Force F = kx.
By Hooke’s law, the spring restores to equilibrium for
both compression and elongation.

If the wheel slides frictionless, then the model is the harmonic oscillator equa-
tion mx′′(t) + kx(t) = 0. A wheel that rolls without slipping has inertia, and
consideration of this physical difference will be shown to give equation (10).

A curious consequence is that x(t) is identical to the frictionless sliding wheel with
spring constant reduced from k to 2k/3. This makes sense physically, because
rolling wheel inertia is observed to reduce the apparent stiffness of the spring.

The derivation begins with the energy conservation law

Kinetic + Potential = constant.

The kinetic energy T is the sum of two energies, T1 = 1
2mv2 for translation and

T2 = 1
2Iω

2 for the rolling wheel, whose inertia is I = 1
2mR2. The velocity is

v = Rω = x′(t). Algebra gives T = T1 + T2 = 3
4mv2. The potential energy

is K = 1
2kx

2 for a spring of Hooke’s constant k. Application of the energy
conservation law T + K = c gives the equation 3

4m(x′(t))2 + 1
2k(x(t))

2 = c.
Differentiate this equation on t to obtain 3

2mx′(t)x′′(t) + kx(t)x′(t) = 0, then
cancel x′(t) to give equation (10).
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Examples and Methods

Example 6.35 (Harmonic Vibration)
A mass of m = 250 grams attached to a spring of Hooke’s constant k undergoes
free undamped vibration. At equilibrium, the spring is stretched 25 cm by a force
of 8 Newtons. At time t = 0, the spring is stretched 0.5 m and the mass is set in
motion with initial velocity 5 m/s directed downward from equilibrium. Find:

(a) The numerical value of Hooke’s constant k.

(b) The initial value problem for vibration x(t).

Solution:
(a): Hooke’s law Force=k(elongation) is applied with force 8 Newtons and elongation
25/100 = 1/4 meter. Equation 8 = k(1/4) implies k = 32 N/m.

(b): Given m = 250/1000 kg and k = 32 N/m from part (a), then the free vibration
model mx′′ + kx = 0 becomes 1

4x
′′ + 32x = 0. Initial conditions are x(0) = 0.5 m and

x′(0) = 5 m/s. The initial value problem is
d2x

dt2
+ 128x = 0,

x(0) = 0.5,
x′(0) = 5.

Example 6.36 (Phase-Amplitude Conversion)
Write the vibration equation

x(t) = 2 cos(3t) + 5 sin(3t)

in phase-amplitude form x = A cos(ωt−α). Create a graphic of x(t) with labels for
period, amplitude and phase shift.

Solution:
The answer and the graphic appear below.

x(t) =
√
29 cos(3t− 1.190289950) =

√
29 cos(3(t− 0.3967633167)).

F P

A

Figure 12. Harmonic Oscillation.

The graph of 2 cos(3t) + 5 sin(3t). It has
amplitude A =

√
29 = 5.385, period P =

2π/3 and phase shift F = 0.3967633167.
The graph is on 0 ≤ t ≤ P + F .
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Algebra Details. The plan is to re-write x(t) in the form x(t) = A cos(ωt− α), called
the phase-amplitude form of the harmonic oscillation. The main tools from trigonometry
appear on page 491.

Start with x(t) = 2 cos(3t)+5 sin(3t). Compare the expression for x(t) with Trig identity
x(t) = A cos(ωt− α) = A cos(α) cos(ωt) +A sin(α) sin(ωt). Then define accordingly

ω = 3, A cos(α) = 2, A sin(α) = 5.

The Pythagorean identity cos2 α + sin2 α = 1 implies A2 = 22 + 52 = 29 and then the
amplitude is A =

√
29. Because cosα = 2/A, sinα = 5/A, then both the sine and cosine

are positive, placing angle α in quadrant I. Divide equations cosα = 2/A, sinα = 5/A
to obtain tan(α) = 5/2, which by calculator implies α = arctan(5/2) = 1.190289950
radians or 68.19859051 degrees. Then x(t) = A cos(ωt−α) =

√
29 cos(3t−1.190289950).

Computer Details. Either equation for x(t) can be used to produce a computer
graphic. A hand-drawn graphic would use only the phase-amplitude form. The pe-
riod is P = 2π/ω = 2π/3. The amplitude is A =

√
29 = 5.385164807 and the phase shift

is F = α/ω = 0.3967633167. The graph is on 0 ≤ t ≤ P + F .

# Maple

F:=evalf(arctan(5/2)/3); P:=2*Pi/3;A:=sqrt(29);

X:=t->2*cos(3*t)+5*sin(3*t);

opts:=xtickmarks=[0,F,P/2+F,P+F],ytickmarks=[-A,0,A],

axes=boxed,thickness=3,labels=["",""];

plot(X(t),t=0..P+F,opts);

Example 6.37 (Undamped Spring-Mass System)
A mass of 6 Kg is attached to a spring that elongates 20 centimeters due to a force
of 12 Newtons. The motion starts at equilibrium with velocity −5 m/s. Find an
equation for x(t) using the free undamped vibration model mx′′ + kx = 0.

Solution: The answer is x(t) = −
√

5
2 sin(

√
10t).

The mass is m = 6 kg. Hooke’s law F = kx is applied with F = 12 N and x = 20/100 m.
Then Hooke’s constant is k = 60 N/m. Initial conditions are x(0) = 0 m (equilibrium)
and x′(0) = −5 m/s. The model is

6
d2x

dt2
+ 60x = 0,

x(0) = 0,
x′(0) = −5.

Solve the Initial Value Problem. The characteristic equation 6r2 + 60 = 0 is solved
for r = ±i

√
10, then the Euler solution atoms are cos(

√
10t), sin(

√
10t). The general

solution is a linear combination of Euler atoms:

x(t) = c1 cos(
√
10t) + c2 sin(

√
10t).

The task remaining is determination of constants c1, c2 subject to initial conditions
x(0) = 0, x′(0) = −5. The linear algebra problem uses the derivative formula

x′(t) = −
√
10c1 sin(

√
10t) +

√
10c2 cos(

√
10t).
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The 2×2 system of linear algebraic equations for c1, c2 is obtained from the two equations
x(0) = 0, x′(0) = −5 as follows.{

cos(0)c1 + sin(0)c2 = 0, Equation x(0) = 0

−
√
10 sin(0)c1 +

√
10 cos(0)c2 = −5, Equation x′(0) = −5

Because cos(0) = 1, sin(0) = 0, then c1 = 0 and c2 = −5/
√
10 = −

√
5/2. Insert answers

c1, c2 into the general solution to find the answer to the initial value problem:

x(t) = −
√

5

2
sin(

√
10t).

Example 6.38 (Pendulum)
A simple linearized pendulum of length 2.5 m oscillates with angle variable θ(t)
satisfying θ(0) = 0 (equilibrium position) and θ′(0) = 3 (radial velocity). Find θ(t)
in phase-amplitude form and report the period, amplitude and phase shift.

Solution: The answer is θ(t) = 3
√

25
98 sin

(√
98
25 t
)
, which has amplitude 3

√
25

98
, period

2π

√
25

98
, phase shift zero.

The mass is not given, because we use model equation (3), θ′′(t) + g
Lθ(t) = 0, in which

g = 9.8 and L = 2.5. Then the initial value problem is
d2θ

dt2
+

98

25
θ = 0,

θ(0) = 0,
θ′(0) = 3.

Solve the Initial Value Problem. The characteristic equation r2 + 98
25 = 0 is solved

for r = ±iω where ω =
√

98
25 . The Euler solution atoms are cos(ωt), sin(ωt). The general

solution:
θ(t) = c1 cos(ωt) + c2 sin(ωt).

The task remaining is determination of constants c1, c2 subject to initial conditions
θ(0) = 0, θ′(0) = 3. The linear algebra problem uses the derivative formula

θ′(t) = −ωc1 sin(ωt) + ωc2 cos(ωt).

The 2 × 2 system of equations for c1, c2 is obtained from equations θ(0) = 0, θ′(0) = 3
as follows. {

cos(0)c1 + sin(0)c2 = 0, Equation θ(0) = 0
−ω sin(0)c1 + ω cos(0)c2 = 3, Equation θ′(0) = 3

Because cos(0) = 1, sin(0) = 0, then c1 = 0 and c2 = 3/ω = 3
√

25
98 . The solution to the

initial value problem is

θ(t) = 3

√
25

98
sin

(√
98

25
t

)
.
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Example 6.39 (Gymnast)
Consider the change of variables x(t) = θ(t), y(t) = θ′(t), called the position-

velocity substitution. Re-write the gymnast equation (4), θ′′ + 2g
H sin θ = 0, in the

form
dx

dt
= y(t),

dy

dt
= −2g

H
sin(x(t)).

(11)

Apply the method of quadrature to develop the equation for the total mechanical
energy

1

2
y2 +

2g

H
(1− cosx) = E.(12)

Solution: The terms in the energy equation (12) are 1
2y

2, called the Kinetic Energy,
and ω2(1− cosx), called the Potential Energy. We will show that E = 1

2y(0)
2.

Details for (11): Define x(t) = θ(t) and y(t) = θ′(t). Then

x′ = θ′

= y
Used x(t) = θ(t) and y(t) = θ′(t).

y′ = θ′′

= −2g

H
sin(θ)

= −2g

H
sin(x)

Used x(t) = θ(t) and θ′′ + 2g
H sin θ = 0.

Details for (12): Because y = x′, we multiply the second equation in (11) by y and
then re-write the resulting equation as

yy′ = −2g

H
x′ sin(x).

This is a quadrature equation. Integrate on variable t across the equation to obtain for
some constant C the identity

1

2
y2 =

2g

H
cos(x) + C.

Let t = 0 in this equation to evaluate C = 1
2 (y(0))

2− 2g
H . Then rearrange terms to obtain

the equation
1

2
y2 +

2g

H
(1− cos(x)) =

1

2
(y(0))

2
.

This is equation (12) with E = 1
2 (y(0))

2.

Example 6.40 (Swinging Rod)
A uniform rod of length 16 cm swings from a support at origin O. The motion
started at angle θ(0) = π/12 radians with radial velocity zero. Find approximate
equations for the motion at the extreme end of the rod in rectangular coordinates.
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Solution: The answer is

x(t) =
16

100
cos(θ(t)),

y(t) =
16

100
sin(θ(t)),

θ(t) =
π

12
cos

(
t

2

√
735

)
.

The mass is not given, because we use model equation (8), θ′′(t) + 3g
2L sin(θ(t)) = 0, in

which g = 9.8 m/s2 and L = 16/100 m. Then the initial value problem is
d2θ

dt2
+

735

4
sin(θ) = 0,

θ(0) = π/2,
θ′(0) = 0.

The linearized equation will be used to find an approximate formula for the motion. The
initial value problem is 

d2θ

dt2
+

735

4
θ = 0,

θ(0) = π/12,
θ′(0) = 0.

(13)

The rectangular coordinates for the end of the rod are

x(t) = L cos(θ(t)), y(t) = L sin(θ(t)).

Solve the Initial Value Problem. As in two previous examples, system (8) is readily
solved with general solution

θ(t) = c1 cos (ωt) + c2 sin (ωt) , ω =

√
735

2
.

Initial conditions imply c1 = π
12 , c2 = 0. Details not supplied. Then

θ(t) =
π

12
cos

(√
735

2
t

)
.

Final Answer. The formula for θ(t) is inserted into polar coordinate equations x =
r cos θ, y = r sin θ with r = L to obtain the reported answers.

Example 6.41 (Torsional Pendulum)
The balance wheel of a classical watch oscillates with angular amplitude π radians
and period 0.5 seconds. Find the following values.

(a) The maximum angular speed of the balance wheel.

(b) The angular speed when the angle equals π/2 radians.

(c) The angular acceleration when the angle equals π/4 radians.
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Solution: The answers are (a) 4π2, (b) −2π2
√
3, (c) −4π3.

The model is equation (9), θ′′0 (t) + ω2θ0(t) = 0, where ω =
√

κ
I . The general solution

in phase-amplitude form is θ0(t) = A cos(ωt − α), with constants A, α replacing the
constants c1, c2 in a general solution. We are given that A = π. The period 2π

ω equals
0.5, which implies ω = 4π. Then

θ0(t) = π cos(4πt− α).

The constant α is undetermined by the information supplied.

(a): The angular speed is θ′0(t) = −4π2 sin(4πt − α). It is a maximum when the sine
factor equals −1. Then θ′0(t) = 4π2 is the maximum angular speed of the balance wheel.

(b): The angle θ0(t) = π/2 is valid only when the cosine factor in θ0(t) = π cos(4πt−α)
is equal to 1/2. Then sin(4πt − α) =

√
3/2, from trigonometry. The angular speed at

this moment is θ′0(t) = −4π2 sin(ωt− α) = −2π2
√
3.

(c): Apply the equation θ′′0 (t) + ω2θ0(t) = 0 to obtain the acceleration relation θ′′0 (t) =
−16π2θ0(t). When θ0(t) = π/4, then the acceleration equals −4π3.

Example 6.42 (Shockless Auto)
A shockless auto of total mass 1400 kg bounces on a level street, making 8 bottom-
outs in 10 seconds. Estimate the Hooke’s constant k for each of the four coil springs.

Solution: The answer is k = 8750π2 ≈ 86596.

The model equation mx′′ + kx = 0 is used. Then x(t) = A cos(ωt − α) is a general
solution, with A and α constant and ω2 = k

m . The mass is not 1400 kg, but 1/4 of that,
because each of the four springs carries an equal load. Let m = 1400/4. The period of
oscillation is 2π/ω, which has to equal 1

2
8
10 , because two bottom-outs mark one complete

cycle. Then 2π
ω = 4

10 implies ω = 5π. Finally, k = mω2 = 1400
4 (5π)2 = 8750π2.

Example 6.43 (Rolling Wheel)
A wheel of mass 10 kg and radius 0.35 m rolls frictionless with attached coil spring
as in Figure 23. The observed frequency of oscillation is 8 full cycles every 3 seconds.
Estimate the Hooke’s constant k of the spring.

Solution: The answer is k = 135π2

16 .

The rolling wheel model (10) will be used, equation mx′′(t)+ 2
3 kx(t) = 0. Known is the

mass m = 10 kg and the general solution x(t) = A cos(ωt − α) with A and α constant

and natural frequency ω =

√
2

3

k

m
. Then the period of oscillation is 2π

ω = 8
3 , because the

cosine factor passes through 8 periods in 3 seconds. The equation determines ω = 3
8 (2π).

Then k = m 3
2ω

2 = 10 3
2

(
6π
8

)2
= 135π2

16 .
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Exercises 6.6

Simple Harmonic Motion
Determine the model equation mx′′(t) +
kx(t) = 0, the natural frequency ω =√
k/m, the period 2π/ω and the solution

x(t) for the following spring–mass systems.

1. A mass of 4 Kg attached to a spring of
Hooke’s constant 20 Newtons per meter
starts from equilibrium plus 0.05 meters
with velocity 0.

2. A mass of 2 Kg attached to a spring of
Hooke’s constant 20 Newtons per meter
starts from equilibrium plus 0.07 meters
with velocity 0.

3. A mass of 2 Kg is attached to a spring
that elongates 20 centimeters due to a
force of 10 Newtons. The motion starts
at equilibrium with velocity −5 meters
per second.

4. A mass of 4 Kg is attached to a spring
that elongates 20 centimeters due to a
force of 12 Newtons. The motion starts
at equilibrium with velocity −8 meters
per second.

5. A mass of 3 Kg is attached to a coil
spring that compresses 2 centimeters
when 1 Kg rests on the top coil. The
motion starts at equilibrium plus 3 cen-
timeters with velocity 0.

6. A mass of 4 Kg is attached to a coil
spring that compresses 2 centimeters
when 2 Kg rests on the top coil. The
motion starts at equilibrium plus 4 cen-
timeters with velocity 0.

7. A mass of 5 Kg is attached to a coil
spring that compresses 1.5 centimeters
when 1 Kg rests on the top coil. The
motion starts at equilibrium plus 3 cen-
timeters with velocity −5 meters per
second.

8. A mass of 4 Kg is attached to a coil
spring that compresses 2.2 centimeters
when 2 Kg rests on the top coil. The

motion starts at equilibrium plus 4 cen-
timeters with velocity −8 meters per
second.

9. A mass of 5 Kg is attached to a spring
that elongates 25 centimeters due to a
force of 10 Newtons. The motion starts
at equilibrium with velocity 6 meters
per second.

10. A mass of 5 Kg is attached to a spring
that elongates 30 centimeters due to a
force of 15 Newtons. The motion starts
at equilibrium with velocity 4 meters
per second.

Phase–amplitude Form
Solve the given differential equation and re-
port the general solution. Solve for the con-
stants c1, c2. Report the solution in phase–
amplitude form

x(t) = A cos(ωt− α)

with A > 0 and 0 ≤ α < 2π.

11. x′′ + 4x = 0,
x(0) = 1, x′(0) = −1

12. x′′ + 4x = 0,
x(0) = 1, x′(0) = 1

13. x′′ + 16x = 0,
x(0) = 2, x′(0) = −1

14. x′′ + 16x = 0,
x(0) = −2, x′(0) = −1

15. 5x′′ + 11x = 0,
x(0) = −4, x′(0) = 1

16. 5x′′ + 11x = 0,
x(0) = −4, x′(0) = −1

17. x′′ + x = 0,
x(0) = 1, x′(0) = −2

18. x′′ + x = 0,
x(0) = −1, x′(0) = 2

19. x′′ + 36x = 0,
x(0) = 1, x′(0) = −4

20. x′′ + 64x = 0,
x(0) = −1, x′(0) = 4
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6.6 Undamped Mechanical Vibrations

Pendulum
The formula

P1

P2
=

R1

R2

√
L1

L2

is valid for the periods P1, P2 of two pen-
dulums of lengths L1, L2 located at dis-
tances R1, R2 from the center of the earth.
The formula implies that a pendulum can
be used to find the radius of the earth at
a location. It is also useful for designing a
pendulum clock adjustment screw.

21. Derive the formula, using ω =
√
g/L,

period P = 2π/ω and the gravitational
relation g = GM/R2.

22. A pendulum clock taken on a voyage
loses 2 minutes a day compared to its
exact timing at home. Determine the
altitude change at the destination.

23. A pendulum clock with adjustable
length L loses 3 minutes per day when
L = 30 inches. What length L adjusts
the clock to perfect time?

24. A pendulum clock with adjustable
length L loses 4 minutes per day when
L = 30 inches. What fineness length F
is required for a 1/4–turn of the adjust-
ment screw, in order to have 1/4–turns
of the screw set the clock to perfect time
plus or minus one second per day?

Torsional Pendulum
Solve for θ0(t).

25. θ′′0 (t) + θ0(t) = 0

26. θ′′0 (t) + 4θ0(t) = 0

27. θ′′0 (t) + 16θ0(t) = 0

28. θ′′0 (t) + 36θ0(t) = 0

Shockless Auto
Find the period and frequency of oscilla-
tion of the car on four springs. Use model
mx′′(t) + kx(t) = 0.

29. Assume the car plus occupants has
mass 1650 Kg. Let each coil spring have
Hooke’s constant k = 20000 Newtons
per meter.

30. Assume the car plus occupants has
mass 1850 Kg. Let each coil spring have
Hooke’s constant k = 20000 Newtons
per meter.

31. Assume the car plus occupants has
mass 1350 Kg. Let each coil spring have
Hooke’s constant k = 18000 Newtons
per meter.

32. Assume the car plus occupants has
mass 1350 Kg. Let each coil spring have
Hooke’s constant k = 16000 Newtons
per meter.

Rolling Wheel on a Spring
Solve the rolling wheel model mx′′(t) +
2
3 kx(t) = 0 and also the frictionless model
mx′′(t) + kx(t) = 0, each with the given
initial conditions. Graph the two solutions
x1(t), x2(t) on one set of axes.

33. m = 1, k = 4,
x(0) = 1, x′(0) = 0

34. m = 5, k = 18,
x(0) = 1, x′(0) = 0

35. m = 11, k = 18,
x(0) = 0, x′(0) = 1

36. m = 7, k = 18,
x(0) = 0, x′(0) = 1
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6.7 Forced and Damped Vibrations

6.7 Forced and Damped Vibrations

The study of vibrating mechanical systems continues. The main example is
a system consisting of an externally forced mass on a spring with damping.6

Both undamped and damped systems are studied. A few physical examples are
included: clothes dryer, cafe door, pet door, bicycle trailer.

Forced Undamped Motion

The equation for study is a forced spring–mass system

mx′′(t) + kx(t) = f(t).

The model originates by equating the Newton’s second law force mx′′(t) to the
sum of the Hooke’s force −kx(t) and the external force f(t). The physical model
is a laboratory box containing an undamped spring–mass system, transported on
a truck as in Figure 13, with external force f(t) = F0 cosωt induced by the speed
bumps.

k

mx > 0
x = 0

Figure 13. An undamped, forced
spring-mass system.
A box containing a spring-mass system is
transported on a truck. Speed bumps on the
shoulder of the road transfer periodic vertical
oscillations to the box.

The forced spring-mass system takes the form x′′(t) + ω2
0 x(t) = F0

m cosωt.

Symbol ω0 =
√
k/m is called the Natural Frequency. It is the number of full

periods of free oscillation per second for the unforced spring–mass system
x′′(t) + ω2

0 x(t) = 0 . The External Frequency ω is the number of full periods
of oscillation per second of the external force f(t) = F0 cosωt. In the case of
Figure 13, f(t) is the vertical force applied to the box containing the spring–
mass system, due to the speed bumps. The general solution x(t) always presents
itself in two pieces, as the sum of the homogeneous solution xh and a particular
solution xp. For ω ̸= ω0, the solution formulas are (full details on page 522)

x′′(t) + ω2
0 x(t) =

F0

m
cosωt, ω0 =

√
k

m
,

x(t) = xh(t) + xp(t),
xh(t) = c1 cosω0t+ c2 sinω0t, c1, c2 constants,

xp(t) =
F0/m

ω2
0 − ω2

cosωt.

(1)

A general statement can be made about the solution decomposition:

6Damping is energy dissipation and dampening is making something wet.
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6.7 Forced and Damped Vibrations

The solution is a sum of two harmonic oscillations, one of natural
frequency ω0 due to the spring and the other of natural frequency
ω due to the external force F0 cosωt.

Beats

The physical phenomenon of beats refers to the periodic interference of two
sound waves of slightly different frequencies. Human heartbeat uses the same
terminology. Our pulse rate is 40 − 100 beats per minute at rest. The phe-
nomenon of beats will be explained mathematically infra. An illustration of the
graphical meaning is in Figure 14.

Figure 14. Beats.
Shown is a periodic oscillation

x(t) = 2 sin 4t sin 40t

with rapidly–varying factor sin 40t and the two
slowly–varying envelope curves

x1(t) = 2 sin 4t, x2(t) = −2 sin 4t.

A key example is piano tuning. A tuning fork is struck, then the piano string is
tuned until the beats are not heard. The number of beats per second (unit Hz) is
approximately the frequency difference between the two sources, e.g., two tuning
forks of frequencies 440 Hz and 437 Hz would produce 3 beats per second.

The average human ear can detect beats only if the two interfering sound waves
have a frequency difference of about 7 Hz or less. Ear-tuned pianos are subject
to the same human ear limitations. Two piano keys are more than 7 Hz apart,
even for a badly tuned piano, which is why simultaneously struck piano keys are
heard as just one sound (no beats).

A destructive interference occurs during a very brief interval, so our impres-
sion is that the sound periodically stops, only briefly, and then starts again with
a beat, a section of sound that is instantaneously loud again. The beat we hear
corresponds to maxima in Figure 14.

In Figure 14, we see not the two individual sound waves, but their superpo-
sition, because 2 sin(4t) sin(40t) = cos(36t) − cos(44t) = sum of two harmonic
oscillations of different frequencies. See equation 2 below for details. When the
tuning fork and the piano string have the same exact frequency ω, then Figure
14 would show a simple harmonic wave, because the two sounds would super-
impose to a graph that looks like cos(ωt− α).
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6.7 Forced and Damped Vibrations

The origin of the phenomenon of beats can be seen from the formula

x(t) = 2 sin at sin bt.

There is no sound when x(t) ≈ 0: this is when destructive interference occurs.
When a is small compared to b, e.g., a = 4 and b = 40, then there are long
intervals between the zeros of A(t) = 2 sin at, at which destructive interference
occurs. Otherwise, the amplitude of the sound wave is the average value of A(t),
which is 1. The sound stops at a zero of A(t) and then it is rapidly loud again,
causing the beat.

Black Box in the Trunk

Return to the forced harmonic oscillator

x′′(t) + ω2
0 x(t) =

F0

m
cosωt, ω0 =

√
k

m
,

whose solution x(t) appears in equation (1). The expression for x(t) will show the
phenomenon of beats for certain choices of frequencies ω0, ω and initial position
and velocity x(0), x′(0).

For instance, consider one possible expression x(t) = cos(ω0t)− cos(ωt). Use the
trigonometric identity 2 sin c sin d = cos(c−d)−cos(c+d), derived from identities
on page 491, to write

x(t) = cos(ω0t)− cos(ωt) = 2 sin
1

2
(ω − ω0)t sin

1

2
(ω0 + ω)t.(2)

If ω ≈ ω0, then the first factor 2 sin 1
2(ω−ω0)t has natural frequency a = 1

2(ω−ω0)
near zero. The natural frequency b = 1

2(ω0 + ω) of the other factor can be
relatively large and therefore x(t) is a product of a Slowly Varying oscillation
2 sin at and a Rapidly Varying oscillation sin bt. A graphic of x(t) looks like
Figure 14.

Rotating Drum on a Cart

Figure 15 shows a model for a rotating machine, like a front–loading clothes
dryer.

For modeling purposes, the rotating drum with load is replaced by an idealized
model: a mass M on a string of radius R rotating with angular speed ω. The
center of rotation is located along the center–line of the cart. The total mass m
of the cart includes the rotating mass M, which we imagine to be an off–center
lump of wet laundry inside the dryer drum. Vibrations cause the cart to skid left
or right.

508



6.7 Forced and Damped Vibrations

k

x0

M
θR

Figure 15. Rotating Vertical Drum.

Like a front-loading clothes dryer, or a washing
machine, the drum is installed on a cart with skids.
An internal spring restores the cart to equilibrium
x = 0.

A spring of Hooke’s constant k restores the cart to its equilibrium position x = 0.
The cart has position x > 0 corresponding to skidding distance x to the right of
the equilibrium position, due to the off-center load. Similarly, x < 0 means the
cart skidded distance |x| to the left.

Modeling. Friction ignored, Newton’s second law gives force F = mx′′(t), where
x locates the cart’s center of mass. Hooke’s law gives force F = −kx(t). The
centroid x can be expanded in terms of x(t) by using calculus moment of inertia
formulas. Let m1 = m−M be the cart mass, m2 = M the drum mass, x1 = x(t)
the moment arm for m1 and x2 = x(t) + R cos θ the moment arm for m2. Then
θ = ωt in Figure 15 gives

x(t) =
m1x1 +m2x2

m1 +m2

=
(m−M)x(t) +M(x(t) +R cos θ)

m

= x(t) +
RM
m

cosωt.

(3)

Force competition mx′′ = −kx and derivative expansion results in the forced
harmonic oscillator

mx′′(t) + kx(t) = RMω2 cosωt.(4)

Forced Damped Motion

Real systems do not exhibit idealized harmonic motion, because damping oc-
curs. A watch balance wheel submerged in oil is a key example: frictional forces
due to the viscosity of the oil will cause the wheel to stop after a short time. The
same wheel submerged in air will appear to display harmonic motion, but indeed
there is friction present, however small, which slows the motion.

Consider a spring–mass system consisting of a mass m and a spring with Hooke’s
constant k, with an added dashpot or damper, depicted in Figure 16 as a piston
inside a cylinder attached to the mass. A useful physical model, for purposes of
intuition, is a screen door with USA hardware: the door is equipped with a spring
to restore the door to the jamb position and an adjustable piston–cylinder style
dashpot.

cmk
Figure 16. A spring-mass system with dash-
pot
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6.7 Forced and Damped Vibrations

The dashpot is assumed to operate in the viscous domain, which means that
the force due to the damper device is proportional to the speed that the mass
is moving: F = cx′(t). The number c ≥ 0 is called the dashpot constant.
Three forces act: (1) Newton’s second law F1 = mx′′(t), (2) viscous damping
F2 = cx′(t) and (3) the spring restoring force F3 = kx(t). The sum of the forces
F1 + F2 + F3 acting on the system must equal the External Force f(t), which
gives the equation for a Forced Damped Spring–Mass System

mx′′(t) + cx′(t) + kx(t) = f(t).(5)

If there is no external force, f(t) = 0, then the vibration is called free or un-
forced and otherwise it is called forced. Equation (5) is called damped if c > 0
and undamped if c = 0.

A useful visualization for a forced system is a vertical laboratory spring–mass
system with dashpot placed inside a box, which is transported down a washboard
road inside an auto trunk. The function f(t) is the vertical oscillation of the auto
trunk. The function x(t) is the signed excursion of the mass in response to the
washboard road. See Figure 17.

k

mx > 0
x = 0

c

Figure 17. A Damped Spring-Mass System
with External Forcing.
The apparatus is placed in a box, then transported
in an auto trunk along a washboard road. Vertical
excursion x(t) of the mass is measured from equilib-
rium.

Seismoscope

The 1875 horizontal motion seismoscope of F. Cecchi (1822-1887) reacted
to an earthquake. It started a clock, and then it started motion of a recording
surface, which ran at a speed of 1cm per second for 20 seconds. The clock
provided the observer with the earthquake hit time.

Figure 18. A Simplistic Vertical Mo-
tion Seismoscope.

The apparently stationary heavy mass on a
spring writes with the attached stylus onto a
rotating drum, as the ground moves up.

The motion of the heavy mass m in Figure 18 can be modeled by a forced spring-
mass system with damping. The first model has the form

mx′′ + cx′ + kx = f(t)
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6.7 Forced and Damped Vibrations

where f(t) is the vertical ground force due to the earthquake. In terms of the
vertical ground motion u(t), Newton’s second law gives the force equation f(t) =
−mu′′(t). The second model for the motion of the mass is then

x′′(t) + 2βΩ0x
′(t) + Ω2

0x(t) = −u′′(t),
c
m = 2βΩ0,

k
m = Ω2

0,
x(t) = mass position measured from equilibrium,
u(t) = vertical ground motion due to the earthquake.

(6)

Some observations about equation (6):

Slow ground movement means x′ ≈ 0 and x′′ ≈ 0, then (6) implies Ω2
0x(t) =

−u′′(t). The seismometer records ground acceleration.

Fast ground movement means x ≈ 0 and x′ ≈ 0, then (6) implies x′′(t) =
−u′′(t). The seismometer records ground displacement.

A release test will find β,Ω0 experimentally. See the exercises for details.

The point of (6) is to determine u(t), by knowing x(t) from the seismograph.

Free damped motion

Consider the special case of no external force, f(t) = 0. The vibration x(t)
satisfies the homogeneous differential equation

mx′′(t) + cx′(t) + kx(t) = 0.(7)

Cafe Door

Restaurant waiters and waitresses are accustomed to the cafe door, which par-
tially blocks the view of onlookers, but allows rapid, collision-free trips to the
kitchen – see Figure 19. The door is equipped with a spring which tries to re-
store the door to the equilibrium position x = 0, which is the plane of the door
frame. There is a dashpot attached, to keep the number of oscillations low.

Figure 19. A Cafe Door.
There are three hinges with dashpot in the lower hinge.
The equilibrium position is the plane of the door frame.

The top view of the door, Figure 20, shows how the angle x(t) from equilibrium
x = 0 is measured from different door positions.
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6.7 Forced and Damped Vibrations

x < 0

x = 0

x > 0

Figure 20. Top View of a Cafe Door.
The three possible door positions.

x < 0 kitchen
x = 0 door frame
x > 0 restaurant

The figure shows that, for modeling purposes, the cafe door can be reduced
to a torsional pendulum with viscous damping. This results in the cafe door
equation

Ix′′(t) + cx′(t) + κx(t) = 0.(8)

The removal of the spring (κ = 0) causes the vibration x(t) to be monotonic,
which is a reasonable fit to a springless cafe door.

Pet Door

Designed for dogs and cats, the small door in Figure 21 permits free entry and
exit.

Figure 21. A Pet Door.
The equilibrium position is the plane of the door frame.
The door swings from hinges on the top edge.
One hinge is spring-loaded with dashpot.

Like the cafe door, the spring restores the door to the equilibrium position while
the dashpot acts to eventually stop the oscillations. However, there is one fun-
damental difference: if the spring–dashpot system is removed, then the door
continues to oscillate! The cafe door model will not describe the pet door.

For modeling purposes, the door can be compressed to a linearized swinging rod
of length L (the door height). The torque I = mL2/3 of the door assembly
becomes important, as well as the linear restoring force kx of the spring and the
viscous damping force cx′ of the dashpot. All considered, a suitable model is the
pet door equation

I x′′(t) + cx′(t) +

(
k +

mgL

2

)
x(t) = 0.(9)

Derivation of (9) is by equating to zero the algebraic sum of the forces.

Removing the dashpot and spring (c = k = 0) gives a harmonic oscillator x′′(t)+

ω2x(t) = 0 with ω2 =
mgL

2I
, which matches physical intuition. Equation (9)

is formally the cafe door equation with an added linearization term
mgL

2
x(t)

obtained from
mgL

2
sinx(t).

Modeling Unforced Damped Vibration

The cafe door (8) and the pet door (9) have equations in the same form as a
damped spring–mass system (7), and all equations can be reduced, for suitable
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definitions of constants p and q, to the simplified second order differential equa-
tion

x′′(t) + p x′(t) + q x(t) = 0.(10)

The solution x(t) of this equation is a linear combination of two Euler atoms
determined by the roots of the characteristic equation

r2 + pr + q = 0.

There are three types of solutions possible, organized by the sign of the discrim-
inant

p2 − 4q.

Positive Discriminant Distinct real roots r1 ̸= r2
x = c1e

r1t + c2e
r2t

Zero Discriminant Double real root r1 = r2
x = c1e

r1t + c2 t e
r1t

Negative Discriminant Complex conjugate roots a± i b
x = eat(c1 cos bt+ c2 sin bt)

Tuning a dashpot

The pet door and the cafe door have dashpots with an adjustment screw. The
screw changes the dashpot coefficient c which in turn changes the size of coeffi-
cient p in (10). More damping c means p is larger.

There is a critical damping effect for a certain screw setting: if the setting is
decreased more, then the door oscillates, whereas if the setting is increased, then
the door has a monotone non-oscillatory behavior. The monotonic behavior can
result in the door opening in one direction followed by slowly settling to exactly
the door jamb position. If p is too large, then it could take 10 minutes for the
door to close!

The critical case corresponds to the least p > 0 (the smallest damping constant
c > 0) required to close the door with this kind of monotonic behavior. The same
can be said about decreasing the damping: the more p is decreased, the more the
door oscillations approach those of no dashpot at all, which is a pure harmonic
oscillation.

As viewed from the characteristic equation r2 + pr + q = 0, the change is due
to a change in character of the roots from real to complex, which is measured
by a sign change from positive to negative for the Discriminant p2 − 4q. The
physical response and the three cases of the constant–coefficient theorem, page
430, lead to the following terminology.

Classification Defining properties

Overdamped Distinct real roots r1 ̸= r2
Positive discriminant
x = c1e

r1t + c2e
r2t

= exponential × monotonic function
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Critically damped Double real root r1 = r2
Zero discriminant
x = c1e

r1t + c2 t e
r1t

= exponential × monotonic function

Underdamped Complex conjugate roots a± i b
Negative discriminant
x = eat(c1 cos bt+ c2 sin bt)
= exponential × harmonic oscillation

Envelope Curves and Pseudo-Period

In the under-damped case the solution x(t) ofmx′′+cx′+kx = 0 can be expressed
in phase-amplitude form

x(t) = eat(c1 cos bt+ c2 sin bt)
= eatC cos(bt− α).

In this formula, c1 = C cosα, c2 = C sinα and C =
√
c21 + c22. The Pseudo-

Period is T =
2π

b
, so named because the harmonic factor cos(bt−α) has period

2π/b. The factor Ceat generates the two envelope curves

y = Ceat, y = −Ceat.

The solution x(t) oscillates entirely inside the region defined by the envelope
curves. Crossings of the t-axis happen at bt = nπ+α, n = 0,±1,±2, . . .. Contact
with the envelope curves happens at bt = nπ + π/2 + α, n = 0,±1,±2, . . ..

Figure 22. Envelope Curves.
A particular solution of the differential equa-
tion 25x′′ + 10x′ + 226x = 0 is
x(t) = 4e−t/5 sin 3t red,

which has pseudo-period T =
2π

3
.

The envelope curves are
x1(t) = 4e−t/5 yellow,
x2(t) = −4e−t/5 green.

Bicycle trailer

An auto tows a one–wheel trailer over a washboard road. Shown in Figure 23 is
the trailer strut, which has a single coil spring and two dampers. The mass m
includes the trailer and the bicycles.
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6.7 Forced and Damped Vibrations

cc
k

Figure 23. A trailer strut with dampers on a
washboard road

Suppose a washboard dirt road has about 2 full oscillations (2 bumps and 2
valleys) every 3 meters and a full oscillation has amplitude 6 centimeters. Let
s denote the horizontal distance along the road and let ω be the number of
full oscillations of the roadway per unit length. The oscillation period is 2π/ω,
therefore 2π/ω = 3/2 or ω = 4π/3. A model for the road surface is

y =
5

100
cosωs.

Let x(t) denote the vertical elongation of the spring, measured from equilibrium.
Newton’s second law gives a force F1 = mx′′(t) and the viscous damping force
is F2 = 2cx′(t). The trailer elongates the spring by x− y, therefore the Hooke’s
force is F3 = k(x− y). The sum of the forces F1 + F2 + F3 must be zero, which
implies

mx′′(t) + 2cx′(t) + k(x(t)− y(t)) = 0.

Write s = vt where v is the speedometer reading of the car in meters per second.
The expanded differential equation is the forced damped spring-mass system
equation

mx′′(t) + 2cx′(t) + kx(t) =
k

20
cos(4πvt/3).

The solution x(t) of this model, with x(0) and x′(0) given, describes the vertical
excursion of the trailer bed from the roadway. The observed oscillations of
the trailer are modeled by the steady-state solution

xss(t) = A cos(4πvt/3) +B sin(4πvt/3),

where A, B are constants determined by the method of undetermined coefficients.

From physical data, the amplitude C =
√
A2 +B2 of this oscillation might be

6cm or larger. The maximum amplitude C over all speedometer readings v can
be found by calculus. The computation uses the formula

C(v) =
k/20√

(k −mω2)2 + (2cω)2
, ω =

4πv

3
.(11)

Set dC
dv = 0 and then solve for the speed v∗ which maximizes C(v). The maximum

excursion of the trailer is then

C(v∗) =
km

40c
√
km− c2

.

The values of k, m, c can be found from an experiment: record C(v) at three
different speeds v = v1, v2, v3. Then solve the system of three equations in three
unknowns m, k, c, arising from (11).

515



6.7 Forced and Damped Vibrations

Examples and Methods

Example 6.44 (Forced Undamped Vibration)
Solve the vibration equation

x′′ + 225x = 209 cos(4t).

Solution: The answer is x(t) = c1 cos(15t) + c2 sin(15t) + cos(4t). The vibration is an
example of beats for certain values of c1, c2. The solution is a superposition of two
harmonic oscillations of frequencies 15 and 4. There are two ways to solve the problem,
detailed below.

First Solution Details. A shortcut is to use equations (1), page 506. The given
equation x′′ + 225x = 209 cos(4t) provides symbols m = 1, k = 225, F0 = 209, ω = 4.
Then ω0 =

√
225 = 15 is the unforced natural frequency of vibration. Substitution of

the symbols into equations (1) gives xh = c1 cos(15t) + c2 sin(15t) and xp = F1 cos(4t)
with F1 = (209/1)/(225− 42) = 1. By superposition x = xh+xp. The reported solution
is verified.

Second Solution Details. The characteristic equation r2+225 = 0 of the homogeneous
problem x′′ + 225x = 0 has complex conjugate roots ±15i and Euler solution atoms
cos(15t), sin(15t). Then xh(t) = c1 cos(15t) + c2 sin(15t).

A particular solution by Rule I of the method of undetermined coefficients is x(t) =
A cos(4t) + B sin(4t). Substitution into the non-homogeneous equation x′′ + 225x =
209 cos(4t) gives the relation

−16(A cos(4t) +B sin(4t)) + 225(A cos(4t) +B sin(4t)) = 209 cos(4t).

It reduces to the equation

209A cos(4t) + 226B sin(4t) = 209 cos(4t).

Independence of Euler atoms cos(4t), sin(4t) implies matching coefficients. Then B = 0
and A = 1. The trial solution x(t) = A cos(4t) + B sin(4t) upon substitution of A =
1, B = 0 becomes particular solution xp(t) = cos(4t).

Superposition gives general solution x(t) = xh(t) + xp(t), therefore the answer reported
has been verified.

Example 6.45 (Beats)
Write the linear combination x(t) = cos 10t−cos 20t in the form x(t) = C sin at sin bt.
Then graph the slowly-varying envelope curves and the curve x(t).

Solution: The answer is x(t) = 2 sin(5t) sin(15t), which implies C = 2, a = 5, b = 15
with envelope curves ±2 sin 5t (sine factor with longer period appears first). The graphic
in Figure 24 is made from these formulas using a computer graphics program.

Figure 24. Beats Oscillation.
Plot of slowly-varying envelopes ±2 sin(5t) and
the oscillation x(t) = 2 sin(5t) sin(15t).
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Details. The basic tool is the cosine sum formula from page 491. Let’s assemble the
formulas

cos(A−B) = cosA cosB + sinA sinB,
cos(A+B) = cosA cosB − sinA sinB.

Because x(t) = cos 10t− cos 20t = cos(A−B)− cos(A+B) = 2 sinA sinB, then choose
A − B = 10t and A + B = 20t. Then the unique solution is A = 15t, B = 5t, which
implies the formula

x(t) = 2 sinA sinB = 2 sin (15t) sin (5t) .

The slowly-varying envelope curves are ±2 sin (5t), because the sine factor periods are
2π/15 and 2π/5, the second being the longer period.

Example 6.46 (Rotating Drum)
An unloaded European-style washing machine weighs 156 lbs. When loaded with an
off-center wet mass of 4 kg, it has horizontal excursions x from equilibrium satisfying
approximately the rotating drum equation (4):

mx′′(t) + kx(t) = RMω2 cosωt.

Assume Hooke’s spring constant k = 10 slugs per foot. The drum has diameter 30
in and during a water extraction cycle it rotates at 600 rpm. Discuss assumptions
and computations for the values M = 0.275, m = 5.15, R = 1.25 and ω = 20π.
Then compute the approximate expression

x (t) = c1 cos

(
20t√
206

)
+ c2 sin

(
20t√
206

)
− 55

π2 cos (20π t)

824π2 − 4
.(12)

Solution:
Details. Central to the mathematical formulation is Newton’s formula W = mg, which
in words is weight W (a force) equals mass m times gravitational acceleration g. Use
g = 32 ft/sec per second, for simplicity of discussion. Using g = 32.2 changes constants
in a minor way.

Basic plan. Use model (4). After, we will be tormented and humiliated by closer anal-
ysis of the physical problem. Let’s assume the centroid of the wet load is approximately
on the edge of the rotating drum, in order to simplify the formulas and use model (4).
The rotating machine in the absence of the wet load is assumed to operate at equilib-
rium x = 0. Issues like additional internal damping and frictional forces on the mounting
surface will be patently ignored with no apologies.

Wet load mass M: A unit conversion is required for the wet load mass: 4 kg represents
4(2.2) lbs. ThenW = 8.8 lbs is the wet load weight and its mass isM = W/g = 8.8/32 =
0.275 slugs.

Total machine mass m: Total machine weight is W = 156 + 8.8 = 164.8 lbs, then
formula W = mg implies the total mass is m = 164.8/32 = 5.15 slugs.

Drum radius R: A conversion to feet is required, giving R = 1
2 (30) in = 15

12 in = 1.25
ft.

Natural frequency of rotation ω: Supplied is the rotational period 2π/ω, which is
equal to 1/10 second (600 revolutions in 60 seconds). Solve 2π/ω = 1/10 for ω = 20π.
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6.7 Forced and Damped Vibrations

Solution x(t): We’ll use equation (4) with the constants inserted:

5.15x′′(t) + 10x(t) = 1.25(0.275)(20π)2 cos(20πt).

Without machine assist, the homogeneous equation 5.15x′′(t) + 10x(t) = 0 is solved as
xh = c1 cos(bt) + c2 sin(bt) where b =

√
k/m = 20/

√
206. Then undetermined coeffi-

cients is applied with (shortcut) trial solution x = A cos(20πt) to the non-homogeneous
problem, giving

A =
−55π2

824π2 − 4
, xp =

−55π2

824π2 − 4
cos(20πt).

The reported answer in equation (12) is x = xh + xp.

Answer check: Computer algebra system maple solves the equation using this code:

f:=t->1.25*(0.275)*(20*Pi)^2*cos (20*Pi* t);

de:=5.15*diff(x(t),t,t)+10*x(t)=f(t);

dsolve(de,x(t));

Vibrations of xp have amplitude about 0.13 cm and period 0.1. The harmonic vibrations
of xh have a longer period of about 4.5. For example, if the spin cycle starts from rest,
then x(t) will have amplitude of about 0.13 and its graphic on 0 < t < 4.5 will look like
a beats figure, with slow oscillation envelope of approximate period 4.5.

Example 6.47 (Damped Spring-Mass System)
Let x(t) be the defected distance from equilibrium in a damped spring-mass system
with free oscillation equation

4x′′(t) + 3x′(t) + 17x(t) = 0.

Find an expression for x(t).

Solution: The answer is

x(t) = c1e
−3t/8 cos(

√
263t/8) + c2e

−3t/8 sin(
√
263t/8).

Details. The homogeneous solution x(t) is a linear combination of two Euler solution
atoms found from the characteristic equation 4r2 + 3r+ 17 = 0. The roots according to
the quadratic formula are − 3

8 ± i
8

√
263. Then the two Euler solution atoms are

e−3t/8 cos(
√
263t/8), e−3t/8 sin(

√
263t/8),

from which the solution formula follows.

Remarks. The oscillation is classified as under-damped, because of the presence
of sine and cosine oscillatory factors in the Euler solution atoms. Any solution is the
product of an exponential factor and a harmonic oscillation, therefore the solution is
pseudo-periodic with pseudo-period 16π/

√
263.

Example 6.48 (Seismoscope)
Consider the seismoscope equation

x′′(t) + 12x′(t) + 100x(t) = −u′′(t).

Find an expression for the seismoscope stylus record x(t) in terms of the ground
motion u(t).
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Solution: In terms of particular solution xp(t), defined below in integral equation (14)
or (15), the answer is

x(t) = c2e
−6t cos(8t) + c2e

−6t sin(8t) + xp(t).(13)

Details. The solution method is superposition x(t) = xh(t) + xp(t) where xh is the
solution of the homogeneous equation x′′(t)+12x′(t)+100x(t) = 0 and xp is a variation
of parameters solution of the non-homogeneous equation x′′(t)+12x′(t)+100x(t) = f(t),
where f(t) = −u′′(t).

Homogeneous solution xh. The characteristic equation r2 + 12r + 100 = 0 has
factorization (r + 6)2 + 64 = 0, hence complex conjugate roots r = −6 ± 8i. The
Euler solution atoms are e−6t cos(8t), e−6t sin(8t), from which we construct the general
solution

xh(t) = c2e
−6t cos(8t) + c2e

−6t sin(8t).

Non-homogeneous solution xp. Let’s start by writing the variation of parameters
formula in the different form

xp(t) = y1(t)

(∫ t

0

−y2(x)f(x)

W (x)
dx

)
+ y2(t)

(∫ t

0

y1(x)f(x)

W (x)
dx

)
=

∫ t

0

W1(t, x)

W (x)
f(x)dx

where

f(x) = −u′′(x),
y1(t) = e−6t cos(8t),
y2(t) = e−6t sin(8t),

W (x) = 8e−12x, Details below in 1 .
W1(t, x) = −y1(t)y2(x) + y2(t)y1(x)

= e−6t−6x(sin 8t cos 8x− cos 8t sin 8x)
= e−6t−6x sin(8t− 8x). Trig identity.

Condensing the definitions gives the final formula

xp(t) = −
∫ t

0

e−6t+6x sin(8t− 8x)u′′(x)dx.(14)

It is possible to integrate this equation by parts and express the answer entirely in terms
of u(t). Some integration by parts free terms are collected into xh(t) to produce the
replacement formula

x∗
p(t) = −u(t) +

∫ t

0

K(t− x)u(x)dx,

K(w) = 12 e−6w cos(8w) +
7

2
e−6w sin(8w).

(15)

Laplace theory can derive formula (15) using the convolution theorem. Generally, (14)
and (15) are different answers.

1 Wronskian determinant details.

A shortcut is to use Theorem 6.17, page 464. The answer is W (x) = W (0)e−12x where
W (0) = 8 is computed from the first line of the determinant expansion below. Details
below compute W (x) directly from the definition.
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W (x) =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ Variation of parameters definition of the
Wronskian of y1, y2.

=

∣∣∣∣ y1 y2
−6y1 − 8y2 −6y2 + 8y1

∣∣∣∣ Because y′1 = −6y1 − 8y2 and y′2 = −6y2 +
8y1.

=

∣∣∣∣ y1 y2
−8y2 8y1

∣∣∣∣ Combination rule combo(1,2,6).

= 8(y21 + y22) Sarrus’ Rule.

= 8e−12x(cos2(8x) + sin2(8x)) Expand y1(x) = e−6x cos(8x) and y2(x) =
e−6x sin(8x).

= 8e−12x. Pythagorean identity.

Example 6.49 (Cafe Door)
Consider the cafe door equation (8):

Ix′′(t) + cx′(t) + κx(t) = 0.

Find an expression for x(t). Then show details for why the motion x(t) is eventually
monotonic when the spring is removed.

Solution:

First, divide by torque I > 0 to obtain equation x′′ + 2ax′ + bx = 0 with new symbols
2a = c/I, b = κ/I. The characteristic equation is (r + a)2 + b − a2 = 0. There are
three cases determined by the sign of b − a2 for the form of the solution. Because

b− a2 = 4Iκ−c2

4I2 , then b− a2 has sign determined by 4Iκ− c2.

Case 4Iκ− c2 > 0.
Then the characteristic equation roots are complex conjugates −a ± i

√
b− a2. The

solution is under-damped, oscillatory and given by

x(t) = c1e
−at cos(

√
b− a2 t) + c2e

−at sin(
√
b− a2 t)

= c1e
ct
2I cos

(√
4Iκ− c2

t

2I

)
+ c2e

ct
2I sin

(√
4Iκ− c2

t

2I

)
.

Case 4Iκ− c2 = 0.
Then the characteristic equation roots are equal, −a,−a. The solution is critically
damped, non-oscillatory and given by

x(t) = c1e
−at + c2 t e

−at = c1e
ct
2I + c2 t e

ct
2I .

Case 4Iκ− c2 < 0.
Then the characteristic equation roots are real and unequal, −a±

√
a2 − b. The solution

is over-damped, non-oscillatory and given by

x(t) = c1e
−at−

√
a2−b t + c2 t e

−at+
√
a2−b t

= c1 e
(c−

√
c2−4Iκ) t

2I + c2 e
(c+

√
c2−4Iκ) t

2I .
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Cafe door with no spring. This event is defined by κ = 0, which eliminates the
under-damped case 4Iκ− c2 > 0. Suppose hereafter that x(t) is a nonzero solution. The
critically damped case is a = 0. Then the solution can be written as x(t) = c1 + c2 t,
which crosses the axis x = 0 at most once. The over-damped case 4Iκ − c2 < 0 can be
written x(t) =

(
c1 + c2 e

B
)
eAt where B > 0. Similarly, it crosses the axis x = 0 at most

once, due to the factor c1 + c2 e
Bt.

Example 6.50 (Pet Door)
A pet door of height L = 1.5 feet and weight 8 pounds oscillates freely because
the dashpot has been removed. Assume Hooke’s spring constant k = 10. Find an
expression for the angular motion x(t) using equation (9) with torque I = mL2/3:

I x′′(t) + cx′(t) +

(
k +

mgL

2

)
x(t) = 0.

Solution:
Removal of the dashpot corresponds to c = 0. The mass m satisfies W = mg, which from
W = 8 and g = 32 gives m = 0.25 slugs. Then the torque is I = mL2/3 = L2/12 = 3/16
and mgL/2 = 3g/16 = 6. Equation (9) becomes

3

16
x′′(t) + 16x(t) = 0.

This is the classical harmonic oscillator x′′+ω2x = 0 with ω2 = 162/3. Then ω = 16/
√
3

and

x(t) = c1 cos

(
16 t√
3

)
+ c2 sin

(
16 t√
3

)
.

Example 6.51 (Tuning a Dashpot)
Classify the following equations as over-damped, critically damped or under-damped
free vibrations.

(a) x′′ + 2x′ + 3x = 0

(b) x′′ + 4x′ + 3x = 0

(c) x′′ + 2x′ + x = 0

Solution: The answers: (a) Under-damped, (b) Over-damped, (c) Critically damped.
Definitions on page 513.

Details (a). The characteristic equation r2 + 2r + 3 = 0 factors into (r + 1)2 + 2 = 0
with complex conjugate roots −1 ± i

√
2. The Euler solution atoms contain sines and

cosines, therefore (a) is oscillatory, classified as under-damped.

Details (b). The characteristic equation r2+4r+3 = 0 factors into (r+3)(r+1) = 0 with
distinct real roots −3,−1. Therefore, (b) is non-oscillatory, classified as over-damped
because of distinct roots.

Details (c). The characteristic equation r2 + 2r + 1 = 0 factors into (r + 1)(r + 1) = 0
with equal real roots −1,−1. Therefore, (b) is non-oscillatory, classified as critically
damped because of equal roots.
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6.7 Forced and Damped Vibrations

Summary of Methods. Classification requires only the roots of the characteristic
equation.

Over-damped means too much damping. In the screen door example, the tuning screw
has made the dashpot constant c large, which means an overly-aggressive dashpot that
halts motion. This means the screen door hangs open. Then the screen door has no
oscillations, equivalently, x(t) has no sines or cosines.

Critically damped is an unstable state. In the screen door example, it is the impossible
to achieve the ideal dashpot tuning screw setting on a screen door: the door opens and
then slowly closes to the jamb position, the door hardware making a single click as it
locks the door on the jamb. A turn of the tuning screw in either direction jumps between
oscillation and non-oscillation of the screen door.

Under-damped means not enough damping effect. Physically, the dashpot is not ef-
fective. In the screen door example this means the screen door oscillates and bangs
repeatedly on the door jamb. Detection in x(t) is the presence of oscillating sines and
cosines. Solution x(t) is called oscillatory.

Example 6.52 (Pseudo-Period)
Find the pseudo-period and time-varying amplitude for the free damped vibration

4x′′ + 2x′ + 3x = 0, x(0) = 1, x′(0) = −1.

Solution: The answers: Pseudo period 8π/
√
11 and amplitude 4e−t/4 are obtained from

the solution x(t) = 4e−t/4 cos
(√

11 t
4

)
.

Details. The characteristic equation 4r2 + 2r + 3 = 0 has complex conjugate roots

− 1
4 ± i

√
11
4 , obtained from the quadratic formula. Then the general solution is

x(t) = c1 e
−t/4 cos

(√
11

t

4

)
+ c2 e

−t/4 sin

(√
11

t

4

)
.

Initial conditions x(0) = 4, x′(0) = −1 give the two equations

(1)c1 + (0)c2 = 4,(−1
4

)
c1 +

(√
11
4

)
c2 = −1,

with unique solution c1 = 4, c2 = 0. The pseudo-period is the period 2π/ω of the trig
factor cos(ωt), where ω = 1

4

√
11. The time-varying amplitude is the factor in front of

the cosine factor, namely 4e−t/4.

Remark on Method. If both c1, c2 are nonzero, then a trig identity is applied first to
write x(t) = Ae−t/4 cos(ωt−α). The amplitude is then Ae−t/4. The period is unchanged.

Proofs and Details

Details for equation (1), page 506:

Homogeneous solution xh. The characteristic equation for x′′ + ω2
0x = 0 is r2 +

ω2
0 = 0 with complex conjugate roots r = πiω0. Then the Euler solution atoms are

cos(ω0t), sin(ω0t). The general solution is a linear combination of the Euler solution
atoms, as displayed in equation (1).
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Particular solution xp. The method of undetermined coefficients applies, because
the equation has constant coefficients and the forcing term f(t) = (F0/m) cos(ωt) is a
linear combination of Euler solution atoms. Derivatives of f(t) are linear combinations
of the two atoms cos(ωt), sin(ωt) and therefore the initial trial solution in the method
of undetermined coefficients is x(t) = d1 cos(ωt) + d2 sin(ωt). Neither of the two atoms
appearing in the trial solution are solutions of the unforced equation x′′ + ω2

0x = 0,
because that would require the false equation ω0 = ω). Therefore, the initial trial
solution is the final trial solution, no changes made, no Rule II applied.

The trial solution x(t) = d1 cos(ωt) + d2 sin(ωt) is substituted into x′′ + ω2
0x = F0

m cosωt
in order to determine d1, d2. The calculation uses the equation x′′ + ω2x = 0, satisfied
by cosωt, sinωt and the trial solution x(t). Then

x′′ + ω2
0x = F0

m cos(ωt),
−ω2x+ ω2

0x = F0

m cos(ωt),(
ω2
0 − ω2

)
x = F0

m cos(ωt),
Cd1 cos(ωt) + Cd2 sin(ωt) = F0

m cos(ωt),

where C =
(
ω2
0 − ω2

)
. Matching coefficients of the Euler atoms cos(ωt), sin(ωt) then

implies
Cd1 = F0

m ,
Cd2 = 0.

Division by C gives d1 = F0

mC and d2 = 0, which implies x(t) = F0

mC cos(ωt). This is the
answer for xp reported in equation (1).

Exercises 6.7

Forced Undamped Vibration
Solve the given equation.

1. x′′ + 100x = 20 cos(5t)

2. x′′ + 16x = 100 cos(10t)

3. x′′+ω2
0x = 100 cos(ωt), when the inter-

nal frequency ω0 is twice the external
frequency ω.

4. x′′ + ω2
0x = 5 cos(ωt), when the inter-

nal frequency ω0 is half the external fre-
quency ω.

Black Box in the Trunk

5. Construct an example x′′ + ω2
0x =

F1 cos(ωt) with a solution x(t) having
beats every two seconds.

6. A solution x(t) of x′′ + 25x =
100 cos(ωt) has beats every two seconds.
Find ω.

Rotating Drum
Solve the given equation.

7. x′′ + 100x = 500ω2 cos(ωt), ω ̸= 10.

8. x′′ + ω2
0x = 5ω2 cos(ωt), ω ̸= ω0.

Harmonic Oscillations
Express the general solution as a sum of
two harmonic oscillations of different fre-
quencies, each oscillation written in phase-
amplitude form.

9. x′′ + 9x = sin 4t

10. x′′ + 100x = sin 5t

11. x′′ + 4x = cos 4t

12. x′′ + 4x = sin t

Beats: Convert and Graph
Write each linear combination as x(t) =
C sin at sin bt. Then graph the slowly-
varying envelope curves and the curve x(t).

13. x(t) = cos 4t− cos t
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14. x(t) = cos 10t− cos t

15. x(t) = cos 16t− cos 12t

16. x(t) = cos 25t− cos 23t

Beats: Solve, find Envelopes
Solve each differential equation with x(0) =
x′(0) = 0 and determine the slowly-varying
envelope curves.

17. x′′ + x = 99 cos 10t.

18. x′′ + 4x = 252 cos 10t.

19. x′′ + x = 143 cos 12t.

20. x′′ + 256x = 252 cos 2t.

Waves and Superposition
Graph the individual waves x1, x2 and then
the superposition x = x1 + x2. Report
the apparent period of the superimposed
waves.

21. x1(t) = sin 22t, x2(t) = 2 sin 20t

22. x1(t) = cos 16t, x2(t) = 4 cos 20t

23. x1(t) = cos 16t, x2(t) = 4 sin 16t

24. x1(t) = cos 25t, x2(t) = 4 cos 27t

Periodicity

25. Let x1(t) = cos 25t, x2(t) = 4 cos 27t.
Their sum has period T = m 2π

25 = n 2π
27

for some integers m,n. Find all m,n
and the least period T .

26. Let x1(t) = cosω1t, x2(t) = cosω2t.
Find a condition on ω1, ω2 which im-
plies that the sum x1 + x2 is periodic.

27. Let x(t) = cos(t) − cos(
√
2t). Explain

without proof, from a graphic, why x(t)
is not periodic.

28. Let x(t) = cos(5t) + cos(5
√
2t). Is x(t)

is periodic? Explain without proof.

Rotating Drum
Let x(t) and xp(t) be defined as in Exam-
ple 4, page 509. Replace Hooke’s constant
k = 10 by k = 1, all other constants un-
changed.

29. Re-compute the amplitude A(t) of so-
lution xp(t). Find the decimal value for
the maximum of |A(t)|.

30. Find x(t) when x(0) = x′(0) = 0. It
is known that x(t) fails to be periodic.
Let t1 = 0, . . . , t29 be the consecutive
extrema on 0 ≤ t ≤ 1.4. Verify graphi-
cally or by computation that |x(ti+1)−
x(ti)| ≈ 0.133 for i = 1, . . . , 28.

Musical Instruments
Melodious tones are superpositions of har-
monics sin(nωt), with n = an integer, ω =
fundamental frequency.

In 1885 Alexander J. Ellis introduced a
measurement unit Cent by the equation
one cent = 2

1
12 ≈ 1.0005777895. On most

pianos, the frequency ratio between two
adjacent keys equals 100 cents, called an
equally tempered semitone. Two pi-
ano keys of frequencies 480 Hz and 960 Hz
span 1200 cents and have tones sin(ωt) and
sin(2ωt) with ω = 480. A span of 1200
cents between two piano key frequencies is
called an Octave.

31. (Equal Temperament) Find the 12
frequencies of equal temperament for
octave 480 Hz to 960 Hz. The first two
frequencies are 480, 508.5422851.

32. (Flute or Noise) Equation x(t) =
sin 220πt+2 sin 330πt could represent a
tone from a flute or just a dissonant,
unpleasing sound. Discuss the impossi-
bility of answering the question with a
simple yes or no.

33. (Guitar) Air inside a guitar vibrates a
little like air in a bottle when you blow
across the top. Consider a flask of vol-
ume V = 1 liter, neck length L = 5
cm and neck cross-section S = 3 cm2.
The vibration has model x′′ + f2x = 0

with f = c
√

S
V L , where c = 343 m/s is

the speed of sound in air. Compute f
2π

and λ = 2πc
f , the frequency and wave-

length. The answers are about 130 Hz
and λ = 2.6 meters, a low sound.

524



6.7 Forced and Damped Vibrations

34. (Helmholtz Resonance) Repeat the
previous exercise calculations, using a
flask with neck diameter 2.0 cm and
neck length 3 cm. The tone should
be lower, about 100 Hz, and the wave-
length λ should be longer.

Seismoscope

35. Verify that xp given in (14) and x∗
p

given by (15), page 519, have the same
initial conditions when u(0) = u′(0) =
0, that is, the ground does not move at
t = 0. Conclude that xp = x∗

p in this
situation.

36. A release test begins by starting a
vibration with u = 0. Two successive
maxima (t1, x1), (t2, x2) are recorded.
Explain how to find β,Ω0 in the equa-
tion x′′ + 2βΩ0x

′ + Ω2
0x = 0, using Ex-

ercises 69 and 70, infra.

Free Damped Motion
Classify the homogeneous equation mx′′ +
cx′ + kx = 0 as over-damped, critically
damped or under-damped. Then solve
the equation for the general solution x(t).

37. m = 1, c = 2, k = 1

38. m = 1, c = 4, k = 4

39. m = 1, c = 2, k = 3

40. m = 1, c = 5, k = 6

41. m = 1, c = 2, k = 5

42. m = 1, c = 12, k = 37

43. m = 6, c = 17, k = 7

44. m = 10, c = 31, k = 15

45. m = 25, c = 30, k = 9

46. m = 9, c = 30, k = 25

47. m = 9, c = 24, k = 41

48. m = 4, c = 12, k = 34

Cafe and Pet Door
Classify as a cafe door model and/or a pet
door model. Solve the equation for the gen-
eral solution and identify as oscillatory or
non-oscillatory.

49. x′′ + x′ = 0

50. x′′ + 2x′ + x = 0

51. x′′ + 2x′ + 5x = 0

52. x′′ + x′ + 3x = 0

53. 9x′′ + 24x′ + 41x = 0

54. 6x′′ + 17x′ = 0

55. 9x′′ + 24x′ = 0

56. 6x′′ + 17x′ + 7x = 0

Classification
Classify mx′′ + cx′ + kx = 0 as over-
damped, critically damped or under-
damped without solving the differential
equation.

57. m = 5, c = 12, k = 34

58. m = 7, c = 12, k = 19

59. m = 5, c = 10, k = 3

60. m = 7, c = 12, k = 3

61. m = 9, c = 30, k = 25

62. m = 25, c = 80, k = 64

Critically Damped
The equation mx′′ + cx′ + kx = 0 is criti-
cally damped when c2−4mk = 0. Establish
the following results for c > 0.

63. The mass undergoes no oscillations,
because

x(t) = (c1 + c2t)e
− ct

2m .

64. The mass passes through x = 0 at most
once.

Over-Damped
Equation mx′′ + cx′ + kx = 0 is defined to
be over-damped when c2 − 4mk > 0. Es-
tablish the following results for c > 0.
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65. The mass undergoes no oscillations,
because if r1, r2 are the roots of mr2 +
cr + c = 0, then

x(t) = c1e
r1t + c2e

r2t.

66. The mass passes through equilibrium
position x = 0 at most once.

Under-Damped
Equation mx′′ + cx′ + kx = 0 is defined
to be under-damped when c2 − 4mk < 0.
Establish the following results.

67. The mass undergoes infinitely many
oscillations. If c = 0, then the oscil-
lations are harmonic.

68. The solution x(t) can be factored as an
exponential function e−

ct
2m times a har-

monic oscillation. In symbols:

x(t) = e−
ct
2m (A cos(ωt− α)) .

Experimental Methods
Assume modelmx′′+cx′+kx = 0 is oscilla-
tory. The results apply to find nonnegative
constants m, c, k from one experimentally
known solution x(t). Provide details.

69. Let x(t) have consecutive maxima at
t = t1 and t = t2 > t1. Then t2 − t1 =
T = 2π

ω = pseudo period of x(t).

70. Let (t1, x1) and (t2, x2) be two consec-
utive maximum points of the graph of a
solution x(t) = Ce−ct/(2m) cos(ωt − α)
of mx′′ + cx′ + kx = 0. Let a ± ωi
be the two complex roots of mr2 +
cr + k = 0 where a = −c/(2m) and
ω = 1

2m

√
4mk − c2. Then

ln
x1

x2
=

cπ

mω
,

71. (Bike Trailer) Assume fps units. A
trailer equipped with one spring and
one shock has mass m = 100 in the
model mx′′ + cx′ + kx = 0. Find
c and k from this experimental data:
two consecutive maxima of x(t) are
(0.35, 10/12) and (1.15, 8/12).
Hint: Use exercises 69 and 70.

72. (Auto) Assume fps units. An auto
weighing 2.4 tons is equipped with four
identical springs and shocks. Each
spring-shock module has damped oscil-
lations satisfying mx′′ + cx′ + kx =
0. Find m. Then find c and k from
this experimental data: two consecu-
tive maxima of x(t) are (0.3, 3/12) and
(0.7, 2/12).
Hint: Use exercises 69 and 70.

Structure of Solutions
Establish these results for the damped
spring-mass system mx′′ + cx′ + kx = 0.
Assume m > 0, c > 0, k > 0.

73. (Monotonic Factor) Let the equation
be critically damped or over-damped.
Prove that

x(t) = e−ptf(t)

where p ≥ 0 and f(t) is monotonic (f ′

one-signed).

74. (Harmonic Factor) Let the equation
be under-damped. Prove that

x(t) = e−atf(t)

where a > 0 and f(t) = c1 cosωt +
c2 sinωt = A cos(ωt − α) is a harmonic
oscillation.

75. (Limit Zero and Transients) A term
appearing in a solution is called tran-
sient if it has limit zero at t = ∞.
Prove that positive damping c > 0 im-
plies that the homogeneous solution sat-
isfies limt→∞ x(t) = 0.

76. (Steady-State) An observable or
steady-state is expression obtained
from a solution by excluding all terms
with limit zero at t = ∞. The Tran-
sient is the expression excluded to ob-
tain the steady state. Assume mx′′ +
cx′ + kx = 25 cos 2t has a solution

x(t) = 2te−t − cos 2t+ sin 2t.

Find the transient and steady-state
terms.
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Damping Effects
Construct a figure on 0 ≤ t ≤ 2 with two
curves, to illustrate the effect of removing
the dashpot. Curve 1 is the solution of
mx′′ + cx′ + kx = 0, x(0) = x0, x

′(0) = v0.
Curve 2 is the solution of my′′ + ky = 0,
y(0) = x0, y

′(0) = v0.

77. m = 2, c = 12, k = 50,
x0 = 0, v0 = −20

78. m = 1, c = 6, k = 25,
x0 = 0, v0 = 20

79. m = 1, c = 8, k = 25,
x0 = 0, v0 = 60

80. m = 1, c = 4, k = 20,
x0 = 0, v0 = 4

Envelope and Pseudo-period
Plot on one graphic the envelope curves and
the solution x(t), over two pseudo-periods.
Use initial conditions x(0) = 0, x′(0) = 4.

81. x′′ + 2x′ + 5x = 0

82. x′′ + 2x′ + 26x = 0

83. 2x′′ + 12x′ + 50x = 0

84. 4x′′ + 8x′ + 20x = 0
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6.8 Resonance

A highlight in the study of vibrating mechanical systems is the theory of pure
and practical resonance.

Pure Resonance and Beats

The notion of pure resonance in the differential equation

x′′(t) + ω2
0 x(t) = F0 cos(ωt)(1)

is the existence of a solution that is unbounded as t → ∞. Unbounded means not
bounded. Bounded means a constant M exists such that |x(t)| ≤ M for all values
of t. Already known, The theory of Beats page 507 solves (1) for ω ̸= ω0. The
solution is the sum of two harmonic oscillations, hence it is bounded. Equation
(1) for ω = ω0 has by the method of undetermined coefficients the unbounded os-

cillatory solution x(t) =
F0

2ω0
t sin(ω0 t). Technical details are similar to Example

6.53, infra.

Pure resonance occurs exactly when the natural internal frequency ω0 matches
the natural external frequency ω, in which case all solutions of the differential
equation are unbounded.

Figure 25 illustrates pure resonance for x′′(t)+16x(t) = 8 cos 4t, which in equation
(1) corresponds to ω = ω0 = 4 and F0 = 8.

t

x

Figure 25. Pure resonance.
Equation x′′(t) + 16x(t) = 8 cosωt, ω = 4.
Graphs:
envelope curve x = t yellow
envelope curve x = −t green
solution x(t) = t sin 4t red

Resonance and Undetermined Coefficients

An explanation of resonance can be based upon the theory of undetermined
coefficients. An initial trial solution for

x′′(t) + 16x(t) = 8 cosωt

is x = d1 cosωt+d2 sinωt. The homogeneous solution is xh = c1 cos 4t+ c2 sin 4t.
Euler atoms in xh(t) match Euler atoms in the trial solution x = d1 cosωt +
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d2 sinωt exactly when ω = 4. RULE II in undetermined coefficients applies
exactly for ω = 4. The two cases ω ̸= 4 and ω = 4 give final trial solution

x(t) =

{
d1 cosωt+ d2 sinωt ω ̸= 4,

t(d1 cosωt+ d2 sinωt) ω = 4.
(2)

Even before the undetermined coefficients d1, d2 are evaluated, it is decided
that unbounded solutions occur exactly when frequency matching ω = 4 occurs,
because of the amplitude factor t. If ω ̸= 4, then xp(t) is a pure harmonic
oscillation, hence bounded. If ω = 4, then amplitude factor t times a pure
harmonic oscillation makes xp unbounded.

Practical Resonance

The notion of pure resonance is easy to understand both mathematically and
physically, because frequency matching characterizes the event. This ideal situ-
ation never happens in the physical world, because damping is always present.
In the presence of damping c > 0, it will be established below that only bounded
solutions exist for the forced spring-mass system

mx′′(t) + cx′(t) + kx(t) = F0 cosωt.(3)

Our intuition about resonance seems to vaporize in the presence of damping
effects. But not completely. Most would agree that the undamped intuition is
correct when the damping effects are nearly zero.

Practical resonance is said to occur when the external frequency ω has been
tuned to produce the largest possible solution (a more precise definition appears
below). It will be shown that the steady-state solution xss(t) has maximum
amplitude, over all possible input frequencies ω, at the precise tuned frequency
ω = Ω given by the equation

Ω =

√
k

m
− c2

2m2
.(4)

The equation only makes sense when k
m− c2

2m2 > 0. Pure resonance ω =
√
k/m is

the limiting case obtained by setting the damping constant c to zero in condition
(4). This strange but predictable interaction exists between the damping constant
c and the magnitude of a solution, relative to the external frequency ω, even
though all solutions remain bounded.

The decomposition of x(t) into homogeneous solution xh(t) and particular solu-
tion xp(t) gives some intuition into the complex relationship between the input
frequency ω and the size of the solution x(t).
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Homogeneous Solution xh(t)

Solution xh(t) for homogeneous equation mx′′(t)+ cx′(t)+ kx(t) = 0 for positive
constants m, c, k will be shown to have limit zero at t = ∞, which means the
graph of xh(t) follows the t-axis to t = ∞. An inequality of the form |xh(t)| ≤ e−qt

holds as t → ∞, for some q > 0: see the proof of Theorem 6.21. Figure 26 shows
that the graph of xh(t) can cross the t-axis infinitely often, even though it is
trapped between envelope curves x = ±e−qt near t = ∞.7

Theorem 6.21 (Transient Solution)
Assume positive values for m, c, k. The solution xh(t) of the homogeneous equation
mx′′(t) + cx′(t) + kx(t) = 0 has limit zero at t = ∞:

lim
t→∞

xh(t) = 0 for positive m, c, k

Proof on page 542.

Definition 6.3 (Transient Solution)
A solution x(t) of a differential equation is called a transient solution provided it
satisfies the relation limt→∞ x(t) = 0.

A transient solution x(t) for large t has its graph atop the axis x = 0, as in Figure
26.

1

0 t
50

x

Figure 26. Transient Oscillatory Solution.
Shown is solution x = e−t/8(cos t + sin t) of differential
equation 64x′′ + 16x′ + 65x = 0.

Particular Solution xp(t)

Let’s find xp(t) for mx′′(t)+ cx′(t)+kx(t) = F0 cosωt by the method of undeter-
mined coefficients. It will be found that xp(t) equals xss(t) defined in Definition
6.4 and explicitly given in equation (5) infra.

Definition 6.4 (Steady-State Solution)
Assume for non-homogeneous equation mx′′(t)+ cx′(t)+kx(t) = F0 cosωt that m,
c, k are all positive values. The steady–state solution xss(t) is a particular solution
xp(t) in superposition x(t) = xp(t) + xh(t), found from any general solution x(t)
by removing all terms containing negative exponentials. The terms removed add to
some homogeneous solution xh(t).

7A funnel in first order theory for y′ = f(y) may also have limit y = 0 at infinity, but the
funnel graph cannot cross y = 0.
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Steady-state solution xss(t) is observable, because it is visible as the graph of
x(t) for t large enough for the negative exponential terms become zero to pixel
resolution. Uniqueness of xss(t) implies Definition 6.4 is sensible, details in the
proof of Theorem 6.22.

Theorem 6.22 (Steady-State Solution)
Assume positive values for m, c, k. The unique steady-state solution xss(t) of the
non-homogeneous equation mx′′(t) + cx′(t) + kx(t) = F0 cosωt with period 2π/ω
is given by

xss(t) =
F0

(k −mω2)2 + (cω)2
(
(k −mω2) cosωt+ (cω) sinωt

)
=

F0√
(k −mω2)2 + (cω)2

cos(ωt− α),
(5)

where α is defined by the phase–amplitude relations (see page 492)

C cosα = k −mω2, C sinα = cω,

C = F0/
√
(k −mω2)2 + (cω)2.

(6)

Proof on page 543.

It is possible to be mislead by the method of undetermined coefficients, in which it
turns out that xp(t) and xss(t) are the same. Alternatively, a particular solution
xp(t) can be calculated by variation of parameters, a method which produces in
xp(t) extra terms containing negative exponentials. These extra terms come from
the homogeneous solution – their appearance cannot always be avoided. This
justifies the careful definition of steady–state solution, in which the transient
terms are removed from a general solution x(t) to produce xss(t).

Definition 6.5 (Practical Resonance)
Assume positive values for m, c, k in non-homogeneous equation mx′′(t) + cx′(t) +
kx(t) = F0 cosωt. Practical resonance occurs if there is a value of external fre-
quency ω > 0 in which produces the largest possible steady-state amplitude C(ω) in
the steady-state periodic solution xss defined by equation (5) in Theorem 6.22.

Theorem 6.23 (Practical Resonance Identity)
Assume positive values for m, c, k in non-homogeneous equation mx′′(t) + cx′(t) +
kx(t) = F0 cosωt. Practical resonance for mx′′(t) + cx′(t) + kx(t) = F0 cosωt
occurs precisely when the external frequency ω is tuned to

Ω =

√
k

m
− c2

2m2

and the square root argument k
m − c2

2m2 is positive.

Proof on page 543.
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Theorem 6.24 (Pure Resonance Identity)
Assume m and k are positive in non-homogeneous equation mx′′(t) + kx(t) =
F0 cosωt. Pure resonance results from tuned external frequency value

ω =

√
k

m
=

(√
k

m
− c2

2m2

)∣∣∣∣∣
c=0

This value is the limiting case c = 0 in Theorem 6.23. If ω = k
m is inserted into

mx′′(t) + kx(t) = F0 cosωt, then xp(t) =
F0

2mω
t sin(ωt) is an unbounded solution,

causing all solutions x(t) to be unbounded. Proof on page 543.

An Illustration. Figure 27 illustrates practical resonance for x′′ + cx′ + 26x =
10 cosωt. The amplitude C(ω) of the steady–state periodic solution is graphed
against the external natural frequency ω for damping constants c = 1, 2, 3. The
practical resonance condition is Ω =

√
26− c2/2. As c increases from 1 to 3, the

maximum point (Ω, C(Ω)) satisfies a monotonicity condition: both Ω and C(Ω)
decrease as c increases. The maxima for the three curves in the figure occur at
ω =

√
25.5,

√
24,

√
21.5. Pure resonance occurs when c = 0 and ω =

√
26.

ω

c = 3

c = 2

c = 1

C

Figure 27. Practical resonance for x′′ + cx′ + 26x = 10 cosωt.

The amplitude C(ω) = 10/
√
(26− ω2)2 + (cω)2 is plotted versus external frequency ω

for c = 1, 2, 3.

Uniqueness of the Steady–State Periodic Solution

Any two solutions of the nonhomogeneous differential equation (3) which are
periodic of period 2π/ω must be identical by Theorem 6.22. A more general
statement is true:

Theorem 6.25 (Uniqueness of a T -Periodic Solution)
Assume m, c, k positive. Consider the equation mx′′(t) + cx′(t) + kx(t) = f(t)
with f continuous and T -periodic: f(t + T ) = f(t). Then a T–periodic solution is
unique. Proof on page 544.

An Illustration. In Figure 28, the unique steady–state periodic solution is
graphed for the differential equation x′′+2x′+2x = sin t+2 cos t. The transient
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solution of the homogeneous equation and the steady–state solution appear in
Figure 29. In Figure 30, several solutions are shown for the differential equation
x′′ + 2x′ + 2x = sin t+ 2 cos t, all of which reproduce at t = ∞ the steady–state
solution x = sin t.

x

0
6π

t

1

Figure 28. Steady-state solution.
Differential equation x′′ + 2x′ + 2x = sin t+ 2 cos t.
Periodic steady-state solution xss = sin t.

2

1

0
0

6π
t

x

Figure 29. Transient and Steady-state.
General solution x(t) is the graphical sum of xh

(green) and xss (red):
Transient Green xh = e−t (2 ∗ cos t+ 2 sin t)
Steady-state Red xss = sin t

x

0
0

2

3

1

t

3π

Figure 30. Steady-state.
Initial value problem solutions of x′′ +
2x′ + 2x = sin t+ 2 cos t with x′(0) = 1 and
x(0) = 1, 2, 3.
All graphically coincide with the steady-
state solution x = sin t for t ≥ π.

Pseudo–Periodic Solution

Resonance gives rise to solutions of the form x(t) = A(t) sin(ωt− α) where A(t)
is a time–varying amplitude. Figure 31 shows such a solution, which is called a
pseudo–periodic solution because it has a natural period 2π/ω arising from
the trigonometric factor sin(ωt − α). The only requirement on A(t) is that it
be non–vanishing, so that it acts like an amplitude. The pseudo–period of a
pseudo–periodic solution can be determined graphically, by computing the length
of time it takes for x(t) to vanish three times.
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4
e

0 t
20

x

Figure 31. Pseudo-periodic solution.
Equation 16x′′ + 8x′ + 145x = 96e−t/4 cos 3t.
Legend for the graphic:
Envelope x = te−t/4 Yellow
Envelope x = −te−t/4 Green
Solution x = te−t/4 sin(3t) Red

The pseudo-period 2π/3 of x = te−t/4 sin(3t) is found by solving for t in x(t) = 0,
equivalently te−t/4 sin(3t) = 0. Then 3t = 0, π, 2π are the first three crossings of
x(t) with the t-axis. The pseudo-period is 2π/3. The terminology does not mean
that x(t) is periodic, but pseudo-periodic, which is a periodic function multiplied
by a nonzero amplitude function.

Resonance History

Soldiers Breaking Cadence, 1831

Figure 32. The Rebuilt Broughton Suspension Bridge.

On 12 April 1831, the original bridge collapsed, blamed on mechanical resonance from

troops marching in cadence. The bridge spans the River Irwell between Broughton and

Pendleton near Manchester, England. Photo from 1883.

The collapse of the Broughton suspension bridge in 1831 reportedly caused the
now–standard military rule of breaking cadence when soldiers cross a bridge.
Bridges like the Broughton bridge have many natural low frequencies of vibra-
tion, so it is possible for a column of soldiers to vibrate the bridge at one of
the bridge’s natural frequencies. The bridge locks onto the frequency while the
soldiers continue to add to the excursions with every step, causing larger and
larger bridge oscillations.
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Figure 33. The London Albert Bridge.

A sign added in 1973 warns marching ranks of soldiers to break cadence.

The Tacoma Narrows Bridge, 1940

The literature is rich with accounts of the November 7, 1940 Tacoma bridge
disaster, the date when the bridge fell into the Tacoma Narrows.

Figure 34. The Tacoma Narrows Bridge, 1940.

Historically, the disaster has been presented as an instance of resonance, a technical

term which requires a periodic input of energy. No observer witnessed a periodic input

of energy, and this is the source of the controversy over the cause of the bridge failure.

The bridge disaster has been blamed on Aeroelastic Flutter, a term used for
aircraft:

If energy input by aerodynamic excitation is larger than what is dissi-
pated by system damping, then the amplitude of vibration will increase,
resulting in self-exciting oscillation.

The Tacoma bridge was injected with energy from a 40 mph wind. The energy
did not dissipate through the damping properties of the bridge structure. The
energy was dissipated by the formation of longitudinal and transverse vibrations
of the roadway, which eventually lead to failure.

There have been other explanations, none of which are more popular than aeroe-
lastic flutter.
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1940 Theodore von Karman proposed that vortex shedding had created a (pe-
riodic) force in its wake that excited the bridge into resonant oscillations.
This resonance theory requires a periodic input caused by a 40 mph wind
acting on the bridge structure. Wind tunnel experiments seemed to verify
the explanation. The final Federal Works Administration report rejected
the explanation.

2000 The resonance model was re-visited, because the hanging bridge suspen-
sion cables produce a force only in one direction. Using a modification
of the classical linear resonance model, simulations reproduced oscillation
magnitudes seen in the 1940 film of the bridge failure.

The Wine Glass Experiment, 1985

The equation mx′′ + cx′ + kx = F0 cos(ωt) with c replaced by zero is advertised
as the basis for a physics experiment to break a wine glass with resonant sound
waves.

701

803.2

Stereo Amplifier

Frequency Counter

Frequency synthesizer

Chan 1 Chan 2

Speaker Microphone

Wine Glass

Oscilloscope Function Generator

Figure 35. The Wine Glass Experiment Lab Table.

Equipment: A wine glass, a stereo amplifier, a speaker for sound waves, a frequency

generator and a microphone connected to an oscilloscope.

The wine glass experiment is a portion of a film produced in 1985 by the An-
nenberg/CPB Project in Episode 17, Resonance, which is one of 52 episodes
in The Mechanical Universe series. A synopsis appears below for a por-
tion of episode 17, with parenthetical remarks inserted for the model equation
mx′′ + kx = F0 cosωt.

A physicist in front of an audience of physics students equips a lab table
with a frequency generator, an amplifier and an audio speaker. The
valuable wine glass is replaced by a glass beaker. The frequency generator
is tuned to the natural frequency of the glass beaker (ω ≈ ω0), then the
volume knob on the amplifier is suddenly turned up (F0 adjusted larger),
whereupon the sound waves emitted from the speaker break the glass
beaker.

The glass itself will vibrate at a certain frequency, as can be determined exper-
imentally by pinging the glass rim. This vibration operates within elastic limits
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of the glass and the glass will not break under these circumstances. A physical
explanation for the breakage is that an incoming sound wave from the speaker is
timed to add to the glass rim excursion. After enough amplitude additions, the
glass rim moves beyond the elastic limit and the glass breaks. The explanation
implies that the external frequency from the speaker has to match the natural fre-
quency of the glass. But there is more to it: the glass has some natural damping
that nullifies feeble attempts to increase the glass rim amplitude. The physicist
uses to great advantage this natural damping to tune the external frequency to
the glass. The reason for turning up the volume on the amplifier is to nullify the
damping effects of the glass. The amplitude additions then build rapidly and the
glass breaks.

The London Millennium Foot-Bridge, 2000

Figure 36. The London Millennium Foot-Bridge.

Opened June 10, 2000 and closed two days later, London visitors nicknamed it the

Wobbly Bridge. The reconstruction finished in 2002 added 5M pounds to the initial

cost of 18M.

The opening of the bridge brought crowds of 90,000 people per day. The natural
swaying motion of people walking across the span caused small sideways bridge
oscillations, which in turn caused people on the bridge to sway in step, adding
to the amplitude of the bridge oscillations.

Engineers fixed the vibration problem by retrofitting 37 energy dissipating vis-
cous fluid dashpots to control horizontal movement and 52 tuned inertial mass
dampers to control vertical movement.
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Examples and Methods

Example 6.53 (Beats and Pure Resonance)
Solve by undetermined coefficients for a particular solution of the equation x′′(t) +
16x(t) = 8 cosωt for all values of ω > 0, verifying that

xp(t) =


8

16− ω2
cos(ωt) ω ̸= 4,

t sin(4t) ω = 4.

Solution:

Trial solution details. Rule I of undetermined coefficients requires derivatives of f(t) =
8 cos(ωt), which are linear combinations of Euler atoms cos(ωt), sin(ωt). Then the Rule
I trial solution is x = d1 cos(ωt) + d2 sin(ωt).

The homogeneous solution solves x′′ + 16x = 0, then xh = c1 cos(4t) + c2 sin(4t). Euler
atoms cos(ωt), sin(ωt) will be homogeneous solutions if and only if ω = 4. Rule II applies
only in the case ω = 4, in which case the trial solution is x = d1t cos(4t)+ d2t sin(4t) (ωt
equals 4t).

Details for Beats, ω ̸= 4: Write u = cos(ωt), v = sin(ωt) and x(t) = d1u+ d2v. Then
x(t) = d1u+ d2v. Because u′′ + ω2u = 0 and v′′ + ω2v = 0, then x′′ + ω2x = 0.

x′′ + 16x = 8u Original equation, u = cos(ωt).

−ω2x+ 16x = 8u Substitute from x′′ + ω2x = 0.

(16− ω2)(d1u+ d2v) = 8u Collect on x. Substitute x = d1u+ d2v.∣∣∣∣ (16− ω2)d1 = 8,
(16− ω2)d2 = 0.

∣∣∣∣ Independence. Match coefficients of u, v.

d1 =
8

16− ω2
, d2 = 0 Solve for d1, d2.

Details for Pure Resonance, ω = 4: Define u = cos(4t), v = sin(4t). The modified
trial solution x(t) then satisfies

x(t) = d1tu+ d2tv,
x′(t) = d1u+ d2v − 4d1tv + 4d2tu,
x′′(t) = −8d1v + 8d2u− 16x(t).

(7)

Then

x′′ + 16x = 8u Original equation, u = cos(ωt).

−8d1v + 8d2u = 8u Use equation (7), then cancel 16x(t).∣∣∣∣ −8d1 = 0,
8d2 = 8.

∣∣∣∣ Independence of u, v implies matching coefficients.

x(t) = d1tu+ d2tv
= tv,
= t sin(4t).

Insert answers d1 = 0, d2 = 1. Answer found.
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Example 6.54 (Damped Forced Spring-Mass System Trial Solution )

To equation mx′′ + cx′ + kx = F0 cos(ωt) with all coefficients positive apply unde-
termined coefficients to obtain trial solution

x(t) = A cosωt+B sinωt.

Solution: The derivatives of f(t) = F0 cos(ωt) are linear combinations of Euler solution
atoms cos(ωt), sin(ωt). Rule I of the method of undetermined coefficients gives trial
solution x(t) = d1 cos(ωt) + d2 sin(ωt).

For characteristic equation mr2 + cr + k = 0 with positive m, c, k, there are 3 cases to
consider, based on the sign of the discriminant. In all 3 cases, equation mr2+ cr+k = 0
has roots with nonzero real part. For instance, the real part is − c

2m for a negative
discriminant. Then the trial solution is not a solution of the homogeneous differential
equation mx′′ + cx′ + kx = 0. Rule I in the method of undetermined coefficients does
not fail and Rule II is not applied.

The reported trial solution is the final trial solution. To agree with notation, replace
symbols d1, d2 by symbols A,B and report trial solution x(t) = A cos(ωt) +B sin(ωt).

Example 6.55 (Undetermined Coefficients Calculation)
Substitute the trial solution x(t) = A cos(ωt) +B sin(ωt) into the equation mx′′ +
cx′ + kx = F0 cos(ωt) to obtain the system of equations

(k −mω2)A + (cω)B = F0,
(−cω)A + (k −mω2)B = 0.

(8)

Solution: Define u = cos(ωt), v = sin(ωt), to simplify the displays. Equations u′′ +
ω2u = 0 and v′′ + ω2v = 0 are valid. By superposition, x′′ + ω2x = 0 holds for the trial
solution x(t) = A cos(ωt) +B sin(ωt).

mx′′ + cx′ + kx = F0u Original differential equation.

−mω2x+ cx′ + kx = F0u Use x′′ + ω2x = 0.

(k −mω2)x+ cx′ = F0u Collect on x and x′.

(k −mω2)(Au+Bv)+
c(−Aωv +Bωu) = F0u

Expand with x = Au + Bv and x′ =
−Aωv +Bωu.(

(k −mω2)A+ cωB
)
u+(

−cωA+ (k −mω2)B
)
v = F0u

Collect on u, v.(
(k −mω2)A+ cωB

)
= F0,(

−cωA+ (k −mω2)B
)

= 0.
Independence of u, v implies their coeffi-
cients match.

(k −mω2)A +cωB = F0,
−cωA +(k −mω2)B = 0.

Linear equations in unknowns A,B. Sys-
tem (8) found.

Example 6.56 (Cramer’s Rule Solution for A, B)
Verify using Cramer’s determinant rule the formulas

A =
(k −mω2)F0

(k −mω2)2 + (cω)2
, B =

cωF0

(k −mω2)2 + (cω)2

for the answers A,B to the system of equations (8).
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Solution: Cramer’s 2× 2 rule for system a11x1 + a12x2 = b1, a21x1 + a22x2 = b2 is the
set of equations

x1 =
∆1

∆
, x2 =

∆2

∆
, ∆ =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ , ∆1 =

∣∣∣∣b1 a12
b2 a22

∣∣∣∣ , ∆2 =

∣∣∣∣a11 b1
a21 b2

∣∣∣∣ .
Apply these formulas to system (8). Then

∆ =

∣∣∣∣k −mω2 cω
−cω k −mω2

∣∣∣∣ , ∆1 =

∣∣∣∣F0 cω
0 k −mω2

∣∣∣∣ , ∆2 =

∣∣∣∣k −mω2 F0
−cω 0

∣∣∣∣ .
Sarrus’ 2× 2 rule is applied to evaluate the determinants. Then

∆ = (k −mω2)2 + (cω)2, ∆1 = (k −mω2)F0, ∆2 = cωF0.

Cramer’s rule formulas A = ∆1

∆ , B = ∆2

∆ give the reported answers.

Example 6.57 (Transient and Steady-State Solutions)

Compute the transient and steady-state solutions xtr and xss for the equation 2x′′+
3x′ + 2x = 174 cos(4t), verifying the formulas

xtr = e−3t/4 (c1 cos(kt) + c2 sin(kt)) , k =
√
7
4 ,

xss = −5 cos(4t) + 2 sin(4t).

Solution:
Homogeneous Solution: The characteristic equation 2r2 + 3r + 2 = 0 has complex

conjugate roots− 3
4±

√
7
4 i. Then the Euler solution atoms are e−3t/4 cos(kt), e−3t/4 sin(kt)

where k =
√
7
4 . The homogeneous solution is then

xh = e−3t/4 (c1 cos(kt) + c2 sin(kt)) .

Particular Solution: The method of undetermined coefficients applies with Rule I
trial solution x = A cos(4t) + B sin(4t). Let’s justify this statement. The right side
f(t) = 174 cos(4t) has derivatives a linear combination of the Euler solution atoms
cos(4t), sin(4t). Rule I does not fail, because these Euler atoms are not solutions of
the homogeneous equation. Rule II does not apply, and the final trial solution is
x = A cos(4t) +B sin(4t).

Let u = cos(4t), v = sin(4t). Then u′′ + 16u = 0, v′′ + 16v = 0. Superposition implies
x′′ + 16x = 0. The following steps find the undetermined coefficients A = −5, B = 2.

2x′′ + 3x′ + 2x = 174u Original differential equation, u = cos 4t.

−32x+ 3x′ + 2x = 174u Substitute x′′ + 16x = 0, where x = Au+Bv.

−30(Au+Bv)+
3(−4Av + 4Bu) = 174u

Substitute x = Au+Bv, x′ = −4Av + 4Bu.

(−30A+ 12B)u+
(−12A− 30B)v = 174u

Collect on u, v.∣∣∣∣ −30A+ 12B = 174,
−12A− 30B = 0.

∣∣∣∣ Independence of u, v implies matching coefficients (inde-
pendent Euler atoms).
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∣∣∣∣ A = −5,
B = 2.

∣∣∣∣ Solve for A,B by elimination or Cramer’s rule.

The particular solution is xp = −5 cos 4t+ 2 sin 4t.

General Solution: Superposition gives general solution

x = xh + xp = e−3t/4 (c1 cos(kt) + c2 sin(kt))− 5 cos 4t+ 2 sin 4t.

Transient Solution: This is the part of the general solution with negative exponential
terms (terms that limit to zero at infinity). Then

xtr = e−3t/4 (c1 cos(kt) + c2 sin(kt)) .

Steady-State Solution: This is the part of the solution left over after the transients
are removed. Then

xss = −5 cos 4t+ 2 sin 4t.

Example 6.58 (Pseudo-periodic solution)
Derive the pseudo-periodic solution x = te−t/4 sin(3t) and its envelope curves x =

±te−t/4 for the equation 16x′′ + 8x′ + 145x = 96e−t/4 cos 3t.

Solution:
Envelope Curves. For damped oscillations, a solution of the form x(t) = eat(c1 cos(bt)+
c2 sin(bt)) has to be re-written in phase-amplitude form, using the formulas from page
492. Then x(t) = Ceat cos(bt− α) and by definition the envelope curves are x = ±Ceat,
because the cosine factor has extreme values ±1.

In the present example, the pseudo-periodic solution is x(t) = te−t/4 sin(3t). The same
logic applies. The sine factor has extreme values ±1, then the envelope curves are
x = ±te−t/4.

Pseudo-periodic Solution. Undetermined coefficients will be applied to find a par-
ticular solution xp of 16x′′ + 8x′ + 145x = 96e−t/4 cos 3t. It turns out that the desired
pseudo-periodic solution is the undetermined coefficients answer x = te−t/4 sin 3t. This
is because the method subtracts all homogeneous terms from the particular solution.
Superposition x = xh + xp was invisibly used here. If xp was found from another
method, then homogeneous terms should be removed from the answer, before reporting
the pseudo-periodic solution.

Homogeneous Solution. It is found from 16x′′ + 8x′ + 145x = 0. The Euler solution
atoms are e−t/4 cos(3t), e−t/4 sin(3t), found from the characteristic equation 16r2 +8r+
145 = 0, which has complex conjugate roots r = − 1

4 ± 3i. Then

xh(t) = c1e
−t/4 cos(3t) + c2e

−t/4 sin(3t).

Particular solution xp. It is found by undetermined coefficients. The answer to be
justified below is

xp(t) = te−t/4 sin(3t).

Differentiate the right side f(t) = 96e−t/4 cos 3t of the non-homogeneous equation to
identify the Euler atoms e−t/4 cos 3t, e−t/4 sin 3t. Rule I of undetermined coefficients
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fails, because these atoms are solutions of the homogeneous equation. Then Rule II is
applied to find the final trial solution

x = t
(
d1e

−t/4 cos 3t+ d2e
−t/4 sin 3t

)
= t(d1u+ d2v)

where u = e−t/4 cos 3t and v = e−t/4 sin 3t. Then u, v are solutions of 16x′′+8x′+145x =
0. Define w = d1u+d2v. Superposition implies w is also a solution of 16x′′+8x′+145x =
0.

Compute the derivatives of the trial solution:

x = t (d1u+ d2v) = tw,
x′ = w + tw′

x′′ = 2w′ + tw′′.
(9)

16x′′ + 8x′ + 145x = 96u Original equation, u = e−t/4 cos 3t.

16(2w′ + tw′′)+
8(w + tw′) + 145tw = 96u

Use equations (9).

32w′ + 8w+
t(16w′′ + 8w′ + 145w) = 96u

Collect terms on factor t.

32w′ + 8w = 96u Use homogeneous equation 16w′′ +8w′ +145w =
0.

−96d1v + 96d2u = 96u Expand w = d1u+d2v, w
′ = − 1

4w−3d1v+3d2u.
Cancel 8w.

d1 = 0, d2 = 1 Independence of u, v implies matching coefficients.

The trial solution x = tw becomes x = te−t/4 sin(3t).

Other Methods to Find xp. The possible methods are variation of parameters,
Laplace theory and a computer algebra system. Below is sample maple code to check
the answer given above.

de:=16*diff(x(t),t,t)+8*diff(x(t),t)+145*x(t)=

96*exp(-t/4)*cos(3*t);

dsolve(de,x(t));

The answer involves homogeneous terms with arbitrary constants C1, C2. These terms
must be removed to check the answer, xp = te−t/4 sin(3t).

The example is complete.

Proofs and Technical Details

Proof of Theorem 6.21, Transient Solution:
For positive damping c > 0, equation (3) has homogeneous solution xh(t) = c1x1(t) +
c2x2(t) where Euler atoms x1 and x2 are according to Theorem 6.1 page 430 given in
terms of the roots of the characteristic equation mr2 + cr + k = 0 as follows:

Let D = c2 − 4mk. The discriminant of mr2 + cr + k = 0.

Case 1, D > 0 x1 = er1t, x2 = er2t with r1 and r2 negative.
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Case 2, D = 0 x1 = er1t, x2 = ter1t with r1 negative.

Case 3, D < 0 x1 = eat cos bt, x2 = eat sin bt with b > 0 and
a negative.

Let’s verify that xh(t) = e−qt(bounded function) for some q > 0, regardless of the
positive values of m, c, k. For instance, Case 2 implies xh = er1t/2(c1e

r1t/2 + c2te
r1t/2)

and (c1e
r1t/2 + c2te

r1t/2) is bounded by some number M . Let −q = r1/2 < 0. Then
|xh(t)| ≤ Me−qt, which proves xh(t) has limit zero at t = ∞. A similar analysis applied
to cases 1,2,3 reveals that |xh(t)| ≤ Me−qt holds if q is smaller than |Re(λ)| for all roots
λ of the characteristic equation. ■

Proof of Theorem 6.22, Steady-State Solution
Uniqueness. Assume (5) has been proved. Suppose x(t) is a periodic solution of period
2π/ω. Superposition implies x(t) = xss(t) + xh(t) for some homogeneous solution xh(t).
Then x(t)−xss(t) has period 2π/ω and equals some xh(t), which has limit zero at t = ∞
by Theorem 6.21. Because a nonzero periodic function cannot have limit zero at t = ∞,
then xh(t) = 0, proving uniqueness x(t) = xss(t).

Details for (6). The method of undetermined coefficients applies to mx′′(t) + cx′(t) +
kx(t) = F0 cosωt with trial solution x(t) = A cosωt + B sinωt. The TEST succeeds,
because by Theorem 6.21 the Euler atoms in xh(t) cannot match cosωt or sinωt. More
details in Example 6.54 page 539. Substitution of x(t) into mx′′(t) + cx′(t) + kx(t) =
F0 cosωt produces a linear combination of Euler atoms on the left. Match the coefficients
of the atoms left and right to verify the equations

(k −mω2)A + (cω)B = F0,
(−cω)A + (k −mω2)B = 0.

(10)

Details in Example 6.55 page 539. Solve (10) for A,B with Cramer’s rule or elimination.
Then:

A =
(k −mω2)F0

(k −mω2)2 + (cω)2
, B =

cωF0

(k −mω2)2 + (cω)2
.(11)

Details in Example 6.56 page 539. Substitute the answers in (11) into trial solution
x(t) = A cosωt+B sinωt. Convert this solution to phase-amplitude form using formulas
on page 492. Then (6) holds. ■

Proof of Theorem 6.23, Practical Resonance Identity:
Mathematically, a maximum happens exactly when the amplitude function C = C(ω)
defined in (6) has a maximum. If a maximum exists on 0 < ω < ∞, then C ′(ω) = 0 at
the maximum. The derivative is computed by the power rule:

C ′(ω) =
−F0

2

2(k −mω2)(−2mω) + 2c2ω

((k −mω2)2 + (cω)2)3/2

= ω
(
2mk − c2 − 2m2ω2

) C(ω)3

F 2
0

(12)

If 2km − c2 ≤ 0, then C ′(ω) does not vanish for 0 < ω < ∞. Then C ′(ω) is one-signed
and there is no maximum. If 2km − c2 > 0, then 2km − c2 − 2m2ω2 = 0 has exactly
one root ω =

√
k/m− c2/(2m2) in 0 < ω < ∞. Because C(∞) = 0, then C(ω) is a

maximum. ■

Proof of Theorem 6.24, Pure Resonance Identity:
The details follow Example 6.53 page 538. Let ω = k

m . The homogeneous equation
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mx′′(t) + kx(t) = 0 has general solution x = c1x1 + c2x2 given by Euler atoms x1 =
cosωt, x2 = sinωt. Undetermined coefficients applies, RULE II giving modified trial
solution X = t(d1 cosωt + d2 sinωt). Like Example 6.53, the trial solution is inserted
into mx′′(t) + kx(t) = F0 cosωt, then Euler atom coefficients are matched left and right
to obtain a diagonal system of linear algebraic equations for d1, d2. The answer: d1 = 0,
d2 = F0

2mω . Insert the answers into the trial solution to find xp(t) = 0 + d2t sinωt =
F0

2mω t sinωt. ■

Proof of Theorem 6.25, Uniqueness T -periodic Solution:
The vehicle of proof is to show that the difference x(t) of two T -periodic solutions is
zero. Difference x(t) is a solution of the homogeneous equation, it is T–periodic and it
has limit zero at infinity. A periodic function with limit zero must be zero, therefore
x(t) = 0, which proves the two solutions are identical. ■

Exercises 6.8

Beats
Each equation satisfies the beats relation
ω ̸= ω0. Find the general solution. See
Example 6.53, page 538.

1. x′′ + 100x = 10 sin 9t

2. x′′ + 100x = 5 sin 9t

3. x′′ + 25x = 5 sin 4t

4. x′′ + 25x = 5 cos 4t

Pure Resonance
Each equation satisfies the pure resonance
relation ω = ω0. Find the general solution.
See Example 6.53, page 538.

5. x′′ + 4x = 10 sin 2t

6. x′′ + 4x = 5 sin 2t

7. x′′ + 16x = 5 sin 4t

8. x′′ + 16x = 10 sin 4t

Practical Resonance
For each model, find the tuned practical
resonance frequency Ω and the resonant
amplitude C:

Ω =
√
k/m− c2/(2m2),

C = F0/
√
(k −mΩ2)2 + (cΩ)2

9. x′′ + 2x′ + 17x = 100 cos(4t)

10. x′′ + 2x′ + 10x = 100 cos(4t)

11. x′′ + 4x′ + 5x = 10 cos(2t)

12. x′′ + 2x′ + 6x = 10 cos(2t)

Transient Solution
Identify from superposition x = xh + xp a
shortest particular solution, given one par-
ticular solution.

13. x′′ + 2x′ + 10x = 26 cos(3t),
x = 100e−t cos(3t) + 3 cos (2 t) +
2 sin (2 t)

14. x′′ + 4x′ + 13x = 920 cos(3t),
x = 5 e−2 t cos (3 t) + 23 cos (3 t) +
69 sin (3 t)

15. x′′ + 2x′ + 2x = 2 cos(t),
x = 3 e−t sin (t)+5 e−t cos (t)+cos (t)+
2 sin (t)

16. x′′ + 2x′ + 17x = 65 cos(4t),
x = −2 e−t sin (4 t) + 7 e−t cos (4 t) +
cos (4 t) + 8 sin (4 t)

Steady-State Periodic Solution
Consider the model mx′′ + cx′ + kx =
F0 cos(ωt) of external frequency ω. Com-
pute the unique steady-state solution
A cos(ωt) + B sin(ωt) and its amplitude
C(ω) =

√
A2 +B2. Graph the ratio

100C(ω)/C(Ω) on 0 < ω < ∞, where Ω
is the tuned practical resonance frequency.

17. x′′ + 2x′ + 17x = 100 cos(4t)

18. x′′ + 2x′ + 10x = 100 cos(4t)

19. x′′ + 4x′ + 5x = 10 cos(2t)
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20. x′′ + 2x′ + 6x = 10 cos(2t)

21. x′′ + 4x′ + 5x = 5 cos(2t)

22. x′′ + 2x′ + 5x = 5 cos(1.5t)

Phase-Amplitude
Solve for a particular solution in the form
x(t) = C cos(ωt− α).

23. x′′ + 6x′ + 13x = 174 sin(5t)

24. x′′+8x′+25x = 100 cos(t)+260 sin(t)
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6.9 Kepler’s laws

Kepler’s empirical laws of planetary motion are:

1. All planets move in elliptical orbits with the sun at one focus.

2. The radius vector from the sun to any planet sweeps out equal
areas in equal times.

3. The square of the orbital period is proportional to the cube of
the major semi-axis of its elliptical orbit.

Precise observations over 20 years on the planets and 777 stars visible to the
naked eye were made by the Danish astronomer Tycho Brahe (1546-1601), who
was a teacher of the German astronomer Johannes Kepler (1571-1630). It is
Kepler who is credited with analyzing his teacher’s observations, from which
he deduced the three laws of planetary motion, about 1605. The results were
published in 1609 and 1618.

About 100 years after Kepler, Isaac Newton formulated his renowned univer-
sal gravitation law. Newton showed in his Principia Mathematica (1687) that
Kepler’s laws implied his universal gravitation law. Newton also showed that
Kepler’s first two laws were a consequence of the universal gravitation law.

The purpose of this section is to establish Kepler’s first two laws from New-
ton’s universal gravitation law. Modern calculus courses provide the differential
equations background outlined below.

Background

The derivation of Kepler’s first two laws from Newton’s law requires diverse
background from calculus, analytic geometry, physics and differential equations.
Outlined here is the material required to understand the derivation.

Analytic Geometry

An ellipse or circle equation in standard form is

x2

a2
+

y2

b2
= 1.

The numbers a > 0, b > 0 are called the major and minor semi-axis lengths,
respectively. They are related by b = a

√
1− e2, where 0 ≤ e < 1 is called the

eccentricity. The equation is a circle if and only if e = 0.

546



6.9 Kepler’s laws

Polar Coordinates

A point (r, θ) in polar coordinates is related to its rectangular coordinates (x, y)
defined by the equations

x = r cos θ, y = r sin θ, x2 + y2 = 1, tan θ = y/x.

Circles and ellipses have respectively the polar equations

r = 2a cos(θ − θ0), r =
ed

1 + e cos(θ − θ0)
.

The number a > 0 is the radius of the circle. The number d > 0 is the distance
to the directrix. The eccentricity satisfies 0 < e < 1.

Calculus

The area of a sector in polar coordinates is given by

A =
1

2
r2θ.

A polar equation r = f(θ) encloses on the interval θ1 ≤ θ ≤ θ2 the area

A =

∫ θ2

θ1

|f(θ)|2 dθ.

Physics

Newton’s universal gravitation law is given by the formula

F = G
m1m2

r2
,

where G = 6.672× 10−11N·m2

kg2 is the universal gravitation constant and r is the

distance between the two massesm1, m2. This equation gives only the magnitude
of the force. Implied by the formula is the value of the fundamental constant
g ≈ 9.80 meters per second, the acceleration due to gravity:

g = G
M

R
,

where M ≈ 5.98× 1024 kilograms and R ≈ 6.38× 106 meters are respectively the
mass of the earth and the radius of the earth. A similar formula applies for any
planet. While g is computed for sea level, it varies significantly with altitude,
e.g., 7.33 to 0.13 at altitudes from 1000 to 50, 000 kilometers.
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Differential Equations

The second order differential equation

u′′ + u = 0

is called the harmonic oscillator. It’s solution is u = c1 cosx + c2 sinx, by
the classical constant-coefficient Theorem 6.1. The forced equation u′′ + u = c,
where c is a constant, has a particular solution u = c, obtained by the equilibrium
method. Therefore, the forced equation has the general solution

u = c1 cosx+ c2 sinx+ c.

Derivation of Kepler’s First Two Laws

The second law will be derived first, then the details are used to derive the first
law. The third law is not discussed here.

Kepler’s Second Law

Assumed is the sun at the origin in the plane of motion of the planet. The position
of the planet is written in vector form in polar coordinates by the formula

r⃗(t) =

(
r(t) cos θ(t)
r(t) sin θ(t)

)
.

Newton’s universal gravitation law implies that the acceleration vector r⃗ ′′(t)
satisfies

r⃗ ′′(t) = − k

|⃗r(t)|3
r⃗(t).

The planet’s motion can be expanded by the product rule and chain rule of
calculus to give the relation

r⃗ ′(t) =

(
cos θ(t)
sin θ(t)

)
r′(t) +

(
− sin θ(t)
cos θ(t)

)
r(t)θ′(t).

The column vectors in this formula are orthogonal hence independent. One more
application of the product and chain rules gives

r⃗ ′′(t) =
(
r′′(t)− r(t)(θ′(t))2

)( cos θ(t)
sin θ(t)

)
+

(
1

r(t)

(
r2(t)θ′(t)

)′)( − sin θ(t)
cos θ(t)

)
.

The independent vectors appearing in the formula happen to be the normal
and tangential components of the acceleration, although we don’t use this fact.
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Newton’s law expansion of r⃗ ′′(t) requires that corresponding vector components
must match, giving the relations

r′′(t)− r(t)(θ′(t))2 = − k

r2(t)
,

1

r(t)

(
r2(t)θ′(t)

)′
= 0.

(1)

The second formula in (1) implies that dA(t) = 0, where dA(t) is the polar area
increment swept out by the planet. Kepler’s second law is proved.

Kepler’s First Law

Write the second equation in (1) in integrated form r2(t)θ′(t) = h. Combine the
first formula in (1) with the second (in integrated form) to obtain the nonlinear
second order differential equation

r′′(t)− h2

r3(t)
= − k

r2(t)
.(2)

Because θ′(t) = h/r2(t) ̸= 0, then a variable change t = t(θ) is possible: r(t) =
r(t(θ)) is a function of θ. Let u(θ) = 1/r(t(θ)), then by the chain rule

r′(t) = −du/dt

u2(θ)
= −r2(t)u′(θ)θ′(t)
= −hu′(θ).

Differentiate again on θ and use (2) to obtain

u′′(θ) + u(θ) = c,

where c = k/h2. Solving gives

u(θ) = c1 cos θ + c2 sin θ + c .

Use u = 1/r to re-write this formula in the new form

r(t(θ)) =
1

c+ c1 cos θ + c2 sin θ
.

Define angle θ0 and amplitude R by the formulas R cos θ0 = c1, R sin θ0 = c2.
The sum formula for the cosine implies

R cos(θ − θ0) = R cos θ cos θ0 +R sin θ sin θ0
= c1 cos θ + c2 sin θ.

Substitution gives the ellipse equation in polar coordinates

r(t(θ)) =
1

c+R cos(θ − θ0)

=
ℓ

1 + e cos(θ − θ0)
.
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Here, ℓ = h2/k is half the latus rectum and e = Rℓ is the eccentricity of the ellipse.
Initially, we don’t know that 0 ≤ e < 1, but the requirement that a planetary
orbit be bounded discards the possibility e ≥ 1 (parabola or hyperbola). This
completes the proof of Kepler’s first law.
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Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and
linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the textbook
are available in two volumes at Amazon Kindle Direct Publishing for Amazon’s
cost of printing and shipping. No author profit. Volume I chapters 1-7, ISBN
9798705491124, 661 pages. Volume II chapters 8-12, ISBN 9798711123651, 479
pages. Both paperbacks have extra pages of backmatter: background topics
Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with
hyperlink navigation to displayed equations and theorems. The header in an
exercise set has a blue hyperlink  to the same section in the solutions. The
header of the exercise section within a solution Appendix has a red hyperlink
to the textbook exercises. Solutions are organized by chapter, e.g., Appendix 5
for Chapter 5. Odd-numbered exercises have a solution. A few even-numbered
exercises have hints and answers. Computer code can be mouse-copied directly
from the PDF. Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded
to a tablet, computer or phone to be viewed locally. After download, no internet
is required. Best for computer or tablet using a PDF viewer (Adobe Reader,
Evince) or web browser with PDF support (Chrome, FireFox). Smart phones
can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or
request an answer, click the link below, then create a GitHub issue and post.
Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues
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