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Chapter 2

First Order Differential
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The subject of the chapter is the first order differential equation

y′ = f(x, y).

The study includes closed-form solution formulas for special equations and some
applications to science and engineering.

2.1 Quadrature Method

The method of quadrature refers to the technique of integrating both sides of
an equation, hoping thereby to extract a solution formula.

The term quadrature originates in ancient geometry, where it means finding
area of a plane figure, by constructing a square of equal area.1 Numerical quadra-
ture computes areas enclosed by plane curves from approximating rectangles, by

1See Katz, Victor J. (1998) A History of Mathematics: An Introduction (2nd edition) Addison
Wesley Longman, ISBN 0321016181, and Wikipedia: http://en.wikipedia.org/wiki/Quadrature.
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2.1 Quadrature Method

algorithms such as the rectangular rule and Simpson’s rule. For symbolic prob-
lems, the task is overtaken by Newton’s integral calculus. The naming convention
follows computer algebra system maple.

Fundamental Theorem of Calculus

The foundation of the study of differential equations rests with Isaac Newton’s
discovery on instantaneous velocities. Details of the calculus background required
appears in Appendix ??, page ??.

Theorem 2.1 (Fundamental Theorem of Calculus I)
Let G be continuous and let F be continuously differentiable on [a, b]. Then

(a) F (b)− F (a) =

∫ b

a

dF

dx
(x)dx,

(b)
d

dx

∫ x

a
G(t)dt = G(x).

Theorem 2.2 (Fundamental Theorem of Calculus II)
Let G(x) be continuous and let y(x) be continuously differentiable on [a, b]. Then
for some constant c,

(a) y(x) =

∫
dy

dx
dx+ c,

(b)
d

dx

∫
G(x)dx = G(x).

Part (a) of the fundamental theorem is used to find a candidate solution to a
differential equation.

Part (b) of the fundamental theorem is used in differential equations to do an
answer check.

The Method of Quadrature

The method is applied to differential equations y′ = f(x, y) in which f is in-
dependent of y. Then symbol y is absent from f(x, y), which implies f(x, y) is
constant or else f(x, y) depends only on the symbol x. The model differential
equation then has the form y′ = F (x) where F is a given function of the single
variable F .

(i) To solve for y(x) in
dy

dx
= F (x), integrate on variable x

across the equation, then use the Fundamental Theorem
of Calculus.

(ii) Check the answer.
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2.1 Quadrature Method

Indefinite Integral Shortcut. Integrate across the equation with indefinite
integrals, then collect all integration constants into symbol c.

Solution with Symbol c. Symbol c initially appears in the expression obtained
for y. If no initial condition was given, then the answer for y is this expression,
which contains the unresolved symbol c. Experts call this expression the general
solution.

Solution with No symbol c. If an initial condition is given in the form y = y0
at x = x0 (same as y(x0) = y0), then symbol c can be resolved. For instance,
if the answer is y = 2(x − 1) + c and the initial condition is y(−1) = 3, then
y = 2(x− 1) + c with x = −1, y = 3 becomes 3 = 2(−1− 1) + c, and then c = 7.
Experts call the xy–expression with c eliminated a particular solution.

Theorem 2.3 (Existence-Uniqueness for Quadrature Equations)
Let F (x) be continuous on a < x < b. Assume a < x0 < b and −∞ < y0 < ∞.
Then the initial value problem

y′ = F (x), y(x0) = y0(1)

has on interval a < x < b the unique solution

y(x) = y0 +

∫ x

x0

F (t)dt.(2)

Details of proof appear on page 78.

Examples

Example 2.1 (Quadrature)
Solve y′ = 3ex, y(0) = 0.

Solution:

The final answer is y = 3ex − 3. An answer check appears in the next example.

Details. The shortcut is applied.

dy
dx = 3ex Copy the differential equation.∫

dy
dxdx =

∫
3exdx Integrate across the equation on x.

y(x) + c1 =
∫
3exdx Fundamental theorem of calculus, page 75.

y(x) + c1 = 3ex + c2 Integral table.

y(x) = 3ex + c Where c = c2 − c1 is a constant.

The answer is y = 3ex + c. The symbol c is to be resolved from the initial condition
y(0) = 0, as follows.

0 = y(0) Copy the initial condition (sides reversed).

= (3ex + c)|x=0 Insert y = 3ex + c, the proposed solution.

= 3e0 + c Substitute x = 0.
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2.1 Quadrature Method

= 3 + c Use e0 = 1.

c = −1 Equation 0 = 3 + c solved for c.

Candidate solution. Back-substitute the symbol c value c = −1 into the answer
y = 3ex + c to obtain the candidate solution y = 3ex + (−3). This answer can contain
errors, in general, due to integration and arithmetic mistakes.

Example 2.2 (Answer Check)
Given y′ = 3ex, y(0) = 0 and candidate solution y(x) = 3ex − 3, display an answer
check.

Solution: There are two panels in this answer check: Panel 1: differential equation
check, Panel 2: initial condition check.

Panel 1. We check the answer y = 3ex − 3 for the differential equation y′ = 3ex.

The steps are:

LHS = y′ Left side of the differential equation.

= (3ex − 3)
′ Substitute the expression for y.

= 3ex − 0 Sum rule, constant rule and (eu)′ = u′eu.

= RHS Solution verified.

Panel 2. Let’s check the answer y = 3ex − 3 against the initial condition y(0) = 0.
Expected is an immediate mental check that e0 = 1 implies the correctness of y(0) = 0.

The steps will be shown in order to detail the algorithm for checking an initial condi-
tion. The algorithm applies when checking complex algebraic expressions. Abbreviated
versions of the algorithm are used on simple expressions.

LHS = y(0) Left side of the initial condition y(0) = 0.

= (3ex − 3)|x=0 Notation y(x0) means substitute x = x0

into the expression for y.

= 3e0 − 3 Substitute x = 0 into the expression.

= 0 Because e0 = 1.

= RHS Initial condition verified.

River Crossing

A boat crosses a river at fixed speed with power applied perpendicular to the
shoreline. Is it possible to estimate the boat’s downstream location?

The answer is yes. The problem’s variables are

x Distance from shore,

y Distance downstream,

t Time in hours,

w Width of the river,

vb Boat velocity (dx/dt),

vr River velocity (dy/dt).
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2.1 Quadrature Method

The calculus chain rule dy/dx = (dy/dt)/(dx/dt) is applied, using the symbols
vr and vb instead of dy/dt and dx/dt, to give the model equation

dy

dx
=

vr
vb
.(3)

Stream Velocity. The downstream river velocity will be approximated by vr =
kx(w − x), where k > 0 is a constant. This equation gives velocity vr = 0 at
the two shores x = 0 and x = w, while the maximum stream velocity at the
center x = w/2 is (see page 79)

vc =
kw2

4
.(4)

Special River-Crossing Model. The model equation (3) using vr = kx(w−x)
and the constant k defined by (4) give the initial value problem

dy

dx
=

4vc
vbw2

x(w − x), y(0) = 0.(5)

The solution of (5) by the method of quadrature is

y =
4vc
vbw2

(
−1

3
x3 +

1

2
wx2

)
,(6)

where w is the river’s width, vc is the river’s midstream velocity and vb is the
boat’s velocity. In particular, the boat’s downstream drift on the opposite
shore is 2

3w(vc/vb). See Technical Details page 79.

Example 2.3 (River Crossing)
A boat crosses a mile-wide river at 3 miles per hour with power applied perpendicular
to the shoreline. The river’s midstream velocity is 10 miles per hour. Find the transit
time and the downstream drift to the opposite shore.

Solution: The answers, justified below, are 20 minutes and 20/9 miles.

Transit time. This is the time it takes to reach the opposite shore. The layman answer
of 20 minutes is correct, because the boat goes 3 miles in one hour, hence 1 mile in 1/3
of an hour, perpendicular to the shoreline.

Downstream drift. This is the value y(1), where y is the solution of equation (5), with
vc = 10, vb = 3, w = 1, all distances in miles. The special model is

dy

dx
=

40

3
x(1− x), y(0) = 0.

The solution given by equation (6) is y = 40
3

(
− 1

3x
3 + 1

2x
2
)
and the downstream drift is

then y(1) = 20/9 miles. This answer is 2/3 of the layman’s answer of (1/3)(10) miles.
The explanation is that the boat is pushed downstream at a variable rate from 0 to 10
miles per hour, depending on its position x.
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2.1 Quadrature Method

Details and Proofs

Proof of Theorem 2.3:

Uniqueness. Let y(x) be any solution of (1). It will be shown that y(x) is given by the
solution formula (2).

y(x) = y(0) +
∫ x

x0
y′(t)dt Fundamental theorem of calculus, page ??.

= y0 +
∫ x

x0
F (t)dt Use (1). This verifies equation (2).

Answer Check. Let y(x) be given by solution formula (2). It will be shown that y(x)
solves initial value problem (1).

y′(x) =
(
y0 +

∫ x

x0
F (t)dt

)′
Compute the derivative from (2).

= F (x) Apply the fundamental theorem of calculus.

The initial condition is verified in a similar manner:

y(x0) = y0 +
∫ x0

x0
F (t)dt Apply (2) with x = x0.

= y0 The integral is zero:
∫ a

a
F (x)dx = 0.

■

Technical Details for (4): The maximum of a continuously differentiable function
f(x) on 0 ≤ x ≤ w can be found by locating the critical points (i.e., where f ′(x) = 0)
and then testing also the endpoints x = 0 and x = w. The derivative f ′(x) = k(w − 2x)
is zero at x = w/2. Then f(w/2) = kw2/4. This value is the maximum of f , because
f = 0 at the endpoints.

Technical Details for (6): Let a =
4vc
vbw2

. Then

y = y(0) +
∫ x

0
y′(t)dt Method of quadrature.

= 0 + a
∫ x

0
t(w − t)dt By (5), y′ = at(w − t).

= a
(
− 1

3x
3 + 1

2wx
2
)
. Integral table.

To compute the downstream drift, evaluate y(w) = a
w3

6
or y(w) =

2w

3

vc
vb

.

Exercises 2.1 �

Quadrature
Find a candidate solution for each initial
value problem and verify the solution. See
Example 2.1 and Example 2.2, page 76.

1. y′ = 4e2x, y(0) = 0.

2. y′ = 2e4x, y(0) = 0.

3. (1 + x)y′ = x, y(0) = 0.

4. (1− x)y′ = x, y(0) = 0.

5. y′ = sin 2x, y(0) = 1.

6. y′ = cos 2x, y(0) = 1.

7. y′ = xex, y(0) = 0.

8. y′ = xe−x2

, y(0) = 0.

9. y′ = tanx, y(0) = 0.

10. y′ = 1 + tan2 x, y(0) = 0.

11. (1 + x2)y′ = 1, y(0) = 0.
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2.1 Quadrature Method

12. (1 + 4x2)y′ = 1, y(0) = 0.

13. y′ = sin3 x, y(0) = 0.

14. y′ = cos3 x, y(0) = 0.

15. (1 + x)y′ = 1, y(0) = 0.

16. (2 + x)y′ = 2, y(0) = 0.

17. (2 + x)(1 + x)y′ = 2, y(0) = 0.

18. (2 + x)(3 + x)y′ = 3, y(0) = 0.

19. y′ = sinx cos 2x, y(0) = 0.

20. y′ = (1 + cos 2x) sin 2x, y(0) = 0.

River Crossing
A boat crosses a river of width w miles at vb
miles per hour with power applied perpen-
dicular to the shoreline. The river’s mid-
stream velocity is vc miles per hour. Find
the transit time and the downstream drift
to the opposite shore. See Example 2.3,
page 78, and the details for (6).

21. w = 1, vb = 4, vc = 12

22. w = 1, vb = 5, vc = 15

23. w = 1.2, vb = 3, vc = 13

24. w = 1.2, vb = 5, vc = 9

25. w = 1.5, vb = 7, vc = 16

26. w = 2, vb = 7, vc = 10

27. w = 1.6, vb = 4.5, vc = 14.7

28. w = 1.6, vb = 5.5, vc = 17

Fundamental Theorem I
Verify the identity. Use the fundamental
theorem of calculus part (b), page 75.

29.
∫ x

0
(1 + t)3dt = 1

4

(
(1 + x)4 − 1

)
.

30.
∫ x

0
(1 + t)4dt = 1

5

(
(1 + x)5 − 1

)
.

31.
∫ x

0
te−tdt = −xe−x − e−x + 1.

32.
∫ x

0
tetdt = xex − ex + 1.

Fundamental Theorem II
Differentiate. Use the fundamental theo-
rem of calculus part (b), page 75.

33.
∫ 2x

0
t2 tan(t3)dt.

34.
∫ 3x

0
t3 tan(t2)dt.

35.
∫ sin x

0
tet+t2dt.

36.
∫ sin x

0
ln(1 + t3)dt.

Fundamental Theorem III
Integrate

∫ 1

0
f(x)dx. Use the fundamen-

tal theorem of calculus part (a), page 75.
Check answers with computer or calculator
assist. Some require a clever u-substitution
or an integral table.

37. f(x) = x(x− 1)

38. f(x) = x2(x+ 1)

39. f(x) = cos(3πx/4)

40. f(x) = sin(5πx/6)

41. f(x) =
1

1 + x2

42. f(x) =
2x

1 + x4

43. f(x) = x2ex
3

44. f(x) = x(sin(x2) + ex
2

)

45. f(x) =
1√

−1 + x2

46. f(x) =
1√

1− x2

47. f(x) =
1√

1 + x2

48. f(x) =
1√

1 + 4x2

49. f(x) =
x√

1 + x2

50. f(x) =
4x√

1− 4x2

51. f(x) =
cosx

sinx

52. f(x) =
cosx

sin3 x
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2.1 Quadrature Method

53. f(x) =
ex

1 + ex

54. f(x) =
ln |x|
x

55. f(x) = sec2 x

56. f(x) = sec2 x− tan2 x

57. f(x) = csc2 x

58. f(x) = csc2 x− cot2 x

59. f(x) = cscx cotx

60. f(x) = secx tanx

Integration by Parts
Integrate

∫ 1

0
f(x)dx by parts,

∫
udv = uv−∫

vdu. Check answers with computer or
calculator assist.

61. f(x) = xex

62. f(x) = xe−x

63. f(x) = ln |x|

64. f(x) = x ln |x|

65. f(x) = x2e2x

66. f(x) = (1 + 2x)e2x

67. f(x) = x coshx

68. f(x) = x sinhx

69. f(x) = x arctan(x)

70. f(x) = x arcsin(x)

Partial Fractions
Integrate f by partial fractions. Check an-
swers with computer or calculator assist.

71. f(x) =
x+ 4

x+ 5

72. f(x) =
x− 2

x− 4

73. f(x) =
x2 + 4

(x+ 1)(x+ 2)

74. f(x) =
x(x− 1)

(x+ 1)(x+ 2)

75. f(x) =
x+ 4

(x+ 1)(x+ 2)

76. f(x) =
x− 1

(x+ 1)(x+ 2))

77. f(x) =
x+ 4

(x+ 1)(x+ 2)(x+ 5)

78. f(x) =
x(x− 1)

(x+ 1)(x+ 2)(x+ 3)

79. f(x) =
x+ 4

(x+ 1)(x+ 2)(x− 1)

80. f(x) =
x(x− 1)

(x+ 1)(x+ 2)(x− 1)

Special Methods
Integrate f by using the suggested u-
substitution or method. Check answers
with computer or calculator assist.

81. f(x) =
x2 + 2

(x+ 1)2
, u = x+ 1.

82. f(x) =
x2 + 2

(x− 1)2
, u = x− 1.

83. f(x) =
2x

(x2 + 1)3
, u = x2 + 1.

84. f(x) =
3x2

(x3 + 1)2
, u = x3 + 1.

85. f(x) =
x3 + 1

x2 + 1
, use long division.

86. f(x) =
x4 + 2

x2 + 1
, use long division.

81



2.2 Separable Equations

2.2 Separable Equations

An equation y′ = f(x, y) is called separable provided algebraic operations,
usually multiplication, division and factorization, allow it to be written in a
separable form y′ = F (x)G(y) for some functions F and G. This class includes
the quadrature equations y′ = F (x). Separable equations and associated solution
methods were discovered by G. Leibniz in 1691 and formalized by J. Bernoulli in
1694.

Finding a Separable Form

Given differential equation y′ = f(x, y), invent values x0, y0 such that f(x0, y0) ̸=
0. Define F , G by the formulas

F (x) =
f(x, y0)

f(x0, y0)
, G(y) = f(x0, y).(1)

Because f(x0, y0) ̸= 0, then (1) makes sense.

Theorem 2.4 (Separability Test)
Let F and G be defined by equation (1). Compute F (x)G(y). Then

(a) F (x)G(y) = f(x, y) implies y′ = f(x, y) is separable.

(b) F (x)G(y) ̸= f(x, y) implies y′ = f(x, y) is not separable.

Proof: Conclusion (b) follows from separability test I, infra. Conclusion (a) follows
because two functions F (x), G(y) have been defined in equation (1) such that f(x, y) =
F (x)G(y) (definition of separable equation).

Invention and Application. Initially, let (x0, y0) be (0, 0) or (1, 1) or some
suitable pair, for which f(x0, y0) ̸= 0; then define F and G by (1). Multiply F
and G to test the equation FG = f . The algebra will discover a factorization
f = F (x)G(y) without having to know algebraic tricks like factorizing multi-
variable equations. But if FG ̸= f , then the algebra proves the equation is not
separable.

Non-Separability Tests

Test I Equation y′ = f(x, y) is not separable if

f(x, y0)f(x0, y)− f(x0, y0)f(x, y) ̸= 0(2)

for some pair of points (x0, y0), (x, y) in the domain of f .
Test II The equation y′ = f(x, y) is not separable if either fx(x, y)/f(x, y)

is non-constant in y or fy(x, y)/f(x, y) is non-constant in x.

Illustration. Consider y′ = xy + y2. Test I implies it is not separable, because
f(x, 1)f(0, y) − f(0, 1)f(x, y) = (x + 1)y2 − (xy + y2) = x(y2 − y) ̸= 0. Test II
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2.2 Separable Equations

implies it is not separable, because fx/f = 1/(x+y) is not constant as a function
of y.

Test I details. Assume f(x, y) = F (x)G(y), then equation (2) fails because
each term on the left side of (2) evaluates to F (x)G(y0)F (x0)G(y) for all choices
of (x0, y0) and (x, y) (hence contradiction 0 ̸= 0).

Test II details. Assume f(x, y) = F (x)G(y) and F , G are sufficiently differen-
tiable. Then fx(x, y)/f(x, y) = F ′(x)/F (x) is independent of y and the fraction
fy(x, y)/f(x, y) = G′(y)/G(y) is independent of x.

Separated Form Test

A separated equation y′/G(y) = F (x) is recognized by this test:

Left Side Test. The left side of the equation has factor y′ and it is
independent of symbol x.

Right Side Test. The right side of the equation is independent of
symbols y and y′.

Variables-Separable Method

Determined by the method are the following kinds of solution formulas.

Equilibrium Solutions. They are the constant solutions y = c of y′ = f(x, y).
Find them by substituting y = c in y′ = f(x, y), followed by solving for c,
then report the list of answers y = c so found.

Non-Equilibrium Solutions. For separable equation y′ = F (x)G(y), it is a
solution y with G(y) ̸= 0. It is found by dividing by G(y) and applying the
method of quadrature.

The term equilibrium is borrowed from kinematics. Alternative terms are rest
solution and stationary solution; all mean y′ = 0 in calculus terms.

Spurious Solutions. If F (x)G(y) = 0 is solved instead of G(y) = 0, then
both x and y solutions might be found. The x-solutions are ignored: they are
not equilibrium solutions. Only solutions of the form y = constant are called
equilibrium solutions.

It is important to check the solution to a separable equation, because certain
steps used to arrive at the solution may not be reversible.

For most applications, the two kinds of solutions suffice to determine all possible
solutions. In general, a separable equation may have non-unique solutions to
some initial value problem. To prevent this from happening, it can be assumed
that F , G and G′ are continuous; see the Picard-Lindelöf theorem, page ??.
If non-uniqueness does occur, then often the equilibrium and non-equilibrium
solutions can be pieced together to represent all solutions.
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2.2 Separable Equations

Finding Equilibrium Solutions

The search for equilibria can be done without finding the separable form of y′ =
f(x, y). It is enough to solve for y in the equation f(x, y) = 0, subject to the
condition that x is arbitrary. An equilibrium solution y cannot depend upon x,
because it is constant. If y turns out to depend on x, after solving f(x, y) = 0
for y, then this is sufficient evidence that y′ = f(x, y) is not separable. Some
examples:

y′ = y sin(x− y) It is not separable. The solutions of y sin(x − y) = 0 are
y = 0 and x − y = nπ for any integer n. The solution
y = x−nπ is non-constant, therefore the equation cannot
be separable.

y′ = xy(1− y2) It is separable. The equation xy(1 − y2) = 0 has three
equilibrium solutions y = 0, y = 1, y = −1. Equilibrium
solutions must be constant solutions.

Algorithm. To find equilibrium solutions, formally substitute y = c into the
differential equation, then solve for c, and report all constant solutions y = c so
found. There can be zero solutions, or just one solution, or some finite number
of solutions, or infinitely many solutions.

Shortcut. In a given problem, a formal substitution is not used, but instead y′ is
replaced by zero (the result when y = constant). For y′ = f(x, y), the equation
f(x, y) = 0 is to be solved for y. For example, y′ = (x + 1)(y2 − 4) becomes
0 = (x + 1)(y2 − 4), equivalent to y2 − 4 = 0 or y = 2, y = −2. The spurious
solution x = −1 is ignored, because we are looking for constant solutions of the
form y = c, which in this example are y = 2 and y = −2.

The problem of finding all equilibrium solutions is known to be technically un-
solvable, that is, there is no proven algorithm for finding all the solutions of
G(y) = 0. However, there are some very good numerical methods that apply,
including Newton’s method and the bisection method. Modern computer
algebra systems make it practical to find equilibrium solutions, both symbolic
(like y = π) and numeric (like y = 3.14159), in a single effort.

Finding Non-Equilibrium Solutions

A given solution y(x) satisfying G(y(x)) ̸= 0 throughout its domain of definition
is called a non-equilibrium solution. Then division by G(y(x)) is allowed in the
differential equation y′(x) = F (x)G(y(x)). The method of quadrature applies to
the separated equation y′/G(y(x)) = F (x). Some details:∫ x

x0

y′(t)dt

G(y(t))
=
∫ x
x0

F (t)dt Integrate both sides of the separated equation
over x0 ≤ t ≤ x.∫ y(x)

y0

du

G(u)
=
∫ x
x0

F (t)dt Apply on the left the change of variables u =
y(t). Define y0 = y(x0).
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2.2 Separable Equations

y(x) = W−1
(∫ x

x0
F (t)dt

)
Define W (y) =

∫ y
y0
du/G(u). Take inverses to

isolate y(x).

The calculation produces a formula which is strictly speaking a candidate solution
y. It does not prove that the formula works in the equation: checking the solution
is required.

Theoretical Inversion

The function W−1 appearing in the last step above is generally not given by a
formula. Therefore, W−1 rarely appears explicitly in applications or examples.
It is the method that is memorized:

Prepare a separable differential equation by transforming it to sep-
arated form. Then apply the method of quadrature.

The separated form y′ = F (x)G(y) is checked by the separated form test, page
83. For example, y′ = (1 + x2)y3 has F = 1 + x2 and G = y3; quadrature is
applied to the divided equation y′/y3 = 1 + x2.

The theoretical basis for using W−1 is a calculus theorem which says that a
strictly monotone continuous function has a continuous inverse. The fundamen-
tal theorem of calculus implies that W (y) is continuous with nonzero derivative
W ′(y) = 1/G(y). Therefore, W (y) is strictly monotone. The cited calculus
theorem implies that W (y) has a continuously differentiable inverse W−1.

Explicit and Implicit Solutions

The variables-separable method gives equilibrium solutions which are already
explicit, that is:

Definition 2.1 (Explicit Solution)
A solution of y′ = f(x, y) is called explicit provided it is given by an equation

y = an expression independent of y.

To elaborate, on the left side must appear exactly the symbol y followed by an
equal sign. Symbols y and = are followed by an expression which does not contain
the symbol y. Examples of explicit equations are y = 0, y = −1, y = x + 2π,
y = sinx + x2 + 10. The definition is strict, for example y + 1 = 0 is not explicit
because it fails to have y isolated left. Yes, it can be converted into an explicit
equation y = −1.

Definition 2.2 (Implicit Solution)
A solution of y′ = f(x, y) is called implicit provided it is not explicit.
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Equations like 2y = x are not explicit (they are called implicit) because the
coefficient of y on the left is not 1. Similarly, y = x + y2 is not explicit because
the right side contains symbol y. Equation y = eπ is explicit because the right
side fails to contain symbol y (symbol x may be absent). Applications can leave

the non-equilibrium solutions in implicit form
∫ y(x)
y0

du/G(u) =
∫ x
x0

F (t)dt, with
serious effort being expended to do the indicated integrations.

In special cases, it is possible to find an explicit solution from the implicit one
by algebraic methods. The required algebraic methods might appear to be un-
motivated tricks. Computer algebra systems can make this step look like science
instead of art.

Examples

Example 2.4 (Non-separable Equation)
Explain why yy′ = x− y2 is not separable.

Solution: It is tempting to try manipulations like adding y2 to both sides of the equation,
in an attempt to obtain a separable form, but every such trick fails. The failure of such
attempts is evidence that the equation is perhaps not separable. Failure of attempts
does not prove non-separability.

Test I applies to verify that the equation is not separable. Let f(x, y) = x/y − y and
choose x0 = 0, y0 = 1. Then f(x0, y0) ̸= 0. Compute as follows:

LHS = f(x, y0)f(x0, y)− f(x0, y0)f(x, y) Identity (2) left side.

= f(x, 1)f(0, y)− f(0, 1)f(x, y) Use x0 = 0, y0 = 1.

= (x− 1)(−y)− (−1)(x/y − y) Substitute f(x, y) = x/y − y.

= −xy + x/y Simplify.

This expression fails to be zero for all (x, y) (e.g., x = 1, y = 2), therefore the equation
is not separable, by Test I.

Test II also applies to verify the equation is not separable:
fx
f

=
1/y

f
= x − y2 is

non-constant in x.

Example 2.5 (Separated Form Test Failure)
Given yy′ = 1− y2, explain why the equivalent equation yy′ + y2 = 1, obtained by
adding y2 across the equation, fails the separated form test, page 83.

Solution: The test requires the left side of yy′ + y2 = 1 to contain the factor y′. It
doesn’t, so it fails the test. Yes, yy′ + y2 = 1 does pass the other checkpoints of the test:
the left side is independent of x and the right side is independent of y and y′.

Example 2.6 (Separated Equation)
Find for (x+ 1)yy′ = x− xy2 a separated equation using the test, page 83.
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2.2 Separable Equations

Solution: The equation usually reported is
yy′

(1− y)(1 + y)
=

x

x+ 1
. It is found by

factoring and division.

The given equation is factored into (1 + x)yy′ = x(1 − y)(1 + y). To pass the test, the
objective is to move all factors containing only y to the left and all factors containing only
x to the right. This is technically accomplished using division by (x+ 1)(1− y)(1 + y).

To the result of the division is applied the test on page 83: the left side contains factor
y′ and otherwise involves the factor y/(1− y2), which depends only on y; the right side
is x/(x+1), which depends only on x. In short, the candidate separated equation passes
the test.

There is another way to approach the problem, by writing the differential equation in
standard form y′ = f(x, y) where f(x, y) = x(1 − y2)/(1 + x). Then f(1, 0) = 1/2 ̸=
0. Define F (x) = f(x, 0)/f(1, 0), G(y) = f(1, y). We verify F (x)G(y) = f(x, y). A
separated form is then y′/G(y) = F (x) or 2y′/(1− y2) = 2x/(1 + x).

Example 2.7 (Equilibria)
Given y′ = x(1− y)(1 + y), find all equilibria.

Solution: The constant solutions y = −1 and y = 1 are the equilibria, as will be
justified.

Equilibria are found by substituting y = c into the differential equation y′ = x(1−y)(1+
y), which gives the equation

x(1− c)(1 + c) = 0.

The formal college algebra solutions are x = 0, c = −1 and c = 1. However, we do
not seek these college algebra answers! Equilibria are the solutions y = c such that
x(1 − c)(1 + c) = 0 for all x. The conditional for all x causes the algebra problem to
reduce to just two equations: 0 = 0 (from x = 0) and (1 − c)(1 + c) = 0 (from x ̸= 0).
We solve for c = 1 and c = −1, then report the two equilibrium solutions y = 1 and
y = −1. Spurious algebraic solutions like x = 0 can appear, which must be removed
from equilibrium solution reports.

Example 2.8 (Non-Equilibria)
Given y′ = x2(1 + y), y(0) = y0, find all non-equilibrium solutions.

Solution: The unique solution is y = (1 + y0)e
x3/3 − 1. Details follow.

The separable form y′ = F (x)G(y) is realized for F (x) = x2 and G(y) = 1 + y. Sought
are solutions with G(y) ̸= 0, or simply 1 + y ̸= 0.

y′ = x2(1 + y) Original equation.

y′

1 + y
= x2 Divide by 1 + y. Separated form found.

∫ y′

1 + y
dx =

∫
x2dx Method of quadrature.

∫ du

1 + u
=
∫
x2dx Change variables u = y(x) on the left.

ln |1 + y(x)| = x3/3 + c Evaluate integrals. Implicit solution found.
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Applications might stop at this point and report the implicit solution. This illustration
continues, to find the explicit solution y = (1 + y0)e

x3/3 − 1.

|1 + y(x)| = ex
3/3+c By definition, lnu = w means u = ew.

1 + y(x) = kex
3/3+c Drop absolute value, k = ±1.

y(x) = kex
3/3+c − 1 Candidate solution. Constants unresolved.

The initial condition y(0) = y0 is used to resolve the constants c and k. First, |1+y0| = ec

from the first equation. Second, 1 + y0 and 1 + y(x) must have the same sign (they are
never zero), so k(1 + y0) > 0. Hence, 1 + y0 = kec, which implies the solution is

y = kecex
3/3 − 1 or y = (1 + y0)e

x3/3 − 1.

Example 2.9 (Equilibria)
Given y′ = x sin(1− y) cos(1 + y), find all equilibrium solutions.

Solution: The infinite set of equilibria are justified below to be

y = 1 + nπ, y = −1 + (2n+ 1)
π

2
, n = 0,±1,±2, . . .

A separable form y′ = F (x)G(y) is verified by defining F (x) = x and G(y) = sin(1 −
y) cos(1+y). Equilibria y = c are found by solving for c in the equation G(c) = 0, which
is

sin(1− c) cos(1 + c) = 0.

This equation is satisfied when the argument of the sine is an integer multiple of π or
when the argument of the cosine is an odd integer multiple of π/2. The solutions are
c− 1 = 0,±π,±2π, . . . and 1 + c = ±π/2,±3π/2, . . ..

Multiple solutions and maple. Equations having multiple solutions may require CAS
setup. Below, the first code fragment returns two solutions, y = 1 and y = −1 + π/2.
The second returns all solutions.

# The default returns two solutions

G:=y->sin(1-y)*cos(1+y):

solve(G(y)=0,y);

# Special setup returns all solutions

_EnvAllSolutions := true:

G:=y->sin(1-y)*cos(1+y):

solve(G(y)=0,y);

Example 2.10 (Non-Equilibria)
Given y′ = x2 sin(y), y(0) = y0, justify that all non-equilibrium solutions are given
by2

y = 2Arctan
(
tan(y0/2)e

x3/3
)
+ 2nπ.

Solution: A separable form y′ = F (x)G(y) is defined by F (x) = x2 and G(y) = sin(y).
A non-equilibrium solution will satisfy G(y) ̸= 0, or simply sin(y) ̸= 0. Define n by
y0/2 = Arctan(tan(y0/2)) + nπ, where |Arctan(u)| < π/2. Then

2While θ = arctanu gives any angle, θ = Arctan(u) gives |θ| < π/2.

88



2.2 Separable Equations

y′ = x2 sin(y) The original equation.

csc(y)y′ = x2 Separated form. Divided by sin(y) ̸= 0.∫
csc(y)y′dx =

∫
x2dx Quadrature using indefinite integrals.∫

csc(u)du =
∫
x2dx Change variables u = y(x) on the left.

ln | csc y(x)− cot y(x)| = 1
3x

3 + c Integral tables. Implicit solution found.

Trigonometric Identity. Integral tables make use of the identity tan(y/2) = csc y −
cot y, which is derived from the relations 2θ = y, 1−cos 2θ = 2 sin2 θ, sin 2θ = 2 sin θ cos θ.
Tables offer an alternate answer for the last integral above, ln | tan(y/2)|.
The solution obtained at this stage is called an implicit solution, because y has not been
isolated. It is possible to solve for y in terms of x, an explicit solution. The details:

| csc y − cot y| = ex
3/3+c By definition, lnu = w means u = ew.

csc y − cot y = kex
3/3+c Assign k = ±1 to drop absolute values.

1− cos y

sin y
= kex

3/3+c Then k has the same sign as sin(y), because 1−
cos y ≥ 0.

tan(y/2) = kex
3/3+c Use tan(y/2) = csc y − cot y.

y = 2Arctan
(
kex

3/3+c
)
+ 2nπ Candidate solution, n = 0,±1,±2, . . .

Resolving the Constants. Constants c and k are uniquely resolved for a given initial
condition y(0) = y0. Values x = 0 and y = y0 determine constant c by the equation
tan(y0/2) = kec (two equations back). The condition k sin(y0) > 0 determines k, because
sin y0 and sin y have identical signs. If n is defined by y0/2 = Arctan(tan(y0/2)) + nπ
and K = kec = tan(y0/2), then the explicit solution is

y = 2Arctan
(
Kex

3/3
)
+ 2nπ, K = tan(y0/2).

Trigonometric identities and maple. Using the identity csc y − cot y = tan(y/2),
maple finds the same relation. Complications occur without it.

_EnvAllSolutions := true:

solve(csc(y)-cot(y)=k*exp(x^3/3+c),y);

solve(tan(y/2)=k*exp(x^3/3+c),y);

Example 2.11 (Independent of x)
Solve y′ = y(1− ln y), y(0) = y0.

Solution: There is just one equilibrium solution y = e ≈ 2.718. Not included is y = 0,
because y(1− ln y) is undefined for y ≤ 0. Details appear below for the explicit solution
(which includes y = e)

y = e1− (1− ln y0)e
−x

.

An equation y′ = f(x, y) independent of x has the form y′ = F (x)G(y) where F (x) = 1.
Divide by G(y) to obtain a separated form y′/G(y) = 1. In the present case, G(y) =
y(1− ln y) is defined for y > 0. To require G(y) ̸= 0 means y > 0, y ̸= e. Non-equilibrium
solutions will satisfy y > 0 and y ̸= e.
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y′

y(1− ln y)
= 1 Separated form. Assume y > 0 and y ̸= e.

∫ y′

y(1− ln y)
dx =

∫
dx Method of quadrature.

∫ −du

u
=
∫
dx Substitute u = 1 − ln y on the left. Chain rule (ln y)′ =

y′/y applied; du = −y′dx/y.

− ln |1− ln y(x)| = x+ c Evaluate the integral using u = 1− ln y. Implicit solution
found.

The remainder of the solution contains college algebra details, to find from the implicit
solution all explicit solutions y.

|1− ln y(x)| = e−x−c Use lnu = w equivalent to u = ew.

1− ln y(x) = ke−x−c Drop absolute value, k = ±1.

ln y(x) = 1− ke−x−c Solved for ln y.

y(x) = e1− ke−x−c
Candidate solution; c and k unresolved.

To resolve the constants, start with y0 > 0 and y0 ̸= e. To determine k, use the
requirement G(y) ̸= 0 to deduce that k(1− ln y(x)) > 0. At x = 0, it means k|1− ln y0| =
1− ln y0. Then k = 1 for 0 < y0 < e and k = −1 otherwise.

Let y = y0, x = 0 to determine c through the equation |1 − ln y0| = e−c. Combining
with the value of k gives 1− ln y0 = ke−c.

Assembling the answers for k and c produces the relations

y = e1− ke−x−c
Candidate solution.

= e1− ke−ce−x
Exponential rule ea+b = eaeb.

= e1− (1− ln y0)e
−x

Explicit solution. Used ke−c = 1− ln y0.

Even though the solution has been found through legal methods, it remains to verify the
solution. See the exercises.

Exercises 2.2 �

Separated Form Test
Test the given equation by the separated
form test on page 83.

Report whether or not the equation passes
or fails, as written. In this test, algebraic
operations on the equation are disallowed.
See Examples 2.4 and 2.5, page 86.

1. y′ = 2

2. y′ = x

3. y′ + y = 2

4. y′ + 2y = x

5. yy′ = 2− x

6. 2yy′ = x+ x2

7. yy′ + sin(y′) = 2− x

8. 2yy′ + cos(y) = x

9. 2yy′ = y′ cos(y) + x

10. (2y + tan(y))y′ = x

Separated Equation
Determine the separated form y′/G(y) =
F (x) for the given separable equation. See
Example 2.6, page 86.
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11. (1 + x)y′ = 2 + y

12. (1 + y)y′ = xy

13. y′ =
x+ xy

(x+ 1)2 − 1

14. y′ = sin(x)
1 + y

(x+ 2)2 − 4

15. xy′ = y sin(y) cos(x)

16. x2y′ = y cos(y) tan(x)

17. y2(x− y)y′ =
x2 − y2

x+ y

18. xy2(x+ y)y′ =
y2 − x2

x− y

19. xy2y′ =
y − x

x− y

20. xy2y′ =
x2 − xy

x− y

Equilibrium solutions
Determine the equilibria for the given equa-
tion. See Examples 2.7 and 2.9.

21. y′ = xy(1 + y)

22. xy′ = y(1− y)

23. y′ =
1 + y

1− y

24. xy′ =
y(1− y)

1 + y

25. y′ = (1 + x) tan(y)

26. y′ = y(1 + ln y)

27. y′ = xey(1 + y)

28. xy′ = ey(1− y)

29. xy′ = ey(1− y2)(1 + y)3

30. xy′ = ey(1− y3)(1 + y3)

Non-Equilibrium Solutions
Find the non-equilibrium solutions for the
given separable equation. See Examples 2.8
and 2.10 for details.

31. y′ = (xy)1/3, y(0) = y0.

32. y′ = (xy)1/5, y(0) = y0.

33. y′ = 1 + x− y − xy, y(0) = y0.

34. y′ = 1 + x+ 2y + 2xy, y(0) = y0.

35. y′ =
(x+ 1)y3

x2(y3 − y)
, y(1) = y0 ̸= 0.

36. y′ =
(x− 1)y2

x3(y3 + y)
, y(0) = y0.

37. 2yy′ = x(1− y2)

38. 2yy′ = x(1 + y2)

39. (1 + x)y′ = 1− y

40. (1− x)y′ = 1 + y, y(0) = y0.

41. tan(x)y′ = y, y(π/2) = y0.

42. tan(x)y′ = 1 + y, y(π/2) = y0.

43.
√
xy′ = cos2(y), y(1) = y0.

44.
√
1− xy′ = sin2(y), y(0) = y0.

45.
√
x2 − 16yy′ = x, y(5) = y0.

46.
√

x2 − 1yy′ = x, y(2) = y0.

47. y′ = x2(1 + y2), y(0) = 1.

48. (1− x)y′ = x(1 + y2), y(0) = 1.

Independent of x
Solve the given equation, finding all solu-
tions. See Example 2.11.

49. y′ = sin y, y(0) = y0.

50. y′ = cos y, y(0) = y0.

51. y′ = y(1 + ln y), y(0) = y0.

52. y′ = y(2 + ln y), y(0) = y0.

53. y′ = y(y − 1)(y − 2), y(0) = y0.

54. y′ = y(y − 1)(y + 1), y(0) = y0.

55. y′ = y2 + 2y + 5, y(0) = y0.

56. y′ = y2 + 2y + 7, y(0) = y0.
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Details in the Examples
Collected here are verifications for details
in the examples.

57. (Example 2.7) The equation x(1 −
y)(1+y) = 0 was solved in the example,
but x = 0 was ignored, and only y = −1
and y = 1 were reported. Why?

58. (Example 2.8) An absolute value
equation |u| = w was replaced by u =
kw where k = ±1. Justify the replace-
ment using the definition |u| = u for
u ≥ 0, |u| = −u for u < 0.

59. (Example 2.8) Verify directly that y =

(1+ y0)e
x3/3 − 1 solves the initial value

problem y′ = x2(1 + y), y(0) = y0.

60. (Example 2.9) The relation y = 1 +

nπ, n = 0,±1,±2, . . . describes the list
. . . , 1−π, 1, 1+π, . . .. Write the list for
the relation y = −1 + (2n+ 1)π2 .

61. (Example 2.9) Solve sin(u) = 0 and
cos(v) = 0 for u and v. Supply graphs
which show why there are infinity many
solutions.

62. (Example 2.10) Explain why y0/2
does not equal Arctan(tan(y0/2)). Give
a calculator example.

63. (Example 2.10) Establish the identity
tan(y/2) = csc y − cot y.

64. (Example 2.11) Let y0 > 0. Verify

that y = e1− (1− ln y0)e
−x

solves

y′ = y(1− ln y), y(0) = y0.
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2.3 Linear Equations

Definition 2.3 (Linear Differential Equation)
An equation y′ = f(x, y) is called first-order linear or a linear equation provided
functions p(x) and r(x) can be defined to re-write the equation in the standard
form

y′ + p(x)y = r(x).(1)

In most applications, p and r are assumed to be continuous. Function p(x) is
called the coefficient of y. Function r(x) (r abbreviates right side) is called the
non-homogeneous term or the forcing term. Engineering texts call r(x) the
input and the solution y(x) the output.

In examples, a linear equation is identified by matching:

dy

dx
+

(
p(x), an expression
independent of y

)
y =

(
r(x), another expression
independent of y

)
.

Calculus Test:

An equation y′ = f(x, y) with f continuously differentiable is linear

provided
∂f(x, y)

∂y
is independent of y.

If the test is passed, then standard linear form (1) is obtained by defining r(x) =
f(x, 0) and p(x) = −∂f/∂y(x, y). A brief calculation verifies this statement.

Key Examples

L
dI

dt
+RI = E The LR-circuit equation. Symbols L, R and E are respec-

tively inductance, resistance and electromotive force, while
I(t) = current in amperes and t = time. 1

du

dt
= −h(u− u1) Newton’s cooling equation. In the roast model, the oven

temperature is u1 and the meat thermometer reading is u(t),
with t = time. 2

Notes.
1 Linear equation y′ + p(x)y = r(x) is realized with symbols y, x, p, r under-
going name changes. Define x = t, y = I, p(x) = R/L, r(x) = E/L.
2 Linear equation y′ + p(x)y = r(x) is realized by re-defining symbols y, x, p,

r. Start with the equation re-arranged algebraically to
du

dt
+ hu = hu1. Define

x = t, y = u, p(x) = h, r(x) = hu1.
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Homogeneous Equation y′ + p(x)y = 0

Homogeneous equations y′ + p(x)y = 0 occur in applications devoid of external
forces, like an LR-circuit with no battery in the circuit. Justified on page 101 is
the fundamental result for such systems. See also the proof of Theorem 2.5 (a).

The general solution of
dy

dx
+ p(x)y = 0 is the fraction

y(x) =
constant

integrating factor
=

c

W (x)

where integrating factor W (x) is defined by the equation

W (x) = e
∫
p(x)dx.

An Illustration. The LR-circuit equation
dI

dt
+ 2I = 0 is the model equation

y′ + p(x)y = 0 with p(x) = 2. Then W (x) = e
∫
2dx = e2x, with integration

constant set to zero. The general solution of y′ + 2y = 0 is given by

y =
c

W (x)
=

c

e2x
= ce−2x.

The current is I(t) = c e−2t, by the variable swap x → t, y → I.

Definition 2.4 (Integrating Factor)
An integrating factor W (x) for equation y′ + p(x)y = r(x) is

W (x) = e
∫
p(x)dx.

Lemma 2.1 (Integrating Factor Identity)
The integrating factor W (x) satisfies the differential equation

W ′(x) = p(x)W (x).

Lemma Details. Write W = eu where u =
∫
p(x)dx. By the fundamental

theorem of calculus, u′ = p(x) = the integrand. Then the chain rule implies
W ′ = u′eu = u′W = pW .

A Shortcut. Factor W (x) is generally expressed as a simplified expression,
with integration constant set to zero and absolute value symbols removed. See
the exercises for details about this simplification. For instance, integration in
the special case p(x) = 2 formally gives

∫
p(x)dx =

∫
2dx = 2x + c1. Then the

integrating factor becomes W (x) = e
∫
2dx = e2x+c1 = e2xec1 . Fraction c/W (x)

equals c2/e
2x, where c2 = c/ec1 . The lesson is that we could have chosen c1 = 0 to

produce the same fraction. This is a shortcut, recognized as such, but it applies
in examples to save effort.
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Non-Homogeneous Equation y′ + p(x)y = r(x)

Definition 2.5 (Homogeneous and Particular Solution)
LetW (x) be an integrating factor constructed for y′+p(x)y = r(x), that is, W (x) =
eu, where u =

∫
p(x)dx is an antiderivative of p(x).

Symbol yh, called the homogeneous solution, is defined by the expression

yh(x) =
c

W (x)
.

Symbol yp, called a particular solution, is defined by the expression

yp(x) =

∫
r(x)W (x)dx

W (x)

Theorem 2.5 (Homogeneous and Particular Solutions)
(a) Expression yh(x) is a solution of the homogeneous differential equation y′ +
p(x)y = 0.

(b) Expression yp(x) is a solution of the non-homogeneous differential equation
y′ + p(x)y = r(x).

Proof:
(a) Define y = c/W . We prove y′ + py = 0. Formula y = c/W implies (yW )′ = (c)′ = 0.
The product rule and the Lemma imply (yW )′ = y′W + yW ′ = y′W + y(pW ) = (y′ +
py)W . Then (yW )′ = 0 implies y′ + py = 0. The proof is complete.

(b) We prove y′ + py = r when y is replaced by the fraction yp. Define C(x) =∫
r(x)W (x)dx, so that y = C(x)/W (x). The fundamental theorem of calculus im-

plies C ′(x) = r(x)W (x). The product rule and the Lemma imply C ′ = (yW )′ =
y′W + yW ′ = y′W + ypW = (y′ + py)W . Competition between the two equations
for C ′ gives rW = (y′ + py)W ). Cancel W to obtain r = y′ + py. ■

Historical Note. The formula for yp(x) has the historical name variation
of constants or variation of parameters. Both yh and yp have the same
form C/W , with C(x) constant for yh and C(x) equal to a function of x for yp:
variation of constant c in yh produces the expression for yp.

Experimental Viewpoint. The particular solution yp depends on the forcing
term r(x), but the homogeneous solution yh does not. Experimentalists view the
computation of yp as a single experiment in which the state yp is determined by
the forcing term r(x) and zero initial data y = 0 at x = x0. This particular
experimental solution y∗p is given by the definite integral formula

y∗p(x) =
1

W (x)

∫ x

x0

r(x)W (x)dx.(2)

Superposition. The sum of constant multiples of solutions to y′ + p(x)y = 0 is
again a solution. The next two theorems are superposition for y′+p(x)y = r(x).
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Theorem 2.6 (General Solution = Homogeneous + Particular)
Assume p(x) and r(x) are continuous on a < x < b and a < x0 < b. Let y be
a solution of y′ + p(x)y = r(x) on a < x < b. Then y can be decomposed as
y = yh + yp.

In short, a linear equation has the solution structure homogeneous plus particular.

The constant c in formula yh and the integration constant in
∫
W (x)rx)dx can

always be selected to satisfy initial condition y(x0) = y0.

Theorem 2.7 (Difference of Solutions = Homogeneous Solution)
Assume p(x) and r(x) are continuous on a < x < b and a < x0 < b. Let y1 and y2
be two solutions of y′ + p(x)y = r(x) on a < x < b. Then y = y1 − y2 is a solution
of the homogeneous differential equation

y′ + p(x)y = 0.

In short, any two solutions of the non-homogeneous equation differ by some solution
yh of the homogeneous equation.

Integrating Factor Method

The technique called the method of integrating factors uses the replacement
rule (justified on page 101)

Fraction
(YW )′

W
replaces Y ′ + p(x)Y, where W = e

∫
p(x)dx.(3)

The fraction (YW )′/W is called the integrating factor fraction.

The Integrating Factor Method

Standard
Form

Rewrite y′ = f(x, y) in the form y′ + p(x)y = r(x) where p, r
are continuous. The method applies only in case this is possible.

Find W Find a simplified formula for W = e
∫
p(x)dx. The antiderivative∫

p(x)dx can be chosen conveniently.

Prepare for
Quadrature

Obtain the new equation
(yW )′

W
= r by replacing the left side

of y′ + p(x)y = r(x) by equivalence (3).

Method of
Quadrature

Clear fractions to obtain (yW )′ = rW . Apply the method of
quadrature to get yW =

∫
r(x)W (x)dx+ C. Divide by W to

isolate the explicit solution y(x).

In identity (3), functions p, Y and Y ′ are assumed continuous with p and Y
arbitrary functions. Equation (3) is central to the method, because it collapses the
two terms y′+py into a single term (Wy)′/W ; the method of quadrature applies
to (Wy)′ = rW . The literature calls the exponential factor W an integrating
factor and equivalence (3) a factorization of Y ′ + p(x)Y .
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Simplifying an Integrating Factor

Factor W is simplified by dropping constants of integration. To illustrate, if
p(x) = 1/x, then

∫
p(x)dx = ln |x| + C. The algebra rule eA+B = eAeB implies

that W = eCeln |x| = |x|eC = (±eC)x, because |x| = (±)x. Let c1 = ±eC .
Then W = c1W1 where W1 = x. The fraction (Wy)′/W reduces to (W1y)

′/W1,
because c1 cancels. In an application, we choose the simpler expression W1. The
illustration shows that exponentials in W can sometimes be eliminated.

Variation of Constants and y′ + p(x)y = r(x)

Every solution of y′ + p(x)y = r(x) can be expressed as y = yh + yp, by choosing
constants appropriately. The classical variation of constants formula puts
initial condition zero on yp and compresses all initial data into the constant c
appearing in yh. The general solution is given by

y(x) =
y(x0)

W (x)
+

∫ x
x0

r(x)W (x)dx

W (x)
, W (x) = e

∫ x
x0

p(s)ds
(4)

Classifying Linear and Non-Linear Equations

Definition 2.6 (Non-linear Differential Equation)
An equation y′ = f(x, y) that fails to be linear is called non-linear.

Algebraic Complexity. A linear equation y′ = f(x, y) may appear to be non-
linear, e.g., y′ = (sin2(xy) + cos2(xy))y simplifies to y′ = y.

Computer Algebra System. These systems classify an equation y′ = f(x, y)
as linear provided the identity f(x, y) = f(x, 0)+fy(x, 0)y is valid. Equivalently,
f(x, y) = r(x)− p(x)y, where r(x) = f(x, 0) and p(x) = −fy(x, y).

Hand verification can use the same method. To illustrate, consider y′ = f(x, y)
with f(x, y) = (x − y)(x + y) + y(y − 2x). Compute f(x, 0) = x2, fy(x, 0) =
−2x. Because fy is independent of y, then y′ = f(x, y) is the linear equation
y′ + p(x)y = r(x) with p(x) = 2x, r(x) = x2.

Non-Linear Equation Tests. Elimination of an equation y′ = f(x, y) from
the class of linear equations can be done from necessary conditions. The equality
fy(x, y) = fy(x, 0) implies two such conditions:

1. If fy(x, y) depends on y, then y′ = f(x, y) is not linear.

2. If fyy(x, y) ̸= 0, then y′ = f(x, y) is not linear.

For instance, either condition implies y′ = 1 + y2 is not linear.
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Special Linear Equations

There are fast ways to solve certain linear differential equations that do not
employ the linear integrating factor method.

Theorem 2.8 (Solving a Homogeneous Equation)
Assume p(x) is continuous on a < x < b. Then the solution of the homogeneous
differential equation y′ + p(x)y = 0 is given by the formula

y(x) =
constant

integrating factor
.(5)

Theorem 2.9 (Solving a Constant-Coefficient Equation)
Assume p(x) and r(x) are constants p, r with p ̸= 0. Then the solution of the
constant-coefficient differential equation y′ + py = r is given by the formula

y(x) =
constant

integrating factor
+ equilibrium solution

= ce−px +
r

p
.

(6)

Proof: The homogeneous solution is a constant divided by the integrating factor, by
Theorem 2.8. An equilibrium solution can be found by formally setting y′ = 0, then
solving for y = r/p. By superposition Theorem 2.6, the solution y must be the sum of
these two solutions. The excluded case p = 0 results in a quadrature equation y′ = r
which is routinely solved by the method of quadrature.

Examples

Example 2.12 (Shortcut: Homogeneous Equation)

Solve the homogeneous equation 2y′ + x2y = 0.

Solution: By Theorem (2.8), the solution is a constant divided by the integrating factor.
First, divide by 2 to get y′ + p(x)y = 0 with p(x) = 1

2x
2. Then

∫
p(x)dx = x3/6 + c

implies W = ex
3/6 is an integrating factor. The solution is y =

c

ex3/6
.

Example 2.13 (Shortcut: Constant-Coefficient Equation)

Solve the non-homogeneous constant-coefficient equation 2y′ − 5y = −1.

Solution: The method described here only works for first order constant coefficient
differential equations. If y′ = f(x, y) is not linear or it fails to have constant coefficients,
then the method fails.

The solution has two steps:
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(1) Find the solution yh of the homogeneous equation 2y′ − 5y = 0.
The answer is a constant divided by the integrating factor, which is y =

c

e−5x/2
. First divide the equation by 2 to obtain the standard form y′ +

(−5/2)y = 0. Identify p(x) = −5/2, then
∫
p(x)dx = −5x/2 + c and finally

W = e−5x/2 is the integrating factor. The answer is yh = c/W = ce5x/2.

(2) Find an equilibrium solution yp for 2y′ − 5y = −1.
This answer is found by formally replacing y′ by zero. Then yp = 1

5 .

The answer is the sum of the answers from (1) and (2), by superposition, giving

y = yh + yp = ce5x/2 +
1

5
.

The method of this example is called the superposition method shortcut.

Example 2.14 (Integrating Factor Method)

Solve 2y′ + 6y = e−x.

Solution: The solution is y = 1
4e

−x+ ce−3x. An answer check appears in Example 2.16.
The details:

y′ + 3y = 0.5e−x Divide by 2 to get the standard form.

W = e3x Find the integrating factor W = e
∫
3dx.(

e3xy
)′

e3x
= 0.5e−x Replace the LHS of y′ + 3y = 0.5e−x by the

integrating factor quotient; see page 96.(
e3xy

)′
= 0.5e2x Clear fractions. Prepared for quadrature

e3xy = 0.5
∫
e2xdx Method of quadrature applied.

y = 0.5
(
e2x/2 + c1

)
e−3x Evaluate the integral. Divide by W = e3x.

= 1
4e

−x + ce−3x Final answer, c = 0.5c1.

Example 2.15 (Superposition)

Find a particular solution of y′ + 2y = 3ex with fewest terms.

Solution: The answer is y = ex. The first step solves the equation using the integrating
factor method, giving y = ex + ce−2x; details below. A particular solution with fewest
terms, y = ex, is found by setting c = 0.

Integrating factor method details:

y′ + 2y = 3ex The standard form.

W = e2x Find the integrating factor W = e
∫
2dx.(

e2xy
)′

e2x
= 3ex Integrating factor identity applied to y′ + 2y = 3ex.

e2xy = 3
∫
e3xdx Clear fractions and apply quadrature.

y =
(
e3x + c

)
e−2x Evaluate the integral. Isolate y.
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= ex + ce−2x Solution found.

Remarks on Integral Formula (2). Computer algebra systems will compute the
solution y∗p = ex−e3x0e−2x of equation (2). It has an extra term because of the condition
y = 0 at x = x0. The shortest particular solution ex and the integral formula solution
y∗p differ by a homogeneous solution c1e

−2x, where c1 = e3x0 . To shorten y∗p to yp = ex

requires knowing the homogeneous solution, then apply superposition y = yp + yh to
extract a particular solution.

Example 2.16 (Answer Check)
Show the answer check details for 2y′ + 6y = e−x and candidate solution y =
1
4e

−x + ce−3x.

Solution: Details:

LHS = 2y′ + 6y Left side of the equation 2y′+6y =
e−x.

= 2(− 1
4e

−x − 3ce−3x) + 6( 14e
−x + ce−3x) Substitute for y.

= e−x + 0 Simplify terms.

= RHS DE verified.

Example 2.17 (Finding yh and yp)

Find the homogeneous solution yh and a particular solution yp for the equation
2xy′ + y = 4x2 on x > 0.

Solution: The solution by the integrating factor method is y = 0.8x2 + cx−1/2; details
below. Then yh = cx−1/2 and yp = 0.8x2 give y = yh + yp.

The symbol yp stands for any particular solution. It should be free of any arbitrary
constants c.

Integral formula (2) gives a particular solution y∗p = 0.8x2−0.8x
5/2
0 x−1/2. It differs from

the shortest particular solution 0.8x2 by a homogeneous solution Kx−1/2.

Integrating factor method details:

y′ + 0.5y/x = 2x Standard form. Divided by 2x.

p(x) = 0.5/x Identify coefficient of y.
Then

∫
p(x)dx = 0.5 ln |x|+ c.

W = e0.5 ln |x|+c The integrating factor is W = e
∫
p.

W = e0.5 ln |x| Choose integration constant zero.

= |x|1/2 Used lnun = n lnu. Simplified W found.(
x1/2y

)′
x1/2

= 2x Integrating factor identity applied on the left.
Assumed x > 0.

x1/2y = 2
∫
x3/2dx Clear fractions. Apply quadrature.

y =
(
4x5/2/5 + c

)
x−1/2 Evaluate the integral. Divide to isolate y.

= 4
5x

2 + cx−1/2 Solution found.
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Example 2.18 (Classification)
Classify the equation y′ = x+ ln (xey) as linear or non-linear.

Solution: It’s linear, with standard linear form y′ + (−1)y = x+ lnx. To explain why,
the term ln (xey) on the right expands into lnx + ln ey, which in turn is lnx + y, using
logarithm rules. Because ey > 0, then ln(xey) makes sense for only x > 0. Henceforth,
assume x > 0.

Computer algebra test f(x, y) = f(x, 0)+fy(x, 0)y. Expected is LHS−RHS = 0 after
simplification. This example produced ln ey − y instead of 0, evidence that limitations
may exist.

assume(x>0):

f:=(x,y)->x+ln(x*exp(y)):

LHS:=f(x,y):

RHS:=f(x,0)+subs(y=0,diff(f(x,y),y))*y:

simplify(LHS-RHS);

If the test passes, then y′ = f(x, y) becomes y′ = f(x, 0)+ fy(x, 0)y. This example gives
y′ = x+ lnx+ y, which converts to the standard linear form y′ + (−1)y = x+ lnx.

Details and Proofs

Justification of Homogeneous Solution y =
c

W (x)
:

Because W = e
∫
p(x)dx, then W ′ = p(x)W by the Fundamental Theorem of Calculus.

Then (eu)
′
= u′eu implies:

dy

dx
+ p(x)y =

−cW ′

W 2 +
cp(x)

W
=

−cp(x)W

W 2 +
cp(x)

W
= 0

Justification of Factorization (3): It is assumed that Y (x) is a given but otherwise
arbitrary differentiable function. Equation (3) will be justified in its fraction-free form(

Y eP
)′

= (Y ′ + pY ) eP, P(x) =

∫
p(x)dx.(7)

LHS =
(
Y eP

)′
The left side of equation (7).

= Y ′eP +
(
eP
)′

Y Apply the product rule (uv)′ = u′v + uv′.

= Y ′eP + pePY Use the chain rule (eu)′ = u′eu and P′ = p.

= (Y ′ + pY ) eP The common factor is eP.

= RHS The right hand side of equation (7).

Justification of Formula (4):

Existence. Because the formula is y = yh+yp for particular values of c and the constant
of integration, then y is a solution by superposition Theorem (2.6) and existence Theorem
(2.5).
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Uniqueness. It remains to show that the solution given by (4) is the only solution.
Start by assuming Y is another, subtract them to obtain u = y − Y . Then u′ + pu = 0,
u(x0) = 0. To show y ≡ Y , it suffices to show u ≡ 0.

According to the integrating factor method, the equation u′ + pu = 0 is equivalent to
(uW )′ = 0. Integrate (uW )′ = 0 from x0 to x, giving u(x)W (x) = u(x0)W (x0). Since
u(x0) = 0 and W (x) ̸= 0, it follows that u(x) = 0 for all x. ■

About Picard’s Theorem. The Picard-Lindelöf theorem, page ??, implies existence-
uniqueness, but only on a smaller interval, and furthermore it supplies no practical
formula for the solution. Formula (4) is therefore an improvement over the results ob-
tainable from the general theory.

Exercises 2.3 �

Integrating Factor Method
Apply the integrating factor method, page
96, to solve the given linear equation. See
the examples starting on page 99 for de-
tails.

1. y′ + y = e−x

2. y′ + y = e−2x

3. 2y′ + y = e−x

4. 2y′ + y = e−2x

5. 2y′ + y = 1

6. 3y′ + 2y = 2

7. 2xy′ + y = x

8. 3xy′ + y = 3x

9. y′ + 2y = e2x

10. 2y′ + y = 2ex/2

11. y′ + 2y = e−2x

12. y′ + 4y = e−4x

13. 2y′ + y = e−x

14. 2y′ + y = e−2x

15. 4y′ + y = 1

16. 4y′ + 2y = 3

17. 2xy′ + y = 2x

18. 3xy′ + y = 4x

19. y′ + 2y = e−x

20. 2y′ + y = 2e−x

Superposition
Find a particular solution with fewest
terms. See Example 2.15, page 99.

21. 3y′ = x

22. 3y′ = 2x

23. y′ + y = 1

24. y′ + 2y = 2

25. 2y′ + y = 1

26. 3y′ + 2y = 1

27. y′ − y = ex

28. y′ − y = xex

29. xy′ + y = sinx (x > 0)

30. xy′ + y = cosx (x > 0)

31. y′ + y = x− x2

32. y′ + y = x+ x2

General Solution
Find yh and a particular solution yp. Re-
port the general solution y = yh + yp. See
Example 2.17, page 100.

33. y′ + y = 1

34. xy′ + y = 2

35. y′ + y = x

36. xy′ + y = 2x
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37. y′ − y = x+ 1

38. xy′ − y = 2x− 1

39. 2xy′ + y = 2x2 (x > 0)

40. xy′ + y = 2x2 (x > 0)

Classification
Classify as linear or non-linear. Use the test
f(x, y) = f(x, 0)+fy(x, 0)y and a computer
algebra system, when available, to check
the answer. See Example 2.18, page 101.

41. y′ = 1 + 2y2

42. y′ = 1 + 2y3

43. yy′ = (1 + x) ln ey

44. yy′ = (1 + x) (ln ey)
2

45. y′ sec2 y = 1 + tan2 y

46. y′ = cos2(xy) + sin2(xy)

47. y′(1 + y) = xy

48. y′ = y(1 + y)

49. xy′ = (x+ 1)y − xeln y

50. 2xy′ = (2x+ 1)y − xye− ln y

Shortcuts
Apply theorems for the homogeneous equa-
tion y′ + p(x)y = 0 or for constant coef-
ficient equations y′ + py = r. Solutions
should be done without paper or pencil,
then write the answer and check it.

51. y′ − 5y = −1

52. 3y′ − 5y = −1

53. 2y′ + xy = 0

54. 3y′ − x2y = 0

55. y′ = 3x4y

56. y′ = (1 + x2)y

57. πy′ − π2y = −e2

58. e2y′ + e3y = π2

59. xy′ = (1 + x2)y

60. exy′ = (1 + e2x)y

Proofs and Details

61. Prove directly without appeal to The-
orem 2.6 that the difference of two solu-
tions of y′+p(x)y = r(x) is a solution of
the homogeneous equation y′+ p(x)y =
0.

62. Prove that y∗p given by equation (2)
and yp = W−1

∫
r(x)W (x)dx given in

the integrating factor method are re-
lated by yp = y∗p + yh for some solution
yh of the homogeneous equation.

63. The equation y′ = r with r constant
can be solved by quadrature, without
pencil and paper. Find y.

64. The equation y′ = r(x) with r(x) con-
tinuous can be solved by quadrature.
Find a formula for y.
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2.4 Undetermined Coefficients

Studied here is the subject of undetermined coefficients for linear first order
differential equations y′ + p(x)y = r(x). It finds a particular solution yp without
the integration steps present in variation of parameters (reviewed in an example
and in exercises). The requirements and limitations:

1. Coefficient p(x) of y′ + p(x)y = r(x) is constant.

2. The function r(x) is a sum of constants times Euler solution
atoms (defined below).

Definition 2.7 (Euler Solution Atom)
An Euler base atom is a term having one of the forms

1, eax, cos bx, sin bx, eax cos bx or eax sin bx.

The symbols a and b are real constants, with a ̸= 0 and b > 0.

An Euler solution atom equals xn(Euler base atom). Symbol n ≥ 0 is an integer.

Examples. The terms x3, x cos 2x, sinx, e−x, x6e−πx are Euler atoms. Con-
versely, if r(x) = 4 sinx + 5xex, then split the sum into terms and drop the
coefficients 4 and 5 to identify Euler atoms sinx and xex; then r(x) is a sum of
constants times Euler solution atoms.

The Method

1. Repeatedly differentiate the Euler atoms in r(x) until no new atoms appear.
Multiply the distinct atoms so found by undetermined coefficients d1, . . . ,
dk, then add to define a trial solution y.

2. Correction rule: if solution e−px of y′ + py = 0 appears in trial solution y,
then replace in y matching Euler atoms e−px, xe−px, . . . by xe−px, x2e−px,
. . . (other Euler atoms in y are unchanged). The modified expression y is
called the corrected trial solution.

3. Substitute y into the differential equation y′+py = r(x). Match coefficients
of Euler atoms left and right to write out linear algebraic equations for the
undetermined coefficients d1, . . . , dk.

4. Solve the equations. The trial solution y with evaluated coefficients d1, . . . ,
dk becomes the particular solution yp.

Undetermined Coefficients Illustrated

Solve
y′ + 2y = xex + 2x+ 1 + 3 sinx.

104



2.4 Undetermined Coefficients

Solution:
Test Applicability. The right side r(x) = xex + 2x + 1 + 3 sinx is a sum of terms
constructed from the Euler atoms xex, x, 1, sinx. The left side is y′ + p(x)y with
p(x) = 2, a constant. Therefore, the method of undetermined coefficients applies to find
yp.

Trial Solution. The atoms of r(x) are subjected to differentiation. The distinct Euler
atoms so found are 1, x, ex, xex, cosx, sinx (split terms and drop coefficients to identify
new atoms). Because the solution e−2x of y′+2y = 0 does not appear in the list of atoms,
then the correction rule does not apply. The corrected trial solution is the expression

y = d1(1) + d2(x) + d3(e
x) + d4(xe

x) + d5(cosx) + d6(sinx).

Equations for Undetermined Coefficients. To substitute the trial solution y into
y′ + 2y requires a formula for y′:

y′ = d2 + d3e
x + d4xe

x + d4e
x − d5 sinx+ d6 cosx.

Then

r(x) = y′ + 2y

= d2 + d3e
x + d4xe

x + d4e
x − d5 sinx+ d6 cosx

+ 2d1 + 2d2x+ 2d3e
x + 2d4xe

x + 2d5 cosx+ 2d6 sinx

= (d2 + 2d1)(1) + 2d2(x) + (3d3 + d4)(e
x) + (3d4)(xe

x)

+ (2d5 + d6)(cosx) + (2d6 − d5)(sinx)

Also, r(x) ≡ 1 + 2x + xex + 3 sinx. Coefficients of atoms on the left and right must
match. For instance, constant term 1 in r(x) matches the constant term in the expansion
of y′ + 2y, giving 1 = d2 + 2d1. Writing out the matches, and swapping sides, gives the
equations

2d1 + d2 = 1,
2d2 = 2,

3d3 + d4 = 0,
3d4 = 1,

2d5 + d6 = 0,
− d5 + 2d6 = 3.

Solve. The first four equations can be solved by back-substitution to give d2 = 1, d1 = 0,
d4 = 1/3, d3 = −1/9. The last two equations are solved by elimination or Cramer’s rule
(reviewed in Chapter ??) to give d6 = 6/5, d5 = −3/5.

Report yp. The trial solution y with evaluated coefficients d1, . . . , d6 becomes

yp(x) = x− 1

9
ex +

1

3
xex − 3

5
cosx+

6

5
sinx.

Remarks. The method of matching coefficients of atoms left and right is a subject
of linear algebra, called linear independence. The method works because any finite list
of atoms is known to be linearly independent. Further details for this technical topic
appear in this text’s linear algebra chapters.
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A Correction Rule Illustration

Solve the equation
y′ + 3y = 8ex + 3x2e−3x

by the method of undetermined coefficients. Verify that the general solution
y = yh + yp is given by

yh = ce−3x, yp = 2ex + x3e−3x.

Solution: The right side r(x) = 8ex + 3x2e−3x is constructed from atoms ex, x2e−3x.
Repeated differentiation of these atoms identifies the new list of atoms ex, e−3x, xe−3x,
x2e−3x. The correction rule applies because the solution e−3x of y′ + 3y = 0 appears in
the list. The atoms of the form xme−3x are multiplied by x to give the new list of atoms
ex, xe−3x, x2e−3x, x3e−3x. Readers should take note that atom ex is unaffected by the
correction rule modification. Then the corrected trial solution is

y = d1e
x + d2xe

−3x + d3x
2e−3x + d4x

3e−3x.

The trial solution expression y is substituted into y′ + 3y = 2ex + x2e−3x to give the
equation

4d1e
x + d2e

−3x + 2d3xe
−3x + 3d4x

2e−3x = 8ex + 3x2e−3x.

Coefficients of atoms on each side of the preceding equation are matched to give the
equations

4d1 = 8,
d2 = 0,

2d3 = 0,
3d4 = 3.

Then d1 = 2, d2 = d3 = 0, d4 = 1 and the particular solution is reported to be
yp = 2ex + x3e−3x.

Remarks on the Method of Undetermined Coefficients

A mystery for the novice is the construction of the trial solution. Why should it
work? Explained here is the reason behind the method of repeated differentiation
to find the Euler atoms in the trial solution.

The theory missing is that the general solution y of y′ + py = r(x) is a sum
of constants times Euler atoms (under the cited limitations). We don’t try to
prove this result, but use it to motivate the method.

The theory reduces the question of finding a trial solution to finding a sum of
constants times Euler atoms. The question is: which atoms?

Consider this example: y′ − 3y = e3x + xex. The answer for y is revealed by
finding a sum of constants times atoms such that y′ and −3y add termwise to
e3x+xex. The requirement eliminates all atoms from consideration except those
containing exponentials e3x and ex.

Initially, we have to consider infinitely many atoms e3x, xe3x, x2e3x, . . . and ex,
xex, x2ex, . . . . Such terms would also appear in y′, but adding terms of this type
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2.4 Undetermined Coefficients

to get r(x) = e3x + xex requires only the smaller list e3x, xe3x, ex, xex. We have
cut down the number of terms in y to four or less!

The algorithm presented here together with the correction rule strips down the
number of terms to a minimum. Further details of the method appear in the
chapter on scalar linear differential equations, page ??.

Examples

Example 2.19 (Variation of Parameters Method)
Solve the equation 2y′ + 6y = 4xe−3x by the method of variation of parameters,
verifying y = yh + yp is given by

yh = ce−3x, yp = x2e−3x.

Solution: Divide the equation by 2 to obtain the standard linear form

y′ + 3y = 2xe−3x.

Solution yh. The homogeneous equation y′ + 3y = 0 is solved by the shortcut formula

yh = constant
integrating factor

to give yh = ce−3x.

Solution yp. Identify p(x) = 3, r(x) = 2xe−3x from the standard form. The mechanics:
let y′ = f(x, y) ≡ 2xe−3x − 3y and define r(x) = f(x, 0), p(x) = −fy(x, y) = 3. The
variation of parameters formula is applied as follows. First, compute the integrating
factor W (x) = e

∫
p(x)dx = e3x. Then

yp(x) = (1/W (x))

∫
r(x)W (x)dx

= e−3x
∫
2xe−3xe3xdx

= x2e−3x.

It must be explained that all integration constants were set to zero, in order to obtain
the shortest possible expression for yp. Indeed, if W = e3x+c1 instead of e3x, then the
factors 1/W and W contribute constant factors 1/ec1 and ec1 , which multiply to one;
the effect is to set c1 = 0. On the other hand, an integration constant c2 added to∫
r(x)W (x)dx adds the homogeneous solution c2e

−3x to the expression for yp. Because
we seek the shortest expression which is a solution to the non-homogeneous differential
equation, the constant c2 is set to zero.

Example 2.20 (Undetermined Coefficient Method)
Solve the equation 2y′ + 6y = 4xe−x + 4xe−3x + 5 sinx by the method of undeter-
mined coefficients, verifying y = yh + yp is given by

yh = ce−3x, yp = −1

2
e−x + xe−x + x2e−3x − 1

4
cosx+

3

4
sinx.

Solution: The method applies, because the differential equation 2y′ + 6y = 0 has
constant coefficients and the right side r(x) = 4xe−x + 4xe−3x + 5 sinx is constructed
from the list of atoms xe−x, xe−3x, sinx.
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List of Atoms. Differentiate the atoms in r(x), namely xe−x, xe−3x, sinx, to find the
new list of atoms e−x, xe−x, e−3x, xe−3x, cosx, sinx. The solution e−3x of 2y′ +6y = 0
appears in the list: the correction rule applies. Then e−3x, xe−3x are replaced by xe−3x,
x2e−3x to give the corrected list of atoms e−x, xe−x, xe−3x, x2e−3x, cosx, sinx. Please
note that only two of the six atoms were corrected.

Trial solution. The corrected trial solution is

y = d1e
−x + d2xe

−x + d3xe
−3x + d4x

2e−3x + d5 cosx+ d6 sinx.

Substitute y into 2y′ + 6y = r(x) to give

r(x) = 2y′ + 6y
= (4d1 + 2d2)e

−x + 4d2xe
−x + 2d3e

−3x + 4d4xe
−3x

+(2d6 + 6d5) cosx+ (6d6 − 2d5) sinx.

Equations. Matching atoms on the left and right of 2y′ + 6y = r(x), given r(x) =
4xe−x + 4xe−3x + 5 sinx, justifies the following equations for the undetermined coeffi-
cients; the solution is d2 = 1, d1 = −1/2, d3 = 0, d4 = 1, d6 = 3/4, d5 = −1/4.

4d1 + 2d2 = 0,
4d2 = 4,

2d3 = 0,
4d4 = 4,

6d5 + 2d6 = 0,
− 2d5 + 6d6 = 5.

Equations for variables d5, d6 were generated from trigonometric atoms. The 2×2 system
has complex eigenvalues. The best method to find coefficients d5, d6 is not Gaussian
elimination, but instead Cramer’s Rule.

Report. The trial solution upon substitution of the values for the undetermined coeffi-
cients becomes

yp = −1

2
e−x + xe−x + x2e−3x − 1

4
cosx+

3

4
sinx.

Exercises 2.4 �

Variation of Parameters I
Report the shortest particular solution
given by the formula

yp(x) =

∫
rW

W
, W = e

∫
p(x)dx

1. y′ = x+ 1

2. y′ = 2x− 1

3. y′ + y = e−x

4. y′ + y = e−2x

5. y′ − 2y = 1

6. y′ − y = 1

7. 2y′ + y = ex

8. 2y′ + y = e−x

9. xy′ = x+ 1

10. xy′ = 1− x2

Variation of Parameters II

Define W (t) = e
∫ t
x0

p(x)dx
. Compute

y∗p(x) =

∫ x
x0

r(t)W (t) dt

W (x)

11. y′ = x+ 1, y(0) = 0

108



2.4 Undetermined Coefficients

12. y′ = 2x− 1, x0 = 0

13. y′ + y = e−x, x0 = 0

14. y′ + y = e−2x, x0 = 0

15. y′ − 2y = 1, x0 = 0

16. y′ − y = 1, x0 = 0

17. 2y′ + y = ex, x0 = 0

18. 2y′ + y = e−x, x0 = 0

19. xy′ = x+ 2, x0 = 1

20. xy′ = 1− x2, x0 = 1

Euler Solution Atoms
Report the list L of distinct Euler solution
atoms found in function f(x). Then f(x) is
a sum of constants times the Euler atoms
from L.

21. x+ ex

22. 1 + 2x+ 5ex

23. x(1 + x+ 2ex)

24. x2(2 + x2) + x2e−x

25. sinx cosx+ ex sin 2x

26. cos2 x− sin2 x+ x2ex cos 2x

27. (1 + 2x+ 4x5)exe−3xex/2

28. (1 + 2x+ 4x5 + ex sin 2x)e−3x/4ex/2

29.
x+ ex

e−2x
sin 3x+ e3x cos 3x

30.
x+ ex sin 2x+ x3

e−2x
sin 5x

Initial Trial Solution
Differentiate repeatedly f(x) and report
the list M of distinct Euler solution atoms
which appear in f and all its derivatives.
Then each of f, f ′, . . . is a sum of constants
times Euler atoms in M .

31. 12 + 5x2 + 6x7

32. x6/x−4 + 10x4/x−6

33. x2 + ex

34. x3 + 5e2x

35. (1 + x+ x3)ex + cos 2x

36. (x+ ex) sinx+ (x− e−x) cos 2x

37. (x+ ex + sin 3x+ cos 2x)e−2x

38. (x2e−x + 4 cos 3x+ 5 sin 2x)e−3x

39. (1 + x2)(sinx cosx− sin 2x)e−x

40. (8− x3)(cos2 x− sin2 x)e3x

Correction Rule
Given the homogeneous solution yh and an
initial trial solution y, determine the final
trial solution according to the correction
rule.

41. yh(x) = ce2x, y = d1 + d2x+ d3e
2x

42. yh(x) = ce2x, y = d1 + d2e
2x + d3xe

2x

43. yh(x) = ce0x, y = d1 + d2x+ d3x
2

44. yh(x) = cex, y = d1 + d2x+ d3x
2

45. yh(x) = cex, y = d1 cosx + d2 sinx +
d3e

x

46. yh(x) = ce2x, y = d1e
2x cosx +

d2e
2x sinx

47. yh(x) = ce2x, y = d1e
2x + d2xe

2x +
d3x

2e2x

48. yh(x) = ce−2x, y = d1e
−2x+d2xe

−2x+
d3e

2x + d4xe
2x

49. yh(x) = cx2, y = d1 + d2x+ d3x
2

50. yh(x) = cx3, y = d1 + d2x+ d3x
2

Trial Solution
Find the form of the corrected trial so-
lution y but do not evaluate the undeter-
mined coefficients.

51. y′ = x3 + 5 + x2ex(3 + 2x+ sin 2x)

52. y′ = x2+5x+2+x3ex(2+3x+5 cos 4x)

53. y′ − y = x3 + 2x + 5 + x4ex(2 + 4x +
7 cos 2x)

54. y′ − y = x4 + 5x + 2 + x3ex(2 + 3x +
5 cos 4x)
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55. y′ − 2y = x3 + x2 + x3ex(2ex + 3x +
5 sin 4x)

56. y′−2y = x3e2x+x2ex(3+4ex+2 cos 2x)

57. y′+y = x2+5x+2+x3e−x(6x+3 sinx+
2 cosx)

58. y′ − 2y = x5 + 5x3 + 14 + x3ex(5 +
7xe−3x)

59. 2y′ + 4y = x4 + 5x5 + 2x8 + x3ex(7 +
5xex + 5 sin 11x)

60. 5y′ + y = x2 +5x+2ex/5 + x3ex/5(7 +
9x+ 2 sin(9x/2))

Undetermined Coefficients
Compute a particular solution yp according
to the method of undetermined coefficients.
Expected details include:

(1) Initial trial solution
(2) Corrected trial solution

(3) Undetermined coefficient al-
gebraic equations and solution
(4) Formula for yp, coefficients
evaluated

61. y′ + y = x+ 1

62. y′ + y = 2x− 1

63. y′ − y = ex + e−x

64. y′ − y = xex + e−x

65. y′ − 2y = 1 + x+ e2x + sinx

66. y′ − 2y = 1 + x+ xe2x + cosx

67. y′ + 2y = xe−2x + x3

68. y′ + 2y = (2 + x)e−2x + xex

69. y′ = x2 + 4 + xex(3 + cosx)

70. y′ = x2 + 5 + xex(2 + sinx)
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2.5 Linear Applications

This collection of applications for the linear equation y′ + p(x)y = r(x) includes
mixing problems, especially brine tanks in single and multiple cascade, heating
and cooling problems, radioactive isotope chains and elementary electric circuits.

The theory for brine cascades will be developed. Heating and cooling will be
developed from Newton’s cooling law. Radioactive decay theory appears on page
??. Electric LR or RC circuits appear on page ??.

Brine Mixing

Inlet

Outlet
Figure 1. A Single Brine Tank.
The tank has one inlet and one outlet. The inlet sup-
plies a brine mixture and the outlet drains the tank.

A given tank contains brine, which is a water and salt mixture. Input pipes
supply other, possibly different brine mixtures at varying rates, while output
pipes drain the tank. The problem is to determine the salt x(t) in the tank at
any time.

The basic chemical law to be applied is the mixture law

dx

dt
= input rate− output rate.

The law is applied under a simplifying assumption: the concentration of salt in
the brine is uniform throughout the fluid. Stirring is one way to meet this re-
quirement. Because of the uniformity assumption, the amount x(t) of salt in
kilograms divided by the volume V (t) of the tank in liters gives salt concentra-
tion3 x(t)/V (t) kilograms per liter.

One Input and One Output

Let the input be a(t) liters per minute with concentration C1 kilograms of salt
per liter. Let the output empty b(t) liters per minute. The tank is assumed to
contain V0 liters of brine at t = 0. The tank gains fluid at rate a(t) and loses
fluid at rate b(t), therefore V (t) = V0 +

∫ t
0 [a(r) − b(r)]dr is the volume of brine

in the tank at time t. The mixture law applies to obtain (derived on page 121)
the model linear differential equation

dx

dt
= a(t)C1 − b(t)

x(t)

V (t)
.(1)

3Concentration is defined as amount per unit volume: concentration = amount
volume

.
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This equation is solved by the linear integrating factor method, page 96.

Two-Tank Mixing

Two tanks A and B are assumed to contain A0 and B0 liters of brine at t = 0.
Let the input for the first tank A be a(t) liters per minute with concentration
C1 kilograms of salt per liter. Let tank A empty at b(t) liters per minute into a
second tank B, which itself empties at c(t) liters per minute.

Tank A

Tank B

Inlet

Outlet

Outlet

Inlet
Figure 2. Two Brine Tanks.
Tank A has one inlet, which supplies a brine
mixture. The outlet of Tank A cascades into
Tank B. The outlet of Tank B drains the two-
tank system.

Let x(t) be the number of kilograms of salt in tank A at time t. Similarly, y(t)
is the amount of salt in tank B. The objective is to find differential equations for
the unknowns x(t), y(t).

Fluid loses and gains in each tank give rise to the brine volume formulas VA(t) =
A0 +

∫ t
0 [a(r)− b(r)]dr and VB(t) = B0 +

∫ t
0 [b(r)− c(r)]dr, respectively, for tanks

A and B, at time t.

The mixture law applies to obtain the model linear differential equations

dx

dt
= a(t)C1 − b(t)

x(t)

VA(t)
,

dy

dt
= b(t)

x(t)

VA(t)
− c(t)

y(t)

VB(t)
.

The first equation is solved for an explicit solution x(t) by the linear integrating
factor method. Substitute the expression for x(t) into the second equation, then
solve for y(t) by the linear integrating factor method.

Residential Heating and Cooling

The internal temperature u(t) in a residence fluctuates with the outdoor tem-
perature, indoor heating and indoor cooling. Newton’s law of cooling for linear
convection can be written as

du

dt
= k(a(t)− u(t)) + s(t) + f(t),(2)

where the various symbols have the interpretation below.
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k The insulation constant (see Remarks on Insulation Con-
stants, 119). Typically 1/2 ≤ k < 1, with 1 = no insula-
tion, 0 = perfect insulation.

a(t) The ambient outside temperature.

s(t) Combined rate for all inside heat sources. Includes living
beings, appliances and whatever uses energy.

f(t) Inside heating or cooling rate.

Newton’s cooling model applies to convection only, and not to heat transfer by
radiation or conduction. A derivation of (2) appears on page 121. To solve
equation (2), write it in standard linear form and use the integrating factor
method on page 96.

No Sources

Assume the absence of heating inside the building, that is, s(t) = f(t) = 0. Let
the outside temperature be constant: a(t) = a0. Equation (2) simplifies to the
Newton cooling equation on page ??:

du

dt
+ ku(t) = ka0.(3)

From Theorem ??, page ??, the solution is

u(t) = a0 + (u(0)− a0)e
−kt.(4)

This formula represents exponential decay of the interior temperature from u(0)
to a0.

Half-Time Insulation Constant

Suppose it’s 50◦F outside and 70◦F initially inside when the electricity goes off.
How long does it take to drop to 60◦F inside? The answer is about 1–3 hours,
depending on the insulation.

The importance of 60◦F is that it is halfway between the inside and outside
temperatures of 70◦F and 50◦F. The range 1–3 hours is found from (4) by solving
u(T ) = 60 for T , in the extreme cases of poor or perfect insulation.

The more general equation u(T ) = (a0 + u(0))/2 can be solved. The answer is
T = ln(2)/k, called the half-time insulation constant for the residence. It
measures the insulation quality, larger T corresponding to better insulation. For
most residences, the half-time insulation constant ranges from 1.4 (k = 0.5) to
14 (k = 0.05) hours.
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Winter Heating

The introduction of a furnace and a thermostat set at temperature T0 (typically,
68◦F to 72◦F) changes the source term f(t) to the special form

f(t) = k1(T0 − u(t)),

according to Newton’s law of cooling, where k1 is a constant. The differential
equation (2) becomes

du

dt
= k(a(t)− u(t)) + s(t) + k1(T0 − u(t)).(5)

It is a first-order linear differential equation which can be solved by the integrating
factor method.

Summer Air Conditioning

An air conditioner used with a thermostat leads to the same differential equation
(5) and solution, because Newton’s law of cooling applies to both heating and
cooling.

Evaporative Cooling

In desert-mountain areas, where summer humidity is low, the evaporative
cooler is a popular low-cost solution to cooling. The cooling effect is due to
heat loss from the supply of outside air, caused by energy conversion during wa-
ter evaporation. Cool air is pumped into the residence much like a furnace pumps
warm air. An evaporative cooler may have no thermostat. The temperature P (t)
of the pumped air depends on the outside air temperature and humidity.

A Newton’s cooling model for the inside temperature u(t) requires a constant k1
for the evaporative cooling term f(t) = k1(P (t) − u(t)). If s(t) = 0 is assumed,
then equation (2) becomes

du

dt
= k(a(t)− u(t)) + k1(P (t)− u(t)).(6)

This is a first-order linear differential equation, solvable by the integrating factor
method.

During hot summer days the relation P (t) = 0.85a(t) could be valid, that is,
the air pumped from the cooler vent is 85% of the ambient outside temperature
a(t). Extreme temperature variations can occur in the fall and spring. In July,
the reverse is possible, e.g., 100 < a(t) < 115. Assuming P (t) = 0.85a(t), the
solution of (6) is

u(t) = u(0)e−kt−k1t + (k + 0.85k1)

∫ t

0
a(r)e(k+k1)(r−t)dr.
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Figure 3 shows the solution for a 24-hour period, using a sample profile a(t),
k = 1/4, k1 = 2 and u(0) = 69. The residence temperature u(t) is expected to
be approximately between P (t) and a(t).

a(t) =



75− 2 t 0 ≤ t ≤ 6
39 + 4 t 6 < t ≤ 9
30 + 5 t 9 < t ≤ 12
54 + 3 t 12 < t ≤ 15
129− 2 t 15 < t ≤ 21
170− 4 t 21 < t ≤ 23
147− 3 t 23 < t ≤ 24

240

99

55

a

u
P

Figure 3. A 24-hour plot of P , u and temperature profile a(t).

Examples

Example 2.21 (Pollution)
When industrial pollution in Lake Erie ceased, the level was five times that of its
inflow from Lake Huron. Assume Lake Erie has perfect mixing, constant volume V
and equal inflow/outflow rates of 0.73V per year. Estimate the time required to
reduce the pollution in half.

Solution: The answer is about 1.34 years. An overview of the solution will be given,
followed by technical details.

Overview. The brine-mixing model applies to pollution problems, giving a differential
equation model for the pollution concentration x(t),

x′(t) = 0.73V c− 0.73x(t), x(0) = 5cV,

where c is the inflow pollution concentration. The model has solution

x(t) = x(0)
(
0.2 + 0.8e−0.73t

)
.

Solving for the time T at which x(T ) = 1
2x(0) gives T = ln(8/3)/0.73 = 1.34 years.

Model details. The rate of change of x(t) equals the concentration rate in minus the
concentration rate out. The in-rate equals c times the inflow rate, or c(0.73V ). The
out-rate equals x(t) times the outflow rate, or 0.73V

V x(t). This justifies the differential
equation. The statement x(0)=“five times that of Lake Huron” means that x(0) equals
5c times the volume of Lake Erie, or 5cV .

Solution details. The differential equation can be re-written in equivalent form x′(t)+
0.73x(t) = 0.73x(0)/5. It has equilibrium solution xp = x(0)/5. The homogeneous
solution is xh = ke−0.73t, from the theory of growth-decay equations. Adding xh and xp

gives the general solution x. To solve the initial value problem, substitute t = 0 and find
k = 4x(0)/5. Substitute for k into x = x(0)/5+ke−0.73t to obtain the reported solution.

Equation for T details. The equation x(T ) = 1
2x(0) becomes x(0)(0.2+0.8e−0.73T ) =

x(0)/2, which by algebra reduces to the exponential equation e−0.73T = 3/8. Take
logarithms to isolate T = − ln(3/8)/0.73 ≈ 1.3436017.
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Example 2.22 (Brine Cascade)
Assume brine tanks A and B in Figure 4 have volumes 100 and 200 gallons, respec-
tively. Let A(t) and B(t) denote the number of pounds of salt at time t, respectively,
in tanks A and B. Pure water flows into tank A, brine flows out of tank A and into
tank B, then brine flows out of tank B. All flows are at 4 gallons per minute. Given
A(0) = 40 and B(0) = 40, find A(t) and B(t).

water

A

B Figure 4. Cascade of two brine tanks.

Solution: The solutions for the brine cascade are (details below)

A(t) = 40e−t/25, B(t) = 120e−t/50 − 80e−t/25.

Modeling. This is an instance of the two-tank mixing problem on page 112. The
volumes in the tanks do not change and the input salt concentration is C1 = 0. The
equations are

dA

dt
= −4A(t)

100
,

dB

dt
=

4A(t)

100
− 4B(t)

200
.

Solution A(t) details.

A′ = −0.04A, A(0) = 40 Initial value problem to be solved.

A = 40e−t/25 Solution found by the growth-decay model.

Solution B(t) details.

B′ = 0.04A− 0.02B, B(0) = 40 Initial value problem to be solved.

B′ + 0.02B = 1.6e−t/25 Substitute for A. Get standard form.

B′ + 0.02B = 0, B(0) = 40 Homogeneous problem to be solved.

Bh = 40e−t/50 Homogeneous solution. Growth-decay formula
applied.

Bp = e−t/50
∫ t

0
1.6e−r/25er/50dr Variation of parameters solution.

= 80e−t/50 − 80e−t/25 Evaluate integral.

B = Bh +Bp Superposition.

= 120e−t/50 − 80e−t/25 Final solution.

The solution can be checked in maple as follows.

de1:=diff(x(t),t)=-4*x(t)/100:

de2:=diff(y(t),t)=4*x(t)/100-4*y(t)/200:

ic:=x(0)=40,y(0)=40:

dsolve({de1,de2,ic},{x(t),y(t)});

Example 2.23 (Office Heating)
A worker shuts off the office heat and goes home at 5PM. It’s 72◦F inside and 60◦F
outside overnight. Estimate the office temperature at 8PM, 11PM and 6AM.
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Solution:

The temperature estimates are 62.7-65.7◦F, 60.6-62.7◦F and 60.02-60.5◦F. Details follow.

Model. The residential heating model applies, with no sources, to give u(t) = a0 +
(u(0) − a0)e

−kt. Supplied are values a0 = 60 and u(0) = 72. Unknown is constant k in
the formula

u(t) = 60 + 12e−kt.

Estimation of k. To make the estimate for k, assume the range 1/4 ≤ k ≤ 1/2, which
covers the possibilities of poor to excellent insulation.

Calculations. The estimates requested are for t = 3, t = 6 and t = 13. The formula
u(t) = 60 + 12e−kt and the range 0.25 ≤ k ≤ 0.5 gives the estimates

62.68 ≤ 60 + 12e−3k ≤ 65.67,
60.60 ≤ 60 + 12e−6k ≤ 62.68,
60.02 ≤ 60 + 12e−13k ≤ 60.47.

Example 2.24 (Spring Temperatures)
It’s spring. The outside temperatures are between 45◦F and 75◦F and the residence
has no heating or cooling. Find an approximation for the interior temperature fluc-
tuation u(t) using the estimate a(t) = 60 − 15 cos(π(t − 4)/12), k = ln(2)/2 and
u(0) = 53.

Solution: The approximation, justified below, is

u(t) ≈ −8.5e−kt + 60 + 1.5 cos
πt

12
− 12 sin

πt

12
.

Model. The residential model for no sources applies. Then

u′(t) = k(a(t)− u(t)).

Computation of u(t). Let ω = π/12 and k = ln(2)/2 ≈ 0.35 (poor insulation). The
solution is

u = u(0)e−kt +
∫ t

0
ka(r)ek(r−t)dr Variation of parameters.

= 53e−kt +
∫ t

0
15k(4− cosω(t− 4))ek(r−t)dr Insert a(t) and u(0).

≈ −8.5e−kt + 60 + 1.5 cosωt− 12 sinωt Used maple integration.

The maple code used for the integration appears below.

k:=ln(2)/2: u0:=53:

A:=r->k*(60-15*cos(Pi *(r-4)/12)):

U:=t->(u0+int(A(r)*exp(k*r),r=0..t))*exp(-k*t);

simplify(U(t));

Example 2.25 (Temperature Variation)
Justify that in the spring and fall, the interior of a residence might have temperature
variation between 19% and 89% of the outside temperature variation.
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Solution: The justification necessarily makes some assumptions, which are:

a(t) = B −A cosω(t− 4) Assume A > 0, B > 0, ω = π/12 and
extreme temperatures at 4AM and 4PM.

s(t) = 0 No inside heat sources.

f(t) = 0 No furnace or air conditioner.

0.05 ≤ k ≤ 0.5 Vary from excellent (k = 0.05) to poor
(k = 0.5) insulation.

u(0) = B The average of the outside low and high.

Model. The residential model for no sources applies. Then

u′(t) = k(a(t)− u(t)).

Formula for u. Variation of parameters gives a compact formula:

u = u(0)e−kt +
∫ t

0
ka(r)ek(r−t)dr See (4), page 97.

= Be−kt +
∫ t

0
k(B −A cosω(t− 4))ek(r−t)dr Insert a(t) and u(0).

= c0Ae
−kt +B + c1A cosωt+ c2A sinωt Evaluate. Values below.

The values of the constants in the calculation of u are

c0 = 72k2 − 6kπ
√
3, c1 =

6kπ
√
3− 72k2

144k2 + π2
, c2 =

−6kπ − 72k2
√
3

144k2 + π2
.

The trigonometric formula a cos θ+ b sin θ = r sin(θ+ϕ) where r2 = a2 + b2 and tanϕ =
a/b can be applied to the formula for u to rewrite it as

u = c0Ae−kt +B +A
√
c21 + c22 sin(ωt+ ϕ).

The outside low and high are B − A and B + A. The outside temperature variation
is their difference 2A. The exponential term contributes less than one degree after 12
hours. The inside low and high are therefore approximately B − rA and B + rA where
r =

√
c21 + c22. The inside temperature variation is their difference 2rA, which is r times

the outside variation.

It remains to show that 0.19 ≤ r ≤ 0.89. The equation for r has a simple representation:

r =
12k√

144k2 + π2
.

It has positive derivative dr/dk. Then extrema occur at the endpoints of the interval
0.05 ≤ k ≤ 0.5, giving values r = 0.19 and r = 0.89, approximately. This justifies the
estimates of 19% and 89%.

The maple code used for the integration appears below.

omega:=Pi/12:

F:=r->k*(B-A*cos(omega *(r-4))):

G:=t->(B+int(F(r)*exp(k*r),r=0..t))*exp(-k*t);

simplify(G(t));
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Remarks on Insulation Constants. The insulation constant k in the Newton cooling
model is usually between zero and one, with excellent insulation near zero and bad
insulation near one. It is also called a coupling constant, because k = 0 means the
temperature u is decoupled from the ambient temperature. The constant k depends in a
complex way on geometry and insulation, therefore it is determined empirically, and not
by a theoretical formula. Lab experiments with a thermocouple in an air-insulated vessel
filled with about 300 ml of hot water (80 to 100 C) can determine insulation constants
on the order of k = 0.0003 (units per second).

Printed on dual pane clear glass in the USA is a U-value of about 0.48. The U-value is
equal to the reciprocal of the R-value (see below). You can think of it as the insulation
constant k. The lower the U-value, the better the glass insulation quality.

For a solar water heater, k = 0.00035 is typical. This value is for an 80 gallon tank with
R-15 insulation raised to 120 F during the day. Typically, the water temperature drops
by only 3-4 F overnight.

The thermal conductivity symbol κ (Greek kappa) can be confused with the insulation
constant symbol k, and it is a tragic error to substitute one for the other.

For USA R-values printed on insulation products, thermal conductivity is defined by
the relation U = 1

0.1761101838R = κ
L , where L is the material’s thickness and U is the

international U -factor in SI units. The U -factor value is the heat lost in Watts per square
meter at a standard temperature difference of one degree Kelvin.

Example 2.26 (Radioactive Chain)
Let A, B and C be the amounts of three radioactive isotopes. Assume A decays
into B at rate a, then B decays into C at rate b. Given a ̸= b, A(0) = A0 and
B(0) = 0, find formulas for A and B.

Solution: The isotope amounts are (details below)

A(t) = A0e
−at, B(t) = aA0

e−at − e−bt

b− a
.

Modeling. The reaction model will be shown to be

A′ = −aA, A(0) = A0, B′ = aA− bB, B(0) = 0.

The derivation uses the radioactive decay law on page ??. The model for A is simple
decay A′ = −aA. Isotope B is created from A at a rate equal to the disintegration rate
of A, or aA. But B itself undergoes disintegration at rate bB. The rate of increase of B
is not aA but the difference of aA and bB, which accounts for lost material. Therefore,
B′ = aA− bB.

Solution Details for A.

A′ = −aA, A(0) = A0 Initial value problem to solve.

A = A0e
−at Use the growth-decay formula on page ??.

Solution Details for B.

B′ = aA− bB, B(0) = 0 Initial value problem to solve.

B′ + bB = aA0e
−at, B(0) = 0 Insert A = A0e

−at. Standard form.

B = e−bt
∫ t

0
aA0e

−arebrdr Variation of parameters solution page ??, which
already satisfies B(0) = 0.
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= aA0
e−at − e−bt

b− a
Evaluate the integral for b ̸= a.

Remark on radioactive chains. The sequence of radioactive decay processes creates
at each stage a new element that may itself be radioactive. The chain ends when stable
atoms are formed. For example, uranium-236 decays into thorium-232, which decays into
radium-228, and so on, until stable lead-208 is created at the end of the chain. Analyzed
here are 2 steps in such a chain.

Example 2.27 (Electric Circuits)
For the LR-circuit of Figure 5, show that Iss = E/R and Itr = I0e

−Rt/L are the
steady-state and transient currents.

R

I(t)

L

E

Figure 5. An LR-circuit with con-
stant voltage E and zero initial cur-
rent I(0) = 0.

Solution:

Model. The LR-circuit equation is derived from Kirchhoff’s laws and the voltage drop
formulas on page ??. The only new element is the added electromotive force term E(t),
which is set equal to the algebraic sum of the voltage drops, giving the model

LI ′(t) +RI(t) = E(t), I(0) = I0.

General solution. The details:

I ′ + (R/L)I = E/L Standard linear form.

Ip = E/R Set I=constant, solve for a particular solution Ip.

I ′ + (R/L)I = 0 Homogeneous equation. Solve for I = Ih.

Ih = I0e
−Rt/L Growth-decay formula, page ??.

I = Ih + Ip Superposition.

= I0e
−Rt/L + E/R General solution found.

Steady-state solution. The steady-state solution is found by striking out from the
general solution all terms that approach zero at t = ∞. Remaining after strike-out is
Iss = E/R.

Transient solution. The term transient refers to the terms in the general solution
which approaches zero at t = ∞. Therefore, Itr = I0e

−Rt/L.

Example 2.28 (Time constant)
Show that the current I(t) in the LR-circuit of Figure 5 is at least 95% of the
steady-state current E/R after three time constants, i.e., after time t = 3L/R.
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Solution: Physically, the time constant L/R for the circuit is found by an experiment
in which the circuit is initialized to I = 0 at t = 0, then the current I is observed until
it reaches 63% of its steady-state value.

Time to 95% of Iss. The solution is I(t) = E(1 − e−Rt/L)/R. Solving the inequality
1− e−Rt/L ≥ 0.95 gives

0.95 ≤ 1− e−Rt/L Inequality to be solved for t.

e−Rt/L ≤ 1/20 Move terms across the inequality.

ln e−Rt/L ≤ ln(1/20) Take the logarithm across the inequality.

−Rt/L ≤ ln 1− ln 20 Apply logarithm rules.

t ≥ L ln(20)/R Isolate t on one side.

The value ln(20) = 2.9957323 leads to the rule: after three times the time constant has
elapsed, the current has reached 95% of the steady-state current.

Details and Proofs

Brine-Mixing One-tank Proof: Equation x′(t) = C1a(t) − b(t)x(t)/V (t), the brine-
mixing equation, is justified for the one-tank model by applying the mixture law dx/dt =
input rate− output rate as follows.

input rate =

(
a(t)

liters

minute

)(
C1

kilograms

liter

)
= C1a(t)

kilograms

minute
,

output rate =

(
b(t)

liters

minute

)(
x(t)

V (t)

kilograms

liter

)
=

b(t)x(t)

V (t)

kilograms

minute
.

Residential Heating and Cooling Proof: Newton’s law of cooling will be applied to
justify the residential heating and cooling equation

du

dt
= k(a(t)− u(t)) + s(t) + f(t).

Let u(t) be the indoor temperature. The heat flux is due to three heat source rates:

N(t) = k(a(t)− u(t)) The Newton cooling rate.

s(t) Combined rate for all inside heat sources.

f(t) Inside heating or cooling rate.

The expected change in u is the sum of the rates N , s and f . In the limit, u′(t) is on
the left and the sum N(t) + s(t) + f(t) is on the right. ■
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Exercises 2.5 �

Concentration
A lab assistant collects a volume of brine,
boils it until only salt crystals remain, then
uses a scale to determine the crystal mass
or weight.

Find the salt concentration of the brine
in kilograms per liter.

1. One liter of brine, crystal mass 0.2275
kg

2. Two liters, crystal mass 0.32665 kg

3. Two liters, crystal mass 15.5 grams

4. Five pints, crystals weigh 1/4 lb

5. Eighty cups, crystals weigh 5 lb

6. Five gallons, crystals weigh 200 ounces

One-Tank Mixing
Assume one inlet and one outlet. Deter-
mine the amount x(t) of salt in the tank at
time t. Use the text notation for equation
(1).

7. The inlet adds 10 liters per minute with
concentration C1 = 0.023 kilograms per
liter. The tank contains 110 liters of dis-
tilled water. The outlet drains 10 liters
per minute.

8. The inlet adds 12 liters per minute with
concentration C1 = 0.0205 kilograms
per liter. The tank contains 200 liters
of distilled water. The outlet drains 12
liters per minute.

9. The inlet adds 10 liters per minute with
concentration C1 = 0.0375 kilograms
per liter. The tank contains 200 liters of
brine in which 3 kilograms of salt is dis-
solved. The outlet drains 10 liters per
minute.

10. The inlet adds 12 liters per minute with
concentration C1 = 0.0375 kilograms
per liter. The tank contains 500 liters of
brine in which 7 kilograms of salt is dis-
solved. The outlet drains 12 liters per
minute.

11. The inlet adds 10 liters per minute with
concentration C1 = 0.1075 kilograms
per liter. The tank contains 1000 liters
of brine in which k kilograms of salt is
dissolved. The outlet drains 10 liters
per minute.

12. The inlet adds 14 liters per minute with
concentration C1 = 0.1124 kilograms
per liter. The tank contains 2000 liters
of brine in which k kilograms of salt is
dissolved. The outlet drains 14 liters
per minute.

13. The inlet adds 10 liters per minute with
concentration C1 = 0.104 kilograms per
liter. The tank contains 100 liters of
brine in which 0.25 kilograms of salt is
dissolved. The outlet drains 11 liters
per minute. Determine additionally the
time when the tank is empty.

14. The inlet adds 16 liters per minute with
concentration C1 = 0.01114 kilograms
per liter. The tank contains 1000 liters
of brine in which 4 kilograms of salt is
dissolved. The outlet drains 20 liters
per minute. Determine additionally the
time when the tank is empty.

15. The inlet adds 10 liters per minute with
concentration C1 = 0.1 kilograms per
liter. The tank contains 500 liters of
brine in which k kilograms of salt is
dissolved. The outlet drains 12 liters
per minute. Determine additionally the
time when the tank is empty.

16. The inlet adds 11 liters per minute with
concentration C1 = 0.0156 kilograms
per liter. The tank contains 700 liters
of brine in which k kilograms of salt is
dissolved. The outlet drains 12 liters
per minute. Determine additionally the
time when the tank is empty.

Two-Tank Mixing
Assume brine tanks A and B in Figure 4
have volumes 100 and 200 gallons, respec-
tively. Let x(t) and y(t) denote the number
of pounds of salt at time t, respectively, in
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tanks A and B. Distilled water flows into
tank A, then brine flows out of tank A and
into tank B, then out of tank B. All flows
are at r gallons per minute. Given rate r
and initial salt amounts x(0) and y(0), find
x(t) and y(t).

17. r = 4, x(0) = 40, y(0) = 20.

18. r = 3, x(0) = 10, y(0) = 15.

19. r = 5, x(0) = 20, y(0) = 40.

20. r = 5, x(0) = 40, y(0) = 30.

21. r = 8, x(0) = 10, y(0) = 12.

22. r = 8, x(0) = 30, y(0) = 12.

23. r = 9, x(0) = 16, y(0) = 14.

24. r = 9, x(0) = 22, y(0) = 10.

25. r = 7, x(0) = 6, y(0) = 5.

26. r = 7, x(0) = 13, y(0) = 26

Residential Heating
Assume the Newton cooling model for heat-
ing and insulation values 1/4 ≤ k ≤ 1/2.
Follow Example 2.23, page 116.

27. The office heat goes off at 7PM. It’s
74◦F inside and 58◦F outside overnight.
Estimate the office temperature at
10PM, 1AM and 6AM.

28. The office heat goes off at 6:30PM. It’s
73◦F inside and 55◦F outside overnight.
Estimate the office temperature at
9PM, 3AM and 7AM.

29. The radiator goes off at 9PM. It’s 74◦F
inside and 58◦F outside overnight. Es-
timate the room temperature at 11PM,
2AM and 6AM.

30. The radiator goes off at 10PM. It’s
72◦F inside and 55◦F outside overnight.
Estimate the room temperature at
2AM, 5AM and 7AM.

31. The office heat goes on in the morn-
ing at 6:30AM. It’s 57◦F inside and 40◦

to 55◦F outside until 11AM. Estimate
the office temperature at 8AM, 9AM
and 10AM. Assume the furnace pro-
vides a five degree temperature rise in
30 minutes with perfect insulation and
the thermostat is set for 76◦F.

32. The office heat goes on at 6AM. It’s
55◦F inside and 43◦ to 53◦F outside
until 10AM. Estimate the office tem-
perature at 7AM, 8AM and 9AM. As-
sume the furnace provides a seven de-
gree temperature rise in 45 minutes
with perfect insulation and the thermo-
stat is set for 78◦F.

33. The hot water heating goes on at 6AM.
It’s 55◦F inside and 50◦ to 60◦F outside
until 10AM. Estimate the room temper-
ature at 7:30AM. Assume the radiator
provides a four degree temperature rise
in 45 minutes with perfect insulation
and the thermostat is set for 74◦F.

34. The hot water heating goes on at
5:30AM. It’s 54◦F inside and 48◦ to
58◦F outside until 9AM. Estimate the
room temperature at 7AM. Assume the
radiator provides a five degree temper-
ature rise in 45 minutes with perfect in-
sulation and the thermostat is set for
74◦F.

35. A portable heater goes on at 7AM. It’s
45◦F inside and 40◦ to 46◦F outside un-
til 11AM. Estimate the room tempera-
ture at 9AM. Assume the heater pro-
vides a two degree temperature rise in
30 minutes with perfect insulation and
the thermostat is set for 90◦F.

36. A portable heater goes on at 8AM. It’s
40◦F inside and 40◦ to 45◦F outside un-
til 11AM. Estimate the room tempera-
ture at 10AM. Assume the heater pro-
vides a two degree temperature rise in
20 minutes with perfect insulation and
the thermostat is set for 90◦F.

Evaporative Cooling
Define outside temperature (see Figure 3)
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a(t) =



75− 2 t 0 ≤ t ≤ 6
39 + 4 t 6 < t ≤ 9
30 + 5 t 9 < t ≤ 12
54 + 3 t 12 < t ≤ 15
129− 2 t 15 < t ≤ 21
170− 4 t 21 < t ≤ 23
147− 3 t 23 < t ≤ 24

.

Given k, k1, P (t) = wa(t) and u(0) =
69, then plot u(t), P (t) and a(t) on one
graphic.

u(t) = u(0)e−kt−k1t+

(k + wk1)
∫ t

0
a(r)e(k+k1)(r−t)dr.

37. k = 1/4, k1 = 2, w = 0.85

38. k = 1/4, k1 = 1.8, w = 0.85

39. k = 3/8, k1 = 2, w = 0.85

40. k = 3/8, k1 = 2.4, w = 0.85

41. k = 1/4, k1 = 3, w = 0.80

42. k = 1/4, k1 = 4, w = 0.80

43. k = 1/2, k1 = 4, w = 0.80

44. k = 1/2, k1 = 5, w = 0.80

45. k = 3/8, k1 = 3, w = 0.80

46. k = 3/8, k1 = 4, w = 0.80

Radioactive Chain
Let A, B and C be the amounts of three ra-
dioactive isotopes. Assume A decays into
B at rate a, then B decays into C at rate
b. Given a, b, A(0) = A0 and B(0) = B0,
find formulas for A and B.

47. a = 2, b = 3, A0 = 100, B0 = 10

48. a = 2, b = 3, A0 = 100, B0 = 100

49. a = 1, b = 4, A0 = 100, B0 = 200

50. a = 1, b = 4, A0 = 300, B0 = 100

51. a = 4, b = 3, A0 = 100, B0 = 100

52. a = 4, b = 3, A0 = 100, B0 = 200

53. a = 6, b = 1, A0 = 600, B0 = 100

54. a = 6, b = 1, A0 = 500, B0 = 400

55. a = 3, b = 1, A0 = 100, B0 = 200

56. a = 3, b = 1, A0 = 400, B0 = 700

Electric Circuits
In the LR-circuit of Figure 5, assume
E(t) = A coswt and I(0) = 0. Solve for
I(t).

57. A = 100, w = 2π, R = 1, L = 2

58. A = 100, w = 4π, R = 1, L = 2

59. A = 100, w = 2π, R = 10, L = 1

60. A = 100, w = 2π, R = 10, L = 2

61. A = 5, w = 10, R = 2, L = 3

62. A = 5, w = 4, R = 3, L = 2

63. A = 15, w = 2, R = 1, L = 4

64. A = 20, w = 2, R = 1, L = 3

65. A = 25, w = 100, R = 5, L = 15

66. A = 25, w = 50, R = 5, L = 5

124



2.6 Kinetics

2.6 Kinetics

Studied are the following topics.

Newton’s Laws Free Fall with Constant Gravity
Linear Air Resistance Nonlinear Air Resistance
Modeling Parachutes
Lunar Lander Escape Velocity

Newton’s Laws

The ideal models of a particle or point mass constrained to move along the x-
axis, or the motion of a projectile or satellite, have been studied from Newton’s
second law

F = ma.(1)

In the mks system of units, F is the force inNewtons, m is the mass in kilograms
and a is the acceleration in meters per second per second.

The closely-related Newton universal gravitation law

F = G
m1m2

R2
(2)

is used in conjunction with (1) to determine the system’s constant value g of
gravitational acceleration. The masses m1 and m2 have centroids at a distance
R. For the earth, g = 9.8 m/s2 is commonly used; see Table 1.

Other commonly used unit systems are cgs and fps. Table 1 shows some useful
equivalents.

Table 1. Units for fps and mks Systems

Unit name fps unit mks unit

Position foot (ft) meter (m)
Time seconds (s) seconds (s)
Velocity feet/sec meters/sec
Acceleration feet/sec2 meters/sec2

Force pound (lb) Newton (N)
Mass slug kilogram (kg)
g 32.088 ft/s2 9.7805 m/s2

Other units in the various systems are in daily use. Table 2 shows some equiva-
lents. An international synonym for pound is libre, with abbreviation lb. The
origin of the word pound is migration of libra pondo, meaning a pound in weight.
Dictionaries cite migrations libra pondo −→ pund for German language, which is
similar to English pound.
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Table 2. Conversions for the fps and mks Systems

inch (in) 1/12 foot 2.54 centimeters
foot (ft) 12 inches 30.48 centimeters
centimeter (cm) 1/100 meter 0.39370079 inches
kilometer (km) 1000 meters 0.62137119 miles (≈ 5/8)
mile (mi) 5280 feet 1.609344 kilometers (≈ 8/5)
pound (lb) ≈ 4.448 Newtons
Newton (N) ≈ 0.225 pounds
kilogram (kg) ≈ 0.06852 slugs
slug ≈ 14.59 kilograms

Velocity and Acceleration

The position, velocity and acceleration of a particle moving along an axis are
functions of time t. Notations vary; this text uses the following symbols, where
primes denote t-differentiation.

x = x(t) Particle position at time t.

v = x′(t) Particle velocity at time t.

a = x′′(t) Particle acceleration at time t.

x(0) Initial position.

v(0) Initial velocity. Synonym x′(0) is
also used.

Free Fall with Constant Gravity

A body falling in a constant gravitational field might ideally move in a straight
line, aligned with the gravitational vector. A typical case is the lunar lander,
which falls freely toward the surface of the moon, its progress downward con-
trolled by retrorockets. Falling bodies, e.g., an object launched up or down from
a tall building, can be modeled similarly. For such ideal cases, in which air re-
sistance and other external forces are ignored, the acceleration of the body is
assumed to be a constant g and the differential equation model is

x′′(t) = −g, x(0) = x0, x′(0) = v0.(3)

The initial position x0 and the initial velocity v0 must be specified. The value of
g in mks units is g = 9.8 m/s2. The symbol x is the distance from the ground
(x = 0); meters for mks units. The symbol t is the time in seconds. Falling body
problems normally take v0 = 0 and x0 > 0, e.g., x0 is the height of the building
from which the body was dropped. Objects ejected downwards have v0 < 0,
which decreases the descent time. Objects thrown straight up satisfy v0 > 0.
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Equation (3) can be solved by the method of quadrature to give the explicit
solution

x(t) = −g

2
t2 + x0 + v0t.(4)

See Technical Details, page 137, and the method of quadrature, page 74. Appli-
cations to free fall and the lunar lander appear in the examples, page 132.

Typical plots can be made by the following maple code.

X:=unapply(-9.8*t^2+100+(50)*t,t); #v(0)=50m/s,x(0)=100m

plot(X(t),t=0..7);

Y:=unapply(-9.8*t^2+100+(-5)*t,t); #v(0)=-5m/s,x(0)=100m

plot(Y(t),t=0..4);

Air Resistance Effects

The inclusion in a differential equation model of terms accounting for air resis-
tance has historically two distinct models. The first is linear resistance, in which
the force F due to air resistance is assumed to be proportional to the velocity v:

F ∝ v.(5)

It is known that linear resistance is appropriate only for slowly moving objects.4

The second model is nonlinear resistance, modeled originally by Sir Isaac Newton
himself as F = kv2. The literature considers a generalized nonlinear resistance
assumption

F ∝ v|v|p(6)

where 0 < p ≤ 1 depends upon the speed of the object through the air; p ≈ 0 is
a low speed and p ≈ 1 is a high speed. It will suffice for illustration purposes to
treat just the two cases F ∝ v and F ∝ v|v|.

Linear and Nonlinear Drag

For small spherical objects moving slowly through a viscous fluid, Sir George
Gabriel Stokes derived an expression for the linear drag force:

− k

m
v = Stoke’s drag force = −6π η r v

The symbols: η = fluid viscosity and r = radius of the spherical object. Refer-
ences can use viscosity symbols ρ or µ instead of Stoke’s symbol η.

Example: Falling raindrop
The radius is r = 0.1 to 0.3 mm and η = 1.789x10−5 Kg/m/sec is the dynamic
viscosity for 15 C air at sea level.

4More precisely, for Reynolds Number less than about 1000. The Reynolds Number is the
ratio of inertial forces to viscous forces within a fluid.
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Velocities v = x′(t) > Mach 1 use nonlinear drag force ±kv2. Fluid the-
ory gives k = 1

2 C ηA where C = the drag coefficient, η = dynamic fluid
viscosity, A = frontal area facing the fluid.

Example: 22 caliber high velocity long rifle bullet
Drag coefficient C = 0.35 to 0.4, air dynamic viscosity η = 1.789x10−5 Kg/m/sec,
frontal area A = 0.25419304 cm2 . Nonlinear drag occurs for close targets. The
bullet path below Mach 1 has a section of linear drag.

Linear Air Resistance

The model is determined by the sum of the forces due to air resistance and
gravity, Fair + Fgravity, which by Newton’s second law must equal F = mx′′(t),
giving the differential equation

mx′′(t) = −kx′(t)−mg.(7)

In (7), the velocity is v = x′(t) and k is a proportionality constant for the air
resistance force F ∝ v. The negative sign results from the assumed coordinates:
x measures the distance from the ground (x = 0). We expect x to decrease, hence
x′ is negative. Equation (7) written in terms of the velocity v = x′(t) becomes

v′(t) = −(k/m)v(t)− g.(8)

This equation has a solution v(t) which limits at t = ∞ to a finite terminal
velocity |v∞| = mg/k; equation (9) below is justified in Technical Details, page
137. Physically, this limit is the equilibrium solution of (8), which is the
observable steady state of the model. A quadrature applied to x′(t) = v(t) using
v(t) in equation (9) solves (7). Then

v(t) = −mg

k
+
(
v(0) +

mg

k

)
e−kt/m,

x(t) = x(0)− mg

k
t+

m

k

(
v(0) +

mg

k

)(
1− e−kt/m

)
.

(9)

Nonlinear Air Resistance

The model applies primarily to rapidly moving objects. It is obtained by the
same method as the linear model, replacing the linear resistance term kx′(t) by
the nonlinear term kx′(t)|x′(t)|. The resulting model is

mx′′(t) = −kx′(t)|x′(t)| −mg.(10)

Velocity substitution v = x′(t) gives first order equation

v′(t) = −(k/m)v(t)|v(t)| − g.(11)

The model applies in particular to parachute flight and to certain projectile
problems, like an arrow or bullet fired straight up.
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Upward Launch. Separable equation (11) in the case v(0) > 0 for a launch
upward becomes v′(t) = −(k/m)v2(t)−g. The solution for v(0) > 0 is given
below in (12); see Technical Details page 137. The equation x′(t) = v(t)
can be solved by quadrature. Then for some constants c and d

v(t) =

√
mg

k
tan

(√
kg

m
(c− t)

)
,

x(t) = d+
m

k
ln

∣∣∣∣∣cos
(√

kg

m
(c− t)

)∣∣∣∣∣ .
(12)

Downward Launch. The case v(0) < 0 for an object launched downward or
dropped will use the equation v′(t) = (k/m)v2(t)−g; see Technical Details,
page 138. Then for some constants c and d

v(t) =

√
mg

k
tanh

(√
kg

m
(c− t)

)
,

x(t) = d− m

k
ln

∣∣∣∣∣cosh
(√

kg

m
(c− t)

)∣∣∣∣∣ .
(13)

The hyperbolic functions appearing in (13) are defined by

coshu = 1
2 (e

u + e−u) Hyperbolic cosine.

sinhu = 1
2 (e

u − e−u) Hyperbolic sine.

tanhu =
eu − e−u

eu + e−u
Hyperbolic tangent. Identity
tanhu = sinhu/ coshu.

The model applies to parachute problems in particular. Equation (13) and the
limit formula lim|x|→∞ tanhx = 1 imply a terminal velocity

|v∞| =
√

mg

k
.

The value is exactly the square root of the linear model terminal velocity. The
falling body model (3) without air resistance effects allows the velocity to increase
to unrealistic speeds. For instance, the terminal velocity of a raindrop falling from
3000 meters is about 25− 35 km/h, whereas the no air resistance model predicts
about 870 km/h.
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Modeling Remarks

It can be argued from air resistance models that projectiles spend more time
falling to the ground than they spend reaching maximum height5; see Example
2.32. Simplistic models ignoring air resistance tend to over-estimate the maxi-
mum height of the projectile and the flight time; see Example 2.31. Falling bodies
are predicted by air resistance models to have a terminal velocity.

Significant effects are ignored by the models of this text. Real projectiles are
affected by spin and a flight path that is not planar. The corkscrew path
of a bullet can cause it to miss a target, while a planar model predicts it will
hit the target. The spin of a projectile can drastically alter its flight path and
flight characteristics, as is known by players of table tennis, squash, court tennis,
archery enthusiasts and gun club members.

Gravitational effects assumed constant may in fact not be constant along the
flight path. This can happen in the soft touchdown problem for a lunar lander
which activates retrorockets high above the moon’s surface.

External effects like wind or the gravitational forces of nearby celestial bodies,
ignored in simplistic models, may indeed produce significant effects. On the
freeway, is it possible to throw an ice cube out the window ahead of your vehicle?
Is it feasible to use forces from the moon to assist in the launch of an orbital
satellite?

Parachutes

In a typical parachute problem, the jumper travels in a parabolic arc to the
ground, buffeted about by up and down drafts in the atmosphere, but always
moving in the direction determined by the airplane’s flight. In short, a parachutist
does not fall to the ground. Their flight path more closely resembles the path of
a projectile and it is generally not a planar path.

Important to skydivers is an absolute limit to their speed, called the terminal
velocity. It depends upon a number of physical factors, the dominant factor
being body shape affecting area variable A of the drag force. See page . A
parachutist with excess loose clothing will dive more slowly than when equipped
with a tight lycra jump suit. When the parachute opens, the flight characteristics
are dominated by physical factors of the open parachute.

The constant k/m > 0 is called the drag factor, where m is the mass and k > 0,
appears in the resistive force equation F = kv|v|. In order for the parachute
model to give a terminal velocity of 15 miles per hour, the drag factor must
be approximately k/m = 3/2. Without the parachute, the skydiver can reach
speeds of over 45 miles per hour, which corresponds to a drag factor k/m < 1/2.

5Racquetball, badminton, Lacrosse, tennis, squash, pickleball and table tennis players know
about this effect and they use it in their game tactics and timing.
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Who falls the greatest distance after 30 seconds, a 250-pound or a 110-pound
parachutist? The answer is not always the layman’s answer, because the 110-
pound parachutist has less air resistance due to less body surface area but also
less mass, making it difficult to compare the two drag factors.

Lunar Lander

A lunar lander is falling toward the moon’s surface, in the radial direction, at
a speed of 1000 miles per hour. It is equipped with retrorockets to retard the
fall. In free space outside the gravitational effects of the moon the retrorockets
provide a retardation thrust of 9 miles per hour per second of activation, e.g., 11
seconds of retrorocket power will slow the lander down by about 100 miles per
hour.

A soft touchdown is made when the lander contacts the moon’s surface falling
at a speed of zero miles per hour. This ideal situation can be achieved by turning
on the retrorockets at the right moment.

The lander is greatly affected by the gravitational field of the moon. Ignoring
this field gives a gross overestimate for the activation time, causing the lander to
reverse its direction and never reach the surface. The layman answer of 1000/9 ≈
112 seconds to touchdown from an altitude of about 16 miles is incorrect by about
10 miles, causing the lander to crash at substantial speed into the lunar surface.

Escape velocity

Is it possible to fire a projectile from the earth’s surface and reach the moon?
The science fiction author Jules Verne, in his 1865 novel From the Earth to the
Moon, seems to believe it is possible. Modern calculations give the initial escape
velocity v0 as about 25, 000 miles per hour. There is no record of this actually
being tested, so the number 25, 000 remains a theoretical estimate.

This is a different problem than powered rocket flight. All the power must be
applied initially, and it is not allowed to apply power during flight to the moon.
Imagine instead a deep hole, in which a rocket is launched, the power being
turned off just as the rocket exits the hole. The rocket has to coast to the moon,
using just the velocity gained during launch.

Newton’s law of universal gravitation gives m1m2G/r2 as the magnitude of the
force of attraction between two point-massesm1,m2 separated by distance r. The
equation g = Gm2/R

2 gives the acceleration due to gravity at the surface of the
planet. For the earth, g = 9.8 meters per second per second and R = 6, 370, 000
meters.

A spherical projectile of mass m1 hurled straight up from the surface of a planet
moves in the radial direction. Ignoring air resistance and external gravitational
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forces, Newton’s law implies the distance y(t) traveled by the projectile satisfies

m1y
′′(t) = − m1m2G

(y(t) +R)2
, y(0) = 0, y′(0) = v0,(14)

where R is the radius of the planet, m2 is its mass and G is the experimentally
measured universal gravitation constant. Using gR2 = Gm2 and canceling m1 in
(14) gives

y′′(t) = − gR2

(y(t) +R)2
, y(0) = 0, y′(0) = v0.(15)

The projectile escapes the planet if y(t) → ∞ as t → ∞. The escape velocity
problem asks which minimal value of v0 causes escape.

To solve the escape velocity problem, multiply equation (15) by y′(t), then inte-
grate over [0, t] and use the initial conditions y(0) = 0, y′(0) = v0 to obtain

1

2

(
(y′(t))2 − (v0)

2
)
=

gR2

y(t) +R
−Rg.

The square term (y′(t))2 being nonnegative gives the inequality

0 ≤ (v0)
2 +

2gR2

y(t) +R
− 2Rg.

If y(t) → ∞, then v20 ≥ 2Rg, which gives the escape velocity

v0 =
√
2gR.(16)

For the earth, v0 ≈ 11, 174 meters per second, which is slightly more than 25, 000
miles per hour.

Examples

Example 2.29 (Free Fall)
A ball is thrown straight up from the roof of a 100-foot building and allowed to fall to
the ground. Assume initial velocity v0 = 32 miles per hour. Estimate the maximum
height of the ball and its flight time to the ground.

Solution: The maximum height H and flight time T are given by

H = 134.41 ft, T = 4.36 sec.

Details: In fps units, v0 = 32(5280)/(3600) = 46.93 ft/sec. Using solution (4) gives for
x0 = 100 and v0 = 46.93

x(t) = −16t2 + 100 + 46.93t.

Then x(t) = H = max when x′(t) = 0, which happens at t = 46.93/32. Therefore,
H = x(46.93/32) = 134.41. The flight time T is given by the equation x(T ) = 0 (the
ground is x = 0). Solving this quadratic equation for T > 0 gives T = 4.36 seconds.
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Example 2.30 (Lunar Lander)
A lunar lander falls to the moon’s surface at v0 = −960 miles per hour. The
retrorockets in free space provide a deceleration effect on the lander of a = 18, 000
miles per hour per hour. Estimate the retrorocket activation height above the surface
which will give the lander zero touch-down velocity.

Solution: Presented here are two models, one which assumes the moon’s gravitational
field is constant and another which assumes it is variable. The results obtained for the
activation height are different: 93.3 miles for the constant field model and 80.1 miles for
the variable field model. The flight times to touchdown are estimated to be 11.7 minutes
and 10.4 minutes, respectively.

Calculations use mks units: v0 = −429.1584 meters per second and a = 2.2352 meters
per second per second.

Constant field model. Let’s assume constant gravitational acceleration G due to the
moon. Other gravitational effects are ignored.

The acceleration value G is found in mks units from the formula

G =
Gm1

R2
.

Symbols: m1 = 7.36 × 1022 kilograms and R = 1.74 × 106 meters (1740 kilometers,
1081 miles), which are the mass and radius of the moon. Newton’s universal gravitation
constant is G ≈ 6.6726× 10−11 N(m/kg)2. Then G = 1.622087990.

The lander itself has mass m. Let r(t) be the distance from the lander to the surface
of the moon. The value r(0) is the height above the moon when the retrorockets are
activated for the soft landing at time t0. Then force analysis and Newton’s second law
implies the differential equation model

mr′′(t) = ma−mG, r(t0) = 0, r′(t0) = 0, r′(0) = v0.

The objective is to find r(0). Cancel m, then integrate twice to obtain the quadrature
solution

r′(t) = (a− G)t+ v0,
r(t) = (a− G)t2/2 + v0t+ r(0).

Then r′(t0) = 0 and r(t0) = 0 give the equations

(a− G)t+ v0 = 0, r(0) = −v0t0 − (a− G)t20/2.

The symbols in mks units: a = 2.2352, v0 = −429.1584, G = 1.622087990. Solving
simultaneously provides the numerical answers

t0 = 11.66 minutes, r(0) = 150.16 kilometers = 93.3 miles.

The conversion uses 1 mile = 1.609344 kilometers.

Variable field model. The constant field model will be modified to obtain this model.
All notation developed above applies. We will replace the constant acceleration G by the
variable acceleration Gm1/(R+ r(t))2. Then the model is

mr′′(t) = ma− Gm1 m

(R+ r(t))2
, r(t0) = 0, r′(t0) = 0, r′(0) = v0.

133



2.6 Kinetics

Multiply this equation by r′(t)/m and integrate. Then

(r′(t))2

2
= ar(t) +

Gm1

R+ r(t)
+ c, where c ≡ −Gm1

R
.

We will find r(0), the height above the moon. The equation to solve for r(0) is found by
substitution of t = 0 into the previous equation:

(r′(0))2

2
= ar(0) +

Gm1

R+ r(0)
− Gm1

R
.

After substitution of known values, the quadratic equation for x = r(0) is:

92088.46615 = 2.2352x+
2822179.310

1 + x/1740000
− 2822179.310

Solving for the positive root gives r(0) ≈ 127.23 kilometers or 79.06 miles. The analysis
does not give the flight time t0 directly, but it is approximately 10.4 minutes: see the
exercises.

Answer check. A similar analysis is done in Edwards and Penney [?] for the case a = 4
meters per second per second, v0 = −450 meters per second, with result r(0) ≈ 41.87
kilometers. In their example, the retrorocket thrust is nearly doubled, resulting in a
lower activation height. Substitute v0 = −450 and a = 4 in the variable field model to
obtain agreement: r(0) ≈ 41.90 kilometers. The constant field model gives r(0) ≈ 42.58
kilometers and t0 ≈ 3.15 minutes.

Example 2.31 (Flight Time and Maximum Height)
Show that the maximum height and the ascent time of a projectile are over-estimated
by a model that ignores air resistance.

Solution: Treated here is the case of a projectile launched straight up from the ground
x = 0 with velocity v0 > 0. The ascent time is denoted t1 and the maximum height M
is then M = x(t1).

No air resistance. Consider the velocity model v′ = −g, v(0) = v0. The solution is
v = −gt + v0, x = −gt2/2 + v0t. Then maximum height M occurs at v′(t1) = 0 which
gives t1 = v0/g and M = x(t1) = t1(v0 − gt1/2) = gv20/2.

Linear air resistance. Consider the model v′ = −ρv − g, v(0) = v0. This is a Newton
cooling equation in disguise, with solution given by equation (9), where ρ = k/m. Then
t1 is a function of (ρ, v0) satisfying geρt1 = v0ρ+ g, hence t1 is given by the equation

t1(ρ, v0) =
1

ρ
ln

∣∣∣∣v0ρ+ g

g

∣∣∣∣ .(17)

The limit of t1 = t1(ρ, v0) as ρ → 0 is the ascent time v0/g of the no air resistance model.
Verified in the exercises are the following.

Lemma 2.2 (Linear Ascent Time) The ascent time t1 for linear air resistance satisfies
t1(ρ, v0) < v0/g.

The lemma implies that the rise time for linear air resistance is less than the rise time
for no air resistance.
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The inequality v′ = −ρv − g < −g holds for v > 0, therefore v(t) < −gt + v0 and
x(t) < −gt2/2+ v0t = height for the no air resistance model. Thus the maximum height
x(t1) is less than the maximum height for the no air resistance model, by Lemma 2.2;
see the exercises page 141.

Nonlinear air resistance. The example is technically done, because it has been shown
that the answers for t1 and M decrease when using the linear model. Similar results can
be stated for the nonlinear model v′ = ρv|v| − g; see the exercises page 141.

Example 2.32 (Modeling)
Argue from nonlinear air resistance models that a projectile takes more time to fall
to the ground than it takes to reach maximum height.

Solution: The model will be the nonlinear model of the text, which historically goes
back to Isaac Newton. The linear air resistance model, appropriate for slowly moving
projectiles, is not considered in this example.

Let t1 and t2 be the ascent and fall times, so that the total flight time from the ground
to maximum height and then to the ground again is t1 + t2.

The times t1, t2 are functions of the initial velocity v0 > 0. As v0 limits to zero, both
t1 and t2 limit to zero. Inequality t2dt2/dv0 − t1dt1/dv0 > 0 is derived in Lemma 2.7
below. Integrate the inequality on variable v0, then

1
2 (t

2
2 − t21) > 0, from which it follows

that t2 > t1 for v0 > 0. Meaning: the projectile takes more time to fall to the ground
(t2) than it takes to reach maximum height (t1).

Define nonlinear functions

f1(v) = −(k/m)v2 − g, f2(v) = (k/m)v2 − g

The ascent or rise is controlled with velocity v1 > 0 satisfying v′1 = f1(v1), v1(0) =

v0 > 0, v1(t1) = 0. The maximum height reached is y0 =
∫ t1
0

v1(t)dt. The descent of
fall is controlled with velocity v2(t) satisfying v′2 = f2(v2), v2(t1) = 0. The flight ends

at time T = t1 + t2, determined by 0 = y0 +
∫ T

t1
v2(t)dt.

Details of proof involve a number of technical results, some of which depend upon the
formulas f1(v) = −(k/m)v2 − g, f2(v) = (k/m)v2 − g.

Lemma 2.3 The solution v2 satisfies v2(t) = w(t− t1), where w is defined by w′ = f2(w),
w(0) = 0. The solution w does not involve variables v0, t1, t2.

Lemma 2.4 Assume f is continuously differentiable. Let v(t, v0) be the solution of v′ =
f(v), v(0) = v0. Then

dv

dv0
= e

∫ t
0
f ′(v(t,v0))dt.

The function z = dv/dv0 solves the linear problem z′ = f ′(v(t, v0))z, z(0) = 1.

Lemma 2.5
dt1
dv0

=
1

g
e−2k

∫ t1
0 v1(t,v0)dt/m.

Lemma 2.6
dt2
dv0

=
−1

v2(t1 + t2)

∫ t1

0

e−2k
∫ t
0
v1(r,v0)dr/m dt.
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Lemma 2.7

t2
dt2
dv0

− t1
dt1
dv0

> 0.

Proof of Lemma 2.7. Lemmas 2.3 to 2.6 will be applied. Define w(t) by Lemma 2.3.
Because w′ = f2(w) = (k/m)w2 − g, then f2(w) ≥ −g which implies w(t) ≥ w(0) − gt.
Using w(0) = 0 implies v2(t1 + t2) = w(t2) ≥ −gt2 and finally, using w(t) < 0 for
0 < t ≤ t2,

1

gt2
≤ −1

v2(t1 + t2)
.

Multiply this inequality by eu(t), u(t) = −2k
∫ t

0
v1(r, v0)dr/m. Integrate over t = 0 to

t = t1. Then Lemma 2.6 implies

1

gt2

∫ t1

0

eu(t)dt ≤ dt2
dv0

.

Because u(t) > u(t1), then
1

gt2

∫ t1

0

eu(t1)dt <
dt2
dv0

.

This implies by Lemma 2.5 the inequality

t1
t2

dt1
dv0

=
t1
gt2

eu(t1) <
dt2
dv0

,

or t2dt2/dv0 − t1dt1/dv0 > 0. ■

Proof of Lemma 2.3. The function z(t) = v2(t+ t1) satisfies z
′ = f2(z), z(0) = 0 (an

answer check for the reader). Function w(t) is defined to solve w′ = f2(w), w(0) = 0. By
uniqueness, z(t) ≡ w(t), or equivalently, w(t) = v2(t+ t1). Replace t by t− t1 to obtain
v2(t) = w(t− t1).

Proof of Lemma 2.4. The exponential formula for dv2/dv0 is the unique solution of
the first order initial value problem. It remains to show that the initial value problem
is satisfied. Instead of doing the answer check, we motivate how to find the initial value
problem. First, differentiate across the equation v′2 = f2(v2) with respect to variable v0 to
obtain z′ = f ′

2(v2)z where z = dv2/dv0. Secondly, differentiate the relation v2(0, v0) = v0
on variable v0 to obtain z(0) = 1. The details of the answer check focus on showing
Newton quotients converge to the given answer.

Proof of Lemma 2.5. Start with the determining equation v1(t1, v0) = 0. Differentiate
using the chain rule on variable v0 to obtain the relation

v′1(t1, v0)
dt1
dv0

+
dv1
dv0

(t1, v0) = 0.

Because f ′
1(u) = −2ku/m, then the preceding lemma implies that dv1/dv0 is the same

exponential function as in this Lemma. Also, v1(t1, v0) = 0 implies v′1(t1, v0) = f1(0) =
−g. Substitution gives the formula for dt1/dv0.

Proof of Lemma 2.6. Start with y0 =
∫ t1
0

v1(t, v0)dt and y(t) = y0 +
∫ t

t1
v2(t)dt. Then

0 = y(t2 + t1) implies that

0 = y(t1 + t2)

=
∫ t1
0

v1(t, v0)dt+
∫ t2
0

v2(t+ t1)dt

=
∫ t1
0

v1(t, v0)dt+
∫ t2
0

w(t)dt.
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Because w(t) is independent of t1, t2, v0 and v1(t1, v0) = 0, then differentiation on v0
across the preceding formula gives

0 = d
dv0

∫ t1
0

v1(t, v0)dt+ w(t2)
dt2
dv0

= v1(t1, v0)
dt1
dv0

+
∫ t1
0

dv1
dv0

(t, v0)dt+ w(t2)
dt2
dv0

= 0 +
∫ t1
0

eu(t)dt+ w(t2)
dt2
dv0

where u(t) = −2k
∫ t

0
v1(r, v0)dr/m. Use w(t2) = v2(t2 + t1) after division by w(t2) in

the last display to obtain the formula.

Details and Proofs

Proof for Equation (4). The method of quadrature is applied as follows.

x′′(t) = −g The given differential equation.∫
x′′(t)dt =

∫
−gdt Quadrature step.

x′(t) = −gt+ c1 Fundamental theorem of calculus.∫
x′(t)dt =

∫
(−gt+ c1)dt Quadrature step.

x(t) = −g t2

2 + c1t+ c2 Fundamental theorem of calculus.

Using initial conditions x(0) = x0 and x′(0) = v0 it follows that c1 = v0 and c2 = x0.
These steps verify the formula x(t) = −gt2/2 + x0 + v0t.

Technical Details for Equation (9).

v′(t) + (k/m)v(t) = −g Standard linear form.
(Qv)′

Q = −g Integrating factor Q = ekt/m.

(Qv)′ = −gQ Quadrature form.

Qv = −mgQ/k + c Method of quadrature.

v = −mg/k + c/Q Velocity equation.

v = −mg
k +

(
v(0) + mg

k

)
e−kt/m Evaluate c and use Q = ekt/m.

The equation x(t) = x(0) +
∫ t

0
v(r)dr gives the last relation in (9):

x(t) = x(0)− mg

k
t+

m

k

(
v(0) +

mg

k

)(
1− e−kt/m

)
.

Technical Details for Equation (12), v(0) > 0.

v′(t) = −(k/m)v2(t)− g The upward launch equation.

u′(t) =
√

kg
m (1 + u2(t)) Change of variables u =

√
k
mg v.

u′(t)
1+u2(t) = −

√
kg
m A separated form.

arctan(u(t)) = −
√

kg
m t+ c1 Quadrature.

u(t) = tan

(
c1 −

√
kg
m t

)
Take the tangent of both sides.
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v(t) =
√

mg
k tan

(√
kg
m (c− t)

)
Define c1 =

√
kg
m c.

x(t) =
∫
v(t)dt Quadrature method.

= d+ m
k ln

∣∣∣∣cos(√kg
m (c− t)

)∣∣∣∣ Integration constant d.

Technical Details for Equation (13), v(0) < 0.

v′(t) = (k/m)v2(t)− g Downward launch equation.

u′(t) =
√

kg
m

(
u2(t)− 1

)
Change of variables u =

√
k
mg v.

u′(t)
u2(t)−1 =

√
kg
m A separated form.

− arctanh(u) = 2t
√

kg
m + c1 Quadrature method and tables.

u = tanh

(√
kg
m (c− t)

)
Define c by

√
kg
m c = −c1.

v(t) =
√

mg
k tanh

(√
kg
m (c− t)

)
Use v =

√
mg
k u.

x(t) =
∫
v(t)dt Quadrature.

= d− m
k ln

∣∣∣∣cosh(√kg
m (c− t)

)∣∣∣∣ Integration constant d.

Exercises 2.6 �

Newton’s Laws
Review of units and conversions.

1. An object weighs 100 pounds. Find its
mass in slugs and kilograms.

2. An object has mass 50 kilograms. Find
its mass in slugs and its weight in
pounds.

3. Convert from fps to mks systems: po-
sition 1000, velocity 10, acceleration 2.

4. Derive g =
Gm

R2 , where m is the mass

of the earth and R is its radius.

Velocity and Acceleration
Find the velocity x′ and acceleration x′′.

5. x(t) = 16t2 + 100

6. x(t) = 16t2 + 10t+ 100

7. x(t) = t3 + t+ 1

8. x(t) = t(t− 1)(t− 2)

Free Fall with Constant Gravity
Solve using the model x′′(t) = −g, x(0) =
x0, x

′(0) = v0.

9. A brick falls from a tall building,
straight down. Find the distance it fell
and its speed at three seconds.

10. An iron ingot falls from a tall building,
straight down. Find the distance it fell
and its speed at four seconds.

11. A ball is thrown straight up from the
ground with initial velocity 66 feet per
second. Find its maximum height.

12. A ball is thrown straight up from the
ground with initial velocity 88 feet per
second. Find its maximum height.

13. An arrow is shot straight up from the
ground with initial velocity 23 meters
per second. Find the flight time back
to the ground.
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14. An arrow is shot straight up from the
ground with initial velocity 44 meters
per second. Find the flight time back
to the ground.

15. A car travels 140 kilometers per hour.
Brakes are applied, with deceleration 10
meters per second per second. Find the
distance the car travels before stopping.

16. A car travels 120 kilometers per hour.
Brakes are applied, with deceleration 40
feet per second per second. Find the
distance the car travels before stopping.

17. An arrow is shot straight down from a
height of 500 feet, with initial velocity
44 feet per second. Find the flight time
to the ground and its impact speed.

18. An arrow is shot straight down from
a height of 200 meters, with initial ve-
locity 13 meters per second. Find the
flight time to the ground and its impact
speed.

Linear Air Resistance
Solve using the linear air resistance model
mx′′(t) = −kx′(t) − mg. An equivalent
model is x′′ = −ρx′ − g, where ρ = k/m
is the drag factor.

19. An arrow is shot straight up from the
ground with initial velocity 23 meters
per second. Find the flight time back
to the ground. Assume ρ = 0.035.

20. An arrow is shot straight up from the
ground with initial velocity 27 meters
per second. Find the maximum height.
Assume ρ = 0.04.

21. A parcel is dropped from an aircraft
at 32, 000 feet. It has a parachute that
opens automatically after 25 seconds.
Assume drag factor ρ = 0.16 without
the parachute and ρ = 1.45 with it.
Find the descent time to the ground.

22. A first aid kit is dropped from a heli-
copter at 12, 000 feet. It has a parachute
that opens automatically after 15 sec-
onds. Assume drag factor ρ = 0.12

without the parachute and ρ = 1.55
with it. Find the impact speed with the
ground.

23. A motorboat has velocity v satisfying
1100v′(t) = 6000−110v, v(0) = 0. Find
the maximum speed of the boat.

24. A motorboat has velocity v satisfying
1000v′(t) = 4000− 90v, v(0) = 0. Find
the maximum speed of the boat.

25. A parachutist falls until his speed is 65
miles per hour. He opens the parachute.
Assume parachute drag factor ρ = 1.57.
About how many seconds must elapse
before his speed is reduced to within 1%
of terminal velocity?

26. A parachutist falls until his speed is
120 kilometers per hour. He opens the
parachute. Assume drag factor ρ =
1.51. About how many seconds must
elapse before his speed is reduced to
within 2% of terminal velocity?

27. A ball is thrown straight up with initial
velocity 35 miles per hour. Find the as-
cent time and the descent time. Assume
drag factor 0.042

28. A ball is thrown straight up with initial
velocity 60 kilometers per hour. Find
the ascent time and the descent time.
Assume drag factor 0.042

Linear Ascent and Descent Times
Find the ascent time t1 and the descent
time t2 for the linear model x′′ = −ρx′− g,
x(0) = 0, x′(0) = v0 where ρ = k/m is the
drag factor. Unit system fps. Computer
algebra system expected.

29. ρ = 0.01, v0 = 50

30. ρ = 0.015, v0 = 30

31. ρ = 0.02, v0 = 50

32. ρ = 0.018, v0 = 30

33. ρ = 0.022, v0 = 50

34. ρ = 0.025, v0 = 30

35. ρ = 1.5, v0 = 50
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36. ρ = 1.55, v0 = 30

37. ρ = 1.6, v0 = 50

38. ρ = 1.65, v0 = 30

39. ρ = 1.45, v0 = 50

40. ρ = 1.48, v0 = 30

Nonlinear Air Resistance
Assume ascent velocity v1 satisfies v′1 =
−ρv21 − g. Assume descent velocity v2 sat-
isfies v′2 = ρv22 − g. Motion from the
ground x = 0. Let t1 and t2 be the as-
cent and descent times, so that t1 + t2 is
the flight time. Let g = 9.8, v1(0) = v0,
v1(t1) = v2(t1) = 0, units mks. Define
M = maximum height and vf = impact ve-
locity. Computer algebra system expected.

41. Let ρ = 0.0012, v0 = 50. Find t1, t2.

42. Let ρ = 0.0012, v0 = 30. Find t1, t2.

43. Let ρ = 0.0015, v0 = 50. Find t1, t2.

44. Let ρ = 0.0015, v0 = 30. Find t1, t2.

45. Let ρ = 0.001, v0 = 50. Find M , vf .

46. Let ρ = 0.001, v0 = 30. Find M , vf .

47. Let ρ = 0.0014, v0 = 50. Find M , vf .

48. Let ρ = 0.0014, v0 = 30. Find M , vf .

49. Find t1, t2, M and vf for ρ = 0.00152,
v0 = 60.

50. Find t1, t2, M and vf for ρ = 0.00152,
v0 = 40.

Terminal Velocity
Find the terminal velocity for (a) a linear
air resistance a(t) = ρv(t) and (b) a non-
linear air resistance a(t) = ρv2(t). Use the
model equation v′ = a(t)− g and the given
drag factor ρ, mks units.

51. ρ = 0.15

52. ρ = 0.155

53. ρ = 0.015

54. ρ = 0.017

55. ρ = 1.5

56. ρ = 1.55

57. ρ = 2.0

58. ρ = 1.89

59. ρ = 0.001

60. ρ = 0.0015

Parachutes
A skydiver has velocity v0 and height 5, 500
feet when the parachute opens. Velocity
v(t) is given by (a) linear resistance model
v′ = −ρv − g or (b) nonlinear resistance
downward model v′ = ρv2 − g. Given the
drag factor ρ and the parachute-open ve-
locity v0, compute the elapsed time until
the parachutist slows to within 2% of ter-
minal velocity. Then find the flight time
from parachute open to the ground. Re-
port two values for (a) and two values for
(b).

61. ρ = 1.446, v0 = −116 ft/sec.

62. ρ = 1.446, v0 = −84 ft/sec.

63. ρ = 1.2, v0 = −116 ft/sec.

64. ρ = 1.2, v0 = −84 ft/sec.

65. ρ = 1.01, v0 = −120 ft/sec.

66. ρ = 1.01, v0 = −60 ft/sec.

67. ρ = 0.95, v0 = −10 ft/sec.

68. ρ = 0.95, v0 = −5 ft/sec.

69. ρ = 0.8, v0 = −66 ft/sec.

70. ρ = 0.8, v0 = −33 ft/sec.

Lunar Lander
A lunar lander falls to the moon’s surface
at v0 miles per hour. The retrorockets in
free space provide a deceleration effect on
the lander of a miles per hour per hour.
Estimate the retrorocket activation height
above the surface which will give the lander
zero touch-down velocity. Follow Example
2.30, page 133.
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71. v0 = −1000, a = 18000

72. v0 = −980, a = 18000

73. v0 = −1000, a = 20000

74. v0 = −1000, a = 19000

75. v0 = −900, a = 18000

76. v0 = −900, a = 20000

77. v0 = −1100, a = 22000

78. v0 = −1100, a = 21000

79. v0 = −800, a = 18000

80. v0 = −800, a = 21000

Escape velocity
Find the escape velocity of the given planet,
given the planet’s mass m and radius R.

81. (Planet A) m = 3.1× 1023 kilograms,
R = 2.4× 107 meters.

82. (Mercury) m = 3.18×1023 kilograms,
R = 2.43× 106 meters.

83. (Venus) m = 4.88 × 1024 kilograms,
R = 6.06× 106 meters.

84. (Mars) m = 6.42 × 1023 kilograms,
R = 3.37× 106 meters.

85. (Neptune) m = 1.03×1026 kilograms,
R = 2.21× 107 meters.

86. (Jupiter) m = 1.90 × 1027 kilograms,
R = 6.99× 107 meters.

87. (Uranus) m = 8.68 × 1025 kilograms,
R = 2.33× 107 meters.

88. (Saturn) m = 5.68 × 1026 kilograms,
R = 5.85× 107 meters.

Lunar Lander Experiments

89. (Lunar Lander) Verify that the vari-
able field model for Example 2.30 gives
a soft landing flight model in MKS units

u′′(t)=2.2352− c1
(c2 + u(t))2

,

u(0) =127254.1306,
u′(0)=−429.1584,

where c1 = 4911033599000 and c2 =
1740000.

90. (Lunar Lander: Numerical Exper-

iment) Using a computer, solve the
flight model of the previous exercise.
Determine the flight time t0 ≈ 625.6
seconds by solving u(t) = 0 for t.

Details and Proofs

91. (Linear Rise Time) Using the inequal-
ity eu > 1 + u for u > 0, show that the
ascent time t1 in equation (17) satisfies

g(1 + ρt1) < geρt1 = v0ρ+ g.

Conclude that t1 < v0/g, proving
Lemma 2.2.

92. (Linear Maximum) Verify that
Lemma 2.2 plus the inequal-
ity x(t) < −gt2/2 + v0t imply
x(t1) < gv20/2. Conclude that the
maximum for ρ > 0 is less than the
maximum for ρ = 0.

93. (Linear Rise Time) Consider the as-
cent time t1(ρ, v0) given by equation
(17). Prove that

dt1
dρ

=
ln g

v0ρ+g

ρ2
+

v0

ρ(v0ρ+ g)
.

94. (Linear Rise Time) Consider
dt1(ρ, v0)/dρ given in the previous
exercise. Let ρ = gx/v0. Show that
dt1/dρ < 0 by considering properties
of the function −(x + 1) ln(x + 1) + x.
Then prove Lemma 2.2.

95. (Compare Rise Times) The ascent
time for nonlinear model v′ = −g− ρv2

is less than the ascent time for linear
model u′ = −g − ρu. Verify for ρ = 1,
g = 32 ft/sec/sec and initial velocity 50
ft/sec.

96. (Compare Fall Times) The descent
time for nonlinear model v′ = ρv2 − g,
v(0) = 0 is greater than the descent
time for linear model u′ = −ρu − g,
u(0) = 0. Verify for ρ = 1, g = 32
ft/sec/sec and maximum heights both
100 feet.
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2.7 Logistic Equation

The 1845 work of Pierre Francois Verhulst (1804–1849), Belgian demographer
and mathematician, modified the classical growth-decay equation y′ = ky by
replacing k by a− by to obtain the logistic equation

y′ = (a− by)y.(1)

The solution of the logistic equation (1) is (details on page ??)

y(t) =
ay(0)

by(0) + (a− by(0))e−at
.(2)

The logistic equation (1) applies not only to human populations but also to pop-
ulations of fish, animals and plants, such as yeast, mushrooms or wildflowers.
The y-dependent growth rate k = a − by allows the model to have a finite lim-
iting population a/b. The constant M = a/b is called the carrying capacity
by demographers. Verhulst introduced the terminology logistic curves for the
solutions of (1).

To use the Verhulst model, a demographer must supply three population counts
at three different times; these values determine the constants a, b and y(0) in
solution (2).

Logistic Models

Below are some variants of the basic logistic model known to researchers in
medicine, biology and ecology.

Limited Environment. A container of y(t) flies has a carrying capacity of N
insects. A growth-decay model y′ = Ky with combined growth-death rate
K = k(N − y) gives the model y′ = k(N − y)y.

Spread of a Disease. The initial size of the susceptible population is N . Then
y and N −y are the number of infectives and susceptibles. Chance encoun-
ters spread the incurable disease at a rate proportional to the infectives
and the susceptibles. The model is y′ = ky(N − y). The spread of rumors
has an identical model.

Explosion–Extinction. The number y(t) of alligators in a swamp can satisfy
y′ = Ky where the growth-decay symbol K is proportional to y − N and
N is a threshold population. The logistic model y′ = k(y − N)y gives
extinction for initial populations smaller than M and a doomsday popu-
lation explosion y(t) → ∞ for initial populations greater than M . This
model ignores harvesting.
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Constant Harvesting. The number y(t) of fish in a lake can satisfy a logistic
model y′ = (a − by)y − h, provided fish are harvested at a constant rate
h > 0. This model can be written as y′ = k(M − y)(y − N) for small
harvesting rates h, where M is the carrying capacity and N is the threshold
population.

Variable Harvesting. The special logistic model y′ = (a− by)y−hy results by
harvesting at a non-constant rate proportional to the present population
y. The effect is to decrease the natural growth rate a by the constant
amount h in the standard logistic model.

Restocking. The equation y′ = (a−by)y−h sin(ωt) models a logistic population
that is periodically harvested and restocked with maximal rate h > 0. The
period is T = 2π/ω. The equation might model extinction for stocks less
than some threshold population y0, and otherwise a stable population that
oscillates about an ideal carrying capacity a/b with period T .

Example 2.33 (Limited Environment)
Find the equilibrium solutions and the carrying capacity for the logistic equation
P ′ = 0.04(2− 3P )P . Then solve the equation.

Solution: The given differential equation can be written as the separable autonomous
equation P ′ = G(P ) where G(y) = 0.04(2−3P )P . Equilibria are obtained as P = 0 and
P = 2/3, by solving the equation G(P ) = 0.04(2− 3P )P = 0. The carrying capacity is
the stable equilibrium P = 2/3; here we used the derivative G′(P ) = 0.04(2 − 6P ) and
evaluations G′(0) > 0, G′(2/3) < 0 to determine that P = 2/3 is a stable sink or funnel.

Example 2.34 (Spread of a Disease)
Find the number of infectives, the number of susceptibles and the rate of spread of
the disease at t = 4 months for logistic model y′ = 15

1000(10000− y)y, y(0) = 200.

Solution:

Answer: By month 4, about 8900 were infected, about 1100 were not infected and the
disease was spreading at a rate of about 1450 per month.

Details: Write the differential equation in the form y′ = (a − by)y with a = 15/10,
b = 15

100000 . Let M = a/b = 10000. The number of infectives after 4 months is y(4) and
the number of susceptibles is M − y(4). The rate of spread of the disease is y′(4).

Using formula (2) with a = 15/10, b = 15
100000 and y(0) = 200 gives

y(t) =
10000

1 + 49e−3t/2
.

Then the number of infectives at t = 4 is y(4) = 8916.956640. The number of susceptibles
is M − y(4) = 1083.043360. The rate of spread of the disease is y′(4) = 1448.617600.

Example 2.35 (Explosion-Extinction)
Classify the model as explosion or extinction: y′ = 2(y − 100)y, y(0) = 200.
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Solution: Let G(y) = 2(y − 100)y, then G(y) = 0 exactly for equilibria y = 100 and
y = 0, at which G′(y) = 4y − 200 satisfies G′(200) > 0, G′(0) < 0. The initial value
y(0) = 200 is above the equilibrium y = 100. Because y = 100 is a source, then y → ∞,
which implies the model is explosion.

A second, direct analysis can be made from the differential equation y′ = 2(y − 100)y:
y′(0) = 2(200− 100)200 > 0 means y increases from 200, causing y → ∞ and explosion.

Example 2.36 (Constant Harvesting)
Find the carrying capacity M and the threshold population N for the harvesting
equation P ′ = (3− 2P )P − 1.

Solution: Carrying Capacity M = 1, Threshold Population N = 1/2.

Let f(P ) = −2(P − 1)(P − 1/2), which is the factored form of (3− 2P )P − 1, the right
side of P ′ = (3−2P )P −1. Solve equation f(P ) = 0 for P = 1, P = 1/2, the equilibrium
solutions.

Requirements for carrying capacity M and threshold population N :

1. M and N are equilibrium solutions
2. M is a stable sink, a funnel in the phase portrait
3. If P (0) > N , then limt→∞ P (t) = M .

Stability test ?? on page ?? applies: if f(M) = 0 and f ′(M) < 0, then equilibrium
P = M is a stable sink (a funnel). Calculate G′(P ) = 3− 4P . Test P = 1 and P = 1/2:
P = 1 is a stable sink. Define M = 1, N = 1/2. Requirements 1 and 2 hold. To verify
limit requirement 3, write G(P ) = −2(P − 1)(P − 1/2) = −2(P −M)(P −N) and make
a phase line diagram. Then use the Three Drawing Rules page ??.

Example 2.37 (Variable Harvesting)
Re-model the variable harvesting equation P ′ = (3 − 2P )P − P as y′ = (a − by)y
and solve the equation by formula (2), page 142.

Solution: The equation is rewritten as P ′ = 2P − 2P 2 = (2− 2P )P . This has the form
of y′ = (a− by)y where a = b = 2. Then (2) implies

P (t) =
2P0

2P0 + (2− 2P0)e−2t

which simplifies to

P (t) =
P0

P0 + (1− P0)e−2t
.

Example 2.38 (Restocking)
Make a direction field graphic by computer for the restocking equation P ′ = (1 −
P )P −2 sin(2πt). Using the graphic, report (a) an estimate for the carrying capacity
C and (b) approximations for the amplitude A and period T of a periodic solution
which oscillates about P = C.
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Solution: The computer algebra system maple is used with the code below to make
Figure 6. An essential feature of the maple code is plotting of multiple solution curves.
For instance, [P(0)=1.3] in the list ics of initial conditions causes the solution to the
problem P ′ = (1− P )P − 2 sin(2πt), P (0) = 1.3 to be added to the graphic.

The resulting graphic, which contains 13 solution curves, shows that all solution curves
limit as t → ∞ to what appears to be a unique periodic solution.

Using features of the maple interface, it is possible to determine by experiment estimates
for the maxima M = 1.26 and minima m = 0.64 of the apparent periodic solution. Then
(a) C = (M +m)/2 = 0.95, (b) A = (M −m)/2 = 0.31 and T = 1. The experimentally
obtained period T = 1 matches the period of the term −2 sin(2πt).

de:=diff(P(t),t)=(1-P(t))*P(t)-2*sin(2*Pi* t);

ics:=[[P(0)=1.4],[P(0)=1.3],[P(0)=1.2],[P(0)=1.1],[P(0)=0.1],

[P(0)=0.2],[P(0)=0.3],[P(0)=0.4],[P(0)=0.5],[P(0)=0.6],

[P(0)=0.7],[P(0)=0.8],[P(0)=0.9]];

opts:=stepsize=0.05,arrows=none:

DEtools[DEplot](de,P(t),t=-3..12,P=-0.1..1.5,ics,opts);

P
1.4
1.26

0.64

−0.1
0

t

12

0.95 Figure 6. Solutions of P ′ = (1 −
P )P − 2 sin(2πt).

The maximum is 1.26.
The minimum is 0.64.
Oscillation is about the line P = 0.95
with period 1.

Exercises 2.7 �

Limited Environment
Find the equilibrium solutions and the car-
rying capacity for each logistic equation.

1. P ′ = 0.01(2− 3P )P

2. P ′ = 0.2P − 3.5P 2

3. y′ = 0.01(−3− 2y)y

4. y′ = −0.3y − 4y2

5. u′ = 30u+ 4u2

6. u′ = 10u+ 3u2

7. w′ = 2(2− 5w)w

8. w′ = −2(3− 7w)w

9. Q′ = Q2 − 3(Q− 2)Q

10. Q′ = −Q2 − 2(Q− 3)Q

Spread of a Disease
In each model, find the number of infec-
tives and then the number of susceptibles
at t = 2 months. Follow Example 2.34,
page 143. A calculator is required for ap-
proximations.

11. y′ = (5/10− 3y/100000)y, y(0) = 100.

12. y′ = (13/10−3y/100000)y, y(0) = 200.

13. y′ = (1/2− 12y/100000)y, y(0) = 200.

14. y′ = (15/10−4y/100000)y, y(0) = 100.

15. P ′ = (1/5−3P/100000)P , P (0) = 500.

16. P ′ = (5/10 − 3P/100000)P , P (0) =
600.

17. 10P ′ = 2P − 5P 2/10000, P (0) = 500.

18. P ′ = 3P − 8P 2, P (0) = 10.
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Explosion–Extinction
Classify the model as explosion or extinc-
tion.

19. y′ = 2(y − 100)y, y(0) = 200

20. y′ = 2(y − 200)y, y(0) = 300

21. y′ = −100y + 250y2, y(0) = 200

22. y′ = −50y + 3y2, y(0) = 25

23. y′ = −60y + 70y2, y(0) = 30

24. y′ = −540y + 70y2, y(0) = 30

25. y′ = −16y + 12y2, y(0) = 1

26. y′ = −8y + 12y2, y(0) = 1/2

Constant Harvesting
Find the carrying capacity N and the
threshold population M .

27. P ′ = (3− 2P )P − 1

28. P ′ = (4− 3P )P − 1

29. P ′ = (5− 4P )P − 1

30. P ′ = (6− 5P )P − 1

31. P ′ = (6− 3P )P − 1

32. P ′ = (6− 4P )P − 1

33. P ′ = (8− 5P )P − 2

34. P ′ = (8− 3P )P − 2

35. P ′ = (9− 4P )P − 2

36. P ′ = (10− P )P − 2

Variable Harvesting
Re-model the variable harvesting equation
as y′ = (a− by)y and solve the equation by
logistic solution (2) on page 142.

37. P ′ = (3− 2P )P − P

38. P ′ = (4− 3P )P − P

39. P ′ = (5− 4P )P − P

40. P ′ = (6− 5P )P − P

41. P ′ = (6− 3P )P − P

42. P ′ = (6− 4P )P − P

43. P ′ = (8− 5P )P − 2P

44. P ′ = (8− 3P )P − 2P

45. P ′ = (9− 4P )P − 2P

46. P ′ = (10− P )P − 2P

Restocking
Make a direction field graphic by computer
following Example 2.38. Using the graphic,
report (a) an estimate for the carrying ca-
pacity C and (b) approximations for the
amplitude A and period T of a periodic so-
lution which oscillates about P = C.

47. P ′ = (2− P )P − sin(πt/3)

48. P ′ = (2− P )P − sin(πt/5)

49. P ′ = (2− P )P − sin(πt/7)

50. P ′ = (2− P )P − sin(πt/8)

Richard Function
Ideas of L. von Bertalanffy (1934), A.
Pütter (1920) and Verhulst were used by
F. J. Richards (1957) to define a sigmoid
function Y (t) which generalizes the logistic
function. It is suited for data-fitting mod-
els, for example forestry, tumor growth and
stock-production problems. The Richard
function is

Y (t) = A+
K −A

(1 +Qe−B(t−M))1/ν
,

where Y = weight, height, size, amount,
etc., and t = time.

51. Differentiate for α > 0, ν > 0, the spe-
cialized Richard function

Y (t) =
K

(1 +Qe−αν(t−t0))1/ν

to obtain the sigmoid differential equa-
tion

Y ′(t) = α

(
1−

(
Y

K

)ν)
Y.

The relation Y (t0) = K
(1+Q)1/ν

implies

Q = −1 +
(

K
Y (t0)

)ν
.

52. Solve the differential equation Y ′(t) =

α
(
1−

(
Y
K

)ν)
Y by means of the sub-

stitution w = (Y/K)ν , which gives a
familiar logistic equation w′ = αν(1 −
w)w.
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2.8 Science and Engineering

Applications

Assembled here are some classical applications of first order differential equations
to problems of science and engineering.

Draining a Tank, page 147.

Stefan’s Law, page 148.

Seismic Sea Waves and Earthquakes, page 149.

Gompertz Tumor Equation, page 151.

Parabolic Mirror, page 151.

Logarithmic Spiral, page 152.

Draining a Tank

Investigated here is a tank of water with orifice at the bottom emptying due to
gravity; see Figure 7. The analysis applies to tanks of any geometrical shape.

Figure 7. Draining a tank.
A tank empties from an orifice at the bottom. The fluid fills
the tank to height y above the orifice, and it drains due to
gravity.

Evangelista Torricelli (1608-1647), inventor of the barometer, investigated this
physical problem using Newton’s laws, obtaining the result in Lemma 2.8, proof
on page 157.

Lemma 2.8 (Torricelli) A droplet falling freely from height h in a gravitational field
with constant g arrives at the orifice with speed

√
2gh.

Tank Geometry. A simple but useful tank geometry can be constructed using
washers of area A(y), where y is the height above the orifice; see Figure 8.

A(y)

y

Figure 8. A tank constructed from wash-
ers.
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Then the method of cross-sections in calculus implies that the volume V (h) of
the tank at height h is given by

V (h) =

∫ h

0
A(y)dy,

dV

dh
= A(h).(1)

Torricelli’s Equation. Torricelli’s lemma applied to the tank fluid height y(t)
at time t implies, by matching drain rates at the orifice (see Technical Details
page 156), that

d

dt
(V (y(t))) = −k

√
y(t)(2)

for some proportionality constant k > 0. The chain rule gives the separable
differential equation V ′(y(t))y′(t) = −k

√
y(t), or equivalently (see page 157), in

terms of the cross-sectional area A(y) = V ′(y),

y′(t) = −k

√
y(t)

A(y(t))
.(3)

Typical of the physical literature, the requirement y(t) ≥ 0 is omitted in the
model, but assumed implicitly. The model itself exhibits non-uniqueness:
the tank can be drained hours ago or at instant t = 0 and result still in the
solution y(t) = 0, interpreted as fluid height zero.

Stefan’s Law

Heat energy can be transferred by conduction, convection or radiation. The
following illustrations suffice to distinguish the three types of heat transfer.

Conduction. A soup spoon handle gains heat from the soup by exchange of
kinetic energy at a molecular level.

Convection. A hot water radiator heats a room largely by convection currents,
which move heated air upwards and denser cold air downwards to the ra-
diator. In linear applications, Newton’s cooling law applies.

Radiation. A car seat heated by the sun gets the heat energy from electromag-
netic waves, which carry energy from the sun to the earth.

The rate at which an object emits or absorbs radiant energy is given by Ste-
fan’s radiation law

P = kT 4.

The symbol P is the power in watts (joules per second), k is a constant propor-
tional to the surface area of the object and T is the temperature of the object in
degrees Kelvin. Use K = C+273.15 to convert Celsius to Kelvin.6 The constant

6USA Fahrenheit F is Celsius C = G + G/10 + G/100, correct to 0.49 C for −40 to 120
F. Value G = (F − 32)/2 is a common guess. The idea uses 1/9 = 0.111 . . .. Example for
F = 79: Compute guess G = (79− 32)/2 = 23.5. Then C = 23.5 + 2.35 + 0.235 = 26.085. The
numbers added to G are decimal point shifts.
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k in Stefan’s law is decomposed as k = σAE . Here, σ = 5.6696×10−8K−4 Watts
per square meter (K=Kelvin), A is the surface area of the body in square meters
and E is the emissivity, which is a constant between 0 and 1 depending on
properties of the surface.

Constant room temperature. Suppose that a person with skin temperature
T Kelvin sits unclothed in a room in which the thermometer reads T0 Kelvin.
The net heat flux Pnet in joules per second (watts) is given by

Pnet = k(T 4 − T 4
0 ).(4)

If T and T0 are constant, then Q = kt(T 4−T 4
0 ) can be used to estimate the total

heat loss or gain in joules for a time period t. To illustrate, if the wall thermometer
reads 20◦ Celsius, then T0 = 20+273.15. Assume A = 1.5 square meters, E = 0.9
and skin temperature 33◦ Celsius or T = 33 + 273.15. The total heat loss in 10
minutes is Q = (10(60))(5.6696 × 10−8)(1.5)(0.9)(305.154 − 293.154) = 64282
joules. Over one hour, the total heat radiated is approximately 385, 691 joules,
which is close to the total energy provided by a 6 ounce soft drink.7

Time-varying room temperature. Suppose that a person with skin tem-
perature T degrees Kelvin sits unclothed in a room. Assume the thermometer
initially reads 15◦ Celsius and then rises to 24◦ Celsius after t1 seconds. The
function T0(t) has values T0(0) = 15 + 273.15 and T0(t1) = 24 + 273.15. In a
possible physical setting, T0(t) reflects the reaction to the heating and cooling
system, which is generally oscillatory about the thermostat setting. If the ther-
mostat is off, then it is reasonable to assume a linear model T0(t) = at+ b, with
a = (T0(t1)− T0(0))/t1, b = T0(0).

To compute the total heat radiated from the person’s skin, we use the time-
varying equation

dQ

dt
= k(T 4 − T0(t)

4).(5)

The solution to (5) with Q(0) = 0 is formally given by the quadrature formula

Q(t) = k

∫ t

0
(T 4 − T0(r)

4)dr.(6)

For the case of a linear model T0(t) = at+ b, the total number of joules radiated
from the person’s skin is found by integrating (6), giving

Q(t1) = kT 4t1 + k
b5 − (at1 + b)5

5a
.

7American soft drinks are packaged in 12-ounce cans, twice the quantity cited. One calorie is
defined to be 4.186 joules and one food Calorie is 1000 calories (a kilo-calorie) or 4186 joules. A
boxed apple juice is about 6 ounces or 0.2 liters. Juice provides about 400 thousand joules in 0.2
liters. Product labels with 96 Calories mean 96 kilo-calories; it converts to 96(1000)(4.186) =
401, 856 joules.
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Tsunami

A seismic sea wave due to an earthquake under the sea or some other natu-
ral event, called a tsunami, creates a wave on the surface of the ocean. The
wave may have a height of less than 1 meter. These waves can have a very large
wavelength, up to several hundred miles, depending upon the depth of the water
where they were formed. The period is often more than one hour with wave
velocity near 700 kilometers per hour. These waves contain a huge amount of
energy. Their height increases as they crash upon the shore, sometimes to 30
meters high or more, depending upon water depth and underwater surface fea-
tures. In the year 1737, a wave estimated to be 64 meters high hit Cape Lopatka,
Kamchatka, in northeast Russia. The largest Tsunami ever recorded occurred in
July of 1958 in Lituya Bay, Alaska, when a huge rock and ice fall caused water
to surge up to 500 meters. For additional material on earthquakes, in particu-
lar the Sumatra and Chile earthquakes and resultant Tsunamis, see Chapter 11,
Systems of Differential Equations.

Wave shape. A simplistic model for the shape y(x) of a tsunami in the open
sea is the differential equation [?, p. 81]

(y′)2 = 4y2 − 2y3.(7)

This equation gives the profile y(x) of one side of the 3D-wave, by cutting the
3D object with an xy-plane.

Equilibrium solutions. They are y = 0 and y = 2, corresponding to no wave
and a wall of water 2 units above the ocean surface. There are no solutions for
y > 2, because the two sides of (7) have in this case different signs.

Non-equilibrium solutions. They are given by

y(x) = 2− 2 tanh2(x+ c).(8)

The initial height of the wave is related to the parameter c by y(0) = 2 −
2 tanh2(c). Only initial heights 0 < y(0) < 2 are physically significant. Due
to the property limu→∞ tanh(u) = 1 of the hyperbolic tangent, the wave height
starts at y(0) and quickly decreases to zero (sea level), as is evident from Figure
9.

y(0)

0
x

y

Figure 9. A tsunami profile.

Non-uniqueness. When y(x0) = 2 for some x = x0, then also y′(x0) = 0, and
this allows non-uniqueness of the solution y. An interesting solution different
from equation (8) is the piecewise function

y(x) =

{
2− 2 tanh2(x− x0) x > x0,
2 x ≤ x0.

(9)
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This shape is an approximation to observed waves, in which the usual crest of
the wave has been flattened. See Figure 12 on page 155.

Gompertz Tumor Equation

Researchers in tumor growth have shown that for some solid tumors the volume
V (t) of dividing cells at time t approaches a limiting volume M , even though the
tumor volume may increase by 1000 fold. Gompertz is credited with an equation
which fits the growth cycle of some solid tumors; the Gompertzian relation is

V (t) = V0e
a
b (1−e−bt).(10)

The relation says that the doubling time for the total solid tumor volume in-
creases with time. In contrast to a simple exponential model, which has a fixed
doubling time and no volume limit, the limiting volume in the Gompertz model
(10) is M = V0e

a/b.

Experts suggest to verify from Gompertz’s relation (10) the formula

V ′ = ae−btV,

and then use this differential equation to argue why the tumor volume V ap-
proaches a limiting value M with a necrotic core; see Technical Details for (11),
page 157.

A different approach is to make the substitution y = V/V0 to obtain the
differential equation

y′ = (a− b ln y)y,(11)

which is almost a logistic equation, sometimes called the Gompertz equation.
For details, see page 157. In analogy with logistic theory, low volume tumors
should grow exponentially with rate a and then slow down like a population that
is approaching the carrying capacity.

The exact mechanism for the slowing of tumor growth can be debated. One
view is that the number of reproductive cells is related to available oxygen and
nutrients present only near the surface of the tumor, hence this number decreases
with time as the necrotic core grows in size.

Parabolic Mirror

Overhead projectors might use a high-intensity lamp located
near a silvered reflector to provide a nearly parallel light source
of high brightness. It is called a parabolic mirror because the
surface of revolution is formed from a parabola, a fact which
will be justified below.
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The requirement is a shape x = g(y) such that a light beam emanating from
C(0, 0) reflects at point on the curve into a second beam parallel to the x-axis;
see Figure 10. The optical law of reflection implies that the angle of incidence
equals the angle of reflection, the straight reference line being the tangent to the
curve x = g(y).

A

y

x
θ

tangent
parabolic mirror

reflected ray

B C Figure 10. A parabolic mirror.

Symmetry suggests the restriction y ≥ 0 will suffice to determine the shape. The
assumption y(0) = 1 determines the y-axis scale.

The mirror shape x = g(y) is shown in Technical Details page 157 to satisfy

dx

dy
=

x+
√
x2 + y2

y
, x(1) = 0.(12)

This equation is equivalent for y > 0 to the separable equation du/dy =
√
u2 + 1,

u(1) = 0; see Technical Details page 157. Solving the separable equation (see page
157) gives the parabola

2x+ 1 = y2.(13)

Logarithmic Spiral

The polar curve
r = r0e

kθ(14)

is called a logarithmic spiral. In equation (14), symbols r, θ are polar variables
and r0, k are constants. It will be shown that a logarithmic spiral has the
following geometric characterization.

A logarithmic spiral cuts each radial line from the origin at a constant
angle.

The background required is the polar coordinate calculus formula

tan(α− θ) = r
dθ

dr
(15)

where α is the angle between the x-axis and the tangent line at (r, θ); see Techni-
cal Details page 158. The angle α can also be defined from the calculus formula
tanα = dy/dx.

The angle ϕ which a polar curve cuts a radial line is ϕ = α − θ. By equation
(15), the polar curve must satisfy the polar differential equation

r
dθ

dr
=

1

k
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for constant k = 1/ tanϕ. This differential equation is separable with separated
form

kdθ =
dr

r
.

Solving gives kθ = ln r + c or equivalently r = r0e
kθ, for c = − ln r0. Hence

equation (14) holds. All steps are reversible, therefore a logarithmic spiral is
characterized by the geometrical description given above.

Examples

Example 2.39 (Conical Tank)
A conical tank with xy-projection given in Figure 11 is realized by rotation about the
y-axis. An orifice at x = y = 0 is created at time t = 0. Find an approximation for
the drain time and the time to empty the tank to half-volume, given 10% drains in
20 seconds.

x

y

(0, 0)

(1/
√
3, 1)

tank
surface Figure 11. Conical tank xy-projection.

The tank is obtained by rotation of the shaded triangle about the
y-axis. The cone has height 1.

Solution: The answers are approximately 238 seconds and 104 seconds. The incorrect
drain time estimate of ten times the given 20 seconds is wrong by 19 percent. Doubling
the half-volume time to find the drain time is equally invalid (both 200 and 208 are
incorrect).

Tank cross-section A(y). From Figure 11, the line segment along the tank surface has
equation y =

√
3x; the equation was found from the two points (0, 0) and (1/

√
3, 1) using

the point-slope form of a line. A washer then has area A(y) = πx2 or A(y) = πy2/3.

Tank half-volume Vh. The half-volume is given by

Vh =
1

2
V (1) Full volume is V (1).

=
1

2

∫ 1

0

A(y)dy Apply V (h) =
∫ h

0
A(y)dy.

=
π

18
Evaluate integral, A(y) = πy2/3.

Torricelli’s equation. The differential equation (3) becomes

y′(t) = − 3k

π
√

y3(t)
, y(0) = 1,(16)

with k to be determined. The solution by separation of variables is

y(t) =

(
1− 15k

2π
t

)2/5

.(17)

The details:
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y3/2y′ = −3k

π
Separated form.

2

5
y5/2 = −3kt

π
+ C Integrate both sides.

y5/2 = −15kt

2π
+ 1 Isolate y, then use y(0) = 1.

y =

(
1− 15kt

2π

)2/5

Take roots.

Determination of k. Let V0 = V (1)/10 be the volume drained after t0 = 20 seconds.
Then t0, V0 and k satisfy

V0 = V (1)− V (y(t0)) Volume from height y(t0) to y(0).

=
π

9

(
1− y3(t0)

)
=

π

9

(
1−

(
1− 15k

2π
t0

)6/5
)

Substitute (17).

k =
2π

15t0

(
1−

(
1− 9V0

π

)5/6
)

Solve for k.

=
2π

15t0

(
1− 0.95/6

)
Drain times. The volume is Vh = π/18 at time t1 given by π/18 = V (t1) or in detail
π/18 = πy3(t1)/9. This requirement simplifies to y3(t1) = 1/2. Then(

1− 15kt1
2π

)6/5

=
1

2
Insert the formula for y(t).

1− 15kt1
2π

=
1

25/6
Take the 5/6 power of both sides.

t1 =
2π

15k

(
1− 2−5/6

)
Solve for t1.

= t0
1− 2−5/6

1− 0.95/6
Insert the formula for k.

≈ 104.4 Half-tank drain time in seconds.

The drain time t2 for the full tank is not twice this answer but t2 ≈ 2.28t1 or 237.9
seconds. The result is justified by solving for t2 in the equation y(t2) = 0, which gives

t2 =
2π

15k
=

t1
1− 2−5/6

=
t0

1− 0.95/6
.

Example 2.40 (Stefan’s Law)
An inmate sits unclothed in a room with skin temperature 33◦ Celsius. The Celsius
room temperature is given by C(r) = 14 + 11r/20 for r in minutes. Assume in
Stefan’s law k = σAE = 6.349952 × 10−8. Find the number of joules lost through
the skin in the first 20 minutes.
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Solution: The theory implies that the answer is Q(t1) where t1 = (20)(60) is in seconds
and Q′ = kT 4 − kT 4

0 . Equation r = t/60 converts seconds t to minutes r. Let T =
33 + 273.15 and T0(t) = C(t/60) + 273.15. Then

Q(t1) = k

∫ t1

0

(T 4 − (T0(t))
4)dt ≈ 110, 0095 joules.

Example 2.41 (Tsunami)
Find a piecewise solution, which represents a Tsunami wave profile, similar to equa-
tion (9), on page 150. Graph the solution on |x− x0| ≤ 2.

(y′)2 = 8y2 − 4y3, x0 = 1.

Solution: Equilibrium solutions y = 0 and y = 2 are found from the equation 8y2−4y3 =
0, which has factored form 4y2(2− y) = 0.

Non-equilibrium solutions with y′ ≥ 0 and 0 < y < 2 satisfy the first order differential
equation

y′ = 2y
√

2− y.

Consulting a computer algebra system gives the solution

y(x) = 2− 2 tanh2(
√
2(x− x0)).

Treating −y′ = 2y
√
2− y similarly results in exactly the same solution.

Hand solution. Start with the substitution u =
√
2− y. Then u2 = 2− y and 2uu′ =

−y′ = −2yu = −2(2 − u2)u, giving the separable equation u′ = u2 − 2. Reformulate it
as u′ = (u− a)(u+ a) where a =

√
2. Normal partial fraction methods apply to find an

implicit solution involving the inverse hyperbolic tangent. Some integral tables tabulate
the integral involved, therefore partial fractions can be technically avoided. Solving for u
in the implicit equation gives the hyperbolic tangent solution u =

√
2 tanh(

√
2(x− x0)).

Then y = 2 − u2 produces the answer reported above. The piecewise solution, which
represents an ocean Tsunami wave, is given by

y(x) =

{
2 x ≤ 1, back-wave

2− 2 tanh2(
√
2(x− 1)) 1 < x < ∞. wave front

The figure can be made by hand. A computer algebra graphic appears in Figure 12, with
maple code as indicated.

2
y

x

3−1
0.02

Figure 12. Tsunami wave profile.
The back-wave is at height 2. The front wave
has height given by the hyperbolic tangent term,
which approaches zero as x → ∞. The maple
code:
g:=x->2-2*tanh(sqrt(2)*(x-1))^2;

f:=x->piecewise(x<1,2,g(x));

plot(f,-1..3);
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Example 2.42 (Gompertz Equation)
First, solve the Gompertz tumor equation, and then make (a) a phase line diagram
and (b) a direction field.

y′ = (8− 2 ln y)y.

Solution: The only equilibrium solution computed from G(y) ≡ (8 − 2 ln y)y = 0 is
y = e4 ≈ 54.598, because y = 0 is not in the domain of the right side of the differential
equation.

Non-equilibrium solutions require integration of 1/G(y). Evaluation using a computer
algebra system gives the implicit solution

−1

2
ln(8− 2 ln(y)) = x+ c.

Solving this equation for y in terms of x results in the explicit solution

y(x) = c1e
− 1

2 e
−2x

, c1 = e4−
1
2 e

−2c

.

The maple code for these two independent tasks appears below.

p:=int(1/((8-2*ln(y))*y),y);

solve(p=x+c,y);

The phase line diagram in Figure 13 requires the equilibrium y = e4 and formulas
G(y) = (8 − 2 ln y)y, G′(y) = 8 − 2 ln y − 2. Then G′(e4) = −2 implies G changes sign
from positive to negative at y = e4, making y = e4 a stable sink or funnel.

y = e4

sink

Figure 13. Gompertz phase line diagram.
The unique equilibrium at y = e4 is a stable sink.

A computer-generated direction field appears in Figure 14, using the following maple

code. Visible is the funnel structure at the equilibrium point.

de:=diff(y(x),x)=y(x)*(8-2*ln(y(x)));

with(DEtools):

DEplot(de,y(x),x=0..4,y=1..70);

Figure 14. A Gompertz direc-
tion field.

Details and Proofs

Technical Details for (2): The derivation of d
dt (V (y(t))) = −k

√
y(t) uses Torricelli’s

speed formula |v| =
√

2gy(t). The volume change in the tank for an orifice of cross-

156



2.8 Science and Engineering Applications

sectional area a is −av. Therefore, dV (y(t))/dt = −a
√
2gy(t). Succinctly, dV (y(t))/dt =

−k
√
y(t). This completes the verification.

Technical Details for (3): The equation y′(t) = −k

√
y(t)

A(y(t))
is equivalent to equation

A(y(t)) y′(t) = −k
√

y(t). Equation dV (y(t))/dt = V ′(y(t))y′(t) obtained by the chain
rule, definition A(y) = V ′(y), and equation (2) give result (3).

Technical Details for (2.8): To be verified is the Torricelli orifice equation |v| =√
2gh for the speed |v| of a droplet falling from height h. Let’s view the droplet as

a point mass m located at the droplet’s centroid. The distance x(t) from the droplet
to the orifice satisfies a falling body model mx′′(t) = −mg. The model has solution
x(t) = −gt2/2 + x(0), because x′(0) = 0. The droplet arrives at the orifice in time
t given by x(t) = 0. Because x(0) = h, then t =

√
2h/g. The velocity v at this

time is v = x′(t) = −gt = −
√
2gh. A technically precise derivation can be done using

kinetic and potential energy relations; some researchers prefer energy method derivations
for Torricelli’s law. Formulas for the orifice speed depend upon the shape and size of
the orifice. For common drilled holes, the speed is a constant multiple c

√
2gh, where

0 < c < 1.

Technical Details for (11): Assume V = V0e
µ(t) and µ(t) = a(1 − e−bt)/b. Then

µ′ = ae−bt and

V ′ = V0µ
′(t)eµ(t) Calculus rule (eu)′ = u′eu.

= µ′(t)V Use V = V0e
µ(t).

= ae−btV Use µ′ = ae−bt.

The equation V ′ = ae−btV is a growth equation y′ = ky where k decreases with time,
causing the doubling time to increase. One biological explanation for the increase in
the mean generation time of the tumor cells is aging of the reproducing cells, causing a
slower dividing time. The correctness of this explanation is debatable.

Let y = V/V0. Then

y′

y
=

V ′

V
The factor 1/V0 cancels.

= ae−bt Differential equation V ′ = ae−btV applied.

= a− bµ(t) Use µ(t) = a(1− e−bt)/b.

= a− b ln(V/V0) Take logs across V/V0 = eµ(t) to find µ(t).

= a− b ln y Use y = V/V0.

Hence y′ = (a − b ln y)y. When V ≈ V0, then y ≈ 1 and the growth rate a − b ln y is
approximately a. Hence the model behaves like the exponential growth model y′ = ay
when the tumor is small. The tumor grows subject to a− b ln y > 0, which produces the
volume restraint ln y = a/b or Vmax = V0e

a/b.

Technical Details for (12): Polar coordinates r, θ will be used. The geometry in the
parabolic mirror Figure 10 shows that triangle ABC is isosceles with angles α, α and
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π − 2α. Therefore, θ = 2α is the angle made by segment CA with the x-axis (C is the
origin (0, 0)).

y = r sin θ Polar coordinates.

= 2r sinα cosα Use θ = 2α and sin 2x = 2 sinx cosx.

= 2r tanα cos2 α Identity tanx = sinx/ cosx applied.

= 2r
dy

dx
cos2 α Use calculus relation tanα = dy/dx.

= r
dy

dx
(1 + cos 2α) Identity 2 cos2 x− 1 = cos 2x applied.

=
dy

dx
(r + x) Use x = r cos θ and 2α = θ.

For y > 0, equation (12) can be solved as follows.

dx

dy
=

x

y
+
√
(x/y)2 + 1 Divide by y on the right side of (12).

y
du

dy
=
√
u2 + 1 Substitute u = x/y (u cancels).

∫ du√
u2 + 1

=
∫ dy

y
Integrate the separated form.

sinh−1 u = ln y Integral tables. The integration constant is
zero because u(1) = 0.

x

y
= sinh(ln y) Let u = x/y and apply sinh to both sides.

=
1

2

(
eln y − e− ln y

)
Definition sinhu = (eu − eu)/2.

=
1

2
(y − 1/y) Identity eln y = y.

Clearing fractions in the last equality gives 2x+1 = y2, a parabola of the form X = Y 2.

Technical Details for (15): Given polar coordinates r, θ and tanα = dy/dx, it will
be shown that r dθ/dr = tan(α− θ). Details require the formulas

x = r cos θ,
dx

dr
= cos θ − r

dθ

dr
sin θ,

y = r sin θ,
dy

dr
= sin θ + r

dθ

dr
cos θ.

(18)

Then

tanα =
dy

dx
Definition of derivative.

=
dy/dr

dx/dr
Chain rule.

=
sin θ + r dθ

dr cos θ

cos θ − r dθ
dr sin θ

Apply equation (18).

=
tan θ + r dθ

dr

1− r dθ
dr tan θ

Divide by cos θ.
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Let X = rdθ/dr and cross-multiply to eliminate fractions. Then the preceding relation
implies (1−X tan θ) tanα = tan θ +X and finally

r
dθ

dr
= X Definition of X.

=
tanα− tan θ

1 + tanα tan θ
Solve for X in (1−X tan θ) tanα = tan θ +X.

= tan(α− θ) Apply identity tan(a− b) =
tan a− tan b

1 + tan a tan b
.

Physicists and engineers often justify formula (15) referring to Figure 15. Such diagrams
are indeed the initial intuition required to guess formulas like (15).

θ

C
x

tangenty

A

ϕ

Figure 15. Polar differential triangle.
Angle ϕ is the signed angle between the radial vec-
tor and the tangent line.

Exercises 2.8 �

Tank Draining

1. A cylindrical tank 6 feet high with 6-
foot diameter is filled with gasoline. In
15 seconds, 5 gallons drain out. Find
the drain times for the next 20 gallons
and the half-volume.

2. A cylindrical tank 4 feet high with 5-
foot diameter is filled with gasoline.
The half-volume drain time is 11 min-
utes. Find the drain time for the full
volume.

3. A conical tank is filled with water. The
tank geometry is a solid of revolution
formed from y = 2x, 0 ≤ x ≤ 5. The
units are in feet. Find the drain time for
the tank, given the first 5 gallons drain
out in 12 seconds.

4. A conical tank is filled with oil. The
tank geometry is a solid of revolution
formed from y = 3x, 0 ≤ x ≤ 5.
The units are in meters. Find the half-
volume drain time for the tank, given
the first 5 liters drain out in 10 seconds.

5. A spherical tank of diameter 12 feet is
filled with water. Find the drain time

for the tank, given the first 5 gallons
drain out in 20 seconds.

6. A spherical tank of diameter 9 feet
is filled with solvent. Find the half-
volume drain time for the tank, given
the first gallon drains out in 3 seconds.

7. A hemispherical tank of diameter 16
feet is filled with water. Find the drain
time for the tank, given the first 5 gal-
lons drain out in 25 seconds.

8. A hemispherical tank of diameter 10
feet is filled with solvent. Find the half-
volume drain time for the tank, given
the first gallon drains out in 4 seconds.

9. A parabolic tank is filled with water.
The tank geometry is a solid of revolu-
tion formed from y = 2x2, 0 ≤ x ≤ 2.
The units are in feet. Find the drain
time for the tank, given the first 5 gal-
lons drain out in 12 seconds.

10. A parabolic tank is filled with oil. The
tank geometry is a solid of revolution
formed from y = 3x2, 0 ≤ x ≤ 2.
The units are in meters. Find the half-
volume drain time for the tank, given
the first 4 liters drain out in 16 seconds.
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Torricelli’s Law and Uniqueness
It it known that Torricelli’s law gives
a differential equation for which Picard’s
existence-uniqueness theorem is inapplica-
ble for initial data y(0) = 0.

11. Explain why Torricelli’s equation y′ =
k
√
y plus initial condition y(0) = 0 fails

to satisfy the hypotheses in Picard’s
theorem. Cite all failed hypotheses.

12. Consider a typical Torricelli’s law
equation y′ = k

√
y with initial condi-

tion y(0) = 0. Argue physically that
the depth y(t) of the tank for t < 0
can be zero for an arbitrary duration of
time t near t = 0, even though y(t) is
not zero for all t.

13. Display infinitely many solutions y(t)
on −5 ≤ t ≤ 5 of Torricelli’s equation
y′ = k

√
y such that y(t) is not identi-

cally zero but y(t) = 0 for 0 ≤ t ≤ 1.

14. Does Torricelli’s equation y′ = k
√
y

plus initial condition y(0) = 0 have a
solution y(t) defined for t ≥ 0? Is it
unique? Apply Picard’s theorem and
Peano’s theorem, if possible.

Clepsydra: Water Clock Design
A surface of revolution is used to make a
container of height h feet for a water clock.
An increasing curve y = f(x) on 0 ≤ x ≤ 1
is revolved around the y-axis to make the
container shape, e.g., y = x makes a con-
ical tank. Water drains by gravity out of
diameter d orifice at (0, 0). The tank wa-
ter level must fall at a constant rate of r
inches per hour, important for marking a
time scale on the tank. Find d and f(x),
given h and r.

15. h = 5 feet, r = 4 inches/hour.
Answers: f(x) = 5x4, d =
0.05460241726 ≈ 3/64 inch.

16. h = 4, r = 4

17. h = 3, r = 6

18. h = 4, r = 3

19. h = 3, r = 2

20. h = 4, r = 1

Stefan’s Law
An unclothed prison inmate is handcuffed
to a chair. The inmate’s skin tempera-
ture is 33◦ Celsius. Find the number of
Joules of heat lost by the inmate’s skin
after t0 minutes, given skin area A in
square meters, Kelvin room temperature
T0(r) = C(r/60)+273.15 and Celsius room
temperature C(t). Variables: t minutes,
r seconds. Use equation dQ

dt = k(T 4 −
T0(t)

4) page 149. Assume emissivity σ =
5.6696×10−8K−4 Watts per square meter,
K=degrees Kelvin.

21. E = 0.9, A = 1.5, t0 = 10, C(t) =
24 + 7t/t0

22. E = 0.9, A = 1.7, t0 = 12, C(t) =
21 + 10t/12

23. E = 0.9, A = 1.4, t0 = 10, C(t) =
15 + 15t/t0

24. E = 0.9, A = 1.5, t0 = 12, C(t) =
15 + 14t/t0

On the next two exercises, use a com-
puter algebra system (CAS). Same
assumptions as Exercise 21.

25. E = 0.8, A = 1.4, t0 = 15, C(t) =
15 + 15 sinπ(t− t0)/12

26. E = 0.8, A = 1.4, t0 = 20, C(t) =
15 + 14 sinπ(t− t0)/12

Tsunami Wave Shape
Plot the piecewise solution

y(x) = 2−
{

2 tanh2(x− x0) x>x0,
0 x≤x0.

(19)

See Figure 12 page 155.

27. x0 = 2, |x− x0| ≤ 2

28. x0 = 3, |x− x0| ≤ 4.

Tsunami Wavefront
Find non-equilibrium solutions for the
given differential equation.
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29. (y′)2 = 12y2 − 10y3.

30. (y′)2 = 13y2 − 12y3.

31. (y′)2 = 8y2 − 2y3.

32. (y′)2 = 7y2 − 4y3.

Gompertz Tumor Equation
Solve the Gompertz tumor equation y′ =
(a− b ln y)y.

33. a = 1, b = 1

34. a = 1, b = 2

35. a = −1, b = 1

36. a = −1, b = 2

37. a = 4, b = 1

38. a = 5, b = 1
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2.9 Exact Equations and Level Curves

A level curve or a conservation law is an equation of the form

U(x, y) = c.

Hikers like to think of U as the altitude at position (x, y) on the map and U(x, y) =
c as the curve which represents the easiest walking path, that is, altitude does
not change along that route. The altitude is conserved along the route, hence
the terminology conservation law.

Other examples of level curves are isobars and isotherms. An isobar is a planar
curve where the atmospheric pressure is constant. An isotherm is a planar curve
along which the temperature is constant.

Definition 2.8 (Potential)
The function U(x, y) in a conservation law is called a potential. The dynamical
equation is the first order differential equation

Mdx+Ndy = 0, M = Ux(x, y), N = Uy(x, y).(1)

The dynamics or changes in x and y are described by (1). To solve Mdx+Ndy = 0
means this: find a conservation law U(x, y) = c so that (1) holds. Formally, (1) is
found by implicit differentiation of U(x, y) = c; see Technical Details, page 165.

The Potential Problem and Exactness

The potential problem assumes given a dynamical equation Mdx +Ndy = 0
and seeks to find a potential U(x, y) from the set of equations

Ux = M(x, y),
Uy = N(x, y).

(2)

If some potential U(x, y) satisfies equation (2), then Mdx +Ndy = 0 is said to
be exact. It is a consequence of the mixed partial equality Uxy = Uyx that the
existence of a solution U implies My = Nx. Surprisingly, this condition is also
sufficient.

Theorem 2.10 (Exactness)
Let M(x, y), N(x, y) and their first partials be continuous in a rectangle D. Assume
My(x, y) = Nx(x, y) in D and (x0, y0) is a point of D. Then the equation Mdx+
Ndy = 0 is exact with potential U given by the formula

U(x, y) =

∫ x

x0

M(t, y)dt+

∫ y

y0

N(x0, s)ds.(3)

The proof is on page 165.
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2.9 Exact Equations and Level Curves

The Method of Potentials

Formula (3) has technical problems because it requires two integrations. The
integrands have a parameter: they are parametric integrals. Integration effort
can be reduced by using the method of potentials for Mdx+Ndy = 0, which
applies equation (3) with x0 = y0 = 0 in order to simplify integrations.

Test My = Nx Compute the partials My and Nx, then test the
equality My = Nx. Proceed if equality holds.

Trial Potential Let U =
∫ x
0 M(x, y)dx +

∫ y
0 N(0, y)dy. Evaluate

both integrals.

Test U(x, y) Compute Ux and Uy, then test both Ux = M and
Uy = N . This step finds integration errors.

Examples

Example 2.43 (Exactness Test)
Test Mdx +Ndy = 0 for the existence of a potential U , given M = 2xy + y3 + y
and N = x2 + 3xy2 + x,

Solution: Theorem 2.10 implies that Mdx +Ndy = 0 has a potential U exactly when
My = Nx. It suffices to compute the partials and show they are equal.

My = ∂y(2xy + y3 + y) Nx = ∂x(x
2 + 3xy2 + x)

= 2x+ 3y2 + 1, = 2x+ 3y2 + 1.

Example 2.44 (Conservation Law Test)
Test whether U = x2y + xy3 + xy is a potential for Mdx + Ndy = 0, given
M = 2xy + y3 + y, N = x2 + 3xy2 + x.

Solution: By definition, it suffices to test the equalities Ux = M and Uy = N .

Ux = ∂x(x
2y + xy3 + xy) Uy = ∂y(x

2y + xy3 + xy)

= 2xy + y3 + y = x2 + 3xy2 + x

= M , = N .

Example 2.45 (Method of Potentials)

Solve y′ = − 2xy + y3 + y

x2 + 3xy2 + x
.

Solution: The implicit solution x2y + xy3 + xy = c will be justified.

The equation has the formMdx+Ndy = 0 whereM = 2xy+y3+y andN = x2+3xy2+x.
It is exact, by Theorem 2.10, because the partialsMy = 2x+3y2+1 and Nx = 2x+3y2+1
are equal.

The method of potentials applies to find the potential U = x2y + xy3 + xy as follows.
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U =
∫ x

0
M(x, y)dx+

∫ y

0
N(0, y)dy Formula for U , Theorem 2.10.

=
∫ x

0

(
2xy + y3 + y

)
dx+

∫ y

0
(0)dy Insert M and N .

= x2y + xy3 + xy Evaluate integral.

Observe that N(x, y) simplifies to zero at x = 0, which reduces the actual work in half.
Any choice other than x0 = 0 in Theorem 2.10 increases the labor.

To test the solution, compute the partials of U , then compare them to M and N ; see
Example 2.44.

Example 2.46 (Exact Equation)

Solve
x+ y

(1− x)2
dx+

x

1− x
dy = 0.

Solution: The implicit solution
xy + x

1− x
+ ln |x− 1| = c will be justified.

Assume given the exactness of the equation Mdx+Ndy = 0, where M = (x+y)/(1−x)2

and N = x/(1− x). Apply Theorem 2.10:

U =
∫ x

0
M(x, y)dx+

∫ y

0
N(0, y)dy Method of potentials.

=
∫ x

0

x+ y

(1− x)2
dx+

∫ y

0
(0)dy Substitute for M , N .

=
∫ x

0

(
y + 1

(x− 1)2
+

1

x− 1

)
dx Partial fractions.

=
xy + x

1− x
+ ln |x− 1| Evaluate integral.

Additional examples, including the context for the preceding example, appear in
the next section.

Remarks on the Method of Potentials

Indefinite integrals
∫
M(x, y)dx and

∫
N(0, y)dy can be used, provided the two

integration answers are zero at x = 0 and y = 0, respectively. Swapping the roles
of x and y gives U =

∫ y
0 N(x, y)dy+

∫ x
0 M(x, 0)dx, a form which may have easier

integrations.

Can the test My = Nx be skipped? True, it is enough to verify that the potential
works (the last step). If the last step fails, then the first step must be done to
resolve the error.

The equation ydx + 2xdy = 0 fails My = Nx and the trial potential U = xy
fails Ux = M , Uy = N . In the equivalent form x−1dx+ 2y−1dy = 0, the method
of potentials does not apply directly, because (0, 0) is outside the domain of
continuity. Nevertheless, the trial potential U = lnx + 2 ln y passes the test
Ux = M , Uy = N . Such pleasant accidents account for the popularity of the
method of potentials.

It is prudent in applications of Theorem 2.10 to test x0 = y0 = 0 in M and N , to
detect a discontinuity. If detected, then another vertex x0, y0 of the unit square,
e.g., x0 = y0 = 1, might suffice.
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Details and Proofs

Justification of equation (1) uses the calculus chain rule

d

dt
U(x(t), y(t)) = Ux(x(t), y(t))x

′(t) + Uy(x(t), y(t))y
′(t)

and differential notation dx = x′(t)dt, dy = y′(t)dt. To justify (1), let (x(t), y(t))
be some parameterization of the level curve, then differentiate on t across the
equation U(x(t), y(t)) = c and apply the chain rule.

Proof of Theorem 2.10

Background result. The proof assumes the following identity:

∂

∂y

∫ x

x0

M(t, y)dt =

∫ x

x0

My(t, y)dt.

The identity is obtained by forming the Newton quotient (G(y + h) − G(y))/h for the
derivative ofG(y) =

∫ x

x0
M(t, y)dt and then taking the limit as h approaches zero. Techni-

cally, the limit must be taken inside an integral sign, which for success requires continuity
of the partial My.

Details. It has to be shown that the implicit relation U(x, y) = c with U defined by
(3) is a solution of the exact equation Mdx +Ndy = 0, that is, the relations Ux = M ,
Uy = N hold. The partials are calculated from the background result as follows.

Ux = ∂x
∫ x

x0
M(t, y)dt Use (3), in which the second integral does not de-

pend on x.

= M(x, y), Fundamental theorem of calculus.

Uy = ∂y
∫ x

x0
M(t, y)dt

+ ∂y
∫ y

y0
N(x0, s)ds

Use (3).

=
∫ x

x0
My(t, y)dt+N(x0, y) Apply the background result and the fundamental

theorem.

=
∫ x

x0
Nx(t, y)dt+N(x0, y) Substitute My = Nx.

= N(x, y) Fundamental theorem of calculus.

■

Power Series Proof of Theorem 2.10 It will be assumed that M and N have power
series expansions about x = y = 0. Let U1 =

∫
M(x, y)dx and U2 =

∫
N(x, y)dy with

U1(0, y) = U2(x, 0) = 0. The series forms of U1 and U2 will be

U1 =
∑∞

i=1

∑∞
j=1 cijx

iyj +
∑∞

i=1 aix
i,

U2 =
∑∞

i=1

∑∞
j=1 dijx

iyj +
∑∞

j=1 bjy
j .

The identities ∂y∂xU1 = My = Nx = ∂x∂yU2 imply that cij = dij , using term-by-term
differentiation. The trial potential is U = U1 +

∑∞
j=1 bjy

j or U = U2 +
∑∞

i=1 aix
i. From

these relations it follows that Ux = M and Uy = N . Therefore, Mdx+Ndy = 0 is exact
with potential U .
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Exercises 2.9 �

Exactness Test
Test the equality My = Nx for the given
equation, as written, and report exact when
true. Do not try to solve the differential
equation. See Example 2.43, page 163.

1. (y − x)dx+ (y + x)dy = 0

2. (y + x)dx+ (x− y)dy = 0

3. (y +
√
xy)dx+ (−y)dy = 0

4. (y +
√
xy)dx+ xydy = 0

5. (x2 + 3y2)dx+ 6xydy = 0

6. (y2 + 3x2)dx+ 2xydy = 0

7. (y3 + x3)dx+ 3xy2dy = 0

8. (y3 + x3)dx+ 2xy2dy = 0

9. 2xydx+ (x2 − y2)dy = 0

10. 2xydx+ (x2 + y2)dy = 0

Conservation Law Test
Test conservation law U(x, y) = c for a so-
lution to Mdx + Ndy = 0. See Example
2.44, page 163.

11. 2xydx+ (x2 + 3y2)dy = 0,
x2y + y3 = c

12. 2xydx+ (x2 − 3y2)dy = 0,
x2y − y3 = c

13. (3x2 + 3y2)dx+ 6xydy = 0,
x3 + 3xy2 = c

14. (x2 + 3y2)dx+ 6xydy = 0,
x3 + 3xy2 = c

15. (y − 2x)dx+ (2y + x)dy = 0,
xy − x2 + y2 = c

16. (y + 2x)dx+ (−2y + x)dy = 0,
xy + x2 − y2 = c

Exactness Theorem
Find an implicit solution U(x, y) = c. See
Examples 2.45-2.46, page 163.

17. (y − 4x)dx+ (4y + x)dy = 0

18. (y + 4x)dx+ (4y + x)dy = 0

19. (ey + ex)dx+ (xey)dy = 0

20. (e2y + ex)dx+ (2xe2y)dy = 0

21. (1 + yexy)dx+ (2y + xexy)dy = 0

22. (1 + ye−xy)dx+ (xe−xy − 4y)dy = 0

23. (2x+ arctan y)dx+
x

1 + y2
dy = 0

24. (2x+ arctan y)dx+
x+ 2y

1 + y2
dy = 0

25.
2x5 + 3y3

x4y
dx− 2y3 + x5

x3y2
dy = 0

26.
2x4 + y2

x3y
dx− 2x4 + y2

2x2y2
dy = 0

27. Mdx+Ndy = 0, M = ex sin y + tan y,
N = ex cos y + x sec2 y

28. Mdx+Ndy = 0, M = ex cos y+tan y,
N = −ex sin y + x sec2 y

29.
(
x2 + ln y

)
dx+

(
y3 + x/y

)
dy = 0

30.
(
x3 + ln y

)
dx+

(
y3 + x/y

)
dy = 0
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2.10 Special equations

Homogeneous-A Equation

A first order equation of the form y′ = F (y/x) is called a homogeneous class
A equation. The substitution u = y/x changes it into an equivalent first order
separable equation xu′+u = F (u). Solutions of y′ = F (y/x) and xu′+u = F (u)
are related by the equation y = xu.

Homogeneous-C Equation

Let R(x, y) be a rational function constructed from two affine functions:

R(x, y) =
a1x+ b1y + c1
a2x+ b2y + c2

.

A first order equation of the form y′ = G(R(x, y)) is called a homogeneous
class C equation . If the system

a1a+ b1b = c1, a2a+ b2b = c2

has a solution (a, b), then the change of variables x = X − a, y = Y − b effec-
tively eliminates the terms c1 and c2. Accordingly, the equation y′ = G(R(x, y))
converts into a homogeneous class A equation

Y ′ = G

(
a1 + b1Y/X

a2 + b2Y/X

)
.

This equation type was solved in the previous paragraph. Justification follows
from y′ = Y ′ and R(X − a, Y − b) = (a1X + b1Y )/(a2X + b2Y ).

Bernoulli’s Equation

The equation y′+p(x)y = q(x)yn is called the Bernoulli differential equation.
If n = 1 or n = 0, then this is a linear equation. Otherwise, the substitution u =
y/yn changes it into the linear first order equation u′+(1−n)p(x)u = (1−n)q(x).

Integrating Factors and Exact Equations

An equation Mdx + Ndy = 0 is said to have an integrating factor Q(x, y) if
multiplication across the equation byQ produces an exact equationMdx+Ndy =
0. The definition implies M = QM, N = QN and My = Nx. The search for Q is
only interesting when My ̸= Nx.

A systematic approach to finding Q includes a list of trial integrating factors,
which are known to work for special equations:
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Q = xayb Require xy (My −Nx) = ayN− bxM. This integrating factor
can introduce extraneous solutions x = 0 or y = 0.

Q = eax+by Require My −Nx = aN− bM.

Q = e
∫
µ(x)dx Require µ = (My −Nx) /N to be independent of y.

Q = e
∫
ν(y)dy Require ν = (Nx −My) /M to be independent of x.

Examples

Example 2.47 (Homogeneous-A)
Solve yy′ = 2x+ y2/x

Solution: The implicit solution will be shown to be

y2 = cx2 + 4x2 lnx.

The equation yy′ = 2x+ y2/x is not separable, linear nor exact. Division by y gives the
homogeneous-A form y′ = 2/u+ u where u = y/x. Then

xu′ + u = 2/u+ u Form xu′ + u = F (u).

xu′ = 2/u Separable form.

u2 = c+ 4 lnx Implicit solution u.

y2 = x2u2 Change of variables y = xu.

= cx2 + 4x2 lnx Substitute u2 = c+ 4 lnx.

Check the implicit solution against yy′ = 2x+ y2/x as follows.

LHS = yy′ Left side of yy′ = 2x+ y2/x.

= 1
2 (y

2)′ Calculus identity.

= 1
2 (cx

2 + 4x2 lnx)′ Substitute.

= cx+ 4x lnx+ 2x Differentiate.

= 2x+ y2/x Use y2 = cx2 + 4x2 lnx.

= RHS. Equality verified.

Example 2.48 (Homogeneous-C)

Solve y′ =
x+ y + 3

x− y + 5
.

Solution: The implicit solution will be shown to be

2 ln(x+ 4) + ln

((
y − 1

x+ 4

)2

+ 1

)
− 2 arctan

(
y − 1

x+ 4

)
= c.

The equation would be of type homogeneous-A, if not for the constants 3 and 5 in the
fraction (x+y+3)/(x−y+5). The method applies a translation of coordinates x = X−a,
y = Y − b as below.
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x+ y + 3 = X + Y,
x− y + 5 = X − Y

Require the translation to remove the con-
stant terms.

3 = a+ b,
5 = a− b

SubstituteX = x+a, Y = y+b and simplify.

a = 4, b = −1 Unique solution of the system.

dY

dX
=

X + Y

X − Y
Translated type homogeneous-A equation.

X
du

dX
+ u =

1 + u

1− u
Use u = Y/X to eliminate Y .

1− u

1 + u2

du

dX
=

1

X
Separated form.

The separated form is integrated as
∫
du/(1+u2)−

∫
udu/(1+u2) =

∫
dX/X. Evaluation

gives the implicit solution

arctan(u)− 1

2
ln
(
u2 + 1

)
= C + lnX.

Changing variables x = X − 4, y = Y + 1 and consolidating constants produces the
announced solution.

To check the solution by maple assist, use the following code, which tests U(x, y) = c
against y′ = f(x, y). The test succeeds if odetest returns zero.

# Maple

U:=(x,y)->2*ln(x+4)+ln(((y-1)/(x+4))^2+1)-2*arctan((y-1)/(x+4));

f:=(x,y)->(x+y+3)/(x-y+5); DE:=diff(y(x),x)=f(x,y(x));

odetest(U(x,y(x))=c,DE);

Example 2.49 (Bernoulli Substitution)
Solve y′ + 2y = y2.

Solution: It will be shown that the solution is y =
1

1 + Cex
.

The equation can be solved by other methods, notably separation of variables. Bernoulli’s
substitution u = y/yn will be applied to find the equivalent first order linear differential
equation, as follows.

u′ = (y/y2)′ Bernoulli’s substitution, n = 2.

= −y−2y′ Chain rule.

= −1 + y−1 Use y′ + 2y = y2.

= −1 + u Use u = y/y2.

This linear equation u′ = −1 + u has equilibrium solution up = 1 and homogeneous
solution uh = Cex. Therefore, u = uh + up gives y = u−1 = 1/(1 + Cex).

Example 2.50 (Integrating factor Q = xayb)
Solve (3y + 4xy2)dx+ (4x+ 5x2y)dy = 0.
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Solution: The implicit solution x3y4 + x4y5 = c will be justified.

The equation is not exact as written. To explain why, let M = 3y + 4xy2 and N =
4x+ 5x2y. Then My = 8xy + 3, Nx = 10xy + 4 which implies My ̸= Nx (not exact).

The factor Q = xayb will be an integrating factor for the equation provided a and b are
chosen to satisfy xy (My −Nx) = ayN−bxM. This requirement becomes xy (−2xy − 1) =
ay(4x + 5x2y) − bx(3y + 4xy2). Comparing terms across the equation gives the 2 × 2
system of equations

4a − 3b = −1,
5a − 4b = −2.

The unique solution by Cramer’s determinant rule is

a =

∣∣∣∣ −1 −3
−2 −4

∣∣∣∣∣∣∣∣ 4 −3
5 −4

∣∣∣∣ = 2, b =

∣∣∣∣ 4 −1
5 −2

∣∣∣∣∣∣∣∣ 4 −3
5 −4

∣∣∣∣ = 3.

Then Q = x2y3 is the required integrating factor. After multiplication by Q, the original
equation becomes the exact equation

(3x2y4 + 4x3y5)dx+ (4x3y3 + 5x4y4)dy = 0.

The method of potentials applied to M = 3x2y4 + 4x3y5 and N = 4x3y3 + 5x4y4 finds
the potential U as follows.

U =
∫ x

0
M(x, y)dx+

∫ y

0
N(0, y)dy Method of potentials formula.

=
∫ x

0
(3x2y4 + 4x3y5)dx+

∫ y

0
(0)dy Insert M and N .

= x3y4 + x4y5 Evaluate integral.

Example 2.51 (Integrating factor Q = eax+by)
Solve (ex + ey) dx+ (ex + 2ey) dy = 0.

Solution: The implicit solution 2e3x+3y + 3e2x+4y = c will be justified. A constant 5/6
appears in the integrations below, mysteriously absent in the solution, because 5/6 has
been absorbed into the constant c.

Let M = ex + ey and N = ex + 2ey. Then My = ey and Nx = ex (not exact). The
condition for Q = eax+by to be an integrating factor is My − Nx = aN − bM, which
becomes the requirement

ey − ex = a (ex + 2ey)− b (ex + ey) .

The equations are satisfied provided (a, b) is a solution of the 2× 2 system of equations

a − b = −1,
2a − b = 1.

The unique solution is a = 2, b = 3, by elimination. The original equation multiplied
by the integrating factor Q = e2x+3y is the exact equation Mdx + Ndy = 0, where
M = e3x+3y + e2x+4y and N = e3x+3y + 2e2x+4y. The method of potentials applies to
find the potential U , as follows.
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U =
∫ x

0
M(x, y)dx+

∫ y

0
N(0, y)dy Method of potentials.

=
∫ x

0

(
e3x+3y + e2x+4y

)
dx+

∫ y

0

(
e3y + 2e4y

)
dy Insert M and N .

= 1
3e

3x+3y + 1
2e

2x+4y − 5
6 Evaluate integral.

Example 2.52 (Integrating factor Q = Q(x))
Solve (x+ y)dx+ (x− x2)dy = 0.

Solution: The implicit solution
xy + x

1− x
+ ln |x− 1| = c will be justified.

Let M = x+ y, N = x− x2. Then My = 1 and Nx = 1− 2x (not exact). Then

µ =
My −Nx

N
Hope µ depends on x alone.

= 2/(1− x) Substitute M, N; success.

Q = e
∫
µ(x)dx Integrating factor.

= e−2 ln |1−x| Substitute for µ and integrate.

= (1− x)−2 Simplified factor found.

Multiplication of Mdx+Ndy = 0 by Q gives the corresponding exact equation

x+ y

(1− x)2
dx+

x

1− x
dy = 0.

The method of potentials applied to M = (x + y)/(1 − x)2, N = x/(1 − x) finds the
implicit solution as follows.

U =
∫ x

0
M(x, y)dx+

∫ y

0
N(0, y)dy Method of potentials.

=
∫ x

0

x+ y

(1− x)2
dx+

∫ y

0
(0)dy Substitute for M , N .

=
∫ x

0

(
y + 1

(x− 1)2
+

1

x− 1

)
dx Partial fractions.

=
xy + x

1− x
+ ln |x− 1| Evaluate integral.

Example 2.53 (Integrating factor Q = Q(y))
Solve (y − y2)dx+ (x+ y)dy = 0.

Solution: Interchange the roles of x and y, then apply the previous example, to obtain

the implicit solution
xy + y

1− y
+ ln |y − 1| = c.

This example happens to fit the case when the integrating factor is a function of y alone.
The details parallel the previous example.
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Details and Proofs

The exactness condition My = Nx for M = QM and N = QN becomes in the
case Q = xayb the relation

bxayb−1M+ xaybMy = axa−1ybN+ xaybNx

from which rearrangement gives xy (My −Nx) = ayN − bxM. The case Q =
eax+by is similar.

Consider Q = e
∫
µ(x)dx. Then Q′ = µQ. The exactness condition My = Nx for

M = QM and N = QN becomes QMy = µQN+QNx and finally

µ =
My −Nx

N
.

The similar case Q = e
∫
ν(y)dy is obtained from the preceding case, by swapping

the roles of x, y.

Exercises 2.10 �

Homogeneous-A Equations
Find f such that the equation can be writ-
ten in the form y′ = f(y/x). Solve for y
using a computer algebra system.

1. xy′ = y2/x

2. x2y′ = x2 + y2

3. yy′ =
xy2

x2 + y2

4. yy′ = 2xy2

x2+y2

5. y′ =
1

x+ y

6. y′ = y/x+ x/y

7. y′ = (1 + y/x)2

8. y′ = 2y/x+ x/y

9. y′ = 3y/x+ x/y

10. y′ = 4y/x+ x/y

Homogeneous-C Equations
Given y′ = f(x, y), decompose f(x, y) =
G(R(x, y)) where R(x, y) = a1x+b1y+c1

a2x+b2y+c2
,

then convert to Homogeneous-A. Investi-
gate solving y′ = f(x, y) by computer.

11. y′ = − (y+1)x
y2+2 y+1+x2

12. y′ = 2
(1 + y)x

x2 + y2 + 2 y + 1

13. y′ =
(1 + x) y

x2 + 4 y2 + 2x+ 1

14. y′ =
1 + x

y + 1 + x

15. y′ =
1 + y

x+ y + 1

16. x(y + 1)y′ = x2 + y2 + 2y + 1

17. y′ =
x2 − y2 − 2 y − 1

(1 + y)x

18. y′ =
(y + 2x)

2

x2

19. y′ =
x2 + xy + y2 + 5x+ 4 y + 7

(x+ 2) (3 + y + x)

20. y′ = −x2 − xy − y2 + 5x− 5 y + 5

(3 + x) (4 + y + x)

Bernoulli’s Equation
Identify the exponent n in Bernoulli’s equa-
tion y′+p(x)y = q(x)yn and solve for y(x).
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21. y−2y′ = 1 + x

22. yy′ = 1 + x

23. y−2y′ + y−1 = 1 + x

24. yy′ + y2 = 1 + x

25. y′ + y = y1/3

26. y′ + y = y1/5

27. y′ − y = y−1/2

28. y′ − y = y−1/3

29. yy′ + y2 = ex

30. y′ + y = e2xy2

Integrating Factor xayb

Report an implicit solution for the given
equation Mdx + Ndy = 0, using an inte-
grating factor Q = xayb. Follow Example
2.50, page 169. Computer assist expected.

31. M = 3xy − 6y2, N = 4x2 − 15xy

32. M = 3xy − 10y2, N = 4x2 − 25xy

33. M = 2 y − 12xy2, N = 4x− 20x2y

34. M = 2 y − 21xy2, N = 4x− 35x2y

35. M = 3 y − 32xy2, N = 4x− 40x2y

36. M = 3 y − 20xy2, N = 4x− 25x2y

37. M = 12 y − 30x2y2,
N = 12x− 25x3y

38. M = 12 y + 90x2y2,
N = 12x+ 75x3y

39. M = 15 y + 90xy2,
N = 12x+ 75x2y

40. M = 35 y + 30xy2,
N = 28x+ 25x2y.

Integrating Factor eax+by

Report an implicit solution U(x, y) = c for
the given equation Mdx + Ndy = 0 using
an integrating factor Q = eax+by. Follow
Example 2.51, page 170.

41. M = ex + 2e2y, N = ex + 5e2y

42. M = 3ex + 2ey, N = 4ex + 5ey

43. M = 12 ex + 2, N = 20 ex + 5

44. M = 12 ex + 2 e−y, N = 24 ex + 5 e−y

45. M = 12 ey + 2 e−x, N = 24 ey + 5 e−x

46. M = 12 e−2 y + 2 e−x, N = 12 e−2 y +
5 e−x

47. M = 16 ey + 2 e−2 x+3 y, N = 12 ey +
5 e−2 x+3 y

48. M = 16 e−y + 2 e−2 x−3 y, N =
−12 e−y − 5 e−2 x−3 y

49. M = −16− 2 e2 x+y, N = 12+ 4 e2 x+y

50. M = −16 e−3 y − 2 e2 x, N = 8 e−3 y +
5 e2 x

Integrating Factor Q(x)
Report an implicit solution U(x, y) = c
for the given equation, using an integrat-
ing factor Q = Q(x). Follow Example 2.52,
page 171.

51. (x+ 2y)dx+ (x− x2)dy = 0

52. (x+ 3y)dx+ (x− x2)dy = 0

53. (2x+ y)dx+ (x− x2)dy = 0

54. (2x+ y)dx+ (x+ x2)dy = 0

55. (2x+ y)dx+ (−x− x2)dy = 0

56. (x+ y)dx+ (−x− x2)dy = 0

57. (x+ y)dx+ (−x− 2x2)dy = 0

58. (x+ y)dx+ (x+ 5x2)dy = 0

59. (x+ y)dx+ (3x)dy = 0

60. (x+ y)dx+ (7x)dy = 0

Integrating Factor Q(y)

61. (y − y2)dx+ (x+ y)dy = 0

62. (y − y2)dx+ (2x+ y)dy = 0

63. (y − y2)dx+ (2x+ 3y)dy = 0

64. (y + y2)dx+ (2x+ 3y)dy = 0

65. (y + y2)dx+ (x+ 3y)dy = 0

66. (y + 5y2)dx+ (x+ 3y)dy = 0

67. (y + 3y2)dx+ (x+ 3y)dy = 0

68. (2y + 5y2)dx+ (7x+ 11y)dy = 0

69. (2y + 5y2)dx+ (x+ 7y)dy = 0

70. (3y + 5y3)dx+ (7x+ 9y)dy = 0
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PDF Sources

Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and
linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the textbook
are available in two volumes at Amazon Kindle Direct Publishing for Amazon’s
cost of printing and shipping. No author profit. Volume I chapters 1-7, ISBN
9798705491124, 661 pages. Volume II chapters 8-12, ISBN 9798711123651, 479
pages. Both paperbacks have extra pages of backmatter: background topics
Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with
hyperlink navigation to displayed equations and theorems. The header in an
exercise set has a blue hyperlink � to the same section in the solutions. The
header of the exercise section within a solution Appendix has a red hyperlink �
to the textbook exercises. Solutions are organized by chapter, e.g., Appendix 5
for Chapter 5. Odd-numbered exercises have a solution. A few even-numbered
exercises have hints and answers. Computer code can be mouse-copied directly
from the PDF. Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded
to a tablet, computer or phone to be viewed locally. After download, no internet
is required. Best for computer or tablet using a PDF viewer (Adobe Reader,
Evince) or web browser with PDF support (Chrome, FireFox). Smart phones
can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or
request an answer, click the link below, then create a GitHub issue and post.
Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues
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