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This introduction to linear algebraic equations requires only a college algebra
background. Vector and matrix notation is not used. The subject of linear
algebra, using vectors, matrices and related tools, appears later in the text; see
Chapter ??.

The topics studied are linear equations, general solution, reduced echelon system,
basis, nullity, rank and nullspace. Introduced here are the three possibilities, a
toolkit sequence, which uses the three rules swap, combination and multi-
ply, and finally the method of elimination, in literature called Gauss-Jordan
elimination or Gaussian elimination

3.1 Systems of Linear Equations

Background from college algebra includes systems of linear algebraic equations
like {

3x + 2y = 1,
x − y = 2.

(1)

A solution (x, y) of non-homogeneous system (1) is a pair of values that
simultaneously satisfy both equations. This example has unique solution x = 1,
y = −1.
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3.1 Systems of Linear Equations

The homogeneous system corresponding to (1) is an auxiliary system invented
by replacing the right sides of the equations by zero and symbols x, y by new
symbols u, v: {

3u + 2v = 0,
u − v = 0.

(2)

A short pause and computation verifies that system (2) has unique solution u = 0,
v = 0.

It is unexpected, and also not true, that the original system (solution x = 1, y =
−1) has any solutions in common with the invented homogeneous system (solu-
tion u = 0, v = 0). Theory provides superposition to relate the solutions of the
two systems.

Unique solutions have emphasis in college algebra courses. In this chapter we
study in depth the cases for no solution and infinitely many solutions. These
two cases are illustrated by the examples

No Solution Infinitely Many Solutions{
x − y = 0,

0 = 1.
(3)

{
x − y = 0,

0 = 0.
(4)

Equations (3) cannot have a solution because of the signal equation 0 = 1, a
false equation. Equations (4) have one solution (x, y) for each point on the 45◦

line x− y = 0, therefore system (4) has infinitely many solutions.

The Three Possibilities

Solutions of general linear systems with m equations in n unknowns may be
classified into exactly three possibilities:

1. No solution.
2. Infinitely many solutions.
3. A unique solution.

General Linear Systems

Given numbers a11, . . . , amn, b1, . . . , bm, a nonhomogeneous system of m
linear equations in n unknowns x1, x2, . . . , xn is the system

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
am1x1 + am2x2 + · · ·+ amnxn = bm.

(5)
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3.1 Systems of Linear Equations

Constants a11, . . . , amn are called the coefficients of system (5). Constants b1,
. . . , bm are collectively referenced as the right hand side, right side or RHS.

The associated homogeneous system corresponding to system (5) is invented
by replacing the right side by zero:

a11x1 + a12x2 + · · ·+ a1nxn = 0,
a21x1 + a22x2 + · · ·+ a2nxn = 0,

...
am1x1 + am2x2 + · · ·+ amnxn = 0.

(6)

Convention dictates using the same variable list x1, . . . , xn. This abuse of nota-
tion impacts casual readers: see example systems (1) and (2).

An assignment of possible values x1, . . . , xn which simultaneously satisfy all
equations in (5) is called a solution of system (5). Solving system (5) refers
to the process of finding all possible solutions of (5). The system (5) is called
consistent if it has a solution and otherwise it is called inconsistent.

The Toolkit of Three Rules

Two systems (5) are said to be equivalent provided they have exactly the same
solutions. For the purpose of solving systems, there is a toolkit of three reversible
operations on equations which can be applied to obtain equivalent systems. These
rules neither create nor destroy solutions of the original system:

Table 1. The Three Rules

Swap Two equations can be interchanged without
changing the solution set.

Multiply An equation can be multiplied by m ̸= 0 without
changing the solution set.

Combination A multiple of one equation can be added to a
different equation without changing the solution
set.

The last two rules replace an existing equation by a new one. A swap repeated
reverses the swap operation. A multiply is reversed by multiplication by 1/m,
whereas the combination rule is reversed by subtracting the equation–multiple
previously added. In short, the three operations are reversible.

Theorem 3.1 (Equivalent Systems)
A second system of linear equations, obtained from the first system of linear equations
by a finite number of toolkit operations, has exactly the same solutions as the first
system.

Exposition. Writing a set of equations and its equivalent system under toolkit
rules demands that all equations be copied, not just the affected equation(s).
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3.1 Systems of Linear Equations

Generally, each displayed system changes just one equation, the single exception
being a swap of two equations. Within an equation, variables appear left-to-right
in variable list order. Equations that contain no variables, typically 0 = 0, are
displayed last.

Documenting the three rules. In blackboard and hand-written work, the
acronyms swap, mult and combo, replace the longer terms swap, multiply and
combination. They are placed next to the first changed equation. In cases where
precision is required, additional information is supplied, namely the source and
target equation numbers s, t and the multiplier m ̸= 0 or c. Details:

Table 2. Documenting Toolkit Operations with swap, mult, combo.

swap(s,t) Swap equations s and t.
mult(t,m) Multiply target equation t by multiplier m ̸= 0.
combo(s,t,c) Multiply source equation s by multiplier c and add to

target equation t.

The acronyms in Table 2 match usage in the computer algebra system maple, for
package linalg and functions swaprow, mulrow and addrow.

Inverses of the Three Rules. Each toolkit operation swap, mult, combo has
an inverse, which is documented in the following table. The facts can be used to
back up several steps, unearthing a previous step to which a sequence of toolkit
operations were performed.

Table 3. Inverses of Toolkit Operations swap, mult, combo.

Operation Inverse

swap(s,t) swap(s,t)

mult(t,m) mult(t,1/m)

combo(s,t,c) combo(s,t,-c)

To illustrate, suppose swap(1,3), combo(1,2,-3) and mult(2,4) are used to
obtain the current linear equations. Then the linear system three steps back
can be obtained from the current system by applying the inverse steps in reverse
order: mult(2,1/4), combo(1,2,3), swap(1,3).

Solving Equations with Geometry

In the plane (n = 2) and in 3-space (n = 3), equations (5) have a geometric in-
terpretation that can provide valuable intuition about possible solutions. College
algebra courses might have omitted the case of no solutions or infinitely many
solutions, discussing only the case of a single unique solution. In contrast, all
cases are considered here.
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3.1 Systems of Linear Equations

Plane Geometry

A straight line may be represented as an equation Ax + By = C. Solving the
system

a11x + a12y = b1
a21x + a22y = b2

(7)

is the geometrical equivalent of finding all possible (x, y)-intersections of the lines
represented in system (7). The distinct geometrical possibilities appear in Figures
1, 2 and 3.

x

y

Figure 1. Parallel lines, no solution.

−x+ y = 1,
−x+ y = 0.

x

y

Figure 2. Identical lines, infinitely many solu-
tions.

−x+ y = 1,
−2x+ 2y = 2.

y

x
P

Figure 3. Non-parallel distinct lines, one solu-
tion at the unique intersection point P .

−x+ y = 2,
x+ y = 0.

Space Geometry

A plane in xyz-space is given by an equation Ax + By + Cz = D. The vector
A⃗ı + Bȷ⃗ + Ck⃗ is normal to the plane. An equivalent equation is A(x − x0) +
B(y−y0)+C(z−z0) = 0, where (x0, y0, z0) is a given point in the plane. Solving
system

a11x + a12y + a13z = b1
a21x + a22y + a23z = b2
a31x + a32y + a33z = b3

(8)

is the geometric equivalent of finding all possible (x, y, z)-intersections of the
planes represented by system (8). Illustrated in Figures 4–11 are some interesting
geometrical possibilities.
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3.1 Systems of Linear Equations

I

II

III

Figure 4. Three Parallel Shelves. Planes I, II,
III are parallel. There is no intersection point.

I : z = 2, II : z = 1, III : z = 0.

I = II

III

Figure 5. Two Parallel Shelves. Planes I, II are
equal and parallel to plane III. There is no intersec-
tion point.

I : 2z = 2, II : z = 1, III : z = 0.

I

II

III
Figure 6. Book shelf. Two planes I, II are distinct
and parallel. There is no intersection point.

I : z = 2, II : z = 1, III : y = 0.

III

III

Figure 7. Pup tent. Two non-parallel planes I, II
meet in a line which never meets plane III. There are
no intersection points.

I : y + z = 0, II : y − z = 0, III : z = −1.

I = II = III Figure 8. Three Identical Shelves. Planes I, II,
III are equal. There are infinitely many intersection
points.

I : z = 1, II : 2z = 2, III : 3z = 3.
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3.1 Systems of Linear Equations

III

I = II

L

Figure 9. Open book. Equal planes I, II meet an-
other plane III in a line L. There are infinitely many
intersection points.

I : y + z = 0, II : 2y + 2z = 0, III : z = 0.

L

III

II
I Figure 10. Saw Tooth. Two non-parallel planes

I, II meet in a line L which lies in a third plane III.
There are infinitely many intersection points.

I : −y + z = 0, II : y + z = 0, III : z = 0.

P

III
I

II

L

Figure 11. Knife Cuts an Open Book. Two
non-parallel planes I, II meet in a line L not parallel
to plane III. There is a unique point P of intersection
of all three planes.

I : y + z = 0, II : z = 0, III : x = 0.

Examples and Methods

Example 3.1 (Toolkit)

Given system

∣∣∣∣∣∣
x + 4z = 1
x + y + 4z = 3

z = 2

∣∣∣∣∣∣, find the system that results from opera-

tion swap(1,2) followed by operation combo(2,1,-1).

Solution: The steps are as follows, with the equivalent system equal to the last display.∣∣∣∣∣∣
x + 4z = 1
x + y + 4z = 3

z = 2

∣∣∣∣∣∣
Original system.

∣∣∣∣∣∣
x + y + 4z = 3
x + 4z = 1

z = 2

∣∣∣∣∣∣ swap(1,2)

∣∣∣∣∣∣
y = 2

x + 4z = 1
z = 2

∣∣∣∣∣∣
combo(2,1,-1)

Calculations for combo(2,1,-1) can be done on scratch paper. Experts do the arithmetic
column-by-column, using no scratch paper. Here’s the details for the scratch paper
arithmetic:

1x + 0y + 4z = 1 Equation 2
1x + 1y + 4z = 3 Equation 1
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3.1 Systems of Linear Equations

−1x + 0y − 4z = −1 Equation 2 times -1
1x + 1y + 4z = 3 Equation 1

Add on the columns, replacing the second equation.

−1x + 0y − 4z = −1 Equation 2 times -1
0x + 1y + 0z = 2 Equation 1 + (-1)(Equation 2)

The last equation replaces equation 1 and the label combo(2,1,-1) is written next to
the replacement. All of the scratch work is discarded.

Example 3.2 (Inverse Toolkit)

Let system

∣∣∣∣∣∣
x − 3z = −1

2y + 6z = 4
z = 3

∣∣∣∣∣∣ be produced by toolkit operations, first

mult(2,2) and then combo(2,1,-1). Find the original system.

Solution: We begin by writing the given toolkit operation inverses, in reverse order, as
combo(2,1,1) and mult(2,1/2). The operations, in this order, are performed on the
given system, to find the original system two steps back, in the last display.∣∣∣∣∣∣

x − 3z = −1
2y + 6z = 4

z = 3

∣∣∣∣∣∣
Given system.

∣∣∣∣∣∣
x + 2y + 3z = 3

2y + 6z = 4
z = 3

∣∣∣∣∣∣
combo(2,1,1)

One step back.

∣∣∣∣∣∣
x + 2y + 3z = 3

y + 3z = 2
z = 3

∣∣∣∣∣∣
mult(2,1/2)

Two steps back.

Example 3.3 (Planar System)
Classify the system geometrically as one of the three types displayed in Figures 1, 2,
3. Then solve for x and y. ∣∣∣∣ x + 2y = 1,

3x + 6y = 3.

∣∣∣∣(9)

Solution: The second equation, divided by 3, gives the first equation. In short, the two
equations are proportional. The lines are geometrically equal lines, as in Figure 2. The
two equations are equivalent to the system∣∣∣∣ x + 2y = 1,

0 = 0.

∣∣∣∣
To solve the system means to find all points (x, y) simultaneously common to both lines,
which are all points (x, y) on x+ 2y = 1.

A parametric representation of this line is possible, obtained by setting y = t and then
solving for x = 1 − 2t, −∞ < t < ∞. We report the solution as a parametric solution,
but the first solution is also valid.

x = 1− 2t,
y = t.
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3.1 Systems of Linear Equations

Example 3.4 (No Solution)
Classify the system geometrically as the type displayed in Figure 1. Explain why
there is no solution. ∣∣∣∣ x + 2y = 1,

3x + 6y = 6.

∣∣∣∣(10)

Solution: The second equation, divided by 3, gives x + 2y = 2, a line parallel to the
first line x+2y = 1. The lines are geometrically parallel lines, as in Figure 1. The two
equations are equivalent to the system∣∣∣∣ x + 2y = 1,

x + 2y = 2.

∣∣∣∣
To solve the system means to find all points (x, y) simultaneously common to both lines,
which are all points (x, y) on x + 2y = 1 and also on x + 2y = 2. If such a point (x, y)
exists, then 1 = x + 2y = 2 or 1 = 2, a contradictory signal equation. Because 1 = 2
is false, then no common point (x, y) exists and we report no solution.

Some readers will want to continue and write equations for x and y, a solution to the
problem. We emphasize that this is not possible, because there is no solution at all.

The presence of a signal equation, which is a false equation used primarily to detect
no solution, will appear always in the solution process for a system of equations that
has no solution. Generally, this signal equation, if present, will be distilled to the single
equation “0 = 1.” For instance, 0 = 2 can be distilled to 0 = 1 by dividing equation
0 = 2 by 2.

,

Exercises 3.1 �

Toolkit
Compute the equivalent system of equa-
tions. Definitions of combo, swap and mult

on page 177.

1. Given

∣∣∣∣∣∣
x + 2z = 1
x + y + 2z = 4

z = 0

∣∣∣∣∣∣, find

the system that results from
combo(2,1,-1).

2. Given

∣∣∣∣∣∣
x + 2z = 1
x + y + 2z = 4

z = 0

∣∣∣∣∣∣, find the

system that results from swap(1,2) fol-
lowed by combo(2,1,-1).

3. Given

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣, find

the system that results from
combo(1,2,-1).

4. Given

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣, find the

system that results from swap(1,2) fol-
lowed by combo(1,2,-1).

5. Given

∣∣∣∣∣∣
y + z = 2

3y + 3z = 6
y = 0

∣∣∣∣∣∣, find the

system that results from swap(2,3),
combo(2,1,-1).

6. Given

∣∣∣∣∣∣
y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣, find

the system that results from
mult(2,1/3), combo(1,2,-1),
swap(2,3), swap(1,2).

Inverse Toolkit
Compute the equivalent system of equa-
tions.

182



3.1 Systems of Linear Equations

7. If

∣∣∣∣∣∣
− y = −3

x + y + 2z = 4
z = 0

∣∣∣∣∣∣ resulted

from combo(2,1,-1), then find the
original system.

8. If

∣∣∣∣∣∣
y = 3

x + 2z = 1
z = 0

∣∣∣∣∣∣ resulted from

swap(1,2) followed by combo(2,1,-1),
then find the original system.

9. If

∣∣∣∣∣∣
x + 3z = 1

y − 3z = 4
z = 1

∣∣∣∣∣∣ resulted from

combo(1,2,-1), then find the original
system.

10. If

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣ resulted from

swap(1,2) followed by combo(2,1,2),
then find the original system.

11. If

∣∣∣∣∣∣
y + z = 2

3y + 3z = 6
y = 0

∣∣∣∣∣∣ resulted

from mult(2,-1), swap(2,3),
combo(2,1,-1), then find the original
system.

12. If

∣∣∣∣∣∣
2y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣ resulted

from mult(2,1/3), combo(1,2,-1),
swap(2,3), swap(1,2), then find the
original system.

Planar System
Solve the xy–system and interpret the so-
lution geometrically as

(a) parallel lines

(b) equal lines

(c) intersecting lines.

13.

∣∣∣∣ x + y = 1,
y = 1

∣∣∣∣
14.

∣∣∣∣ x + y = −1
x = 3

∣∣∣∣
15.

∣∣∣∣ x + y = 1
x + 2y = 2

∣∣∣∣

16.

∣∣∣∣ x + y = 1
x + 2y = 3

∣∣∣∣
17.

∣∣∣∣ x + y = 1
2x + 2y = 2

∣∣∣∣
18.

∣∣∣∣ 2x + y = 1
6x + 3y = 3

∣∣∣∣
19.

∣∣∣∣ x − y = 1
−x − y = −1

∣∣∣∣
20.

∣∣∣∣ 2x − y = 1
x − 0.5y = 0.5

∣∣∣∣
21.

∣∣∣∣ x + y = 1
x + y = 2

∣∣∣∣
22.

∣∣∣∣ x − y = 1
x − y = 0

∣∣∣∣
System in Space
For each xyz–system:

(a) If no solution, then report three
identical shelves, pup tent, two
parallel shelves or book shelf.

(b) If infinitely many solutions, then re-
port one shelf, open book or saw
tooth.

(c) If a unique intersection point, then
report the values of x, y and z.

23.

∣∣∣∣∣∣
x − y + z = 2
x = 1

y = 0

∣∣∣∣∣∣
24.

∣∣∣∣∣∣
x + y − 2z = 3
x = 2

z = 1

∣∣∣∣∣∣
25.

∣∣∣∣∣∣
x − y = 2
x − y = 1
x − y = 0

∣∣∣∣∣∣
26.

∣∣∣∣∣∣
x + y = 3
x + y = 2
x + y = 1

∣∣∣∣∣∣
27.

∣∣∣∣∣∣
x + y + z = 3
x + y + z = 2
x + y + z = 1

∣∣∣∣∣∣
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3.1 Systems of Linear Equations

28.

∣∣∣∣∣∣
x + y + 2z = 2
x + y + 2z = 1
x + y + 2z = 0

∣∣∣∣∣∣
29.

∣∣∣∣∣∣
x − y + z = 2
2x − 2y + 2z = 4

y = 0

∣∣∣∣∣∣
30.

∣∣∣∣∣∣
x + y − 2z = 3
3x + 3y − 6z = 6

z = 1

∣∣∣∣∣∣
31.

∣∣∣∣∣∣
x − y + z = 2

0 = 0
0 = 0

∣∣∣∣∣∣
32.

∣∣∣∣∣∣
x + y − 2z = 3

0 = 0
1 = 1

∣∣∣∣∣∣

33.

∣∣∣∣∣∣
x + y = 2
x − y = 2

y = −1

∣∣∣∣∣∣

34.

∣∣∣∣∣∣
x − 2z = 4
x + 2z = 0

z = 2

∣∣∣∣∣∣

35.

∣∣∣∣∣∣
y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣

36.

∣∣∣∣∣∣
x + 2z = 1
4x + 8z = 4

z = 0

∣∣∣∣∣∣
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3.2 Filmstrips and Toolkit Sequences

,

3.2 Filmstrips and Toolkit Sequences

Expert on Video. A linear algebra expert solves a system of equations with
paper and pencil. A video records all the paper details, starting with the original
system of equations and ending with the solution. Each application of one of
the toolkit operations swap, combo or mult causes the system of equations to be
re-written.

Filmstrip. The documentary video is edited into an ordered sequence of images,
a filmstrip which eliminates all arithmetic details. The cropped images are the
selected frames which record the result of each computation: only major toolkit
steps appear (see Table 4).

Table 4. A Toolkit Sequence.

Each image is a cropped frame from a filmstrip, obtained by editing a video documentary

of an expert solving the linear system.

Frame 1 Frame 2 Frame 3

Original
System

{
x− y= 2,

3y=−3.

Apply mult(2,1/3)

{
x− y= 2,

y=−1.

Apply
combo(2,1,1)

{
x = 1,
y=−1.

Definition 3.1 (Toolkit Sequence)
Assume a video has been made of a person solving a linear system. A sequence of
selected filmstrip images, presented in solution order, is called a Toolkit Sequence.
The images are presumed cropped and devoid of arithmetic detail, but each toolkit
step is documented.

The cropped images of major toolkit steps make a filmstrip which
represents the minimum set of solution steps to be written on paper.

Lead Variables

A variable chosen from the variable list x, y is called a lead variable provided
it appears just once in the entire system of equations, and in addition, its ap-
pearance reading left-to-right is first, with coefficient one. The same definition
applies to arbitrary variable lists x1, x2, . . . , xn.
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3.2 Filmstrips and Toolkit Sequences

Illustration. Symbol x is a lead variable in all three frames of the toolkit
sequence in Table 4. But symbol y fails to be a lead variable in frames 1 and 2.
In the final frame, both x and y are lead variables.

A free variable is a non-lead variable, detectable only from a frame in which
every non-zero equation has a lead variable.

A consistent system in which every variable is a lead variable must have a unique
solution. The system must look like the final frame of the sequence in Table 4.
More precisely, the variables appear in variable list order to the left of the equal
sign, each variable appearing just once, with numbers to the right of the equal
sign.

Unique Solution

To solve a system with a unique solution, we apply the toolkit operations of
swap, multiply and combination (acronyms swap, mult, combo), one operation
per frame, until the last frame displays the unique solution.

Because all variables will be lead variables in the last frame, we seek to create a
new lead variable in each frame. Sometimes, this is not possible, even if it is the
general objective. Exceptions are swap and multiply operations, which are often
used to prepare for creation of a lead variable. Listed in Table 5 are the rules
and conventions that we use to create toolkit sequences.

Table 5. Conventions and Rules for Creating Toolkit Sequences.

Order of Variables. Variables in equations appear in variable list order to the
left of the equal sign.

Order of Equations. Equations are listed in variable list order inherited from
their lead variables. Equations without lead variables appear next. Equa-
tions without variables appear last. Multiple swap operations convert any
system to this convention.

New Lead Variable. Select a new lead variable as the first variable, in variable
list order, which appears among the equations without a lead variable.

An illustration:

y + 4z = 2,
x + y = 3,
x + 2y + 3z = 4.

Frame 1. Original system.

x + 2y + 3z = 4,
x + y = 3,

y + 4z = 2.

Frame 2.

swap(1,3)
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3.2 Filmstrips and Toolkit Sequences

x + 2y + 3z = 4,
− y − 3z = −1,

y + 4z = 2.

Frame 3.
combo(1,2,-1)

x + 2y + 3z = 4,
− y − 3z = −1,

z = 1.

Frame 4.

combo(2,3,1)

x + 2y + 3z = 4,
y + 3z = 1,

z = 1.

Frame 5.
mult(2,-1)

x − 3z = 2,
y + 3z = 1,

z = 1.

Frame 6.
combo(2,1,-2)

x − 3z = 2,
y = −2,

z = 1.

Frame 7.
combo(3,2,-3)

x = 5,
y = −2,

z = 1.

Frame 8. combo(3,1,3)
Last Frame.
Unique solution.

No Solution

A special case occurs in a toolkit sequence, when a nonzero equation occurs hav-
ing no variables. Called a signal equation, its occurrence signals no solution,
because the equation is false. Normally, we halt the toolkit sequence at the point
of first discovery, and then declare no solution. An illustration:

y + 3z = 2,
x + y = 3,
x + 2y + 3z = 4.

Frame 1. Original system.

x + 2y + 3z = 4,
x + y = 3,

y + 3z = 2.

Frame 2.

swap(1,3)

x + 2y + 3z = 4,
− y − 3z = −1,

y + 3z = 2.

Frame 3.
combo(1,2,-1)

x + 2y + 3z = 4,
− y − 3z = −1,

0 = 1.

Frame 4.
Signal Equation 0 = 1.
combo(2,3,1)
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The signal equation 0 = 1 is a false equation, therefore the last frame has no
solution. Because the toolkit neither creates nor destroys solutions, then the
original system in the first frame has no solution.

Readers who want to go on and write an answer for the system must be warned
that no such possibility exists. Values cannot be assigned to any variables in
the case of no solution. This can be perplexing, especially in a final frame like

x = 4,
z = −1,
0 = 1.

While it is true that x and z were assigned values, the final signal equation
0 = 1 is false, meaning any answer is impossible. There is no possibility to write
equations for all variables. There is no solution. It is a tragic error to claim
x = 4, z = −1 is a solution.

Infinitely Many Solutions

A system of equations having infinitely many solutions is solved from a toolkit
sequence construction that parallels the unique solution case. The same quest
for lead variables is made, hoping in the final frame to have just the variable list
on the left and numbers on the right.

The stopping criterion which identifies the final frame, in either the case of a
unique solution or infinitely many solutions, is exactly the same:

Last Frame Test. A frame is the last frame when every nonzero
equation has a lead variable. Remaining equations have the form
0 = 0.

Any variables that are not lead variables, in the final frame, are called free
variables, because their values are completely undetermined. Any missing
variable must be a free variable.

y + 3z = 1,
x + y = 3,
x + 2y + 3z = 4.

Frame 1. Original system.

x + 2y + 3z = 4,
x + y = 3,

y + 3z = 1.

Frame 2.

swap(1,3)

x + 2y + 3z = 4,
− y − 3z = −1,

y + 3z = 1.

Frame 3.
combo(1,2,-1)
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x + 2y + 3z = 4,
− y − 3z = −1,

0 = 0.

Frame 4.

combo(2,3,1)

x + 2y + 3z = 4,
y + 3z = 1,

0 = 0.

Frame 5.
mult(2,-1)

x − 3z = 2,
y + 3z = 1,

0 = 0.

Frame 6. combo(2,1,-2)
Last Frame.
Lead=x, y, Free=z.

Last Frame to General Solution

Once the last frame of the toolkit sequence is obtained, then the general solution
can be written by a fixed and easy-to-learn algorithm.

Last Frame Algorithm

This process applies only to the last frame in the case of infinitely
many solutions.

(1) Assign invented symbols t1, t2, . . . to the free variables.
(2) Isolate each lead variable.
(3) Back-substitute the free variable invented symbols.

To illustrate, assume the last frame of the toolkit sequence is

x − 3z = 2,
y + 3z = 1,

0 = 0,

Last Frame.
Lead variables x, y.

then the general solution is written as follows.

z = t1 The free variable z is assigned symbol t1.

x = 2 + 3z,
y = 1− 3z

The lead variables are x, y. Isolate them left.

x = 2 + 3t1,
y = 1− 3t1,
z = t1.

Back-substitute. Solution found.

In the last frame, variables appear left of the equal sign in variable list order.
Only invented symbols1 appear right of the equal sign. The expression is called
a standard general solution. The meaning:

1Computer algebra system maple uses invented symbols t1, t2, t3, . . . and we follow the
convention.
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Nothing Skipped Each solution of the system of equations can be obtained
by specializing the invented symbols t1, t2, . . . to particular
numbers.

It Works The general solution expression satisfies the system of
equations for all possible values of the symbols t1, t2, . . . .

General Solution and the Last Frame Algorithm

An additional illustration will be given for the last frame algorithm. Assume
variable list order x, y, z, w, u, v for the last frame

x + z + u+ v = 1,
y − u+ v = 2,

w + 2u− v = 0.

(1)

Every nonzero equation above has a lead variable. The lead variables in (1)
are the boxed symbols x, y, w. The free variables are z, u, v.

Assign invented symbols t1, t2, t3 to the free variables and back-substitute in (1)
to obtain a standard general solution

x = 1− t1 − t2 − t3,
y = 2 + t2 − t3,
w = −2t2 + t3,
z = t1,
u = t2,
v = t3.

or



x = 1− t1 − t2 − t3,
y = 2 + t2 − t3,
z = t1,
w = −2t2 + t3,
u = t2,
v = t3.

It is demanded by convention that general solutions be displayed in variable list
order. This is why the above display bothers to re-write the equations in the new
order on the right.

,

Exercises 3.2 �

Lead and free variables
For each system assume variable list x1,
. . . , x5. List the lead and free variables.

1.

∣∣∣∣∣∣
x2+3x3 =0

x4 =0
0=0

∣∣∣∣∣∣
2.

∣∣∣∣∣∣
x2 = 0

x3 + 3x5 = 0
x4 + 2x5 = 0

∣∣∣∣∣∣
3.

∣∣∣∣∣∣
x1 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣

4.

∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣

5.

∣∣∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

0= 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣

6.

∣∣∣∣∣∣
x1 + x2 = 0

x3 = 0
0= 0

∣∣∣∣∣∣
190



3.2 Filmstrips and Toolkit Sequences

7.

∣∣∣∣∣∣
x1 + x2 + 3x3 + 5x4 = 0

x5 = 0
0= 0

∣∣∣∣∣∣
8.

∣∣∣∣∣∣
x1 + 2x2 + 3x4 + 4x5 = 0

x3 + x4 + x5 = 0
0= 0

∣∣∣∣∣∣
9.

∣∣∣∣∣∣∣∣
x3 + 2x4 = 0

x5 = 0
0= 0
0 = 0

∣∣∣∣∣∣∣∣
10.

∣∣∣∣∣∣∣∣
x4 + x5 = 0

0= 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣
11.

∣∣∣∣∣∣∣∣
x2 + 5x4 = 0

x3 + 2x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣
12.

∣∣∣∣∣∣∣∣
x1 + 3x3 = 0

x2 + x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣
Elementary Operations
Consider the 3× 3 system

x + 2y + 3z = 2,
−2x + 3y + 4z = 0,
−3x + 5y + 7z = 3.

Define symbols combo, swap and mult
as in the textbook. Write the 3× 3 system
which results from each of the following op-
erations.

13. combo(1,3,-1)

14. combo(2,3,-5)

15. combo(3,2,4)

16. combo(2,1,4)

17. combo(1,2,-1)

18. combo(1,2,-e2)

19. mult(1,5)

20. mult(1,-3)

21. mult(2,5)

22. mult(2,-2)

23. mult(3,4)

24. mult(3,5)

25. mult(2,-π)

26. mult(2,π)

27. mult(1,e2)

28. mult(1,-e−2)

29. swap(1,3)

30. swap(1,2)

31. swap(2,3)

32. swap(2,1)

33. swap(3,2)

34. swap(3,1)

Unique Solution
Create a toolkit sequence for each system,
whose final frame displays the unique so-
lution of the system of equations. Assume
variable list order x1, x2, x3, x4, x5 and the
number of variables is the number of equa-
tions.

35.

∣∣∣∣x1+3x2= 0
x2=−1

∣∣∣∣
36.

∣∣∣∣x1+2x2= 0
x2=−2

∣∣∣∣
37.

∣∣∣∣x1+3x2=2
x1− x2=1

∣∣∣∣
38.

∣∣∣∣x1+ x2=−1
x1+2x2=−2

∣∣∣∣
39.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
4x3 = 4

∣∣∣∣∣∣
40.

∣∣∣∣∣∣
x1 = 1

3x1 + x2 = 0
2x1 + 2x2 + 3x3 = 3

∣∣∣∣∣∣
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41.

∣∣∣∣∣∣
x1 + x2 + 3x3 = 1

x2 = 2
3x3 = 0

∣∣∣∣∣∣
42.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 = 3
3x3 = 0

∣∣∣∣∣∣
43.

∣∣∣∣∣∣∣∣
x1 = 2
x1 + 2x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
44.

∣∣∣∣∣∣∣∣
x1 = 3
x1 − 2x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 2

∣∣∣∣∣∣∣∣
45.

∣∣∣∣∣∣∣∣
x1 + x2 = 2
x1 + 2x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
46.

∣∣∣∣∣∣∣∣
x1 − 2x2 = 3
x1 − x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 1

∣∣∣∣∣∣∣∣

47.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 1
3x1 + x3 + 2x5 = 1

∣∣∣∣∣∣∣∣∣∣

48.

∣∣∣∣∣∣∣∣∣∣
x1 = 2
x1 − x2 = 0
2x1 + 2x2 + x3 = 1
3x1 + 6x2 + x3 + 3x4 = 1
3x1 + x3 + 3x5 = 1

∣∣∣∣∣∣∣∣∣∣

49.

∣∣∣∣∣∣∣∣∣∣
x1− x2+ x3− x4+ x5= 0

2x2− x3+ x4− x5= 0
3x3− x4+ x5= 0

4x4− x5= 0
5x5=20

∣∣∣∣∣∣∣∣∣∣

50.

∣∣∣∣∣∣∣∣∣∣
x1 − x2 = 3
x1 − 2x2 = 0
2x1 + 2x2 + x3 = 1
3x1 + 6x2 + x3 + 3x4 = 1
3x1 + x3 + x5 = 3

∣∣∣∣∣∣∣∣∣∣

No Solution
Develop a toolkit sequence for each system,
whose final frame contains a signal equa-
tion (e.g., 0 = 1), thereby showing that the
system has no solution.

51.

∣∣∣∣x1+3x2=0
x1+3x2=1

∣∣∣∣
52.

∣∣∣∣ x1+2x2=1
2x1+4x2=2

∣∣∣∣
53.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
x2 + 4x3 = 4

∣∣∣∣∣∣
54.

∣∣∣∣∣∣
x1 = 0

3x1 + x2 + 3x3 = 1
2x1 + 2x2 + 6x3 = 0

∣∣∣∣∣∣
55.

∣∣∣∣∣∣
x1 + x2 + 3x3 = 1

x2 = 2
x1 + 2x2 + 3x3 = 2

∣∣∣∣∣∣
56.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 2x3 = 3
x1 + 5x3 = 5

∣∣∣∣∣∣
57.

∣∣∣∣∣∣∣∣
x1 = 2
x1 + 2x2 = 2
x1 + 2x2 + x3 + 2x4 = 0
x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
58.

∣∣∣∣∣∣∣∣
x1 = 3
x1 − 2x2 = 1

2x1 + 2x2 + x3 + 4x4 = 0
3x1 + 6x2 + x3 + 4x4 = 2

∣∣∣∣∣∣∣∣

59.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1

2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 − x5 = 1

− 6x2 − x3 + 4x4 + x5 = 0

∣∣∣∣∣∣∣∣∣∣

60.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1

3x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 − x5 = 1

− 6x2 − x3 − 4x4 + x5 = 2

∣∣∣∣∣∣∣∣∣∣
Infinitely Many Solutions
Display a toolkit sequence for each system,
whose final frame has this property: each
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nonzero equation has a lead variable. Then
apply the last frame algorithm to write
out the standard general solution of the sys-
tem. Assume in each system variable list x1

to x5.

61.

∣∣∣∣∣∣
x1+x2+3x3 =0

x2 +x4 =0
0=0

∣∣∣∣∣∣
62.

∣∣∣∣∣∣
x1 + x3 = 0
x1 + x2 + x3 + 3x5 = 0

x4 + 2x5 = 0

∣∣∣∣∣∣
63.

∣∣∣∣∣∣
x2 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣
64.

∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣
65.

∣∣∣∣ x1 + 2x2 + 3x3 = 0
x3 + x4 0 = 0

∣∣∣∣
66.

∣∣∣∣∣∣
x1 + x2 = 0

x2 + x3 = 0
x3 0 = 1

∣∣∣∣∣∣
67.

∣∣∣∣ x1 + x2 + 3x3 + 5x4 + 2x5 = 0
x5 = 0

∣∣∣∣
68.

∣∣∣∣ x1 + 2x2 + x3 + 3x4 + 4x5 = 0
x3 + x4 + x5 = 0

∣∣∣∣
69.

∣∣∣∣∣∣
x3 + 2x4 + x5 = 0
2x3 + 2x4 + 2x5 = 0

x5 = 0

∣∣∣∣∣∣
70.

∣∣∣∣∣∣∣∣
x4 + x5 = 0

0= 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣
71.

∣∣∣∣∣∣∣∣
x2 + x3 + 5x4 = 0

x3 + 2x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣

72.

∣∣∣∣∣∣∣∣
x1 + 3x3 = 0
x1 + x2 + x4 = 0

x5 = 0
0= 0

∣∣∣∣∣∣∣∣
Inverses of Elementary Operations
Given the final frame of a toolkit sequence
is ∣∣∣∣∣∣

3x + 2y + 4z = 2
x + 3y + 2z = −1
2x + y + 5z = 0

∣∣∣∣∣∣
and the given operations, find the original
system in the first frame.

73. combo(1,2,-1), combo(2,3,-3),
mult(1,-2), swap(2,3).

74. combo(1,2,-1), combo(2,3,3),
mult(1,2), swap(3,2).

75. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3).

76. combo(1,2,-1), combo(2,3,4),
mult(1,3), swap(3,2).

77. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3),
swap(2,3).

78. swap(2,3), combo(1,2,-1),
combo(2,3,4), mult(1,3),
swap(3,2).

79. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3),
mult(2,3).

80. combo(1,2,-1), combo(2,3,4),
mult(1,3), swap(3,2),
combo(2,3,-3).
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,

3.3 General Solution Theory

Consider the nonhomogeneous system

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
am1x1 + am2x2 + · · ·+ amnxn = bm.

(1)

The general solution of system (1) is an expression which represents all possible
solutions of the system.

The example above for infinitely many solutions contained an unmotivated algo-
rithm which expressed the general solution in terms of invented symbols t1, t2,
. . . , which in mathematical literature are called parameters. We outline here
some topics from calculus which form the assumed background for this subject.

Equations for Points, Lines and Planes

Background from analytic geometry appears in Table 6. In this table, t1 and t2
are parameters, which means they are allowed to take on any value between
−∞ and +∞. The algebraic equations describing the geometric objects are called
parametric equations.

Table 6. Parametric Equations with Geometrical Significance.

x = d1,
y = d2,
z = d3.

Point. The equations have no parameters and
describe a single point.

x = d1 + a1t1,
y = d2 + a2t1,
z = d3 + a3t1.

Line. The equations with parameter t1 describe
a straight line through (d1, d2, d3) with tangent
vector a1⃗ı+ a2ȷ⃗+ a3k⃗.

x = d1 + a1t1 + b1t2,
y = d2 + a2t1 + b2t2,
z = d3 + a3t1 + b3t2.

Plane. The equations with parameters t1, t2 de-
scribe a plane containing (d1, d2, d3). The cross
product (a1⃗ı + a2ȷ⃗ + a3k⃗) × (b1⃗ı + b2ȷ⃗ + b3k⃗) is
normal to the plane.

To illustrate, the parametric equations x = 2−6t1, y = −1− t1, z = 8t1 describe
the unique line of intersection of the three planes (details in Example 3.5)

x + 2y + z = 0,
2x − 4y + z = 8,
3x − 2y + 2z = 8.

(2)
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General Solutions

Definition 3.2 (Parametric Equations)
Equations of the form

x1 = d1 + c11t1 + · · ·+ c1ktk,
x2 = d2 + c21t1 + · · ·+ c2ktk,

...
xn = dn + cn1t1 + · · ·+ cnktk

(3)

are called parametric equations for the variables x1, . . . , xn.

The numbers d1, . . . , dn, c11, . . . , cnk are known constants and the symbols t1, . . . , tk
are parameters, which are treated as variables that may be assigned any value from
−∞ to ∞.

Three cases appear often in examples and exercises, illustrated here for variables
x1, x2, x3:

No parameters

x1 = d1
x2 = d2
x3 = d3

One parameter

x1 = d1 + a1t1
x2 = d2 + a2t1
x3 = d3 + a3t1

Two parameters

x1 = d1 + a1t1 + b1t2
x2 = d2 + a2t1 + b2t2
x3 = d3 + a3t1 + b3t2

Definition 3.3 (General Solution)
A general solution of a linear algebraic system of equations (1) is a set of parametric
equations (3) plus two additional requirements:

Equations (3) satisfy (1) for all real values of t1, . . . , tk.(4)

Any solution of (1) can be obtained from (3) by specializing values
of the parameters t1, t2, . . . tk.

(5)

A general solution is sometimes called a parametric solution. Requirement (4)
means that the solution works. Requirement (5) means that no solution was
skipped.

Definition 3.4 (Standard General Solution)
Parametric equations (3) are called standard if they satisfy for distinct subscripts j1,
i2, . . . , jk the equations

xj1 = t1, xj2 = t2, . . . , xjk = tk.(6)

The relations mean that the full set of parameter symbols t1, t2, . . . , tk were assigned
to k distinct variable names (the free variables) selected from x1, . . . , xn.

A standard general solution of system (1) is a special set of parametric equations
(3) satisfying (4), (5) and additionally (6). Toolkit sequences always produce a
standard general solution.
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Theorem 3.2 (Standard General Solution)
A standard general solution has the fewest possible parameters and it represents each
solution of the linear system by a unique set of parameter values.

The theorem supplies the theoretical basis for the method of toolkit sequences,
which formally appears as an algorithm on page 197. The proof of Theorem 3.2
is delayed until page 220. It is unusual if this proof is a subject of a class lecture,
due to its length; it is recommended reading for the mathematically inclined,
after understanding the examples.

Reduced Echelon System

Consider a toolkit sequence. The last frame, from which we write the general
solution, is called a reduced echelon system.

Definition 3.5 (Reduced Echelon System)
A linear system in which each nonzero equation has a lead variable is called a
reduced echelon system. Implicitly assumed are the following definitions and rules.

• A lead variable is a variable which appears with coefficient one in the
very first location, left to right, in exactly one equation.

• A variable not used as a lead variable is called a free variable. Variables
that do not appear at all are free variables.

• The nonzero equations are listed in variable list order, inherited from their
lead variables. Equations without variables are listed last.

• All variables in an equation are required to appear in variable list order.
Therefore, within an equation, all free variables are to the right of the lead
variable.

Detecting a Reduced Echelon System

A given system can be rapidly inspected to detect if it can be transformed into a
reduced echelon system. We assume that within each equation, variables appear
in variable list order.

A nonhomogeneous linear system is recognized as a reduced echelon
system when the first variable listed in each equation has coefficient
one and that symbol appears nowhere else in the system of equa-
tions.2

Such a system can be re-written, by swapping equations and enforcing the rules
above, so that the resulting system is a reduced echelon system.

2Children are better at such classifications than adults. A favorite puzzle among kids is a
drawing which contains disguised figures, like a bird, a fire hydrant and Godzilla. Routinely,
children find all the disguised figures.
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Rank and Nullity

A reduced echelon system splits the variable names x1, . . . , xn into the lead
variables and the free variables. Because the entire variable list is exhausted
by these two sets, then

lead variables+ free variables = total variables.

Definition 3.6 (Rank and Nullity)
The number of lead variables in a reduced echelon system is called the rank of
the system. The number of free variables in a reduced echelon system is called the
nullity of the system.

Determining rank and nullity

First, display a toolkit sequence which starts with that system and ends in a reduced
echelon system. Then the rank and nullity of the system are those determined by
the final frame.

Theorem 3.3 (Rank and Nullity)
The following equation holds:

rank+ nullity = number of variables.

Computers and Reduced Echelon Form

Computer algebra systems and computer numerical laboratories compute from a
given linear system (5) a new equivalent system of identical size, which is called
the reduced row-echelon form, abbreviated rref.

The computed rref will pass the last frame test, provided there is no signal
equation, hence the rref is generally a reduced echelon system. This fact is the
basis of answer checks with computer assist.

Computer assist requiresmatrix input of the data, a topic which is delayed until
a later chapter. Popular commercial programs used to perform the computer
assist are maple, mathematica and matlab.

Elimination

The elimination algorithm applies at each algebraic step one of the three toolkit
rules defined in Table 1: swap, multiply and combination.

The objective of each algebraic step is to increase the number of lead vari-
ables. Equivalently, each algebraic step tries to eliminate one repetition of
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a variable name, which justifies calling the process the method of elimina-
tion. The process of elimination stops when a signal equation (typically 0 = 1)
is found. Otherwise, elimination stops when no more lead variables can be found,
and then the last system of equations is a reduced echelon system. A detailed
explanation of the process has been given above in the discussion of toolkit se-
quences.

Reversibility of the algebraic steps means that no solutions are created nor de-
stroyed during the algebra: the original system and all intermediate systems have
exactly the same solutions.

The final reduced echelon system has either a unique solution or infinitely many
solutions, in both cases we report the general solution. In the infinitely many
solution case, the last frame algorithm on page 189 is used to write out a
general solution.

Theorem 3.4 (Elimination)
Every linear system (5) has either no solution or else it has exactly the same solutions
as an equivalent reduced echelon system, obtained by repeated use of toolkit rules
swap, multiply and combination, page 176).

An Elimination Algorithm

An equation is said to be processed if it has a lead variable. Otherwise, the
equation is said to be unprocessed.

The acronym rref abbreviates the phrase reduced row echelon form. This abbre-
viation appears in matrix literature, so we use it instead of creating an acronym
for reduced echelon form (the word row is missing).

1. If an equation “0 = 0” appears, then move it to the end. If a signal equation
“0 = c” appears (c ̸= 0 required), then the system is inconsistent. In this
case, the algorithm halts and we report no solution.

2. Identify the first symbol xr, in variable list order x1, . . . , xn, which appears
in some unprocessed equation. Apply the multiply rule to insure xr has
leading coefficient one. Apply the combination rule to eliminate variable xr
from all other equations. Then xr is a lead variable: the number of lead
variables has been increased by one.

3. Apply the swap rule repeatedly to move this equation past all processed equa-
tions, but before the unprocessed equations. Mark the equation as processed,
e.g., replace xr by boxed symbol xr .

4. Repeat steps 1–3, until all equations have been processed once. Then lead
variables xi1 , . . . , xim have been defined and the last system is a reduced
echelon system.
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Uniqueness, Lead Variables and RREF

Elimination performed on a given system by two different persons will result in
the same reduced echelon system. The answer is unique, because attention has
been paid to the natural order x1, . . . , xn of the variable list. Uniqueness results
from critical step 2, also called the rref step:

Always select a lead variable as the next possible variable name in
the original list order x1, . . . , xn, taken from all possible unprocessed
equations.

This step insures that the final system is a reduced echelon system. Acronym
rref abbreviates reduced row echelon form, where row refers to an encoding of
one linear algebraic equation.

The wording next possible must be used, because once a variable name is used
for a lead variable it may not be used again. The next variable following the last–
used lead variable, from the list x1, . . . , xn, might not appear in any unprocessed
equation, in which case it is a free variable. The next variable name in the
original list order is then tried as a lead variable.

Numerical Optimization

It is common for references to divide the effort for obtaining an rref into two
stages, for which the second stage is back-substitution. This division of effort
is motivated by numerical efficiency considerations, largely historical. The reader
is advised to adopt the numerical point of view in hand calculations, as soon as
possible. It changes the details of a toolkit sequence to the rref : most readers
find the changes equally advantageous. The reason for the algorithm in the text
is motivational: to become an expert, you have to first know what you are trying
to accomplish. Exactly how to implement the toolkit to arrive at the rref will
vary for each person. The recommendation can be phrased as follows:

Don’t bother to eliminate a lead variable from equations already
assigned a lead variable. Go on to select the next lead variable and
remove that variable from subsequent equations. Final elimination
of lead variables from previous equations is saved for the end, then
done in reverse variable list order (called back-substitution).

Avoiding Fractions

Integer arithmetic should be used, when possible, to speed up hand computation
in elimination. To avoid fractions, the rref step 2 may be modified to read with
leading coefficient nonzero. The final division to obtain leading coefficient one is
then delayed until the last possible moment.
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Examples and Methods

Example 3.5 (Line of Intersection)
Show that the parametric equations x = 2− 6t, y = −1− t, z = 8t represent a line
through (2,−1, 0) with tangent −6⃗ı− ȷ⃗ which is the line of intersection of the three
planes

x + 2y + z = 0,
2x − 4y + z = 8,
3x − 2y + 2z = 8.

(7)

Solution: Using t = 0 in the parametric solution shows that (2,−1, 0) is on the line. The

tangent to the parametric curve is x′(t)⃗ı+y′(t)ȷ⃗+z′(t)k⃗, which computes to −6⃗ı− ȷ⃗. The
details for showing the parametric solution satisfies the three equations simultaneously:

LHS = x+ 2y + z First equation left side.

= (2− 6t) + 2(−1− t) + 8t Substitute parametric solution.

= 0 Matches the RHS in (7).

LHS = 2x− 4y + z Second equation left side.

= 2(2− 6t)− 4(−1− t) + 8t Substitute.

= 8 Matches (7).

LHS = 3x− 2y + 2z Third equation left side.

= 3(2− 6t)− 2(−1− t) + 16t Substitute.

= 8 Matches (7).

Example 3.6 (Geometry of Solutions)
Solve the system and interpret the solution geometrically.

x + 2z = 3,
y + z = 1.

Solution: We begin by displaying the general solution, which is a line:

x = 3− 2t1,
y = 1− t1,
z = t1, −∞ < t1 < ∞.

In standard xyz-coordinates, this line passes through (3, 1, 0) with tangent direction

−2⃗ı− ȷ⃗+ k⃗.

Details. To justify this solution, we observe that the first frame equals the last frame,
which is a reduced echelon system in variable list order x, y, z. The standard general
solution will be obtained from the last frame algorithm.

x + 2z = 3,
y + z = 1.

Frame 1 equals the last frame, a reduced echelon system
The lead variables are x, y and the free variable is z.

x = 3 − 2z,
y = 1 − z,
z = t1.

Assign to z invented symbol t1. Solve for lead variables
x and y in terms of the free variable z.
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x = 3 − 2t1,
y = 1 − t1,
z = t1.

Back-substitute for free variable z. This is the standard
general solution. It is geometrically a line, by Table 6.

Example 3.7 (Symbolic Answer Check)
Perform an answer check on

x + 2z = 3,
y + z = 1,

for the general solution

x = 3− 2t1,
y = 1− t1,
z = t1, −∞ < t1 < ∞.

Solution: The displayed answer can be checked manually by substituting the symbolic
general solution into the equations x+ 2z = 3, y + z = 1, as follows:

x+ 2z = (3− 2t1) + 2(t1)
= 3,

y + z = (1− t1) + (t1)
= 1.

Therefore, the two equations are satisfied for all values of the symbol t1.

Errors and Skipped Solutions. An algebraic error could lead to a claimed solution
x = 3, y = 1, z = 0, which also passes the answer check. While it is true that x = 3,
y = 1, z = 0 is a solution, it is not the general solution. Infinitely many solutions were
skipped in the answer check.

General Solution and Free Variables. The number of lead variables is called the
rank. The number of free variables is called the nullity. The basic relation is rank
+ nullity = number of variables. Computer algebra systems can compute the rank
independently, as a double-check against hand computation. This check is useful for
discovering skipped solution errors. The rank is unaffected by the ordering of variables.

Example 3.8 (Elimination)
Solve the system.

w + 2x − y + z = 1,
w + 3x − y + 2z = 0,

x + z = −1.

Solution: The answer using the natural variable list order w, x, y, z is the standard
general solution

w = 3 + t1 + t2,
x = −1− t2,
y = t1,
z = t2, −∞ < t1, t2 < ∞.
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Details. Elimination will be applied to obtain a toolkit sequence whose last frame
justifies the reported solution. The details amount to applying the three rules swap,
multiply and combination for equivalent equations on page 176 to obtain a last frame
which is a reduced echelon system. The standard general solution from the last frame
algorithm matches the one reported above.

Let’s mark processed equations with a box enclosing the lead variable (w is marked w ).

w + 2x − y + z = 1
w + 3x − y + 2z = 0

x + z = −1

1

w + 2x − y + z = 1
0 + x + 0 + z = −1

x + z = −1

2

w + 2x − y + z = 1
x + z = −1

0 = 0

3

w + 0 − y − z = 3
x + z = −1

0 = 0

4

1 Original system. Identify the variable order as w, x, y, z.

2 Choose w as a lead variable. Eliminate w from equation 2 by using combo(1,2,-1).

3 The w-equation is processed. Let x be the next lead variable. Eliminate x from
equation 3 using combo(2,3,-1).

4 Eliminate x from equation 1 using combo(2,1,-2). Mark the x-equation as pro-
cessed. Reduced echelon system found.

The four frames make the toolkit sequence which takes the original system into a
reduced echelon system. Basic exposition rules apply:

1. Variables in an equation appear in variable list order.

2. Equations inherit variable list order from the lead variables.

The last frame of the sequence, which must be a reduced echelon system, is used to write
out the general solution, using the last frame algorithm.

w = 3 + y + z
x = −1 − z
y = t1
z = t2

Solve for the lead variables w , x . Assign
invented symbols t1, t2 to the free variables
y, z.

w = 3 + t1 + t2
x = −1 − t2
y = t1
z = t2

Back-substitute free variables into the lead
variable equations to get a standard general
solution.
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Answer check. The check will be performed according to the outline on page 218. The
justification for this forward reference is to illustrate how to check answers without using
the invented symbols t1, t2, . . . in the details.

Step 1. The nonhomogeneous trial solution w = 3, x = −1, y = z = 0 is obtained
by setting t1 = t2 = 0. It is required to satisfy the nonhomogeneous system

w + 2x − y + z = 1,
w + 3x − y + 2z = 0,

x + z = −1.

Step 2. The partial derivatives ∂t1 , ∂t2 are applied to the parametric solution to obtain
two homogeneous trial solutions w = 1, x = 0, y = 1, z = 0 and w = 1,
x = −1, y = 0, z = 1, which are required to satisfy the homogeneous system

w + 2x − y + z = 0,
w + 3x − y + 2z = 0,

x + z = 0.

Each trial solution from Step 1 and Step 2 is checked by direct substitution. The
method uses superposition in order to eliminate the invented symbols from the answer
check.

Example 3.9 (No solution)
Verify by applying elimination that the system has no solution.

w + 2x − y + z = 0,
w + 3x − y + 2z = 0,

x + z = 1.

Solution: Elimination (page 198) will be applied, using the toolkit rules swap,multiply
and combination (page 176).

w + 2x − y + z = 0
w + 3x − y + 2z = 0

x + z = 1

1

w + 2x − y + z = 0
0 + x + 0 + z = 0

x + z = 1

2

w + 2x − y + z = 0
x + z = 0

0 = 1

3

1 Original system. Select variable order w, x, y, z. Identify lead variable w.

2 Eliminate w from other equations using combo(1,2,-1). Mark the w-equation
processed with w .
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3 Identify lead variable x. Then eliminate x from the third equation using operation
combo(2,3,-1). Signal equation found.

The appearance of the signal equation “0 = 1” means no solution. The logic: if the
original system has a solution, then so does the present equivalent system, hence 0 = 1,
a contradiction. Elimination halts, because of the inconsistent system containing the
false equation “0 = 1.”

Example 3.10 (Reduced Echelon form)
Find an equivalent system in reduced echelon form.

x1 + 2x2 − x3 + x4 = 1,
x1 + 3x2 − x3 + 2x4 = 0,

x2 + x4 = −1.

Solution: The answer using the natural variable list order x1, x2, x2, x4 is the non-
homogeneous system in reduced echelon form (briefly, rref form)

x1 − x3 − x4 = 3
x2 + x4 = −1

0 = 0

The lead variables are x1, x2 and the free variables are x3, x4. The standard general
solution of this system is

x1 = 3 + t1 + t2,
x2 = −1− t2,
x3 = t1,
x4 = t2, −∞ < t1, t2 < ∞.

The details are the same as Example 3.8, with w = x1, x = x2, y = x3, z = x4.
The toolkit sequence has three frames and the last frame is used to display the general
solution.

Answer check in maple. The output from the maple code below duplicates the reduced
echelon system reported above and the general solution.

with(LinearAlgebra):

eq1:=x[1]+2*x[2]-x[3]+x[4]=1:eq2:=x[1]+3*x[2]-x[3]+2*x[4]=0:

eq3:=x[2]+x[4]=-1:eqs:=[eq1,eq2,eq3]:var:=[x[1],x[2],x[3],x[4]]:

A:=GenerateMatrix(eqs,var,augmented);

F:=ReducedRowEchelonForm(A);

GenerateEquations(F,var);

F,LinearSolve(F,free=t); # general solution answer check

A,LinearSolve(A,free=t); # general solution answer check

,
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Exercises 3.3 �

Classification
Classify the parametric equations as a
point, line or plane, then compute as appro-
priate the tangent to the line or the normal
to the plane.

1. x = 0, y = 1, z = −2

2. x = 1, y = −1, z = 2

3. x = t1, y = 1 + t1, z = 0

4. x = 0, y = 0, z = 1 + t1

5. x = 1 + t1, y = 0, z = t2

6. x = t2 + t1, y = t2, z = t1

7. x = 1, y = 1 + t1, z = 1 + t2

8. x = t2 + t1, y = t1 − t2, z = 0

9. x = t2, y = 1 + t1, z = t1 + t2

10. x = 3t2 + t1, y = t1 − t2, z = 2t1

Reduced Echelon System
Solve the xyz–system and interpret the so-
lution geometrically.

11.

∣∣∣∣ y + z = 1
x + 2z = 2

∣∣∣∣
12.

∣∣∣∣ x + z = 1
y + 2z = 4

∣∣∣∣
13.

∣∣∣∣ y + z = 1
x + 3z = 2

∣∣∣∣
14.

∣∣∣∣ x + z = 1
y + z = 5

∣∣∣∣
15.

∣∣∣∣ x + z = 1
2x + 2z = 2

∣∣∣∣
16.

∣∣∣∣ x + y = 1
3x + 3y = 3

∣∣∣∣
17.

∣∣ x + y + z = 1.
∣∣

18.
∣∣ x + 2y + 4z = 0.

∣∣

19.

∣∣∣∣ x + y = 2
z = 1

∣∣∣∣
20.

∣∣∣∣ x + 4z = 0
y = 1

∣∣∣∣
Homogeneous System
Solve the xyz–system using elimination
with variable list order x, y, z.

21.

∣∣∣∣ y + z = 0
2x + 2z = 0

∣∣∣∣
22.

∣∣∣∣ x + z = 0
2y + 2z = 0

∣∣∣∣
23.

∣∣∣∣ x + z = 0
2z = 0

∣∣∣∣
24.

∣∣∣∣ y + z = 0
y + 3z = 0

∣∣∣∣
25.

∣∣∣∣ x + 2y + 3z = 0
0 = 0

∣∣∣∣
26.

∣∣∣∣ x + 2y = 0
0 = 0

∣∣∣∣
27.

∣∣∣∣∣∣
y + z = 0

2x + 2z = 0
x + z = 0

∣∣∣∣∣∣
28.

∣∣∣∣∣∣
2x + y + z = 0
x + 2z = 0
x + y − z = 0

∣∣∣∣∣∣
29.

∣∣∣∣∣∣
x + y + z = 0
2x + 2z = 0
x + z = 0

∣∣∣∣∣∣
30.

∣∣∣∣∣∣
x + y + z = 0
2x + 2z = 0
3x + y + 3z = 0

∣∣∣∣∣∣
Nonhomogeneous 3× 3 System
Solve the xyz-system using elimination and
variable list order x, y, z.

31.

∣∣∣∣ y = 1
2z = 2

∣∣∣∣
32.

∣∣∣∣ x = 1
2z = 2

∣∣∣∣
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33.

∣∣∣∣∣∣
y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
34.

∣∣∣∣∣∣
2x + y + z = 1
x + 2z = 2
x + y − z = −1

∣∣∣∣∣∣
35.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
36.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
3x + y + 3z = 3

∣∣∣∣∣∣
37.

∣∣∣∣∣∣
2x + y + z = 3
2x + 2z = 2
4x + y + 3z = 5

∣∣∣∣∣∣
38.

∣∣∣∣∣∣
2x + y + z = 2
6x y + 5z = 2
4x + y + 3z = 2

∣∣∣∣∣∣
39.

∣∣∣∣∣∣
6x + 2y + 6z = 10
6x y + 6z = 11
4x + y + 4z = 7

∣∣∣∣∣∣
40.

∣∣∣∣∣∣
6x + 2y + 4z = 6
6x y + 5z = 9
4x + y + 3z = 5

∣∣∣∣∣∣
Nonhomogeneous 3× 4 System
Solve the yzuv-system using elimination
with variable list order y, z, u, v.

41.

∣∣∣∣∣∣
y + z + 4u + 8v = 10

2z − u + v = 10
2y − u + 5v = 10

∣∣∣∣∣∣

42.

∣∣∣∣∣∣
y + z + 4u + 8v = 10

2z − 2u + 2v = 0
y + 3z + 2u + 5v = 5

∣∣∣∣∣∣
43.

∣∣∣∣∣∣
y + z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 1

∣∣∣∣∣∣
44.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 1

∣∣∣∣∣∣
45.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
46.

∣∣∣∣∣∣
y + z + 4u + 9v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
47.

∣∣∣∣∣∣
y + z + 4u + 9v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
48.

∣∣∣∣∣∣
y + z + 4u + 9v = 10

2z − 2u + 4v = 4
y + 4z + 2u + 7v = 8

∣∣∣∣∣∣
49.

∣∣∣∣∣∣
y + z + 4u + 9v = 2

2z − 2u + 4v = 4
y + 3z + 5u + 13v = 0

∣∣∣∣∣∣
50.

∣∣∣∣∣∣
y + z + 4u + 3v = 2

2z − 2u + 4v = 4
y + 3z + 5u + 7v = 0

∣∣∣∣∣∣
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,

3.4 Basis, Dimension, Nullity and Rank

Studied here are the basic concepts of rank, nullity, basis and dimension for a
system of linear algebraic equations.

Definition 3.7 (Rank and Nullity)
The rank of a system of linear algebraic equations is the number of lead variables
appearing in its reduced echelon form. The nullity of a system of linear algebraic
equations is the number of free variables.

rank = number of lead variables

nullity = number of free variables

rank + nullity = number of variables

Definition 3.8 (Basis and Dimension)
Consider a homogeneous system of linear algebraic equations. A list of k solutions
of the system is called a basis provided

1. The general solution of the system can be constructed from the list
of k solutions.

2. The list size k cannot be decreased.

The dimension of the system of linear algebraic equations is the unique number k
satisfying 1 and 2. The dimension equals the minimum number of invented symbols
used in any general solution, which also equals the nullity.

A basis is an alternate representation of the general solution
which has no invented symbols.

Basis Illustration

Consider the homogeneous system

x+ 2y + 3z = 0,
0 = 0,
0 = 0.
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It is a reduced echelon system with standard general solution

x = −2t1 − 3t2,
y = t1,
z = t2.

The formal partial derivatives ∂t1 , ∂t2 of the general solution are solutions of the
homogeneous system, because they correspond exactly to setting t1 = 1, t2 = 0
and t1 = 0, t2 = 1, respectively:

x = −2, y = 1, z = 0, (partial on t1)
x = −3, y = 0, z = 1. (partial on t2)

A basis for the homogeneous system is the list of two solutions displayed above.
Calculus courses might write the two solutions as space vectors: −2⃗ı + ȷ⃗ and
−3⃗ı+ k⃗. See page 210 for more details.

A general solution of the homogeneous system can be re-constructed from this
basis by multiplying the first solution by invented symbol t1 and the second
solution by invented symbol t2, then add to obtain

x = −2t1 − 3t2,
y = t1,
z = t2.

This display is the original standard general solution, reconstructed from the list
of solutions in the basis.

Non-uniqueness of a Basis

A given homogeneous linear system has a number of different standard general
solutions, obtained, for example, by re-ordering the variable list. Therefore, a
basis is not unique. Language like the basis is tragically incorrect.

To illustrate non-uniqueness, consider the homogeneous 3×3 system of equations

x+ y + z = 0,
0 = 0,
0 = 0.

(1)

Equations (1) have two standard general solutions

x = −t1 − t2, y = t1, z = t2
and
x = t3, y = −t3 − t4, z = t4,

corresponding to two different orderings of the variable list x, y, z. Then two
different bases for the system are given by the partial derivative relations

∂t1 , ∂t2 :

{
x = −1, y = 1, z = 0, Basis 1,
x = −1, y = 0, z = 1,

(2)
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∂t3 , ∂t4 :

{
x = 1, y = −1, z = 0, Basis 2,
x = 0, y = −1, z = 1.

(3)

In general, there are infinitely many bases possible for a given linear homogeneous
system.

Nullspace

Definition 3.9 (Nullspace)
Consider a system of linear homogeneous algebraic equations. The term nullspace
refers to the set of all solutions to the system. The origin of the word nullspace is
explained below.

Prefix null refers to the right side of the homogeneous system, which is zero,
or null, for each equation. The main reason for introducing the term
nullspace is to consider simultaneously all possible general solutions of the
linear system, without regard to their representation in terms of invented
symbols or the algorithm used to find the formulas.

Suffix space used in the term nullspace has meaning taken from the phrases
storage space and parking space — it has no intended geometrical
meaning whatsoever.

How to Find the Nullspace

A classical method for describing the nullspace is to form a toolkit sequence
for the homogeneous system which ends with a reduced echelon system. The
last frame algorithm applies to write the general solution in terms of invented
symbols t1, t2, . . . . The meaning is that assignment of values to the symbols
t1, t2, . . . lists all possible solutions of the system. The general solution formula
obtained by this method is one possible set of scalar equations that completely
describes all solutions of the homogeneous equation, hence it describes completely
the nullspace.

Basis for the Nullspace

A basis for the nullspace is found partial derivatives ∂t1 , ∂t2 , . . . taken on the
last frame algorithm general solution, giving k solutions. The general solution is
reconstructed from these basis elements by multiplying them by the symbols t1,
t2, . . . and adding.

Common practise, an abuse of language, reports the answer for the prob-
lem find the nullspace as equations for variables x1, . . . , xn in terms of
invented symbols. No such answer is a set: the equations are not the
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nullspace: they are an algebraic representation of the set of solutions
to the homogeneous equation.

Geometers think of nullspace as an object like the plane or space.

Algebraists think of nullspace as a set consisting of value lists x1, . . . , xn that
satisfy the homogeneous equation. There are no equal signs, no equations,
no invented symbols. And no solutions are skipped!

Is there more than one answer for the nullspace? Technically no. By def-
inition, the nullspace is a set of elements and it might be a geometric
object.

An Illustration

Consider the system
x+ y + 2z = 0,

0 = 0,
0 = 0.

(4)

The nullspace is the set of all solutions of x+ y+2z = 0. Geometrically, it is the
plane x+ y + 2z = 0 through x = y = z = 0 with normal vector ı⃗+ ȷ⃗+ 2k⃗. The
nullspace has one possible algebraic representation given by the general solution
formula

x = −t1 − 2t2,
y = t1,
z = t2.

There are infinitely many representations possible, e.g., replace t1 by mt1 where
m is any nonzero integer.

The nullspace can be described geometrically as the plane generated by the basis

x = −1, y = 1, z = 0,
x = −2, y = 0, z = 1.

The basis elements are identified with points (−1, 1, 0) and (−2, 0, 1). Physics as-
sociates two free vectors with tail at (0, 0, 0) and heads at (−1, 1, 0) and (−2, 0, 1),
. Calculus courses represent the two basis elements as vectors a⃗ = −⃗ı + ȷ⃗,
b⃗ = −2⃗ı + k⃗, which are two vectors in the plane x + y + 2z = 0. Their cross
product a⃗ × b⃗ is normal to the plane, a multiple of normal vector ı⃗+ ȷ⃗+ 2k⃗ to
the plane x+ y + 2z = 0.

The Three Possibilities Revisited

We intend to justify the table below, which summarizes the three possibilities for
a linear system, in terms of free variables, rank and nullity.
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Table 7. Three Possibilities for an m× n Linear Algebraic System.

No solution Signal equation
∞-many solutions One+ free variables nullity ≥ 1 or rank < n
Unique solution Zero free variables nullity = 0 or rank = n

No Solution

There is no solution to a system of equations exactly when a signal equation
0 = 1 occurs during the application of swap, multiply and combination rules. We
report the system inconsistent and announce no solution.

Infinitely Many Solutions

The situation of infinitely many solutions occurs when there is no signal equa-
tion and at least one free variable to which an invented symbol, say t1, is
assigned. Since this symbol takes the values −∞ < t1 < ∞, there are an infinity
of solutions. The conditions rank less than n and nullity positive are the
same.

Unique Solution

There is a unique solution to a consistent system of equations exactly when zero
free variables are present. This is identical to requiring that the number n of
variables equal the number of lead variables, or rank = n.

Existence of Infinitely Many Solutions

Homogeneous systems are always consistent3, therefore if the number of variables
exceeds the number of equations, then the equation lead+free = variable count
implies there is always one free variable. This proves the following basic result
of linear algebra.

Theorem 3.5 (Infinitely Many Solutions)
A system of m × n linear homogeneous equations (6) with fewer equations than
unknowns (m < n) has at least one free variable, hence an infinite number of
solutions. Therefore, such a system always has the zero solution and also a nonzero
solution.

Non-homogeneous systems can be similarly analyzed by considering conditions
under which there will be at least one free variable.

3All variables set to zero is always a solution of a homogeneous system.
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Theorem 3.6 (Missing Variable and Infinitely Many Solutions)
A consistent system of m×n linear equations with one unknown missing has at least
one free variable, hence an infinite number of solutions.

Theorem 3.7 (Rank, Nullity and Infinitely Many Solutions)
A consistent system of m× n linear equations with nonzero nullity or rank less than
n has at least one free variable, hence an infinite number of solutions.

Examples and Methods

Example 3.11 (Rank and Nullity)
Determine using an abbreviated sequence of toolkit operations the rank and nullity
of the homogeneous system

x1 + 4x3 + 8x4 = 0
− x3 + x4 = 0

2x1 − x3 + 5x4 = 0

Solution: The answer is three (3) lead variables and one (1) free variable, making
rank=3 and nullity=1.

The missing variable x2 implies that there is at least one free variable. The abbreviated
steps are

x1 + 4x3 + 8x4 = 0
− x3 + x4 = 0
− 9x3 − 11x4 = 0

combo(1,3,-2)

x1 + 4x3 + 8x4 = 0
− x3 + x4 = 0

− 20x4 = 0
combo(2,3,-9)

The triangular form implies that x1, x3, x4 are lead variables and x2 is a free variable.

Example 3.12 (Nullspace Basis or Kernel Basis)
Determine a nullspace basis by solving for the general solution of the homogeneous
system

x1 + x2 + 4x3 + 9x4 = 0
2x2 − x3 + 4x4 = 0

Solution:

x1 + x2 + 4x3 + 9x4 = 0
2x2 − x3 + 4x4 = 0

Original system.

x1 + x2 + 4x3 + 9x4 = 0

x2 − 1
2x3 + 2x4 = 0

mult(2,1/2)
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x1 + 9
2x3 + 7x4 = 0

x2 − 1
2x3 + 2x4 = 0

combo(2,1,-1)

The lead variables are x1, x2 and the free variables are x3 = t1, x4 = t2 in terms of
invented symbols t1, t2. Back-substitution implies the scalar general solution

x1 = − 9
2 t1 − 7t2,

x2 = 1
2 t1 − 2t2,

x3 = t1,
x4 = t2.

(5)

A suitable basis for the nullspace, also called the kernel, is found by substitution of
t1 = 1, t2 = 0 and then t1 = 0, t2 = 1, to obtain the two vectors

Basis solution 1 Basis solution 2

x1 = − 9
2 ,

x2 = 1
2 ,

x3 = 1,

x4 = 0.

x1 = −7,

x2 = −2,

x3 = 0,

x4 = 1.

These two solutions are identical to the two solutions obtained by taking partial deriva-
tives ∂t1 and ∂t2 on the scalar general solution displayed in equation (5).

Some references suggest to make the two basis answers fraction-free by choosing t1, t2
appropriately. In the present case, this amounts to multiplying the answers by 2. The
result is a different basis.

Either answer is sufficient, because a basis is not unique: the only requirement is re-
construction of the general solution from the basis.

Example 3.13 (Three Possibilities with Symbol k)
Determine all values of the symbol k such that the system below has one of the
Three Possibilities (1) No solution, (2) Infinitely many solutions or (3) A unique
solution. Display all solutions found.

x + ky = 2,
(2− k)x + y = 3.

Solution: The Three Possibilities are detected by (1) A signal equation “0 = 1,” (2)
One or more free variables, (3) Zero free variables.

The solution of this problem involves construction of perhaps three toolkit sequences,
the last frame of each resulting in one of the three possibilities (1), (2), (3).

x + ky = 2,
(2− k)x + y = 3.

Frame 1.

Original system.

x + ky = 2,
[1 + k(k − 2)]y = 2(k − 2) + 3.

Frame 2.

combo(1,2,k-2)
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x + ky = 2,
(k − 1)2y = 2k − 1.

Frame 3.

Simplify.

The three expected toolkit sequences share these initial frames. At this point, we identify
the values of k that split off into the three possibilities.

There will be a signal equation if the second equation of Frame 3 has no variables, but the
resulting equation is not “0 = 0.” This happens exactly for k = 1. The resulting signal
equation is “0 = 1.” We conclude that one of the three toolkit sequences terminates
with the no solution case. This toolkit sequence corresponds to k = 1.

Otherwise, k ̸= 1. For these values of k, there are zero free variables, which implies a
unique solution. A by-product of the analysis is that the infinitely many solutions case
never occurs!

The conclusion: The initially expected three toolkit sequences reduce to two toolkit
sequences. One sequence gives no solution and the other sequence gives a unique solution.

The three answers:

(1) No solution occurs only for k = 1.

(2) Infinitely many solutions occurs for no value of k.

(3) A unique solution occurs for k ̸= 1.

x = 2− k(2k − 1)

(k − 1)2
,

y =
(2k − 1)

(k − 1)2
.

Example 3.14 (Symbols and the Three Possibilities)
Determine all values of the symbols a, b such that the system below has (1) No
solution, (2) Infinitely many solutions or (3) A unique solution. Display all solutions
found.

x + ay + bz = 2,
y + z = 3,
by + z = 3b.

Solution: The plan is to make three toolkit sequences, using swap, multiply and com-
bination rules. Each sequence has last frame which is one of the three possibilities, the
detection facilitated by (1) A signal equation “0 = 1,” (2) At least one free variable, (3)
Zero free variables. The initial three frames of each of the expected toolkit sequences is
constructed as follows.

x + ay + bz = 2,
y + z = 3,
by + z = 3b.

Frame 1
Original system.

x + ay + bz = 2,
y + z = 3,
0 + (1− b)z = 0.

Frame 2.

combo(2,3,-b)
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x + 0 + (b− a)z = 2− 3a,
y + z = 3,
0 + (1− b)z = 0.

Frame 3. combo(2,1,-a)
Triangular form.
Lead variables determined.

The three toolkit sequences expected will share these initial frames. Frame 3 shows
that there are either 2 lead variables or 3 lead variables, accordingly as the coefficient
of z in the third equation is nonzero or zero. There will never be a signal equation.
Consequently, the three expected toolkit sequences reduce to just two. We complete
these two sequences to give the answer:

(1) There are no values of a, b that result in no solution.

(2) If 1 − b = 0, then there are two lead variables and hence an infinite
number of solutions, given by the general solution x = 2− 3a− (b− a)t1,

y = 3− t1,
z = t1.

(3) If 1 − b ̸= 0, then there are three lead variables and there is a unique
solution, given by  x = 2− 3a,

y = 3,
z = 0.

,

Exercises 3.4 �

Rank and Nullity
Compute an abbreviated sequence of
combo, swap, mult steps which finds the
value of the rank and nullity.

1.

∣∣∣∣ x1 + x2 + 4x3 + 8x4 = 0
2x2 − x3 + x4 = 0

∣∣∣∣
2.

∣∣∣∣ x1 + x2 + 8x4 = 0
2x2 + x4 = 0

∣∣∣∣
3.

∣∣∣∣ x1 + 2x2 + 4x3 + 9x4 = 0
x1 + 8x2 + 2x3 + 7x4 = 0

∣∣∣∣
4.

∣∣∣∣ x1 + x2 + 4x3 + 11x4 = 0
2x2 − 2x3 + 4x4 = 0

∣∣∣∣
Nullspace
Solve using variable order y, z, u, v. Re-
port the values of the nullity and rank in
the equation nullity+rank=4.

5.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣

6.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 2v = 0
y + 3z + 2u + 5v = 0

∣∣∣∣∣∣
7.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
8.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
9.

∣∣∣∣ y + 3z + 4u + 8v = 0
2z − 2u + 4v = 0

∣∣∣∣
10.

∣∣∣∣ y + z + 4u + 9v = 0
2z − 2u + 4v = 0

∣∣∣∣
11.

∣∣∣∣ y + z + 4u + 9v = 0
3y + 4z + 2u + 5v = 0

∣∣∣∣
12.

∣∣∣∣ y + 2z + 4u + 9v = 0
y + 8z + 2u + 7v = 0

∣∣∣∣
13.

∣∣∣∣ y + z + 4u + 11v = 0
2z − 2u + 4v = 0

∣∣∣∣
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14.

∣∣∣∣ y + z + 5u + 11v = 0
2z − 2u + 6v = 0

∣∣∣∣
Dimension of the nullspace
In the homogeneous systems, assume vari-
able order x, y, z, u, v.

(a) Display an equivalent set of equa-
tions in reduced echelon form.

(b) Solve for the general solution and
check the answer.

(c) Report the dimension of the
nullspace.

15.

∣∣∣∣∣∣
x + y + z + 4u + 8v = 0

−x + 2z − 2u + 2v = 0
y − z + 6u + 6v = 0

∣∣∣∣∣∣
16.

∣∣∣∣∣∣
x + y + z + 4u + 8v = 0

− 2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
17.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

x + 2z − 2u + 4v = 0
2x + y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
18.

∣∣∣∣∣∣
x + y + 3z + 4u + 8v = 0

2x + 2z − 2u + 4v = 0
x − y + 3z + 2u + 12v = 0

∣∣∣∣∣∣
19.

∣∣∣∣∣∣
y + 3z + 4u + 20v = 0
+ 2z − 2u + 10v = 0

− y + 3z + 2u + 30v = 0

∣∣∣∣∣∣
20.

∣∣∣∣∣∣
y + 4u + 20v = 0

− 2u + 10v = 0
− y + 2u + 30v = 0

∣∣∣∣∣∣
21.

∣∣∣∣∣∣
x + y + z + 4u = 0

− 2z − u = 0
2y − u+ = 0

∣∣∣∣∣∣
22.

∣∣∣∣∣∣
+ z + 12u + 8v = 0

x + 2z − 6u + 4v = 0
2x + 3z + 6u + 6v = 0

∣∣∣∣∣∣
23.

∣∣∣∣∣∣
y + z + 4u = 0

2z − 2u = 0
y − z + 6u = 0

∣∣∣∣∣∣
24.

∣∣∣∣∣∣
x + z + 8v = 0

− 2z + v = 0
5v = 0

∣∣∣∣∣∣

Three possibilities with symbols
Assume variables x, y, z. Determine the
values of the constants (a, b, c, k, etc) such
that the system has (1) No solution, (2) A
unique solution or (3) Infinitely many solu-
tions.

25.

∣∣∣∣ x + ky = 0
x + 2ky = 0

∣∣∣∣
26.

∣∣∣∣ kx + ky = 0
x + 2ky = 0

∣∣∣∣
27.

∣∣∣∣ ax + by = 0
x + 2by = 0

∣∣∣∣
28.

∣∣∣∣ bx + ay = 0
x + 2y = 0

∣∣∣∣
29.

∣∣∣∣ bx + ay = c
x + 2y = b− c

∣∣∣∣
30.

∣∣∣∣ bx + ay = 2c
x + 2y = c+ a

∣∣∣∣
31.

∣∣∣∣∣∣
bx + ay + z = 0
2bx + ay + 2z = 0
x + 2y + 2z = c

∣∣∣∣∣∣
32.

∣∣∣∣∣∣
bx + ay + z = 0
3bx + 2ay + 2z = 2c,
x + 2y + 2z = c

∣∣∣∣∣∣
33.

∣∣∣∣∣∣
3x + ay + z = b
2bx + ay + 2z = 0
x + 2y + 2z = c

∣∣∣∣∣∣
34.

∣∣∣∣∣∣
x + ay + z = 2b

3bx + 2ay + 2z = 2c
x + 2y + 2z = c

∣∣∣∣∣∣
Three Possibilities
Answer the following questions by using
equivalents for the three possibilities in
terms of lead and free variables, signal
equations, rank and nullity.

35. Does there exist a homogeneous 3 × 2
system with a unique solution? Give an
example or else prove that no such sys-
tem exists.
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36. Does there exist a homogeneous 2 × 3
system with a unique solution? Either
give an example or else prove that no
such system exists.

37. In a homogeneous 10× 10 system, two
equations are identical. Prove that the
system has a nonzero solution.

38. In a homogeneous 5 × 5 system, each
equation has a leading variable. Prove
that the system has only the zero solu-
tion.

39. Suppose given two homogeneous sys-
tems A and B, with A having a unique
solution and B having infinitely many
solutions. Explain why B cannot be
obtained from A by a sequence of swap,
multiply and combination operations on
the equations.

40. A 2 × 3 system cannot have a unique
solution. Cite a theorem or explain why.

41. If a 3×3 homogeneous system contains
no variables, then what is the general
solution?

42. If a 3×3 non-homogeneous solution has
a unique solution, then what is the nul-
lity of the homogeneous system?

43. A 7×7 homogeneous system is missing
two variables. What is the maximum
rank of the system? Give examples for
all possible ranks.

44. Suppose an n × n system of equations
(homogeneous or non-homogeneous)
has two solutions. Prove that it has in-
finitely many solutions.

45. What is the nullity and rank of an n×n
system of homogeneous equations if the
system has a unique solution?

46. What is the nullity and rank of an n×n
system of non-homogeneous equations if
the system has a unique solution?

47. Prove or else disprove by counter-
example: A 4× 3 nonhomogeneous sys-
tem cannot have a unique solution.

48. Prove or disprove (by example): A
4 × 3 homogeneous system always has
infinitely many solutions.
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3.5 Answer Check, Proofs and Details

Answer Check Algorithm

A given general solution (3) can be tested for validity manually as in Example 3.6,
page 200. It is possible to devise a symbol-free answer check. The technique
checks a general solution (3) by testing constant trial solutions in systems (5)
and (6).

Step 1. Set all invented symbols t1, . . . , tk to zero in general solution (3)
to obtain the nonhomogeneous trial solution x1 = d1, x2 = d2, . . . ,
xn = dn. Test it by direct substitution into the nonhomogeneous
system (5).

Step 2. Apply partial derivatives ∂t1 , ∂t2 , . . . , ∂tk to the general solution (3),
obtaining k homogeneous trial solutions. Verify that the trial solutions
satisfy the homogeneous system (6), by direct substitution.

The trial solutions in step 2 are obtained from the general solution (3) by setting
one symbol equal to 1 and the others zero, followed by subtracting the nonhomo-
geneous trial solution of step 1. The partial derivative idea computes the same
set of trial solutions, and it is easier to remember.

Theorem 3.8 (Answer Check)
The answer check algorithm described in steps 1–2 verifies a solution (3) for all
values of the symbols. Please observe that this answer check cannot test for skipped
solutions.

Proof of Theorem 3.8. To simplify notation and quickly communicate the ideas, a
proof will be given for a 2 × 2 system. A proof for the m × n case can be constructed
by the reader, using the same ideas. Consider the nonhomogeneous and homogeneous
systems

ax1 + by1 = b1,
cx1 + dy1 = b2,

(1)

ax2 + by2 = 0,
cx2 + dy2 = 0.

(2)

Assume (x1, y1) is a solution of (1) and (x2, y2) is a solution of (2). Add corresponding
equations in (1) and (2). Then collecting terms gives

a(x1 + x2) + b(y1 + y2) = b1,
c(x1 + x2) + d(y1 + y2) = b2.

(3)

This proves that (x1+x2, y1+y2) is a solution of the nonhomogeneous system. Similarly,
a scalar multiple (kx2, ky2) of a solution (x2, y2) of system (2) is also a solution of (2)
and the sum of two solutions of (2) is again a solution of (2).
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Given each solution in step 2 satisfies (2), then multiplying the first solution by t1
and the second solution by t2 and adding gives a solution (x3, y3) of (2). After adding
(x3, y3) to the solution (x1, y1) of step 1, a solution of (1) is obtained, proving that the
full parametric solution containing the symbols t1, t2 is a solution of (1). The proof for
the 2× 2 case is complete.

Failure of Answer Checks

An answer check only tests the given formulas against the equations. If too few
parameters are present, then the answer check can be algebraically correct but
the general solution check fails, because not all solutions can be obtained by
specialization of the parameter values.

For example, x = 1−t1, y = t1, z = 0 is a one-parameter solution for x+y+z = 1,
as verified by an answer check. But the general solution x = 1− t1 − t2, y = t1,
z = t2 has two parameters t1, t2. Generally, an answer check decides if the
formula supplied works in the equation. It does not decide if the given formula
represents all solutions. This trouble, in which an error leads to a smaller value
for the nullity of the system, is due largely to human error and not machine error.

Linear algebra workbenches have another kind of flaw: they may compute the
nullity for a system incorrectly as an integer larger than the correct nullity. A
parametric solution with nullity k might be obtained, checked to work in the
original equations, then cross-checked by computing the nullity k independently.
However, the computed nullity k could be greater than the actual nullity of the
system. Here is a simple example, where ϵ is a very small positive number:

x + y = 0,
ϵy = ϵ.

(4)

On a limited precision machine, system (4) has internal machine representation4

x + y = 0,
0 = 0.

(5)

Representation (5) occurs because the coefficient ϵ is smaller than the smallest
positive floating point number of the machine, hence it becomes zero during
translation. System (4) has nullity zero and system (5) has nullity one. The
parametric solution for system (5) is x = −t1, y = t1, with basis selected by
setting t1 = 1. The basis passes the answer check on system (4), because ϵ times
1 evaluates to ϵ. A second check for the nullity of system (5) gives 1, which
supports the correctness of the parametric solution, but unfortunately there are
not infinitely many solutions: for system (4) the correct answer is the unique
solution x = −1, y = 1.

4For example, if the machine allows only 2-digit exponents (1099 is the maximum), then
ϵ = 10−101 translates to zero.
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Computer algebra systems (CAS) are supposed to avoid this kind of error, be-
cause they do not translate input into floating point representations. All input
is supposed to remain in symbolic or in string form. In short, they don’t change
ϵ to zero. Because of this standard, CAS are safer systems in which to do linear
algebra computations, albeit slower in execution.

The trouble reported here is not entirely one of input translation. An innocuous
combo(1,2,-1) can cause an equation like ϵy = ϵ in the middle of a toolkit
sequence. If floating point hardware is being used, and not symbolic computation,
then the equation can translate to 0 = 0, causing a false free variable appearance.

Minimal Parametric Solutions

Proof of Theorem 3.2: The proof of Theorem 3.2, page 196, will follow from the
lemma and theorem below.

Lemma 3.1 (Unique Representation) If a set of parametric equations (3) satisfies (4),
(5) and (6), then each solution of linear system (5) is given by (3) for exactly one set of
parameter values.

Proof: Let a solution of system (5) be given by (3) for two sets of parameters t1, . . . , tk
and t1, . . . , tk. By (6), tj = xij = tj for 1 ≤ j ≤ k, therefore the parameter values are
the same.

Definition 3.10 (Minimal Parametric Solution)
Given system (5) has a parametric solution x1, . . . , xn satisfying (3), (4), (5), then among
all such parametric solutions there is one which uses the fewest possible parameters. A
parametric solution with fewest parameters is called minimal. Parametric solutions with
more parameters are called redundant.

To illustrate, the plane x + y + z = 1 has a minimal standard parametric solution
x = 1 − t1 − t2, y = t1, z = t2. A redundant parametric solution of x + y + z = 1 is
x = 1− t1 − t2 − 2t3, y = t1 + t3, z = t2 + t3, using three parameters t1, t2, t3.

Theorem 3.9 (Minimal Parametric Solutions)
Let linear system (5) have a parametric solution satisfying (3), (4), (5). Then (3) has the
fewest possible parameters if and only if each solution of linear system (5) is given by (3) for
exactly one set of parameter values.

Proof: Suppose first that a general solution (3) is given with the least number k of
parameters, but contrary to the theorem, there are two ways to represent some solution,
with corresponding parameters r1, . . . , rk and also s1, . . . , sk. Subtract the two sets of
parametric equations, thus eliminating the symbols x1, . . . , xn, to obtain:

c11(r1 − s1) + · · ·+ c1k(rk − sk) = 0,
...

cn1(r1 − s1) + · · ·+ cnk(rk − sk) = 0.
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Relabel the variables and constants so that r1 − s1 ̸= 0, possible since the two sets of
parameters are supposed to be different. Divide the preceding equations by r1 − s1 and
solve for the constants c11, . . . , cn1. This results in equations

c11 = c12w2 + · · ·+ c1kwk,
...

cn1 = cn2w2 + · · ·+ cnkwk,

where wj = − rj−sj
r1−s1

, 2 ≤ j ≤ k. Insert these relations into (3), effectively eliminating
the symbols c11, . . . , cn1, to obtain

x1 = d1 + c12(t2 + w2t1) + · · ·+ c1k(tk + wkt1),
x2 = d2 + c22(t2 + w2t1) + · · ·+ c2k(tk + wkt1),

...
xn = dn + cn2(t2 + w2t1) + · · ·+ cnk(tk + wkt1).

Let t1 = 0. The remaining parameters t2, . . . , tk are fewer parameters that describe all
solutions of the system, a contradiction to the definition of k. This completes the proof
of the first half of the theorem.

To prove the second half of the theorem, assume that a parametric solution (3) is given
which represents all possible solutions of the system and in addition each solution is
represented by exactly one set of parameter values. It will be established that the
number k in (3) is the least possible parameter count.

Suppose not. Then there is a second parametric solution

x1 = e1 + b11v1 + · · ·+ b1ℓvℓ,
...

xn = en + bn1v1 + · · ·+ bnℓvℓ,

(6)

where ℓ < k and v1, . . . , vℓ are the parameters. It is assumed that (6) represents all
solutions of the linear system.

We shall prove that the solutions for zero parameters in (3) and (6) can be taken to be
the same, that is, another parametric solution is given by

x1 = d1 + b11s1 + · · ·+ b1ℓsℓ,
...

xn = dn + bn1s1 + · · ·+ bnℓsℓ.

(7)

The idea of the proof is to substitute x1 = d1, . . . , xn = dn into (6) for parameters r1,
. . . , rn. Then solve for e1, . . . , en and replace back into (6) to obtain

x1 = d1 + b11(v1 − r1) + · · ·+ b1ℓ(vℓ − rℓ),
...

xn = dn + bn1(v1 − r1) + · · ·+ bnℓ(vℓ − rℓ).

Replacing parameters sj = vj − rj gives (7).

From (3) it is known that x1 = d1 + c11, . . . , xn = dn + cn1 is a solution. By (7), there
are constants r1, . . . , rℓ such that (we cancel d1, . . . , dn from both sides)

c11 = b11r1 + · · ·+ b1ℓrℓ,
...

cn1 = bn1r1 + · · ·+ bnℓrℓ.
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If r1 through rℓ are all zero, then the solution just referenced equals d1, . . . , dn, hence
(3) has a solution that can be represented with parameters all zero or with t1 = 1 and
all other parameters zero, a contradiction. Therefore, some ri ̸= 0 and we can assume
by renumbering that r1 ̸= 0. Return now to the last system of equations and divide by
r1 in order to solve for the constants b11, . . . , bn1. Substitute the answers back into (7)
in order to obtain parametric equations

x1 = d1 + c11w1 + b12w2 + · · ·+ b1ℓwℓ,
...

xn = dn + cn1w1 + bn2w2 + · · ·+ bnℓwℓ,

where w1 = s1, wj = sj − rj/r1. Given s1, . . . , sℓ are parameters, then so are w1, . . . ,
wℓ.

This process can be repeated for the solution x1 = d1 + c12, . . . , xn = dn + cn2. We
assert that for some index j, 2 ≤ j ≤ ℓ, constants bij , . . . , bnj in the previous display
can be isolated, and the process of replacing symbols b by c continued. If not, then
w2 = · · · = wℓ = 0. Then solution x1, . . . , xn has two distinct representations in (3),
first with t2 = 1 and all other tj = 0, then with t1 = w1 and all other tj = 0. A
contradiction results, which proves the assertion. After ℓ repetitions of this replacement
process, we find a parametric solution

x1 = d1 + c11u1 + c12u2 + · · ·+ c1ℓuℓ,
...

xn = dn + cn1u1 + cn2u2 + · · ·+ cnℓuℓ,

in some set of parameters u1, . . . , uℓ.

However, ℓ < k, so at least the solution x1 = d1+c1k, . . . , xn = dn+cnk remains unused
by the process. Insert this solution into the previous display, valid for some parameters
u1, . . . , uℓ. The relation says that the solution x1 = d1, . . . , xn = dn in (3) has two
distinct sets of parameters, namely t1 = u1, . . . , tℓ = uℓ, tk = −1, all others zero, and
also all parameters zero, a contradiction. ■

,

Exercises 3.5 �

Parametric solutions

1. Is there a 2 × 3 homogeneous system
with general solution having 2 parame-
ters t1, t2?

2. Is there a 3 × 3 homogeneous system
with general solution having 3 parame-
ters t1, t2, t3?

3. Give an example of a 4 × 3 homoge-
neous system with general solution hav-
ing zero parameters, that is, x = y =
z = 0 is the only solution.

4. Give an example of a 4×3 homogeneous
system with general solution having ex-
actly one parameter t1.

5. Give an example of a 4×3 homogeneous
system with general solution having ex-
actly two parameters t1, t2.

6. Give an example of a 4×3 homogeneous
system with general solution having ex-
actly three parameters t1, t2, t3.

7. Consider an n×n homogeneous system
with parametric solution having param-
eters t1 to tk. What are the possible
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values of k?

8. Consider an n×m homogeneous system
with parametric solution having param-
eters t1 to tk. What are the possible
values of k?

Answer Checks
Assume variable list x, y, z and parameter
t1. (a) Display the answer check details.
(b) Find the rank. (c) Report whether the
given solution is a general solution.

9.

∣∣∣∣ y = 1
2z = 2

∣∣∣∣
x = t1, y = 1, z = 1.

10.

∣∣∣∣ x = 1
2z = 2

∣∣∣∣
x = 1, y = t1, z = 1.

11.

∣∣∣∣∣∣
y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
x = 0, y = 0, z = 1.

12.

∣∣∣∣∣∣
2x + y + z = 1
x + 2z = 2
x + y − z = −1

∣∣∣∣∣∣
x = 2, y = −3, z = 0.

13.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
x = 1− t1, y = 0, z = t1.

14.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
3x + y + 3z = 3

∣∣∣∣∣∣
x = 1− t1, y = 0, z = t1.

Failure of Answer Checks
Find the unique solution for ϵ > 0. Discuss
how a machine might translate the system
to obtain infinitely many solutions.

15. x+ ϵy = 1, x− ϵy = 1

16. x+ y = 1, x+ (1 + ϵ)y = 1 + ϵ

17. x+ ϵy = 10ϵ, x− ϵy = 10ϵ

18. x+ y = 1 + ϵ, x+ (1 + ϵ)y = 1 + 11ϵ

Minimal Parametric Solutions
For each given system, determine if the ex-
pression is a minimal general solution.

19.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
y = −3t1, z = −t1,
u = −t1, v = t1.

20.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 2v = 0
y − z + 6u + 6v = 0

∣∣∣∣∣∣
y = −5t1 − 7t2, z = t1 − t2,
u = t1, v = t2.

21.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
y = −5t1 + 5t2, z = t1 − t2,
u = t1 − t2, v = 0.

22.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 12v = 0

∣∣∣∣∣∣
y = 5t1 + 4t2, z = −3t1 − 6t2,
u = −t1 − 2t2, v = t1 + 2t2.
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PDF Sources

Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and
linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the textbook
are available in two volumes at Amazon Kindle Direct Publishing for Amazon’s
cost of printing and shipping. No author profit. Volume I chapters 1-7, ISBN
9798705491124, 661 pages. Volume II chapters 8-12, ISBN 9798711123651, 479
pages. Both paperbacks have extra pages of backmatter: background topics
Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with
hyperlink navigation to displayed equations and theorems. The header in an
exercise set has a blue hyperlink � to the same section in the solutions. The
header of the exercise section within a solution Appendix has a red hyperlink �
to the textbook exercises. Solutions are organized by chapter, e.g., Appendix 5
for Chapter 5. Odd-numbered exercises have a solution. A few even-numbered
exercises have hints and answers. Computer code can be mouse-copied directly
from the PDF. Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded
to a tablet, computer or phone to be viewed locally. After download, no internet
is required. Best for computer or tablet using a PDF viewer (Adobe Reader,
Evince) or web browser with PDF support (Chrome, FireFox). Smart phones
can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or
request an answer, click the link below, then create a GitHub issue and post.
Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues
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