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Chapter 5

Linear Algebra
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Linear algebra topics specific to linear algebraic equations were presented
earlier in this text as an extension of college algebra topics, without the aid of
vector-matrix notation.

The project before us introduces specialized vector-matrix notation in order
to extend methods for solving linear algebraic equations. Enrichment includes a
full study of rank, nullity, basis and independence from a vector-matrix viewpoint.

Engineering science views linear algebra as an essential language interface
between an application and a computer algebra system or a computer numerical
laboratory. Without the language interface provided by vectors and matrices,
computer assist would be impossibly tedious.

Linear algebra with computer assist is advantageous in the study of mechanical
systems and electrical networks, in which the notation and methods of linear
algebra play an important and essential role.
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5.1 Vectors and Matrices

5.1 Vectors and Matrices

The advent of computer algebra systems and computer numerical laboratories
has precipitated a common need among engineers and scientists to learn the
language of vectors and matrices, which is used heavily for theoretical analysis
and computation in applications.

Fixed Vector Model

A fixed vector X⃗ is a one-dimensional array called a column vector or a row
vector, denoted correspondingly by

X⃗ =


x1
x2
...
xn

 or X⃗ =
(
x1, x2, . . . , xn

)
.(1)

The entries or components x1, . . . , xn are numbers and n is correspondingly
called the column dimension or the row dimension of the vector in (1). The
set of all n-vectors (1) is denoted Rn.

Practical matters. A fixed vector is a package of application data items.
The term vector means data item package and the collection of all data item
packages is the data set. Data items are usually numbers. A fixed vector imparts
an implicit ordering to the package. To illustrate, a fixed vector might have n = 6
components x, y, z, px, py, pz, where the first three are space position and the last
three are momenta, with respective associated units meters and kilogram-meters
per second.

Vector addition and vector scalar multiplication are defined by componen-
twise operations:

x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn

 , k


x1
x2
...
xn

 =


kx1
kx2
...

kxn

 .

The Mailbox Analogy

Fixed vectors can be visualized as in Table 1. Fixed vector entries x1, . . . , xn
are numbers written individually onto papers 1, 2, . . . , n deposited into mailboxes
with names 1, 2, . . . , n.
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5.1 Vectors and Matrices

Table 1. The Mailbox Analogy. Box i has contents xi.

x1
x2
...
xn

mailbox 1
mailbox 2

...
mailbox n

Free Vector Model

In the model, rigid motions from geometry are applied to directed line segments.
A line segment PQ is represented as an arrow with head at Q and tail at P .
Two such arrows are considered equivalent if they can be rigidly translated
to the same arrow whose tail is at the origin. The arrows are called free vectors.

They are denoted by the symbol
−→
PQ, or sometimes A⃗ =

−→
PQ, which assigns label

A⃗ to the arrow with tail at P and head at Q.

The parallelogram rule defines free vector addition, as in Figure 1. To define
free vector scalar multiplication kA⃗, we change the location of the head of
vector A⃗; see Figure 2. If 0 < k < 1, then the head shrinks to a location along
the segment between the head and tail. If k > 1, then the head moves in the
direction of the arrowhead. If k < 0, then the head is reflected along the line and
then moved.

A⃗

B⃗

C⃗ = A⃗+ B⃗

Figure 1. Free vector addition. The diago-
nal of the parallelogram formed by free vectors A⃗,
B⃗ is the sum vector C⃗ = A⃗+ B⃗.

A⃗

kA⃗
Figure 2. Free vector scalar multiplica-
tion. To form kA⃗, the head of free vector A⃗ is
moved to a new location along the line formed by
the head and tail.

Physics Vector Model

This model is also called the ı⃗, ȷ⃗, k⃗ vector model and the orthogonal triad
model. The model arises from the free vector model by inventing symbols ı⃗, ȷ⃗,
k⃗ for a mutually orthogonal triad of free vectors. Usually, these three vectors
represent free vectors of unit length along the coordinate axes, although use in
the literature is not restricted to this specialized setting; see Figure 3.
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5.1 Vectors and Matrices

k⃗

ı⃗

ȷ⃗

Figure 3. Fundamental triad. The free vectors ı⃗, ȷ⃗, k⃗
are 90◦ apart and of unit length.

The advantage of the model is that any free vector can be represented as a⃗ı +
bȷ⃗ + ck⃗ for some constants a, b, c, which gives an immediate connection to the
free vector with head at (a, b, c) and tail at (0, 0, 0), as well as to the fixed vector
whose components are a, b, c.

Vector addition and scalar multiplication are defined componentwise: if A⃗ =
a1⃗ı+ a2ȷ⃗+ a3k⃗, B⃗ = b1⃗ı+ b2ȷ⃗+ b3k⃗ and c is a constant, then

A⃗+ B⃗ = (a1 + b1)⃗ı+ (a2 + b2)ȷ⃗+ (a3 + b3)k⃗,

cA⃗ = (ca1)⃗ı+ (ca2)ȷ⃗+ (ca3)k⃗.

Formally, computations involving the physics model amount to fixed vector
computations and the so-called equalities between free vectors and fixed vectors:

ı⃗ =

 1
0
0

, ȷ⃗ =

 0
1
0

, k⃗ =

 0
0
1

.

Gibbs Vector Model

The model assigns physical properties to vectors, thus avoiding the pitfalls of free
vectors and fixed vectors. Gibbs defines a vector as a linear motion that takes
a point A into a point B. Visualize this idea as a workman who carries material
from A to B: the material is loaded at A, transported along a straight line to B,
and then deposited at B. Arrow diagrams arise from this idea by representing a
motion from A to B as an arrow with tail at A and head at B.

Vector addition is defined as composition of motions: material is loaded at A
and transported to B, then loaded at B and transported to C. Gibbs’ idea in
the plane is the parallelogram law; see Figure 4.

Vector scalar multiplication is defined so that 1 times a motion is itself, 0 times a
motion is no motion and −1 times a motion loads at B and transports to A (the
reverse motion). If k > 0, then k times a motion from A to B causes the load to
be deposited at C instead of B, where k is the ratio of the lengths of segments
AC and AB. If k < 0, then the definition is applied to the reverse motion from
B to A using instead of k the constant |k|. Briefly, the load to be deposited along
the direction to B is dropped earlier if 0 < |k| < 1 and later if |k| > 1.
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5.1 Vectors and Matrices

B

A

C

composite
motion

Figure 4. Planar composition of motions.
The motion A to C is the composition of two
motions or the sum of vectors AB and BC.

Comparison of Vector Models

In free vector diagrams it is possible to use free, physics and Gibbs vector models
almost interchangeably. In the Gibbs model, the negative of a vector and the zero
vector are natural objects, whereas in the other models they can be problematic.
To understand the theoretical difficulties, try to answer these questions:

1. What is the zero vector?
2. What is the meaning of the negative of a vector?

Some working rules which connect the free, physics and Gibbs models to the
fixed model are the following.

Conversion A fixed vector X⃗ with components a, b, c is realized as a
free vector by drawing an arrow from (0, 0, 0) to (a, b, c).

Addition To add two free vectors, Z⃗ = X⃗ + Y⃗ , place the tail of Y⃗
at the head of X⃗, then draw vector Z⃗ to form a triangle,
from the tail of X⃗ to the head of Y⃗ .

Subtraction To subtract two free vectors, Z⃗ = Y⃗ − X⃗, place the tails
of X⃗ and Y⃗ together, then draw Z⃗ between the heads of
X⃗ and Y⃗ , with the heads of Z⃗ and Y⃗ together.

Head Minus Tail A free vector X⃗ converts to a fixed vector whose com-
ponents are the componentwise differences between the
point at the head and the point at the tail. This state-
ment is called the head minus tail rule.

Vector Spaces and the Toolkit

Consider any vector model: fixed, free, physics or Gibbs. Let V denote the data
set of one of these models. The data set consists of packages of data items, called
vectors.1 Assume a particular dimension, n for fixed, 2 or 3 for the others. Let
k, k1, k2 be constants. Let X⃗, Y⃗ , Z⃗ represent three vectors in V . The following
toolkit of eight (8) vector properties can be verified from the definitions.

1If you think vectors are arrows, then re-tool your thoughts. Think of vectors as data item
packages. A technical word, vector can also mean a graph, a matrix for a digital photo, a
sequence, a signal, an impulse, or a differential equation solution .
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5.1 Vectors and Matrices

Closure The operations X⃗ + Y⃗ and kX⃗ are defined and result in a new
data item package [a vector] which is also in V .

Addition X⃗ + Y⃗ = Y⃗ + X⃗ commutative
X⃗ + (Y⃗ + Z⃗) = (Y⃗ + X⃗) + Z⃗ associative
Vector 0⃗ is defined and 0⃗ + X⃗ = X⃗ zero
Vector −X⃗ is defined and X⃗ + (−X⃗) = 0⃗ negative

Scalar
multiply

k(X⃗ + Y⃗ ) = kX⃗ + kY⃗ distributive I
(k1 + k2)X⃗ = k1X⃗ + k2X⃗ distributive II
k1(k2X⃗) = (k1k2)X⃗ distributive III
1X⃗ = X⃗ identity

Definition 5.1 (Vector Space)
A data set V equipped with + and · operations satisfying the closure law and the
eight toolkit properties is called an abstract vector space.

What’s a space? There is no intended geometrical implication in this term. The
usage of space originates from phrases like parking space and storage space.
An abstract vector space is a data set for an application, organized as packages of
data items, together with + and · operations, which satisfy the eight toolkit
manipulation rules. The packaging of individual data items is structured, or
organized, by some scheme, which amounts to a storage space, hence the term
space.

What does abstract mean? The technical details of the packaging and the
organization of the data set are invisible to the toolkit rules. The toolkit acts
on the formal packages, which are called vectors. Briefly, the toolkit is used
abstractly, devoid of any details of the storage scheme. Bursting data packages
into data items is generally counterproductive for algebraic manipulations. Resist
the temptation to burst vectors.

A variety of data sets. The following key examples are a basis for initial
intuition about vector spaces.

Coordinate space Rn is the set of all fixed n-vectors. Sets Rn are struc-
tured packaging systems which organize data sets from calculations, geo-
metrical problems and physical vector diagrams.

Function spaces are structured packages of graphs, such as solutions to
differential equations.

Infinite sequence spaces are suited to organize the coefficients of nu-
merical approximation sequences. Additional applications are coefficients
of Fourier series and Taylor series.

AMatrix space is a structured system which can organize two-dimensional
data sets. Examples are the array of pixels for a digital photograph and
robotic mechanical component manipulators represented by 3× 3 or 4× 4
matrices.
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5.1 Vectors and Matrices

Subspaces and Data Analysis

Subspaces address the issue of how to do efficient data analysis on a smaller subset
S of a data set V . We assume the larger data set V is equipped with + and ·
and has the 8-property toolkit: it is an abstract vector space by assumption.

Slot racer on a track. To illustrate the idea, consider a problem in planar
kinematics and a laboratory data recorder that approximates the x, y, z loca-
tion of an object in 3-dimensional space. The recorder puts the data set of the
kinematics problem into fixed 3-vectors. After the recording, the data analysis
begins.

From the beginning, the kinematics problem is planar, and we should have done
the data recording using 2-vectors. However, the plane of action may not be
nicely aligned with the axes set up by the data recorder, and this spin on the
experiment causes the 3-dimensional recording.

The kinematics problem and its algebraic structure are exactly planar, but the
geometry for the recorder data may be opaque. For instance, the experiment’s
acquisition plane might be given approximately by a homogeneous restriction
equation like

x+ 2y − 1000z = 0.

The restriction equation is preserved by operations + and · (details post-
poned). Then data analysis on the smaller planar data set can proceed to use the
toolkit at will, knowing that all calculations will be in the plane, hence physically
relevant to the original kinematics problem.

Physical data in reality contains errors, preventing the data from exactly satis-
fying an ideal restriction equation like x + 2y − 1000z = 0. Methods like least
squares can construct the idealized equations. The physical data is then con-
verted by projection, making a new data set S that exactly satisfies the restriction
equation x + 2y − 1000z = 0. It is this modified set S, the working data set of
the application, that we call a subspace.

Applied scientists view subspaces as working sets, which are actively con-
structed and rarely discovered without mathematical effort. The construction
is guided by the subspace criterion, Theorem 5.1, page 300.

Definition 5.2 (Subspace)
A subset S of an abstract vector space V is called a subspace if it is a nonempty
vector space under the operations of addition and scalar multiplication inherited from
V .

In applications, a subspace S of V is a smaller data set, recorded using the
same data packages as V . The smaller set S contains at least the zero vector 0⃗ .
Required is that the algebraic operations of addition and scalar multiplication
acting on S give answers back in S. Then the entire 8-property toolkit is available
for calculations in the smaller data set S.
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5.1 Vectors and Matrices

Theorem 5.1 (Subspace Criterion)
Assume abstract vector space V is equipped with addition (+) and scalar multipli-
cation (·). A subset S is a subspace of V provided these checkpoints hold:

Vector 0⃗ is in S (S is nonvoid).

For each pair v⃗ 1, v⃗ 2 in S, the vector v⃗ 1 + v⃗ 2 is in S.

For each v⃗ in S and constant c, the combination cv⃗ belongs to S.

Actual use of the subspace criterion is rare, because most applications define a
subspace S by a restriction on elements of V , normally realized as a set of linear
homogeneous equations. Such systems can be re-written as a matrix equation
Au⃗ = 0⃗ . To illustrate, x+y+z = 0 is re-written as a matrix equation as follows: 1 1 1

0 0 0
0 0 0

 x
y
z

 =

 0
0
0

 .

Theorem 5.2 (Subspaces of Rn: The Kernel Theorem)
Let V be one of the vector spaces Rn and let A be an m × n matrix. Define the
data set

S = {v⃗ : v⃗ in V and Av⃗ = 0⃗}.

Then S is a subspace of V , that is, operations of addition and scalar multiplication
applied to data in S give data back in S and the 8-property toolkit applies to S-data.2

Proof on page 314.

When does Theorem 5.2 apply? Briefly, the kernel theorem hypothesis re-
quires V to be a space of fixed vectors and S a subset defined by homogeneous
restriction equations. A vector space of functions, used as data sets in differential
equations, does not satisfy the hypothesis of Theorem 5.2, because V is not one
of the spaces Rn. This is why a subspace check for a function space uses the
basic subspace criterion, and not Theorem 5.2.

Theorem 5.3 (Subspaces of Rn: Restriction Equations)
Let V be one of the vector spaces Rn and let data set S be defined by a system of
restriction equations. If the restriction equations are homogeneous linear algebraic
equations, then S is a subspace of V .

How to apply Theorem 5.2 and Theorem 5.3. We illustrate with V the
vector space R4 of all fixed 4-vectors with components x1, x2, x3, x4. Let S be
the subset of V defined by the restriction equation x4 = 0.

By Theorem 5.3, S is a subspace of V , with no further details required.

2This key theorem is named the kernel theorem, because solutions x⃗ of Ax⃗ = 0⃗ define the
kernel of A. It is also named the Nullspace Theorem.
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5.1 Vectors and Matrices

To apply Theorem 5.2, the restriction equations have to be re-written as a ho-
mogeneous matrix equation Ax⃗ = 0⃗ :

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0




x1
x2
x3
x4

 =


0
0
0
0

 .

Then Theorem 5.2 applies to conclude that S is a subspace of V .

When is S not a subspace? The following test enumerates three common
conditions for which S fails to pass the subspace test. It is justified from the
subspace criterion.

Theorem 5.4 (Test S not a Subspace)
Let V be an abstract vector space and assume S is a subset of V . Then S is not a
subspace of V provided one of the following holds.

(1) The vector 0 is not in S.

(2) Some x⃗ and −x⃗ are not both in S.

(3) Vector x⃗ + y⃗ is not in S for some x⃗ and y⃗ in S.

Linear Combinations and Closure

Definition 5.3 (Linear Combination)
A linear combination of vectors v⃗ 1,. . . ,v⃗ k is defined to be a sum

x⃗ = c1v⃗ 1 + · · ·+ ckv⃗ k,

where c1,. . . ,ck are constants.

The closure property for a subspace S can be stated as linear combinations of
vectors in S are again in S. Therefore, according to the subspace criterion, S is
a subspace of V provided 0⃗ is in S and S is closed under the operations + and ·
inherited from the larger data set V .

Definition 5.4 (Span)
Let vectors v⃗ 1, . . . , v⃗ k be given in a vector space V . The subset S of V consisting
of all linear combinations v⃗ = c1v⃗ 1 + · · · + ckv⃗ k is called the span of the vectors
v⃗ 1, . . . , v⃗ k and written

S = span(v⃗ 1, . . . , v⃗ k).

Important: The symbols c1, . . . , cn exhaust all possible choices of scalars: expect the
span to contain infinitely many data packages (called abstract vectors) from data
set V .

Theorem 5.5 (Span of Vectors is a Subspace)
Let V be an abstract vector space. A subset S = span(v⃗ 1, . . . , v⃗ k) is a subspace
of V . Proof on page 314.
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The Parking Lot Analogy

A useful visualization for vector space and subspace is a parking lot with valet
parking. The large lot represents the storage space of the larger data set
associated with a vector space V . The parking lot rules, such as display your
ticket, park between the lines, correspond to the toolkit of 8 vector space rules.
The valet parking lot S, which is a smaller roped-off area within the larger lot V ,
is also storage space, subject to the same rules as the larger lot. The smaller data
set S corresponds to a subspace of V . Just as additional restrictions apply to the
valet lot, a subspace S is generally defined by equations, relations or restrictions
on the data items of V .

Valet lot

Hotel Parking Lot

Figure 5. Parking lot analogy. An ab-
stract vector space V and one of its subspaces
S can be visualized through the analogy of a
parking lot (V ) containing a valet lot (S).

Vector Algebra

Definition 5.5 (Norm of a Fixed Vector)
The norm or length of a fixed vector X⃗ with components x1, . . . , xn is given by
the formula

|X⃗| =
√
x21 + · · ·+ x2n.

This measurement can be used to quantify the numerical error between two data
sets stored in vectors X⃗ and Y⃗ :

norm-error = |X⃗ − Y⃗ |.

Definition 5.6 (Dot Product or Scalar Product)
The dot product X⃗ · Y⃗ of two fixed vectors X⃗ and Y⃗ is defined by x1

...
xn

 ·
 y1

...
yn

 = x1y1 + · · ·+ xnyn.

Definition 5.7 (Angle Between Vectors)
Assume |X⃗| > 0 and |Y⃗ | > 0. Define the angle θ, 0 ≤ θ ≤ π, between vectors X⃗

and Y⃗ by:

cos θ =
X⃗ · Y⃗
|X⃗||Y⃗ |

.

Calculus vector geometry for n = 3 derives formula |X⃗||Y⃗ | cos θ = X⃗ · Y⃗ , which
produces the above equation by solving for cos θ, motivation for the definition.

302



5.1 Vectors and Matrices

Y⃗

X⃗

θ
Figure 6. Angle θ between two vectors
X⃗ , Y⃗ .

Definition 5.8 (Orthogonal Vectors)
Two n-vectors X⃗, Y⃗ are said to be orthogonal provided X⃗ · Y⃗ = 0.

If both vectors are nonzero, then cos(θ) =
X⃗ · Y⃗
|X⃗||Y⃗ |

= 0, which implies the angle

between the vectors is θ = 90◦.

Definition 5.9 (Shadow Projection)
The shadow projection of vector X⃗ onto the direction of vector Y⃗ is the number d
defined by

d =
X⃗ · Y⃗
|Y⃗ |

.

The triangle determined by X⃗ and (d/|Y⃗ |)Y⃗ is a right triangle.

d

X⃗

Y⃗ Figure 7. Shadow projection d
Distance d is the length of the shadow formed by
vector X⃗ onto the direction of vector Y⃗ .

Definition 5.10 (Vector Projection)
The vector projection of X⃗ onto the line L through the origin in the direction of

Y⃗ is defined by

projY⃗ (X⃗) = d
Y⃗

|Y⃗ |
=

X⃗ · Y⃗
Y⃗ · Y⃗

Y⃗ .

Definition 5.11 (Vector Reflection)
The vector reflection of vector X⃗ in the line L through the origin having the

direction of vector Y⃗ is defined to be the vector

reflY⃗ (X⃗) = 2projY⃗ (X⃗)− X⃗ = 2
X⃗ · Y⃗
Y⃗ · Y⃗

Y⃗ − X⃗.

It is the formal analog of the complex conjugate map a+ ib→ a− ib with the x-axis
replaced by line L.
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Matrices are Vector Packages

A matrix A is a package of so many fixed vectors, considered together, and
written as a 2-dimensional array

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn

 .

The packaging can be in terms of column vectors or row vectors:
a11
a21
· · ·
an1

 · · ·


a1m
a2m
· · ·
anm

 or


(a11, a12, . . . , a1n)
(a21, a22, . . . , a2n)

...
(am1, am2, . . . , amn)

.

Definition 5.12 (Equality of Matrices)
Two matrices A and B are said to be equal provided they have identical row and
column dimensions and corresponding entries are equal. Equivalently, A and B are
equal if they have identical columns, or identical rows.

Mailbox analogy. A matrix A can be visualized as a rectangular collection of
so many mailboxes labeled (i, j) with contents aij , where the row index is i and
the column index is j; see Table 2.

Table 2. The Mailbox Analogy for Matrices.

A matrix A is visualized as a block of mailboxes, each located by row index i and column

index j. The box at (i, j) contains data aij .

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...

am1 am2 · · · amn

Computer Storage

Computer programs might store matrices as a long single array. Array contents
are fetched by computing the index into the long array followed by retrieval of
the numeric content aij . From this computer viewpoint, vectors and matrices are
the same objects.
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For instance, a 2 × 2 matrix A =

(
a b
c d

)
can be stored by stacking its rows

into a column vector, the mathematical equivalent being the one-to-one and onto
mapping (

a b
c d

)
←→


a
b
c
d

 .

This mapping uniquely associates the 2× 2 matrix A with a vector in R4. Sim-
ilarly, a matrix of size m × n is associated with a column vector in Rk, where
k = mn.

Matrix Addition and Scalar Multiplication

Addition of two matrices is defined by applying fixed vector addition on corre-
sponding columns. Similarly, an organization by rows leads to a second definition
of matrix addition, which is exactly the same:

a11 · · · a1n
a21 · · · a2n

...
am1· · · amn

+


b11 · · · b1n
b21 · · · b2n

...
bm1· · · bmn

 =


a11 + b11 · · · a1n + b1n
a21 + b21 · · · a2n + b2n

...
am1 + bm1· · · amn + bmn

 .

Scalar multiplication of matrices is defined by applying scalar multiplication to
the columns or rows:

k


a11 · · · a1n
a21 · · · a2n

...
am1 · · · amn

 =


ka11 · · · ka1n
ka21 · · · ka2n

...
kam1 · · · kamn

 .

Both operations on matrices are motivated by considering a matrix to be a long
single array or fixed vector, to which the standard fixed vector definitions are
applied. The operation of addition is properly defined exactly when the two
matrices have the same row and column dimensions.

Digital Photographs

A digital camera stores image sensor data as a matrix A of numbers corresponding
to the color and intensity of tiny sensor sites called pixels or dots. The pixel
position in the print is given by row and column location in the matrix A.

A visualization of the image sensor is a checkerboard. Each square is stacked with
a certain number of checkers, the count proportional to the number of electrons
knocked loose by light falling on the photodiode site.

305



5.1 Vectors and Matrices

Figure 8. Checkerboard visualization.
Illustrated is a stack of checkers, representing one photodiode site on an image sensor
inside a digital camera. There are 5 red, 2 green and 3 blue checkers stacked on one
square, representing electron counts.

In 24-bit color, a pixel could be represented in matrix A by a coded integer
a = r + (28)g + (216)b. Symbols r, g, b are integers between 0 and 255 which
represent the intensity of colors red, green and blue, respectively. For example,
r = g = b = 0 is the color black while r = g = b = 255 is the color white.

A matrix of size m × n is visualized as a checkerboard with mn squares, each
square stacked with red, green and blue checkers. Higher resolution image sensors
store image data in huge matrices with richer color information, for instance 32-
bit and 128-bit color.3

Visualization of Matrix Addition and Scalar Multiply

Matrix addition can be visualized through matrices representing color sepa-
rations.4 When three monochrome transparencies of colors red, green and blue
(RGB) are projected simultaneously by a projector, the colors add to make a
full color screen projection. The three transparencies can be associated with ma-
trices R, G, B which contain pixel data for the monochrome images. Then the
projected image is associated with the matrix sum R+G+B.

Matrix scalar multiplication has a similar visualization. The pixel informa-
tion in a monochrome image (red, green or blue) is coded for intensity. The
associated matrix A of pixel data when multiplied by a scalar k gives a new ma-

3A beginner’s digital camera manufactured in the early days of digital photography made
low resolution color photos using 24-bit color. The photo is constructed from 240 rows of dots
with 320 dots per row. The associated storage matrix A is of size 240×320. The identical small
format was used for video clips.

The storage format BMP stores data as bytes, in groups of three b, g, r, starting at the lower
left corner of the photo. Therefore, 240× 320 photos have 230, 400 data bytes. Storage format
JPEG has replaced the early formats on phones.

4James Clerk Maxwell is credited with the idea of color separation.
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trix kA of pixel data with the intensity of each pixel adjusted by factor k. The
photographic effect is to adjust the range of intensities. In the checkerboard vi-
sualization of an image sensor, Figure 8 page 305, factor k increases or decreases
the checker stack height at each square.

Color Separation Illustration

Consider the coded matrix

X⃗ =

(
514 3

131843 197125

)
.

We will determine the monochromatic pixel data R, G, B in the equation X =
R+ 28G+ 216B.

First we decode the scalar equation x = r + 28g + 216b by these algebraic steps,
which use the modulus function mod(x,m), defined to be the remainder after
division of x by m. We assume r, g, b are integers between 0 and 255.

y = mod(x, 216) The remainder should be y = r + 28g.

r = mod(y, 28) Because y = r + 28g, the remainder equals r.

g = (y − r)/28 Divide y − r = 28g by 28 to obtain g.

b = (x− y)/216 Because x− y = x− r − 28g has remainder b.

r + 28g + 216b Answer check. This should equal x.

Computer algebra systems can provide an answer for matrices R, G, B by dupli-
cating the scalar steps. Below is a maple implementation that gives the answers

R =

(
2 3
3 5

)
, G =

(
2 0
3 2

)
, B =

(
0 0
2 3

)
.

with(LinearAlgebra:-Modular):

X:=Matrix([[514,3],[131843,197125]]);

Y:=Mod(2^16,X,integer); # y=mod(x,65536)

R:=Mod(2^8,Y,integer); # r=mod(y,256)

G:=(Y-R)/2^8; # g=(y-r)/256

B:=(X-Y)/2^16; # b=(x-y)/65536

X-(R+G*2^8+B*2^16); # answer check

The result can be visualized through a checkerboard of 4 squares. The second
square has 5 red, 2 green and 3 blue checkers stacked, representing the color
x = (5) + 28(2) + 216(3) - see Figure 8 page 305.
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Matrix Multiply

College algebra texts cite the definition of matrix multiplication as the product
AB equals a matrix C given by the relations

cij = ai1b1j + · · ·+ ainbnj , 1 ≤ i ≤ m, 1 ≤ j ≤ k.

Below, we motivate the definition of matrix multiplication from an applied point
of view, based upon familiarity with the dot product.

Matrix multiplication as a dot product extension. To illustrate the basic
idea by example, let

A =

 −1 2 1
3 0 −3
4 −2 5

 , X⃗ =

 2
1
3

 .

The product equation AX⃗ is displayed as the dotless juxtaposition −1 2 1
3 0 −3
4 −2 5

 2
1
3

 ,

which represents an unevaluated request to gang the dot product operation onto
the rows of the matrix on the left:

(−1 2 1) ·

2
1
3

 = 3, (3 0 − 3) ·

2
1
3

 = −3, (4 − 2 5) ·

2
1
3

 = 21.

The evaluated request produces a column vector containing the dot product an-
swers, called the product of a matrix and a vector (no mention of dot
product), written as −1 2 1

3 0 −3
4 −2 5

 2
1
3

 =

 3
−3
21

 .

The general scheme which gangs the dot product operation onto the matrix rows
can be written as

· · · row 1 · · ·
· · · row 2 · · ·

· · ·
... · · ·

· · · row m · · ·

 X⃗ =


(row 1) · X⃗
(row 2) · X⃗

...

(row m) · X⃗

 .

The product is properly defined only in case the number of matrix columns equals
the number of entries in X⃗, so that the dot products on the right are defined.
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Matrix multiply as a linear combination of columns. The identity(
a b
c d

)(
x1
x2

)
= x1

(
a
c

)
+ x2

(
b
d

)
implies that Ax⃗ is a linear combination of the columns of A, where A is the 2×2
matrix on the left.

This result holds in general, a relation used so often that it deserves a formal
statement.

Theorem 5.6 (Matrix Multiply as a Linear Combination of Columns)
Let matrix A have vector columns v⃗ 1,. . . ,v⃗n and let vector X⃗ have scalar compo-
nents x1, . . . , xn. Then the definition of matrix multiply implies

AX⃗ = x1v⃗ 1 + x2v⃗ 2 + · · ·+ xnv⃗n.

General matrix product AB. The evaluation of matrix products AY⃗1, AY⃗2,
. . . , AY⃗k is a list of k column vectors which can be packaged into a matrix C.
Let B be the matrix which packages the columns Y⃗1, . . . , Y⃗k. Define C = AB by
the dot product definition

cij = row(A, i) · col(B, j).

This definition makes sense provided the column dimension of A matches the row
dimension of B. It is consistent with the earlier definition from college algebra
and the definition of AY⃗ , therefore it may be taken as the basic definition for a
matrix product.

How to multiply matrices on paper. More arithmetic errors are made when
computing dot products written in the form

(
−7 3 5

)
·

 −13
−5

 = −9,

because alignment of corresponding entries must be done mentally. It is visually
easier when the entries are aligned.

On paper, work can be arranged for a matrix times a vector as below, so that
the entries align. The boldface transcription above the columns is temporary,
erased after the dot product step.

−1 3 −5 −7 3 5
−5 −2 3
1 −3 −7

 ·
 −13
−5

 =

 −9
−16
25


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Visualization of Matrix Multiply

Discussed here is a key example of how to interpret 2 × 2 matrix multiply as a
geometric operation.

Let’s begin by inspecting a 2 × 2 system y⃗ = Ax⃗ for its geometric meaning.
Consider the system∣∣∣∣ y1 = ax1 + bx2

y2 = cx1 + dx2

∣∣∣∣ or y⃗ =

(
a b
c d

)
x⃗(2)

Geometric rotation and scaling of planar figures have equations of this form.
Adopt below definitions of A, B:

Rotation by angle θ Scale by factor k

A =

(
cos θ sin θ
− sin θ cos θ

)
B =

(
k 0
0 k

)(3)

The geometric effect of mapping points x⃗ on an ellipse by the equation y⃗ = Ax⃗
is to rotate the ellipse. If we choose θ = π/2, then it is a rotation by 90 degrees.
The mapping z⃗ = By⃗ re-scales the axes by factor k. If we choose k = 2, then the
geometric result is to double the dimensions of the rotated ellipse. The resulting
geometric transformation of x⃗ into z⃗ has algebraic realization

z⃗ = By⃗ = BAx⃗ ,

which means the composite transformation of rotation followed by scaling is
represented by system (2), with coefficient matrix(

a b
c d

)
= BA =

(
2 0
0 2

)(
cosπ/2 sinπ/2
− sinπ/2 cosπ/2

)
=

(
0 2
−2 0

)
.

y⃗ = Ax⃗ z⃗ = By⃗
Figure 9. An ellipse
is mapped into a ro-
tated and re-scaled
ellipse.
The rotation is y⃗ = Ax⃗ ,
which is followed by
re-scaling z⃗ = By⃗ .
The composite geomet-
ric transformation is
z⃗ = BAx⃗ , which maps
the ellipse into a rotated
and re-scaled ellipse.
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Special Matrices

The zero matrix, denoted 0, is the m× n matrix all of whose entries are zero.
The identity matrix, denoted I, is the n× n matrix with ones on the diagonal
and zeros elsewhere: aij = 1 for i = j and aij = 0 for i ̸= j.

0 =


0 0 · · · 0
0 0 · · · 0

...
0 0 · · · 0

 , I =


1 0 · · · 0
0 1 · · · 0

...
0 0 · · · 1

 .

The identity I is a package of column vectors called the standard unit vectors
of size n. Literature may write the columns of I as e⃗1, . . . , e⃗n or as col(I, 1),
. . . , col(I, n).

The negative of a matrix A is (−1)A, which multiplies each entry of A by the
factor (−1):

−A =


−a11 · · · −a1n
−a21 · · · −a2n

...
−am1· · · −amn

 .

Square Matrices

An n×n matrix A is said to be square. The entries akk, k = 1, . . . , n of a square
matrix make up its diagonal. A square matrix A is lower triangular if aij = 0
for i > j, and upper triangular if aij = 0 for i < j; it is triangular if it is
either upper or lower triangular. Therefore, an upper triangular matrix has all
zeros below the diagonal and a lower triangular matrix has all zeros above the
diagonal. A square matrix A is a diagonal matrix if aij = 0 for i ̸= j, that
is, the off-diagonal elements are zero. A square matrix A is a scalar matrix if
A = cI for some constant c.

upper

triangular
=


a11 a12 · · · a1n
0 a22 · · · a2n

...
0 0 · · · ann

,
lower

triangular
=


a11 0 · · · 0
a21 a22 · · · 0

...
an1 an2 · · · ann

,

diagonal =


a11 0 · · · 0
0 a22 · · · 0

...
0 0 · · · ann

, scalar =


c 0 · · · 0
0 c · · · 0

...
0 0 · · · c

.
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Matrix Algebra

A matrix can be viewed as a single long array, or fixed vector, therefore the vector
space toolkit page 297 for fixed vectors applies to matrices.

Let A, B, C be matrices of the same row and column dimensions and let k1, k2,
k be constants. Then

Closure The operations A + B and kA are defined and result in a new
matrix of the same dimensions.

Addition
rules

A+B = B +A commutative
A+ (B + C) = (A+B) + C associative
Matrix 0 is defined and 0+A = A zero
Matrix −A is defined and A+ (−A) = 0 negative

Scalar
multiply
rules

k(A+B) = kA+ kB distributive I
(k1 + k2)A = k1A+ k2B distributive II
k1(k2A) = (k1k2)A distributive III
1A = A identity

These rules collectively establish that the set of all m×n matrices is an abstract
vector space (page 298).

The operation of matrix multiplication gives rise to some new matrix rules, which
are in common use, but do not qualify as vector space rules. The rules are
proved by expansion of each side of the equation. Techniques are sketched in the
exercises, which carry out the steps of each proof.

Associative A(BC) = (AB)C, provided productsBC and AB are defined.

Distributive A(B + C) = AB + AC, provided products AB and AC are
defined.

Right Identity AI = A, provided AI is defined.

Left Identity IA = A, provided IA is defined.

Transpose. Swapping rows and columns of a matrix A results in a new matrix B
whose entries are given by bij = aji. The matrix B is denoted AT (pronounced
“A-transpose”). The transpose has the following properties. Exercises outline
the proofs.

(AT )T = A Identity

(A+B)T = AT +BT Sum

(AB)T = BTAT Product

(kA)T = kAT Scalar
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Inverse Matrix

Definition 5.13 (Inverse Matrix)
A square matrix B is said to be an inverse of a square matrix A provided AB =
BA = I. The symbol I is the identity matrix of matching dimension.

To illustrate, B =

(
2 −1
−1 1

)
is an inverse of A =

(
1 1
1 2

)
because

(
1 1
1 2

)(
2 −1
−1 1

)
=

(
1 0
0 1

)
,

(
2 −1
−1 1

)(
1 1
1 2

)
=

(
1 0
0 1

)
The zero matrix does not have an inverse. To justify, let A = 0 and assume
square matrix B is a inverse of A. Then relation 0B = B0 = I holds. The
zero matrix times any matrix is the zero matrix, which leads to the contradiction
0 = I.

A given matrix A may not have an inverse.

Definition 5.14 (Inverse Notation A−1)
If matrix A has an inverse B, then notation A−1 is used for B:

AA−1 = A−1A = I

Theorem 5.7 (Inverses)
Let A, B, C denote square matrices. Then

(a) A matrix has at most one inverse, that is, if AB = BA = I and AC = CA = I,
then B = C.

(b) If A has an inverse, then so does A−1 and (A−1)−1 = A.

(c) If A has an inverse, then (A−1)T = (AT )−1.

(d) If A and B have inverses , then (AB)−1 = B−1A−1.

Proofs on page 315.

Left to be discussed is how to find the inverse A−1. For a 2× 2 matrix, there is
an easily justified formula.

Theorem 5.8 (Inverse of a 2× 2)

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

The formula is commonly committed to memory, because of repeated use. In
words, the theorem says:

313



5.1 Vectors and Matrices

Swap the diagonal entries, change signs on the off-diagonal entries,
then divide by the determinant ad− bc.

There is a generalization of this formula to n × n matrices, which is equiva-
lent to the formulas in Cramer’s rule. It will be derived during the study of
determinants; the statement is paraphrased as follows:

A−1 =
adjugate matrix of A

determinant of A
.

A general and efficient method for computing inverses, based upon rref methods,
will be presented in the next section. The method can be implemented on hand
calculators, computer algebra systems and computer numerical laboratories.

Definition 5.15 (Symmetric Matrix)
A matrix A is said to be symmetric if AT = A, which implies that the row and
column dimensions of A are the same and aij = aji.

If A is symmetric and invertible, then its inverse is symmetric. If B is any matrix,
not necessarily square, then A = BTB is symmetric. Proofs are in the exercises.

Proofs and Details

Proof of the Kernel Theorem 5.2: Zero is in S because A0⃗ = 0⃗ for any matrix A. To
verify the subspace criterion, we verify that, for x⃗ and y⃗ in S, the vector z⃗ = c1x⃗ + c2y⃗
also belongs to S. The details:

Az⃗ = A(c1x⃗ + c2y⃗ )

= A(c1x⃗ ) +A(c2y⃗ )

= c1Ax⃗ + c2Ay⃗

= c10⃗ + c20⃗ Because Ax⃗ = Ay⃗ = 0⃗ , due to x⃗ , y⃗ in S.

= 0⃗ Therefore, Az⃗ = 0⃗ , and z⃗ is in S.

■

Proof of the Span Theorem 5.5: Details will be supplied for k = 3, because the text
of the proof can be easily edited to give the details for general k. The vector space V
is an abstract vector space, and we do not assume that the vectors are fixed vectors. It
is impossible, therefore, to burst the vectors into components! Let v⃗ 1, v⃗ 2, v⃗ 3 be given
vectors in V and let

S = span(v⃗ 1, v⃗ 2, v⃗ 3) = {v⃗ : v⃗ = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3}.

The subspace criterion will be applied to prove that S is a subspace of V .

(1) We show 0⃗ is in S. Choose c1 = c2 = c3 = 0, then v⃗ = c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3 = 0⃗ .
Therefore, 0⃗ is in S.
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(2) Assume v⃗ = a1v⃗ 1 + a2v⃗ 2 + a3v⃗ 3 and w⃗ = b1v⃗ 1 + b2v⃗ 2 + b3v⃗ 3 are in S. We show
that v⃗ + w⃗ is in S, by adding the equations:

v⃗ + w⃗ = a1v⃗ 1 + a2v⃗ 2 + a3v⃗ 3 + b1v⃗ 1 + b2v⃗ 2 + b3v⃗ 3

= (a1 + b1)v⃗ 1 + (a2 + b2)v⃗ 2 + (a3 + b3)v⃗ 3

= c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3

where the constants are defined by c1 = a1 + b1, c2 = a2 + b2, c3 = a3 + b3. Then v⃗ + w⃗
is in S.

(3) Assume v⃗ = a1v⃗ 1 + a2v⃗ 2 + a3v⃗ 3 and c is a constant. We show cv⃗ is in S. Multiply
the equation for v⃗ by c to obtain

cv⃗ = ca1v⃗ 1 + ca2v⃗ 2 + ca3v⃗ 3

= c1v⃗ 1 + c2v⃗ 2 + c3v⃗ 3

where the constants are defined by c1 = ca1, c2 = ca2, c3 = ca3. Then cv⃗ is in S. ■

Proof of the Inverse Theorem 5.7:

(a) If AB = BA = I and AC = CA = I, then B = BI = BAC = IC = C.
(b) Let B = A−1. Given AB = BA = I, then by definition A is an inverse of B, but
by (a) it is the only one, so (A−1)−1 = B−1 = A.
(c) Let B = A−1. We show BT = (AT )−1 or equivalently C = BT satisfies ATC =
CAT = I. Start with AB = BA = I, take the transpose to get BTAT = ATBT = I.
Substitute C = BT , then CAT = ATC = I, which was to be proved.
(d) The formula is proved by showing that C = B−1A−1 satisfies (AB)C = C(AB) = I.
The left side is (AB)C = ABB−1A−1 = I and the right side C(AB) = B−1A−1AB = I,
proving LHS = RHS.

Exercises 5.1 �

Fixed vectors
Perform the indicated operation(s).

1.

(
1
−1

)
+

(
−2
1

)

2.

(
2
−2

)
−
(

1
−3

)

3.

 1
−1
2

+

 −21
−1



4.

 2
−2
9

−
 1
−3
7


5. 2

(
1
−1

)
+ 3

(
−2
1

)

6. 3

(
2
−2

)
− 2

(
1
−3

)

7. 5

 1
−1
2

+ 3

 −21
−1



8. 3

 2
−2
9

− 5

 1
−3
7



9.

 1
−1
2

+

 −21
−1

−
 1

2
−3



10.

 2
−2
4

−
 1
−3
5

−
 1

3
−2


Parallelogram Rule
Determine the resultant vector in two ways:
(a) the parallelogram rule, and (b) fixed
vector addition.

11.

(
2
−2

)
+

(
1
−3

)
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12. (2⃗ı− 2ȷ⃗) + (⃗ı− 3ȷ⃗)

13.

 2
2
0

+

 3
3
0


14. (2⃗ı− 2ȷ⃗+ 3k⃗) + (⃗ı− 3ȷ⃗− k⃗)

Toolkit
Let V be the data set of all fixed 2-vectors,
V = R2. Define addition and scalar mul-
tiplication componentwise. Verify the fol-
lowing toolkit rules by direct computation.

15. (Commutative)

X⃗ + Y⃗ = Y⃗ + X⃗

16. (Associative)

X⃗ + (Y⃗ + Z⃗) = (Y⃗ + X⃗) + Z⃗

17. (Zero)

Vector 0⃗ is defined and 0⃗ + X⃗ = X⃗

18. (Negative)

Vector −X⃗ is defined and
X⃗ + (−X⃗) = 0⃗

19. (Distributive I)

k(X⃗ + Y⃗ ) = kX⃗ + kY⃗

20. (Distributive II)

(k1 + k2)X⃗ = k1X⃗ + k2X⃗

21. (Distributive III)

k1(k2X⃗) = (k1k2)X⃗

22. (Identity)

1X⃗ = X⃗

Subspaces
Verify that the given restriction equation
defines a subspace S of V = R3. Use The-
orem 5.2, page 300.

23. z = 0

24. y = 0

25. x+ z = 0

26. 2x+ y + z = 0

27. x = 2y + 3z

28. x = 0, z = x

29. z = 0, x+ y = 0

30. x = 3z − y, 2x = z

31. x+ y + z = 0, x+ y = 0

32. x+ y − z = 0, x− z = y

Test S Not a Subspace
Test the following restriction equations for
V = R3 and show that the corresponding
subset S is not a subspace of V . Use The-
orem 5.4 page 301.

33. x = 1

34. x+ z = 1

35. xz = 2

36. xz + y = 1

37. xz + y = 0

38. xyz = 0

39. z ≥ 0

40. x ≥ 0 and y ≥ 0

41. Octant I

42. The interior of the unit sphere

Dot Product
Find the dot product of a⃗ and b⃗ .

43. a⃗ =

(
1
−1

)
and b⃗ =

(
0
−2

)
.

44. a⃗ =

(
1
2

)
and b⃗ =

(
1
−2

)
.

45. a⃗ =

 1
−1
0

 and b⃗ =

 0
−2
1

.

46. a⃗ =

 1
2
1

 and b⃗ =

 1
−2
0

.

47. a⃗ and b⃗ are inR169, a⃗ has all 169 com-
ponents 1 and b⃗ has all components −1,
except four, which all equal 5.
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48. a⃗ and b⃗ are inR200, a⃗ has all 200 com-
ponents −1 and b⃗ has all components
−1 except three, which are zero.

Length of a Vector
Find the length of the vector v⃗ .

49. v⃗ =

(
1
−1

)
.

50. v⃗ =

(
2
−1

)
.

51. v⃗ =

 1
−1
2

.

52. v⃗ =

 2
0
2

.

Shadow Projection
Find the shadow projection d = a⃗ · b⃗/|b⃗ |.

53. a⃗ =

(
1
−1

)
and b⃗ =

(
0
−2

)
.

54. a⃗ =

(
1
2

)
and b⃗ =

(
1
−2

)
.

55. a⃗ =

 1
−1
0

 and b⃗ =

 0
−2
1

.

56. a⃗ =

 1
2
1

 and b⃗ =

 1
−2
0

.

Projections and Reflections
Let L denote a line through the origin with
unit direction u⃗ .

The projection of vector x⃗ onto L is
P (x⃗ ) = du⃗ , where d = x⃗ · u⃗ is the shadow
projection.

The reflection of vector x⃗ across L is
R(x⃗ ) = 2du⃗ − x⃗ (a generalized complex
conjugate).

57. Let u⃗ be the direction of the x-axis
in the plane. Establish that P (x⃗ ) and
R(x⃗ ) are sides of a right triangle and P
duplicates the complex conjugate oper-
ation z → z. Include a figure.

58. Let u⃗ be any direction in the plane.
Establish that P (x⃗ ) and R(x⃗ ) are sides
of a right triangle. Draw a suitable fig-
ure, which includes x⃗ .

59. Let u⃗ be the direction of 2⃗ı+ ȷ⃗. Define
x⃗ = 4⃗ı+3ȷ⃗. Compute the vectors P (x⃗ )
and R(x⃗ ).

60. Let u⃗ be the direction of ı⃗+2ȷ⃗. Define
x⃗ = 3⃗ı+5ȷ⃗. Compute the vectors P (x⃗ )
and R(x⃗ ).

Angle
Find the angle θ between the given vectors.

61. a⃗ =

(
1
−1

)
and b⃗ =

(
0
−2

)
.

62. a⃗ =

(
1
2

)
and b⃗ =

(
1
−2

)
.

63. a⃗ =

 1
−1
0

 and b⃗ =

 0
−2
1

.

64. a⃗ =

 1
2
1

 and b⃗ =

 1
−2
0

.

65. a⃗ =


1
−1
0
0

 and b⃗ =


0
−2
1
1

.

66. a⃗ =


1
2
1
0

 and b⃗ =


1
−2
0
0

.

67. a⃗ =

 1
−1
2

 and b⃗ =

 2
−2
1

.

68. a⃗ =

 2
2
1

 and b⃗ =

 1
−2
2

.

Matrix Multiply
Find the given matrix product or else ex-
plain why it does not exist.

69.

(
1 1
1 −1

)(
1
−2

)
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70.

(
1 −1
1 0

)(
1
−2

)

71.

(
1 1
1 2

)(
1
−1

)

72.

(
1 2
3 1

)(
2
−1

)

73.

 1 1 1
1 −1 1
1 0 0

 1
−2
0



74.

 1 0 1
1 −1 0
1 1 0

 1
2
0



75.

 1 1 1
1 0 2
1 2 0

 1
3
1



76.

 1 2 1
1 −2 0
1 1 −1

 1
2
1



77.

 1 1 1
1 −1 1
1 0 0

 1 0 0
0 −1 0
0 0 1



78.

 1 1 1
1 −1 1
1 0 0

 1 1 0
0 −1 0
0 0 1


79.

(
1 1
−1 1

)(
1 0
1 2

)

80.

(
1 1
−1 1

) 1 1 1
1 0 2
1 2 0



81.

 1 1
1 0
1 2

( 1 1
−1 1

)

82.

(
1 1 1
1 0 1

) 1 1 1
1 0 2
1 2 0


Matrix Classification
Classify as square, non-square, upper tri-
angular, lower triangular, scalar, diagonal,
symmetric, non-symmetric. Cite as many
terms as apply.

83.

(
1 0
0 2

)

84.

(
1 3
0 2

)

85.

(
1 3
4 2

)

86.

(
1 3
3 2

)

87.

 1 3 4
5 0 0
0 0 0



88.

 1 0 4
0 2 0
0 0 3



89.

 1 3 4
3 2 0
4 0 3



90.

 2 0 0
0 2 0
0 0 2


91.

(
i 0
0 2i

)

92.

(
i 3
3 2i

)
Digital Photographs
Assume integer 24-bit color encoding x =
r+(256)g+(65536)b, which means r units
red, g units green and b units blue. Given
matrix X = R + 256G + 65536B, find the
red, green and blue color separation matri-
ces R, G, B. Computer assist expected.

93. X =

(
514 3

131843 197125

)

94. X =

(
514 3

131331 66049

)

95. X =

(
513 7

131333 66057

)

96. X =

(
257 7

131101 66057

)
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97. X =

(
257 17

131101 265

)

98. X =

(
65537 269
65829 261

)

99. X =

(
65538 65803
65833 7

)

100. X =

(
259 65805
299 5

)
Matrix Properties
Verify the result.

101. Let C be an m× n matrix. Let X⃗ be
column i of the n×n identity I. Define
Y⃗ = CX⃗. Verify that Y⃗ is column i of
C.

102. Let A and C be an m × n matrices
such that AC = 0. Verify that each
column Y⃗ of C satisfies AY⃗ = 0⃗.

103. Let A be a 2 × 3 matrix and let Y⃗1,
Y⃗2, Y⃗3 be column vectors packaged into
a 3× 3 matrix C. Assume each column
vector Y⃗i satisfies the equation AY⃗i = 0⃗,
1 ≤ i ≤ 3. Show that AC = 0.

104. Let A be an m×n matrix and let Y⃗1,
. . . , Y⃗n be column vectors packaged into
an n×nmatrix C. Assume each column
vector Y⃗i satisfies the equation AY⃗i = 0⃗,
1 ≤ i ≤ n. Show that AC = 0.

Triangular Matrices
Verify the result.

105. The product of two upper triangular
2× 2 matrices is upper triangular.

106. The product of two upper triangular
n× n matrices is upper triangular.

107. The product of two triangular 2 × 2
matrices is not necessarily triangular.

108. The product of two lower triangular
n× n matrices is upper triangular.

109. The product of two lower triangular
2× 2 matrices is lower triangular.

110. The only 3 × 3 matrices which are
both upper and lower triangular are the
3× 3 diagonal matrices.

Matrix Multiply Properties
Verify the result.

111. The associative law A(BC) = (AB)C
holds for matrix multiplication.
Sketch: Expand L = A(BC) entry Lij

according to matrix multiply rules. Ex-

pand R = (AB)C entry Rij the same way.

Show Lij = Rij .

112. The distributive law A(B + C) =
AB +AC holds for matrices.
Sketch: Expand L = A(B+C) entry Lij

according to matrix multiply rules. Ex-

pand R = AB + AC entry Rij the same

way. Show Lij =
∑n

k=1 aik(bkj + ckj)

and Rij =
∑n

k=1 aikbkj + aikckj . Then

Lij = Rij .

113. For any matrix A the transpose for-
mula (AT )T = A holds.
Sketch: Expand L = (AT )T entry Lij

according to matrix transpose rules. Then

Lij = aij .

114. For matrices A, B the transpose for-
mula (A+B)T = AT +BT holds.
Sketch: Expand L = (A+B)T entry Lij

according to matrix transpose rules. Re-

peat for entry Rij of R = AT +BT . Show

Lij = Rij .

115. For matrices A, B the transpose for-
mula (AB)T = BTAT holds.
Sketch: Expand L = (AB)T entry Lij ac-

cording to matrix multiply and transpose

rules. Repeat for entry Rij of R = BTAT .

Show Lij = Rij .

116. For a matrix A and constant k, the
transpose formula (kA)T = kAT holds.

Invertible Matrices
Verify the result.

117. There are infinitely many 2 × 2 ma-
trices A, B such that AB = 0

118. The zero matrix is not invertible.
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119. The matrix A =

(
1 2
0 0

)
is not in-

vertible.

120. The matrix A =

(
1 2
0 1

)
is invert-

ible.

121. The matrices A =

(
a b
c d

)
and

B =

(
d −b
−c a

)
satisfy

AB = BA = (ad− bc)I.

122. If AB = 0, then one of A or B is not
invertible.

Symmetric Matrices
Verify the result.

123. The product of two symmetric n× n
matrices A, B such that AB = BA is
symmetric.

124. The product of two symmetric 2 × 2
matrices may not be symmetric.

125. If A is symmetric, then so is A−1.
Sketch: Let B = A−1. Compute BT us-

ing transpose rules.

126. If B is anm×nmatrix and A = BTB,
then A is n× n symmetric.
Sketch: Compute AT using transpose

rules.
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5.2 Matrix Equations

Linear Algebraic Equations

An m× n system of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
am1x1 + am2x2 + · · ·+ amnxn = bm,

(1)

can be written as a matrix multiply equation AX⃗ = b⃗. Let A be the matrix of
coefficients aij , let X⃗ be the column vector of variable names x1, . . . , xn and let

b⃗ be the column vector with components b1, . . . , bn. Assume equations (1) hold.
Then:

AX⃗ =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn




x1
x2
...
xn



=


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn



=


b1
b2
...
bn

 by equation (1)

Therefore, equations (1) imply AX⃗ = b⃗. Conversely, assume matrix equation
AX⃗ = b⃗. Reversible steps above give the last vector equality. Vector equality
page 304 implies system (1) is satisfied.

A system of linear equations can be represented by its variable list x1, x2, . . . ,
xn and its augmented matrix.

Definition 5.16 (Augmented Matrix)
The augmented matrix of A and b⃗ for system Ax⃗ = b⃗ is

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
am1 am2 · · · amn bn

 or symbol ⟨A | b⃗⟩(2)
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Vertical Line Notation. The present text uses a vertical line in a matrix
display to mean it is an augmented matrix. While symbol ⟨A | b⃗⟩ has a vertical
bar, the matrix itself has no vertical line as in display (2). Given a matrix C, it
certainly has no vertical line. It may be a coefficient matrix in some system Cx⃗ =
d⃗ , or C could be an augmented matrix for some system Ax⃗ = b⃗ . Computers do
not display nor store the vertical line appearing in equation (2). References may
not use a vertical line.

Convert Augmented Matrix to Linear Algebraic Equations. Given an
augmented n × (n + 1) matrix C and a variable list x1, . . . , xn, the conversion
back to a linear system of algebraic equations is made by expanding CY⃗ = 0,
where Y⃗ has components x1, . . . , xn, −1. Hand work might contain an exposition
like this:

x1 x2 · · · xn
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
am1 am2 · · · amn bn

(3)

In (3), a dot product is applied to the first n elements of each row, using the
variable list written above the columns. The symbolic answer is set equal to the
rightmost column’s entry, in order to recover the equations. An example:

x1 x2 x3 1 5 −2 7
2 0 −1 10
3 2 4 12

 −→


x1 + 5x2 − 2x3 = 7
2x1 + 0x2 − x3 = 10
3x1 + 2x2 + 4x3 = 12

Homogeneous System Augmented Matrix. It is usual in homogeneous
systems Ax⃗ = 0⃗ to omit the column of zeros and deal directly with A instead
of ⟨A | 0⃗⟩. The convention is justified by arguing that the rightmost column of
zeros is unchanged by swap, multiply and combination rules which are defined
below. A negative is remembering to insert the column of zeros when using a
computation. An example:

x1 + 5x2 − 2x3 = 0
2x1 + 0x2 − x3 = 0
3x1 + 2x2 + 4x3 = 0

Use

1 5 −2
2 0 −1
3 2 4

 instead of

1 5 −2 0
2 0 −1 0
3 2 4 0


Elementary Row Operations

The three operations on equations which produce equivalent systems can be
translated directly to row operations on the augmented matrix for the system.
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The rules produce equivalent systems, that is, the three rules neither create
nor destroy solutions.

Swap Two rows can be interchanged.

Multiply A row can be multiplied by multiplier m ̸= 0.

Combination A multiple of one row can be added to a different row.

Documentation of Row Operations

Throughout the display below, symbol s stands for source, symbol t for target,
symbol m for multiplier and symbol c for constant.

Swap swap(s,t) ≡ swap rows s and t.

Multiply mult(t,m) ≡ multiply row t by m̸= 0.

Combination combo(s,t,c) ≡ add c times row s to row t ̸= s.

The standard for documentation is to write the notation next to the target row,
which is the row to be changed. For swap operations, the notation is written
next to the first row that was swapped, and optionally next to both rows. The
notation was developed from early maple notation for the corresponding opera-
tions swaprow, mulrow and addrow, appearing in the maple package linalg. For
instance, addrow(A,1,3,-5) selects matrix A as the target of the combination
rule, which is documented in written work as combo(1,3,-5). In written work on
paper, symbol A is omitted, because A is the matrix appearing on the previous
line of the sequence of steps.

Maple Remarks. Versions of maple use packages to perform toolkit operations.
A short conversion table appears below.

On paper Maple with(linalg) Maple with(LinearAlgebra)

swap(s,t) swaprow(A,s,t) RowOperation(A,[t,s])

mult(t,c) mulrow(A,t,c) RowOperation(A,t,c)

combo(s,t,c) addrow(A,s,t,c) RowOperation(A,[t,s],c)

Conversion between packages can be controlled by the following function defi-
nitions, which causes the maple code to be the same regardless of which linear
algebra package is used.5

Maple linalg

combo:=(a,s,t,c)->addrow(a,s,t,c);

swap:=(a,s,t)->swaprow(a,s,t);

mult:=(a,t,c)->mulrow(a,t,c);
5The acronym ASTC is used for the signs of the trigonometric functions in quadrants I

through IV. The argument lists for combo, swap, mult use the same order, ASTC, memorized
in trigonometry as All Students Take Calculus.
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Maple LinearAlgebra

combo:=(a,s,t,c)->RowOperation(a,[t,s],c);

swap:=(a,s,t)->RowOperation(a,[t,s]);

mult:=(a,t,c)->RowOperation(a,t,c);

macro(matrix=Matrix);

RREF Test

A linear algebraic equation example of RREF :

x1 +2x2 +3x4 +4x5 +5x7 = 6
x3 +7x4 +8x5 +9x7 = 10

x6 +11x7 = 12
x8 = 13

(4)

The corresponding vector-matrix augmented matrix, no vertical line:



1 2 0 3 4 0 5 0 6
0 0 1 7 8 0 9 0 10
0 0 0 0 0 1 11 0 12
0 0 0 0 0 0 0 1 13
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(5)

Definition 5.17 (Reduced Row-echelon Form or RREF)
The reduced row-echelon form of a matrix, or rref, is defined by:

1. Zero rows appear last. Each nonzero row has first element 1, called a leading
one. The column in which the leading one appears, called a pivot column,
has all other entries zero.

2. The pivot columns appear as consecutive initial columns of the identity matrix
I. Trailing columns of I might be absent.

Matrix (5) is a typical rref which satisfies the preceding properties. The initial
4 columns of the 7 × 7 identity matrix I appear in natural order in matrix (5);
the trailing 3 columns of I are absent.

If the rref of the augmented matrix has a leading one in the last column, then
the corresponding system of equations then has an equation “0 = 1” displayed,
which signals an inconsistent system. Important: the rref always exists, even
if the corresponding linear algebraic equations are inconsistent.
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Elimination Method

The elimination algorithm for equations page ?? has an implementation for ma-
trices. A row is marked processed if either (1) the row is all zeros, or else (2)
the row contains a leading one and all other entries in that column are zero.
Otherwise, the row is called unprocessed.

1. Move each unprocessed row of zeros to the last row using swap and mark
it processed.

2. Identify an unprocessed nonzero row having the least number of leading
zeros. Apply the swap rule to make this row the very first unprocessed row.
Apply the multiply rule to insure a leading one. Apply the combination
rule to change to zero all other entries in that column. The number of
leading ones (lead variables) has been increased by one and the current
column is a column of the identity matrix. Mark the row as processed, e.g.,
box the leading one: 1 .

3. Repeat steps 1–2, until all rows have been processed. Then all leading ones
have been defined and the resulting matrix is in reduced row-echelon form.

Computer algebra systems and computer numerical laboratories automate com-
putation of the reduced row-echelon form of a matrix A.

Literature calls the algorithm Gauss-Jordan elimination. Two examples:

rref(0) = 0 In step 2, all rows of the zero matrix 0 are zero. No changes
are made to the zero matrix.

rref(I) = I In step 2, each row has a leading one. No changes are made
to the identity matrix I.

Visual RREF Test. The habit to mark pivots with a box leads to a visual test
for a RREF. An illustration:

1 0 0 0 1
2

0 1 0 0 1
2

0 0 1 0 1
2

0 0 0 0 0


Each boxed leading one 1 appears
in a column of the identity matrix.
The boxes trail downward, ordered
by columns 1, 2, 3 of the identity.
There is no 4th pivot, therefore trail-
ing identity column 4 is not used.

Toolkit Sequence

A sequence of swap, multiply and combination steps applied to a system of
equations is called a toolkit sequence. The viewpoint is that a camera is
pointed over the shoulder of an expert who writes the mathematics, and after
the completion of each toolkit step, a photo is taken. The ordered sequence
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of cropped photo frames is a filmstrip or a sequence of frames. The First
Frame displays the original system and the Last Frame displays the reduced
row echelon system.

The terminology applies to systems Ax⃗ = b⃗ represented by an augmented matrix
C = ⟨A | b⃗⟩. The First Frame is C and the Last Frame is rref(C).

Documentation of toolkit sequence steps will use this textbook’s notation, page
323:

swap(s,t), mult(t,m), combo(s,t,c),

each written next to the target row t. During the sequence, consecutive initial
columns of the identity, called pivot columns, are created as steps toward the
rref . The remaining consecutive columns of the identity might not appear. An
illustration:

Frame 1:


1 2 −1 0 1
1 4 −1 0 2
0 1 1 0 1
0 0 0 0 0

 Original augmented matrix.

Frame 2:


1 2 −1 0 1
0 2 0 0 1
0 1 1 0 1
0 0 0 0 0

 combo(1,2,-1)

Pivot column 1 completed.

Frame 3:


1 2 −1 0 1
0 1 1 0 1
0 2 0 0 1
0 0 0 0 0

 swap(2,3)

Frame 4:


1 2 −1 0 1
0 1 1 0 1
0 0 −2 0 −1
0 0 0 0 0

 combo(2,3,-2)

Frame 5:


1 0 −3 0 −1
0 1 1 0 1
0 0 −2 0 −1
0 0 0 0 0


Pivot column 2 completed by
operation combo(2,1,-2).
Back-substitution postpones
this step.

Frame 6:


1 0 −3 0 −1
0 1 1 0 1
0 0 1 0 1/2
0 0 0 0 0

 All leading ones found.

mult(3,-1/2)

Frame 7:


1 0 −3 0 −1
0 1 0 0 1/2
0 0 1 0 1/2
0 0 0 0 0

 combo(3,2,-1)

Zero other column 3 entries.
Next, finish pivot column 3.
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Last Frame:


1 0 0 0 1/2
0 1 0 0 1/2
0 0 1 0 1/2
0 0 0 0 0


combo(3,1,3)

rref found. Column 4 of the
identity does not appear!
There is no 4th pivot column.

Avoiding fractions. A matrix A with only integer entries can often be put
into reduced row-echelon form without introducing fractions. The multiply rule
introduces fractions, so its use should be limited. It is advised that leading
ones be introduced only when convenient, otherwise make the leading coefficient
nonzero and positive. Divisions at the end of the computation will produce the
rref .

Clever use of the combination rule can sometimes create a leading one without
introducing fractions. Consider the two rows

25 0 1 0 5
7 0 2 0 2

The second row multiplied by −4 and added to the first row effectively replaces
the 25 by −3, whereupon adding the first row twice to the second gives a leading
one in the second row. The resulting rows are fraction-free.

−3 0 −7 0 −3
1 0 −12 0 −4

Rank and Nullity. What does it mean, if the first column of a rref is the zero
vector? It means that the corresponding variable x1 is a free variable. In fact,
every column that does not contain a leading one corresponds to a free variable
in the standard general solution of the system of equations. Symmetrically, each
leading one identifies a pivot column and corresponds to a leading variable.

The number of leading ones is the rank of the matrix, denoted rank(A). The
rank cannot exceed the row dimension nor the column dimension. The column
count less the number of leading ones is the nullity of the matrix, denoted
nullity(A). It equals the number of free variables.

Regardless of how matrix B arises, augmented or not, we have the relation

variable count = rank(B) + nullity(B).

If B = ⟨A | b⃗⟩ for AX⃗ = b⃗, then the variable count n comes from X⃗ and the
column count of B is one more, or n + 1. Replacing the variable count by the
column count can therefore lead to fundamental errors.

Back-substitution and efficiency. The algorithm implemented in the pre-
ceding toolkit sequence is easy to learn, because the actual work is organized by
creating pivot columns, via swap, combination and multiply. The created pivot
columns are initial columns of the identity. You are advised to learn the algo-
rithm in this form, but please change the algorithm as you become more efficient
at doing the steps. See the examples for illustrations.
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Back Substitution. Computer implementations and also hand computation
can be made more efficient by changing steps 2 and 3, then adding step 4, as
outlined below.

1. Move each unprocessed row of zeros to the last row using swap and mark
it processed.

2a. Identify an unprocessed nonzero row having the least number of leading
zeros. Apply the swap rule to make this row the very first unprocessed row.
Apply the multiply rule to insure a leading one. Apply the combination
rule to change to zero all other entries in that column which are below the
leading one.

3a. Repeat steps 1–2a, until all rows have been processed. The matrix has all
leading ones identified, a triangular shape, but it is not generally a RREF.

4. Back-Substitution. Identify the last row with a leading one. Apply the
combination rule to change to zero all other entries in that column which
are above the leading one. Repeat until all rows have been processed. The
resulting matrix is a RREF.

Literature refers to step 4 as back-substitution, a process which is exactly
the original elimination algorithm applied to the system created by step 3a with
reversed variable list.

Inverse Matrix. An efficient method to find the inverse B of a square matrix
A, should it happen to exist, is to form the augmented matrix C = ⟨A | I⟩ and
then read off B as the package of the last n columns of rref(C). This method is
based upon the equivalence

rref(⟨A | I⟩) = ⟨I |B⟩ if and only if AB = I.

The next theorem aids not only in establishing this equivalence but also in the
practical matter of testing a candidate solution for the inverse matrix.

Theorem 5.9 (Inverse Test for Matrices)
If A and B are square matrices such that AB = I, then also BA = I. Therefore,
only one of the equalities AB = I or BA = I is required to check an inverse. Proof
on page 338.

Theorem 5.10 (Matrix Inverse and the rref)
Let A and B denote square matrices. Then

(a) If rref
(
⟨A | I⟩

)
= ⟨I |B⟩, then AB = BA = I and B is the inverse of A.

(b) If AB = BA = I, then rref
(
⟨A | I⟩

)
= ⟨I |B⟩.
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(c) If rref
(
⟨A | I⟩

)
= ⟨C |B⟩, then C = rref(A). If C ̸= I, then A is not

invertible. If C = I, then B is the inverse of A.

(d) Identity rref(A) = I holds if and only if A has an inverse.

Proof on page 338.

Matrix Inverse: Find A−1

The method will be illustrated for the matrix

A =

 1 0 1
0 1 −1
0 1 1

 .

Define the first frame of the sequence to be C1 = ⟨A | I⟩, then compute the
toolkit sequence to rref(C1) as follows.

C1 =

 1 0 1 1 0 0
0 1 −1 0 1 0
0 1 1 0 0 1

 First Frame

C2 =

 1 0 1 1 0 0
0 1 −1 0 1 0
0 0 2 0 −1 1

 combo(3,2,-1)

C3 =

 1 0 1 1 0 0
0 1 −1 0 1 0
0 0 1 0 −1/2 1/2


mult(3,1/2)

C4 =

 1 0 1 1 0 0
0 1 0 0 1/2 1/2
0 0 1 0 −1/2 1/2

 combo(3,2,1)

C5 =

 1 0 0 1 1/2 −1/2
0 1 0 0 1/2 1/2
0 0 1 0 −1/2 1/2

 combo(3,1,-1)

Last Frame

The theory implies that the inverse of A is the matrix in the right half of the last
frame:

A−1 =

 1 1/2 −1/2
0 1/2 1/2
0 −1/2 1/2


Answer Check. Let B equal the matrix of the last display, claimed to be A−1.
The Inverse Test, Theorem 5.9 page 328, says that only one of AB = I or
BA = I needs to be checked. Details:
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AB =

 1 0 1
0 1 −1
0 1 1

 1 1/2 −1/2
0 1/2 1/2
0 −1/2 1/2


=

 1 1/2− 1/2 −1/2 + 1/2
0 1/2 + 1/2 1/2− 1/2
0 1/2− 1/2 1/2 + 1/2


=

 1 0 0
0 1 0
0 0 1


Elementary Matrices

Elementary matrices express toolkit operations of swap, combi-
nation and multiply as matrix multiply equations.

Typically, toolkit operations produce a finite sequence of k linear algebraic equa-
tions, the first is the original system and the last is the reduced row echelon form
of the system. We are going to re-write a typical toolkit sequence as matrix mul-
tiply equations. Each step is obtained from the previous by left-multiplication
by a square matrix E:

AX⃗ = b⃗ Original system

E1AX⃗ = E1⃗b After one toolkit step

E2E1AX⃗ = E2E1⃗b After two toolkit steps

E3E2E1AX⃗ = E3E2E1⃗b After three toolkit steps

(6)

Definition 5.18 (Elementary Matrix)
An elementary matrix E is created from the identity matrix by applying a single
toolkit operation, that is, exactly one of the operations combination, multiply or
swap.

Elementary Combination Matrix. Create square matrix E by applying the oper-
ation combo(s,t,c) to the identity matrix. The result equals the identity matrix
except for the zero in row t and column s which is replaced by c.

I =

 1 0 0
0 1 0
0 0 1

 Identity matrix.

E =

 1 0 0
0 1 0
0 c 1

 Elementary combination matrix,
combo(2,3,c).
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Elementary Multiply Matrix.
Create square matrix E by applying mult(t,m) to the identity matrix. The result
equals the identity matrix except the one in row t is replaced by m.

I =

 1 0 0
0 1 0
0 0 1

 Identity matrix.

E =

 1 0 0
0 1 0
0 0 m

 Elementary multiply matrix,
mult(3,m).

Elementary Swap Matrix. Create square matrix E by applying swap(s,t) to the
identity matrix.

I =

 1 0 0
0 1 0
0 0 1

 Identity matrix.

E =

 0 0 1
0 1 0
1 0 0

 Elementary swap matrix,
swap(1,3).

If square matrix E represents a combination, multiply or swap rule, then the definition
of matrix multiply applied to matrix EB gives the same matrix as obtained by apply-
ing the toolkit rule directly to matrix B. The statement is justified by experiment.
See the exercises and Theorem 5.11.

Elementary 3× 3 matrices (C=Combination, M=Multiply, S=Swap) can be dis-
played in computer algebra system maple as follows.

On Paper Maple with(linalg) Maple with(LinearAlgebra) 1 0 0
0 1 0
0 0 1

 B:=diag(1,1,1); B:=IdentityMatrix(3);

combo(2,3,c) C:=addrow(B,2,3,c); C:=RowOperation(B,[3,2],c);

mult(3,m) M:=mulrow(B,3,m); M:=RowOperation(B,3,m);

swap(1,3) S:=swaprow(B,1,3); S:=RowOperation(B,[3,1]);

A helpful project is to write out several examples of elementary 5 matrices by
hand or machine. Such experiments lead to the following observations and the-
orems, proofs delayed to page 339.

Constructing an Elementary Matrix E

Combination Change a zero in the identity matrix to symbol c.

Multiply Change a one in the identity matrix to symbol m ̸= 0.

Swap Interchange two rows of the identity matrix.
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Constructing E−1 from an Elementary Matrix E

Combination Change multiplier c in E to −c.
Multiply Change diagonal multiplier m ̸= 0 in E to 1/m.

Swap The inverse of E is E itself.

Theorem 5.11 (Matrix Multiply by an Elementary Matrix)
Let B1 be a given matrix of row dimension n. Select a toolkit operation combination,
multiply or swap, then apply it to matrix B1 to obtain matrix B2. Apply the identical
toolkit operation to the n× n identity I to obtain elementary matrix E. Then

B2 = EB1.

Theorem 5.12 (Toolkit Sequence Identity)
If C and D are any two frames in a sequence, then corresponding toolkit operations
are represented by square elementary matrices E1, E2, . . . , Ek and the two frames
C,D satisfy the matrix multiply equation

D = Ek · · ·E2E1C.

Theorem 5.13 (The rref and Elementary Matrices)
Let A be a given matrix of row dimension n. Then there exist n × n elementary
matrices E1, E2, . . . , Ek representing certain toolkit operations such that

rref(A) = Ek · · ·E2E1A.

Illustration

Consider the following 6-frame toolkit sequence.

A1 =

 1 2 3
2 4 0
3 6 3

 Frame 1, original matrix.

A2 =

 1 2 3
0 0 −6
3 6 3

 Frame 2, combo(1,2,-2).

A3 =

 1 2 3
0 0 1
3 6 3

 Frame 3, mult(2,-1/6).

A4 =

 1 2 3
0 0 1
0 0 −6

 Frame 4, combo(1,3,-3).
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A5 =

 1 2 3
0 0 1
0 0 0

 Frame 5, combo(2,3,-6).

A6 =

 1 2 0
0 0 1
0 0 0

 Frame 6, combo(2,1,-3). Found rref .

The corresponding 3× 3 elementary matrices are

E1 =

 1 0 0
−2 1 0
0 0 1

 Frame 2, combo(1,2,-2) applied to I.

E2 =

 1 0 0
0 −1/6 0
0 0 1

 Frame 3, mult(2,-1/6) applied to I.

E3 =

 1 0 0
0 1 0
−3 0 1

 Frame 4, combo(1,3,-3) applied to I.

E4 =

 1 0 0
0 1 0
0 −6 1

 Frame 5, combo(2,3,-6) applied to I.

E5 =

 1 −3 0
0 1 0
0 0 1

 Frame 6, combo(2,1,-3) applied to I.

Because each frame of the sequence has the succinct form EB, where E is an
elementary matrix and B is the previous frame, the complete toolkit sequence
can be written as follows.

A2 = E1A1 Frame 2, E1 equals combo(1,2,-2) on I.

A3 = E2A2 Frame 3, E2 equals mult(2,-1/6) on I.

A4 = E3A3 Frame 4, E3 equals combo(1,3,-3) on I.

A5 = E4A4 Frame 5, E4 equals combo(2,3,-6) on I.

A6 = E5A5 Frame 6, E5 equals combo(2,1,-3) on I.

A6 = E5E4E3E2E1A1 Summary, frames 1-6. This relation is rref(A1) =
E5E4E3E2E1A1, which is the result claimed in The-
orem 5.13.

The summary is the equation

rref(A1) =

1−3 0
0 1 0
0 0 1

1 0 0
0 1 0
0−6 1

 1 0 0
0 1 0
−3 0 1

1 0 0
0−1

6 0
0 0 1

 1 0 0
−2 1 0
0 0 1

A1
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The inverse relationship A1 = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 rref(A1) is formed by the

rules for constructing E−1 from elementary matrix E, page 331, the result being

A1 =

1 0 0
2 1 0
0 0 1

1 0 0
0−6 0
0 0 1

1 0 0
0 1 0
3 0 1

1 0 0
0 1 0
0 6 1

1 3 0
0 1 0
0 0 1

 rref(A1)

Examples and Methods

Example 5.1 (Identify a Reduced Row–Echelon Form)
Identify the matrices in reduced row–echelon form using the RREF Test page 324.

A =

0 1 3 0
0 0 0 1
0 0 0 0
0 0 0 0

 B =

1 1 3 0
0 0 0 1
0 0 0 0
0 0 0 0



C =

2 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 D =

0 1 3 0
0 0 0 1
1 0 0 0
0 0 0 0


Solution:

Matrix A. There are two nonzero rows, each with a leading one. The pivot columns are
2, 4 and they are consecutive columns of the 4× 4 identity matrix. Yes, it is a RREF.

Matrix B. Same as A but with pivot columns 1, 4. Yes, it is a RREF. Column 2 is
not a pivot column. The example shows that a scan for columns of the identity is not
enough.

Matrix C. Immediately not a RREF, because the leading nonzero entry in row 1 is not
a one.

Matrix D. Not a RREF. Swapping row 3 twice to bring it to row 1 will make it a RREF.
This example has pivots in columns 1, 4 but the pivot columns fail to be columns 1, 2
of the identity (they are columns 3, 2).

Visual RREF Test. More experience is needed to use the visual test for RREF, but
the effort is rewarded. Details are very brief. The ability to use the visual test is learned
by working examples that use the basic RREF test.

Leading ones are boxed:

A =


0 1 3 0

0 0 0 1
0 0 0 0
0 0 0 0

 B =


1 1 3 0

0 0 0 1
0 0 0 0
0 0 0 0



C =


2 1 1 0

0 0 0 1
0 0 0 0
0 0 0 0

 D =


0 1 3 0

0 0 0 1

1 0 0 0
0 0 0 0


Matrices A,B pass the visual test. Matrices C,D fail the test. Visually, we look for a
boxed one starting on row 1. Boxes occupy consecutive rows, marching down and right,
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to make a triangular diagram. Columns with boxed ones are expected to be consecutive
initial columns of identity matrix I.

Example 5.2 (Reduced Row–Echelon Form)
Find the reduced row–echelon form of the coefficient matrix A using the elimination
method, page 325. Then solve the system.

x1 + 2x2 − x3 + x4 = 0,
x1 + 3x2 − x3 + 2x4 = 0,

x2 + x4 = 0.

Solution: The coefficient matrix A and its rref are given by (details below)

A =

 1 2 −1 1
1 3 −1 2
0 1 0 1

 , rref(A) =

 1 0 −1 −1
0 1 0 1
0 0 0 0

 .

Using variable list x1, x2, x2, x4, the equivalent reduced echelon system is

x1 − x3 − x4 = 0,
x2 + x4 = 0,

0 = 0.

which has lead variables x1, x2 and free variables x3, x4.

The last frame algorithm applies to write the standard general solution. This algorithm
assigns invented symbols t1, t2 to the free variables, then back-substitution is applied to
the lead variables. The solution to the system is

x1 = t1 + t2,
x2 = −t2,
x3 = t1,
x4 = t2, −∞ < t1, t2 <∞.

Details of the Elimination Method. 1∗ 2 −1 1
1 3 −1 2
0 1 0 1

 The coefficient matrix A. Leading one identi-
fied and marked as 1∗. 1 2 −1 1

0 1∗ 0 1
0 1 0 1

 Apply the combination rule to zero the other
entries in column 1. Mark the row processed.
Identify the next leading one, marked 1∗. 1 0 −1 −1

0 1 0 1
0 0 0 0

 Apply the combination rule to zero the other
entries in column 2. Mark the row processed.
The matrix passes the Visual RREF Test.

Example 5.3 (Back-Substitution)
Display a toolkit sequence which uses numerical efficiency ideas of back substitution,
page 328, in order to find the RREF of the matrix

A =

 1 2 −1 1
1 3 −1 2
0 1 0 1

 ,

335



5.2 Matrix Equations

Solution: The answer for the reduced row-echelon form of matrix A is

rref(A) =

 1 0 −1 0
0 1 0 0
0 0 0 1

 .

Back-substitution details appear below.

Meaning of the computation. Finding a RREF is part of solving the homogeneous
system AX⃗ = 0⃗. The Last Frame Algorithm is used to write the general solution. The

algorithm requires a toolkit sequence applied to the augmented matrix ⟨A | 0⃗⟩, ending
in the Last Frame, which is the RREF with an added column of zeros. 1 2 −1 1

1 3 −1 2
0 1 0 2

 The given matrix A. Identify row 1 for the first pivot.

 1 2 −1 1
0 1 0 1
0 1 0 2

 combo(1,2,-1) applied to introduce zeros below the
leading one in row 1. 1 2 −1 1

0 1 0 1
0 0 0 1

 combo(2,3,-1) applied to introduce zeros below the
leading one in row 2. The RREF has not yet been found.
The matrix is triangular. 1 0 −1 −1

0 1 0 1
0 0 0 1

 Begin back-substitution: combo(2,1,-2) applied to in-
troduce zeros above the leading one in row 2. 1 0 −1 0

0 1 0 0
0 0 0 1

 Continue back-substitution: combo(3,2,-1) and
combo(3,1,1) applied to introduce zeros above the
leading one in row 3. 1 0 −1 0

0 1 0 0

0 0 0 1

 RREF Visual Test passed.
This matrix is the answer.

Example 5.4 (Answer Check a Matrix Inverse)
Display the answer check details for the given matrix A and its proposed inverse B.

A =


1 2 −1 1
0 1 0 1
0 0 0 1
0 1 1 1

 , B =


1 −3 1 1
0 1 −1 0
0 −1 0 1
0 0 1 0

 .

Solution:

Details. We apply the Inverse Test, Theorem 5.9, which requires one matrix multiply:

AB =


1 2 −1 1
0 1 0 1
0 0 0 1
0 1 1 1




1 −3 1 1
0 1 −1 0
0 −1 0 1
0 0 1 0

 Expect AB = I.

=


1 −3 + 2 + 1 1− 2 + 1 1− 1
0 1 −1 + 1 0
0 0 1 0
0 1− 1 −1 + 1 1

 Multiply.
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=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 Simplify. Then AB = I. Because
of Theorem 5.9, we don’t check
BA = I.

Example 5.5 (Find the Inverse of a Matrix)
Compute the inverse matrix of

A =


1 2 −1 1
0 1 0 1
0 0 0 1
0 1 1 1

 .

Solution: The answer:

A−1 =


1 −3 1 1
0 1 −1 0
0 −1 0 1
0 0 1 0

 .

Details. Form the augmented matrix C = ⟨A | I⟩ and compute its reduced row-echelon
form by toolkit steps.

1 2 −1 1 1 0 0 0
0 1 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 1 1 1 0 0 0 1

 Augment I onto A.


1 2 −1 1 1 0 0 0
0 1 0 1 0 1 0 0
0 1 1 1 0 0 0 1
0 0 0 1 0 0 1 0

 swap(3,4).


1 2 −1 1 1 0 0 0
0 1 0 1 0 1 0 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 combo(2,3,-1). Triangular matrix.


1 2 −1 1 1 0 0 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 Back-substitution: combo(4,2,-1).


1 2 −1 0 1 0 −1 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 combo(4,1,-1).


1 0 −1 0 1 −2 1 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 combo(2,1,-2).
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
1 0 0 0 1 −3 1 1
0 1 0 0 0 1 −1 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 combo(3,1,1). Identity left, inverse right.

Details and Proofs

Proof of Theorem 5.9:

Assume AB = I. Let C = BA − I. We intend to show C = 0, then BA = C + I = I,
as claimed.

Compute AC = ABA−A = AI−A = 0. It follows that the columns y⃗ of C are solutions
of the homogeneous equation Ay⃗ = 0⃗. To complete the proof, we show that the only
solution of Ay⃗ = 0⃗ is y⃗ = 0⃗, because then C has all zero columns, which means C is the
zero matrix.

First, Bu⃗ = 0⃗ implies u⃗ = Iu⃗ = ABu⃗ = A0⃗ = 0⃗, hence B has an inverse, and then
Bx⃗ = y⃗ has a unique solution x⃗ = B−1y⃗.

Suppose Ay⃗ = 0⃗. Write y⃗ = Bx⃗. Then x⃗ = Ix⃗ = ABx⃗ = Ay⃗ = 0⃗. This implies
y⃗ = Bx⃗ = B0⃗ = 0⃗. ■

Proof of Theorem 5.10:

Details for (a). Let C = ⟨A | I⟩ and assume rref(C) = ⟨I |B⟩. Solving the n × 2n

system CX⃗ = 0⃗ is equivalent to solving the system AY⃗ +IZ⃗ = 0⃗ with n-vector unknowns
Y⃗ and Z⃗. This system has exactly the same solutions as IY⃗ +BZ⃗ = 0⃗, by the equation

rref(C) = ⟨I |B⟩. The latter is a reduced echelon system with lead variables equal to

the components of Y⃗ and free variables equal to the components of Z⃗. Multiplying by A
gives AY⃗ +ABZ⃗ = 0⃗, hence −Z⃗ +ABZ⃗ = 0⃗, or equivalently ABZ⃗ = Z⃗ for every vector
Z⃗ (because its components are free variables). Letting Z⃗ be a column of I shows that
AB = I. Then AB = BA = I by Theorem 5.9, and B is the inverse of A.

Details for (b). Assume AB = I. We prove the identity rref(⟨A | I⟩) = ⟨I |B⟩.
Let the system AY⃗ + IZ⃗ = 0⃗ have a solution Y⃗ , Z⃗. Multiply by B to obtain BAY⃗ +
BZ⃗ = 0⃗. Use BA = I to give Y⃗ + BZ⃗ = 0⃗. The latter system therefore has Y⃗ ,
Z⃗ as a solution. Conversely, a solution Y⃗ , Z⃗ of Y⃗ + BZ⃗ = 0⃗ is a solution of the
system AY⃗ + IZ⃗ = 0⃗, because of multiplication by A. Therefore, AY⃗ + IZ⃗ = 0⃗ and
Y⃗ + BZ⃗ = 0⃗ are equivalent systems. The latter is in reduced row-echelon form, and

therefore rref(⟨A | I⟩) = ⟨I |B⟩.
Details for (c). Toolkit steps that compute rref(⟨A | I⟩) must also compute rref(A).
This fact is learned first by working examples. Elementary matrix formulas can make

the proof more transparent: see the Miscellany exercises. Conclusion: rref(⟨A | I⟩) =
⟨C |B⟩ implies C = rref(A).

Let’s prove C ̸= I implies A is not invertible. Suppose not, then C ̸= I and A is

invertible. Then (b) implies ⟨C |B⟩ = rref(⟨A | I⟩) = ⟨I |B⟩. Comparing columns,
this equation implies C = I, a contradiction.

To prove C = I implies B is the inverse of A, apply (a).
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Details for (d). Assume A is invertible. We are to prove rref(A) = I. Part (b) says

F = ⟨A | I⟩ satisfies rref(F ) = ⟨I |B⟩ where B is the inverse of A. Part (c) says

rref(F ) = ⟨ rref(A) | b⃗⟩. Comparing matrix columns gives rref(A) = I.

Converse: assume rref(A) = I, to prove A invertible. Let F = ⟨A | I⟩, then rref(F ) =

⟨C |B⟩ for some C,B. Part (c) says C = rref(A) = I. Part (a) says B is the inverse of
A. This proves A is invertible and completes (d).

Proof of Theorem 5.11: It is possible to organize the proof into three cases, by con-
sidering the three possible toolkit operations. We don’t do the tedious details. Instead,
we refer to the Elementary Matrix Multiply exercises page 340, for suitable experiments
that provide the intuition needed to develop formal proof details.

Proof of Theorem 5.12: The idea of the proof begins with writing Frame 1 as C1 =
E1C, using Theorem 5.11. Repeat to write Frame 2 as C2 = E2C1 = E2E1C. By
induction, Frame k is Ck = EkCk−1 = Ek · · ·E2E1C. But Frame k is matrix D in the
sequence. ■

Proof of Theorem 5.13: The reduced row-echelon matrix D = rref(A) paired with
C = A imply by Theorem 5.12 that rref(A) = D = Ek · · ·E2E1C = Ek · · ·E2E1A. ■

Exercises 5.2 �

Identify RREF
Mark the matrices which pass the RREF
Test, page 324. Explain the failures.

1.

 0 1 2 0 1
0 0 0 1 0
0 0 0 0 0



2.

 0 1 0 0 0
0 0 1 0 3
0 0 0 1 2



3.

 1 0 0 0
0 0 1 0
0 1 0 1



4.

 1 1 4 1
0 0 1 0
0 0 0 0


Lead and Free Variables
For each matrix A, assume a homogeneous
system AX⃗ = 0⃗ with variable list x1, . . . ,
xn. List the lead and free variables. Then
report the rank and nullity of matrix A.

5.

 0 1 3 0 0
0 0 0 1 0
0 0 0 0 0



6.

 0 1 0 0 0
0 0 1 0 3
0 0 0 1 2



7.

 0 1 3 0
0 0 0 1
0 0 0 0



8.

 1 2 3 0
0 0 0 1
0 0 0 0



9.


1 2 3
0 0 0
0 0 0
0 0 0



10.

 1 1 0
0 0 1
0 0 0



11.

 1 1 3 5 0
0 0 0 0 1
0 0 0 0 0



12.

 1 2 0 3 4
0 0 1 1 1
0 0 0 0 0


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13.


0 0 1 2 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0



14.


0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



15.


0 1 0 5 0
0 0 1 2 0
0 0 0 0 1
0 0 0 0 0



16.


1 0 3 0 0
0 1 0 1 0
0 0 0 0 1
0 0 0 0 0


Elementary Matrices
Write the 3 × 3 elementary matrix E and
its inverse E−1 for each of the following op-
erations, defined on page 323.

17. combo(1,3,-1)

18. combo(2,3,-5)

19. combo(3,2,4)

20. combo(2,1,4)

21. combo(1,2,-1)

22. combo(1,2,-e2)

23. mult(1,5)

24. mult(1,-3)

25. mult(2,5)

26. mult(2,-2)

27. mult(3,4)

28. mult(3,5)

29. mult(2,-π)

30. mult(1,e2)

31. swap(1,3)

32. swap(1,2)

33. swap(2,3)

34. swap(2,1)

35. swap(3,2)

36. swap(3,1)

Elementary Matrix Multiply
For each given matrix B1, perform the
toolkit operation (combo, swap, mult) to
obtain the result B2. Then compute the el-
ementary matrix E for the identical toolkit
operation. Finally, verify the matrix mul-
tiply equation B2 = EB1.

37.

(
1 1
0 3

)
, mult(2,1/3).

38.

 1 1 2
0 1 3
0 0 0

, mult(1,3).

39.

 1 1 2
0 1 1
0 0 1

, combo(3,2,-1).

40.

(
1 3
0 1

)
, combo(2,1,-3).

41.

 1 1 2
0 1 3
0 0 1

, swap(2,3).

42.

(
1 3
0 1

)
, swap(1,2).

Inverse Row Operations
Given the final frame B of a sequence start-
ing with matrix A, and the given opera-
tions, find matrix A. Do not use matrix
multiply.

43. B =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,-3),
mult(1,-2), swap(2,3).

44. B =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,3),
mult(1,2), swap(3,2).
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45. B =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3).

46. B =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,4),
mult(1,3), swap(3,2).

Elementary Matrix Products
Given the first frame B1 of a sequence and
elementary matrix operations E1, E2, E3,
find matrices F = E3E2E1 and B4 = FB1.

Hint: Compute ⟨B4|F⟩ from toolkit oper-

ations on ⟨B1|I⟩.

47. B1 =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,-3),
mult(1,-2).

48. B1 =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,3),
swap(3,2).

49. B1 =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), mult(1,4),
swap(1,3).

50. B1 =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,4),
mult(1,3).

Miscellany

51. Justify with English sentences why all
possible 2× 2 matrices in reduced row-
echelon form must look like(

0 0
0 0

)
,

(
1 ∗
0 0

)
,(

0 1
0 0

)
,

(
1 0
0 1

)
,

where ∗ denotes an arbitrary number.

52. Display all possible 3 × 3 matrices in
reduced row-echelon form. Besides the
zero matrix and the identity matrix,
please report five other forms, most con-
taining symbol ∗ representing an arbi-
trary number.

53. Determine all possible 4 × 4 matrices
in reduced row-echelon form.

54. Display a 6× 6 matrix in reduced row-
echelon form with rank 4 and only en-
tries of zero and one.

55. Display a 5× 5 matrix in reduced row-
echelon form with nullity 2 having en-
tries of zero, one and two, but no other
entries.

56. Display the rank and nullity of any
n× n elementary matrix.

57. Let F = ⟨C|D⟩ and let E be a square
matrix with row dimension matching F .
Display the details for the equality

EF = ⟨EC|ED⟩.

58. Let F = ⟨C|D⟩ and let E1, E2 be n×n
matrices with n equal to the row dimen-
sion of F . Display the details for the
equality

E2E1F = ⟨E2E1C|E2E1D⟩.

59. Assume matrix A is invertible. Display

details explaining why rref(⟨A|I⟩)
equals the matrix ⟨R|E⟩, where matrix
R = rref(A) and matrix E = Ek · · ·E1.
Symbols Ei are elementary matrices in
toolkit steps taking matrix A into re-
duced row-echelon form. Suggestion:
Use the preceding exercises.

60. Assume E1, E2 are elementary matri-
ces in toolkit steps taking A into re-
duced row-echelon form. Prove that
A−1 = E2E1. In words, A−1 is found
by doing the same toolkit steps to the
identity matrix.
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61. Assume matrix A is invertible and
E1, . . . , Ek are elementary matrices in
toolkit steps taking A into reduced
row-echelon form. Prove that A−1 =
Ek · · ·E1.

62. Assume A,B are 2 × 2 matri-
ces. Assume A is invertible and

rref(⟨A|B⟩) = ⟨I|D⟩. Explain why
the first column x⃗ of D is the unique
solution of Ax⃗ = b⃗, where b⃗ is the first
column of B.

63. Assume A,B are n × n matrices with
A invertible. Explain how to solve the
matrix equation AX = B for matrix X
using the augmented matrix of A,B.
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5.3 Determinants and Cramer’s Rule

Unique Solution of a 2× 2 System

The 2× 2 system
ax + by = e,
cx + dy = f,

(1)

has a unique solution provided ∆ = ad−bc is nonzero, in which case the solution
is given by

x =
de− bf

ad− bc
, y =

af − ce

ad− bc
.(2)

This result, called Cramer’s Rule for 2 × 2 systems, is first learned in college
algebra as a part of determinant theory.

Determinants of Order 2

College algebra introduces matrix notation and determinant notation:

A =

(
a b
c d

)
, |A| or det(A) =

∣∣∣∣ a b
c d

∣∣∣∣ .
Evaluation of a 2× 2 determinant is by Sarrus’ Rule:

b

d

bc

ad

= ad −bc
c

a

Figure 10. Sarrus’ 2× 2 rule.
A diagram for |A| = (ad)− (bc).

The boldface product ad is the product of the main diagonal entries and the
other product bc is from the anti-diagonal.

Cramer’s 2× 2 rule in determinant notation is

x =

∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ , y =

∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .(3)

Unique Solution of an n× n System

Cramer’s rule can be generalized to an n×n system of equations in matrix form
Ax⃗ = b⃗ or in scalar form

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
... · · ·

...
...

an1x1 + an2x2 + · · · + annxn = bn.

(4)
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Determinants will be defined shortly; intuition from the 2 × 2 case and Sarrus’
rule should suffice for the moment.

System (4) has a unique solution provided the determinant of coefficients
∆ = det(A) is nonzero, in which case the solution is given by

x1 =
∆1

∆
, x2 =

∆2

∆
, . . . , xn =

∆n

∆
.(5)

The determinant ∆j equals det(Bj) where matrix Bj is matrix A modified to

have column j equal to b⃗ = (b1, . . . , bn). Vector b⃗ is the right side of system (4).
The result is called Cramer’s Rule for n× n systems.

Determinant Notation for Cramer’s Rule

The determinant of coefficients for system Ax⃗ = b⃗ is denoted by

∆ =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ .(6)

The other n determinants in Cramer’s rule (5) are given by

∆1 =

∣∣∣∣∣∣∣∣∣
b1 a12 · · · a1n
b2 a22 · · · a2n
...

... · · ·
...

bn an2 · · · ann

∣∣∣∣∣∣∣∣∣ , . . . ,∆n =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · b1
a21 a22 · · · b2
...

... · · ·
...

an1 an2 · · · bn

∣∣∣∣∣∣∣∣∣ .(7)

Determinant Notation Conflicts. The literature is filled with various no-
tations for matrices, vectors and determinants. The expected notation uses
vertical bars only for determinants and absolute values, e.g., |A| makes sense
for a matrix A or a constant A. For clarity, the notation det(A) may be preferred.

Value of a Determinant. Notation |A| for det(A) implies that a determinant
is a number, computed by |A| = a11a22 − a12a21 when n = 2. For n ≥ 3, |A|
is computed by similar but increasingly complicated formulas; see Sarrus’ Rule
page 345 and Four Determinant Properties infra.

It is false that |A| = A for a 1 × 1 matrix, because |A| is a number and A is a
matrix. The symbol |c| for a constant c (not a matrix) is evaluated by algebra
rules: |c| = c for c ≥ 0 and otherwise |c| = −c. Overloading of symbols causes
equations like |A| = −1 for 1×1 matrix A = (−1), whereas |−1| = 1 for constant
−1.
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Sarrus’ Rule for 3× 3 Matrices

College algebra supplies the following formula for the determinant of a 3 × 3
matrix A:

det(A) =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= a11a22a33 + a21a32a13 + a31a12a23

−a11a32a23 − a21a12a33 − a31a22a13.

(8)

The number det(A) can be computed by an algorithm similar to the one for 2×2
matrices, as in Figure 11. Important: no further generalizations are possible.
There is no Sarrus’ rule for 4× 4 or larger matrices!

a21 a22 a23

a13a12a11

a31 a32 a33

a23a22a21

a11 a12 a13

d

e

f

a

b

c

Figure 11. Sarrus’ 3× 3 rule.
The down arrow sum a + b + c and the up arrow sum
d+ e+ f are subtracted:

det(A) = (a+ b+ c)− (d+ e+ f).

College Algebra Definition of Determinant

The impractical definition is the formula

det(A) =
∑
σ∈Sn

(−1)parity(σ) a1σ1 · · · anσn .(9)

In formula (9), aij denotes the element in row i and column j of the matrix
A. The symbol σ = (σ1, . . . , σn) stands for a rearrangement of the subscripts
1, 2, . . . , n and Sn is the set of all possible rearrangements. The nonnegative
integer parity(σ) is determined by counting the minimum number of pairwise
interchanges required to assemble the list of integers σ1, . . . , σn into natural
order 1, . . . , n.

Formula (9) reproduces the definition for 3×3 matrices given in equation (8). We
will have no computational use for (9). For computing the value of a determinant,
see four properties and cofactor expansion, infra.

Four Determinant Properties

The definition of determinant (9) implies the following four properties:
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Triangular The value of det(A) for either an upper triangular or a lower
triangular matrix A is the product of the diagonal elements:
det(A) = a11a22 · · · ann.

Combination The value of det(A) is unchanged by adding a multiple of a
row to a different row.

Multiply If one row of A is multiplied by constant c ̸= 0 to create
matrix B, then det(B) = cdet(A).

Swap If B results from A by swapping two rows, then det(A) =
(−1) det(B).

It is known that these four rules suffice to compute the value of any n × n
determinant. The proof of the four properties is delayed until page 360.

Elementary Matrices and the Four Rules

The rules can be stated in terms of elementary matrices as follows.

Triangular The value of det(A) for either an upper triangular or a lower
triangular matrix A is the product of the diagonal elements:
det(A) = a11a22 · · · ann. This is a one-arrow Sarrus’ rule
valid for dimension n.

Combination If E is an elementary matrix for a combination rule, then
det(EA) = det(A).

Multiply If E is an elementary matrix for a multiply rule with multi-
plier m ̸= 0, then det(EA) = mdet(A).

Swap If E is an elementary matrix for a swap rule, then det(EA) =
(−1) det(A).

Since det(E) = 1 for a combination rule, det(E) = −1 for a swap rule and
det(E) = c for a multiply rule with multiplier c ̸= 0, it follows that for any
elementary matrix E there is the determinant multiplication rule det(EA) =
det(E) det(A).

Theorem 5.14 (Four Rules Compressed)
The Four rules to compute the value of any determinant can be written as two rules.

Triangular Rule The value of |A| for a triangular matrix A is
the product of the diagonal elements

Determinant Product Rule Let E be an elementary matrix, then
det(EA) = det(E) det(A).
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Additional Determinant Rules

The following rules make for efficient evaluation of certain special determinants.
The results are stated for rows, but they also hold for columns, because of The-
orem 5.15.

Zero row If one row of A is zero, then det(A) = 0.

Duplicate rows If two rows of A are identical, then det(A) = 0.

Dependent rows If a row of A is a linear combination of the other rows, then
det(A) = 0.

RREF ̸= I If rref(A) ̸= I, then det(A) = 0.

Common factor The relation det(A) = cdet(B) holds, provided A and B
differ only in one row, say row j, for which row(A, j) =
c row(B, j).

Row linearity The relation det(A) = det(B) + det(C) holds, provided
A, B and C differ only in one row, say row j, for which
row(A, j) = row(B, j) + row(C, j).

The proofs of these properties are delayed until page 360.

Determinant of a Transpose

A consequence of (9) is the relation |A| =
∣∣AT

∣∣ where AT means the transpose
of A, obtained by swapping rows and columns.

Theorem 5.15 (Determinant of the Transpose)
The relation

det
(
AT
)
= det(A) or

∣∣AT
∣∣ = |A|

implies that all determinant theory results for rows also apply to columns.

Cofactor Expansion

The special subject of cofactor expansions is used to justify Cramer’s rule and
to provide an alternative method for computation of determinants. There is no
claim that cofactor expansion is efficient, only that it is possible, and different
than Sarrus’ rule or the use of the four properties.

Background from College Algebra

The cofactor expansion theory is most easily understood from the college algebra
topic in dimension 3. Cofactor row expansion computes |A| by one of three
possible formulas, recorded below. The pattern:

|A| = Σ(row element× checkerboard sign× cross-out determinant).
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|A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
|A| = a11(+1)

∣∣∣∣ a22 a23a32 a33

∣∣∣∣+ a12(−1)
∣∣∣∣ a21 a23a31 a33

∣∣∣∣+ a13(+1)

∣∣∣∣ a21 a22a31 a32

∣∣∣∣
|A| = a21(−1)

∣∣∣∣ a12 a13a32 a33

∣∣∣∣+ a22(+1)

∣∣∣∣ a11 a13a31 a33

∣∣∣∣+ a23(−1)
∣∣∣∣ a11 a12a31 a32

∣∣∣∣
|A| = a31(+1)

∣∣∣∣ a12 a13a22 a23

∣∣∣∣+ a32(−1)
∣∣∣∣ a11 a13a21 a23

∣∣∣∣+ a33(+1)

∣∣∣∣ a11 a12a21 a22

∣∣∣∣
The formulas expand a 3× 3 determinant in terms of 2× 2 determinants, along
a row of A. The attached signs ±1 are called the checkerboard signs, to be
defined shortly. The 2×2 cross-out determinants are officially called minors
of the 3× 3 determinant |A|. The checkerboard sign multiplied against a minor
is called a cofactor.

These formulas are generally used when a row has one or two zeros, making it
unnecessary to evaluate one or two of the 2 × 2 determinants in the expansion.
To illustrate, row 1 expansion gives∣∣∣∣∣∣

3 0 0
2 1 7
5 4 8

∣∣∣∣∣∣ = 3(+1)

∣∣∣∣ 1 7
4 8

∣∣∣∣+ 0(−1)
∣∣∣∣ 2 7
5 8

∣∣∣∣+ 0(+1)

∣∣∣∣ 2 1
5 4

∣∣∣∣ = −60.
A clever time–saving choice is always a row which has the most zeros, although
success does not depend upon cleverness. What has been said for rows also
applies to columns, due to the transpose formula |A| = |AT |.

Minors and Cofactors

The (n−1)×(n−1) determinant obtained from det(A) by crossing-out row i and
column j is called the (i, j)–minor ofA and denotedminor(A, i, j) (Mij is common
in literature). The (i, j)–cofactor of |A| is cof(A, i, j) = (−1)i+j minor(A, i, j).
Multiplicative factor (−1)i+j is called the checkerboard sign, because its value
can be determined by counting plus, minus, plus, etc., from location (1, 1) to
location (i, j) in any checkerboard fashion.

To illustrate how to create the smaller cross-out determinant, denoted by the
symbol minor(A, i, j), consider this example:

minor

 3 0 0
2 1 7
5 4 8

 , 2, 3

 =

∣∣∣∣∣∣
3 0 0
2 1 7
5 4 8

∣∣∣∣∣∣ =
∣∣∣∣ 3 0
5 4

∣∣∣∣
cross-out row=2 and column=3, red strikeouts removed
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Expansion of Determinants by Cofactors

The formulas are

det(A) =
n∑

j=1

akj cof(A, k, j), det(A) =
n∑

i=1

aiℓ cof(A, i, ℓ),(10)

where 1 ≤ k ≤ n, 1 ≤ ℓ ≤ n. The first expansion in (10) is called a cofactor row
expansion and the second is called a cofactor column expansion. The value
cof(A, i, j) is the cofactor of element aij in det(A), that is, the checkerboard sign
times the minor of aij . The proof of expansion (10) is delayed until page 361.

The Adjugate Matrix

The adjugate of an n × n matrix A, denoted adj(A), is the transpose of the
matrix of cofactors:

adj(A) =


cof(A, 1, 1) cof(A, 1, 2) · · · cof(A, 1, n)
cof(A, 2, 1) cof(A, 2, 2) · · · cof(A, 2, n)

...
... · · ·

...
cof(A,n, 1) cof(A,n, 2) · · · cof(A,n, n)


T

.

A cofactor cof(A, i, j) is the checkerboard sign (−1)i+j times the corresponding
cross-out determinant minor(A, i, j). In the 2× 2 case,

adj

(
a b
c d

)
=

(
d −b
−c a

) In words: swap the diagonal ele-
ments and change the sign of the
off–diagonal elements.

The Inverse Matrix

The adjugate appears in the inverse matrix formula for a 2× 2 matrix:(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

This formula is verified by direct matrix multiplication:(
a b
c d

) (
d −b
−c a

)
= (ad− bc)

(
1 0
0 1

)
.

The n× n matrix identity A · adj(A) = det(A) I implies

A−1 =
1

det(A)


cof(A, 1, 1) cof(A, 1, 2) · · · cof(A, 1, n)
cof(A, 2, 1) cof(A, 2, 2) · · · cof(A, 2, n)

...
... · · ·

...
cof(A,n, 1) cof(A,n, 2) · · · cof(A,n, n)


T
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Theorem 5.16 (Fundamental Adjugate Identity)

A · adj(A) = adj(A) ·A = det(A) I

The proof is delayed until page 362.

Determinants of Elementary Matrices

An elementary matrix E is the result of applying a combination, multiply or swap
rule to the identity matrix. This definition implies that an elementary matrix is
the identity matrix with a minor change applied, to wit:

Combination Change an off-diagonal zero of I to c.

Multiply Change a diagonal one of I to multiplier m ̸= 0.

Swap Swap two rows of I.

Theorem 5.17 (Determinants and Elementary Matrices)
Let E be an n× n elementary matrix. Then

Combination det(E) = 1

Multiply det(E) = m for multiplier m.

Swap det(E) = −1
Product det(EX) = det(E) det(X) for all n× n matrices X.

Theorem 5.18 (Determinants and Invertible Matrices)
Let A be a given invertible matrix. Then

det(A) =
(−1)s

m1m2 · · ·mr

where s is the number of swap rules applied and m1, m2, . . . , mr are the nonzero
multipliers used in multiply rules when A is reduced to rref(A).

Determinant Product Rule

The determinant rules of combination, multiply and swap imply that det(EX) =
det(E) det(X) for elementary matrices E and square matrices X. We show that
a more general relationship holds.

Theorem 5.19 (Product Rule for Determinants)
Let A and B be given n× n matrices. Then

det(AB) = det(A) det(B).
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Proof:

Used in the proof is the equivalence of invertibility of a square matrix C with det(C) ̸= 0
and rref(C) = I.

Assume one of A or B has zero determinant. Then det(A) det(B) = 0. If det(B) = 0,
then Bx⃗ = 0⃗ has infinitely many solutions, in particular a nonzero solution x⃗ . Multiply
Bx⃗ = 0⃗ by A, then ABx⃗ = 0⃗ which implies AB is not invertible. Then the identity
det(AB) = det(A) det(B) holds, because both sides are zero. If det(B) ̸= 0 but det(A) =
0, then there is a nonzero y⃗ with Ay⃗ = 0⃗ . Because B has an inverse, then x⃗ = B−1y⃗ is
defined and nonzero. Then ABx⃗ = Ay⃗ = 0⃗ , with x⃗ ̸= 0⃗ , which implies rref(AB) ̸= I
and |AB| = 0. Therefore, both sides of det(AB) = det(A) det(B) are zero and the
identity holds.

Assume A, B are invertible. Then C = AB is invertible. In particular, rref(A−1) =
rref(B−1) = I. Write I = rref(A−1) = E1E2 · · ·EkA

−1 and I = rref(B−1) =
F1F2 · · ·FmB−1 for elementary matrices Ei, Fj . Then

AB = E1E2 · · ·EkF1F2 · · ·Fm.(11)

The theorem follows from repeated application of identity det(EX) = det(E) det(X) to
relation (11), because

det(A) = det(E1) · · · det(Ek), det(B) = det(F1) · · · det(Fm).

Cramer’s Rule and the Determinant Product For-
mula

The equation Ax⃗ = b⃗ in the 3 × 3 case is used routinely to produce the three
matrix multiply equations a11 a12 a13

a21 a22 a23
a31 a32 a33

 x1 0 0
x2 1 0
x3 0 1

 =

 b1 a12 a13
b2 a22 a23
b3 a32 a33

 ,

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 x1 0
0 x2 0
0 x3 1

 =

 a11 b1 a13
a21 b2 a23
a31 b3 a33

 ,

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 0 x1
0 1 x2
0 0 x3

 =

 a11 a12 b1
a21 a22 b2
a31 a32 b3

 .

The determinant of the second matrix on the left in the first equation evaluates
to x1. Similarly, in the other equations, the determinant of the second matrix
evaluates to x2, x3, respectively. Therefore, the determinant product the-
orem applied to these three equations, followed by dividing by det(A), derives
Cramer’s Rule:

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
|A|

, x2 =

∣∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣
|A|

, x3 =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣
|A|

.
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Examples

Example 5.6 (Four Properties)
Apply the four properties of a determinant to justify the formula∣∣∣∣∣∣

12 6 0
11 5 1
10 2 2

∣∣∣∣∣∣ = 24.

Solution: The details:∣∣∣∣∣∣
12 6 0
11 5 1
10 2 2

∣∣∣∣∣∣ Given.

=

∣∣∣∣∣∣
12 6 0
−1 −1 1
−2 −4 2

∣∣∣∣∣∣ Combination rule twice:
combo(1,2,-1), combo(1,3,-1).

= 6

∣∣∣∣∣∣
2 1 0
−1 −1 1
−2 −4 2

∣∣∣∣∣∣ Multiply rule: factor out 6 from row 1.

= 6

∣∣∣∣∣∣
0 −1 2
−1 −1 1
0 −3 2

∣∣∣∣∣∣ Combination rule twice:
combo(1,3,1), combo(2,1,2).

= 6(−1)

∣∣∣∣∣∣
−1 −1 1
0 −1 2
0 −3 2

∣∣∣∣∣∣ Swap rule: swap(1,2).

= 6(−1)2
∣∣∣∣∣∣
1 1 −1
0 −1 2
0 −3 2

∣∣∣∣∣∣ Multiply rule: factor out (−1) from row 1.

= 6

∣∣∣∣∣∣
1 1 −1
0 −1 2
0 0 −4

∣∣∣∣∣∣ Combination rule: combo(2,3,-3).

= 6(1)(−1)(−4) Triangular rule.

= 24 Formula verified.

Example 5.7 (Determinant of an Elementary Matrix)
Compute the determinants of the following elementary matrices.

∣∣∣∣ 0 1
1 0

∣∣∣∣ ,
∣∣∣∣∣∣
1 0 c
0 1 0
0 0 1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 10 0
0 0 0 1

∣∣∣∣∣∣∣∣ .
Solution: The matrices correspond to toolkit operations:

swap(1,2), combo(3,1,c), mult(3,10).
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Therefore, the determinant values are −1, 1, 10, by Theorem 5.17.

Example 5.8 (Additional Determinant Rules)
Compute the determinants by applying the additional determinant rules, page 347.

∣∣∣∣ 0 0
1 0

∣∣∣∣ ,
∣∣∣∣∣∣
1 0 10
0 1 0
1 1 10

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣
1 3 2 1
0 1 0 0
0 0 1 0
2 6 4 2

∣∣∣∣∣∣∣∣ .
Solution: Answer: 0, 0, 0. A row of zeros implies determinant zero, for the 2× 2. Row
3 equal to the sum of rows 1 and 2 implies determinant zero, for the 3× 3. Row 4 equals
twice row 1 implies determinant zero, for the 4× 4.

Example 5.9 (Adjugate and Inverse)
Compute the adjugate matrix adj(A) and the inverse matrix B =

adj(A)
|A| , given

A =


1 3 2 1
0 1 0 0
0 0 1 0
1 1 0 0

 .

Solution: The adjugate matrix is the transpose of the matrix of cofactors. A com-
mon mistake is to compute instead the transpose matrix, a tragic over-simplification,
considering the effort required: the matrix of cofactors requires the evaluation of 16
determinants of size 3× 3.

For example, the effort for one 3× 3 cofactor (=(checkerboard sign)(3× 3 minor deter-
minant)) is about 30 seconds:

cof(A, 1, 2) = (−1)1+2 minor(A, 1, 2) = −

∣∣∣∣∣∣
0 0 0
0 1 0
2 4 2

∣∣∣∣∣∣ = 0.

Reported here is the answer for the adjugate matrix, an effort on paper of about 8
minutes.

adj(A) = transpose of


0 0 0 −1
1 −1 0 2
0 0 −1 2
−1 0 0 1


=


0 1 0 −1
0 −1 0 0
0 0 −1 0
−1 2 2 1


The determinant of A is already known, because of the formula A adj(A) = |A|I. For
instance, the (1, 1)-position in matrix |A|I has value |A|, which from the left side of
A adj(A) = |A|I equals the dot product of row 1 of A and column 1 of adj(A). Then
|A| = −1.
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The inverse matrix B is the adjugate matrix adj(A) divided by the determinant |A| = −1:

B =
adj(A)

|A|
=


0 −1 0 1
0 1 0 0
0 0 1 0
1 −2 −2 −1

 .

Answer Check. The inverse answer can be checked by matrix multiply, using the
equation A adj(A) = |A|I, or the equation AB = I. For example,

AB =


1 3 2 1
0 1 0 0
0 0 1 0
1 1 0 0




0 −1 0 1
0 1 0 0
0 0 1 0
1 −2 −2 −1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Alternate solution without determinants. Define C = ⟨A|I⟩ and compute with

toolkit steps rref(C) = ⟨I|B⟩. Toolkit steps can evaluate |A|, and B is the inverse of
A. Report adj(A) = |A|B.

Example 5.10 (Cofactor Expansion Method)
Justify by cofactor expansion the identity∣∣∣∣∣∣∣∣

10 5 0 0
11 5 a 0
10 2 b 0
15 8 4 2

∣∣∣∣∣∣∣∣ = 10(6a− b).

Solution: The plan is to choose the row or column with most zeros, then expand by
cofactors. The greatest advantage is column 4, effectively reducing the determinant to
3 × 3. The resulting 3 × 3 is treated by a hybrid method in the next example. Here,
we will expand it by cofactors, again choosing a column or row with most zeros. The
details:∣∣∣∣∣∣∣∣

10 5 0 0
11 5 a 0
10 2 b 0
15 8 4 2

∣∣∣∣∣∣∣∣ Given 4× 4 determinant with symbols a, b.

= 2(−1)4+4

∣∣∣∣∣∣
10 5 0
11 5 a
10 2 b

∣∣∣∣∣∣ Cofactor expansion on column 4. Three zero terms

are not written. See 1 below.

=

2

(
a(−1)2+3

∣∣∣∣ 10 5
10 2

∣∣∣∣)+

2

(
b(−1)3+3

∣∣∣∣ 10 5
11 5

∣∣∣∣) Expand by cofactors on column 3. The zero term is

not written. See 2 below.

=
2
(
a(−1)2+3(−30)

)
+

2
(
b(−1)3+3(−5)

) Expand 2× 2 determinants by Sarrus’ rule.

= 60a− 10b Final answer with symbols a, b.
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1 The factor 2 is from element 4, 4. The factor (−1)4+4 is the checkerboard sign of
element 4, 4. The 3×3 determinant is the minor obtained by cross-out of row 4, column
4.

2 For example, 2

(
a(−1)2+3

∣∣∣∣ 10 5
10 2

∣∣∣∣) is decoded as follows. Factor 2 is from the

4× 4 cofactor expansion. Inside the parentheses, factor a is from the 3× 3 determinant
element in row 2, column 3. Factor (−1)2+3 is the checkerboard sign of that row and

column. Factor

∣∣∣∣ 10 5
10 2

∣∣∣∣ is the minor determinant obtained by cross–out of row 2 and

column 3.

Example 5.11 (Hybrid Method)
Justify by cofactor expansion and the four properties the identity∣∣∣∣∣∣

10 5 0
11 5 a
10 2 b

∣∣∣∣∣∣ = 5(6a− b).

Solution: The details:∣∣∣∣∣∣
10 5 0
11 5 a
10 2 b

∣∣∣∣∣∣ Given.

=

∣∣∣∣∣∣
10 5 0
1 0 a
0 −3 b

∣∣∣∣∣∣ Combination: subtract row 1 from the other rows.

=

∣∣∣∣∣∣
0 5 −10a
1 0 a
0 −3 b

∣∣∣∣∣∣ Combination: add −10 times row 2 to row 1.

= (1)(−1)
∣∣∣∣ 5 −10a
−3 b

∣∣∣∣ Cofactor expansion on column 1.

= (1)(−1)(5b− 30a) Sarrus’ rule for n = 2.

= 5(6a− b). Formula verified.

Example 5.12 (Determinant Product Rule)
Let A,B be 4× 4 matrices. Let E1, E2, E3 be elementary matrices of the same size
corresponding to toolkit operations

combo(1,3,-2), mult(3,-5), swap(2,4).

Find |A|, given |B| = 3 and the equation

A3B2 = E3E2E1B.

Solution: The idea is to use the determinant product rule |CD| = |C||D| repeatedly,
on the given equation, to obtain the scalar equation

|A|3|B|2 = |E3||E2||E1||B|.
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Determinant values for elementary matrices are completely determined by the given
toolkit operation: |E1| = 1, |E2| = −5, |E3| = −1. Then the scalar equation above
reduces, because of |B| = 3, to the algebraic equation

|A|3(3)2 = (−1)(−5)(1)(3).

Solving for symbol |A| gives the answer |A| = 3
√

15/9 = 1.1856.

Example 5.13 (Cramer’s Rule)
Solve by Cramer’s rule the system of equations

2x1 + 3x2 + x3 − x4 = 1,
x1 + x2 − x4 = −1,

3x2 + x3 + x4 = 3,
x1 + x3 − x4 = 0,

verifying x1 = 1, x2 = 0, x3 = 1, x4 = 2.

Solution: Form the four determinants ∆1, . . . , ∆4 from the determinant of coefficients
∆ as follows:

∆ =

∣∣∣∣∣∣∣∣
2 3 1 −1
1 1 0 −1
0 3 1 1
1 0 1 −1

∣∣∣∣∣∣∣∣ ,

∆1 =

∣∣∣∣∣∣∣∣
1 3 1 −1
−1 1 0 −1
3 3 1 1
0 0 1 −1

∣∣∣∣∣∣∣∣ , ∆2 =

∣∣∣∣∣∣∣∣
2 1 1 −1
1 −1 0 −1
0 3 1 1
1 0 1 −1

∣∣∣∣∣∣∣∣ ,

∆3 =

∣∣∣∣∣∣∣∣
2 3 1 −1
1 1 −1 −1
0 3 3 1
1 0 0 −1

∣∣∣∣∣∣∣∣ , ∆4 =

∣∣∣∣∣∣∣∣
2 3 1 1
1 1 0 −1
0 3 1 3
1 0 1 0

∣∣∣∣∣∣∣∣ .
Five repetitions of the methods used in the previous examples give the answers ∆ = −2,
∆1 = −2, ∆2 = 0, ∆3 = −2, ∆4 = −4, therefore Cramer’s rule implies the solution
xi = ∆i/∆, 1 ≤ i ≤ 4. Then x1 = 1, x2 = 0, x3 = 1, x4 = 2.

Answer Check. The details of the computation above can be checked in computer
algebra system maple as follows.

A:=Matrix([[2, 3, 1, -1], [1, 1, 0, -1],

[0, 3, 1, 1], [1, 0, 1, -1]]);

B1:=Matrix([[ 1, 3, 1, -1], [-1, 1, 0, -1],

[ 3, 3, 1, 1], [ 0, 0, 1, -1]]);

Delta:= linalg[det](A); Delta1:=linalg[det](B1);

x[1]:=Delta1/Delta;
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The Cayley-Hamilton Theorem

Presented here is an adjoint formula F−1 = adj(F )/det(F ) derivation for the
celebrated Cayley-Hamilton formula

(−A)n + pn−1(−A)n−1 + · · ·+ p0I = 0.

The n× n matrix A is given and I is the identity matrix. The coefficients pk in
(14) are determined by the characteristic polynomial of matrix A, which is
defined by the determinant expansion formula

|A− λI| = (−λ)n + pn−1(−λ)n−1 + · · ·+ p0(−λ)0.(12)

The characteristic equation of A is |A− λI| = 0, explicitly

(−λ)n + pn−1(−λ)n−1 + · · ·+ p0(−λ)0 = 0.(13)

Theorem 5.20 (Cayley-Hamilton)
A square matrix A satisfies its own characteristic equation. In detail, given charac-
teristic equation (−λ)n + pn−1(−λ)n−1 + · · ·+ p0(−λ)0 = 0, then replace λ on the
left by A and zero on the right side by the zero matrix 0 to obtain

(−A)n + pn−1(−A)n−1 + · · ·+ p0I = 0.(14)

Proof of (14): Define x = −λ, F = A + xI and G = adj(F ). A cofactor of det(F ) is
a polynomial in x of degree at most n− 1. Therefore, there are n× n constant matrices
C0, . . . , Cn−1 such that

adj(F ) = xn−1Cn−1 + · · ·+ xC1 + C0.

The adjugate identity det(F )I = adj(F )F is valid for any square matrix F , even if
det(F ) is zero. Relation (13) implies det(F ) = xn + pn−1x

n−1 + · · · + p0. Expand the
matrix product adj(F )F in powers of x as follows:

adj(F )F =

n−1∑
j=0

xjCj

 (A+ xI)

= C0A+

n−1∑
i=1

xi(CiA+ Ci−1) + xnCn−1.

Match coefficients of powers of x on each side of det(F )I = adj(F )F to give the relations

p0I = C0A,
p1I = C1A+ C0,
p2I = C2A+ C1,

...
I = Cn−1.

(15)

To complete the proof of the Cayley-Hamilton identity (14), multiply the equations in
(15) by I, (−A), (−A)2, (−A)3, . . . , (−A)n, respectively. Then add all the equations.
The left side matches the left side of (14). The right side is a telescoping sum which
adds to the zero matrix. ■
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An Applied Definition of Determinant

To be developed here is another way to look at formula (9), which emphasizes
the column and row structure of a determinant. The definition, which agrees
with (9), leads to a short proof of the four properties, which are used to find the
value of any determinant.

Permutation Matrices

A matrix P obtained from the identity matrix I by swapping rows is called a
permutation matrix. There are n! permutation matrices. To illustrate, the
3× 3 permutation matrices are 1 0 0

0 1 0
0 0 1

 ,

 1 0 0
0 0 1
0 1 0

 ,

 0 1 0
1 0 0
0 0 1

 ,

 0 1 0
0 0 1
1 0 0

 ,

 0 0 1
1 0 0
0 1 0

 ,

 0 0 1
0 1 0
1 0 0

 .

Define for a permutation matrix P the determinant by

det(P ) = (−1)k

where k is the least number of row swaps required to convert P to the identity.
The number k satisfies r = k+2m, where r is any count of row swaps that changes
P to the identity, and m is some integer. Therefore, det(P ) = (−1)k = (−1)r.
In the illustration, the corresponding determinants are 1, −1, −1, 1, 1, −1, as
computed from det(P ) = (−1)r, where r row swaps change P into I.

It can be verified that det(P ) agrees with the value reported by formula (9).
Each σ in (9) corresponds to a permutation matrix P with rows arranged in the
order specified by σ. The summation in (9) for A = P has exactly one nonzero
term.

Sampled Product

Let A be an n × n matrix and P an n × n permutation matrix. The matrix P
has ones in exactly n locations. Sampled product A.P multiplies entries from
the matrix A, selected by the location of the ones in P .

Definition 5.19 (Sampled Product A.P )
Let A⃗1, . . . , A⃗n be the rows of A and let P⃗1, . . . , P⃗n be the rows of P . Let the
rows of P be rows σ1,. . . ,σn of identity matrix I. Define via the normal dot product
(·) the sampled product

A.P = (A1 · P1)(A2 · P2) · · · (An · Pn)
= a1σ1 · · · anσn .

(16)

Equation (16) implies that A.P is a linear function of the rows of A. Replace
rows by columns and repeat definition (16) to show A.P is a linear function of
the columns of A with value aσ11 · · · aσnn.
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Sampled-Product Determinant Formula

An alternative definition of determinant is

det(A) =
∑

P det(P )A.P ,(17)

where the summation extends over all possible permutation matrices P . The
definition emphasizes the explicit linear dependence of the determinant upon the
rows of A (or the columns of A). A tedious but otherwise routine justification
shows that the college algebra definition of determinant (9) and the sampled
product definition of determinant (17) give the same value.

Three Properties that Define a Determinant

Write the determinant det(A) in terms of the rows A1, . . . , An of the matrix A
as follows:

D1(A1, . . . , An) =
∑
P

det(P )A.P.

Already known is that D1(A1, . . . , An) is a function D that satisfies the following
three properties:

Linearity D is linear in each argument A1, . . . , An.

Swap D changes sign if two arguments are swapped. Equivalently, D = 0
if two arguments are equal.

Identity D = 1 when A = I.

The equivalence reported in swap is obtained by expansion, e.g., for n = 2,
A1 = A2 implies D(A1, A2) = −D(A1, A2) and hence D = 0. Similarly, D(A1 +
A2, A1+A2) = 0 implies by linearity that D(A1, A2) = −D(A2, A1), which is the
swap property for n = 2.

It is less obvious that the three properties uniquely define the determinant:

Theorem 5.21 (Uniqueness)
If D(A1, . . . , An) satisfies the properties of linearity, swap and identity, then
D(A1, . . . , An) = det(A).

Proof: The rows of the identity matrix I are denoted E1, . . . , En, so that for 1 ≤ j ≤ n
we may write the expansion

Aj = aj1E1 + aj2E2 + · · ·+ ajnEn.(18)

We illustrate the proof for the case n = 2:

D(A1, A2) = D(a11E1 + a12E2, A2) By (18).

= a11D(E1, A2) + a12D(E2, A2) By linearity.

= a11a22D(E1, E2) + a11a21D(E1, E1) Repeat for A2.

+ a12a21D(E2, E1) + a12a22D(E2, E2)
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The swap and identity properties give D(E1, E1) = D(E2, E2) = 0 and 1 = D(E1, E2) =
−D(E2, E1). Therefore, D(A1, A2) = a11a22− a12a21 and this implies that D(A1, A2) =
det(A).

The proof for general n depends upon the identity

D(Eσ1
, . . . , Eσn

) = (−1)parity(σ)D(E1, . . . , En)

= (−1)parity(σ)

where σ = (σ1, . . . , σn) is a rearrangement of the integers 1, . . . , n. This identity is
implied by the swap and identity properties. Then, as in the case n = 2, linearity
implies that

D(A1, . . . , An) =
∑

σ a1σ1
· · · anσn

D(Eσ1
, . . . , Eσn

)

=
∑

σ(−1)parity(σ) a1σ1
· · · anσn

= det(A).

Proofs and Details

Verification of the Four Properties:

The details will use the sampled product A.P defined on page 358 and the sampled
product determinant formula (17) page 359. This is done only for clarity of proof,
because it is possible to use the clumsier college algebra definition of determinant (9)
page 345.

Triangular. If A is n× n triangular, then in (17) appears only one nonzero term, due
to zero factors in the product A.P . The term that appears corresponds to P=identity,
therefore A.P is the product of the diagonal elements of A. Since det(P ) = det(I) = 1,
the result follows. A similar proof can be constructed from college algebra determinant
definition (9), using intuition from Sarrus’ rule.

Swap. Let elementary swap matrix Q be obtained from I by swapping rows i and
j. Let B = QA, then B equals matrix A with rows i and j swapped. To be shown:
det(A) = −det(B). By definition, B.P = QA.P . With effort, it is possible to show
that QA.P = P.QA = PQ.A = A.PQ and det(PQ) = −det(P ). Matrices PQ over all
possible P duplicates the list of all permutation matrices. Then definition (17) implies
the result.

Combination. Let matrix B be obtained from matrix A by adding to row j the row
vector k times row i (i ̸= j). Then row(B, j) = row(A, j) + k row(A, i) and B.P =
(B1 ·P ) · · · (Bn ·P ) = A.P + k C.P , where C is the matrix obtained from A by replacing
row(A, j) with row(A, i).

Matrix C has equal rows row(C, i) = row(C, j) = row(A, i). By the swap rule applied
to rows i and j, |C| = −|C|, or |C| = 0. Add on P across B.P = A.P + k C.P to obtain
|B| = |A|+ k|C|. Then |B| = |A|.
Multiply. Let matrices A and B have the same rows, except row(B, i) = c row(A, i) for
some index i. Then B.P = cA.P . Add on P across this equation to obtain |B| = c|A|.

Verification of the Additional Rules:

Zero row. Apply the common factor rule with c = 2, possible since the row has all zero
entries. Then |A| = 2|A|, which implies |A| = 0.
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Duplicate rows. The swap rule applies to the two duplicate rows to give |A| = −|A|,
which implies |A| = 0.

Dependent rows. The determinant is unchanged by adding a linear combination of
rows of A to a different row, the result a matrix B. Then |A| = |B|. Select the combi-
nation to create a row of zeros in B. Then |B| = 0 from zero row, implying |A| = 0.

RREF ̸= I. Each step in a toolkit sequence to the RREF gives |A| = |EB| = |E||B|
where E is an elementary matrix and B is one frame closer to rref(A). At some point
B = rref(A), then B ̸= I means B has a row of zeros. Therefore, |B| = 0, which implies
|A| = |E||B| = 0.

Common factor and row linearity. The sampled product A.P is a linear function of
each row, therefore the same is true of |A| by the sampled product determinant formula
(17) page 359.

Derivation of cofactor expansion (10): The column expansion formula is derived
from the row expansion formula applied to the transpose. We consider only the derivation
of the row expansion formula (10) for k = 1, because the case for general k is the same
except for notation. The plan is to establish equality of the two sides of (10) for k = 1,
which in terms of minor(A, 1, j) = (−1)1+j cof(A, 1, j) is the equality

det(A) =

n∑
j=1

a1j(−1)1+j minor(A, 1, j).(19)

The details require expansion of minor(A, 1, j) in (19) via the definition of determinant

det(A) =
∑

σ(−1)parity(σ)a1σ1
· · · anσn

. A typical term on the right in (19) after expan-
sion looks like

a1j (−1)1+j(−1)parity(α)a2α2 · · · anαn .

Here, α is a rearrangement of the set of n− 1 elements consisting of 1, . . . , j − 1, j + 1,
. . . , n. Define σ = (j, α2, . . . , αn), which is a rearrangement of symbols 1, . . . , n. After
parity(α) interchanges, α is changed into (1, . . . , j − 1, j + 1, . . . , n) and therefore these
same interchanges transform σ into (j, 1, . . . , j − 1, j + 1, . . . , n). An additional j − 1
interchanges will transform σ into natural order (1, . . . , n). This establishes, because of
(−1)j−1 = (−1)j+1, the identity

(−1)parity(σ) = (−1)j−1+parity(α)

= (−1)j+1+parity(α).

Collecting formulas gives

(−1)parity(σ)a1σ1 · · · anσn = a1j (−1)1+j(−1)parity(α)a2α2 · · · anαn .

Adding across this formula over all α and j gives a sum on the right which matches the
right side of (19). Some additional thought reveals that the terms on the left add exactly
to det(A), hence (19) is proved.

Derivation of Cramer’s Rule: The cofactor column expansion theory implies that the
Cramer’s rule solution of Ax⃗ = b⃗ is given by

xj =
∆j

∆
=

1

∆

n∑
k=1

bk cof(A, k, j).(20)
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We will verify that Ax⃗ = b⃗. Let E1, . . . , En be the rows of the identity matrix. The
question reduces to showing that EpAx⃗ = bp. The details will use the fact

n∑
j=1

apj cof(A, k, j) =

{
det(A) for k = p,
0 for k ̸= p,

(21)

Equation (21) follows by cofactor row expansion, because the sum on the left is det(B)
where B is matrix A with row k replaced by row p. If B has two equal rows, then
det(B) = 0; otherwise, B = A and det(B) = det(A).

EpAx⃗ =

n∑
j=1

apjxj

=
1

∆

n∑
j=1

apj

n∑
k=1

bk cof(A, k, j) Apply formula (20).

=
1

∆

n∑
k=1

bk

 n∑
j=1

apj cof(A, k, j)

 Switch order of summation.

= bp Apply (21).

Derivation of A · adj(A) = det(A)I: The proof uses formula (21). Consider column

k of adj(A), denoted X⃗, multiplied against matrix A, which gives

AX⃗ =


∑n

j=1 a1j cof(A, k, j)∑n
j=1 a2j cof(A, k, j)

...∑n
j=1 anj cof(A, k, j)

 .

By formula (21),
n∑

j=1

aij cof(A, k, j) =

{
det(A) i = k,
0 i ̸= k.

Therefore, AX⃗ is det(A) times column k of the identity I. ■
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Exercises 5.3 �

Determinant Notation
Write formulae for x and y as quotients of
2 × 2 determinants. Do not evaluate the
determinants!

1.

(
1 −1
2 6

)(
x
y

)
=

(
−10

3

)

2.

(
1 2
3 6

)(
x
y

)
=

(
10
−6

)

3.

(
0 −1
2 5

)(
x
y

)
=

(
−1
10

)

4.

(
0 −3
3 10

)(
x
y

)
=

(
−1
2

)

Sarrus’ 2× 2 rule
Evaluate det(A).

5. A =

(
2 1
1 2

)

6. A =

(
−2 1
1 −2

)

7. A =

(
2 −1
3 2

)

8. A =

(
5a 1
−1 2a

)

Sarrus’ rule 3× 3
Evaluate det(A).

9. A =

0 0 1
0 1 0
1 1 0



10. A =

0 0 1
0 1 0
1 0 0



11. A =

0 0 1
1 2 1
1 1 1



12. A =

0 0 −1
1 2 −1
1 1 −1



Inverse of a 2× 2 Matrix
Define matrix A and its adjugate C:

A =

(
a b
c d

)
, C =

(
d −b
−c a

)
.

13. Verify AC = |A|
(
1 0
0 1

)
.

14. Display the details of the argument
that |A| ≠ 0 implies A−1 exists and

A−1 =
C

|A|
.

15. Show that A−1 exists implies |A| ≠ 0.
Suggestion: Assume not, then AB =
BA = I for some matrix B and also
|A| = 0. Find a contradiction using
AC = |A|I from Exercise 13.

16. Calculate the inverse of

(
1 2
−2 3

)
us-

ing the formula developed in these ex-
ercises.

Unique Solution of a 2× 2 System
Solve AX⃗ = b⃗ for X⃗ using Cramer’s rule
for 2× 2 systems.

17. A =

(
0 1
1 2

)
, b⃗ =

(
−1
1

)

18. A =

(
0 1
1 2

)
, b⃗ =

(
5
−5

)

19. A =

(
2 0
1 2

)
, b⃗ =

(
−4
4

)

20. A =

(
2 1
0 2

)
, b⃗ =

(
−10
10

)
Definition of Determinant

21. Let A be 3× 3 with zero first row. Use
the college algebra definition of deter-
minant to show that det(A) = 0.

22. Let A be 3 × 3 with equal first and
second row. Use the college algebra
definition of determinant to show that
det(A) = 0.
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23. Let A =

(
a b
c d

)
. Use the college al-

gebra definition of determinant to verify
that |A| = ad− bc.

24. Let A =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
. Use the col-

lege algebra definition of determinant to
verify that the determinant of A equals

a11a22a33 + a21a32a13
+a31a12a23 − a11a32a23
−a21a12a33 − a31a22a13

Four Properties
Evaluate det(A) using the four properties
for determinants, page 345.

25. A =

0 0 1
1 2 1
1 1 1



26. A =

0 0 1
3 2 1
1 1 1



27. A =

1 0 0
1 2 1
1 1 1



28. A =

2 4 2
1 2 1
1 1 1



29. A =


0 0 1 0
1 2 1 0
1 1 1 1
2 1 1 2



30. A =


1 2 1 0
0 1 2 1
0 0 1 2
0 0 0 1



31. A =


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2



32. A =


4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4



Elementary Matrices and the Four
Rules
Find det(A).

33. A is 3× 3 and obtained from the iden-
tity matrix I by three row swaps.

34. A is 7×7, obtained from I by swapping
rows 1 and 2, then rows 4 and 1, then
rows 1 and 3.

35. A is obtained from the matrix1 0 0
1 2 1
1 1 1

 by swapping rows 1 and 3,

then two row combinations.

36. A is obtained from the matrix1 0 0
1 2 1
1 1 1

 by two row combinations,

then multiply row 2 by −5.

More Determinant Rules
Cite the determinant rule that verifies
det(A) = 0. Never expand det(A)! See
page 347.

37. A =

−1 5 1
2 −4 −4
1 1 −3


38. A =

0 0 0
2 −4 −4
1 1 −3


39. A =

4 −8 −8
2 −4 −4
1 1 −3


40. A =

−1 5 0
2 −4 0
1 1 0


41. A =

−1 5 3
2 −4 0
1 1 3


42. A =

−1 5 4
2 −4 −2
1 1 2


Cofactor Expansion and College Alge-
bra
Evaluate the determinant with an efficient
cofactor expansion.
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43.

∣∣∣∣∣∣
2 5 1
2 0 −4
1 0 0

∣∣∣∣∣∣
44.

∣∣∣∣∣∣
2 5 1
2 0 −4
1 0 1

∣∣∣∣∣∣
45.

∣∣∣∣∣∣∣∣
2 5 0 0
2 1 4 0
1 1 1 1
1 0 0 0

∣∣∣∣∣∣∣∣
46.

∣∣∣∣∣∣∣∣
0 2 0 1
2 3 2 0
1 1 1 0
1 2 1 1

∣∣∣∣∣∣∣∣

47.

∣∣∣∣∣∣∣∣∣∣
2 5 1 −1 1
0 −1 −4 1 −1
1 2 3 0 0
1 0 3 0 0
1 2 0 0 1

∣∣∣∣∣∣∣∣∣∣

48.

∣∣∣∣∣∣∣∣∣∣
2 0 1 −1 1
0 −1 −4 1 −1
1 2 3 0 0
1 0 3 0 0
1 2 0 1 1

∣∣∣∣∣∣∣∣∣∣
Minors and Cofactors
Write out and then evaluate the minor and
cofactor of each element cited for the ma-

trix A =

 2 5 y
x −1 −4
1 2 z


49. Row 1 and column 3.

50. Row 2 and column 1.

51. Row 3 and column 2.

52. Row 3 and column 1.

Cofactor Expansion
Use cofactors to evaluate the determinant.

53.

∣∣∣∣∣∣
2 7 1
−1 0 −4
1 0 3

∣∣∣∣∣∣
54.

∣∣∣∣∣∣
2 7 7
−1 1 0
1 2 0

∣∣∣∣∣∣

55.

∣∣∣∣∣∣∣∣
0 2 7 7
0 −1 1 0
3 1 2 0
0 −1 1 0

∣∣∣∣∣∣∣∣
56.

∣∣∣∣∣∣∣∣
0 2 7 7
0 −1 y 0
x 1 2 0
0 −1 1 0

∣∣∣∣∣∣∣∣

57.

∣∣∣∣∣∣∣∣∣∣
0 2 7 7 3
0 −1 0 0 1
x 1 2 0 −1
0 −1 1 0 0
0 −1 1 0 1

∣∣∣∣∣∣∣∣∣∣

58.

∣∣∣∣∣∣∣∣∣∣
0 2 7 7 3
0 −1 2 0 1
x 1 2 0 −1
0 −1 1 0 0
0 −1 1 0 1

∣∣∣∣∣∣∣∣∣∣
Adjugate and Inverse Matrix
Find the adjugate of A and the inverse B
of A. Check the answers via the formulas
A adj(A) = det(A)I and AB = I.

59. A =

(
2 7
−1 0

)

60. A =

(
1 0
−1 2

)

61. A =

5 1 1
0 0 2
1 0 3



62. A =

5 1 2
2 0 0
1 0 3



63. A =


1 0 1 0
0 1 0 0
0 1 0 1
1 0 2 2



64. A =


1 0 1 0
0 1 0 0
0 1 0 1
1 1 2 1


Transpose and Inverse
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65. Verify that A = 1√
2

(
1 1
−1 1

)
satis-

fies AT = A−1.

66. Find all 2× 2 matrices A =

(
a b
c d

)
such that det(A) = 1 and AT = A−1.

67. Find all 3×3 diagonal matrices A such
that AT = A−1.

68. Find all 3×3 upper triangular matrices
A such that AT = A−1.

69. Find all n×n diagonal matrices A such
that AT = A−1.

70. Determine the n× n triangular matri-
ces A such that det(A) = 1 and AT =
adj(A).

Elementary Matrices
Find the determinant of A from the given
equation.

71. Let A = 5E2E1 be 3×3, where E1 mul-
tiplies row 3 of the identity by −7 and
E2 swaps rows 3 and 1 of the identity.
Hint: A = (5I)E2E1.

72. Let A = 2E2E1 be 5×5, where E1 mul-
tiplies row 3 of the identity by −2 and
E2 swaps rows 3 and 5 of the identity.

73. Let A = E2E1B be 4 × 4, where E1

multiplies row 2 of the identity by 3 and
E2 is a combination. Find |A| in terms
of |B|.

74. Let A = 3E2E1B be 3 × 3, where E1

multiplies row 2 of the identity by 3 and
E2 is a combination. Find |A| in terms
of |B|.

75. Let A = 4E2E1B be 3 × 3, where E1

multiplies row 1 of the identity by 2, E2

is a combination and |B| = −1.

76. Let A = 2E3E2E1B
3 be 3 × 3, where

E1 multiplies row 2 of the identity by
−1, E2 and E3 are swaps and |B| = −2.

Determinants and the Toolkit
Display the toolkit steps for rref(A). Us-
ing only the steps, report:

• The determinant of the elementary
matrix E for each step.

• The determinant of A.

77. A =

2 3 1
0 0 2
1 0 4



78. A =

2 3 1
0 3 0
1 0 2



79. A =


2 3 1 0
0 3 0 0
0 3 0 2
1 0 2 1



80. A =


2 3 1 2
0 3 0 0
2 6 1 2
1 0 2 1


Determinant Product Rule
Apply the product rule det(AB) =
det(A) det(B).

81. Let det(A) = 5 and det(B) = −2.
Find det(A2B3).

82. Let det(A) = 4 and A(B − 2A) = 0.
Find det(B).

83. Let A = E1E2E3 where E1, E2 are el-
ementary swap matrices and E3 is an
elementary combination matrix. Find
det(A).

84. Assume det(AB+A) = 0 and det(A) ̸=
0. Show that det(B + I) = 0.

Cramer’s 2× 2 Rule
Assume (

a b
c d

)(
x
y

)
=

(
e
f

)
.

85. Derive the formula(
a b
c d

)(
x 0
y 1

)
=

(
e b
f d

)
.

86. Derive the formula(
a b
c d

)(
1 x
0 y

)
=

(
a e
c f

)
.
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87. Use the determinant product rule to
derive the Cramer’s Rule formula

x =

∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .
88. Derive, using the determinant product

rule, the Cramer’s Rule formula

y =

∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .

Cramer’s 3× 3 Rule
Let A be the coefficient matrix in the equa-
tion (

a11 a12 a13
a21 a22 a23
a31 a32 a33

)x1

x2

x3

 =

b1
b2
b3

 .

89. Derive the formula

A

(
x1 0 0
x2 1 0
x3 0 1

)
=

(
b1 a12 a13
b2 a22 a23
b3 a32 a33

)

90. Derive the formula

A

(
1 0 x1
0 1 x2
0 0 x3

)
=

(
a11 a12 b1
a21 a22 b2
a31 a32 b3

)

91. Derive, using the determinant product
rule, the Cramer’s Rule formula

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
.

92. Use the determinant product rule to
derive the Cramer’s Rule formula

x3 =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
.

Cayley-Hamilton Theorem

93. Let A =

(
1 −1
2 3

)
. Expand |A − rI| to

compute the characteristic polynomial
of A. Answer: r2 − 4r + 5.

94. Let A =

(
1 −1
2 3

)
. Apply the Cayley-

Hamiltion theorem to justify the equa-
tion

A2 − 4A+ 5

(
1 0
0 1

)
=

(
0 0
0 0

)
.

95. Let A =

(
a b
c d

)
. Expand |A − rI| by

Sarrus’ Rule to obtain r2 − (a + b)r +
(ad− bc).

96. The result of the previous exercise is of-
ten written as (−r)2 + trace(A)(−r) +
|A| where trace(A) = a + d = sum of
the diagonal elements. Display the de-
tails.

97. Let λ2−2λ+1 = 0 be the characteristic
equation of a matrix A. Find a formula
for A2 in terms of A and I.

98. Let A be an n × n triangular matrix
with all diagonal entries zero. Prove
that An = 0.

99. Find all 2 × 2 matrices A such that

A2 =

(
0 0
0 0

)
, discovered from values of

trace(A) and |A|.

100. Find four 2× 2 matrices A such that

A2 =

(
1 0
0 1

)
.

Applied Definition of Determinant
Miscellany for permutation matrices and
the sampled product page 358

A.P=(A1 · P1)(A2 · P2) · · · (An · Pn)
=a1σ1

· · · anσn
.

101. Compute the sampled product of5 3 1
0 5 7
1 9 4

 and

1 0 0
0 0 1
0 1 0

 .
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102. Compute the sampled product of5 3 3
0 2 7
1 9 0

 and

0 0 1
0 1 0
1 0 0

 .

103. Determine the permutation matrices
P required to evaluate det(A) when A
is 2× 2.

104. Determine the permutation matrices
P required to evaluate det(A) when A
is 4× 4.

Three Properties
Reference: Page 359, three properties that
define a determinant

105. Assume n = 3. Prove that the three
properties imply D = 0 when two rows
are identical.

106. Assume n = 3. Prove that the three
properties imply D = 0 when a row is
zero.
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5.4 Vector Spaces, Independence, Basis

The technical topics of independence, dependence and span apply to the study
of Euclidean spaces R2, R3, . . . , Rn and also to the continuous function space
C(E), the space of differentiable functions C1(E) and its generalization Cn(E),
and to general abstract vector spaces.

Basis and General Solution: Algebraic Equations

The term basis was introduced on page ?? for systems of linear algebraic equa-
tions. To review, a basis is obtained from the vector general solution x⃗ of matrix
equation Ax⃗ = 0⃗ by computing the partial derivatives ∂t1 , ∂t2 , . . . of x⃗, where
t1, t2, . . . is the list of invented symbols assigned to the free variables identified
in rref(A). The partial derivatives are Strang’s special solutions6 to the ho-
mogeneous equation Ax⃗ = 0⃗. Solution v⃗i is also found by letting ti = 1 with all
other invented symbols zero, 1 ≤ i ≤ k. Knowing the special solutions enables
reconstruction of the general solution: multiply by constants and add.

The general solution of Ax⃗ = 0⃗ is the sum of constants times
Strang’s special solutions (they are a basis).

Deeper properties have been isolated for the list of Strang’s special solutions, the
partial derivatives ∂t1 x⃗, ∂t2 x⃗, . . . . The most important properties are span and
independence.

Span, Independence and Basis

Definition 5.20 (Span of a Set of Vectors)
A list of vectors v⃗1, . . . , v⃗k is said to span an abstract vector space V (page 301),
written

V = span(v⃗1, v⃗2, . . . , v⃗k),

provided V consists of exactly the set of all linear combinations

v⃗ = c1v⃗1 + · · ·+ ckv⃗k,

for all choices of constants c1, . . . , ck.

The notion originates with the general solution v⃗ of a homogeneous matrix system
Av⃗ = 0⃗, where the invented symbols t1, . . . , tk are the constants c1, . . . , ck and
the vector partial derivative list ∂t1 v⃗, . . . , ∂tk v⃗ is the list of vectors v⃗1, . . . , v⃗k.

6The nomenclature is due to Gilbert Strang [?], with Strang’s special solutions an ap-
propriate reference.
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Definition 5.21 (Independence of Vectors)
Vectors v⃗1, . . . , v⃗k in an abstract vector space V are said to be Independent or
Linearly independent provided each linear combination v⃗ = c1v⃗1 + · · · + ckv⃗k is
represented by a unique set of constants c1, . . . , ck. The unique constants are called
the weights of vector v⃗ relative to v⃗1, . . . , v⃗k.

See pages 377 and 382 for independence tests.

Unique representation of linear combinations has an algebraic equivalent:

Linear Independence of Vectors v⃗1, . . . , v⃗k

If two linear combinations are equal,

a1v⃗1 + · · ·+ akv⃗k = b1v⃗1 + · · ·+ bkv⃗k,

then the coefficients match

a1 = b1, a2 = b2, . . . , ak = bk.

Definition 5.22 (Basis)
A basis of an abstract vector space V is defined to be a list of independent vectors
v⃗1, . . . , v⃗k which spans V . A basis is tested by two checkpoints:

1. The list of vectors v⃗1, v⃗2, . . . , v⃗k is independent.
2. The vectors span V , written V = span(v⃗1, . . . , v⃗k).

A basis expresses the general solution of a linear problem with the fewest
possible terms.

Theorem 5.22 (Independence of Strang’s Special Solutions)
Assume matrix equation Ax⃗ = 0⃗ with scalar general solution x1, x2, . . . , xn using
invented symbols t1, t2, . . . , tk. Define k special solutions by partial differentiation:

v⃗1 = ∂t1 x⃗, v⃗2 = ∂t2 x⃗, . . . , v⃗k = ∂tk x⃗

Then:

1. Each solution x⃗ of Ax⃗ = 0⃗ is a linear combination of v⃗1, . . . , v⃗k.

2. The vectors v⃗1, . . . , v⃗k are independent.

Briefly: Strang’s special solutions are independent and they form a basis for the set
of solutions to Ax⃗ = 0⃗. See also the Kernel Theorem 5.2 page 300.

Proof on page 393
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Vector Space Rn

The vector space Rn of n-element fixed column vectors (or row vectors) is from
the view of applications a storage system for organization of numerical data sets
that is equipped with an algebraic toolkit. The scheme induces a data structure
onto the numerical data set. In particular, whether needed or not, there are
pre-defined operations of addition (+) and scalar multiplication (·) which apply
to fixed vectors. The two operations on fixed vectors satisfy the closure law and
in addition obey the eight algebraic vector space properties. The vector space
V = Rn is viewed as a data set consisting of data item packages.

Algebraic Toolkit

The toolkit for an abstract vector space V is the following set of eight algebraic
properties. Set V is a data set. Elements of V are data packages called vectors,
denoted X⃗ and Y⃗ in the toolkit.

Closure The operations X⃗ + Y⃗ and kX⃗ are defined and result in a new
vector which is also in the set V .

Addition X⃗ + Y⃗ = Y⃗ + X⃗ commutative
X⃗ + (Y⃗ + Z⃗) = (X⃗ + Y⃗ ) + Z⃗ associative
Vector 0⃗ is defined and 0⃗ + X⃗ = X⃗ zero
Vector −X⃗ is defined and X⃗ + (−X⃗) = 0⃗ negative

Scalar
multiply

k(X⃗ + Y⃗ ) = kX⃗ + kY⃗ distributive I
(k1 + k2)X⃗ = k1X⃗ + k2X⃗ distributive II
k1(k2X⃗) = (k1k2)X⃗ distributive III
1X⃗ = X⃗ identity

The 8 Properties

.+

Toolkit

Operations

Set
Data

Figure 12. A Data Storage System.
A vector space is a data set of data item pack-
ages plus a storage system which organizes the
data. A toolkit is provided consisting of op-
erations + and · plus 8 algebraic vector space
properties.

Fixed Vectors and the Toolkit

Scalar multiplication of fixed vectors is commonly used for re-scaling, espe-
cially to unit systems fps, cgs and mks. For instance, a numerical data set of
lengths recorded in meters (mks) is re-scaled to centimeters (cgs) using scale
factor k = 100.

Addition and subtraction of fixed vectors is used in a variety of calculations,
which includes averages, difference quotients and calculus operations like inte-
gration.

371
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Planar Plot Vector Toolkit Example

The data set for a plot problem consists of plot points in R2 which are the
dots for the connect-the-dots graphic. Assume the function y(x) to be plotted
comes from differential equation y′ = f(x, y). Euler’s numerical method applies
to compute the sequence of dots in the graphic. In this algorithm, the next dot
is represented as v⃗2 = v⃗1 + E⃗(v⃗1) where symbol v⃗1 is the previous dot. Symbol
E⃗(v⃗1) is the Euler increment. Definitions:

v⃗1 =

(
x0
y0

)
, E⃗(v⃗1) = h

(
1

f(x0, y0)

)
,

v⃗2 = v⃗1 + E⃗(v⃗1) =

(
x0 + h

y0 + hf(x0, y0)

)
.

Step size h = 0.05 is a common instance. The Euler increment E⃗(v⃗1) is defined
as scalar multiplication by h against an R2-vector which contains an evaluation
of f at the previous dot v⃗1.

Summary. The dots for the graphic of y(x) form a data set in the vector space
R2. The dots are obtained by algorithm rules, which are easily expressed by
vector addition (+) and scalar multiplication (·). The 8 properties of the toolkit
were used in a limited way.

Digital Photographs

A digital photo has many pixels arranged in a two dimensional array. Structure
can be assigned to the photo by storing the pixel digital color data in a matrix A
of size n×m. Each entry of A is an integer which encodes the color information
at a specific pixel location.

The set V of all n × m matrices is a vector space under the usual rules for
matrix addition and scalar multiplication. Initially, V is just a storage system
for photos. However, the algebraic toolkit for V (page 371) is a convenient way
to express operations on photos. An illustration: reconstruction of a photo from
RGB (Red, Green, Blue) separation photos.

Let A = (aij) be an n×m matrix of color data for a photo. One way to encode
each entry of A is to define aij = rij + gijx + bijx

2 where x is some convenient
base. The integers rij , gij , bij represent the amount of red, green and blue
present in the pixel with data aij . Then A = R + Gx + Bx2 where R = [rij ],
G = [gij ], B = [bij ] are n×m matrices that represent the color separation photos.
Construction of matrices R, G, B can be done from A by decoding integer aij
into respective matrix entries. It is done with modular arithmetic. Matrices R,
xG and x2B correspond to three monochromatic photos, which can be realized as
color transparencies. The transparencies placed on a standard overhead projector
will reconstruct the original photograph.

Printing machinery from many years ago employed separation negatives and mul-
tiple printing runs in primary ink colors to make book photos. The advent of
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digital printers and simpler inexpensive technologies has made the separation pro-
cess nearly obsolete. To document the historical events, we quote Sam Wang7:

I encountered many difficulties when I first began making gum prints: it was not
clear which paper to use; my exposing light (a sun lamp) was highly inadequate;
plus a myriad of other problems. I was also using panchromatic film, making
in–camera separations, holding RGB filters in front of the camera lens for three
exposures onto 3 separate pieces of black and white film. I also made color
separation negatives from color transparencies by enlarging in the darkroom.
Both of these methods were not only tedious but often produced negatives
very difficult to print — densities and contrasts that were hard to control and
working in the dark with panchromatic film was definitely not fun. The fact that
I got a few halfway decent prints is something of a small miracle, and represents
hundreds of hours of frustrating work! Digital negatives by comparison greatly
simplify the process. Nowadays (2004) I use color images from digital cameras
as well as scans from slides, and the negatives print much more predictably.

Function Spaces

The default storage system used for applications involving ordinary or partial
differential equations is a function space. The data item packages for differential
equations are their solutions, which are functions, or in an applied context, a
graphic defined on a certain graph window. They are not column vectors of
numbers.

Functions and Column Vectors

An alternative view, adopted by researchers in numerical solutions of differential
equations, is that a solution is a table of numbers, consisting of pairs of x and y
values.

It is possible to think of the function as being a fixed vector. The viewpoint is
that a function is a graph and a graph is determined by so many dots, which
are practically obtained by sampling the function y(x) at a reasonably dense
set of x-values. The approximation is

y ≈


y(x1)
y(x2)

...
y(xn)


where x1, . . . , xn are the samples and y(x1), . . . , y(xn) are the sampled values
of function y.

The trouble with the approximation is that two different functions may need
different sampling rates to properly represent their graphic. The result is that

7Sam Wang lectured on photography and art with computer at Clemson University in South
Carolina. Reference: A Gallery of Tri-Color Prints, by Sam Wang
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the two functions might need data storage of different dimensions, e.g., f needs
its sampled values in R200 and g needs its sampled values in R400. The absence of
a universal fixed vector storage system for sampled functions explains the appeal
of a system like the set of all functions.

Infinitely Long Column Vectors

Is there a way around the lack of a universal numerical data storage system
for sampled functions? Is it possible to develop a theory of column vectors with
infinitely many components? It may help you to think of any function f as an
infinitely long column vector, with one entry f(x) for each possible sample x,
e.g.,

f⃗ =


...

f(x)
...

 level x

It is not clear how to order or address the entries of such a column vector: at
algebraic stages it hinders. Can computers store infinitely long column vectors?
The safest path through the algebra is to deal exactly with functions and function
notation. Still, there is something attractive about the change from sampled
approximations to a single column vector with infinite extent:

f⃗ ≈


f(x1)
f(x2)

...
f(xn)

→


...
f(x)
...

 level x

The thinking behind the level x annotation is that x stands for one of the infinite
possibilities for an invented sample. Alternatively, with a rich set of invented
samples x1, . . . , xn, value f(x) equals approximately f(xj), where x is closest to
some sample xj .

The Vector Space V of all Functions on a Set E

The rules for function addition and scalar multiplication come from college alge-
bra and pre-calculus backgrounds:

(f + g)(x) = f(x) + g(x), (cf)(x) = c · f(x).

These rules can be motivated and remembered by the notation of infinitely long
column vectors, where level x is an arbitrary sample:

c1f⃗ + c2g⃗ = c1


...

f(x)
...

+ c2


...

g(x)
...

 =


...

c1f(x) + c2g(x)
...


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The rules define addition and scalar multiplication of functions. The closure
law for a vector space holds. Routine tedious justifications show that V , under
the above rules for addition and scalar multiplication, has the required 8-property
toolkit to make it a vector space:

Closure The operations f + g and kf are defined and result in a new
function which is also in the set V of all functions on the set E.

Addition f + g = g + f commutative
f + (g + h) = (f + g) + h associative
The zero function 0 is defined and 0 + f = f zero
The function −f is defined and f + (−f) = 0 negative

Scalar
multiply

k(f + g) = kf + kg distributive I
(k1 + k2)f = k1f + k2f distributive II
k1(k2f) = (k1k2)f distributive III
1f = f identity

Important subspaces of the vector space V of all functions appear in applied lit-
erature as the storage systems for solutions to differential equations and solutions
of related models.

Vector Space C(E)

Let E = {x : a < x < b} be an open interval on the real line, a, b possibly
infinite. The set C(E) is defined to be the subset S of the set V of all functions on
E obtained by restricting the function to be continuous. Because sums and scalar
multiples of continuous functions are continuous, then S = C(E) is a subspace
of V and a vector space in its own right. The definition applies to any nonvoid
subset E of R1.

Vector Space C1(E)

The set C1(E) is the subset of the vector space C(E) of all continuous func-
tions on open interval E obtained by restricting the function to be continuously
differentiable. Because sums and scalar multiples of continuously differentiable
functions are continuously differentiable, then C1(E) is a subspace of C(E) and
a vector space in its own right.

Vector Space Ck(E)

The set Ck(E) is the subset of the vector space C(E) of all continuous functions
on open interval E obtained by restricting the function to be k times continu-
ously differentiable. Because sums and scalar multiples of k times continuously
differentiable functions are k times continuously differentiable, then Ck(E) is a
subspace of C(E) and a vector space in its own right.
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Solution Space of a Differential Equation

The differential equation y′′− y = 0 has general solution y = c1e
x+ c2e

−x, which
means that the set S of all solutions of the differential equation consists of all
possible linear combinations of the two functions ex and e−x. Briefly,

S = span
(
ex, e−x

)
.

The functions ex, e−x are in C2(E) for any interval E on the x-axis. Therefore,
S is a subspace of C2(E) and a vector space in its own right.

More generally, every homogeneous linear differential equation, of any order, has
a solution set S which is a vector space in its own right.

Invented Vector Spaces

The number of different vector spaces used as data storage systems in scientific
literature is finite, but growing with new discoveries. There is really no limit to
the number of different vector spaces possible, because creative individuals are
able to invent new ones.

Here is an example of how creation begets new vector spaces. Consider the
problem y′ = 2y+ f(x) and the task of storing data for the plotting of an initial
value problem with initial condition y(x0) = y0. The data set V suitable for
plotting consists of column vectors

v⃗ =

 x0
y0
f

 .

A plot command takes such a data item, computes the solution

y(x) = y0e
2x + e2x

∫ x

0
e−2tf(t)dt

and then plots it in a window of fixed size with center at (x0, y0). The column
vectors are not numerical vectors in R3, but some hybrid of vectors in R2 and
the space of continuous functions C(E) where E is the real line.

It is relatively easy to come up with definitions of vector addition and scalar
multiplication on V . The closure law holds and the eight vector space properties
can be routinely verified. Therefore, V is an abstract vector space, unlike any
found in this text. To reiterate:

An abstract vector space is a set V and two operations of + and
· such that the closure law holds and the eight algebraic vector
space properties are satisfied.

The paycheck for having recognized a vector space setting in an application is
clarity of exposition and economy of effort in details. Algebraic details in R2

often transfer unchanged to an abstract vector space setting, line for line, to
obtain the details in the more abstract setting.
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Independence and Dependence

Independence is defined in Definition 5.21 page 370:

Vectors v⃗1, . . . , v⃗k are called independent provided each linear combination
v⃗ = c1v⃗1 + · · ·+ ckv⃗k is represented by a unique set of constants c1, . . . , ck.

Independence means unique representation of linear combinations of v⃗1,
. . . , v⃗k, which is the statement

a1v⃗1 + · · ·+ akv⃗k = b1v⃗1 + · · ·+ bkv⃗k

implies the coefficients match: 
a1 = b1
a2 = b2

...
ak = bk

The subject of independence applies to coordinate spacesRn, function spaces and
in particular solution spaces of differential equations, digital photos, sequences
of Fourier coefficients or Taylor coefficients, and general abstract vector spaces.
Introduced here are definitions for low dimensions, the geometrical meaning of
independence, geometric tests for independence and basic algebraic tests for in-
dependence.

The motivation for the study of independence is the theory of general solutions,
which are expressions representing all possible solutions of a linear problem. In-
dependence is a central issue for discovery of the shortest possible expression for
a general solution.

Definition 5.23 (Dependence)
Vectors v⃗1, . . . , v⃗k are called dependent provided they are not independent. This
means that some linear combination v⃗ = a1v⃗1 + · · ·+ akv⃗k can be represented in a
second way as v⃗ = b1v⃗1 + · · ·+ bkv⃗k where for at least one index j, aj ̸= bj .

Publications and proofs routinely use a brief abstract definition of independence
which is a consequence of Theorem 5.23 below. See Definition 5.24 page 381
for the abstract definition normally used in mathematical proofs and technical
publications.

Theorem 5.23 (Unique Representation of the Zero Vector)
Vectors v⃗1, . . . , v⃗k are independent in vector space V if and only if the system of
equations

c1v⃗1 + · · ·+ ckv⃗k = 0⃗

has unique solution c1 = · · · = ck = 0. Proof on page 394.
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Theorem 5.24 (Subsets of Independent Sets)
Any nonvoid subset of an independent set is also independent.

Subsets of dependent sets can be either independent or dependent.

Proof on page 394.

Independence of 1, x2, x4 is decided by Theorem 5.24, because it is known that
powers 1, x, x2, x3, x4 form an independent set.

Independence Test: Abstract Vector Space

Theorem 5.23 provides a simple independence / dependence test.8

Form the system of equations

c1v⃗1 + · · ·+ ckv⃗k = 0⃗.

Solve for the constants c1, . . . , ck.

Independence is proved if c1, . . . , ck are all zero.

Dependence is proved if a nonzero solution c1, . . . , ck exists. This
means cj ̸= 0 for at least one index j.

Example 5.14 (Independence of Fixed Vectors in R2)

Test R2 vectors v⃗1 =

(
−1
1

)
, v⃗2 =

(
2
1

)
for independence.

Details:

The two column vectors are tested for independence by forming the system of equations
c1v⃗1 + c2v⃗2 = 0⃗ and solving for the weights c1, c2. Then:

c1

(
−1
1

)
+ c2

(
2
1

)
=

(
0
0

)
.

Write the vector equation as a homogeneous system Ac⃗ = 0⃗:(
−1 2
1 1

)(
c1
c2

)
=

(
0
0

)
The system has rref(A) = I, details omitted. Then c1 = c2 = 0, which verifies indepen-
dence of the two vectors.

Theorem 5.29 page 382 provides a shorter independence test for two vectors: v⃗1 ̸=
(constant)v⃗2.

8The test is used in publications and mathematical proofs, often without citing the definition
of independence. See Definition 5.24 page 381.
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Example 5.15 (Independence of Fixed Vectors in R3)

Test R3 vectors v⃗1 =

 −11
0

, v⃗2 =

 2
1
0

 for independence.

Details: The two column vectors are tested for independence by forming the system of
equations c1v⃗1 + c2v⃗2 = 0⃗ and solving for the weights c1, c2:

c1

 −11
0

+ c2

 2
1
0

 =

 0
0
0

 .

Write the vector equation as a homogeneous system Ac⃗ = 0⃗: −1 2
1 1
0 0

( c1
c2

)
=

 0
0
0


The 3× 2 coefficient matrix A has reduced row echelon form

rref(A) =

 1 0
0 1
0 0


The original homogeneous system is then equivalent to c1 = 0, c2 = 0. This proves the
two vectors are independent by the independence test page 378.

See the Rank Test page 383 and the Determinant Test page 383 for additional
column vector independence tests. Determinants are defined only for square
matrices, therefore it is an error to use the Determinant Test on non-square
Example 5.15. Determinant shortcuts for non-square problems exist [?], but
they are not discussed here.

Geometric Independence and Dependence for Two Vectors

Two vectors v⃗1, v⃗2 in R2 or R3 are defined to be geometrically independent
provided neither is the zero vector and one is not a scalar multiple of the other.
Graphically, this means v⃗1 and v⃗2 form the edges of a non-degenerate parallel-
ogram: Figure 13. Free vector arguments use the parallelogram rule for adding
and subtracting vectors: Figure 14.

Two vectors in R2 or R3 are geometrically independent if and only if they
form the edges of a parallelogram of positive area.

v⃗ 2

v⃗ 1

Figure 13. Geometric Independence.
Two nonzero nonparallel vectors v⃗1, v⃗2 form the edges
of a parallelogram. A vector v⃗ = c1v⃗1 + c2v⃗2 lies interior
to the parallelogram if and only if the scaling constants
satisfy 0 < c1 < 1, 0 < c2 < 1.

379



5.4 Vector Spaces, Independence, Basis

b⃗

a⃗

P

a⃗ + b⃗

b⃗ −
a⃗ Figure 14. Parallelogram Rule.

Given nonzero vectors a⃗, b⃗. Red sum vector a⃗ + b⃗
has head at vertex P and tail at the joined tails of
a⃗, b⃗. Green difference vector b⃗− a⃗ connects the head
of a⃗ to the head of b⃗, according to the head minus
tail rule on page 297.

Geometric Dependence of Two Vectors

Vectors v⃗1, v⃗2 inR2 orR3 are defined to be geometrically dependent provided
they are not geometrically independent. This means the two vectors do not
form a parallelogram of positive area: one of v⃗1, v⃗2 is the zero vector or else v⃗1
and v⃗2 lie along the same line.

Two vectors in R2 or R3 are geometrically dependent if and only if one is
the zero vector or else they are parallel vectors.

Geometric Independence for Three Fixed Vectors

Three vectors in R3 are said to be geometrically independent provided none
of them are the zero vector and they form the edges of a non-degenerate paral-
lelepiped of positive volume. Such vectors are called a triad. In the special case
of all pairs orthogonal (the vectors are 90◦ apart) they are called an orthogonal
triad.

v⃗ 2

v⃗ 1

v⃗ 3

Figure 15. Geometric independence of three vectors.
Vectors v⃗1, v⃗2, v⃗3 form the edges of a non-degenerate paral-
lelepiped. A vector v⃗ = c1v⃗1 + c2v⃗2 + c3v⃗3 is located interior to
the parallelepiped provided 0 < c1, c2, c3 < 1.

Three vectors in R3 are geometrically independent if and only they form
the edges of a parallelepiped of positive volume.

Geometric Dependence of Three Fixed Vectors

Given vectors v⃗1, v⃗2, v⃗3, they are dependent if and only if they are not inde-
pendent. The three subcases that occur can be analyzed geometrically using
Theorem 5.24 page 378:

A nonvoid subset of an independent set is independent.

1. There is a dependent subset of one vector. This vector is the zero vector.
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2. There is a dependent subset of two nonzero vectors. Then two of them lie
along the same line.

2. There is a dependent subset of three nonzero vectors. Then one of them is
in the plane of the other two, because the three cannot form a parallelepiped
of positive volume.

Three vectors in R3 are geometrically dependent if and only if one of
them is in the span of the other two. The span is geometrically a point, line
or plane.

Theorem 5.25 (Geometric Independence ≡ Algebraic Independence)
The definitions of geometric independence and algebraic independence are equivalent.
Proof on page 395.

Independence in an Abstract Vector Space

Linear algebra literature uses a purely algebraic definition of independence, which
is equivalent to the independence test page 378. The definition and its conse-
quences are recorded here for reference.

Definition 5.24 (Independence in an Abstract Vector Space)
Let v⃗1, . . . , v⃗k be a finite set of vectors in an abstract vector space V . The set is
called independent if and only if the vector equation

c1v⃗1 + · · ·+ ckv⃗k = 0⃗

has unique solution c1 = · · · = ck = 0.

The set of vectors is called dependent if and only if the set is not independent. This
means that the equation in unknowns c1, . . . , ck has a solution with at least one
constant cj nonzero.

Theorem 5.26 (Unique Representation)
Let v⃗1, . . . , v⃗k be independent vectors in an abstract vector space V . If scalars a1,
. . . , ak and b1, . . . , bk satisfy the relation

a1v⃗1 + · · ·+ akv⃗k = b1v⃗1 + · · ·+ bkv⃗k

then the coefficients must match:
a1 = b1,
a2 = b2,
...
ak = bk.
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Proof on page 395.
The result is often used to derive scalar equations from vector equations, e.g., the
Method of Undetermined Coefficients in differential equations, page ??.

Theorem 5.27 (Zero Vector and Dependent Sets)
An independent set in an abstract vector space V cannot contain the zero vector.
Equivalently, a set containing the zero vector is dependent. Proof on page 395

Theorem 5.28 (Linear Combination and Independence)
Let v⃗1, . . . , v⃗k be given vectors in abstract vector space V . Then:

1. Assume v⃗1, . . . , v⃗k is an independent set. Suppose v⃗ from V is not a linear
combination of v⃗1, . . . , v⃗k. Then v⃗1, . . . , v⃗k, v⃗ is an independent set.

2. If vector v⃗ is a linear combination of v⃗1, . . . , v⃗k, then v⃗1, . . . , v⃗k, v⃗ is a dependent
set.

Proof on page 395

Theorem 5.29 (Independence of Two Vectors)
Two vectors in an abstract vector space V are independent if and only if neither is
the zero vector and one is not a constant multiple of the other. Proof on page 396.

Independence and Dependence Tests for Fixed Vec-
tors

Recorded here are a number of useful algebraic tests to determine independence
or dependence of a finite list of fixed vectors.

Rank Test

In the vector space Rn, the key to detection of independence is zero free vari-
ables, or nullity zero, or equivalently, maximal rank. The test is justified from
the formula nullity(A) + rank(A) = k, where k is the column dimension of A.

Theorem 5.30 (Rank-Nullity Test for Three Vectors)
Let v⃗1, v⃗2, v⃗3 be 3 column vectors in Rn and let their n× 3 augmented matrix be

A = ⟨v⃗1|v⃗2|v⃗3⟩.

The vectors v⃗1, v⃗2, v⃗3 are independent if rank(A) = 3 and dependent if rank(A) <
3. The conditions are equivalent to nullity(A) = 0 and nullity(A) > 0, respec-
tively. Proof on page 396.
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Theorem 5.31 (Rank-Nullity Test)
Let v⃗1, . . . , v⃗k be k column vectors in Rn and let A be their n×k augmented matrix.
The vectors are independent if rank(A) = k and dependent if rank(A) < k. The
conditions are equivalent to nullity(A) = 0 and nullity(A) > 0, respectively. Proof
on page 396.

Determinant Test

In the unusual case when system Ac⃗ = 0⃗ arising in the independence test is
square (A is n × n), then det(A) = 0 detects dependence, and det(A) ̸= 0
detects independence. The reasoning applies formula A−1 = adj(A)/ det(A),
valid exactly when det(A) ̸= 0.

Theorem 5.32 (Determinant Test)
Let v⃗1, . . . , v⃗n be n column vectors in Rn and let A be the n × n augmented
matrix of these vectors. The vectors are independent if det(A) ̸= 0 and dependent
if det(A) = 0. Proof on page 396.

Orthogonal Vector Test

In some applications the vectors being tested are known to satisfy orthogonality
conditions. The dot product conditions for three vectors:

v⃗1 · v⃗1 > 0, v⃗2 · v⃗2 > 0, v⃗3 · v⃗3 > 0,
v⃗1 · v⃗2 = 0, v⃗2 · v⃗3 = 0, v⃗3 · v⃗1 = 0.

(1)

The conditions mean that the vectors are nonzero and pairwise 90◦ apart. The
set of vectors is said to be pairwise orthogonal, or briefly, orthogonal. The
orthogonality conditions for a list of k vectors are written

v⃗i · v⃗i > 0, v⃗i · v⃗j = 0, 1 ≤ i, j ≤ k, i ̸= j.(2)

Theorem 5.33 (Orthogonal Vector Test)
A set of nonzero pairwise orthogonal vectors v⃗1, . . . , v⃗k is linearly independent. Proof
on page 397.

Independence Tests for Functions

It is not obvious how to solve for c1, . . . , ck in the algebraic independence test page
378, when the vectors v⃗1, . . . , v⃗k are not fixed vectors. If V is a set of functions,
then the methods from linear algebraic equations do not directly apply. This
algebraic problem causes development of special tools just for functions, called
the sampling test and Wronskian test. Neither test is an equivalence. Such
tests only apply to conclude independence. No results here are equipped to test
dependence of a list of functions.
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Sampling Test for Functions

Let f1, f2, f3 be three functions defined on a domain D. Let V be the vector
space of all functions f⃗ on D with the usual scalar multiplication and addition
rules learned in college algebra.9 Addressed here is the question of how to test
independence and dependence of f⃗1, f⃗2, f⃗3 in V . The vector relation

c1f⃗1 + c2f⃗2 + c3f⃗3 = 0⃗

means
c1f1(x) + c2f2(x) + c3f3(x) = 0, x in D.

An idea how to solve for c1, c2, c3 arises by sampling, which means 3 relations
are obtained by inventing 3 values for x, say x1, x2, x3. The equations arising
are

c1f1(x1) + c2f2(x1) + c3f3(x1) = 0,
c1f1(x2) + c2f2(x2) + c3f3(x2) = 0,
c1f1(x3) + c2f2(x3) + c3f3(x3) = 0.

This system of 3 equations in 3 unknowns can be written in matrix form Ac⃗ = 0⃗,
where the coefficient matrix A and vector c⃗ of unknowns c1, c2, c3 are defined by

A =

 f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)
f1(x3) f2(x3) f3(x3)

 , c⃗ =

 c1
c2
c3

 .

The matrix A is called the sampling matrix for f1, f2, f3 with samples x1,
x2, x3. Important: you must invent the values for the samples.

The system Ac⃗ = 0⃗ has unique solution c⃗ = 0⃗, proving f⃗1, f⃗2, f⃗3 independent,
provided det(A) ̸= 0.

Definition 5.25 (Sampling Matrix)
Let functions f1, . . . , fk be given. Let k samples x1, . . . , xk be given. The Sampling
Matrix A is defined by:

A =


f1(x1) f2(x1) · · · fk(x1)
f1(x2) f2(x2) · · · fk(x2)

...
... · · ·

...
f1(xk) f2(xk) · · · fk(xk)

 .

Theorem 5.34 (Sampling Test for Functions)
The functions f1, . . . , fk are linearly independent on an x-set D provided there is
a sampling matrix A constructed from invented samples x1, . . . , xk in D such that
det(A) ̸= 0.

The converse is false. An independent list of functions may have det(A) = 0 for a
given sampling matrix. Proof on page 397.

9Symbol f⃗ is the vector package for function f . Symbol f(x) is a number, a function value.

Symbol f is a graph, equivalently the domain D plus equation y = f(x). Vector f⃗ is the package
of equation y = f(x) and the domain.
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Wronskian Test for Functions

The test will be explained first for two functions f1, f2. Independence of f1, f2,
as in the sampling test, is decided by solving for constants c1, c2 in the equation

c1f1(x) + c2f2(x) = 0, for all x.

J. M. Wronski10 suggested to solve for the constants by differentiation of this
equation, obtaining a pair of equations

c1f1(x) + c2f2(x) = 0,
c1f

′
1(x) + c2f

′
2(x) = 0, for all x.

This is a system of equations Ac⃗ = 0⃗ with coefficient matrix A and variable list
vector c⃗ given by

A =

(
f1(x) f2(x)
f ′
1(x) f ′

2(x)

)
, c⃗ =

(
c1
c2

)
.

TheWronskian Test is simply det(A) ̸= 0 implies c⃗ = 0⃗, similar to the sampling
test: ∣∣∣∣ f1(x) f2(x)

f ′
1(x) f ′

2(x)

∣∣∣∣ ̸= 0 for some x implies f1, f2 independent.

Interesting about Wronski’s idea is that it requires the invention of just one
sample x such that the determinant is non-vanishing, in order to establish inde-
pendence of the two functions.

Definition 5.26 (Wronskian Matrix)
Given functions f1, . . . , fn each differentiable n− 1 times on an interval a < x < b,
the Wronskian determinant is defined by the relation

W (f1, . . . , fn)(x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
... · · ·

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣ .

Theorem 5.35 (Wronskian Test)
Let functions f1, . . . , fn be differentiable n−1 times on interval a < x < b. Assume
the Wronskian determinant W (f1, . . . , fn)(x0) is nonzero for some x0 in (a, b). Then
f1, . . . , fn are independent functions in the vector space V of all functions on (a, b).

The converse is false. Independent functions may have Wronskian determinant iden-
tically zero on (a, b).

Proof on page 397.

10J. M. Wronski (1776-1853). Born Józef Maria Hoëné in Poland, he resided his final 40 years
in France using the name Wronski.
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Euler Solution Atom Test

The test originates in linear differential equations. It applies in a variety of
situations outside that scope, providing basic intuition about independence of
functions.

Definition 5.27 (Euler Solution Atom)
The infinite set of Euler solution atoms is a set of functions on −∞ < x < ∞
indexed by three variables a, b, n:

Index set: real a, real b > 0, integer n = 0, 1, 2, . . .
Distinct functions: xneax, xneax cos(bx), xneax sin(bx)

A base atom is one of eax, eax cos(bx), eax sin(bx). An Euler solution atom is a
base atom times xn, index set as above.

Theorem 5.36 (Independence of Euler Solution Atoms)
A finite list of distinct Euler solution atoms is independent on any interval E in
−∞ < x <∞.

Outline of the proof on page 398. See also Example 5.22, page 391.

Application: Vandermonde Determinant

Choosing the functions in the sampling test to be 1, x, x2 with invented samples
x1, x2, x3 gives the sampling matrix

V (x1, x2, x3) =

 1 x1 x21
1 x2 x22
1 x3 x23

 .

The sampling matrix is called a Vandermonde matrix. Using the polynomial
basis f1(x) = 1, f2(x) = x, . . . , fk(x) = xk−1 and invented samples x1, . . . , xk
gives the k × k Vandermonde matrix

V (x1, . . . , xk) =


1 x1 · · · xk−1

1

1 x2 · · · xk−1
2

...
... · · ·

...

1 xk · · · xk−1
k

 .
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The most often used Vandermonde determinant identities are∣∣∣∣ 1 a
1 b

∣∣∣∣ = b− a,∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣ = (c− b)(c− a)(b− a),

∣∣∣∣∣∣∣∣
1 a a2 a3

1 b b2 b3

1 c c2 c3

1 d d2 d3

∣∣∣∣∣∣∣∣ = (d− c)(d− b)(d− a)(c− b)(c− a)(b− a).

Theorem 5.37 (Vandermonde Determinant Identity)
The Vandermonde matrix has a nonzero determinant for distinct samples:

det(V (x1, . . . , xk)) =
∏
i<j

(xj − xi).

Proof on page 398.

Examples

Example 5.16 (Vector General Solution)
Find the vector general solution u⃗ of Au⃗ = 0⃗ , given matrix

A =

 1 2 0
2 5 0
0 0 0

 .

Solution: The solution divides into two distinct sections: 1 and 2 .

1 : Find the scalar general solution of the system Ax⃗ = 0⃗.

The toolkit: combination, swap and multiply. Then we use the last frame algorithm.

The usual shortcut applies to compute rref(A). We skip the augmented matrix ⟨A|⃗0⟩,
knowing that the last column of zeros is unchanged by the toolkit. The details:(

1 2 0
2 5 0
0 0 0

)
First frame.(

1 2 0
0 1 0
0 0 0

)
combo(1,2,-2).(

1 0 0
0 1 0
0 0 0

)
combo(2,1,-2). Last frame, this is rref(A).∣∣∣∣∣∣

x1 = 0,
x2 = 0,
0 = 0.

∣∣∣∣∣∣ Translate to scalar equations.
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∣∣∣∣∣∣
x1 = 0,
x2 = 0,
x3 = t1.

∣∣∣∣∣∣ Scalar general solution, obtained from the last frame algorithm:
x1, x2=lead, x3=free.

2 : Find the vector general solution of the system Ax⃗ = 0⃗.

The plan is to use the answer from 1 and partial differentiation to display the vector
general solution x⃗.∣∣∣∣∣∣

x1 = 0,
x2 = 0,
x3 = t1.

∣∣∣∣∣∣ Scalar general solution, from 1 .

∂t1 x⃗ =

0
0
1

 Strang’s special solution is the partial derivative on symbol t1.
Only one, because of only one invented symbol.

x⃗ = t1

0
0
1

 The vector general solution. It is the sum of terms, an invented
symbol times the corresponding special solution (partial on that
symbol). See also Example 5.19.

Example 5.17 (Independence)
Assume v⃗1, v⃗2 are independent vectors in abstract vector space V . Display the details
which verify the independence of the vectors v⃗1 + 3v⃗2, v⃗1 − 2v⃗2.

Solution: The algebraic independence test page 378 will be applied. Form the equation

c1 (v⃗1 + 3v⃗2) + c2 (v⃗1 − 2v⃗2) = 0⃗

and somehow solve for c1, c2. The plan is to re-write this equation in terms of v⃗1, v⃗2,
then use the algebraic independence page 378 on vectors v⃗1, v⃗2 to obtain scalar equations
for c1, c2. The equation re-arrangement:

(c1 + c2) v⃗1 + (3c1 − 2c2) v⃗2 = 0⃗.

The independence test applied to a relation av⃗1 + bv⃗2 = 0⃗ implies scalar equations
a = 0, b = 0. The re-arranged equation has a = c1 + c2, b = 3c1 − 2c2. Therefore,
independence strips away the vectors from the re-arranged equation, leaving a system of
scalar equations in symbols c1, c2:

c1 + c2 = 0, The equation a = 0,
3c1 − 2c2 = = 0, The equation b = 0.

These equations have only the zero solution c1 = c2 = 0, because the coefficient ma-

trix

(
1 1
3 −2

)
is invertible (nonzero determinant). The vectors v⃗1 + 3v⃗2, v⃗1 − 2v⃗2 are

independent by the independence test page 378.

Example 5.18 (Span)
Let v⃗1, v⃗2 be two vectors in an abstract vector space V . Define two subspaces

S1 = span(v⃗1, v⃗2), S2 = span(v⃗1 + 3v⃗2, v⃗1 − 2v⃗2).
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(a) Display the technical details which show that the two subspaces are equal: S1 =
S2.

(b) Use the result of (a) to prove that independence of v⃗1, v⃗2 implies independence
of v⃗1 + 3v⃗2, v⃗1 − 2v⃗2.

Solution:

Details for (a). Sets S1, S2 are known to be subspaces of V by the span theorem
page 301. To show S1 = S2, we will show each set is a subset of the other, that is,
S2 ⊂ S1 and S1 ⊂ S2.

Show S2 ⊂ S1. By definition of span page 301, both vectors v⃗1 + 3v⃗2, v⃗1 − 2v⃗2 belong
to the set S1. Therefore, the span of these two vectors is also in subspace S1, hence
S2 ⊂ S1.

Show S1 ⊂ S2. Write v⃗1 as a linear combination of v⃗1 + 3v⃗2, v⃗1 − 2v⃗2 in 1 , 2 steps
below. This will prove v⃗1 belongs to S2.

1 5v⃗1 = 2(v⃗1 + 3v⃗2) + 3(v⃗1 − 2v⃗2). Eliminate v⃗2 with a combination.

2 v⃗1 = 2
5 (v⃗1 + 3v⃗2) +

3
5 (v⃗1 − 2v⃗2). Divide by 5.

Similarly, v⃗2 belongs to S2. Therefore, the span of v⃗1, v⃗2 belongs to S2, or S1 ⊂ S2, as
claimed.

Details for (b). Independence of v⃗1, v⃗2 implies dim(S1) = 2. Therefore, dim(S2) = 2.
If v⃗1 + 3v⃗2, v⃗1 − 2v⃗2 fail to be independent, then they are dependent and span S2. Then
dim(S2) ≤ 1, a contradiction to dim(S2) = 2. This proves that v⃗1 + 3v⃗2, v⃗1 − 2v⃗2 are
independent.

Example 5.19 (Independence, Span and Basis)

A 5× 5 linear system Ax⃗ = 0⃗ has scalar general solution

x1 = t1 + 2t2,
x2 = t1,
x3 = t2,
x4 = 4t2 + t3,
x5 = t3.

Find a basis for the solution space.

Solution: The answer is the set of Strang’s special solutions obtained by taking
partial derivatives on the symbols t1, t2, t3. Details below.

X⃗1 =


1
1
0
0
0

 , X⃗2 =


2
0
1
4
0

 , X⃗3 =


0
0
0
1
1

 .

Span. The vector general solution is expressed as the sum x⃗ = t1X⃗1 + t2X⃗2 + t3X⃗3,
which implies that the solution space is span(X⃗1, X⃗2, X⃗3).
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Independence follows from Theorem 5.22, proof on page 393. Let’s repeat the proof
for the three special solutions X⃗1, X⃗2, X⃗3, using the independence test in Theorem 5.23,
which is the basis for Definition 5.24, page 381. Form the equation c1X⃗1+c2X⃗2+c3X⃗3 = 0⃗
and solve for c1, c2, c3. The left side of the equation is a vector solution x⃗ with invented
symbols replaced by t1 = c1, t2 = c2, t3 = c3. The equation says that x⃗ = 0⃗, which in
scalar form means x1 = x2 = x3 = x4 = x5 = 0. The scalar general solution has lead
variables x1, x4 and free variables x2, x3, x5. The free variable equations are:

x2 = t1,
x3 = t2,
x5 = t3.

Because x2 = x3 = x5 = 0, then t1 = t2 = t3 = 0, which implies c1 = c2 = c3 = 0. This
proves independence of X⃗1, X⃗2, X⃗3.

Special Solution Details. Take the partial derivative of the scalar general solution on
symbol t1 to create special solution X⃗1. The others are found the same way, by partial
derivatives on t2, t3. For symbol t1:

X⃗1 = ∂t1 x⃗ =


∂t1x1

∂t1x2

∂t1x3

∂t1x4

∂t1x5

 =


∂t1(t1 + 2t2)

∂t1(t1)
∂t1(t2)

∂t1(4t2 + t3)
∂t1(t3)

 =


1
1
0
0
0

 .

Example 5.20 (Rank Test and Determinant Test)
Apply both the rank test and the determinant test to decide independence or depen-
dence of the vectors

v⃗1 =


1
1
0
0

 , v⃗2 =


1
1
0
1

 , v⃗3 =


0
0
0
1

 , v⃗4 =


1
1
0
2

 .

Solution: Answer: The vectors are dependent.

Details for the Rank Test. Form the augmented matrix A of the four vectors and then
compute the rank of A. If the rank is 4, then the rank test implies they are independent,
otherwise dependent.

A = ⟨v⃗1|v⃗2|v⃗3|v⃗4⟩

=


1 1 0 1
1 1 0 1
0 0 0 0
0 1 1 2

 .

How to determine that the rank is not 4? Use rank of A equals the rank of AT . Equiv-
alently, the row rank equals the column rank. Then a row of zeros implies a dependent
set of rows, which implies the row rank is not 4 (the rank is actually 2). Also, columns
one and two of A are identical, they are dependent columns, therefore the column rank
is not 4.
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Details for the Determinant Test. The test uses the square matrix A defined above.
The question of independence reduces to testing |A| nonzero. If nonzero, then the
columns of A are independent, which implies the four given vectors are independent.
Otherwise, |A| = 0, which implies the columns of A are dependent, so the given four
vectors are dependent.

All depends upon A being square: there is no determinant theory for non-square matrices.

Immediately|A| = 0, because A has a row of zeros. Alternatively, |A| = 0 because A has
duplicate columns. Then the columns of A are dependent, which means dependence of
the given four vectors.

Example 5.21 (Sampling Test and Wronskian Test)
Let V = C(−∞,∞) and define vectors v⃗1 = x2, v⃗2 = x7/3, v⃗3 = x5.11 Apply the
sampling test and the Wronskian test to establish independence of the three vectors
in V .

Solution: The vectors are not fixed vectors (column vectors in some Rn), therefore the
rank test and determinant test cannot apply. The Euler solution atom test does not
apply: the functions are not atoms.

Sampling Test Details. A bad sample choice is x = 0, because it will produce a row
of zeros, hence a zero determinant, leading to no test. Choose samples x = 1, 2, 3 for
lack of insight, and then see if it works. The sample matrix:

A =

 1 1 1

4 ( 3
√
2)7 32

9 ( 3
√
3)7 243

 .

Because |A| ≈ 132 is nonzero, then the given vectors are independent by the sampling
test.

Wronskian Test Details. Choose the sample x after finding the Wronskian matrix
W (x) for all x. Start with row vector

(
x2, x7/3, x5

)
and differentiate twice to compute

the rows of the Wronskian matrix:

W (x) =

 x2 x7/3 x5

2x 7
3x

4/3 5x4

2 28
9 x1/3 20x3

 .

The sample x = 0 won’t work, because |W (0)| has a row of zeros. Choose x = 1, then

W (1) =

 1 1 1
2 7

3 5
2 28

9 20

 .

The determinant |W (1)| = 8/3 is nonzero, which implies the three functions are inde-
pendent by the Wronskian test.

Example 5.22 (Solution Space of a Differential Equation)
A fifth order linear differential equation has general solution

y(x) = c1 + c2x+ c3e
x + c4e

−x + c5e
2x.

Write the solution space S in vector space C5(−∞,∞) as the span of basis vectors.

11Equation v⃗1 = x2 is an abuse of notation which defines vector package v⃗1 in V with domain
(−∞,∞) and equation y = x2. It is used without apology.
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Solution: The answer is

S = span
(
1, x, ex, e−x, e2x

)
.

Details. A general solution is an expression for all solutions (no solutions skipped)
in terms of arbitrary constants, in this case, the constants c1 to c5. We think of the
constants as the invented symbols t1, t2, . . . in a matrix equation general solution. Then
the expected basis vectors should be the partial derivatives on the symbols:

∂c1y(x) = 1,
∂c2y(x) = x,
∂c3y(x) = ex,
∂c4y(x) = e−x,
∂c5y(x) = e2x.

The five vectors so obtained already span the space S. All that remains is to prove they
are independent. The easiest method to apply in this case is the Wronskian test.

Independence Details. Let W (x) be the Wronskian of the five solutions above. Then
row one is the list 1, x, ex, e−x, e2x and the other four rows are successive derivatives of
the first row.

W (x) =

∣∣∣∣∣∣∣∣∣∣
1 x ex e−x e2x

0 1 ex −e−x 2e2x

0 0 ex e−x 4e2x

0 0 ex −e−x 8e2x

0 0 ex e−x 16e2x

∣∣∣∣∣∣∣∣∣∣
.

The cofactor rule applied twice in succession to column 1 gives

W (x) =

∣∣∣∣∣∣
ex e−x 4e2x

ex −e−x 8e2x

ex e−x 16e2x

∣∣∣∣∣∣ .
Choose sample x = 0 to simplify the work:

W (0) =

∣∣∣∣∣∣
1 1 4
1 −1 8
1 1 16

∣∣∣∣∣∣ = −24.
Then the determinant |W (0)| = −24 is nonzero, which implies independence of the
functions in row one of W (x), by the Wronskian test.

A Faster Independence Test. Generally, the Wronskian test is not used. Instead, ap-
ply the Euler solution atom test Theorem 5.36 page 386, which establishes independence
without proof details.12

The details of the Euler solution atom test are brief: (1) The list 1, x, ex, e−x, e2x is a finite
set of distinct Euler solution atoms. (2) The test concludes that the set 1, x, ex, e−x, e2x

is independent.

Example 5.23 (Extracting a Basis from a List)
Let V be the vector space of all polynomials. Define subspace

S = span(x+ 1, 2x− 1, 3x+ 4, x2).

Find a basis for S selected from the list x+ 1, 2x− 1, 3x+ 4, x2.

12The proof of the Euler solution atom test, only outlined but not proved in this textbook,
involves determinant evaluations similar to this example. An essential result used in the proof
is subsets of independent sets are independent.
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Solution: One possible answer: x+ 1, 2x− 1, x2.

The vectors x + 1, 2x − 1 are independent, because one is not a scalar multiple of the
other (they are lines with slopes 1, 2); see Theorem 5.29.

The list x+1, 2x−1, 3x+4 of three vectors is dependent. In detail, using Theorem 5.28,
we first will show span(x+ 1, 2x− 1) = span(1, x), using these two stages:

1 3x = (x+ 1) + (2x− 1)

2 −3 = −2(x+ 1) + (2x− 1)

Divide 1 by 3 and 2 by −3 to show span(x + 1, 2x − 1) = span(1, x). Then 3x + 4
is in span(1, x) = span(x+ 1, 2x− 1). Therefore, the list x+ 1, 2x− 1, 3x+ 4 of three
vectors is dependent. Skip 3x + 4 and go on to add x2 to the list. Vector x2 is not in
span(x+1, 2x−1) = span(1, x), because Euler solution atoms 1, x, x2 are independent,
Theorem 5.36 page 386. The final independent set is x+1, 2x− 1, x2, and this is a basis
for S. Important: a basis is not unique, for instance 1, x, x2 is also a basis for S. To
extract a basis from the list means the expected answer is the list x+1, 2x−1, 3x+4, x2

with dependent vectors removed. Many correct answers are possible.

Details and Proofs

Proof of Theorem 5.22, Independence of Special Solutions:

1. To prove: each solution x⃗ is a linear combination of v⃗1, . . . , v⃗k. The general solution
of Ax⃗ = 0⃗ is written in scalar form by the last frame algorithm page ??, using invented
symbols t1, . . . , tk. Special solution v⃗i = ∂ti x⃗ (1 ≤ i ≤ k) can also be defined as the
vector obtained from the scalar general solution with ti = 1 and all other t1, . . . , tk set
to zero. The vector general solution is a re-write of the scalar equations in vector form

x⃗ = t1v⃗1 + · · ·+ tkv⃗k(3)

Therefore, each solution is a linear combination of the special solutions.

2. To prove: the vectors v⃗1, . . . , v⃗k are independent. Suppose a given solution x⃗ can be
written in two ways as a linear combination of the special solutions:

x⃗ = a1v⃗1 + · · ·+ akv⃗k, x⃗ = b1v⃗1 + · · ·+ bkv⃗k

Subtract the two equations and collect on v⃗1, . . . , v⃗k:

(a1 − b1)v⃗1 + · · ·+ (ak − bk)v⃗k = 0⃗

Define ci = ai − bi, 1 ≤ i ≤ k, then rewrite the preceding equation as

c1v⃗1 + · · ·+ ckv⃗k = 0⃗

The left side of this equation is a solution of Ax⃗ = 0⃗ in the form (3) produced by the last
frame algorithm. Values c1, . . . , ck are values assigned to the invented symbols t1, . . . , tk.
Because this solution equals 0⃗, then the corresponding scalar solution x1, . . . , xn of Ax⃗ =
0⃗ is zero: xi = 0 for 1 ≤ i ≤ n. Variables xi are divided into free variables and lead
variables. The free variables in the last frame algorithm are set equal to t1, . . . , tk. The
lead variables are determined in terms of the free variables. Because all xi = 0, then
all the free variables are zero: t1 = · · · = tk = 0, equivalently c1 = · · · = ck = 0.
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Equation ci = ai − bi and ci = 0 implies ai = bi for 1 ≤ i ≤ k. This proves that
a given solution cannot be represented in two different ways: vectors v⃗1, . . . , v⃗k are
independent. ■

Proof of Theorem 5.23, Unique Representation of the Zero Vector: The proof
will be given for the characteristic case k = 3, because details for general k can be written
from this proof, by minor editing of the text.

Assume vectors v⃗1, v⃗2, v⃗3 are independent and c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗. Then a1v⃗1 +
x2v⃗2 + a3v⃗3 = b1v⃗1 + b2v⃗2 + b3v⃗3 where we define a1 = c1, a2 = c2, a3 = c3 and
b1 = b2 = b3 = 0. By independence, the coefficients match. By the definition of the
symbols, this implies the equations c1 = a1 = b1 = 0, c2 = a2 = b2 = 0, c3 = a3 = b3 = 0.
Then c1 = c2 = c3 = 0.

Conversely, assume c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗ implies c1 = c2 = c3 = 0. If

a1v⃗1 + a2v⃗2 + a3v⃗3 = b1v⃗1 + b2v⃗2 + b3v⃗3,

then subtract the right side from the left to obtain

(a1 − b1)v⃗1 + (a2 − b2)v⃗2 + (a3 − b3)v⃗3 = 0⃗.

This equation is equivalent to

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗

where the symbols c1, c2, c3 are defined by c1 = a1 − b1, c2 = a2 − b2, c3 = a3 − b3.
The theorem’s condition implies that c1 = c2 = c3 = 0, which in turn implies a1 = b1,
a2 = b2, a3 = b3. ■

Proof of Theorem 5.24, Subsets of Independent Sets are Independent: The
idea will be communicated for a set of three independent vectors v⃗1, v⃗2, v⃗3. Let the subset
to be tested consist of the two vectors v⃗1, v⃗2. To be applied: the algebraic independence
test page 378. Form the vector equation

c1v⃗1 + c2v⃗2 = 0⃗

and solve for the constants c1, c2. If c1 = c2 = 0 is the only solution, then v⃗1, v⃗2 is a an
independent set.

Define c3 = 0. Because c3v⃗3 = 0⃗, the term c3v⃗3 can be added into the previous vector
equation to obtain the new vector equation

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗.

Independence of the three vectors implies c1 = c2 = c3 = 0, which in turn implies
c1 = c2 = 0, completing the proof that v⃗1, v⃗2 are independent.

The proof for an arbitrary independent set v⃗1, . . . , v⃗k is similar. By renumbering, we can
assume the subset to be tested for independence is v⃗1, . . . , v⃗m for some index m ≤ k.
The proof amounts to adapting the proof for k = 3 and m = 2, given above. The details
are omitted.

Because a single nonzero vector is an independent subset of any list of vectors, then a
subset of a dependent set can be independent. If the subset of the dependent set is the
whole set, then the subset is dependent. In conclusion, subsets of dependent sets can be
either independent or dependent.
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Proof of Theorem 5.25: The ideas below for R2 can be applied to supply details for
R3, the n = 3 case omitted.

Assume vectors v⃗1, v⃗2 are geometrically independent: they are nonzero and nonparallel.
To apply the independence test page 378, let’s solve for c1, c2 in the equation

c1v⃗1 + c2v⃗2 = 0⃗.

Suppose c1 ̸= 0. Divide by c1 to obtain v⃗1 = −(c2/c1)v⃗2. This equality says v⃗1, v⃗2 are
parallel, so we conclude c1 = 0. Replace c1 = 0, then 0v⃗1 + c2v⃗2 = 0⃗, which implies
c2v⃗2 = 0⃗. Because v⃗2 ̸= 0⃗, then c2 = 0. This proves weights c1 = c2 = 0. By the
independence test page 378, vectors v⃗1, v⃗2 are algebraically independent.

Assume vectors v⃗1, v⃗2 are algebraically independent. To show they are geometrically
independent requires: (1) they are nonzero, (2) they are not parallel. If (1) fails, then
one of the vectors is zero, say v⃗1. The independence test page 378 detects dependence,
because c1v⃗1 + c2v⃗2 = 0⃗ holds with c1 = 1, c2 = 0 (not both weights are zero). Similarly
if v⃗2 is zero. If (1) holds but (2) fails, then the vectors are nonzero and parallel, meaning
v⃗1 = cv⃗2 for some scalar c. Let c1 = 1, c2 = −c in the independence test page 378 to
conclude dependence instead of independence. Therefore, (1) and (2) hold, meaning the
vectors are geometrically independent. ■

Proof of Theorem 5.26, Unique Representation Abstract Space:
Assume independence of v⃗1, . . . , v⃗k. Suppose there are two equal linear combinations

a1v⃗1 + · · ·+ akv⃗k = b1v⃗1 + · · ·+ bkv⃗k

Subtract:
(a1 − b1)v⃗1 + · · ·+ (ak − bk)v⃗k = 0⃗

Definition 5.24 page 381 says all the weights are zero: aj − bj = 0 for 1 ≤ j ≤ k.
Therefore, the coefficients must match: aj = bj for 1 ≤ j ≤ k. ■

Proof of Theorem 5.27, Zero Vector Abstract Space: Let v⃗1, . . . , v⃗k be an
independent set in abstract vector space V . Suppose 0⃗ is in the set. Assume v⃗1 = 0⃗ by
renumbering the list. Then:

c1v⃗1 + · · ·+ ckv⃗k = 0⃗

holds with c1 = 1 and all other weights zero. Applying the independence test page 378
proves the set is dependent. ■

Proof of Theorem 5.28, Linear Combination and Independence:
1. Let v⃗1, . . . , v⃗k be a set of independent vectors in abstract vector space V . Assume v⃗
is not a linear combination of v⃗1, . . . , v⃗k. Independence test page 378 will be applied to
set v⃗1, . . . , v⃗k, v⃗. Form the equation

c1v⃗1 + · · ·+ ckv⃗k + ck+1v⃗ = 0⃗

and solve for the coefficients. If ck+1 ̸= 0, then divide by it and solve for vector v⃗ as a
linear combination of v⃗1, . . . , v⃗k, a contradiction. Therefore, ck+1 = 0. Term ck+1v⃗ is
the zero vector, therefore the equation becomes

c1v⃗1 + · · ·+ ckv⃗k = 0⃗

Independence implies c1 = · · · = ck = 0. Then all weights are zero, proving independence
of v⃗1, . . . , v⃗k, v⃗ by the test page 378.
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2. Suppose vector v⃗ is a linear combination of v⃗1, . . . , v⃗k. Then for some constants
c1, . . . , ck:

v⃗ = c1v⃗1 + · · ·+ ckv⃗k

Define ck+1 = −1. Then
c1v⃗1 + · · ·+ ckv⃗k + ck+1v⃗ = 0⃗

holds for weights c1, . . . , ck+1 not all zero. Apply the independence test page 378 to
prove the set is dependent. ■

Proof of Theorem 5.29, Independence Two Vectors Abstract Space: Let v⃗1, v⃗2
be two vectors in abstract vector space V .

If they are independent, then Theorem 5.27 implies neither can be the zero vector. If
a vector is be a multiple of the other, then c1v⃗1 + c2v⃗2 = 0⃗ holds with either c1 = 1 or
c2 = 1 (not both weights zero). Applying the independence test page 378 proves the set
is dependent, a contradiction. Conclude that neither is a constant multiple of the other.

Assume neither is the zero vector and one is not a constant multiple of the other. Let’s
apply the independence test page 378. Form the system of equations

c1v⃗1 + c2v⃗2 = 0⃗

and solve for c1, c2. If c1 = 0, then c2v⃗2 = 0⃗, which implies c2 = 0 because v⃗2 ̸= 0⃗. Then
c1 = c2 = 0 and independence is proved by the test on page 378. Otherwise, c1 ̸= 0 and
division results in

v⃗1 = −c2
c1

v⃗2

which implies one vector is a constant multiple of the other, a contradiction. Conclusion:
c1 = c2 = 0 and the two vectors are proved independent by the independence test page
378. ■

Proofs of Theorems 5.30, 5.31, Rank-Nullity Test: The proof will be given for
k = 3, because a small change in the text of this proof is a proof for general k.

Suppose rank(A) = 3. Then there are 3 leading ones in rref(A) and zero free variables.
Therefore, Ac⃗ = 0⃗ has unique solution c⃗ = 0⃗.

To be applied: the algebraic independence test page 378. Form the vector equation

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗

and solve for the constants c1, c2, c3. The vector equation says that a linear combination
of the columns of matrix A is the zero vector, or equivalently, Ac⃗ = 0⃗ where c⃗ has
components c1, c2, c3. Therefore, rank(A) = 3 implies c⃗ = 0⃗, or equivalently, c1 = c2 =
c3 = 0. This proves that the 3 vectors are linearly independent by the test page 378.

If rank(A) < 3, then there exists at least one free variable. Then the equation Ac⃗ = 0⃗
has at least one nonzero solution c⃗. This proves that the vectors are dependent by the
test page 378. ■

Proof of Theorem 5.32, Determinant Test: The proof details will be done for
n = 3, because minor edits to this text will give the details for general n.

The algebraic independence test page 378 for vectors v⃗1, v⃗2, v⃗3 in R3 requires solving
the system of linear algebraic equations

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗
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for constants c1, c2, c3. The left side of the equation is a linear combination of the

columns of the augmented matrix A = ⟨v⃗1|v⃗2|v⃗3⟩, and therefore the system can be

represented as the matrix equation Ac⃗ = 0⃗. If det(A) ̸= 0, then A−1 exists. Multiply
the equation Ac⃗ = 0⃗ by the inverse matrix to give

Ac⃗ = 0⃗

A−1Ac⃗ = A−10⃗

Ic⃗ = A−10⃗

c⃗ = 0⃗.

Then c⃗ = 0⃗, or equivalently, c1 = c2 = c3 = 0. The vectors v⃗1, v⃗2, v⃗3 are proved
independent by the independence test page 378.

Conversely, if the vectors are independent and A = ⟨v⃗1|v⃗2|v⃗3⟩ is the augmented matrix

of these vectors, then the system Ac⃗ = 0⃗ has unique solution c⃗ = 0⃗ by the independence
test page 378. The unique solution case for a homogeneous system Ac⃗ = 0⃗ means
no free variables or rref(A) = I. Then A has a inverse. Because A−1 exists, then
det(A) ̸= 0. ■

Proof of Theorem 5.33, Orthogonal Vector Test: The proof will be given for
k = 3, because the details are easily supplied for k vectors, by editing the text in the
proof. To be applied: the algebraic independence test page 378. Form the system of
equations

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗

and solve for the constants c1, c2, c3. Constant c1 is isolated by taking the dot product
of the above equation with vector v⃗1, to obtain the scalar equation

c1v⃗1 · v⃗1 + c2v⃗1 · v⃗2 + c3v⃗1 · v⃗3 = v⃗1 · 0⃗.

The orthogonality relations v⃗1 · v⃗2 = 0, v⃗2 · v⃗3 = 0, v⃗3 · v⃗1 = 0 reduce the scalar equation
to

c1v⃗1 · v⃗1 + c2(0) + c3(0) = 0.

Because v⃗1 · v⃗1 > 0, then c1 = 0. Symmetrically, vector v⃗2 replacing v⃗1, the scalar
equation becomes

c1(0) + c2v⃗2 · v⃗2 + c3(0) = 0.

Again, c2 = 0. The argument for c3 = 0 is similar. The conclusion: c1 = c2 = c3 = 0.
The three vectors are proved independent. ■

Proof of Theorem 5.34, Sampling Test: Let A be the sampling matrix of Definition
5.25. Let vector c⃗ have components c1, . . . , ck. The algebraic independence test page 378
will be applied. Form the vector equation

c1v⃗1 + · · ·+ ckv⃗k = 0⃗,

to be solved for c1, . . . , ck. Substitute samples x1, . . . , xk into the vector equation and
re-write as Ac⃗ = 0⃗. Because det(A) ̸= 0, then equation Ac⃗ = 0⃗ has unique solution c⃗ = 0⃗.
Then all the weights are zero, proving that vectors v⃗1, . . . , v⃗k are independent. ■

Proof of Theorem 5.35, Wronskian Test: To be applied: the algebraic independence
test page 378. Form the equation

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0, for all x,
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and solve for the constants c1, . . . , cn. The functions are proved independent provided all
the constants are zero. The idea of the proof, attributed to Wronski, is to differentiate the
above equation n−1 times, then substitute x = x0 to obtain a homogeneous n×n system
Ac⃗ = 0⃗ for the components c1, . . . , cn of the vector c⃗. Because |A| = W (f1, . . . , fn)(x0) ̸=
0, the inverse matrix A−1 = adj(A)/|A| exists. Multiply Ac⃗ = 0⃗ on the left by A−1 to
obtain c⃗ = 0⃗, completing the proof.

Proof of Theorem 5.36, Euler Solution Atom Test: An outline of the proof will
be given, the excuse being that the details are long and uninteresting.13 Unpleasantness
includes complex numbers, real and imaginary parts of functions and the use of several
support theorems.

1 The powers 1, x, . . . , xk are independent: Wronskian test Theorem 5.35.

2 Exponential ex is independent of the powers 1, x, . . . , xk. An easy argument uses
Maclaurin series for the exponential. The same is true for eax with a ̸= 0. Value a can
be complex.

3 A list of distinct exponentials eaix, i = 1, . . . , k with nonzero exponents is linearly
independent. Details use the Wronskian test Theorem 5.35, Vandermonde matrices and
determinants Theorem 5.37. Values ai are allowed complex.

4 Powers 1, x, . . . , xk times eax (a ̸= 0) are independent. The result uses the algebraic

independence test page 378 and 1 . Symbol a is allowed complex.

5 Powers 1, x, . . . , xp times a list of distinct complex exponentials eaix, i = 1, . . . , q
makes a list of pq distinct functions. This list of functions is independent. The details
use the algebraic independence test page 378, double mathematical induction on p, q and
1 – 4 .

6 Restrict the values ai in 5 to be of the form A + iB with B > 0. The real and

imaginary parts of the list of functions in 5 makes a set of 2pq distinct functions, all of
which are Euler solution atoms. The set is independent.

The proof concludes by arguing that any finite set of distinct Euler solution atoms is a
subset of an independent set described in 6 . Because subsets of independent sets are
independent, Theorem 5.24, the proof ends. ■

Proof of Theorem 5.37, Vandermonde Determinant Identity: Let’s prove the
identity for the case k = 3, which simplifies notation. Assume distinct samples x1, x2,
x3. To be proved:

det(V (x1, x2, x3)) = (x3 − x2)(x3 − x1)(x2 − x1).

The proof uses a recursion:

det(V (x1, x2, x3)) = det(V (x2, x3))(x3 − x1)(x2 − x1).

Expansion of det(V (x2, x3)) =

∣∣∣∣ 1 x2

1 x3

∣∣∣∣ = x3 − x2 by Sarrus’ Rule gives the claimed

n = 3 identity:
det(V (x1, x2, x3)) = (x3 − x2)(x3 − x1)(x2 − x1).

Recursion proof. Define matrix A = V (x, x2, x3) (x1 replaced by x). Cofactor expan-
sion along row one of det(A) gives a quadratic in variable x:

det(A) = (1) cof(A, 1, 1) + (x) cof(A, 1, 2) + (x2) cof(A, 1, 3).

13Writing details for this is not preferred to eating shattered glass.
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Because a determinant with duplicate rows has zero value, then quadratic equation
det(A) = 0 has roots x = x2 and x = x3. The factor and root theorems of college
algebra apply: for some constant c,

det(A) = c(x3 − x)(x2 − x).

Constant c is the coefficient of x2 in det(A), therefore

c = cof(A, 1, 3) = (−1)1+3 minor(A, 1, 3) = det(V (x2, x3).

Then
det(A) = det(V (x2, x3))(x3 − x)(x2 − x).

Upon substitution of x = x1, this equation becomes the claimed recursion

det(V (x1, x2, x3)) = det(V (x2, x3))(x3 − x1)(x2 − x1).

Mathematical Induction. The k × k case first proves by cofactor expansion the
recursion

det(V (x1, x2, . . . , xk)) = det(V (x2, . . . , xk)

k∏
j=2

(xj − x1).(4)

Identity (4) provides the induction step used to prove Theorem 5.37 by induction. To
understand the derivation of identity (4), which also requires mathematical induction,
experiment with special case k = 4:

det(V (x1, x2, x3, x4)) = det(V (x2, x3, x4))

4∏
j=2

(xj − x1).
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Exercises 5.4 �

Scalar and Vector General Solution
Given the scalar general solution of Ax⃗ = 0⃗,
find the vector general solution

x⃗ = t1u⃗1 + t2u⃗2 + · · ·

where symbols t1, t2, . . . denote arbitrary
constants and u⃗1, u⃗2, . . . are fixed vectors.

1. x1 = 2t1, x2 = t1 − t2, x3 = t2

2. x1 = t1+3t2, x2 = t1, x3 = 4t2, x4 = t2

3. x1 = t1, x2 = t2, x3 = 2t1 + 3t2

4. x1 = 2t1 + 3t2 + t3, x2 = t1, x3 = t2,
x4 = t3

Vector General Solution
Find the vector general solution x⃗ of Ax⃗ =
0⃗.

5. A =

(
1 2
2 4

)

6. A =

(
1 −1
−1 1

)

7. A =

 1 2 0
2 4 0
0 0 0



8. A =

 1 1 −1
1 1 0
0 0 1



9. A =


1 1 −1 0
1 1 0 0
0 0 1 0
2 2 −1 0



10. A =


1 1 0 0
2 2 0 0
0 0 1 1
0 0 2 2


Dimension

11. Give four examples in R3 of S =
span(v⃗1, v⃗2, v⃗3) (3 vectors required)
which have respectively dimensions
0, 1, 2, 3.

12. Give an example in R3 of 2-
dimensional subspaces S1, S2 with
only the zero vector in common.

13. Let S = span(v⃗1, v⃗2) in abstract vec-
tor space V . Explain why dim(S) ≤ 2.

14. Let S = span(v⃗1, . . . , v⃗k) in abstract
vector space V . Explain why dim(S) ≤
k.

15. Let S be a subspace of R3 with
basis v⃗1, v⃗2. Define v⃗3 to be the
cross product of v⃗1, v⃗2. What is
dim(span(v⃗2, v⃗3))?

16. Let S1, S2 be subspaces ofR4 such that
dim(S1) = dim(S2) = 2. Assume S1, S2

have only the zero vector in common.
Prove or give a counter-example: the
span of the union of S1, S2 equals R4.

Independence in Abstract Spaces

17. Assume linear combinations of vectors
v⃗1, v⃗2 are uniquely determined, that
is, a1v⃗1 + a2v⃗2 = b1v⃗1 + b2v⃗2 implies
a1 = b1, a2 = b2. Prove this result: If
c1v⃗1 + c2v⃗2 = 0⃗, then c1 = c2 = 0.

18. Assume the zero linear combination of
vectors v⃗1, v⃗2 is uniquely determined,
that is, c1v⃗1+c2v⃗2 = 0⃗ implies c1 = c2 =
0. Prove this result: If a1v⃗1 + a2v⃗2 =
b1v⃗1 + b2v⃗2, then a1 = b1, a2 = b2.

19. Prove that two nonzero vectors v⃗1, v⃗2
in an abstract vector space V are inde-
pendent if and only if each of v⃗1, v⃗2 is
not a constant multiple of the other.

20. Let v⃗1 be a vector in an abstract vector
space V . Prove that the one-element set
v⃗1 is independent if and only if v⃗1 is not
the zero vector.

21. Let V be an abstract vector space and
assume v⃗1, v⃗2 are independent vectors
in V . Define u⃗1 = v⃗1+v⃗2, u⃗2 = v⃗1+2v⃗2.
Prove that u⃗1, u⃗2 are independent in V .
Advice: Fixed vectors not assumed!

Bursting the vector packages is impossible,

there are no components.
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22. Let V be an abstract vector space and
assume v⃗1, v⃗2, v⃗3 are independent vec-
tors in V . Define u⃗1 = v⃗1 + v⃗2, u⃗2 =
v⃗1 + 4v⃗2, u⃗3 = v⃗3 − v⃗1. Prove that u⃗1,
u⃗2, u⃗3 are independent in V .

23. Let S be a finite set of independent
vectors in an abstract vector space V .
Prove that none of the vectors can be
the zero vector.

24. Let S be a finite set of independent
vectors in an abstract vector space V .
Prove that no vector in the list can be a
linear combination of the other vectors.

The Spaces Rn

25. (Scalar Multiply) Let x⃗ =

x1

x2

x3

 have

components measured in centimeters.
Report constants c1, c2, c3 for re-scaled
data c1x⃗, c2x⃗, c3x⃗ in units of kilometers,
meters and millimeters.

26. (Matrix Multiply) Let u⃗ =(
x1, x2, x3, p1, p2, p3

)T
have position

x-units in kilometers and momentum
p-units in kilogram-centimeters per
millisecond. Determine a matrix M
such that the vector y⃗ = Mu⃗ has SI
units of meters and kilogram-meters
per second.

27. Let v⃗1, v⃗2 be two independent vec-
tors in Rn. Assume c1v⃗1 + c2v⃗2 lies
strictly interior to the parallelogram de-
termined by v⃗1, v⃗2. Give geometric de-
tails explaining why 0 < c1 < 1 and
0 < c2 < 1.

28. Prove the 4 scalar multiply toolkit
properties for fixed vectors in R3.

29. Define

0⃗ =

0
0
0

 ,−v⃗ =

−v1−v2
−v3

 .

Prove the 4 addition toolkit properties
for fixed vectors in R3.

30. Use the 8 property toolkit in R3 to
prove that zero times a vector is the zero
vector.

31. Let A be an invertible 3×3 matrix. Let
v⃗1, v⃗2, v⃗3 be a basis for R3. Prove that
Av⃗1, Av⃗2, Av⃗3 is a basis for R3.

32. Let A be an invertible 3 × 3 matrix.
Let v⃗1, v⃗2, v⃗3 be dependent inR3. Prove
that Av⃗1, Av⃗2, Av⃗3 is a dependent set in
R3.

Digital Photographs
Let V be the vector space of all 2 × 3 ma-
trices. A matrix in V is a 6-pixel digital
photo, a sub-section of a larger photo.

Let B1 =

(
1 0 0
0 0 0

)
, . . . , B6 =

(
0 0 0
0 0 1

)
.

Each Bj lights up one pixel in the 2 × 3
sub-photo.

33. Prove that B1, . . . , B6 are independent
and span V : they are a basis for V .

34. Let A = 2

(
1 0 0
0 0 0

)
+ 4

(
0 0 0
0 1 0

)
. As-

sume a black and white image and 0
means black. Describe photo A, from
the checkerboard analogy.

Digital RGB Photos
Define red, green and blue monochrome
matrices R,G,B by(

2 0 0
0 1 1
5 8 1

)
,

(
3 0 0
0 4 0
0 1 0

)
,

(
5 0 0
0 3 0
1 0 5

)
.

35. Define base x = 16. Compute A =
R+ xG+ x2B.

36. Define base x = 32. Compute A =
R+ xG+ x2B.

Polynomial Spaces
Let V be the vector space of all cubic or less
polynomials p(x) = c0 + c1x+ c2x

2 + c3x
3.

37. Find a subspace S of V , dim(S) = 2,
which contains the vector 1 + x.

38. Let S be the subset of V spanned by
x, x2 and x3. Prove that S is a sub-
space of V which does not contain the
polynomial 1 + x.
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39. Define set S by the conditions p(0) =
0, p(1) = 0. Find a basis for S.

40. Define set S by the condition p(0) =∫ 1

0
p(x)dx. Find a basis for S.

The Space C(E)
Define f⃗ to be the vector package with do-
main E = {x : −2 ≤ x ≤ 2} and equation
y = |x|. Similarly, g⃗ is defined by equation
y = x.

41. Show independence of f⃗ , g⃗.

42. Find the dimension of span(f⃗ , g⃗).

43. Let h(x) = 0 on −1 ≤ x ≤ 0, h(x) =

−x on 0 ≤ x ≤ 1. Show that h⃗ is in
C(E).

44. Let h(x) = −1 on −2 ≤ x ≤ 0,
h(x) = 1 on 0 ≤ x ≤ 2. Show that

h⃗ is not in C(E).

45. Let h(x) = 0 on −2 ≤ x ≤ 0, h(x) =

−x on 0 ≤ x ≤ 2. Show that h⃗ is in
span(f⃗ , g⃗).

46. Let h(x) = tan(πx/2) on −2 < x < 2,

h(2) = h(−2) = 0. Explain why h⃗ is
not in C(E)

The Space C1(E)
Define f⃗ to be the vector package with do-
main E = {x : −1 ≤ x ≤ 1} and equation
y = x|x|. Similarly, g⃗ is defined by equation
y = x2.

47. Verify that f⃗ is in C1(E), but its
derivative is not.

48. Show that f⃗ , g⃗ are independent in
C1(E).

The Space Ck(E)

49. Compute the first three derivatives of
y(x) = e−x2

at x = 0.

50. Justify that y(x) = e−x2

belongs to
Ck(0, 1) for all k ≥ 1.

51. Prove that the span of a finite list of
distinct Euler solution atoms (page 386)
is a subspace of Ck(E) for any interval
E.

52. Prove that y(x) = |x| is in Ck(0, 1) but
not in C1(−1, 1).

Solution Space
A differential equations solver finds general
solution y = c1 + c2x + c3e

x + c4e
−x. Use

vector space V = C4(E) where E is the
whole real line.

53. Write the solution set S as the span of
four vectors in V .

54. Find a basis for the solution space S
of the differential equation. Verify in-
dependence using the sampling test or
Wronskian test.

55. Find a differential equation y′′+a1y
′+

a0y = 0 which has solution y = c1+c2x.

56. Find a differential equation y′′′′ +
a3y

′′′+a2y
′′+a1y

′+a0y = 0 which has
solution y = c1 + c2x+ c3e

x + c4e
−x.

Algebraic Independence Test for Two
Vectors
Solve for c1, c2 in the independence test for
two vectors, showing all details.

57. v⃗1 =

(
1
2

)
, v⃗2 =

(
1
−1

)

58. v⃗1 =

 1
−1
0

 , v⃗2 =

1
1
0


Dependence of two vectors
Solve for c1, c2 not both zero in the inde-
pendence test for two vectors, showing all
details for dependency of the two vectors.

59. v⃗1 =

(
1
2

)
, v⃗2 =

(
2
4

)

60. v⃗1 =

 1
−1
0

 , v⃗2 =

−22
0


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Independence Test for Three Vectors
Solve for the constants c1, c2, c3 in the rela-
tion c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗. Report depen-
dent of independent vectors. If dependent,
then display a dependency relation.

61.

 1
−1
0

,

−12
0

,

0
2
0



62.

 1
−1
0

,

−12
0

,

0
1
1


Independence in an Abstract Vector
Space
In vector space V , report independence or
a dependency relation for the given vectors.

63. Space V = C(−∞,∞), v⃗1 = 1 + x,
v⃗2 = 2 + x, v⃗3 = 3 + x2.

64. Space V = C(−∞,∞), v⃗1 = x3/5,
v⃗2 = x2, v⃗3 = 2x2 + 3x3/5

65. Space V is all 3× 3 matrices. Let

v⃗1 =

(
1 1 0
0 1 1
0 0 1

)
, v⃗2 =

(
0 1 0
0 0 1
0 1 1

)
, v⃗3 =(

2 5 0
0 2 5
0 3 5

)
.

66. Space V is all 2× 2 matrices. Let

v⃗1 =

(
1 1
0 1

)
, v⃗2 =

(
−1 1
1 1

)
,

v⃗3 =

(
0 2
1 2

)
.

Rank Test
Compute the rank of the augmented matrix
to determine independence or dependence
of the given vectors.

67.


1
−1
0
0

,


−1
2
0
0

,


0
2
0
0



68.


0
1
−1
0

,


0
−1
2
0

,


0
0
1
1



Determinant Test
Evaluate the determinant of the augmented
matrix to determine independence or de-
pendence of the given vectors.

69.

−13
0

,

2
1
0

,

3
5
0



70.

 0
1
−1

,

 0
−1
2

,

1
0
0


Sampling Test for Functions
Invent samples to verify independence.

71. cosh(x), sinh(x)

72. x7/3, x sin(x)

73. 1, x, sin(x)

74. 1, cos2(x), sin(x)

Sampling Test and Dependence
For three functions f1, f2, f3 to be depen-
dent, constants c1, c2, c3 must be found
such that

c1f1(x) + c2f2(x) + c3f3(x) = 0.

The trick is that c1, c2, c3 are not all zero
and the relation holds for all x. The sam-
pling test method can discover the con-
stants, but it is unable to prove depen-
dence!

75. Functions 1, x, 1+x are dependent. In-
sert x = 1, 2,−1 and solve for c1, c2, c3,
to discover a dependency relation.

76. Functions 1, cos2(x), sin2(x) are depen-
dent. Cleverly choose 3 values of x, in-
sert them, then solve for c1, c2, c3, to
discover a dependency relation.

Vandermonde Determinant

77. Let V =

(
1 x1
1 x2

)
. Verify by direct com-

putation the formula

|V | = x2 − x1.

403



5.4 Vector Spaces, Independence, Basis

78. Let V =

(
1 x1 x

2
1

1 x2 x
2
2

1 x3 x
2
3

)
. Verify by direct

computation the formula

|V | = (x3 − x2)(x3 − x1)(x2 − x1).

Wronskian Test for Functions
Apply the Wronskian Test to verify inde-
pendence.

79. cos(x), sin(x).

80. cos(x), sin(x), sin(2x).

81. x, x5/3.

82. cosh(x), sinh(x).

Wronskian Test: Theory

83. The functions x2 and x|x| are continu-
ously differentiable and have zero Wron-
skian. Verify that they fail to be de-
pendent on −1 < x < 1.

84. The Wronskian Test can verify the in-
dependence of the powers 1, x, . . . , xk.
Show the determinant details.

Extracting a Basis
Given a list of vectors in space V = R4,
extract a largest independent subset.

85.


1
−1
0
0

,


−1
2
0
0

,


0
2
0
0

,


0
−1
1
0

,


−1
1
1
0



86.


0
−1
1
0

,


0
1
1
0

,


0
2
3
0

,


1
−1
0
1

,


1
0
1
1


Extracting a Basis
Given a list of vectors in space V =
C(−∞,∞), extract a largest independent
subset.

87. x, x cos2(x), x sin2(x), ex, x+ ex

88. 1, 2 + x, x
1+x2 ,

x2

1+x2

Euler Solution Atom
Identify the Euler solution atoms in the
given list. Strictly apply the definition: ex

is an atom but 2ex is not.

89. 1, 2 + x, e2.15x, ex
2

, x
1+x2

90. 2, x3, ex/π, e2x+1, ln |1 + x|

Euler Solution Atom Test
Establish independence of set S1.
Suggestion: First establish an identity
span(S1) = span(S2), where S2 is an in-
vented list of distinct atoms. The Test im-
plies S2 is independent. Extract a largest
independent subset of S1, using indepen-
dence of S2.

91. Set S1 is the list 2, 1 + x2, 4 +
5ex, πe2x+π, 10x cos(x).

92. Set S1 is the list 1 + x2, 1 −
x2, 2 cos(3x), cos(3x) + sin(3x).
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5.5 Basis, Dimension and Rank

The topics of basis, dimension and rank apply to the study of Euclidean spaces,
continuous function spaces, spaces of differentiable functions and general abstract
vector spaces.

Definition 5.28 (Basis)
A basis for a vector space V is defined to be an independent set of vectors such that
each vector in V is a linear combination of finitely many vectors in the basis. The
independent vectors are said to span V , with notation

V = span(the set of basis vectors).

If the set of independent vectors is finite, then V is called finite dimensional. An
important example isRn. Otherwise, V is said to be infinite dimensional. A Fourier
series example: the space V spanned by sin(nx) on −π ≤ x ≤ π, n = 1, 2, 3, . . . is
infinite dimensional.

Theorem 5.38 (Size of a Basis)
If vector space V has two bases v⃗1, . . . , v⃗p and u⃗1, . . . , u⃗q, then p = q. Proof on
page 422.

Definition 5.29 (Dimension)
The dimension of a finite-dimensional vector space V is defined to be the number
of vectors in a basis.
Because of Theorem 5.38, the term dimension is well-defined.

Theorem 5.39 (Basis of a Finite-Dimensional Vector Space)
Let V be an n-dimensional vector space and L = {v⃗1, . . . , v⃗p} a list of vectors in V ,
not assumed linearly independent. Then:

1. If p = n and L is an independent set, then L is a basis for V .

2. If p = n and span(L) = V , then L is a basis for V .

3. Always V has a basis containing a given independent subset of L.

4. If span(L) = V , then L contains a basis for V .

Proof on page 422.

Euclidean Spaces

The space Rn has a standard basis consisting of the columns of the n × n
identity matrix: 

1
0
0
...
0

 ,


0
1
0
...
0

 , · · · ,


0
0
0
...
1

 .
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The determinant test implies they are independent. They span Rn due to the
formula 

c1
c2
c3
...

cn

 = c1


1
0
0
...
0

+ c2


0
1
0
...
0

+ · · · + cn


0
0
0
...
1

 .

Definition 5.29 implies the columns of the identity matrix form a basis of Rn of
dimension n.

Theorem 5.40 (Basis and Dimension in Rn)
Any basis of Rn has exactly n independent vectors. Further, any list of n + 1 or
more vectors in Rn is dependent.
Proof on page 423.

Polynomial Spaces

The vector space of all polynomials p(x) = p0 + p1x + p2x
2 has dimension 3,

justified by producing a basis 1, x, x2. Formally, the basis elements are obtained
from the expression p(x) by partial differentiation on the symbols p0, p1, p2.

Illustration. The subspace S = span(1− x, 1+ x, x) is the set of combinations
c1(1− x) + c2(1 + x) + c3x. Partial differentiation on symbols c1, c2, c3 produces
the list of vectors 1−x, 1+x, x. While they span S, they fail to be independent.
Extract a largest independent subset from this list to find a basis for S, for
example 1− x, 1+ x. Basis size 2 verifies that S has dimension 2: see Theorem
5.38 and Definition 5.29.

Differential Equations

The equation y′′ + y = 0 has general solution y = c1 cosx + c2 sinx. Therefore,
the formal partial derivatives ∂c1 , ∂c2 applied to the general solution y give a
basis cosx, sinx. The solution space of y′′ + y = 0 has dimension 2.

Similarly, y′′′ = 0 has a solution basis 1, x, x2 and therefore its solution space
has dimension 3. Generally, an nth order linear homogeneous scalar differential
equation has solution space V of dimension n, and an n× n linear homogeneous
system d

dx y⃗ = Ay⃗ has solution space V of dimension n. There is a general
procedure for finding a basis for a differential equation:

Let a linear differential equation have general solution expressed in
terms of arbitrary constants c1, c2, . . . , then a basis is found by
taking the partial derivatives ∂c1 , ∂c2 , . . . .
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Largest Subset of Independent Fixed Vectors

Let vectors v⃗1, . . . , v⃗k be given in Rn. Then the subset

S = span(v⃗1, . . . , v⃗k)

of Rn consisting of all linear combinations v⃗ = c1v⃗1 + · · ·+ ckv⃗k is a subspace of
Rn by Theorem 5.5. The subset S is identical to the set of all linear combinations
of the columns of the augmented matrix A of v⃗1, . . . , v⃗k.

Because matrix multiply is a linear combination of columns, that is,

A

 c1
...
cn

 = c1v⃗1 + · · · + ckv⃗k,

then S is also equals the image of the matrix, S = Image(A).

Definition 5.30 (Image of a Matrix)

Image(A) = {Ac⃗ : vector c⃗ arbitrary}.

Discussed here are efficient methods for finding a basis for any subspace S given
as the span of a finite list L of vectors: S = span(L). The methods apply in
particular when the list L consists of the columns of a matrix. Equivalently, the
methods find a largest subset of independent vectors L1 from the vectors
in set L. This largest subset L1 is independent and spans S, which makes it a
basis for S.

Iterative Method for a Largest Independent Subset

A largest independent subset of vectors v⃗1, . . . , v⃗k in an abstract vector space V
is identified as v⃗i1 , . . . , v⃗ip for some distinct subscripts i1 < · · · < ip. Described
here is how to find such subscripts. A set containing only the zero vector is
dependent, therefore let’s assume at least one nonzero vector is listed. Let i1 be
the first subscript such that v⃗i1 ̸= 0⃗. Define i2 to be the first subscript greater
than i1 such that v⃗i2 is not a scalar multiple of v⃗i1 . The process terminates if
there is no such i2 > i1. Otherwise, proceed in a similar way to define i3, i4, . . .,
ip. At each stage q we let S = {v⃗i1 , . . . , v⃗iq} and select another vector v⃗iq+1 from
v⃗1, . . . , v⃗k which is not in span(S). Then

dim(span(S)) < dim(span(S ∪ {v⃗iq+1})).

Why does it work? Because each vector added which increases the dimension
cannot be a linear combination of the preceding vectors, in short, the list of
vectors at each stage is independent. See Example 5.24.
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Pivot Theorem Method

Definition 5.31 (Pivot Column of Matrix A)
A column j of A is called a pivot column provided rref(A) has a leading one in
column j. The leading ones in rref(A) belong to consecutive initial columns of the
identity matrix I; the matching columns in A are the pivot columns of A.

Theorem 5.41 (Pivot Theorem: Independent Columns of A)

1. The pivot columns of a matrix A are linearly independent.

2. A non-pivot column is a linear combination of the pivot columns.

Proof on page 423.

Example 5.24 (Largest Independent Subset)
Find a largest independent subset from the five vectors

v⃗1 =


0
0
0
0

 , v⃗2 =


1
1
0
0

 , v⃗3 =


1
1
0
1

 , v⃗4 =


0
0
0
1

 , v⃗5 =


1
1
0
2

 .

Solution:

The Iterative Method applies. A visual inspection shows that we should skip the
zero vector v⃗1 and add v⃗2, v⃗3 to the proposed largest independent set. Here, we use
the fact that two nonzero vectors are independent if one is not a scalar multiple of
the other. Because v⃗4 = v⃗2 + v⃗3, we also skip v⃗4. Formally, this dependence relation

can be computed from toolkit steps on augmented matrix B = ⟨v⃗2|v⃗3|v⃗4⟩. Similarly,
v⃗5 = 2v⃗4 + v⃗2, causing a skip of v⃗5. A largest independent subset is v⃗2, v⃗3.

The Pivot Theorem applies. This method has a computer implementation. Form the
augmented matrix A of the five vectors and then compute rref(A).

A =


0 1 0 0 −2

0 0 1 0 3

0 0 0 1 −1

0 0 0 0 0

 , rref(A) =


0 1 0 0 −2

0 0 1 0 3

0 0 0 1 −1

0 0 0 0 0

 .

Then columns 2, 3 of matrix A are the pivot columns of A. We report v⃗2, v⃗3 as a largest
independent subset, namely the pivot columns of A. Beware: The wrong answer is
column 2, 3 of rref(A), because rref(A) columns are not in the original list of vectors!
Example 5.24 is complete.

The Pivot Theorem can be restated as a method, called the pivot method, for
finding a largest independent subset.
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Theorem 5.42 (Pivot Method)
Let A be the augmented matrix of fixed vectors v⃗1, . . . , v⃗k. Let the leading ones in
rref(A) occur in columns i1, . . . , ip. Then a largest independent subset of the k
vectors v⃗1, . . . , v⃗k is the set of pivot columns of A, that is, the vectors

v⃗i1 , v⃗i2 , . . . , v⃗ip .

Proof on page 424.

Rank and Nullity

Definition 5.32 (Rank of a Matrix)
The rank of an m × n matrix A, symbol rank(A), equals the number of leading
ones in rref(A). Alternatively, the rank is the number of pivot columns of A.

Definition 5.33 (Nullity of a Matrix)
The nullity of an m × n matrix A is the number of free variables in the system

rref(A)u⃗ = 0⃗, or equivalently, the number of columns of A less the rank of A. The
nullity equals the number of non-pivot columns of A in the Pivot Theorem.

The variable count in u⃗ equals the column dimension of A, which leads to the
main result for rank and nullity.

Theorem 5.43 (Rank-Nullity Theorem)

rank(A) + nullity(A) = column dimension of A.

Proof on page 424.

In terms of homogeneous system Au⃗ = 0⃗, the rank of A is the number of leading
variables and the nullity of A is the number of free variables, reliably computed
from the system rref(A)x⃗ = 0⃗.

Theorem 5.44 (Basis for Ax = 0)
Assume

k = nullity(A) = dim
{
x⃗ : Ax⃗ = 0⃗

}
> 0.

Then the solution set of Ax⃗ = 0⃗ can be expressed as

x⃗ = t1X⃗1 + · · ·+ tkX⃗k(1)

where X⃗1, . . . , X⃗k are special linearly independent solutions of Ax⃗ = 0⃗ and t1, . . . ,
tk are arbitrary scalars (free variable invented symbols).

Proof on page 424.

Theorem 5.45 (Row Rank Equals Column Rank)
The number of independent rows of a matrix A equals the number of independent
columns of A. Equivalently, rank(A) = rank(AT ).

Proof on page 424.
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Nullspace, Column Space and Row Space

Definition 5.34 (Kernel and Nullspace)
The kernel or nullspace of an m× n matrix A is the vector space of all solutions x⃗

to the homogeneous system Ax⃗ = 0⃗. In symbols,

kernel(A) = nullspace(A) = {x⃗ : Ax⃗ = 0⃗}.

Definition 5.35 (Column Space)
The column space of m × n matrix A is the vector space consisting of all vectors
y⃗ = Ax⃗, where x⃗ is arbitrary in Rn.

In literature, the column space is also called the image of A, or the range of
A, or the span of the columns of A. Because Ax⃗ can be written as a linear
combination of the columns v⃗1, . . . , v⃗n of A, the column space is the set of all
linear combinations

y⃗ = x1v⃗1 + · · ·+ xnv⃗n.

In symbols,
colspace(A) = {y⃗ : y⃗ = Ax⃗ for some x⃗}

= Image(A)
= Range(A)
= span(v⃗1, . . . , v⃗n).

Definition 5.36 (Row Space)
The row space of m×n matrix A is the vector space consisting of vectors w⃗ = AT y⃗,
where y⃗ is arbitrary in Rm. Technically, the row space of A is the column space of
AT . This vector space is viewed as the set of all linear combinations of rows of A.
In symbols,

rowspace(A) = colspace
(
AT
)

= {w⃗ : w⃗ = AT y⃗ for some y⃗}
= Image

(
AT
)

= Range
(
AT
)
.

The row space of A and the null space of A live in Rn, but the column space of
A lives in Rm, a different dimension. The correct bases are obtained as follows.
If an alternative basis for rowspace(A) is suitable (rows of A not reported),
then bases for rowspace(A), colspace(A), nullspace(A) can all be found by
calculating just rref(A).

Null Space. Compute rref(A). Write out the general solution x⃗ to Ax⃗ = 0⃗,
where the free variables are assigned invented symbols t1, . . . , tk. Report
the basis for nullspace(A) as the list of partial derivatives ∂t1 x⃗, . . . , ∂tk x⃗,
which are special solutions of Ax⃗ = 0⃗.
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Column Space. Compute rref(A). Identify the lead variable columns i1, . . . ,
ik. Report the basis for colspace(A) as the list of columns i1, . . . , ik of A.
These are the pivot columns of A.

Row Space. Compute rref
(
AT
)
. Identify the lead variable columns i1, . . . , ik.

Report the basis for rowspace(A) as the list of rows i1, . . . , ik of A.

Alternatively, compute rref(A), then rowspace(A) has a basis consisting
of the list of nonzero rows of rref(A). The two bases obtained by these
methods are different, but equivalent.

Due to the identity nullity(A)+ rank(A) = n, where n is the column dimension
of A, the following results hold. Notation: dim(V ) is the dimension of vector
space V , which equals the number of elements in a basis for V . Subspaces
nullspace(A) = kernel(A) and colspace(A) = Image(A) have dual naming
conventions in the literature.

Theorem 5.46 (Dimension Identities)
(a) dim(nullspace(A)) = dim(kernel(A)) = nullity(A)

(b) dim(colspace(A)) = dim(Image(A)) = rank(A)

(c) dim(rowspace(A)) = dim(Image
(
AT
)
= rank(A)

(d) dim(kernel(A)) + dim(Image(A)) = column dimension of A

(e) dim(kernel(A)) + dim(kernel
(
AT )

)
= column dimension of A

Proof on page 425.

Equivalent Bases

Assume v⃗1, . . . , v⃗k are independent vectors in an abstract vector space V and let
S = span(v⃗1, . . . , v⃗n). Let u⃗1, . . . , u⃗ℓ be another set of independent vectors in
V .

Studied here is the question of whether or not u⃗1, . . . , u⃗ℓ is a basis for S. First of
all, all the vectors u⃗1, . . . , u⃗ℓ have to be in S, otherwise this set cannot possibly
span S. Secondly, to be a basis, the vectors u⃗1, . . . , u⃗ℓ must be independent. Two
bases for S must have the same number of elements, by Theorem 5.38. Therefore,
k = ℓ is necessary for a possible second basis of S. These remarks establish:

Theorem 5.47 (Equivalent Bases of a Subspace S)
Let v⃗1, . . . , v⃗k be independent vectors in an abstract vector space V . Let S be the
subspace of V consisting of all linear combinations of v⃗1, . . . , v⃗k.

A set of vectors u⃗1, . . . , u⃗ℓ in V is an equivalent basis for S if and only

(1) Each of u⃗1, . . . , u⃗ℓ is a linear combination of v⃗1, . . . , v⃗k.
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(2) The set u⃗1, . . . , u⃗ℓ is independent.

(3) The sets are the same size, k = ℓ.

Proof on page 425.

Equivalent Basis Test in Rn

Assume given two sets of fixed vectors v⃗1, . . . , v⃗k and u⃗1, . . . , u⃗ℓ, in the same
space Rn. A test is developed for equivalence of bases, in a form suited for use
in computer algebra systems and numerical laboratories.

Theorem 5.48 (Equivalence Test for Bases in Rn)
Define augmented matrices

B = ⟨v⃗1| · · · |v⃗k⟩, C = ⟨u⃗1| · · · |u⃗ℓ⟩, W = ⟨B|C⟩.
The relation

k = ℓ = rank(B) = rank(C) = rank(W )

implies

1. v⃗1, . . . , v⃗k is an independent set.

2. u⃗1, . . . , u⃗ℓ is an independent set.

3. span{v⃗1, . . . , v⃗k} = span{u⃗1, . . . , u⃗ℓ}

In particular, colspace(B) = colspace(C) and each set of vectors is an equivalent
basis for this vector space.

Proof on page 426.

Examples

Example 5.25 (Basis and Dimension)
Let S be the solution space in V = R4 of the system of equations

x1 + 2x2 = 0,
2x1 + 5x2 = 0,

x4 = 0,
0 = 0.

(2)

Find a basis for S, then report the dimension of S.

Solution: The solution divides into two distinct sections: 1 and 2 .

1 : Find the scalar general solution of system (2).

The toolkit: matrix combination, swap and multiply on the coefficient matrix. The last
frame algorithm finds the general solution. The details:
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1 2 0 0
2 5 0 0
0 0 0 1
0 0 0 0

 First frame.

1 2 0 0
0 1 0 0
0 0 0 1
0 0 0 0

 combo(1,2,-2).

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

 combo(2,1,-2). Last frame, this is the rref .

∣∣∣∣∣∣∣∣
x1 = 0,
x2 = 0,
x4 = 0,
0 = 0.

∣∣∣∣∣∣∣∣ Translate to scalar equations.

∣∣∣∣∣∣∣∣
x1 = 0,
x2 = 0,
x3 = t1,
x4 = 0.

∣∣∣∣∣∣∣∣ Scalar general solution, obtained from the last frame algorithm:
x1, x2, x4=lead, x3=free.

2 : Find the vector general solution of the system (2).

The plan is to use the answer from 1 and partial differentiation to display the vector
general solution x⃗.

∂t1 x⃗ =


0
0
1
0

 The special solution is the partial on symbol t1. Only one, because
there is only one invented symbol.

x⃗ = t1


0
0
1
0

 The vector general solution.

Therefore, solution space S = span(X⃗1), where X⃗1 is the special solution obtained
above. Because the spanning set is independent with one element, then dim(S) = 1.

Example 5.26 (Euclidean Spaces)
Let A be an m × n matrix with columns v⃗1, . . . , v⃗n and let b⃗ be a vector in Rm.
Write a mathematical proof for each of the following facts.

1 . If the equation Ax⃗ = b⃗ has a solution x⃗, then b⃗ belongs to the span of
the columns of A.

2 . If b⃗ belongs to the span of the columns of A, then the equation Ax⃗ = b⃗
has a solution x⃗.

3 . If Ax⃗ = b⃗ has a solution x⃗, then b⃗, v⃗1, . . . , v⃗n is a dependent set.
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Solution:
1 : Let equation Ax⃗ = b⃗ have a solution x⃗. Write the equation backwards, then express
the matrix product as a linear combination of the columns of A:

b⃗ = Ax⃗ = x1v⃗1 + · · ·+ xnv⃗n.

This proves b⃗ is a linear combination of the columns of A.

1 : Let b⃗ be a linear combination of the columns of A. We show Ax⃗ = b⃗ has a solution
x⃗. By hypothesis, there are constants x1, . . . , xn such that

b⃗ = x1v⃗1 + · · ·+ xnv⃗n.

Let x⃗ =

x1

...
xn

. Because Ax⃗ can be written as a linear combination of the columns of

A, then Ax⃗ = x1v⃗1 + · · ·+ xnv⃗n = b⃗, which proves that Ax⃗ = b⃗ has a solution x⃗.

3 : Assume Ax⃗ = b⃗ has a solution x⃗. Write the equation backwards, then express the
matrix product as a linear combination of the columns of A:

b⃗ = Ax⃗ = x1v⃗1 + · · ·+ xnv⃗n.

Define c0 = −1, c1 = x1, . . . , cn = xn. Then

c0⃗b+ c1v⃗1 + · · ·+ cnv⃗n = 0⃗.

The definition of dependence implies that vectors b⃗, v⃗1, . . . , v⃗n are dependent.

The details for 1 , 2 , 3 are complete.

Example 5.27 (Sequence Spaces)
Let V be the vector space of all real sequences {xn}∞n=1 with componentwise addition
and scalar multiplication. Let S be the subset of V defined by the equation x1 = 0.
Show that S is an infinite-dimensional subspace of V .

Solution: The space V is the abstraction of addition and scalar multiplication of Taylor
series

f(t) =

∞∑
n=1

xnt
n−1.

The subspace S corresponds to all Taylor series which satisfy f(0) = 0. We assume it is
known, or easily verified, that the larger set V is a vector space.

The subspace criterion applies to prove that S is a subspace of V . The omitted details
are constructed from a similar set of details for the R3 subspace defined by the linear
algebraic restriction equation x1 = 0.

The remainder of the proof establishes dim(S) =∞. These details produce a list L with
span(L) ⊂ S. It is false that S = span(L), even though span(L) is a subspace by the
span theorem. Further details are delayed to after dim(S) =∞ is established.

A standard method to find a basis L for S computes the partial derivatives on the
symbols used to define S. The symbols are x2, x3, . . .. We abuse notation and think of
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the sequences as column vectors with infinitely many components:

{xn}∞n=1 −→


x1

x2

x3

...

 .

Then S is the subset of all infinitely long column vectors with x1 = 0. Take partial
derivatives on x2, x3, . . . to obtain the candidate basis vectors:

0
1
0
0
...

 ,


0
0
1
0
...

 ,


0
0
0
1
...

 , · · ·

The list is infinite. Any finite subset of this list is independent. The intuition:

c1


0
1
0
0
...

+ c2


0
0
1
0
...

+ c3


0
0
0
1
...

 =


0
0
0
0
...


implies 

0
c1
c2
c3
...

 =


0
0
0
0
...


and therefore c1 = c2 = c3 = 0.

The list L of infinite sequences is correspondingly

0, 1, 0, 0, 0, . . .
0, 0, 1, 0, 0, . . .
0, 0, 0, 1, 0, . . .

...

and there are infinitely many.

The details are finished by the method of contradiction. Suppose a true hypothesis and
false conclusion. Then S has finite dimension n. Let Z be the span of a list L1 of
n + 1 vectors from the above list. A proof can be constructed, based upon the above
ideas, for independence of L1, and then dim(Z) = n+ 1. Because Z a subset of S, then
dim(Z) ≤ dim(S) = n, a contradiction to dim(Z) = n + 1. Therefore, S cannot have
finite dimension.

Conclusion: S is an infinite dimensional subspace of V .

Complaints. The preceding details do not prove Z is an independent set. The notation
with infinitely many components is certainly not standard notation, therefore the reader
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is advised not to use it to present proof details. But it is excellent for intuition, and that
is why you see it presented here, instead of more abstract details.

Is L a basis of S? The answer is NO.
Subspace W = span(L) is contained in subspace S. Then L is a basis for W . But L
is not a basis for S. For example, the Taylor series for f(t) = et − 1 corresponds to a
sequence in S with xk > 0 for k > 1, and this sequence cannot be written as a finite
linear combination of vectors selected from L.

Example 5.28 (Polynomial Spaces)
Let V be the vector space of all polynomials p(x). Find a basis and hence the
dimension of the subspace S defined by these conditions:

1. Polynomial p(x) has degree no larger than two.

2. The equation p(0) =
∫ 1
0 xp(x)dx is satisfied.

Solution: The answer is a list of independent polynomials in S: 2
3 + x, 1

2 + x2. Then
dim(S) = 2 = number of basis elements.

Details. Start by inventing symbols for the coefficients of p(x), for example p(x) =
a1 + a2x + a3x

2 because of requirement 1. Insert the p(x) expression into requirement
2, in order to find a relation for the three symbols a1, a2, a3.

p(0) =
∫ 1

0
xp(x)dx Requirement 2.

a1 =
∫ 1

0
(a1x+ a2x

2 + a3x
3)dx Insert for p(x) the expression a1 + a2x + a3x

2.
Then evaluate p(0) = a1.

a1 =
a1
2

+
a2
3

+
a3
4

Evaluate integral.

Rearrangement of the last equation gives the linear equation a1 −
2

3
a2 −

1

2
a3 = 0 in

unknowns a1, a2, a3. This linear system is in reduced echelon form. It has general
solution

a1 = 2
3 t1 +

1
2 t2,

a2 = t1,
a3 = t2,

(3)

with basis of solutions

v⃗1 =

 2
3

1
0

 , v⃗2 =

 1
2

0
1

 .

Translation to the corresponding polynomials, via the correspondencea1
a2
a3

 −→ p(x) = a1 + a2x+ a3x
2

gives the two polynomials

p1(x) =
2

3
+ x, p2(x) =

1

2
+ x2.

Why are these polynomials a basis for S?
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A sophisticated answer is that the correspondence used to find the two polynomials is a
one-to-one linear map from W = span(v⃗1, v⃗2) onto S, mapping v⃗1 → p1 and v⃗2 → p2.

A computational method will justify independence and span for the polynomials p1, p2.
Start with p(x) = a1+a2x+a3x

2 in S. Equation a1 = 2
3a2+

1
2a3 holds because p belongs

to S. Define t1 = a2, t2 = a3 (idea from equation (3)). Then all three equations in (3)
are satisfied. Expand:

t1p1 + t2p2 = a2

(
2

3
+ x

)
+ a3

(
1

2
+ x2

)
=

2a2
3

+
a3
2

+ a2x+ a3x
2

= a1 + a2x+ a3x
2.

This computation proves that each polynomial in S is also in span(p1, p2), written as
S ⊂ span(p1, p2). Because p1, p2 are already in S, then span(p1, p2) ⊂ S. Then S =
span(p1, p2), proving list p1, p2 spans S. The two polynomials p1, p2 are independent,
because one is not a scalar multiple of the other. Then p1, p2 is independent and spans,
which proves that p1, p2 is a basis for S and dim(S) = 2.

Example 5.29 (Differential Equations)
A given homogeneous 5th order linear differential equation has general solution
y(x) = c1 + c2x + c3x

2 + c4 cosx + c5 sinx. Find a basis for the solution space
S, a subspace of vector space V = C5(−∞,∞).

Solution: The answer is a list of 5 independent solutions in S: 1, x, x2, cosx, sinx.

Details. The general solution expression implies S is the span of the reported list. We
explain how to find the list. In the case of linear algebraic equations, we would take
partial derivatives on the invented symbols to determine the list of special solutions,
which is the basis. Here, we imagine c1 to c5 to be the invented symbols and take
partial derivatives to determine a list of special vectors which span S. Let y abbreviate
y(x) = c1 + c2x+ c3x

2 + c4 cosx+ c5 sinx.

∂c1y = 1, ∂c2y = x, ∂c3y = x2, ∂c4y = cosx, ∂c5y = sinx.

The five answers are Euler solution atoms (defined on page 386). They are independent
by Theorem 5.36, page 386. The general solution expression implies are solutions and
they span S. They are a basis for S, dimension five.

Alternative Independence Test. The Wronskian test applies with sample x = 0.
The Wronskian matrix is formed by rows which are successive derivatives of the list in
row 1:

W (x) =


1 x x2 cosx sinx
0 1 2x − sinx cosx
0 0 2 − cosx − sinx
0 0 0 sinx − cosx
0 0 0 cosx sinx

 .

The determinant of W (x) for sample x = 0 is |W (0)| = 2. The Wronskian test page 385
implies the list in row 1 of W (x) is independent.
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Example 5.30 (Largest Independent Subset)
Let V = C(−∞,∞) and consider this list of vectors in V :

1, x+ x2, 2 + x, 1 + x2, ex, x+ ex.

Find a largest independent subset of this list.

Solution: One answer of the many possible answers is the list

1, x+ x2, 2 + x, ex.

Details. Start with the nonzero vectors 1, x+ x2. They are not scalar multiples of each
other, hence they are independent. The initial independent subset is 1, x + x2. Vector
1 + x cannot be expressed as a combination of 1 and x+ x2, because such a relation

2 + x = c1(1) + c2(x+ x2)

requires both c1 and c2 nonzero, in which case we reach the impossibility that a linear
polynomial equals a quadratic polynomial. The vector is added to the list to extend the
initial independent subset to 1, x + x2, 2 + x. The different growth rate at x = ∞ of
exponential term ex explains why the independent subset is extended to 1, x+x2, 2+x, ex.

Why is x+ ex eliminated from the list? First, assemble two facts:

1. Vector x belongs to span(1, x+ x2, 2 + x).

2. Vectors x and ex belong to span(1, x+ x2, 2 + x, ex).

Then x + ex is in the span of the preceding vectors in the independent subset 1, x +
x2, 1 + x, ex. The final independent subset has been found.

Remark on the method. The pivot theorem does not directly apply to this example,
because the vector space V is not a space Rn of fixed vectors. The pivot theorem can
be used by reducing the original problem to an equivalent problem in some Rn. This
method is explored later, keyword isomorphism.

Example 5.31 (Pivot Theorem Method)
Extract a largest independent subset from the columns of the matrix

A =


0 1 2 0 1
0 1 1 0 0
0 2 1 0 −1
0 0 1 0 1
0 0 1 0 1

 .

Solution: The answer is columns 2,3.

Details. The quickest solution is to observe that column 5 equals column 3 minus
column 2, but columns 2,3 are nonzero and not scalar multiples of one another, therefore
they are independent. Zero columns do not add to an independent subset of columns,
therefore a largest independent subset of columns is obtained from columns 2,3.

A solution with computer implementation computes the pivot columns ofA to be columns
2,3, and then we report a largest independent set of columns of A to be the pivot columns
2, 3.
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The pivot columns of A are computed from the rref(A), which is found on paper using
the toolkit combo, swap, multiply. It is a one-step process with computer assist: enter
the matrix A and then write a command line for rref(A). The answer:

rref(A) =


0 1 0 0 −1
0 0 1 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Then the pivot columns are columns 2, 3 of matrix A. This is a largest independent
subset of the columns of A.
Sample Code, Computer Algebra System maple:

A:=Matrix([[0,1,2,0,1],[0,1,1,0,0],[0,2,1,0,-1],

[0,0,1,0,1],[0,0,1,0,1]]);

LinearAlgebra[ReducedRowEchelonForm](A);

Example 5.32 (Nullspace, Row Space, Column Space)
Compute the nullspace, column space and row space of the matrix

A =


0 1 0 1
1 1 1 0
0 0 0 0
1 1 1 0

 .

Solution: The answers appear below.

Details. The first computation is rref(A), which provides one answer for each of the
three subspaces. The steps:0 1 0 1

1 1 1 0
0 0 0 0
1 1 1 0

 Given matrix A.

1 1 1 0
0 1 0 1
0 0 0 0
1 1 1 0

 swap(1,2)

1 1 1 0
0 1 0 1
0 0 0 0
0 0 0 0

 combo(1,4,-1)

1 0 1 −1
0 1 0 1
0 0 0 0
0 0 0 0

 Begin back-substitution: combo(2,1,-1). Found rref(A).

The last frame algorithm is applied to find the general solution of Ax⃗ = 0⃗, using the
scalar form of the last frame:

x1 + x3 − x4 = 0,
x2 + x4 = 0,

0 = 0,
0 = 0.
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The lead variables are x1, x2 and the free variables x3, x4. Using invented symbols t1, t2
gives the general solution

x1 = −t1 + t2,
x2 = −t2,
x3 = t1,
x4 = t2.

Nullspace. The partial derivatives on the invented symbols, the special solutions, form
a basis for the nullspace of A:

nullspace(A) = kernel(A) = span



−1
0
1
0

 ,


1
−1
0
1


 .

Column Space. The column space of A is the span of the pivot columns of A, which
according to the computed rref are columns 1, 2 of A. Then

colspace(A) = span(pivot columns of A) = span



0
1
0
1

 ,


1
1
0
1


 .

Row space. One answer is the set of nonzero rows of rref(A). This gives the first
answer

rowspace(A) = span




1
0
1
−1

 ,


1
0
1
0


 .

A second answer is the set of pivot columns of AT , columns 1,2 of AT , found from

AT =

0 1 0 1
1 1 0 1
0 1 0 1
1 0 0 0

 , rref(AT ) =

1 0 0 0
0 1 0 1
0 0 0 0
0 0 0 0

 .

Then the second answer for the row space is

rowspace(A) = span



0
1
0
1

 ,


1
1
1
0


 .

Example 5.33 (Fundamental Subspaces)
Compute the nullspace and column space for both A and AT , given

A =


0 1 0 1
1 1 1 0
0 0 0 0
1 1 1 0

 .

The 4 computed subspaces are known as Gilbert Strang’s Four Fundamental Sub-
spaces.
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Solution: Let N1 = nullspace(A) = span(Strang’s special solutions for A) and C1 =
colspace(A) = span(pivot columns of A). Both N1 and C1 were computed in the pre-
vious example:

N1 = span



−1
0
1
0

 ,


1
−1
0
1


 , C1 = span



0
1
0
1

 ,


1
1
0
1


 .

Define
N2 = nullspace(AT )

= span(Strang’s special solutions of AT ),
C2 = colspace(AT )

= span(pivot columns of AT ).

The computation of C2 was completed in the previous example, which also computed

AT =

0 1 0 1
1 1 0 1
0 1 0 1
1 0 0 0

 , rref(AT ) =

1 0 0 0
0 1 0 1
0 0 0 0
0 0 0 0

 .

Then the general solution for AT x⃗ = 0⃗ is

x1 = 0, x2 = −t2, x3 = t1, x4 = t2, Strang’s special solutions =


0
0
1
0

 ,


0
−1
0
1

 .

The newly found answer for N2 plus the transcribed answer for C2, taken from the
previous example, give the equations

N2 = span



0
0
1
0

 ,


0
−1
0
1


 , C2 = span



0
1
0
1

 ,


0
1
0
0


 .

Example 5.34 (Equivalent Bases)
Let

v⃗1 =

0
1
3
2

 , v⃗2 =

 1
0
−1

2

 , u⃗1 =

1
3
4

 , u⃗2 =

3
1
0

 .

Verify that {v⃗1, v⃗2} and {u⃗1, u⃗2} are equivalent bases for a subspace S.

Solution:

Define B =

0 1
1 0
3
2 −

1
2

, C =

1 3
3 1
4 0

, W =

0 1 1 3
1 0 3 1
3
2 −

1
2 4 0

. Compute the rank of each

matrix to be 2. Apply the theorem.

Maple Illustration.
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v1:=<0,1,3/2>;v2:=<1,0,-1/2>; # Basis v1,v2

u1:=<1,3,4>;u2:=<3,1,0>;

B:=<v1|v2>; C:=<u1|u2>; W:=<B|C>;

# Test: ranks of B, C, W must equal 2

linalg[rank](B),linalg[rank](C),linalg[rank](W);

Example 5.35 (Equivalent Bases: False Test)
Does rref(B) = rref(C) imply that each column of C is a linear combination of
the columns of B? The answer is no. Supply a counter-example.

Solution: Define B =

 1 0
0 1
1 1

, C =

 1 1
0 1
1 0

.

Then rref(B) = rref(C) =

 1 0
0 1
0 0

, but column 2 of C is not a linear combination

of the columns of B. This means S1 = colspace(B) is not equal to S2 = colspace(C).
Geometrically, S1 and S2 are planes in R3 which intersect only along the line L through
the two points (0, 0, 0) and (1, 0, 1).

What went wrong? The culprit is the toolkit operation swap.

Details and Proofs

Proof of Theorem 5.38, Size of a Basis: The proof proceeds by the formal method
of contradiction. Assume the hypotheses are true and the conclusion is false. Then
p ̸= q. Without loss of generality, let the larger basis be listed first, p > q.

Because u⃗1, . . . , u⃗q is a basis of the vector space V , then there are coefficients {aij} such
that

v⃗1 = a11u⃗1 + · · · + a1qu⃗q,
v⃗2 = a21u⃗1 + · · · + a2qu⃗q,

...
v⃗p = ap1u⃗1 + · · · + apqu⃗q.

Let A = [aij ] be the p × q matrix of coefficients. Because p > q, then rref(AT ) has at
most q leading variables and at least p− q > 0 free variables.

Then the q × p homogeneous system AT x⃗ = 0⃗ has infinitely many solutions. Let x⃗ be a
nonzero solution of AT x⃗ = 0⃗.

The equation AT x⃗ = 0⃗ means
∑p

i=1 aijxi = 0 for 1 ≤ j ≤ p, giving the dependence
relation ∑p

i=1 xiv⃗i =
∑p

i=1 xi

∑q
j=1 aij u⃗j

=
∑q

j=1

∑p
i=1 aijxiu⃗j

=
∑q

j=1(0)u⃗j

= 0⃗

The independence of v⃗1, . . . , v⃗p is contradicted. Arrival of the contradiction implies
p = q. ■

Proof of Theorem 5.39, Basis of a finite dimensional vector space:
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1 Let S = span(L), a subspace of V . By independence, dim(S) = n. By hypothesis,
dim(V ) = n. Suppose v⃗ is in V . Let L equal the list of n + 1 elements v⃗1, . . . , v⃗n, v⃗.
Then L is contained in V . Space V has dimension n, which means that no independent
subset exists of size larger than n. So list L is not an independent set, which implies
that v⃗ is in S = span(L). Therefore S = V and L is a basis for V .

2 It suffices to prove under the given hypotheses that L is an independent set. If not,
then V = span(L) is spanned by less than n independent vectors. This implies the
dimension of V is less than n. A contradiction is reached, therefore L is an independent
set.

3 Choose any independent subset of L, call it w⃗1, . . . , w⃗q. If q = n, then we are done,

by 1 . Otherwise, the span of these q vectors is a subspace of V not equal to V . Choose
a vector v⃗q+1 not in the subspace. Then w⃗1, . . . , w⃗q+1 is an independent set in V . Repeat
the construction until the number of constructed vectors equals n. Then the constructed
list is a basis for V .

4 Assume S = span(L) = V . If L contains fewer than n independent vectors, then V
would have a basis of fewer than n elements, a violation of dim(V ) = n. Therefore, L
contains n independent vectors. It cannot have more than n, without violating dim(V ) =
n. Therefore, L contains exactly n independent vectors, which form a basis for V .

Proof of Theorem 5.40, Basis and Dimension in Rn: The first result is due to the
fact that all bases contain the same identical number of vectors. Because the columns of
the n× n identity are independent and span Rn, then all bases must contain n vectors,
exactly.

A list of n+1 vectors v⃗1, . . . , v⃗n+1 generates a subspace S = span(v⃗1, . . . , v⃗n+1). Because
S is contained in Rn, then S has a basis of n elements or less. Therefore, the list of n+1
vectors is dependent. ■

Proof of Theorem 5.41, The Pivot Theorem:

1 : To prove: the pivot columns of A are independent. Let v⃗1, . . . , v⃗k be the vectors
columns of matrix A. Let i1, . . . , ip be the pivot columns of A.

To apply the independence test, form the system of equations

c1v⃗i1 + · · ·+ cpv⃗ip = 0⃗

and solve for the constants c1, . . . , cp, independence confirmed if they are all zero. The
tool used to solve for the constants is the elementary matrix formula

A = M rref(A), M = E1E2 · · ·Er,

where E1, . . . , Er denote certain elementary matrices. Each elementary matrix is the
inverse of a swap, multiply or combination operation applied to A, in order to reduce
A to rref(A). Because elementary matrices are invertible, then M is invertible. The

equation A = ⟨v⃗1| · · · |v⃗k⟩ implies the pivot columns of A satisfy the equation

v⃗iq = Me⃗q, q = 1, . . . , p,

where e⃗1 = col(I, 1), . . . , e⃗p = col(I, p) are the consecutive columns of the identity
matrix which occupy the columns of the leading ones in rref(A). Then

0⃗ = c1v⃗i1 + · · ·+ cpv⃗ip
= M(c1e⃗1 + · · ·+ cpe⃗p)
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implies by invertibility of M that

c1e⃗1 + · · ·+ cpe⃗p = 0⃗.

Distinct columns of the identity matrix are independent (subsets of independent sets are
independent), therefore c1 = · · · = cp = 0. The independence of the pivot columns of A

is established. The proof of 1 is complete.

2 : To prove: a non-pivot column of A is a linear combination of the pivot columns of
A. Let column j of A be non-pivot. Let’s express this column as a linear combination of
the pivot columns of A.

Consider the homogeneous system Ax⃗ = 0⃗ and its equivalent system rref(A)x⃗ = 0⃗.
The pivot column subscripts determine the leading variables and the remaining column
subscripts determine the free variables. Then column j matches a free variable xj . Define
xj = 1. Define all other free variables to be zero. The lead variables are now determined

and the resulting nonzero vector x⃗ satisfies the homogeneous equation rref(A)x⃗ = 0⃗,
and hence also Ax⃗ = 0⃗. Translating this equation into a linear combination of columns
implies  ∑

pivot subscripts i

xiv⃗i

+ v⃗j = 0⃗

which in turn implies that column j of A is a linear combination of the pivot columns of
A. The proof of 2 is complete.

Proof of Theorem 5.42, The Pivot Method: According to the Pivot Theorem
5.41, the fixed vectors are independent. An attempt to add another column of A to
these chosen columns results in a non-pivot column being added. The Pivot Theorem
applies: the column added is dependent on the pivot columns. Therefore, the set of pivot
columns of A forms a largest independent subset of the columns of A. ■

Proof of Theorem 5.43, The Rank-Nullity Theorem: The rank of A is the number
of leading ones in rref(A). The nullity of A is the number of non-pivot columns in A.
The sum of the rank and nullity is the number of variables, which is the column dimension
n of A. Then the rank + nullity = n, as claimed. ■

Proof of Theorem 5.44, Basis for Ax⃗ = 0⃗: The system rref(A)x⃗ = 0⃗ has exactly
the same solution set as Ax⃗ = 0⃗. This system has a standard general solution x⃗ expressed
in terms of invented symbols t1, . . . , tk. Define X⃗j = ∂tj x⃗, j = 1, . . . , k. Then (1) holds.
It remains to prove independence, which means we are to solve for c1, . . . , ck in the
system

c1X⃗1 + · · ·+ ckX⃗k = 0⃗.

The left side is a solution x⃗ of Ax⃗ = 0⃗ in which the invented symbols have been assigned
values c1, . . . , ck. The right side implies each component of x⃗ is zero. Because the
standard general solution assigns invented symbols to free variables, the relation above
implies that each free variable is zero. But free variables have already been assigned
values c1, . . . , ck. Therefore, c1 = · · · = ck = 0. ■

Proof Theorem 5.45, Row Rank equals Column Rank: Let S be the set of all
linear combinations of columns of A. Then S = span(columns of A) = Image(A). The
non-pivot columns of A are linear combinations of pivot columns of A. Therefore, any
linear combination of columns of A is a linear combination of the p = rank(A) linearly
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independent pivot columns. By definition, the pivot columns form a basis for the vector
space S, and p = rank(A) = dim(S).

The span R of the rows of A is defined to be the set of all linear combinations of the
columns of AT .

Let q = rank(AT ) = dim(R). It will be shown that p = q, which proves the theorem.

Let rref(A) = E1 · · ·EkA where E1, . . . , Ek are elementary swap, multiply and combi-
nation matrices. The invertible matrix M = E1 · · ·Ek satisfies the equation rref(A) =
MA. Then:

rref(A)T = ATMT

Matrix rref(A)T has its first p columns independent and its remaining columns are zero.
Each nonzero column of rref(A)T is expressed on the right as a linear combination of the
columns of AT . Therefore, R contains p independent vectors. The number q = dim(R)
is the vector count in any basis for R. This implies p ≤ q.

The preceding display can be solved for AT , because MT is invertible, giving

AT = rref(A)T (MT )−1.

Then every column of AT is a linear combination of the p nonzero columns of rref(A)T .
This implies a basis for R contains at most p elements, i.e., q ≤ p.

Combining p ≤ q with q ≤ p proves p = q. ■

Proof of Theorem 5.46, Dimension Identities:

(a) dim(nullspace(A)) = dim(kernel(A)) = nullity(A)

The nullspace is the kernel, defined as the set of solutions to Ax⃗ = 0⃗ . This set
has basis Strang’s Special Solutions, the number of which matches the number of
free variables. That number is the nullity of A.

(b) dim(colspace(A)) = dim(Image(A)) = rank(A)

The column space has as a basis the pivot columns of A. The number of pivot
columns is the rank of A.

(c) dim(rowspace(A)) = dim(Image
(
AT
)
= rank(A)

The row space has a basis given by the pivot columns of AT . The number of
columns is the number of independent rows of A, or the row rank of A, which by
Theorem 5.45 equals the rank of A.

(d) dim(kernel(A)) + dim(Image(A)) = column dimension of A

This identity restates the Rank-Nullity Theorem 5.43.

(e) dim(kernel(A)) + dim(kernel
(
AT )

)
= column dimension of A

Apply part (d) to AT . If dim(kernel(A)) = dim(Image(AT )) then identity (e)
follows. Let r = dim(kernel(A)) and s = dim(Image(AT )). We must show r = s.
Already known is r = nullity(A), which equals the number of Strang’s Special
Solutions. Number s is the number of independent columns in AT , which equals
the row rank of A. Theorem 5.45 applies: s equals the row rank of A, which is the
rank of A, which is r. Then r = s, as claimed. ■

Proof of Theorem 5.47, Equivalent Bases: Vectors w⃗1, . . . , w⃗k are a basis for S
provided they are independent and span S. The three items from the theorem:
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(1) Each of u⃗1, . . . , u⃗ℓ is a linear combination of v⃗1, . . . , v⃗k.

(2) The set u⃗1, . . . , u⃗ℓ is independent.

(3) The sets are the same size, k = ℓ.

Sufficiency. Assume given vectors v⃗1, . . . , v⃗k which form a basis for S. Assume vectors
u⃗1, . . . , u⃗ℓ are also a basis for S. Then these vectors are independent and span S.
The spanning condition S = span(u⃗1, . . . , u⃗k) implies (1). Independence implies (2).
Theorem 5.38 applies: the two bases have the same size: k = ℓ, which proves (3) holds.

Necessity. Assume that vectors v⃗1, . . . , v⃗k form a basis for S. Assume given vectors
u⃗1, . . . , u⃗ℓ in S satisfying (1), (2), (3). We prove u⃗1, . . . , u⃗ℓ is a basis for S. Item (2)
implies the vectors u⃗1, . . . , u⃗ℓ are independent and (1) implies they span S, because v⃗1,
. . . , v⃗k span S. The definition of basis applies: vectors u⃗1, . . . , u⃗ℓ form a basis for S. ■

Proof of Theorem 5.48, Equivalence test for bases in Rn:
Because rank(B) = k, then the first k columns of W are independent. If some column
of C is independent of the columns of B, then W would have k+1 independent columns,
which violates k = rank(W ). Therefore, the columns of C are linear combinations of the
columns of B. The vector space U = colspace(C) is therefore a subspace of the vector
space V = colspace(B). Because each vector space has dimension k, then U = V. ■

Exercises 5.5 �

Basis and Dimension
Compute a basis and the report the dimen-
sion of the subspace S.

1. In R3, S is the solution space of∣∣∣∣ x1 + x3 = 0,
x2 + x3 = 0.

∣∣∣∣
2. In R4, S is the solution space of∣∣∣∣ x1 + 2x2 + x3 = 0,

x4 = 0.

∣∣∣∣
3. In R2, S = span(v⃗1, v⃗2). Vectors v⃗1, v⃗2

are columns of an invertible matrix.

4. Set S = span(v⃗1, v⃗2), in R4. The vec-
tors are columns in a 4 × 4 invertible
matrix.

5. Set S = span(sin2 x, cos2 x, 1), in the
vector space V of continuous functions.

6. Set S = span(x, x − 1, x + 2), in the
vector space V of all polynomials.

7. Set S = span(sinx, cosx), the solution
space of y′′ + y = 0.

8. Set S = span
(
e2x, e3x

)
, the solution

space of y′′ − 5y′ + 6y = 0.

Euclidean Spaces

9. Let A be 3×2. Why is it impossible for
the columns of A to be a basis for R3?

10. Let A be m × n. What condition on
indices m,n implies it is impossible for
the columns of A to be a basis for Rm?

11. Find a pairwise orthogonal basis forR3

which contains

 1
1
−1

.

12. Display a basis for R4 which contains

the independent columns of

0 1 2 0
0 1 1 0
0 2 1 0
0 0 1 0

.

13. Let S be a subspace of R10 of dimen-
sion 5. Insert a basis for S into an m×n
augmented matrix A. What are m and
n?

14. Suppose A and B are 3 × 3 matrices
and let C = AB. Assume the columns
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of A are not a basis for R3. Is there a
matrix B so that the columns of C form
a basis for R3?

15. The term Hyperplane is used for an
equation like x4 = 0, which in R4 de-
fines a subspace S of dimension 3. Find
a basis for S.

16. Find a 3-dimensional subspace S of R4

which has no basis consisting of columns
of the identity matrix.

Polynomial Spaces
Symbol V is the vector space of all polyno-
mials p(x). Given subspace S of V , find a
basis for S and dim(S).

17. The subset S of span(1, x, x2) is de-
fined by dp

dx (1) = 0.

18. The subset S of span(1, x, x2, x3) is de-
fined by p(0) = dp

dx (1) = 0.

19. The subset S of span(1, x, x2) is de-

fined by
∫ 1

0
p(x)dx = 0.

20. The subset S of span(1, x, x2, x3) is de-

fined by
∫ 1

0
xp(x)dx = 0.

Differential Equations
Find a basis for solution subspace S. As-
sume the general solution of the 4th order
linear differential equation is

y(x) = c1 + c2x+ c3e
x + c4e

−x.

21. Subspace S1 is defined by y(0) =
dy
dx (0) = 0.

22. Subspace S2 is defined by y(1) = 0.

23. Subspace S3 is defined by y(0) =∫ 1

0
y(x)dx.

24. Subspace S4 is defined by y(1) =

0,
∫ 1

0
y(x)dx = 0.

Largest Subset of Independent Vectors
Find a largest independent subset of the
given vectors.

25. The columns of

0 0 1 1
0 0 1 1
0 1 1 0
0 1 2 1

.

26. The columns of


3 1 2 0 5
2 1 1 0 4
3 2 1 0 7
1 0 1 0 1
3 2 1 0 7

.

27. The polynomials x, 1 + x, 1− x, x2.

28. The continuous functions x, ex, x+ex,
e2x.

Pivot Theorem Method
Extract a largest independent set from the
columns of the given matrix A. The answer
is a list of independent columns of A, called
the pivot columns of A.

29.

(
1 2 1
1 1 0
2 1 0

)

30.

0 1 2 1
0 1 1 0
0 2 1 0
0 0 1 1



31.


0 2 1 0 1
1 5 2 0 3
1 3 1 0 2
0 2 1 0 3
0 2 1 0 1



32.


0 0 2 1 0 1
0 1 5 2 0 3
0 1 3 1 0 2
0 2 4 1 0 3
0 0 2 1 0 1
0 2 4 1 0 3


Row and Column Rank
Justify by direct computation that
rank(A) = rank

(
AT
)
, which means that

the row rank equals the column rank.

33. A =

(
1 0 1
0 1 1
0 0 0

)

34. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


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Nullspace or Kernel
Find a basis for the nullspace of A, which
is also called the kernel of A.

35. A =

(
1 0 1
0 1 1
0 0 0

)

36. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Row Space
Find a basis for the row space of A. There
are two possible answers: (1) The nonzero
rows of rref(A), (2) The pivot columns of
AT . Answers (1) and (2) can differ wildly.

37. A =

(
1 0 1
0 1 1
0 0 0

)

38. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Column Space
Find a basis for the column space of A, in
terms of the columns of A. Normally, we
report the pivot columns of A.

39. A =

(
1 0 1
0 1 1
0 0 0

)

40. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Dimension Identities
Let A be an m×n matrix of rank r. Prove
the following dimension identities in Theo-
rem 5.46.

41. dim(nullspace(A)) = n− r

42. dim(colspace(A)) = r

43. dim(rowspace(A)) = r

44. The dimensions of nullspace(A) and
colspace(A) add to n.

Orthogonal Complement S⊥

Let S be a subspace of vector space V =
Rn. Define the Orthogonal comple-
ment by

S⊥ = {x⃗ : x⃗T y⃗ = 0, y⃗ in S}.(4)

45. Let V = R3 and let S be the xy-plane.
Compute S⊥. Answer: The z-axis.

46. Prove that S⊥ is a subspace, using the
Subspace Criterion.

47. Prove that the orthogonal complement

of S⊥ is S. In symbols,
(
S⊥)⊥ = S.

48. Prove that

V = {x⃗+ y⃗ : x⃗ ∈ S, y⃗ ∈ S⊥}.

This relation is called the Direct Sum
of S and S⊥.

Fundamental Theorem of Linear Alge-
bra
Let A be an m× n matrix.

49. Write a short proof:
Lemma. Any solution of Ax⃗ = 0⃗ is
orthogonal to every row of A.

50. Find the dimension of the kernel and
image for both A and AT . The four an-
swers use symbols m,n, rank(A). The
main tool is the rank-nullity theorem.

51. Prove
kernel(A) = Image

(
AT
)⊥

. Use Exer-
cise 49.

52. Prove
kernel

(
AT
)
= Image (A)

⊥
.

Fundamental Subspaces
The kernel and image of both A and AT are
called The Four Fundamental Subspaces by
Gilbert Strang. Let A denote an n × m
matrix.

53. Prove using Exercise 51:
kernel(A) = rowspace(A)⊥

54. Establish these four identities.
kernel(A) = Image

(
AT
)⊥

kernel
(
AT
)
= Image (A)

⊥

Image (A) = kernel(AT )⊥

Image
(
AT
)
= kernel(A)⊥
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Notation. kernel is null space, image is
column space, symbol ⊥ is orthogonal com-
plement: see equation (4).

Equivalent Bases
Test the given subspaces for equality.

55. S1 = span

1
1
0

 ,

1
1
1

,

S2 = span

 3
3
−1

 ,

1
1
1


56. S3 = span

1
0
1

 ,

1
2
1

,

S4 = span

1
0
0

 ,

0
1
0



57. S5 = span



1
0
1
1

 ,


1
2
1
1


,

S6 = span



1
0
1
1

 ,


0
1
0
1




58. S7 = span



2
1
1
1

 ,


1
2
1
1


,

S8 = span




1
−1
0
0

 ,


3
3
2
2



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PDF Sources

Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and
linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the textbook
are available in two volumes at Amazon Kindle Direct Publishing for Amazon’s
cost of printing and shipping. No author profit. Volume I chapters 1-7, ISBN
9798705491124, 661 pages. Volume II chapters 8-12, ISBN 9798711123651, 479
pages. Both paperbacks have extra pages of backmatter: background topics
Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with
hyperlink navigation to displayed equations and theorems. The header in an
exercise set has a blue hyperlink � to the same section in the solutions. The
header of the exercise section within a solution Appendix has a red hyperlink �
to the textbook exercises. Solutions are organized by chapter, e.g., Appendix 5
for Chapter 5. Odd-numbered exercises have a solution. A few even-numbered
exercises have hints and answers. Computer code can be mouse-copied directly
from the PDF. Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded
to a tablet, computer or phone to be viewed locally. After download, no internet
is required. Best for computer or tablet using a PDF viewer (Adobe Reader,
Evince) or web browser with PDF support (Chrome, FireFox). Smart phones
can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or
request an answer, click the link below, then create a GitHub issue and post.
Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues

430

https://math.utah.edu/~gustafso/indexUtahBookGG.html
https://github.com/ggustaf/github.io
https://gitlab.com/ggustaf/answers
https://github.com/ggustaf/github.io/issues

	Table of Contents
	Linear Algebra
	Vectors and Matrices
	Matrix Equations
	Determinants and Cramer's Rule
	Vector Spaces, Independence, Basis
	Basis, Dimension and Rank

	Paperback and PDF Sources

