
Contents

Table of Contents i

4 Numerical Methods with Applications 225

4.1 Solving y′ = F (x) Numerically 225

4.2 Solving y′ = f(x, y) Numerically 238

4.3 Error in Numerical Methods . 247

4.4 Computing π, ln 2 and e . 254

4.5 Earth to the Moon . 260

4.6 Skydiving . 267

4.7 Lunar Lander . 272

4.8 Comets . 277

4.9 Fish Farming . 284

Paperback and PDF Sources 293

i

Chapter 4

Numerical Methods with
Applications

Contents

4.1 Solving y′ = F (x) Numerically 225

4.2 Solving y′ = f(x, y) Numerically 238

4.3 Error in Numerical Methods 247

4.4 Computing π, ln 2 and e 254

4.5 Earth to the Moon 260

4.6 Skydiving . 267

4.7 Lunar Lander . 272

4.8 Comets . 277

4.9 Fish Farming . 284

4.1 Solving y′ = F (x) Numerically

Studied here is the creation of numerical tables and graphics for the solution of
the initial value problem

y′ = F (x), y(x0) = y0.(1)

To illustrate, consider the initial value problem

y′ = 3x2 − 1, y(0) = 2.

Quadrature gives the explicit symbolic solution

y(x) = x3 − x+ 2.

In Figure 1, evaluation of y(x) from x = 0 to x = 1 in increments of 0.1 gives the
xy-table, whose entries represent the dots for the connect-the-dots graphic.

225

4.1 Solving y′ = F (x) Numerically

x

yx y
0.0 2.000
0.1 1.901
0.2 1.808
0.3 1.727
0.4 1.664
0.5 1.625

x y
0.6 1.616
0.7 1.643
0.8 1.712
0.9 1.829
1.0 2.000

Figure 1. A table of xy-values for y = x3 − x+ 2.

The graphic represents table rows as dots, which are joined to make the connect-the-dots

graphic.

The interesting case is when quadrature in (1) encounters an integral
∫ x
x0

F (t)dt
that cannot be evaluated to provide an explicit symbolic equation for y(x). Nev-
ertheless, y(x) can be computed numerically.

Applied here are numerical integration rules from calculus: rectangular, trape-
zoidal and Simpson; see page 232 for a review of the three rules. The ideas lead
to the numerical methods of Euler, Heun and Runge-Kutta, which appear later
in this chapter.

How to Make an xy-Table

Given y′ = F (x), y(x0) = y0, a table of xy-values is created as follows. The
x-values are equally spaced a distance h > 0 apart. Each x, y pair in the table
represents a dot in the connect-the-dots graphic of the explicit solution

y(x) = y0 +

∫ x

x0

F (t)dt.

First table entry. The initial condition y(x0) = y0 identifies two constants x0,
y0 to be used for the first table pair X, Y . For example, y(0) = 2 identifies first
table pair X = 0, Y = 2.

Second table entry. The second table pair X, Y is computed from the first
table pair x0, y0 and a recurrence. The X-value is given by X = x0 + h,
while the Y -value is given by the numerical integration method being used, in
accordance with Table 1. The table is justified on page 235. See Example 4.1
page 228 for a rectangular rule example.

Table 1. Three Numerical Integration Methods.

Rectangular Rule Y = y0 + hF (x0)

Trapezoidal Rule Y = y0 +
h

2
(F (x0) + F (x0 + h))

Simpson’s Rule Y = y0 +
h

6
(F (x0) + 4F (x0 + h/2) + F (x0 + h)))

226

4.1 Solving y′ = F (x) Numerically

Third and higher table entries. They are computed by letting x0, y0 be the
current table entry, then the next table entry X, Y is found exactly as outlined
above for the second table entry.

It is expected, and normal, to compute the table entries using computer assist.
In simple cases, a calculator will suffice. If F is complicated or Simpson’s rule is
used, then a computer algebra system or a numerical laboratory is recommended.
See Example 4.2, page 229.

How to Make a Connect-The-Dots Graphic

To illustrate, consider the xy-pairs below, which are to represent the dots in the
connect-the-dots graphic.

(0.0, 2.000), (0.1, 1.901), (0.2, 1.808), (0.3, 1.727), (0.4, 1.664),

(0.5, 1.625), (0.6, 1.616), (0.7, 1.643), (0.8, 1.712), (0.9, 1.829),

(1.0, 2.000).

Hand drawing. The method, unchanged from high school mathematics courses,
is to plot the points as dots on an xy-coordinate system, then connect the dots
with line segments. See Figure 2.

x

y

Figure 2. A Connect-the-Dots Graphic.
A computer-generated graphic simulating a hand-drawn
graphic. The graphics engine draws straight lines between
dots.

Computer Algebra System Graphic

Computer algebra system maple. It has a primitive syntax especially made
for connect-the-dots graphics. Below, Dots is a list of xy-pairs.

Dots:=[0.0, 2.000], [0.1, 1.901], [0.2, 1.808],

[0.3, 1.727], [0.4, 1.664], [0.5, 1.625],

[0.6, 1.616], [0.7, 1.643], [0.8, 1.712],

[0.9, 1.829], [1.0, 2.000]:

plot([Dots]);

The plotting of points only can be accomplished by adding options into the plot
command: type=point and symbol=circle will suffice.

Computer algebra system xmaxima. The plot primitive can be invoked with
x-array and y-array, or else pairs as above:

227

4.1 Solving y′ = F (x) Numerically

Dots:[[0.0, 2.000], [0.1, 1.901], [0.2, 1.808],

[0.3, 1.727],[0.4, 1.664],[0.5, 1.625],

[0.6, 1.616], [0.7, 1.643],[0.8, 1.712],

[0.9, 1.829], [1.0,2.000]];

plot2d([discrete,Dots]);

Numerical Laboratory Graphic

Computer programs matlab, octave and scilab provide primitive plotting fa-
cilities, as follows.

X=[0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1]

Y=[2.000, 1.901, 1.808, 1.727, 1.664, 1.625,

1.616, 1.643, 1.712, 1.829, 2.000]

plot(X,Y)

Example 4.1 (Rectangular Rule)
Consider y′ = 3x2 − 2x, y(0) = 0. Apply the rectangular rule to make an xy-table
for y(x) from x = 0 to x = 2 in steps of h = 0.2. Graph the approximate solution
and the exact solution y(x) = x3 − x2 for 0 ≤ x ≤ 2.

Solution: The exact solution y = x3 − x2 is verified directly, by differentiation. It was
obtained by quadrature applied to y′ = 3x2 − 2x, y(0) = 0.

The first table entry is 0, 0. It is decoded from y(x0) = y0 as entry x0, y0, applied to the
present initial condition y(0) = 0. The first table row 0, 0 is used to obtain the second
table row X = 0.2, Y = 0 as follows.

x0 = 0, y0 = 0 The current table entry, row 1.

X = x0 + h The next table entry, row 2.

= 0.2, Use x0 = 0, h = 0.2.

Y = y0 + hF (x0) Rectangular rule, F (x) = 3x2 − 2x.

= 0 + 0.2(0). Use y0 = 0, h = 0.2, x0 = 0.

Row 3 starts with x0 = 0.2, y0 = 0 from row 2 to produce X = 0.4, Y = 0+0.2F (0.2) =
−0.056. The remaining 8 rows of the table are completed by calculator, following the
same pattern:

Table 2. Rectangular Rule Solution and Exact Values for y′ = 3x2 − 2x,
y(0) = 0 on 0 ≤ x ≤ 2, step size h = 0.2.

x y-rect y-exact
0.0 0.000 0.000
0.2 0.000 −0.032
0.4 −0.056 −0.096
0.6 −0.120 −0.144
0.8 −0.144 −0.128
1.0 −0.080 0.000

x y-rect y-exact
1.2 0.120 0.288
1.4 0.504 0.784
1.6 1.120 1.536
1.8 2.016 2.592
2.0 3.240 4.000

228

4.1 Solving y′ = F (x) Numerically

The xy-values from the table are used to obtain the comparison plot in Figure 3.

y Exact

x

Approximate
Figure 3. Comparison Plot.
Rectangular rule numerical solution and the ex-
act solution for y = x3 − x2 for y′ = 3x2 − 2x,
y(0) = 0.

Example 4.2 (Trapezoidal Rule)
Consider y′ = cosx+2x, y(0) = 0. Apply both the rectangular and trapezoidal rules
to make an xy-table for y(x) from x = 0 to x = π in steps of h = π/10. Compare
the two approximations in a graphic for 0 ≤ x ≤ π.

Solution: The exact solution y = sinx+ x2 is verified by differentiation. It will be seen
that the trapezoidal solution is graphically nearly identical to the exact solution.

The table will have 11 rows. The three columns are x, y-rectangular and y-trapezoidal.
The first table entry 0, 0, 0 is used to obtain the second table entry 0.1π, 0.31415927,
0.40516728 as follows.

Rectangular rule second entry.

Y = y0 + hF (x0) Rectangular rule.

= 0 + h(cos 0 + 2(0)) Use F (x) = cosx+ 2x, x0 = y0 = 0.

= 0.31415927. Use h = 0.1π = 0.31415927.

Trapezoidal rule second entry.

Y = y0 + 0.5h(F (x0) + F (x0 + h)) Trapezoidal rule.

= 0 + 0.05π(cos 0 + cosh+ 2h) Use x0 = y0 = 0, F (x) = cosx+ 2x.

= 0.40516728. Use h = 0.1π.

The remaining 9 rows of the table are completed by calculator, following the pattern
above for the second table entry. The result:

Table 3. Rectangular and Trapezoidal Solutions for y′ = cosx + 2x, y(0) = 0
on 0 ≤ x ≤ π, step size h = 0.1π.

x y-rect y-trap
0.000000 0.000000 0.000000
0.314159 0.314159 0.405167
0.628319 0.810335 0.977727
0.942478 1.459279 1.690617
1.256637 2.236113 2.522358
1.570796 3.122762 3.459163

x y-rect y-trap
1.884956 4.109723 4.496279
2.199115 5.196995 5.638458
2.513274 6.394081 6.899490
2.827433 7.719058 8.300851
3.141593 9.196803 9.869604

y

x

Figure 4. Comparison Plot.
Rectangular (solid) and trapezoidal (dotted) numerical
solutions for y′ = cosx + 2x, y(0) = 0 for h = 0.1π on
0 ≤ x ≤ π.

229

4.1 Solving y′ = F (x) Numerically

Computer algebra system. The maple implementation for Example 4.2 ap-
pears below. The code produces lists Dots1 and Dots2 which contain Rectangular
(left panel) and Trapezoidal (right panel) approximations.

Rectangular algorithm

Group 1, initialize.

F:=x->evalf(cos(x) + 2*x):

x0:=0:y0:=0:h:=0.1*Pi:

Dots1:=[x0,y0]:

Group 2, loop count = 10

for i from 1 to 10 do

Y:=y0+h*F(x0):

x0:=x0+h:y0:=evalf(Y):

Dots1:=Dots1,[x0,y0];

end do;

Group 3, plot.

plot([Dots1]);

Trapezoidal algorithm

Group 1, initialize.

F:=x->evalf(cos(x) + 2*x):

x0:=0:y0:=0:h:=0.1*Pi:

Dots2:=[x0,y0]:

Group 2, repeat 10 times

for i from 1 to 10 do

Y:=y0+h*(F(x0)+F(x0+h))/2:

x0:=x0+h:y0:=evalf(Y):

Dots2:=Dots2,[x0,y0];

end do;

Group 3, plot.

plot([Dots2]);

Example 4.3 (Simpson’s Rule)
Consider y′ = e−x2

, y(0) = 0. Apply both the rectangular and Simpson rules to make
an xy-table for y(x) from x = 0 to x = 1 in steps of h = 0.1. In the table, include

values for the exact solution y(x) =
√
π
2 erf(x). Compare the two approximations in

a graphic for 0.8 ≤ x ≤ 1.0.

Solution: The error function erf(x) = 2√
π

∫ x

0
e−t2dt is a library function available

in maple, mathematica, matlab and other computing platforms. It is known that the
integral cannot be expressed in terms of elementary functions.

The xy-table. There will be 11 rows, for x = 0 to x = 1 in steps of h = 0.1. There are
four columns: x, y-rectangular, y-Simpson, y-exact.

It will be shown how to obtain the first and second rows by calculator methods, for the
two algorithms rectangular and Simpson.

Rectangular rule table row 1.
Initial condition y(x0) = y0 gives row 1 table pair x0, y0. For initial condition y(0) = 0,
the pattern decodes into row 1 table pair x0 = 0, y0 = 0.

Rectangular rule table row 2. Label the second table pair (X,Y).

X = x0 + h Equal divisions.

Y = y0 + hF (x0) Rectangular rule.

= 0 + h(e0) Use F (x) = e−x2

, x0 = y0 = 0.

= 0.1. Use h = 0.1 and e0 = 1.

Simpson rule table row 1.
Identical for all rules, therefore table row 1 is x0 = 0, y0 = 0, copied from the rectangular
rule above.

Simpson rule row 2. Row 2 table pair is labeled (X,Y).

X = x0 + h Equal divisions.

230

4.1 Solving y′ = F (x) Numerically

Y = y0 +
h
6 (F (x0) + 4F (x0 + h/2) + F (x0 + h)) Simpson rule.

= 0 + 0.1
6 (e0 + 4e.5 + e.1) Use F (x) = e−x2

, x0 = y0 = 0,
h = 0.1.

= 0.09966770540. Calculator.

Exact solution table row 2.
The numerical work requires the tabulated function erf(x). The maple details:

x0:=0:y0:=0:h:=0.1: Given.
c:=sqrt(Pi)/2 Conversion factor.

Exact:=x->y0+c*erf(x): Exact solution y = y0 +
∫ x

0
e−t2dt.

Y3:=Exact(x0+h); Calculate exact answer.
Y3 := .09966766428

Table 4. Rectangular and Simpson Rule.
Numerical solutions for y′ = e−x2

, y(0) = 0 on 0 ≤ x ≤ π, step size h = 0.1.

x y-rect y-Simp y-exact
0.0 0.00000000 0.00000000 0.00000000
0.1 0.10000000 0.09966771 0.09966766
0.2 0.19900498 0.19736511 0.19736503
0.3 0.29508393 0.29123799 0.29123788
0.4 0.38647705 0.37965297 0.37965284
0.5 0.47169142 0.46128114 0.46128101
0.6 0.54957150 0.53515366 0.53515353
0.7 0.61933914 0.60068579 0.60068567
0.8 0.68060178 0.65766996 0.65766986
0.9 0.73333102 0.70624159 0.70624152
1.0 0.77781682 0.74682418 0.74682413

Rect

0.64

0.8

10.8

x

y

Simp
Figure 5. Comparison Plot.

Rectangular (dotted) and Simpson (solid)

numerical solutions for y′ = e−x2

, y(0) =
0 for h = 0.1 on 0.8 ≤ x ≤ 1.0.

Computer algebra system. The maple implementation for Example 4.3 appears
below. The code produces two lists Dots1 and Dots2 which contain Rectangular (left
panel) and Simpson (right panel) approximations.

231

4.1 Solving y′ = F (x) Numerically

Rectangular algorithm

Group 1, initialize.

F:=x->evalf(exp(-x*x)):

x0:=0:y0:=0:h:=0.1:

Dots1:=[x0,y0]:

Group 2, repeat 10 times

for i from 1 to 10 do

Y:=evalf(y0+h*F(x0)):

x0:=x0+h:y0:=Y:

Dots1:=Dots1,[x0,y0];

end do;

Group 3, plot.

plot([Dots1]);

Simpson algorithm

Group 1, initialize.

F:=x->evalf(exp(-x*x)):

x0:=0:y0:=0:h:=0.1:

Dots2:=[x0,y0]:

Group 2, loop count = 10

for i from 1 to 10 do

Y:=evalf(y0+h*(F(x0)+

4*F(x0+h/2)+F(x0+h))/6):

x0:=x0+h:y0:=Y:

Dots2:=Dots2,[x0,y0];

end do;

Group 3, plot.

plot([Dots2]);

Review of Numerical Integration

Reproduced here are calculus topics: the rectangular rule, the trapezoidal
rule and Simpson’s rule, which are tools for the numerical approximation of
an integral

∫ b
a F (x)dx. The approximations are valid for b − a small. Larger

intervals must be subdivided, then the rule applies to the small subdivisions.

Rectangular Rule

The approximation uses Euler’s idea of replacing the integrand
by a constant. The value of the integral is approximately the
area of a rectangle of width b− a and height F (a).

F

x
a b

y

∫ b

a
F (x)dx ≈ (b− a)F (a).(2)

Trapezoidal Rule

The rule replaces the integrand F (x) by a linear function L(x)
which connects the planar points (a, F (a)), (b, F (b)). The value
of the integral is approximately the area under the curve L,
which is the area of a trapezoid.

F

x
a b

y

L

∫ b

a
F (x)dx ≈ b− a

2
(F (a) + F (b)) .(3)

232

4.1 Solving y′ = F (x) Numerically

Simpson’s Rule

The rule replaces the integrand F (x) by a quadratic polyno-
mial Q(x) which connects the planar points (a, F (a)), ((a +
b)/2, F ((a + b)/2)), (b, F (b)). The value of the integral is ap-
proximately the area under the quadratic curve Q.

F

x

y

a b

Q

∫ b

a
F (x)dx ≈ b− a

6

(
F (a) + 4F

(
a+ b

2

)
+ F (b)

)
.(4)

Simpson’s Polynomial Rule

If Q(x) is constant, or a linear, quadratic or cubic polynomial, then∫ b

a
Q(x)dx =

b− a

6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
.(5)

Integrals of linear, quadratic and cubic polynomials can be evaluated exactly
using Simpson’s polynomial rule (5). See Example 4.4, page 233 and the proof
on page 234.

Remarks on Simpson’s Rule

The right side of (4) is exactly the integral ofQ(x), which is evaluated by equation
(5). The appearance of F instead of Q on the right in equation (4) is due to the
relations Q(a) = F (a), Q((a + b)/2) = F ((a + b)/2), Q(b) = F (b), which arise
from the requirement that Q connect three points along curve F .

The quadratic interpolation polynomial Q(x) is determined uniquely from the
three data points; see Quadratic Interpolant, page 234, for a formula for Q and
a derivation. It is interesting that Simpson’s rule depends only upon uniqueness
and not upon an actual formula for Q!

Example 4.4 (Polynomial Quadrature)
Apply Simpson’s polynomial rule (5) to verify

∫ 2
1 (x

3 − 16x2 + 4)dx = −355/12.

Solution: The application proceeds as follows:

I =
∫ 2

1
Q(x)dx Evaluate integral I usingQ(x) = x3−16x2+4.

=
2− 1

6
(Q(1) + 4Q(3/2) +Q(2)) Apply Simpson’s polynomial rule (5).

=
1

6
(−11 + 4(−229/8)− 52) Use Q(x) = x3 − 16x2 + 4.

= −355

12
. Equality verified.

233

4.1 Solving y′ = F (x) Numerically

Simpson’s Polynomial Rule Proof. Let Q(x) be a linear, quadratic or cubic polyno-
mial. It will be verified that∫ b

a

Q(x)dx =
b− a

6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
.(6)

If the formula holds for polynomial Q and c is a constant, then the formula also holds
for the polynomial cQ. Similarly, if the formula holds for polynomials Q1 and Q2, then
it also holds for Q1 + Q2. Consequently, it suffices to show that the formula is true
for the special polynomials 1, x, x2 and x3, because then it holds for all combinations
Q(x) = c0 + c1x+ c2x

2 + c3x
3.

Only the special case Q(x) = x3 will be treated here. The other cases are left to the
exercises. The details:

RHS =
b− a

6

(
Q(a) + 4Q

(
a+ b

2

)
+Q(b)

)
Evaluate the right side of equation
(6).

=
b− a

6

(
a3 +

1

2
(a+ b)3 + b3

)
Substitute Q(x) = x3.

=
b− a

6

(
3

2

)(
a3 + a2b+ ab2 + b3

)
Expand (a+ b)3. Simplify.

=
1

4

(
b4 − a4

)
, Multiply and simplify.

LHS =
∫ b

a
Q(x)dx Evaluate the left hand side (LHS) of

equation (6).

=
∫ b

a
x3dx Substitute Q(x) = x3.

=
1

4

(
b4 − a4

)
Evaluate.

= RHS. Compare with the RHS.

■

Quadratic Interpolant Q

Given a < b and the three data points (a, Y0), ((a+b)/2, Y1)), (b, Y2)), then there
is a unique quadratic curve Q(X) which connects the points, given by

Q(X) = Y0 + (4Y1 − Y2 − 3Y0)
X − a

b− a

+ (2Y2 + 2Y0 − 4Y1)
(X − a)2

(b− a)2
.

(7)

Proof: The term quadratic is meant loosely: it can be a constant or linear function as
well.

Uniqueness of the interpolant Q is established by subtracting two candidates to obtain a
polynomial P of degree at most two which vanishes at three distinct points. By Rolle’s
theorem, P ′ vanishes at two distinct points and hence P ′′ vanishes at one point. Writing

234

4.1 Solving y′ = F (x) Numerically

P (X) = c0 + c1X + c2X
2 shows c2 = 0 and then c1 = c0 = 0, or briefly, P ≡ 0. Hence

the two candidates are identical.

It remains to verify the given formula (7). The details are presented as two lemmas.1

The first lemma contains the essential ideas. The second simply translates the variables.

Lemma 4.1 Given y1 and y2, define A = y2 − y1, B = 2y1 − y2. Then the quadratic
y = x(Ax+B) fits the data items (0, 0), (1, y1), (2, 2y2).

Lemma 4.2 Given Y0, Y1 and Y2, define y1 = Y1 − Y0, y2 = 1
2 (Y2 − Y0), A = y2 − y1,

B = 2y1 − y2 and x = 2(X − a)/(b− a). Then quadratic Y (X) = Y0 + x(Ax+B) fits the
data items (a, Y0), ((a+ b)/2, Y1), (b, Y2).

To verify the first lemma, the formula y = x(Ax+ B) is tested to go through the given
data points (0, 0), (1, y1) and (2, 2y2). For example, the last pair is tested by the steps

y(2) = 2(2A+B) Apply y = x(Ax+B) with x = 2.

= 4y2 − 4y1 + 4y1 − 2y2 Use A = y2 − y1 and B = 2y1 − y2.

= 2y2. Therefore, the quadratic fits data item (2, 2y2).

The other two data items are tested similarly, details omitted here.

To verify the second lemma, observe that it is just a change of variables in the first
lemma, Y = Y0 + y. The data fit is checked as follows:

Y (b) = Y0 + y(2) Apply formulas Y (X) = Y0+y(x), y(x) = x(Ax+B)
with X = b and x = 2.

= Y0 + 2y2 Apply data fit y(2) = 2y2.

= Y2. The quadratic fits the data item (b, Y2).

The other two items are checked similarly, details omitted here. This completes the
proof of the two lemmas. The formula for Q is obtained from the second lemma as
Q = Y0 + Bx + Ax2 with substitutions for A, B and x performed to obtain the given
equation for Q in terms of Y0, Y1, Y2, a, b and X. ■

Justification of Table 1: The method of quadrature applied to y′ = F (x), y(x0) = y0
gives an explicit solution y(x) involving the integral of F . Specialize this solution formula
to x = x0 + h where h > 0. Then

y(x0 + h) = y0 +

∫ x0+h

x0

F (t)dt.

All three methods in Table 1 are derived by replacement of the integral above by the
corresponding approximation taken from the rectangular, trapezoidal or Simpson method
on page 232. For example, the trapezoidal method gives∫ x0+h

x0

F (t)dt ≈ h

2
(F (x0) + F (x0 + h)) ,

whereupon replacement into the formula for y gives the entry in Table 1 as

Y ≈ y(x0 + h) ≈ y0 +
h

2
(F (x0) + F (x0 + h)) .

This completes the justification of Table 1.

1What’s a lemma? It’s a helper theorem, used to dissect long proofs into short pieces.

235

4.1 Solving y′ = F (x) Numerically

Exercises 4.1 �

Connect-the-Dots
Make a numerical table of 6 rows and a
connect-the-dots graphic for exercises 1-10.

1. y = 2x+ 5, x = 0 to x = 1

2. y = 3x+ 5, x = 0 to x = 2

3. y = 2x2 + 5, x = 0 to x = 1

4. y = 3x2 + 5, x = 0 to x = 2

5. y = sinx, x = 0 to x = π/2

6. y = sin 2x, x = 0 to x = π/4

7. y = x ln |1 + x|, x = 0 to x = 2

8. y = x ln |1 + 2x|, x = 0 to x = 1

9. y = xex, x = 0 to x = 1

10. y = x2ex, x = 0 to x = 1/2

Rectangular Rule
Apply the rectangular rule to make an xy-
table for y(x) with 11 rows, h = 0.1. Graph
the approximate solution and the exact so-
lution. Follow example 4.1.

11. y′ = 2x, y(0) = 5.

12. y′ = 3x2, y(0) = 5.

13. y′ = 3x2 + 2x, y(0) = 4.

14. y′ = 3x2 + 4x3, y(0) = 4.

15. y′ = sinx, y(0) = 1.

16. y′ = 2 sin 2x, y(0) = 1.

17. y′ = ln(1 + x), y(0) = 1. Exact
(1 + x) ln |1 + x|+ 1− x.

18. y′ = 2 ln(1 + 2x), y(0) = 1. Exact
(1 + 2x) ln |1 + 2x|+ 1− 2x.

19. y′ = xex, y(0) = 1. Exact xex−ex+2.

20. y′ = 2x2e2x, y(0) = 4. Exact 2x2ex −
4xex + 4 ex.

Trapezoidal Rule
Apply the trapezoidal rule to make an xy-
table for y(x) with 6 rows and step size
h = 0.2. Graph the approximate solution
and the exact solution. Follow example 4.2.

21. y′ = 2x, y(0) = 1.

22. y′ = 3x2, y(0) = 1.

23. y′ = 3x2 + 2x, y(0) = 2.

24. y′ = 3x2 + 4x3, y(0) = 2.

25. y′ = sinx, y(0) = 4.

26. y′ = 2 sin 2x, y(0) = 4.

27. y′ = ln(1 + x), y(0) = 1. Exact
(1 + x) ln |1 + x|+ 1− x.

28. y′ = 2 ln(1 + 2x), y(0) = 1. Exact
(1 + 2x) ln |1 + 2x|+ 1− 2x.

29. y′ = xex, y(0) = 1. Exact xex−ex+2.

30. y′ = 2x2e2x, y(0) = 4. Exact 2x2ex −
4xex + 4 ex.

Simpson Rule
Apply Simpson’s rule to make an xy-table
for y(x) with 6 rows and step size h = 0.2.
Graph the approximate solution and the
exact solution. Follow example 4.3.

31. y′ = 2x, y(0) = 2.

32. y′ = 3x2, y(0) = 2.

33. y′ = 3x2 + 2x, y(0) = 3.

34. y′ = 3x2 + 4x3, y(0) = 3.

35. y′ = sinx, y(0) = 5.

36. y′ = 2 sin 2x, y(0) = 5.

37. y′ = ln(1 + x), y(0) = 1. Exact
(1 + x) ln |1 + x|+ 1− x.

38. y′ = 2 ln(1 + 2x), y(0) = 1. Exact
(1 + 2x) ln |1 + 2x|+ 1− 2x.

39. y′ = xex, y(0) = 1. Exact xex−ex+2.

40. y′ = 2x2e2x, y(0) = 4. Exact 2x2ex −
4xex + 4 ex.

236

4.1 Solving y′ = F (x) Numerically

Simpson’s Rule
The following exercises use formulas and
techniques found in the proof on page 234
and in Example 4.4, page 233.

41. Verify with Simpson’s rule (5) for cubic

polynomials the equality
∫ 2

1
(x3+16x2+

4)dx = 541/12.

42. Verify with Simpson’s rule (5) for cu-

bic polynomials the equality
∫ 2

1
(x3+x+

14)dx = 77/4.

43. Let f(x) satisfy f(0) = 1, f(1/2) =
6/5, f(1) = 3/4. Apply Simpson’s
rule with one division to verify that∫ 1

0
f(x)dx ≈ 131/120.

44. Let f(x) satisfy f(0) = −1, f(1/2) =
1, f(1) = 2. Apply Simpson’s rule with

one division to verify that
∫ 1

0
f(x)dx ≈

5/6.

45. Verify Simpson’s equality (5), assum-
ing Q(x) = 1 and Q(x) = x.

46. Verify Simpson’s equality (5), assum-
ing Q(x) = x2. Use college algebra
identity u3−v3 = (u−v)(u2+uv+v2).

Quadratic Interpolation
The following exercises use formulas and
techniques from the proof on page 234.

47. Verify directly that the quadratic poly-
nomial y = x(7 − 4x) goes through the
points (0, 0), (1, 3), (2,−2).

48. Verify directly that the quadratic poly-
nomial y = x(8 − 5x) goes through the
points (0, 0), (1, 3), (2,−4).

49. Compute the quadratic interpolation
polynomial Q(x) which goes through
the points (0, 1), (0.5, 1.2), (1, 0.75).

50. Compute the quadratic interpolation
polynomial Q(x) which goes through
the points (0,−1), (0.5, 1), (1, 2).

51. Verify the remaining cases in Lemma
4.1, page 235.

52. Verify the remaining cases in Lemma
4.2, page 235.

237

4.2 Solving y′ = f(x, y) Numerically

4.2 Solving y′ = f (x, y) Numerically

The numerical solution of the initial value problem

y′(x) = f(x, y(x)), y(x0) = y0(1)

is studied here by three basic methods. In each case, the current table entry x0,
y0 plus step size h is used to find the next table entry X, Y . Define X = x0 + h
and let Y be defined below, according to the algorithm selected (Euler, Heun,
RK4)2. The motivation for the three methods appears on page 244.

Euler’s Method

Y = y0 + hf(x0, y0).(2)

Heun’s Method

y1 = y0 + hf(x0, y0),

Y = y0 +
h

2
(f(x0, y0) + f(x0 + h, y1)) .

(3)

Runge-Kutta RK4 Method

k1 = hf(x0, y0),
k2 = hf(x0 + h/2, y0 + k1/2),
k3 = hf(x0 + h/2, y0 + k2/2),
k4 = hf(x0 + h, y0 + k3),

Y = y0 +
k1 + 2k2 + 2k3 + k4

6
.

(4)

The last quantity Y contains an average of six terms, where two appear in du-
plicate: (k1 + k2 + k2 + k3 + k3 + k4)/6. A similar average appears in Simpson’s
rule.

Relationship to Calculus Methods

If the differential equation (1) is specialized to the equation y′(x) = F (x), y(x0) =
y0, to agree with the previous section, then f(x, y) = F (x) is independent of y and
the three methods of Euler, Heun and RK4 reduce to the rectangular, trapezoidal
and Simpson rules.

2Euler is pronounced oiler. Heun rhymes with coin. Runge rhymes with run key.

238

4.2 Solving y′ = f(x, y) Numerically

To justify the reduction in the case of Heun’s method, start with the assumption
f(x, y) = F (x) and observe that by independence of y, variable y1 is never used.
Compute as follows:

Y = y0 +
h
2 (f(x0, y0) + f(x0 + h, y1)) Apply equation (3).

= y0 +
h
2 (F (x0) + F (x0 + h)). Use f(x, y) = F (x).

The right side of the last equation is exactly the trapezoidal rule.

Examples and Methods

Example 4.5 (Euler’s Method)
Solve y′ = −y + 1 − x, y(0) = 3 by Euler’s method for x = 0 to x = 1 in steps of
h = 0.1. Produce a table of values which compares approximate and exact solutions.
Graph both the exact solution y = 2− x+ e−x and the approximate solution.

Solution: Exact solution. The homogeneous solution is yh = ce−x. A particular
solution yp = 2 − x is found by the method of undetermined coefficients or the linear
integrating factor method. The general solution yh + yp is then y(x) = ce−x + 2 − x.
Initial condition y(0) = 3 gives c = 1 and then y = 2− x+ e−x.

Approximate Solution. The table of xy-values starts because of y(0) = 3 with the
two values X = 0, Y = 3. Throughout, f(x, y) = −y + 1 − x = RHS of the differential
equation. The X-values will be X = 0 to X = 1 in increments of h = 1/10, making 11
rows total. The Y -values are computed from

Y = y0 + hf(x0, y0) Euler’s method.

= y0 + h(−y0 + 1− x0) Use f(x, y) = −y + 1− x.

= 0.9y0 + 0.1(1− x0) Use h = 0.1.

The pair x0, y0 represents the two entries in the current row of the table. The next table
pair X, Y is given by X = x0+h, Y = 0.9y0+0.1(1−x0). It is normal in a computation
to do the second pair by hand, then use computing machinery to reproduce the hand
result and finish the computation of the remaining table rows. Here’s the second pair:

X = x0 + h Definition of X-values.

= 0.1, Substitute x0 = 0 and h = 0.1.

Y = 0.9y0 + 0.1(1− x0), The simplified recurrence.

= 0.9(3) + 0.1(1− 0) Substitute for row 1, x0 = 0, y0 = 3.

= 2.8. Second row found: X = 0.1, Y = 2.8.

By the same process, the third row is X = 0.2, Y = 2.61. This gives the xy-table below,
in which the exact values from y = 2− x+ e−x are also tabulated.

239

4.2 Solving y′ = f(x, y) Numerically

Table 5. Euler’s Method Applied with h = 0.1 on 0 ≤ x ≤ 1 to the Problem
y′ = −y + 1− x, y(0) = 3.

x y-Euler y-Exact
0.0 3.00000 3.0000000
0.1 2.80000 2.8048374
0.2 2.61000 2.6187308
0.3 2.42900 2.4408182
0.4 2.25610 2.2703200
0.5 2.09049 2.1065307

x y-Euler y-Exact
0.6 1.93144 1.9488116
0.7 1.77830 1.7965853
0.8 1.63047 1.6493290
0.9 1.48742 1.5065697
1.0 1.34868 1.3678794

See page 241 for maple code which automates Euler’s method. The approximate solution
graphed in Figure 6 is nearly identical to the exact solution y = 2− x+ e−x. The maple
plot code for Figure 6:

L:=[0.0,3.00000],[0.1,2.80000],[0.2,2.61000],[0.3,2.42900],

[0.4,2.25610],[0.5,2.09049],[0.6,1.93144],[0.7,1.77830],

[0.8,1.63047],[0.9,1.48742],[1.0,1.34868]:

plot({[L],2-x+exp(-x)},x=0..1);

10
1.3

3.0

10
1.3

3.0

1.4
10.8

1.7

Figure 6. Numerical
Solution of y′ = −y+1−x,
y(0) = 3
The Euler approximate so-
lution on [0, 1] is the black
curve on the left. The exact
solution y = 2 − x + e−x

is the upper red curve on
the right. The approximate
solution is the lower green
curve on the right.

Example 4.6 (Euler and Heun Methods)
Solve y′ = −y + 1 − x, y(0) = 3 by both Euler’s method and Heun’s method for
x = 0 to x = 1 in steps of h = 0.1. Produce a table of values which compares
approximate and exact solutions.

Solution: Table of xy-values. The Euler method was applied in Example 4.5. Heun’s
method will be documented here. The first pair is 0, 3. The second pair X, Y will be
computed by hand calculation below. Throughout, f(x, y) = −y + 1 − x = RHS of the
differential equation.

X = x0 + h Definition of X-values.

= 0.1, Substitute x0 = 0 and h = 0.1.

Y1 = y0 + hf(x0, y0) First Heun formula.

= y0 + 0.1(−y0 + 1− x0) Use f(x, y) = −y + 1− x.

= 2.8, Row 1 gives x0, y0. Same as the
Euler method value.

Y = y0 + h(f(x0, y0) + f(x0 + h, Y1))/2, Second Heun formula.

= 3 + 0.05(−3 + 1− 0− 2.8 + 1− 0.1) Use x0 = 0, y0 = 3, Y1 = 2.8.

240

4.2 Solving y′ = f(x, y) Numerically

= 2.805.

Therefore, the second row is X = 0.1, Y = 2.805. By the same process, the third row is
X = 0.2, Y = 2.619025. This gives the xy-table below, in which the Euler approximate
values and the exact values from y = 2 − x + e−x are also tabulated, taken from the
preceding example.

Table 6. Euler and Heun methods Applied with h = 0.1 on 0 ≤ x ≤ 1 to the
Problem y′ = −y + 1− x, y(0) = 3.

x y-Euler y-Heun y-Exact
0.0 3.00000 3.00000 3.0000000
0.1 2.80000 2.80500 2.8048374
0.2 2.61000 2.61903 2.6187308
0.3 2.42900 2.44122 2.4408182
0.4 2.25610 2.27080 2.2703200
0.5 2.09049 2.10708 2.1065307
0.6 1.93144 1.94940 1.9488116
0.7 1.77830 1.79721 1.7965853
0.8 1.63047 1.64998 1.6493290
0.9 1.48742 1.50723 1.5065697
1.0 1.34868 1.36854 1.3678794

Computer algebra system. The implementation for maple appears below. Part of
the interface is execution of a group, which is used here to divide the algorithm into
three distinct parts. The code produces a list L which contains Euler (left panel) or
Heun (right panel) approximations.

Euler algorithm

Group 1, initialize.

f:=(x,y)->-y+1-x:

x0:=0:y0:=3:h:=.1:L:=[x0,y0]:

Group 2, loop count = 10

for i from 1 to 10 do

Y:=y0+h*f(x0,y0):

x0:=x0+h:y0:=Y:L:=L,[x0,y0];

end do;

Group 3, plot.

plot([L]);

Heun algorithm

Group 1, initialize.

f:=(x,y)->-y+1-x:

x0:=0:y0:=3:h:=.1:L:=[x0,y0]

Group 2, loop count = 10

for i from 1 to 10 do

Y:=y0+h*f(x0,y0):

Y:=y0+h*(f(x0,y0)+f(x0+h,Y))/2:

x0:=x0+h:y0:=Y:L:=L,[x0,y0];

end do;

Group 3, plot.

plot([L]);

Numerical laboratory. The implementation of the Heun method for matlab, octave
and scilab will be described. The code is written into files f.m and heun.m, which must
reside in a default directory. Then [X,Y]=heun(0,3,1,10) produces the xy-table. The
graphic is made with plot(X,Y).

File f.m: function yp = f(x,y)

yp= -y+1-x;

241

4.2 Solving y′ = f(x, y) Numerically

File heun.m: function [X,Y] = heun(x0,y0,x1,n)

h=(x1-x0)/n;X=x0;Y=y0;

for i=1:n;

y1= y0+h*f(x0,y0);

y0= y0+h*(f(x0,y0)+f(x0+h,y1))/2;

x0=x0+h;

X=[X;x0];Y=[Y;y0];

end

Example 4.7 (Euler, Heun and RK4 Methods)
Solve the initial value problem y′ = −y+1−x, y(0) = 3 by Euler’s method, Heun’s
method and the RK4 method for x = 0 to x = 1 in steps of h = 0.1. Produce a
table of values which compares approximate and exact solutions.

Solution: Table of xy-values. The Euler and Heun methods were applied in Examples
4.5, 4.6. The Runge-Kutta method (RK4) will be illustrated here. The first pair is 0, 3.
The second pair X, Y will be computed by hand calculator.

X = x0 + h Definition of X-values.

= 0.1, Substitute x0 = 0 and h = 0.1.

k1 = hf(x0, y0) First RK4 formula.

= 0.1(−y0 + 1− x0) Use f(x, y) = −y + 1− x.

= −0.2, Row 1 supplies x0 = 0, y0 = 3.

k2 = hf(x0 + h/2, y0 + k1/2) Second RK4 formula.

= 0.1f(0.05, 2.9)

= −0.195,

k3 = hf(x0 + h/2, y0 + k2/2) Third RK4 formula.

= 0.1f(0.05, 2.9025)

= −0.19525,

k4 = hf(x0 + h, y0 + k3) Fourth RK4 formula.

= 0.1f(0.1, 2.80475)

= −0.190475,

Y = y0 +
1
6 (k1 + 2k2 + 2k2 + k4), Last RK4 formula.

= 3 + 1
6 (−1.170975) Use x0 = 0, y0 = 3, Y1 = 2.8.

= 2.8048375.

Therefore, the second row is X = 0.1, Y = 2.8048375. Continuing, the third row is
X = 0.2, Y = 2.6187309. The Euler and Heun steps were done in the previous example
and recorded in Table 6. We have computed by hand calculator the first three rows of
the computer-generated xy-table below, in which exact values y = 2− x+ e−x are also
tabulated.

242

4.2 Solving y′ = f(x, y) Numerically

Table 7. Euler, Heun and RK4 methods Applied with h = 0.1 on 0 ≤ x ≤ 1
to the Problem y′ = −y + 1− x, y(0) = 3.

x y-Euler y-Heun y-RK4 y-Exact
0.0 3.00000 3.00000 3.0000000 3.0000000
0.1 2.80000 2.80500 2.8048375 2.8048374
0.2 2.61000 2.61903 2.6187309 2.6187308
0.3 2.42900 2.44122 2.4408184 2.4408182
0.4 2.25610 2.27080 2.2703203 2.2703200
0.5 2.09049 2.10708 2.1065309 2.1065307
0.6 1.93144 1.94940 1.9488119 1.9488116
0.7 1.77830 1.79721 1.7965856 1.7965853
0.8 1.63047 1.64998 1.6493293 1.6493290
0.9 1.48742 1.50723 1.5065700 1.5065697
1.0 1.34868 1.36854 1.3678798 1.3678794

Computer algebra system. The implementation of RK4 for maple appears below, as
a modification of the code for Example 4.6.

Group 2, loop count = 10

for i from 1 to 10 do

k1:=h*f(x0,y0):

k2:=h*f(x0+h/2,y0+k1/2):

k3:=h*f(x0+h/2,y0+k2/2):

k4:=h*f(x0+h,y0+k3):

Y:=y0+(k1+2*k2+2*k3+k4)/6:

x0:=x0+h:y0:=Y:L:=L,[x0,y0];

end do;

In the special case f(x, y) = F (x) (independent of y), the computer code reduces to a

poor implementation of Simpson’s Rule for
∫ a+h

a
F (x)dx. The wasted effort is calculation

of k3, because k2, k3 are the same for f(x, y) = F (x).

Numerical laboratory. The implementation of RK4 for matlab, octave and scilab

appears below, to be added to the code for Example 4.6. The code is written into
file rk4.m, which must reside in a default directory. The xy-table is produced by
[X,Y]=rk4(0,3,1,10).

function [X,Y] = rk4(x0,y0,x1,n)

h=(x1-x0)/n;X=x0;Y=y0;

for i=1:n;

k1=h*f(x0,y0);

k2=h*f(x0+h/2,y0+k1/2);

k3=h*f(x0+h/2,y0+k2/2);

k4=h*f(x0+h,y0+k3);

y0=y0+(k1+2*k2+2*k3+k4)/6;

x0=x0+h;

X=[X;x0];Y=[Y;y0];

end

243

4.2 Solving y′ = f(x, y) Numerically

Motivation for the Three Methods

The entry point to the study is the equivalent integral equation

y(x) = y0 +

∫ x

x0

f(t, y(t))dt.(5)

The ideas can be explained by replacement of the integral in (5) by the rect-
angular, trapezoidal or Simpson rule. Unknown values of y that appear are
subsequently replaced by suitable approximations.

These approximations, originating with L. Euler, are known as predictors and
correctors. They are defined as follows from the integral formula

y(b) = y(a) +

∫ b

a
f(x, y(x))dx,(6)

by assuming the integrand is a constant C.

Predictor Y = y(a) + (b− a)f(a, Y ∗). Given an estimate or an exact value Y ∗

for y(a), then variable Y predicts y(b). The approximation assumes the
integrand in (6) constantly C = f(a, Y ∗).

Corrector Y = y(a) + (b− a)f(b, Y ∗∗). Given an estimate or an exact value
Y ∗∗ for y(b), then variable Y corrects y(b). The approximation assumes
the integrand in (6) constantly C = f(b, Y ∗∗).

Euler’s method. Replace in (5) x = x0 + h and apply the rectangular rule to
the integral. The resulting approximation is known as Euler’s method:

y(x0 + h) ≈ Y = y0 + hf(x0, y0).(7)

Heun’s method. Replace in (5) x = x0 + h and apply the trapezoidal rule to
the integral, to get

y(x0 + h) ≈ y0 +
h

2
(f(x0, y(x0) + f(x0 + h, y(x0 + h))) .

The troublesome expressions are y(x0) and y(x0+h). The first is y0. The second
can be estimated by the predictor y0+hf(x0, y0). The resulting approximation
is known as Heun’s method or the Modified Euler method:

Y1 = y0 + hf(x0, y0),

y(x0 + h) ≈ Y = y0 +
h

2
(f(x0, y0) + f(x0 + h, Y1)) .

(8)

RK4 method. Replace in (5) x = x0 + h and apply Simpson’s rule to the
integral. This gives y(x0+h) ≈ y0+S where the Simpson estimate S is given by

S =
h

6
(f(x0, y(x0) + 4f(M,y(M)) + f(x0 + h, y(x0 + h)))(9)

and M = x0 + h/2 is the midpoint of [x0, x0 + h]. The troublesome expressions
in S are y(x0), y(M) and y(x0 + h). The work of Runge and Kutta shows that

244

4.2 Solving y′ = f(x, y) Numerically

• Expression y(x0) is replaced by y0.

• Expression y(M) can be replaced by either Y1 or Y2, where Y1 = y0 +
0.5hf(x0, y0) is a predictor and Y2 = y0 + 0.5hf(M,Y1) is a corrector.

• Expression y(x0 + h) can be replaced by Y3 = y0 + hf(M,Y2). This re-
placement arises from the predictor y(x0 + h) ≈ y(M) + 0.5hf(M,y(M))
by using corrector y(M) ≈ y0+0.5hf(M,y(M)) and then replacing y(M)
by Y2.

The formulas of Runge-Kutta result by using the above replacements for y(x0),
y(M) and y(x0 + h), with the caveat that f(M,y(M)) gets replaced by the
average of f(M,Y1) and f(M,Y2). In detail,

6S = hf(x0, y(x0) + 4hf(M,y(M)) + hf(x0 + h, y(x0 + h))

≈ hf(x0, y0) + 4h
f(M,Y1) + f(M,Y2)

2
+ hf(x0 + h, Y3)

= k1 + 2k2 + 2k3 + k4

where the RK4 quantities k1, k2, k3, k4 are defined by (4), page 238. The resulting
approximation is known as the RK4 method. Justification uses multivariable
Taylor remainder formulas. See Burden-Faires [?] p 229 its references.

Exercises 4.2 �

Euler’s Method
Apply Euler’s method to make an xy-table
for y(x) with 11 rows and step size h = 0.1.
Graph the approximate solution and the
exact solution. Follow Example 4.5.

1. y′ = 2 + y, y(0) = 5. Exact y(x) =
−2 + 7ex.

2. y′ = 3 + y, y(0) = 5. Exact y(x) =
−3 + 8ex.

3. y′ = e−x + y, y(0) = 4. Exact y(x) =
− 1

2e
−x + 9

2e
x.

4. y′ = 3e−2x + y, y(0) = 4. Exact
y(x) = −e−2x + 5ex.

5. y′ = y sinx, y(0) = 1. Exact y(x) =
e1−cos x.

6. y′ = 2y sin 2x, y(0) = 1. Exact y(x) =
e1−cos 2x.

7. y′ = y/(1 + x), y(0) = 1. Exact
y(x) = 1 + x.

8. y′ = y(x)/(1 + 2x), y(0) = 1. Exact
y(x) =

√
1 + 2x.

9. y′ = yxex, y(0) = 1. Exact y(x) =
eu(x), u(x) = 1 + (x− 1)ex.

10. y′ = 2y(x2 + x)e2x, y(0) = 1. Exact
y(x) = eu(x), u(x) = x2e2x.

Heun’s Method
Apply Heun’s method to make an xy-table
for y(x) with 6 rows and step size h = 0.2.
Graph the approximate solution and the
exact solution. Follow Example 4.6.

11. y′ = 2 + y, y(0) = 5. Exact y(x) =
−2 + 7ex.

12. y′ = 3 + y, y(0) = 5. Exact y(x) =
−3 + 8ex.

13. y′ = e−x + y, y(0) = 4. Exact y(x) =
− 1

2e
−x + 9

2e
x.

14. y′ = 3e−2x + y, y(0) = 4. Exact
y(x) = −e−2x + 5ex.

245

4.2 Solving y′ = f(x, y) Numerically

15. y′ = y sinx, y(0) = 1. Exact y(x) =
e1−cos x.

16. y′ = 2y sin 2x, y(0) = 1. Exact y(x) =
e1−cos 2x.

17. y′ = y/(1 + x), y(0) = 1. Exact
y(x) = 1 + x.

18. y′ = y(x)/(1 + 2x), y(0) = 1. Exact
y(x) =

√
1 + 2x.

19. y′ = yxex, y(0) = 1. Exact y(x) =
eu(x), u(x) = 1 + (x− 1)ex.

20. y′ = 2y(x2 + x)e2x, y(0) = 1. Exact
y(x) = eu(x), u(x) = x2e2x.

RK4 Method
Apply the Runge-Kutta method (RK4) to
make an xy-table for y(x) with 6 rows and
step size h = 0.2. Graph the approximate
solution and the exact solution. Follow Ex-
ample 4.7.

21. y′ = 2 + y, y(0) = 5. Exact y(x) =
−2 + 7ex.

22. y′ = 3 + y, y(0) = 5. Exact y(x) =
−3 + 8ex.

23. y′ = e−x + y, y(0) = 4. Exact y(x) =
− 1

2e
−x + 9

2e
x.

24. y′ = 3e−2x + y, y(0) = 4. Exact
y(x) = −e−2x + 5ex.

25. y′ = y sinx, y(0) = 1. Exact y(x) =
e1−cos x.

26. y′ = 2y sin 2x, y(0) = 1. Exact y(x) =
e1−cos 2x.

27. y′ = y/(1 + x), y(0) = 1. Exact
y(x) = 1 + x.

28. y′ = y(x)/(1 + 2x), y(0) = 1. Exact
y(x) =

√
1 + 2x.

29. y′ = yxex, y(0) = 1. Exact y(x) =
eu(x), u(x) = 1 + (x− 1)ex.

30. y′ = 2y(x2 + x)e2x, y(0) = 1. Exact
y(x) = eu(x), u(x) = x2e2x.

Euler and RK4 Methods
Apply the Euler method and the Runge-
Kutta method (RK4) to make a table with
6 rows and step size h = 0.1. The table
columns are x, y1, y2, y where y1 is the Eu-
ler approximation, y2 is the RK4 approxi-
mation and y is the exact solution. Graph
y1, y2, y.

31. y′ = 1
2 (y − 2)2, y(0) = 3. Exact

y(x) =
2x− 6

x− 2
.

32. y′ = 1
2 (y − 3)2, y(0) = 4. Exact

y(x) =
3x− 8

x− 2
.

33. y′ = x3/y2, y(2) = 3. Exact y(x) =
1
2

3
√
6x4 + 120.

34. y′ = x5/y2, y(2) = 3. Exact y(x) =
1
2

3
√
4x6 − 40.

35. y′ = 2x(1 + y2), y(0) = 1. Exact
y(x) = tan(x2 + π/4).

36. y′ = 3y2/3, y(0) = 1. Exact y(x) =
(x+ 1)3.

37. y′ = 1 + y2, y(0) = 0. Exact y(x) =
tanx.

38. y′ = 1 + y2, y(0) = 1. Exact y(x) =
tan(x+ π/4).

246

4.3 Error in Numerical Methods

4.3 Error in Numerical Methods

Numerical Errors

Studied here are cumulative error, local error, roundoff error and truncation
error. The Landau order notation is introduced.

Cumulative Error

This error measurement is commonly used in displays like Table 8, in which
approximate and exact solution columns already appear. In such applications,
the cumulative error is the difference of the approximate and exact columns.
The exact solution refers to y(x) defined by y′ = f(x, y), y(x0) = y0 (x0 = 0,
y0 = 3 from line 1 of Table 8). The approximate solution refers to the y-values
computed by the algorithm (column 2 in Table 8). A precise definition of the
cumulative error E is given in terms of the exact solution y(x): given table
entry X, Y , then E = |y(X)− Y |.

Table 8. Cumulative Error.

A third column, cumulative error, is added to an existing xy-table of approximate and

exact solutions. The cumulative error is computed by the formula E = |y2 − y1|, where
y1 is the approximation and y2 is the exact value.

x y-Approx y-Exact Error
0.0 3.00000 3.0000000 0.0000000
0.1 2.80000 2.8048374 0.0048374
0.2 2.61000 2.6187308 0.0087308
0.3 2.42900 2.4408182 0.0118182

Local Error

This error is made by one algorithm step in going from table entry x1, y1 to the
next table entry x2, y2. It can be precisely defined in terms of the solution u(x)
to u′ = f(x, u), u(x1) = y1 by the formula

Eloc = |u(x2)− y2|.

Noteworthy is that u(x) ̸= y(x). To explain, the exact solution y(x) solves
y′ = f(x, y), y(x0) = y0 where x0, y0 is the first table entry, while u(x) solves
u′ = f(x, u) for a different set of initial conditions. In particular, an xy-table
of approximate and exact solution values, like Table 8, does not contain enough
information to determine the local error!

To illustrate the ideas, consider y′ = 2y, y(0) = 1 with exact solution y = e2x.

247

4.3 Error in Numerical Methods

Using Euler’s method with step size h = 0.1 gives the table

x y-approx y-exact

0 1 1

0.1 1.2 1.2214028

0.2 1.44 1.4918247

To find the local error for line 2 to line 3 requires solving u′ = 2u, u(0.1) = 1.2,
and then evaluating E = |u(0.2) − 1.4918247|. We find that u(x) = 1.2e2(x−0.1)

and then E = |1.2e0.2 − 1.4918247| = 0.026141390.

Roundoff Error

Also called rounding error, the roundoff error is the difference between the cal-
culated approximation of a number to finitely many digits and its exact value
in terms of infinitely many digits. The technical error is made by computers
due to the representation of floating point numbers, which limits the number of
significant digits in any computation. Integer arithmetic will normally generate
no errors, unless integer overflow occurs, i.e., x + y or xy can result in an
integer larger than the machine can represent. Floating point arithmetic usu-
ally generates errors because of results that must be rounded to give a machine
representation. To illustrate, 8-digit precision requires a = 1.00000005 be rep-
resented as â = 1.0000001 and b = 1.00000004 be represented as b̂ = 1. Then
2a + 2b = 4.00000018, which rounds to 4.0000002, while 2â + 2b̂ = 4.0000001.
The roundoff error in this example is 0.0000001.

For numerical methods, this translates into fewer roundoff errors for h = 0.1
than for h = 0.001, because the number of arithmetic operations increases 1000-
fold for h = 0.001. The payoff in increased accuracy expected for a change
in step size from h = 0.1 to h = 0.001 may be less than theoretically possible,
because the roundoff errors accumulate to cancel the effects of decreased step size.
Positive and negative roundoff errors tend to cancel, leading to situations where a
thousand-fold step size change causes only a thirty-fold change in roundoff error.

Truncation Error

It is typical in numerical mathematics to use formulas like π = 3.14159 or
e = 2.718. These formulas truncate the actual decimal expansion, causing
an error. Truncation is the term used for reducing the number of digits to
the right of the decimal point, by discarding all digits past a certain point, e.g.,
0.123456789 truncated to 5 digits is 0.12345. Common truncation errors are
caused by dropping higher order terms in a Taylor series, or by approximating a
nonlinear term by its linearization. In general, a truncation error is made when-
ever a formula is replaced by an approximate formula, in which case the formula
is wrong even if computed exactly.

248

4.3 Error in Numerical Methods

Landau Symbol

German mathematician Edmund Landau introduced a convenient notation to
represent truncation errors. If f and g are defined near h = 0, then f = O(g)
means that |f(h)| ≤ K|g(h)| as h → 0, for some constant K. The Landau
notation f = O(g) is vocalized as f equals big owe of g. The symbol O(hn)
therefore stands for terms of order hn. Taylor series expansions can then be
referenced succinctly, e.g., sinh = h + O(h3), eh = 1 + h + O(h2), and so on.
Some simple rules for the Landau symbol:

O(hn) +O(hm) = O(hmin(n,m)), O(hn)O(hm) = O(hn+m).

Finite Blowup of Solutions

The solution y = (1 − x)−1 for y′ = y2, y(0) = 1 exists on 0 ≤ x < 1, but
it becomes infinite at x = 1. The finite value x = 1 causes blowup of the y-
value. This event is called finite blowup. Attempts to solve y′ = y2, y(0) = 1
numerically will fail near x = 1, and these errors will propagate past x = 1, if the
numerical problem is allowed to be solved over an interval larger than 0 ≤ x < 1.

Unfortunately, finite blowup cannot be detected in advance from smoothness of
f(x, y) or the fact that the problem is applied. For example, logistic population
models y′ = y(a − by) typically have solutions with finite blowup, because the
solution y is a fraction which can have a zero denominator at some instant x
. On the positive side, there are three common conditions which guarantee no
finite blowup:

• A linear equation y′ + p(x)y = q(x) does not exhibit finite blowup on the
domain of continuity of p(x) and q(x).

• An equation y′ = f(x, y) does not exhibit finite blowup if f is continuous
and max |fy(x, y)| < ∞.

• An equation y′ = f(x, y) does not exhibit finite blowup if f is continuous
and f satisfies a Lipschitz condition |f(x, y1) − f(x, y2)| ≤ M |y1 − y2| for
some constant M > 0 and all x, y1, y2.

Numerical Instability

The equation y′ = y + 1 − x has solution y = x + cex. Attempts to solve for
y(0) = 1 will meet with failure, because errors will cause the numerical solution
to lock onto some solution with c ̸= 0 and small, which causes the numerical
solution to grow like ex. In this case, the instability was caused by the problem
itself.

Numerical instability can result even though the solution is physically stable.
An example is y′ = −50(y − sinx) + cosx, y(0) = 0. The general solution is

249

4.3 Error in Numerical Methods

y = ce−50x + sinx and y(0) = 0 gives c = 0. The negative exponential term
is transient and sinx is the unique periodic steady-state solution. The solution
is insensitive to minor changes in the initial condition. For popular numerical
methods, the value at x = 1 seems to depend greatly on the step size, as is shown
by Table 9.

Table 9. Cumulative Error at x = 1

Euler, Heun and RK4 Methods applied to y′ = −50(y − sinx) + cosx, y(0) = 0, for

various step sizes.

h = 0.1 h = 0.05 h = 0.02 h = 0.01
Euler 40701.23 0.183e7 0.00008 0.00004
Heun 0.328e12 0.430e14 0.005 0.00004
RK4 0.318e20 0.219e18 0.00004 0.000001

The sensitivity to step size is due to the algorithm and not to instability of the
problem.

Stiff Problems

The differential equation y′ = −50(y − sinx) + cosx, which has solution y =
ce−50x + sinx, is called stiff, a technical term defined precisely in advanced
numerical analysis references, e.g., Burden-Faires [?] and Cheney-Kincaid [?].
Characteristically, it means that the equation has a solution y(x) containing a
transient term y1(x) with derivative y′1(x) tending slowly to zero. For instance,
if y(x) has a term like y1(x) = ce−50x, then the derivative y′1(x) is approximately
50 times larger (y′1/y1 ≈ −50). Applications with transient terms of Landau
order e−at are stiff when a is large. Stiff problems occupy an active branch of
research in applied numerical analysis. Researchers call a problem stiff provided
certain numerical methods for it are unstable (e.g., inaccurate) unless the step
size is taken to be extremely small.

Cumulative Error Estimates

It is possible to give theoretical but not practical estimates for the cumulative
error in the case of Euler’s method, Heun’s method and the RK4 method. Applied
literature and computer documentation often contain references to these facts,
typically in the following succinct form.

• Euler’s method has order 1.

• Heun’s method has order 2.

• The Runge-Kutta method (RK4) has order 4.

250

4.3 Error in Numerical Methods

The exact meaning of these statements is given below in the theorems. The phrase
Order n in this context refers to Edmund Landau’s order notation O(hn). In
particular, order 2 means O(h2).

In practical terms, the statements measure the quality and accuracy of the al-
gorithms themselves, and hence establish an expectation of performance from
each algorithm. They do not mean that step size h = 0.001 gives three digits of
accuracy in the computed answer! The meaning is that repeated halving of the
step size will result in three digits of accuracy, eventually. Most persons half the
step size until the first three digits repeat, then they take this to be the optimal
step size for three-digit accuracy. The theorems don’t say that this practice is
correct, only that for some step size it is correct.

Theorem 4.1 (Euler’s Method Error)
Let the initial value problem y′ = f(x, y), y(x0) = y0 have a solution y(x) in the
region x0 ≤ x ≤ x0+H, |y−y0| ≤ K and assume that f , fx and fy are continuous.
Then the cumulative error E(x0 + nh) at step n, nh ≤ H, made by Euler’s method
using step size h satisfies E(x0 + nh) ≤ Ch. The constant C depends only on x0,
y0, H, K, f , fx and fy. See Cheney–Kinkaid [?] and Burden–Faires [?].

Theorem 4.2 (Heun Method Error)
Let the initial value problem y′ = f(x, y), y(x0) = y0 have a solution in the region
x0 ≤ x ≤ x0+H, |y−y0| ≤ K. Assume f is continuous with continuous partials to
order 3. Then the cumulative error E(x0+nh) at step n, nh ≤ H, made by Heun’s
method using step size h, satisfies E(x0 + nh) ≤ Ch2. The constant C depends
only on x0, y0, H, K, f and the partials of f to order 3.

Theorem 4.3 (RK4 Method Error)
Let the initial value problem y′ = f(x, y), y(x0) = y0 have a solution y(x) in the
region x0 ≤ x ≤ x0 + H, |y − y0| ≤ K. Assume f is continuous with continuous
partials to order 5. Then the cumulative error E(x0+nh) at step n, nh ≤ H, made
by the RK4 method using step size h, satisfies E(x0 + nh) ≤ Ch4. The constant C
depends only on x0, y0, H, K, f , and the partials of f to order 5.

The last two results are implied by local truncation error estimates for Taylor’s
method of order n (section 5.3 in Burden-Faires [?]).

Exercises 4.3 �

Cumulative Error
Make a table of 6 lines which has four
columns x, y1, y, E. Symbols y1 and y are
the approximate and exact solutions while
E = |y − y1| is the cumulative error. Find
y1 using Euler’s method in steps h = 0.1.

1. y′ = 2 + y, y(0) = 5. Exact solution

y(x) = −2 + 7ex.

2. y′ = 3 + y, y(0) = 5. Exact solution
y(x) = −3 + 8ex.

3. y′ = e−x + y, y(0) = 4. Exact solution
y(x) = − 1

2e
−x + 9

2e
x.

4. y′ = 3e−2x+y, y(0) = 4. Exact solution

251

4.3 Error in Numerical Methods

y(x) = −e−2x + 5ex.

Local Error
Make a table of 4 lines which has four
columns x, y1, y, E. Symbols y1 and y are
the approximate and exact solutions while
E is the local error. Find y1 using Euler’s
method in steps h = 0.1. The general so-
lution in each exercise is the solution for
y(0) = c.

5. y′ = 2 + y, y(0) = 5. General solution
y(x) = −2 + (2 + c)ex.

6. y′ = 3 + y, y(0) = 5. General solution
y(x) = −3 + (3 + c)ex.

7. y′ = 2e−x + y, y(0) = 4. General solu-
tion y(x) = −e−x + (1 + c)ex.

8. y′ = 3e−2x + y, y(0) = 4. General solu-
tion y(x) = −e−2x + (1 + c)ex.

Roundoff Error
Compute the roundoff error for y = 5a+4b.

9. Assume 3-digit precision. Let a =
0.0001 and b = 0.0003.

10. Assume 3-digit precision. Let a =
0.0002 and b = 0.0001.

11. Assume 5-digit precision. Let a =
0.000007 and b = 0.000003.

12. Assume 5-digit precision. Let a =
0.000005 and b = 0.000001.

Truncation Error
Find the truncation error.

13. Truncate x = 1.123456789 to 3 digits
right of the decimal point.

14. Truncate x = 1.123456789 to 4 digits
right of the decimal point.

15. Truncate x = 1.017171717 to 7 digits
right of the decimal point.

16. Truncate x = 1.03939393939 to 9 dig-
its right of the decimal point.

Guessing the Step Size
Do a numerical experiment using the given
method to estimate the number of steps
needed to generate a numerical solution
with 2-digit accuracy on 0 ≤ x ≤ 1. The
number reported, if increased, should not
change the 2-digit accuracy.

17. y′ = 2 + y, y(0) = 5. Exact solution
y(x) = −2 + 7ex. Euler’s method.

18. y′ = 3 + y, y(0) = 5. Exact solution
y(x) = −3 + 8ex. Euler’s method

19. y′ = e−x + y, y(0) = 4. Exact solution
y(x) = − 1

2e
−x + 9

2e
x. Euler’s method

20. y′ = 3e−2x + y, y(0) = 4. Exact so-
lution y(x) = −e−2x + 5ex. Euler’s
method.

21. y′ = y/(1 + x), y(0) = 1. Exact solu-
tion y(x) = 1 + x. Euler’s method.

22. y′ = y(x)/(1+2x), y(0) = 1. Exact so-
lution y(x) =

√
1 + 2x. Euler’s method.

23. y′ = 2 + y, y(0) = 5. Exact solution
y(x) = −2 + 7ex. Heun’s method.

24. y′ = 3 + y, y(0) = 5. Exact solution
y(x) = −3 + 8ex. Heun’s method

25. y′ = e−x + y, y(0) = 4. Exact solution
y(x) = − 1

2e
−x + 9

2e
x. Heun’s method

26. y′ = 3e−2x + y, y(0) = 4. Exact so-
lution y(x) = −e−2x + 5ex. Heun’s
method.

27. y′ = y/(1 + x), y(0) = 1. Exact solu-
tion y(x) = 1 + x. Heun’s method.

28. y′ = y(x)/(1+2x), y(0) = 1. Exact so-
lution y(x) =

√
1 + 2x. Heun’s method.

29. y′ = 2 + y, y(0) = 5. Exact solution
y(x) = −2 + 7ex. RK4 method.

30. y′ = 3 + y, y(0) = 5. Exact solution
y(x) = −3 + 8ex. RK4 method

31. y′ = e−x + y, y(0) = 4. Exact solution
y(x) = − 1

2e
−x + 9

2e
x. RK4 method

252

4.3 Error in Numerical Methods

32. y′ = 3e−2x + y, y(0) = 4. Exact solu-
tion y(x) = −e−2x+5ex. RK4 method.

33. y′ = y/(1 + x), y(0) = 1. Exact solu-

tion y(x) = 1 + x. RK4 method.

34. y′ = y(x)/(1 + 2x), y(0) = 1. Exact
solution y(x) =

√
1 + 2x. RK4 method.

253

4.4 Computing π, ln 2 and e

4.4 Computing π, ln 2 and e

The approximations π ≈ 3.1415927, ln 2 ≈ 0.69314718, e ≈ 2.7182818 can be
obtained by numerical methods applied to the following initial value problems:

y′ =
4

1 + x2
, y(0) = 0, π = y(1),(1)

y′ =
1

1 + x
, y(0) = 0, ln 2 = y(1),(2)

y′ = y, y(0) = 1, e = y(1).(3)

Equations (1)–(3) define the constants π, ln 2 and e through the corresponding
initial value problems.

The third problem (3) requires a numerical method like RK4, while the other
two can be solved using Simpson’s quadrature rule. It is a fact that RK4 reduces
to Simpson’s rule for y′ = F (x), therefore, for simplicity, RK4 can be used for
all three problems, ignoring speed issues. It will be seen that the choice of the
DE-solver algorithm (e.g., RK4) affects computational accuracy.

Computing π =
∫ 1

0 4(1 + x2)−1dx

The easiest method is Simpson’s rule. It can be implemented in virtually every
computing environment. The code below works in popular matlab-compatible
numerical laboratories. It modifies easily to other computing platforms, such as
maple and mathematica. To obtain the answer for π = 3.1415926535897932385
correct to 12 digits, execute the code on the right in Table 10, below the definition
of f .

Table 10. Numerical Integration of
∫ 1

0
4(1 + x2)−1dx.

Simpson’s rule is applied, using matlab-compatible code. About 50 subdivisions are

required.

function ans = simp(x0,x1,n,f)

h=(x1-x0)/n; ans=0;

for i=1:n;

ans1=f(x0)+4*f(x0+h/2)+f(x0+h);

ans=ans+(h/6)*ans1;

x0=x0+h;

end

function y = f(x)

y = 4/(1+x*x);

ans=simp(0,1,50,f)

It is convenient in some laboratories to display answers with printf or fprintf,
in order to show 12 digits. For example, scilab prints 3.1415927 by default, but
3.141592653589800 using printf.

The results checked in maple give π ≈ 3.1415926535897932385, accurate to 20
digits, regardless of the actual maple numerical integration algorithm chosen
(three were possible). The checks are invoked by evalf(X,20) where X is replaced
by int(4/(1+x*x),x=0..1).

254

4.4 Computing π, ln 2 and e

The results for an approximation to π using numerical solvers for differential
equations varied considerably from one algorithm to another, although all were
accurate to 5 rounded digits. A summary for odepack routines appears in Table
11, obtained from the scilab interface. A selection of routines supported by
maple appear in Table 12. Default settings were used with no special attempt to
increase accuracy.

The Gear routines refer to those in the 1971 textbook by C. F. Gear [?]. The
Livermore stiff solver lsode can be found in Hindmarsh [?]. The Runge-Kutta
routine of order 7-8 called dverk78 appears in the 1991 reference of Enright [?].
The multistep routines of Adams-Moulton and Adams-Bashforth are described
in standard numerical analysis texts, such as Cheney–Kinkaid [?]. Taylor series
methods are described in the 1972 publication Mathematical Software [?]. The
Fehlberg variant of RK4 is given in Forsythe, Malcolm and Moler [?].

Table 11. Differential Equation Numeric Solver Results

Package odepack applied to y′ = 4/(1 + x2), y(0) = 0.

Exact value of π 3.1415926535897932385 20 digits
Runge-Kutta 4 3.1415926535910 10 digits
Adams-Moulton lsode 3.1415932355842 6 digits
Stiff Solver lsode 3.1415931587318 5 digits
Runge-Kutta-Fehlberg 45 3.1416249508084 4 digits

Table 12. Differential Equation Numeric Solver Results

Some maple-supported routines, applied to the problem y′ = 4/(1 + x2), y(0) = 0.

Exact value of π 3.1415926535897932385 20 digits
Classical RK4 3.141592653589790 15 digits
Gear 3.141592653688446 11 digits
Dverk78 3.141592653607044 11 digits
Taylor Series 3.141592654 10 digits
Runge-Kutta-Fehlberg 45 3.141592674191119 8 digits
Multistep Gear 3.141591703761340 7 digits
Lsode stiff solver 3.141591733742521 6 digits

Computing ln 2 =
∫ 1

0 dx/(1 + x)

Like the problem of computing π, the formula for ln 2 arises from the method of
quadrature applied to y′ = 1/(1+x), y(0) = 0. The solution is y(x) =

∫ x
0 dt/(1+

t). Application of Simpson’s rule with 150 points gives ln 2 ≈ 0.693147180563800,
which agrees with the exact value ln 2 = 0.69314718055994530942 through 12
digits.

More robust numerical integration algorithms produce the exact answer for ln 2,
within the limitations of machine representation of numbers.

Differential equation methods, as in the case of computing π, have results accu-
rate to at least 5 digits, as is shown in Tables 13 and 14. Lower order methods

255

4.4 Computing π, ln 2 and e

such as classical Euler will produce results accurate to three digits or less.

Table 13. Differential Equation Numeric Solver

Results for odepack routines, applied to the problem y′ = 1/(1 + x), y(0) = 0.

Exact value of ln 2 0.69314718055994530942 20 digits
Adams-Moulton lsode 0.69314720834637 7 digits
Stiff Solver lsode 0.69314702723982 6 digits
Runge-Kutta 4 0.69314718056011 11 digits
Runge-Kutta-Fehlberg 45 0.69314973055488 5 digits

Table 14. Differential Equation Numeric Solver

Results for maple-supported routines, applied to the problem y′ = 1/(1 + x), y(0) = 0.

Exact value of ln 2 0.69314718055994530942 20 digits
Classical Euler 0.6943987430550621 2 digits
Classical Heun 0.6931487430550620 5 digits
Classical RK4 0.6931471805611659 11 digits
Gear 0.6931471805646605 11 digits
Gear Poly-extr 0.6931471805664855 11 digits
Dverk78 0.6931471805696615 11 digits
Adams-Bashforth 0.6931471793736268 8 digits
Adams-Bashforth-Moulton 0.6931471806484283 10 digits
Taylor Series 0.6931471806 10 digits
Runge-Kutta-Fehlberg 45 0.6931481489496502 5 digits
Lsode stiff solver 0.6931470754312113 7 digits
Rosenbrock stiff solver 0.6931473787603164 6 digits

Computing e from y′ = y, y(0) = 1

The initial attack on the problem uses classical RK4 with f(x, y) = y. After 300
steps, classical RK4 finds the correct answer for e to 12 digits: e ≈ 2.71828182846.
In Table 15, the details appear for how to accomplish the calculation using
matlab-compatible code. Corresponding maple code appears in Table 16 and
in Table 17. Additional code for octave and scilab appear in Tables 18 and 19.

256

4.4 Computing π, ln 2 and e

Table 15. Numerical Solution of y′ = y, y(0) = 1.

Classical RK4 with 300 subdivisions using matlab-compatible code.

function [x,y]=rk4(x0,y0,x1,n,f)

x=x0;y=y0;h=(x1-x0)/n;

for i=1:n;

k1=h*f(x,y);

k2=h*f(x+h/2,y+k1/2);

k3=h*f(x+h/2,y+k2/2);

k4=h*f(x+h,y+k3);

y=y+(k1+2*k2+2*k3+k4)/6;

x=x+h;

end

function yp = ff(x,y)

yp= y;

[x,y]=rk4(0,1,1,300,ff)

Table 16. Numerical Solution of y′ = y, y(0) = 1

using maple internal classical RK4 code.

de:=diff(y(x),x)=y(x):

ic:=y(0)=1:

Y:=dsolve({de,ic},y(x),
type=numeric,method=classical[rk4]):

Y(1);

Table 17. Numerical Solution of y′ = y, y(0) = 1

using classical RK4 with 300 subdivisions using maple-compatible code.

rk4 := proc(x0,y0,x1,n,f)

local x,y,k1,k2,k3,k4,h,i:

x=x0: y=y0: h=(x1-x0)/n:

for i from 1 to n do

k1:=h*f(x,y):k2:=h*f(x+h/2,y+k1/2):

k3:=h*f(x+h/2,y+k2/2):k4:=h*f(x+h,y+k3):

y:=evalf(y+(k1+2*k2+2*k3+k4)/6,Digits+4):

x:=x+h:

od:

RETURN(y):

end:

f:=(x,y)->y;

rk4(0,1,1,300,f);

A matlab m-file "rk4.m" is loaded into scilab-4.0 by getf("rk4.m") . Most

scilab code is loaded by using default file extension .sci , e.g., rk4scilab.sci

is a scilab file name. This code must obey scilab rules. An example appears
below in Table 18.

257

4.4 Computing π, ln 2 and e

Table 18. Numerical Solution of y′ = y, y(0) = 1

using classical RK4 with 300 subdivisions with scilab-4.0 code.

function

[x,y]=rk4sci(x0,y0,x1,n,f)

x=x0,y=y0,h=(x1-x0)/n

for i=1:n

k1=h*f(x,y)

k2=h*f(x+h/2,y+k1/2)

k3=h*f(x+h/2,y+k2/2)

k4=h*f(x+h,y+k3)

y=y+(k1+2*k2+2*k3+k4)/6

x=x+h

end

endfunction

function yp = ff(x,y)

yp= y

endfunction

[x,y]=rk4sci(0,1,1,300,ff)

The popularity of octave as a free alternative to matlab has kept it alive for
a number of years. Writing code for octave is similar to matlab and scilab,
however readers are advised to look at sample code supplied with octave before
trying complicated projects. In Table 19 can be seen some essential agreements
and differences between the languages. Versions of scilab after 4.0 have a matlab
to scilab code translator.

Table 19. Numerical Solution of y′ = y, y(0) = 1

using classical RK4 with 300 subdivisions with octave-2.1.

function

[x,y]=rk4oct(x0,y0,x1,n,f)

x=x0;y=y0;h=(x1-x0)/n;

for i=1:n

k1=h*feval(f,x,y);

k2=h*feval(f,x+h/2,y+k1/2);

k3=h*feval(f,x+h/2,y+k2/2);

k4=h*feval(f,x+h,y+k3);

y=y+(k1+2*k2+2*k3+k4)/6;

x=x+h;

endfor

endfunction

function yp = ff(x,y)

yp= y;

end

[x,y]=rk4oct(0,1,1,300,’ff’)

Exercises 4.4 �

Computing π
Compute π = y(1) from the initial value
problem y′ = 4/(1 + x2), y(0) = 0, us-
ing the given method. Number 3.14159
with 3-digit precision is the rounded num-
ber 3.142.

1. Use the Rectangular integration rule.
Determine the number of steps for 3-
digit precision.

2. Use the Rectangular integration rule.
Determine the number of steps for 4-
digit precision.

3. Use the Trapezoidal integration rule.
Determine the number of steps for 3-
digit precision.

4. Use the Trapezoidal integration rule.
Determine the number of steps for 4-

258

4.4 Computing π, ln 2 and e

digit precision.

5. Use Simpson’s rule. Determine the
number of steps for 5-digit precision.

6. Use Simpson’s rule. Determine the
number of steps for 6-digit precision.

7. Use a computer algebra system library
routine for RK4. Report the step size
used and the number of steps for 5-digit
precision.

8. Use a numerical workbench library rou-
tine for RK4. Report the step size used
and the number of steps for 5-digit pre-
cision.

Computing ln(2)
Compute ln(2) = y(1) from the initial value
problem y′ = 1/(1+x), y(0) = 0, using the
given method.

9. Use the Rectangular integration rule.
Determine the number of steps for 3-
digit precision.

10. Use the Rectangular integration rule.
Determine the number of steps for 4-
digit precision.

11. Use the Trapezoidal integration rule.
Determine the number of steps for 5-
digit precision.

12. Use the Trapezoidal integration rule.
Determine the number of steps for 6-
digit precision.

13. Use Simpson’s rule. Determine the
number of steps for 5-digit precision.

14. Use Simpson’s rule. Determine the
number of steps for 6-digit precision.

15. Use a computer algebra system library
routine for RK4. Report the step size
used and the number of steps for 5-digit
precision.

16. Use a numerical workbench library
routine for RK4. Report the step size
used and the number of steps for 5-digit
precision.

Computing e
Compute e = y(1) from the initial value
problem y′ = y, y(0) = 1, using the given
computer library routines. Report the ap-
proximate number of digits of precision at-
tained with a computer algebra system or
numerical workbench.

17. Improved Euler method, also known as
Heun’s method.

18. RK4 method.

19. RKF45 method.

20. Adams-Moulton method.

Stiff Differential Equation
The flame propagation equation y′ =
y2(1 − y) is known to be stiff for small
initial conditions y(0) > 0. Use classi-
cal rk4, then Runge-Kutta-Fehlberg rkf45
and finally a stiff solver to compute and
plot the solution y(t) in each case. Expect
rk4 to fail, no matter the step size. Both
rkf45 and a stiff solver will produce about
the same plot, but at different speeds.
Reference: matlab author Cleve Moler,
blogs.mathworks.com 2014.

21. y(0) = 0.01

22. y(0) = 0.005

23. y(0) = 0.001

24. y(0) = 0.0001

259

4.5 Earth to the Moon

4.5 Earth to the Moon

A projectile launched from the surface of the earth is attracted both by the earth
and the moon. The altitude r(t) of the projectile above the earth is known to
satisfy the initial value problem (see Technical Details page 264)

r′′(t) = − Gm1

(R1 + r(t))2
+

Gm2

(R2 −R1 − r(t))2
,

r(0) = 0, r′(0) = v0.

(1)

The unknown initial velocity v0 of the projectile is given in meters per second.
The constants in (1) are defined as follows.

G = 6.6726× 10−11 N-m2/kg2 Universal gravitation constant,
m1 = 5.975× 1024 kilograms Mass of the earth,
m2 = 7.36× 1022 kilograms Mass of the moon,
R1 = 6, 378, 000 meters Radius of the earth,
R2 = 384, 400, 000 meters Distance from the earth’s center to

the moon’s center.

The Jules Verne Problem

In his 1865 novel From the Earth to the Moon, Jules Verne asked what initial
velocity must be given to the projectile in order to reach the moon. The question
in terms of equation (1) becomes:

What minimal value of v0 causes the projectile to have zero net
acceleration at some point between the earth and the moon?

The projectile only has to travel a distance R equal to the surface-to-surface
distance between the earth and the moon. The altitude r(t) of the projectile
must satisfy 0 ≤ r ≤ R. Given v0 for which the net acceleration is zero, r′′(t) = 0
in (1), then the projectile has reached a critical altitude r∗, where gravitational
effects of the moon take over and the projectile will fall to the surface of the
moon.

Let r′′(t) = 0 in (1) and substitute r∗ for r(t) in the resulting equation. Then3

− Gm1

(R1 + r∗)2
+

Gm2

(R2 −R1 − r∗)2
= 0,

r∗ =
R2

1 +
√

m2/m1

−R1 ≈ 339, 620, 820 meters.
(2)

Using energy methods (see Technical details, page 264), it is possible to calculate
exactly the minimal earth-to-moon velocity v∗0 required for the projectile to just
reach critical altitude r∗:

v∗0 ≈ 11067.31016 meters per second.(3)
3Multiple values have been reported for the mass of the moon. Using m2 = 7.34767309×1022

gives r∗ ≈ 339, 649, 780 meters.

260

4.5 Earth to the Moon

A Numerical Experiment

The value v∗0 ≈ 11067.31016 in (3) will be verified experimentally. As part of this
experiment, the flight time is estimated.

Such a numerical experiment must adjust the initial velocity v0 in initial value
problem (1) so that r(t) increases from 0 to R. Graphical analysis of a solution
r(t) for low velocities v0 gives insight into the problem; see Figure 7.

The choice of numerical software solver makes for significant differences in this
problem. Initial work used the Livermore Laboratory numerical stiff solver for
ordinary differential equations (acronym lsode).

Computer algebra system maple has algorithms lsode or rosenbrock. The
dsolve options are method=lsode or stiff=true. Other stiff solvers of equal
quality can be used for nearly identical results. Experiments are necessary to
determine the required accuracy.

r

t

0

51427

206

Figure 7. Jules Verne Problem.
The solution r(t) of (1) for v0 = 1000. The
projectile rises to a maximum height of about
51, 427 meters, then it falls back to earth. The
trip time is 206 seconds.

The numerical experiment solves (1) using rosenbrock, then the solution is
graphed to see if the projectile falls back to earth (as in Figure 7) or if it reaches
an altitude near r∗ and then falls to the moon. The first experiment might use
velocity v0 = 1000 and trip time T = 210 (see Figure 7). In this experiment the
projectile falls back to earth. The projectile travels to the moon when the r-axis
of the graphic has maximum greater than r∗ ≈ 339, 620, 820 meters. The logic is
that r(t) > r∗ causes the gravitation effects of the moon to be strong enough to
force the projectile to fall to the moon.

In Table 20, find the maple initialization code group 1. In Table 21, group 2 is
executed a number of times, to refine estimates for the initial velocity v0 and the
trip time T . The graphics produced resemble Figure 7 or Figure 8. A successful
trip to the moon is represented in Figure 8, which uses v0 = 11068 meters per
second and T = 527000 seconds.

0 T
t

r

r∗
R

T = 527000
v0 = 11068

Figure 8. Experimental trip to
the moon.
The initial velocity is v0 = 24, 764 miles
per hour and the trip time is 147 hours.

261

4.5 Earth to the Moon

Table 20. Initialization Code in maple for the Trip to the Moon Numerical

Experiment.

Group 1 defines seven constants G, m1, m2, R1, R2, R3, R and computes values r∗ ≈
339, 620, 820 and v∗0 ≈ 11067.31016.

Group 1: Constants, rstar and v0star

G:=6.6726e-11: m1:=5.975e24: m2:=7.36e22:

R1:=6.378e6: R2:=3.844e8: R3:=1.74e6:

R:=R2-R1-R3:

ans:=[solve(-G*m1/(r+R1)^2 + G*m2/(R2-R1-r)^2=0,r)]:

rstar:=ans[1];

FF:=r->G*m1/(R1+r)+G*m2/(R2-R1-r):

v0star:=sqrt(2*(FF(0)-FF(rstar)));# v0star=11067.31016

Two utility functions are used: report(), makePlot().

Trip to the Moon Numerical Experiment

report:=proc() local s,hit;global R,rstar,v0,T;

printf("v0=%a, T=%.2f\n",v0,T);

printf("Moon at distance R=%.2f (blue)\n",R);

printf("Acceleration=0 at r=rstar (green)\n");

end proc:

makePlot:=proc() local opt;global T,Y,R,rstar,v0;

opt:=legend=["r(t)","R","rstar"],color=[red,blue,green],

title=sprintf("v0=%f",v0);

plot([Y(t),R,rstar],t=0..T,opt);

end proc:

Table 21. Iteration Code in maple for the Trip to the Moon Numerical

Experiment.

Group 2 plots two graphics for given v0 and T . A successful trip to the moon uses velocity

v0 > v∗0 ≈ 11067.31016. Curve Y (t) should cross r∗ ≈ 339, 620, 820 and Y (T) ≥ R must

hold.

Group 2: Iteration code

v0:=11068; # v0>v0star. Projectile falls to the moon.

T:=527000: # Guess the trip time T

de:=diff(r(t),t,t)=-G*m1/(r(t)+R1)^2+G*m2/(R2-R1-r(t))^2:

ic:=r(0)=0,D(r)(0)=v0:

NS:=numeric,stiff=true,output=listprocedure:

p:=dsolve([de,ic],r(t),NS); Y:=eval(r(t),p):

makePlot();report();

Plot done. Change v0, T and re-execute group 2.

262

4.5 Earth to the Moon

Two typical experiments appear below for v0 = 11000 (falls to earth) and v0 =
11068 (falls to the moon). They have a report like this:

v0=11068, T=527000.00

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)

r(401326.1134)=rstar=339620820.00

263

4.5 Earth to the Moon

Exact trip time. The time T for a trip with velocity v0 = 11068 can be
computed if an approximate value for the trip time is known.

Group 2 extra code for trip time T

v0:=11068;

fsolve(Y(t)=R,t=526000); # T = 5.274409891*10^5

Details for (1) and (3)

Technical details for (1): To derive (1), it suffices to write down a competition
between the Newton’s second law force relation mr′′(t) and the sum of two forces due to
gravitational attraction for the earth and the moon. Here, m stands for the mass of the
projectile.

Gravitational force for the earth. This force, by Newton’s universal gravitation law,
has magnitude

F1 =
Gm1m

R2
3

where m1 is the mass of the earth, G is the universal gravitation constant and R3 is the
distance from the projectile to the center of the earth: R3 = R1 + r(t).

Gravitational force for the moon. Similarly, this force has magnitude

F2 =
Gm2m

R2
4

where m2 is the mass of the moon and R4 is the distance from the projectile to the
center of the moon: R4 = R2 −R1 − r(t).

Competition between forces. The force equation is

mr′′(t) = −F1 + F2

due to the directions of the force vectors. Simplifying the relations and cancelling m
gives equation (1). ■

Technical details for (3): To justify the value for v0, multiply equation (1) by r′ and
integrate the new equation from t = 0 to t = t0 to get

1

2
(r′(t0))

2 = F (r(t0))− F (0) +
1

2
v20 , where

F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

(4)

264

4.5 Earth to the Moon

The expression F (r) is minimized when F ′(r) = 0 or else at r = 0 or r = R. The
right side of (1) is F ′(r), hence F (r) has unique critical point r = r∗. Compute F (0) =
62522859.35, F (r∗) = 1280168.523 and F (R) = 3864318.458. Then the minimum of
F (r) is at r = r∗ and F (r∗) ≤ F (r(t0)).

The left side of the first equality in (4) is nonnegative, therefore also the right side
is nonnegative, giving 1

2 v
2
0 ≥ F (0) − F (r(t0)). If the projectile ever reaches altitude

r∗, then r(t0) = r∗ is allowed and v0 ≥
√

2F (0)− 2F (r∗) ≈ 11067.31016. Restated,
v0 < 11067.31016 implies the projectile never reaches altitude r∗, hence it falls back to
earth. On the other hand, if v0 > 11067.31016, then by (4) and F (r∗) ≤ F (r) it follows
that r′(t) > 0 and therefore the projectile cannot return to earth. That is, r(t) = 0 for
some t > 0 can’t happen.

In summary, the least launch velocity v∗0 which allows r(t) = r∗ for some t > 0 is given
by the formulas

v∗0 =
√
2F (0)− 2F (r∗), F (r) =

Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

This completes the proof of equation (3). ■

Exercises 4.5 �

Critical Altitude r∗

The symbol r∗ is the altitude r(t) at which
gravitational effects of the moon take over,
causing the projectile to fall to the moon.

1. Justify from the differential equation
that r′′(t) = 0 at r∗ = r(t) implies the
first relation in (2):

Gm2

(R2 − R1 − r∗)2
−

Gm1

(R1 + r∗)2
= 0.

2. Solve symbolically the relation of the
previous exercise for r∗, to obtain the
second equation of (2):

r∗ =
R2

1 +
√
m2/m1

−R1.

3. Use the previous exercise and values for
the constants R1, R2, m1, m2 to obtain
the approximation

r∗ = 339, 649, 780 meters.

4. Determine the effect on r∗ for a one
percent error in measurement m2. Re-
place m2 by 0.99m2 and 1.01m2 in the
formula for r∗ and report the two esti-
mated critical altitudes.

Escape Velocity v∗0
The symbol v∗0 is the velocity r′(0) such
that limt→∞ r(t) = ∞, but smaller launch
velocities will cause the projectile to fall
back to the earth. Throughout, define

F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

5. Let v0 = r′(0), r∗ = r(t0). Derive the
formula

1

2
(r′(t0))

2 = F (r∗)− F (0) +
1

2
v20

which appears in the proof details.

6. Verify using the previous exercise that
r′(t0) = 0 implies

v∗0 =
√
2(F (0)− F (r∗)).

7. Verify by hand calculation that v∗0 ≈
11067.31016 meters per second.

8. Argue by mathematical proof that F (r)
is not minimized at the endpoints of the
interval 0 ≤ r ≤ R.

Numerical Experiments
Assume values given in the text for phys-
ical constants. Perform the given exper-
iment with numerical software on initial

265

4.5 Earth to the Moon

value problem (1), page 260. The cases
when v0 > v∗0 escape the earth, while the
others fall back to earth.

9. RKF45 solver, v0 = 11068, T = 515000.
Plot the solution on 0 ≤ t ≤ T .

10. Stiff solver, v0 = 11068, T = 515000.
Plot the solution on 0 ≤ t ≤ T .

11. RKF45 solver, v0 = 11067.2, T =
800000. Plot the solution on 0 ≤ t ≤ T .

12. Stiff solver, v0 = 11067.2, T = 800000.
Plot the solution on 0 ≤ t ≤ T .

13. RKF45 solver, v0 = 11067, T =
1000000. Plot the solution on 0 ≤ t ≤
T .

14. Stiff solver, v0 = 11067, T = 1000000.
Plot the solution on 0 ≤ t ≤ T .

15. RKF45 solver, v0 = 11066, T =
800000. Plot the solution on 0 ≤ t ≤ T .

16. Stiff solver, v0 = 11066, T = 800000.
Plot the solution on 0 ≤ t ≤ T .

17. RKF45 solver, v0 = 11065. Find a
suitable value T which shows that the
projectile falls back to earth, then plot
the solution on 0 ≤ t ≤ T .

18. Stiff solver, v0 = 11065. Find a suit-
able value T which shows that the pro-
jectile falls back to earth, then plot the
solution on 0 ≤ t ≤ T .

19. RKF45 solver, v0 = 11070. Find a
suitable value T which shows that the
projectile falls to the moon, then plot
the solution on 0 ≤ t ≤ T .

20. Stiff solver, v0 = 11070. Find a suit-
able value T which shows that the pro-
jectile falls to the moon, then plot the
solution on 0 ≤ t ≤ T .

266

4.6 Skydiving

4.6 Skydiving

A skydiver of 160 pounds jumps from a hovercraft at 15, 000 feet. The fall is
mostly vertical from zero initial velocity, but there are significant effects from
air resistance until the parachute opens at 5, 000 feet. The resistance effects are
determined by the skydiver’s clothing and body shape.

Velocity Model

Assume the skydiver’s air resistance is modeled in terms of velocity v by a force
equation

F (v) = av + bv2 + cv3.

The constants a, b, c are given by the formulas

a = 0.009, b = 0.0008, c = 0.0001.

In particular, the force F (v) is positive for v positive. According to Newton’s
second law, the velocity v(t) of the skydiver satisfies mv′(t) = mg − F (v). We
assume mg = 160 pounds and g ≈ 32 feet per second per second. The Velocity
model is

v′(t) = 32− 32

160

(
0.009v(t) + 0.0008v2(t) + 0.0001v3(t)

)
, v(0) = 0.

Distance Model

The distance x(t) traveled by the skydiver, measured from the hovercraft, is given
by the Distance model

x′(t) = v(t), x(0) = 0.

The velocity is expected to be positive throughout the flight. Because the
parachute opens at 5000 feet, at which time the velocity model must be replaced
the open parachute model (not discussed here), the distance x(t) increases with
time from 0 feet to its limiting value of 10000 feet. Values of x(t) from 10000 to
15000 feet make sense only for the open parachute model.

Terminal Velocity

The terminal velocity is an equilibrium solution v(t) = v∞ of the velocity
model, therefore constant v∞ satisfies

32− 32

160

(
0.009v∞ + 0.0008v2∞ + 0.0001v3∞

)
= 0.

267

4.6 Skydiving

A numerical solver is applied to find the value v∞ = 114.1 feet per second, which
is about 77.8 miles per hour. For the solver, we define f(v) = 32 − F (v) and
solve f(v) = 0 for v. Some maple details:

f:=v->32 - (32/160)*(0.009*v+0.0008*v^2+0.0001*v^3);

fsolve(f(v)=0,v); # 114.1032777 ft/sec

60*60*fsolve(f(v)=0,v)/5280; # 77.79768934 mi/hr

A Numerical Experiment

The Runge-Kutta method will be applied to produce a table which contains the
elapsed time t, the skydiver velocity v(t) and the distance traveled x(t), up until
the distance reaches nearly 10000 feet, whereupon the parachute opens.

The objective here is to illustrate practical methods of table production in a
computer algebra system or numerical laboratory. It is efficient in these compu-
tational systems to phrase the problem as a system of two differential equations
with two initial conditions.

System Conversion. The velocity substitution v(t) = x′(t) used in the velocity
model gives us two differential equations in the unknowns x(t), v(t):

x′(t) = v(t), v′(t) = g − 1

m
F (v(t)).

Define f(v) = g − (1/m)F (v). The path we follow is to execute the maple code
below, which produces the table that follows using the default Runge-Kutta-
Fehlberg algorithm.

eq:=32 - (32/160)*(0.009*v+0.0008*v^2+0.0001*v^3:

f:=unapply(eq,v);

de1:=diff(x(t),t)=v(t); de2:=diff(v(t),t)=f(v(t));

ic:=x(0)=0,v(0)=0;opts:=numeric,output=listprocedure:

p:=dsolve({de1,de2,ic},[x(t),v(t)],opts);

X:=eval(x(t),p); V:=eval(v(t),p);

fmt:="%10.2f %10.2f %10.2f\n";

seq(printf(fmt,5*t,X(5*t),V(5*t)),t=0..18);

t x(t) v(t) t x(t) v(t)

5.00 331.26 106.84 50.00 5456.76 114.10
10.00 892.79 113.97 55.00 6027.28 114.10
15.00 1463.15 114.10 60.00 6597.80 114.10
20.00 2033.67 114.10 65.00 7168.31 114.10
25.00 2604.18 114.10 70.00 7738.83 114.10
30.00 3174.70 114.10 75.00 8309.35 114.10
35.00 3745.21 114.10 80.00 8879.86 114.10
40.00 4315.73 114.10 85.00 9450.38 114.10
45.00 4886.25 114.10 90.00 10020.90 114.10

268

4.6 Skydiving

The table says that the flight time to parachute open at 10,000 feet is about 90
seconds and the terminal velocity 114.10 feet/sec is reached in about 15 seconds.

More accurate values for the flight time 89.82 to 10,000 feet and time 14.47 to
terminal velocity can be determined as follows.

fsolve(X(t)=10000,t,80..95);

fsolve(V(t)=114.10,t,2..20);

Alternate Method. Another way produce the table is to solve the velocity
model numerically, then determine x(t) =

∫ t
0 v(r)dr by numerical integration.

Due to accuracy considerations, a variant of Simpson’s rule is used, called the
Newton-cotes rule. The maple implementation of this idea follows.

The first method of conversion into two differential equations is preferred, even
though the alternate method reproduces the table using only the textbook ma-
terial presented in this chapter.

f:=unapply(32-(32/160)*(0.009*v+0.0008*v^2+0.0001*v^3),v);

de:=diff(v(t),t)=f(v(t)); ic:=v(0)=0;

q:=dsolve({de,ic},v(t),numeric,output=listprocedure);

V:=eval(v(t),q);

X:=u->evalf(Int(V,0..u,continuous,_NCrule));

fmt:="%10.2f %10.2f %10.2f\n";

seq(printf(fmt,5*t,X(5*t),V(5*t)),t=0..18);

Ejected Baggage

Much of what has been done here applies as well to an ejected parcel, instead
of a skydiver. What changes is the force equation F (v), which depends upon
the parcel exterior and shape. The distance model remains the same, but the
restraint 0 ≤ x ≤ 10000 no longer applies, since no parachute opens. We expect
the parcel to reach terminal velocity in 5 to 10 seconds and hit the ground at
that speed.

Variable Mass

The mass of a skydiver can be time-varying. For instance, the skydiver lets water
leak from a reservoir. This kind of problem assumes mass m(t), position x(t) and
velocity v(t) for the diver. Then Newton’s second law gives a position-velocity
model

x′(t) = v(t),

(m(t)v(t))′ = G(t, x(t), v(t)).

269

4.6 Skydiving

The problem is similar to rocket propulsion, in which expended fuel decreases the
in-flight mass of the rocket. Simplifying assumptions make it possible to present
formulas for m(t) and G(t, x, v), which can be used by the differential equation
solver.

Exercises 4.6 �

Terminal Velocity
Assume force F (v) = av + bv2 + cv3 and
g = 32, m = 160/g. Using computer as-
sist, find the terminal velocity v∞ from the
velocity model v′ = g − 1

mF (v), v(0) = 0.

1. a = 0, b = 0 and c = 0.0002.

2. a = 0, b = 0 and c = 0.00015.

3. a = 0, b = 0.0007 and c = 0.00009.

4. a = 0, b = 0.0007 and c = 0.000095.

5. a = 0.009, b = 0.0008 and c = 0.00015.

6. a = 0.009, b = 0.00075 and c = 0.00015.

7. a = 0.009, b = 0.0007 and c = 0.00009.

8. a = 0.009, b = 0.00077 and c = 0.00009.

9. a = 0.009, b = 0.0007 and c = 0.

10. a = 0.009, b = 0.00077 and c = 0.

Numerical Experiment
Let F (v) = av + bv2 + cv3 and g = 32.
Consider the skydiver problem mv′(t) =
mg − F (v) and constants m, a, b, c sup-
plied below. Using computer assist, apply
a numerical method to produce a table for
the elapsed time t, the velocity v(t) and
the distance x(t). The table must end at
x(t) ≈ 10000 feet, which determines the
flight time.

11. m = 160/g, a = 0, b = 0 and c =
0.0002.

12. m = 160/g, a = 0, b = 0 and c =
0.00015.

13. m = 130/g, a = 0, b = 0.0007 and
c = 0.00009.

14. m = 130/g, a = 0, b = 0.0007 and
c = 0.000095.

15. m = 180/g, a = 0.009, b = 0.0008 and
c = 0.00015.

16. m = 180/g, a = 0.009, b = 0.00075
and c = 0.00015.

17. m = 170/g, a = 0.009, b = 0.0007 and
c = 0.00009.

18. m = 170/g, a = 0.009, b = 0.00077
and c = 0.00009.

19. m = 200/g, a = 0.009, b = 0.0007 and
c = 0.

20. m = 200/g, a = 0.009, b = 0.00077
and c = 0.

Flight Time
Let F (v) = av + bv2 + cv3 and g = 32.
Consider the skydiver problem mv′(t) =
mg − F (v) with constants m, a, b, c sup-
plied below. Using computer assist, apply
a numerical method to find accurate values
for the flight time to 10,000 feet and the
time required to reach terminal velocity.

21. mg = 160, a = 0.0095, b = 0.0007 and
c = 0.000092.

22. mg = 160, a = 0.0097, b = 0.00075
and c = 0.000095.

23. mg = 240, a = 0.0092, b = 0.0007 and
c = 0.

24. mg = 240, a = 0.0095, b = 0.00075
and c = 0.

Ejected Baggage
Baggage of 45 pounds is dropped from a
hovercraft at 15, 000 feet. Assume air resis-
tance force F (v) = av + bv2 + cv3, g = 32

270

4.6 Skydiving

and mg = 45. Using computer assist, find
accurate values for the flight time to the
ground and the terminal velocity. Estimate
the time required to reach 99.95% of termi-
nal velocity.

25. a = 0.0095, b = 0.0007, c = 0.00009

26. a = 0.0097, b = 0.00075, c = 0.00009

27. a = 0.0099, b = 0.0007, c = 0.00009

28. a = 0.0099, b = 0.00075, c = 0.00009

271

4.7 Lunar Lander

4.7 Lunar Lander

A lunar lander goes through free fall to the surface of the moon, its descent
controlled by retrorockets that provide a constant deceleration to counter the
effect of the moon’s gravitational field.

The retrorocket control is supposed to produce a soft touchdown, which means
that the velocity v(t) of the lander is zero when the lander touches the moon’s
surface. To be determined:

H = height above the moon’s surface for retrorocket activation,

T = flight time from retrorocket activation to soft touchdown.

Investigated here are two models for the lunar lander problem. In both cases, it
is assumed that the lander has mass m and falls in the direction of the moon’s
gravity vector. The initial speed of the lander is assumed to be v0. The retro-
rockets supply a constant thrust deceleration g1. Either the fps or mks unit
system will be used. Expended fuel ejected from the lander during thrust will be
ignored, keeping the lander mass constantly m.

The distance x(t) traveled by the lander t time units after retrorocket activation
is given by

x(t) =

∫ t

0
v(r)dr, 0 ≤ t ≤ T.

Therefore, H and T are related by the formulas

v(T) = 0, x(T) = H.

Constant Gravitational Field

Let g0 denote the constant acceleration due to the moon’s gravitational field.
Assume given initial velocity v0 and the retrorocket thrust deceleration g1. Define
A = g1−g0, the effective thrust. Set the origin of coordinates at the center of mass
of the lunar lander. Let vector ı⃗ have tail at the origin and direction towards the
center of the moon. The force on the lander is mv′(t)⃗ı by Newton’s second law.
The forces mg0⃗ı and −mg1⃗ı add to −mA⃗ı. Force competition mv′(t)⃗ı = −mA⃗ı
gives the velocity model

mv′(t) = −mA, v(0) = v0.

This quadrature-type equation is solved routinely to give

v(t) = −At+ v0, x(t) = −A
t2

2
+ v0t.

The equation v(T) = 0 gives T = v0/A and H = x(T) = v20/(2A).

272

4.7 Lunar Lander

Numerical illustration. Let v0 = 1200 miles per hour and A = 30000 miles
per hour per hour. We compute values T = 1/25 hours = 2.4 minutes and
H = x(T) = 24 miles. A maple answer check appears below.

v0:=1200; A:=30000;

X:=t->-A*t^2/2+v0*t;

T:=(v0/A): (T*60.0).’min’,X(T).’miles’; # 2.4 min,24 miles

A1:=A*2.54*12*5280/100/3600/3600; # mks units 3.725333334

v1:=v0*12*2.54*5280/100/3600; # mks units 536.448

evalf(convert(X(T),units,miles,meters)); # 38624.256

The constant field model predicts that the retrorockets should be turned on 24
miles above the moon’s surface with soft landing descent time of 2.4 minutes. It
turns out that a different model predicts that 24 miles is too high, but only by a
small amount. We investigate now this alternative model, based upon replacing
the constant gravitational field by a variable field.

Variable Gravitational Field

The system of units will be the mks system. Assume the lunar lander is located
at position P above the moon’s surface. Define symbols:

m = mass of the lander in kilograms,

M = 7.35× 1022 kilograms is the mass of the moon,

R = 1.74× 106 meters is the mean radius of the moon,

G = 6.6726× 10−11 is the universal gravitation constant, in mks units,

H = height in meters of position P above the moon’s surface,

v0 = lander velocity at P in meters per second,

g0 = GM/R2 = constant acceleration due to the moon’s gravity in meters per
second per second,

g1 = constant retrorocket thrust deceleration in meters per second per second,

A = g1 − g0 = effective retrorocket thrust deceleration in meters per second per
second, constant field model,

t = time in seconds,

x(t) = distance in meters from the lander to position P ,

v(t) = x′(t) = velocity of the lander in meters per second.

273

4.7 Lunar Lander

The project is to find the height H above the moon’s surface and the descent
time T for a soft landing, using fixed retrorockets at time t = 0.

The origin of coordinates will be P and ı⃗ is directed from the lander to the moon.
Then x(t)⃗ı is the lander position at time t. The initial conditions are x(0) = 0,
v(0) = v0. Let g0(t) denote the variable acceleration of the lander due to the
moon’s gravitational field. Newton’s universal gravitation law applied to point
masses representing the lander and the moon gives the expression

Force = mg0(t)⃗ı =
GmM

(R+H − x(t))2
ı⃗.

The force on the lander is mx′′(t)⃗ı by Newton’s second law. The force is also
mg0(t)⃗ı−mg1⃗ı. Force competition gives the second order distance model

mx′′(t) = −mg1 +
mMG

(R+H − x(t))2
, x(0) = 0, x′(0) = v0.

The technique from the Jules Verne problem applies: multiply the differential
equation by x′(t) and integrate from t = 0 to the soft landing time t = T . The
result:

(x′(t))2

2

∣∣∣∣t=T

t=0

= −g1(x(T)− x(0)) +
GM

R+H − x(t)

∣∣∣∣t=T

t=0

.

Using the relations x(0) = 0, x′(0) = v0, x′(T) = 0 and x(T) = H gives a
simplified implicit equation for H:

−v20
2

= −g1H +
GM

R
− GM

R+H
.

Numerical illustration. Use v0 = 536.448, g1 = 5.3452174 to mimic the
constant field example of initial velocity 1200 miles per hour and effective retro-
rocket thrust 30000 miles per hour per hour. A soft landing is possible from
height H = 23.7775 miles with a descent time of T = 2.385 minutes. These
results compare well with the constant field model, which had results of H = 24
miles and T = 2.4 minutes. Some maple details follow.

M:=7.35* 10^(22);R:=1.74* 10^6;G:=6.6726* 10^(-11);

v0_CFM:=1200: A_CFM:=30000: # Constant field model values

cf:=1*5280*12*2.54/100/3600: # miles/hour to meters/second

v0:=v0_CFM*cf; g0:=G*M/R^2: g1:=A_CFM*cf/3600+g0;

eq:= -(v0^2/2) + g1*H + G*M/(R+H) - G*M/R=0:

HH:=[solve(eq,H)][1]; # HH := 38266 meters

de:=diff(x(t),t,t) = -g1 + M*G/(R+HH-x(t))^2;

ic:= x(0)=0, D(x)(0)=v0;

p:=dsolve({de,ic},x(t),numeric):

X:=t->evalf(rhs(p(t)[2])):

V:=t-> evalf(rhs(p(t)[3])):

274

4.7 Lunar Lander

plot(V,0..300);# V=0 at approx 140 sec

TT1:=fsolve(’V(t)’=0,t=140): TT:=TT1/60:

TT1.’seconds’, TT.’minutes’;

X(TT1).’meters’, ((X(TT1)*100/2.54)/12/5280).’miles’;

2.385 min, 23.78 miles

0
0 300

40000

Figure 9. A maple plot used to
determine the descent time T =
2.385 minutes.

Modeling

The field of the earth has been ignored in both models, which is largely justi-
fied because the universal gravitation law term for the lander and the earth is
essentially zero for lander locations near the moon.

The field for the lander and the moon is not constant, and therefore it can be
argued that conditions exist when assuming it is constant will produce invalid
and obviously incorrect results.

Are there cases when the answers for the two models differ greatly? Yes, but the
height H of retrorocket activation has to be large. This question is re-visited in
the exercises.

Control problems. The descent problem for a lunar lander is a control problem
in which the controller is the retrorocket plus the duration of time in which it is
active. All we have done here is to decide that the descent should be controlled by
retrorockets well in advance of 24 miles above the moon’s surface. The methods
used here can be applied to gain insight into the bang-bang control problem
of turning on the retrorockets for n intervals of time of durations ∆t1, . . . , ∆tn
to make an almost soft landing.

Primitive numerical methods. The predictions made here using the computer
algebra system maple can be replaced by primitive RK4 methods and graphing.
No practising scientist or engineer would do only that, however, because they
want to be confident of the calculations and the results. The best idea is to use
a black box of numerical and graphical methods which have little chance of
failure, e.g., a computer algebra system or a numerical laboratory.

275

4.7 Lunar Lander

Exercises 4.7 �

Lunar Lander Constant Field
Find the retrorocket activation time T and
the activation height x(T). Assume the
constant gravitational field model. Units
are miles/hour and miles/hour per hour.

1. v0 = 1210, A = 30020.

2. v0 = 1200, A = 30100.

3. v0 = 1300, A = 32000.

4. v0 = 1350, A = 32000.

5. v0 = 1500, A = 45000.

6. v0 = 1550, A = 45000.

7. v0 = 1600, A = 53000.

8. v0 = 1650, A = 53000.

9. v0 = 1400, A = 40000.

10. v0 = 1450, A = 40000.

Lunar Lander Variable Field
Find the retrorocket activation time T and
the activation height x(T). Assume the
variable gravitational field model and mks
units.

11. v0 = 540.92, g1 = 5.277.

12. v0 = 536.45, g1 = 5.288.

13. v0 = 581.15, g1 = 5.517.

14. v0 = 603.504, g1 = 5.5115.

15. v0 = 625.86, g1 = 5.59.

16. v0 = 603.504, g1 = 5.59.

17. v0 = 581.15, g1 = 5.59.

18. v0 = 670.56, g1 = 6.59.

19. v0 = 670.56, g1 = 6.83.

20. v0 = 715.26, g1 = 7.83.

Distinguishing Models
The constant field model (1) page 272 and
the variable field model (2) page 273 are
verified here to be distinct, by example.
Find the retrorocket activation times T1, T2

and the activation heights x1(T1), x2(T2)
for the two models (1), (2). Relations
A = g1 − g0 and g0 = GM/R2 apply to
compute g1 for the variable field model.

21. v0 = 1200 mph, A = 10000 mph/h.
Answer: 72, 66.91 miles.

22. v0 = 1200 mph, A = 12000 mph/h.
Answer: 60, 56.9 miles.

23. v0 = 1300 mph, A = 10000 mph/h.
Answer: 84.5, 74.23 miles.

24. v0 = 1300 mph, A = 12000 mph/h.
Answer: 76.82, 71.55 miles.

276

4.8 Comets

4.8 Comets

Planet Mercury

Its elliptical orbit has major semi-axis a = 0.3871 AU (astronomical units) and
eccentricity e = 0.2056. The ellipse can be described by the equations

x(t) = a cos(E(t)),

y(t) = a
√
1− e2 sin(E(t)),

where t is the mean anomaly (0 ≤ t ≤ 2π) and E(t) is the eccentric anomaly
determined from Kepler’s equation E = t+ e sin(E).

The path of mercury is an ellipse, yes. Like the earth, the path is essentially
circular, due to eccentricity near zero.

Halley’s Comet

The Kepler theory for mercury applies to Halley’s comet, which has a highly
elliptical orbit of eccentricity e = 0.967. The major semi-axis is a = 17.8 as-
tronomical units (AU), the minor semi-axis is b = a

√
1− e2 = 4.535019431 AU,

with period about 76 earth-years.

Our project is to determine E(t) numerically for Halley’s comet and plot an
animation of the elliptical path of the comet.

History

Kepler’s laws of planetary motion were published in 1609 and 1618. The laws
are named after Johannes Kepler (1571-1630), a German mathematician and
astronomer, who formulated the laws after years of calculation based upon excel-
lent observational data of the Danish astronomer Tycho Brahe (1546-1601). The
three laws:

I. The orbit of each planet is an ellipse with the sun at one focus.

II. The line joining the sun to a planet sweeps out equal areas in
equal time.

III. The square of the planet’s period of revolution is proportional
to the cube of the major semi-axis of its elliptical orbit.

These laws apply not only to planets, but to satellites and comets. A proof of
Kepler’s first two laws, assuming Newton’s laws and a vector analysis background,
can be found in this text, page ??, infra.

277

4.8 Comets

The elliptical orbit can be written as

x(M) = a cos(E(M)),
y(M) = b sin(E(M)),

where a and b are the semi-axis lengths of the ellipse. Astronomers call function
E the planet’s eccentric anomaly and M the planet’s mean anomaly.

The minor semi-axis of the ellipse is given by

b = a
√

1− e2,

where e is the eccentricity of the elliptical orbit. The mean anomaly satisfies
M = 2πt/T , where t=time and T is the period of the planet.

It is known that the first two laws of Kepler imply Kepler’s equation

E = M + e sin(E).

Kepler’s Initial Value Problem

The equation E = M + e sinE, called Kepler’s equation, is the unique implicit
solution of the separable differential equation

dE

dM
=

1

1− e cos(E)
,

E(0) = 0.
(1)

The initial value problem (1) defines the eccentric anomaly E(M). We are able to
compute values of E by suitable first order numerical methods, especially RK4.

It is routine to compute dE/dM by implicit differentiation of Kepler’s equa-
tion. The idea works on many implicit equations: find an initial value problem
replacement by implicit differentiation.

Eccentric Anomaly and Elliptical Orbit

The solution for comet Halley uses maple in a direct manner, basing the solution
on Kepler’s equation. Details:

Kepler’s equation E = M + e sin(E)

e:=0.967:EE := unapply(RootOf(_Z-M-e*sin(_Z)),M);

Ex:=cos(EE(M)):Ey:=sqrt(1-e^2)*sin(EE(M)):

plot(EE(M),M=0..2*Pi);

plot([Ex,Ey,M=0..2*Pi]);

278

4.8 Comets

2π

2π

0

M

E

Figure 10. Eccentric anomaly plot for Halley’s comet.

Figure 11. Elliptic trace plot of Halley’s comet.

Comet Halley’s Positions each Year

The elliptic trace plot can be modified to display a circle for each comet position
from year 0 to year 75; see Figure 12. Implemented here is an approach to
evaluation of the eccentric anomaly E(M) by numerical differential equation
methods. This method is orders of magnitude faster than the RootOf method of
the previous illustration.

The lack of circles near the focus on the right is explained by the increased speed
of the comet near the sun, which is at this focus.

Comet positions each year

e:=0.967:de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;

p:=dsolve({de,ic},numeric,output=listprocedure);

EE := eval(y(x),p):

Ex:=unapply(cos(EE(M)),M):

Ey:=unapply(sqrt(1-e^2)*sin(EE(M)),M):

snapshots:=seq([Ex(2*n*Pi/56),Ey(2*n*Pi/56)],n=0..56):

opts:=scaling=constrained,axes=boxed,style=point,

symbolsize=20,symbol=circle,thickness=3:

plot([snapshots],opts);

279

4.8 Comets

Figure 12. Halley’s comet positions each earth-year. On the axes, one unit

equals 17.8 AU.

Halley’s Comet Animation

Computer algebra system maple will be used to produce a simple animation of
Halley’s comet as it traverses its 76-year orbit around the sun. The plan is to solve
Kepler’s initial value problem in order to find the value of the eccentric anomaly
E(M), then divide the orbit into 76 frames and display each in succession to
obtain the animation. Defining E by Kepler’s equation E = M + e sinE is too
slow for most computer equipment, therefore differential equations are used.

While each comet position in Figure 13 represents an equal block of time, about
one earth-year, the amount of path traveled varies. This is because the speed
along the path is not constant, the comet traveling fastest near the sun. The
most detail is shown for an animation at 2 frames per second. The orbit graph
uses one unit equal to about 17.8 astronomical units, to simplify the display.

Figure 13. A simple Halley’s comet animation.

Simple Halley’s comet animation

e:=0.967:de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;

p:=dsolve({de,ic},numeric,output=listprocedure);

EE := eval(y(x),p):

xt:=cos(EE(M)):yt:=sqrt(1-e^2)*sin(EE(M)):

280

4.8 Comets

opts:=view=[-1..1,-0.28..0.28],frames=56,axes=none,

scaling=constrained,axes=boxed,style=point,

symbolsize=20,symbol=circle,thickness=3:

plots[animatecurve]([xt,yt,M=0..2*Pi],opts);

Animation Video

A video of the comet moving along the ellipse will be produced. The comet
position for t = 2.4516 earth-years (M ≈ 2πt/76) is shown in Figure 14. During
the animation, the comet travels at varying speeds along the ellipse.

Video animation of Halley’s comet

e:=0.967:de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;

p:=dsolve({de,ic},numeric,output=listprocedure);

EE := eval(y(x),p):

comet:=unapply([cos(EE(M)),sqrt(1-e^2)*sin(EE(M))],M):

options1:=view=[-1..1,-0.28..0.28]:

options2:=scaling=constrained,axes=none,thickness=3:

options3:=style=point,symbolsize=40,symbol=solidcircle:

opts1:=options1,options2,color=blue:

opts:=options1,options2,options3:

COMET:=[[comet(2*Pi*t/(76))],opts]:

ellipse:=plot([cos(x),sqrt(1-e^2)*sin(x),x=0..2*Pi],opts1):

with(plots):

F:=animate(plot,COMET,t=0..4,frames=32,background=ellipse):

G:=animate(plot,COMET,t=5..75,frames=71,background=ellipse):

H:=animate(plot,COMET,t=75..76,frames=16,background=ellipse):

display([F,G,H],insequence=true);

Figure 14. Halley’s comet animation video. The frame shown is for t = 3.0968

earth-years, mean anomaly M = 2.4516 (M ≈ 2πt/76).

281

4.8 Comets

Exercises 4.8 �

Eccentric Anomaly for the Planets
Make a plot of the eccentric anomaly E(M)
on 0 ≤ M ≤ 2π.

1. Mercury, e = 0.2056

2. Venus, e = 0.0068

3. Earth, e = 0.0167

4. Mars, e = 0.0934

5. Jupiter, e = 0.0483

6. Saturn, e = 0.0560

7. Uranus, e = 0.0461

8. Neptune, e = 0.0097

Elliptic Path of the Planets
Make a plot of the elliptic path of each
planet, using constrained scaling with the
given major semi-axis A (in astronomical
units AU). The equations:

x(M) = A cos(E(M)),

y(M) = A
√
1− e2 sin(E(M))

9. Mercury, e = 0.2056, A = 0.39

10. Venus, e = 0.0068, A = 0.72

11. Earth, e = 0.0167, A = 1

12. Mars, e = 0.0934, A = 1.52

13. Jupiter, e = 0.0483, A = 5.20

14. Saturn, e = 0.0560, A = 9.54

15. Uranus, e = 0.0461, A = 19.18

16. Neptune e = 0.0097, A = 30.06

Planet Positions
Make a plot with at least 8 planet posi-
tions displayed. Use constrained scaling
with major semi-axis A in the plot. Display
the given major semi-axis A and period T
in the legend.

17. Mercury, e = 0.2056, A = 0.39 AU,
T = 0.24 earth-years

18. Venus, e = 0.0068, A = 0.72 AU,
T = 0.62 earth-years

19. Earth, e = 0.0167, A = 1 AU, T = 1
earth-years

20. Mars, e = 0.0934, A = 1.52 AU, T =
1.88 earth-years

21. Jupiter, e = 0.0483, A = 5.20 AU,
T = 11.86 earth-years

22. Saturn, e = 0.0560, A = 9.54 AU,
T = 29.46 earth-years

23. Uranus, e = 0.0461, A = 19.18 AU,
T = 84.01 earth-years

24. Neptune e = 0.0097, A = 30.06 AU,
T = 164.8 earth-years

Comet Positions
Make a plot with at least 8 comet posi-
tions displayed. Use constrained scaling
with major-semiaxis 1 in the plot. Display
the given eccentricity e and period T in the
legend.

25. Churyumov-Gerasimenko orbits the
sun every 6.57 earth-years. Discovered
in 1969. Eccentricity e = 0.632.

26. Comet Wirtanen was the original tar-
get of the Rosetta space mission. This
comet was discovered in 1948. The
comet orbits the sun once every 5.46
earth-years. Eccentricity e = 0.652.

27. Comet Wild 2 was discovered in 1978.
The comet orbits the sun once ev-
ery 6.39 earth-years. Eccentricity e =
0.540.

28. Comet Biela was discovered in 1772.
It orbits the sun every 6.62 earth-years.
Eccentricity e = 0.756.

29. Comet Encke was discovered in 1786.
It orbits the sun each 3.31 earth-years.
Eccentricity e = 0.846.

282

4.8 Comets

30. Comet Giacobini-Zinner, discovered in
1900, orbits the sun each 6.59 earth-
years. Eccentricity e = 0.708.

31. Comet Schwassmann-Wachmann, dis-
covered in 1930, orbits the sun ev-
ery 5.36 earth-years. Eccentricity e =
0.694.

32. Comet Swift-Tuttle was discovered in
1862. It orbits the sun each 120 earth-
years. Eccentricity e = 0.960.

Comet Animations
Make an animation plot of comet posi-
tions. Use constrained scaling with major-
semiaxis 1 in the plot. Display the given
period T and eccentricity e in the legend.

33. Comet Churyumov-Gerasimenko
T = 6.57, e = 0.632.

34. Comet Wirtanen
T = 5.46, e = 0.652.

35. Comet Wild 2
T = 6.39, e = 0.540.

36. Comet Biela
T = 6.62, e = 0.756.

37. Comet Encke
T = 3.31, e = 0.846.

38. Comet Giacobini-Zinner
T = 6.59, e = 0.708.

39. Comet Schwassmann-Wachmann
T = 5.36, e = 0.694.

40. Comet Swift-Tuttle
T = 120, e = 0.960.

283

4.9 Fish Farming

4.9 Fish Farming

Discussed are logistic models for population dynamics in fish farms. The models
are suitable for Pangasius and Tilapia populations. The focus will be on species
tilapia.

Pangasius. In America, both USA-produced and imported fresh-water catfish
can be sold with the labels Swai, Basa or the subgenus label Pangasius, which
is the predominant generic label in Europe, with more than 20 varieties. Basa
and Swai are different catfish, with different texture and flavor. USA production
of farmed catfish increased after 2002, when Vietnam Basa imports were stopped
by labeling laws and tariffs. USA channel catfish (four barbels) are harvested
after 18 months, at 10 pounds weight. Pangasius varieties are harvested after
4–6 months, at about 2 pounds or less, to produce fillets of 3–12 ounces.

Figure 15. Pangasius, a fresh water catfish with two barbels.

Tilapia. This fresh-water fish originated in Africa 2500 years ago. The popular
varieties sold in the USA are marketed under the label Tilapia (both dark and
light flesh). They are produced in the USA at fish farms in Arizona, California
and Florida. Imported Tilapia at 600-900 grams market weight (30% fillets)
make up the bulk of USA-consumed Tilapia.

Figure 16. Tilapia.
A fresh water fish from the river Nile.
Tilapia are farmed around the world in
temperate climates.

284

4.9 Fish Farming

Population Dynamics of Fisheries

Fisheries can be wild or farmed. One example is a fish hatchery using concrete
tanks. Tilapia freshwater farms can use earthen ponds, canvas tanks, concrete
tanks, river cages, pens and old mining quarries.

Tilapia Farming

Detailed life history data for Tilapia is as follows:

• Age at sexual maturity: 5–6 months

• Size at sexual maturity: 28–350 grams

• Stocking ratio for spawning: 7–10 broods/year using 2–5 females per male

• Spawning success: 20–30% spawns per week

• Eggs per female fish: 1–4 eggs per gram of fish

• Survival of egg to fry: 70–90% (fry less than 5 grams)

• Survival of fry to fingerling: 60–90% (fingerling 5–30 grams)

• Survival of fingerling to market: 70–98% (market is 30 to 680 grams)

Tilapia fry might be produced from an initial stock of 1000 female ND-2 and
250 male ND-1. Hatched ND-21 fry will be all male, which have higher market
weight. Egg production per female averages from 300 to 500 fry per month,
with about 10% lost before reaching 5 gram weight. The marketed Tilapia are
about 900 grams in Central America plants (Belize, El Salvador). In Arizona,
California and Florida plants, Tilapia market weights vary from 600 to 800 grams,
or 1.5–1.75 pounds.

In commercial secondary tanks, fingerlings grow in water temperatures 76–84
degrees Fahrenheit with a death rate of about 0.05%. One fingerling grows to
market size on less than 3 pounds of food.

Logistic Harvesting on a Time Interval

The Logistic equation for a constant harvesting rate h ≥ 0 is

dx

dt
= kx(t)(M − x(t))− h.

The Logistic equation for a non-constant harvesting rate h(t) ≥ 0 is

dx

dt
= kx(t)(M − x(t))− h(t).

285

4.9 Fish Farming

A simplified situation is constant harvesting h(t) = c > 0 on a given time interval
a ≤ t ≤ b, but zero otherwise.

In a more sophisticated setting, h(t) is a positive constant ci on given time
interval ai ≤ t ≤ bi, i = 1, . . . , n, but zero otherwise. Harvesting can also depend
on the population size, which replaces h(t) by h(t)x(t) in the differential equation.
Modelling need not be for an individual tank or pond, but the aggregate of all
tanks, ponds and cages of an enterprise, viewed from the prospect of so many
fish grown to market weight.

Logistic Periodic Harvesting

The periodic harvest Logistic equation is

dx

dt
= kx(t)(M − x(t))− h(t)

where h(t) ≥ 0 is the rate of harvest, usually a positive constant ci on a given time
interval ai ≤ t ≤ bi, i = 1, . . . , n, but zero otherwise. The equation h(t+T) = h(t)
might hold for some value of T , in which case h(t) is a classical periodic function.

Tank harvests can be periodic, in order to reduce the density of fish per volume
of water, or to remove fingerlings. Harvested fish can be assumed to be live,
and sent either to slaughter or else to another tank, to grow bigger. This model
fits Tilapia fry production in ponds, for which it is typical that ND-2 females
produce more and more eggs as they mature (then c1 < c2 < c3 < · · ·). The time
intervals for Tilapia are about a month apart.

Malaysian Tilapia Example

Described here is the 2012 work of M. F. Laham, et al, [?], in which a logistic
model is used to study harvesting strategies for tilapia fish farming. This work
is elementary, in the sense that it treats an ideal example, with no intentional
application to management of a Tilapia farm. It illustrates general expectations
for fish production, based on gross estimates of a pond scenario.

The data was obtained from the Department of Fisheries of Malaysia and from
the Malaysian fish owner of selected ponds situated at Gombak, Selangor. The
fisheries department claims (2008) that a fish pond can sustain 5 tilapia fish for
every square meter of surface area.4 The selected pond has an area of 15.61
Hectors, which is equivalent to 156100 square meters, 38 acres or 25000 square
feet. The pond carrying capacity is M = 780500 fish. According to a Malaysian
study in 1999 (see [?]), Tilapia mature in 6 months and at least 80 percent will
survive to maturity.

4Normal stocking is 1.6 fish per square meter, from which reproduction allows fish population
growth to carrying capacity (a theoretical number).

286

4.9 Fish Farming

The Logistic Growth Model, in the absence of harvesting, can be written in the
form

dx

dt
= rx(t)(1− x(t)/M), r = 0.8, M = 780500.

In terms of the alternate model P ′ = kP (M − P), the constant k equals rM =
624400. The 2012 work [?] focuses on harvesting strategies, considering the
constant harvesting model

dx

dt
= rx(t)(1− x(t)/M)−H0(1)

and the periodic harvesting model

dy

dt
= ry(t)(1− y(t)/M)−H(t), H(t) =

{
H0 0 ≤ t ≤ 6,
0 6 < t ≤ 12.

(2)

The constant H0 = 156100 is explained below.The discontinuous harvesting func-
tion H(t) is extended to be 12-month periodic: H(t+ 12) = H(t).

Constant Harvesting. The parameters in the model are r = 0.8, an estimate of
the fraction of fish that will survive to market age, and the pond carrying capacity
M = 780500. The periodic harvesting valueH0 = 156100 arises from the constant
harvesting model, by maximizing population size at the equilibrium point for the
constant harvesting model. Briefly, the value H0 is found by requiring dx

dt = 0 in
the constant harvesting model, replacing x(t) by constant P . This implies

rP

(
1− P

M

)
−H0 = 0.(3)

The mysterious value H0 is the one that makes the discriminant zero in the
quadratic formula for P . Then H0 = rM

4 = 156100 and P = 389482. This bi-
furcation point separates the global behavior of the constant harvesting model
as in Table 22. We use the notation P1, P2 for the two real equilibrium roots of
the quadratic equation (3), assuming H0 < 156100 and P1 < P2.

Table 22. Constant Harvesting Model

Harvest Constant Initial Population Behavior

H0 = 156100 x(0) ≥ 389482 x(t) → 389482,
H0 = 156100 x(0) < 389482 x(t) → 0, extinction,
H0 > 156100 any x(0) x(t) → 0, extinction,
H0 < 156100 x(0) < P1 x(t) → 0, extinction,
H0 < 156100 P1 < x(0) < P2 x(t) → P2, sustainable,
H0 < 156100 x(0) ≥ P2 x(t) → P2, sustainable.

Periodic Harvesting. The model is an initial value problem (2) with initial
population y(0) equal to the number of Tilapia present, where t = 0 is an artificial
time representing the current time after some months of growth. The plan is to
harvest H0 fish in the first 6 months.

287

4.9 Fish Farming

Direct inspection of the two models shows that x(t) = y(t) for the first six months,
regardless of the choice of H0. Because the constant harvesting model shows that
harvesting rates larger than 156100 lead to extinction, then it is clear that the
harvesting rate can be H0 = 156100.

The harvesting constant H0 can be larger than 156100, because the population of
fish is allowed to recover for six months after the harvest. AssumingH0 > 156100,
then the solution y(t) decreases for 6 months to value y(6), which if positive,
allows recovery of the population in the following 6 non-harvest months. There
is a catch: the population could fail to grow to harvest size in the following 6
months, causing a reduced production in subsequent years.

To understand the problem more clearly, we present an example where H0 >
156100 and the harvest is sustainable for 3 years, then another example where
H0 > 156100 and the harvest fails in the second year.

Example 4.8 (Sustainable Harvest H0 > 156100)
Choose H0 = 190000 and y(0) = 390250 = M/2. Computer assist gives 6-month
population size decreasing to y(6) = 16028.6. Then for 6 < t < 12 the popula-
tion increases to y(12) = 560497.2, enough for a second harvest. The population
continues to rise and fall, y(18) = 320546.6, y(24) = 771390.7, y(30) = 391554.0,
y(36) = 774167.6, a sustainable harvest for the first three years.

Figure 17. Sustainable harvest for 3 years, H0 = 190000, y(0) = M/2.

Abcissa t in months. Ordinate y(t) is population size.

Example 4.9 (Unsustainable Harvest H0 > 156100)
Choose H0 = 190500 and y(0) = 390250 = M/2. Computer assist gives 6-month
population size decreasing to y(6) = 5263.1. Then for 6 < t < 12 the population
increases to y(12) = 352814, enough for a second harvest. At t = 16.95 the
population y(t) decreases to zero (extinction), meaning the harvest fails in the second
year.

The same example with y(0) = (M/2)(1.02) = 398055 (2 percent larger) happens
to be sustainable for three years. Sustainable harvest is sensitive to both harvesting
constant and initial population.

288

4.9 Fish Farming

Figure 18. Unsustainable harvest, failure in year two.

H0 = 190500, y(0) = M/2. Abcissa t in months. Ordinate y(t) is population size.

Logistic Systems

The Lotka-Volterra equations, also known as the predator-prey equations, are a
pair of first order nonlinear differential equations frequently used to describe the
dynamics of biological systems in which two species interact, one a predator and
one its prey (e.g., foxes and rabbits). They evolve in time according to the pair
of equations:

dx

dt
= x(α− βy),

dy

dt
= −y(γ − δx)

where:
x is the number of prey,
y is the number of some predator,
t is time,
dy
dt and dx

dt are population growth rates,
Parameter α is a growth rate for the prey while parameter γ is a
death rate for the predator.
Parameters β and δ describe species interaction, with −βxy decreas-
ing prey population and δxy increasing predator population.

A. J. Lotka (1910, 1920) used the predator-prey model to study autocatalytic
chemical reactions and organic systems such as plants and grazing animals. In
1926, V. Volterra made a statistical analysis of fish catches in the Adriatic Sea,
publishing at age 22 the same equations, an independent effort.

Walleye on Lake Erie

The one-dimensional theory of the logistic equation can be applied to fish popu-
lations in which there is a predator fish and a prey fish. This problem was studied

289

4.9 Fish Farming

by A. L. Jensen in 1988. Using the Canadian model of P. A. Larkin 1966, Jensen
invented a mathematical model for walleye populations in the western basin of
Lake Erie. The examples for Prey are Rainbow Smelt (Osmerus mordax) in
Lake Superior and Yellow Perch (Perca flavescens) from Minnesota lakes. The
predator is Walleye (Sander vitreus).

Figure 19. Yellow Perch.

The prey, from Shagawa Lake in Northeast Minnesota.

Figure 20. Walleye.

The predator, also called Yellow Pike, or Pickerel.

The basis for the simulation model is the Lotka-Volterra predator-prey model.
The following assumptions were made.

• A decrease in abundance results in an increase in food concentration.

• An increase in food concentration results in an increase in growth and size.

• An increase in growth and size results in a decrease in mortality because
mortality is a function of size.

The relation between prey abundance N1 and predator abundance N2 is given

290

4.9 Fish Farming

by the equations

dN1

dt
= rlN1(1−N1/K1)− b1N1N2,

dN2

dt
= r2N2(1−N2/K2)− b2N1N2.

If b1 = b2 = 0, then there is no interaction of predator and prey, and the two
populations N1, N2 grow and decay independently of one another. The carrying
capacities are K1,K2, respectively, because each population N satisfies a logistic
equation

dN

dt
= rN(1−N/K).

The literature below has further details. Solution methods for systems like (20)
are largely numeric. Qualitative methods involving equilibrium points and phase
diagrams have an important role in the analysis.

Jensen, A. L.: Simulation of the potential for life history components to regulate
Walleye population size, Ecological Modelling 45(1), pp 27-41, 1989.

Larkin, P.A., 1966: Exploitation in a type of predator-prey relationship. J. Fish.
Res. Board Can., 23, pp 349-356, 1966.

Maple Code for Figures 17 and 18

The following sample maple code plots the solution on 0 < t < 24 months with
data H0 = 190000, P0 = 390250.

de:=diff(P(t),t)=r*(1-P(t)/M)*P(t)-H(t);

r:=0.8:M:=780500:H0:=190000:P0:=M/2:

H:=t->H0*piecewise(t<6,1,t<12,0,t<18,1,0);

DEtools[DEplot](de,P(t),t=0..24,P=0..M,[[P(0)=P0]]);

Exercises 4.9 �

Constant Logistic Harvesting
The model

x′(t) = kx(t)(M − x(t))− h

can be converted to the logistic model

y′(t) = (a− by(t))y(t)

by a change of variables. Find the change
of variables y = x+c for the following pairs
of equations.

1. x′ = −3x2 + 8x− 5,
y′ = (2− 3y)y

2. x′ = −2x2 + 11x− 14,
y′ = (3− 2y)y

3. x′ = −5x2 − 19x− 18,
y′ = (1− 5y)y

4. x′ = −x2 + 3x+ 4,
y′ = (5− y)y

Periodic Logistic Harvesting

291

4.9 Fish Farming

The periodic harvesting model

x′(t) = 0.8x(t)

(
1− x(t)

780500

)
−H(t)

is considered with H defined by

H(t) =


0 0 < t < 5,

H0 5 < t < 6,
0 6 < t < 17,

H0 17 < t < 18,
0 18 < t < 24.

This project makes as computer graph of
the solution on 0 < t < 24 for various val-
ues of H0 and x(0). See Figures 17 and 18
and the corresponding examples.

5. H0 = 156100, P (0) = 300000

6. H0 = 156100, P (0) = 800000

7. H0 = 800100, P (0) = 90000

8. H0 = 800100, P (0) = 100000

von Bertalanffy Equation
Karl Ludwig von Bertalanffy (1901-1972)
derived in 1938 the equation

dL

dt
=rB(L∞−L(t))

from simple physiological arguments. It is
a widely used growth curve, especially im-
portant in fisheries studies. The symbols:

t time,
L(t) length,
rB growth rate,
L∞ expected length for zero

growth.

9. Solve dL
dt = 2(10−L), L(0) = 0. The an-

swer is the length in inches of a fish over
time, with final adult size 10 inches.

10. Solve von Bertalanffy’s equation to ob-
tain the algebraic model

L(t) = L∞

(
1− e−rB(t−t0)

)
.

11. Assume von Bertalanffy’s model. Sup-
pose field data L(0) = 0, L(1) = 5,
L(2) = 7. Display details using Exer-
cise 10 to arrive for t0 = 0 at values
L∞ = 25/3 and rB = ln(5/2).

12. Assume von Bertalanffy’s model with
field data L(0) = 0, L(1) = 10, L(2) =
13. Find the expected length L∞ of the
fish.

292

PDF Sources

Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and
linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the textbook
are available in two volumes at Amazon Kindle Direct Publishing for Amazon’s
cost of printing and shipping. No author profit. Volume I chapters 1-7, ISBN
9798705491124, 661 pages. Volume II chapters 8-12, ISBN 9798711123651, 479
pages. Both paperbacks have extra pages of backmatter: background topics
Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with
hyperlink navigation to displayed equations and theorems. The header in an
exercise set has a blue hyperlink � to the same section in the solutions. The
header of the exercise section within a solution Appendix has a red hyperlink �
to the textbook exercises. Solutions are organized by chapter, e.g., Appendix 5
for Chapter 5. Odd-numbered exercises have a solution. A few even-numbered
exercises have hints and answers. Computer code can be mouse-copied directly
from the PDF. Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded
to a tablet, computer or phone to be viewed locally. After download, no internet
is required. Best for computer or tablet using a PDF viewer (Adobe Reader,
Evince) or web browser with PDF support (Chrome, FireFox). Smart phones
can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or
request an answer, click the link below, then create a GitHub issue and post.
Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues

293

https://math.utah.edu/~gustafso/indexUtahBookGG.html
https://github.com/ggustaf/github.io
https://gitlab.com/ggustaf/answers
https://github.com/ggustaf/github.io/issues

	Table of Contents
	Numerical Methods with Applications
	Solving y'=F(x) Numerically
	Solving y'=f(x,y) Numerically
	Error in Numerical Methods
	Computing , ln2 and e
	Earth to the Moon
	Skydiving
	Lunar Lander
	Comets
	Fish Farming

	Paperback and PDF Sources

