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Introduction

The differential equation

(1 + x2)y′′ + (1 + x+ x2 + x3)y′ + (x3 − 1)y = 0(1)

has polynomial coefficients. It will be shown in this chapter that the solution
y(x) is approximately a polynomial, that is, the general solution y has an
approximation formula

y(x) ≈ c1f1(x) + c2f2(x),

where f1 and f2 are polynomials. Graphically, the polynomials depend on the
graph window, the pixel resolution and a maximum value for |c1|+ |c2|.
The approximation means that solution graphs can be made with a graphing hand
calculator, a computer algebra system or a numerical laboratory by entering two
polynomials f1, f2. For (1), the polynomials

f1(x) = 1 +
1

2
x2 − 1

6
x3 − 1

12
x4 − 1

60
x5,

f2(x) = x− 1

2
x2 +

1

6
x3 − 1

15
x5
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12.1 Review of Calculus Topics

can be used to plot solutions within a reasonable range of initial conditions.

The theory will show that (1) has a basis of solutions y1(x), y2(x), each repre-
sented as a convergent power series

y(x) =
∞∑
n=0

anx
n.

Truncation of power series y1 to a polynomial f1 and power series y2 to a poly-
nomial f2 provide approximate solutions suitable for graphing and calculation.

12.1 Review of Calculus Topics

A power series in the variable x is a formal sum

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · · .(2)

It is called a convergent series at x provided the limit below exists:

lim
N→∞

N∑
n=0

cnx
n = L.

The value L is a finite number called the sum of the series, written usually as
L =

∑∞
n=0 cnx

n. Otherwise, the power series is called divergent. Convergence
of the power series for every x in some interval J is called convergence on J .
Similarly, divergence on J means the power series fails to have a limit at each
point x of J . The series is said to converge absolutely if the series of absolute
values

∑∞
n=0 |cn||x|n converges.

Given a power series
∑∞

n=0 cnx
n, define the radius of convergence R by the

equation

R = lim
n→∞

∣∣∣∣ cn
cn+1

∣∣∣∣ .(3)

The radius of convergence R is undefined if the limit does not exist. Radius
R = ∞ is common (it does not mean undefined).

Theorem 12.1 (Maclaurin Expansion)
If f(x) =

∑∞
n=0 cnx

n converges for |x| < R, and R > 0, then f has infinitely many
derivatives on |x| < R and its coefficients {cn} are given by the Maclaurin formula

cn =
f (n)(0)

n!
.(4)

The example f(x) = e−1/x2
shows the theorem has no converse. The following

basic result summarizes what typically appears in calculus texts.
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12.1 Review of Calculus Topics

Theorem 12.2 (Convergence of power series)
Let the power series

∑∞
n=0 cnx

n have radius of convergence R. If R = 0, then the
series converges for x = 0 only. If R = ∞, then the series converges for all x. If
0 < R < ∞, then

1. The series
∑∞

n=0 cnx
n converges absolutely if |x| < R.

2. The series
∑∞

n=0 cnx
n diverges if |x| > R.

3. The series
∑∞

n=0 cnx
n may converge or diverge if |x| = R. The interval of

convergence may be of the form −R < x < R, −R ≤ x < R, −R < x ≤ R
or −R ≤ x ≤ R.

Library of Maclaurin Series

The key Maclaurin series formulas used in applications are recorded below.

Geometric Series:
1

1− x
=

∞∑
n=0

xn Converges for
−1 < x < 1.

Log Series: ln(1 + x) =
∞∑
n=1

(−1)n+1xn

n
Converges for
−1 < x ≤ 1.

Exponential Series: ex =

∞∑
n=0

xn

n!
Converges for all x.

Cosine Series: cosx =
∞∑
n=0

(−1)nx2n

(2n)!
Converges for all x.

Sine Series: sinx =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
Converges for all x.

Theorem 12.3 (Properties of power series)
Given two power series

∑∞
n=0 bnx

n and
∑∞

n=0 cnx
n with radii of convergence R1,

R2, respectively, define R = min(R1, R2), so that both series converge for |x| < R.
The power series have these properties:

1.
∑∞

n=0 bnx
n =

∑∞
n=0 cnx

n for |x| < R implies bn = cn for all n.

3.
∑∞

n=0 bnx
n +

∑∞
n=0 cnx

n =
∑∞

n=0(bn + cn)x
n for |x| < R.

4. k
∑∞

n=0 bnx
n =

∑∞
n=0 kbnx

n for all constants k, |x| < R1.

5. d
dx

∑∞
n=0 bnx

n =
∑∞

n=1 nbnx
n−1 for |x| < R1.

6.
∫ b
a (
∑∞

n=0 bnx
n) dx =

∑∞
n=0 bn

∫ b
a xndx for −R1 < a < b < R1.
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12.1 Review of Calculus Topics

Taylor Series

A series expansion of the form

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)

n

is called a Taylor series expansion of f(x) about x = x0. If valid, then the
series converges and represents f(x) for an interval of convergence |x− x0| < R.
Taylor expansions are general-use extensions of Maclaurin expansions, obtained
by translation x → x − x0. If a Taylor series exists, then f(x) has infinitely
many derivatives. Therefore, the examples |x| and xα (0 < α < 1) fail to have
Taylor expansions about x = 0. On the other hand, e−1/x2

has infinitely many
derivatives, but no Taylor expansion at x = 0.

Exercises 12.1

Series Convergence
Find R, the radius of convergence.

1.
∑∞

k=2
xk

k ln(k)

2.
∑∞

k=1 ak x
k, a2n = 2, a2n+1 = 4.

Series Properties
Compute the series given by the indicated
operation(s).

3. d
dx

∑∞
k=2

xk

k ln(k)

4. 4
∑∞

k=1
1

1+k xk +
∑∞

k=2
1

1+k2 x
k

Maclaurin Series
Find the Maclaurin series expansion.

5. f(x) = 1
1+x3 for |x| < 1.

6. f(x) = arctan(x), using
d
dx arctan(x) = 1

1+x2 .

7. f(x) =
(
3
2

)x
for all x.

8. f(x) =
∫ x

0
sin t
t dt, called the Sine In-

tegral.

9. f(x) is the solution of f ′ = 1 + xf ,
f(0) = 0.

10. The first 4 terms, f(x) = tanx.

Taylor Series
Find the series expansion about the given
point.

11. f(x) = ln |1− x|, at x = 0.

12. f(x) = 1
x2 , at x = 1.
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12.2 Algebraic Techniques

12.2 Algebraic Techniques

Derivative Formulas

Differential equations are solved with series techniques by assuming a trial so-
lution of the form

y(x) =

∞∑
n=0

cn(x− x0)
n.

The trial solution is thought to have undetermined coefficients {cn}, to be
found explicitly by the method of undetermined coefficients, i.e., substitute the
trial solution and its derivatives into the differential equation and resolve the
constants. The various derivatives of y(x) can be written as power series. Below
are the mostly commonly used derivative formulas.

y(x) =

∞∑
n=0

cn(x− x0)
n,

y′(x) =
∞∑
n=1

ncn(x− x0)
n−1,

y′′(x) =

∞∑
n=2

n(n− 1)cn(x− x0)
n−2,

y′′′(x) =
∞∑
n=3

n(n− 1)(n− 2)cn(x− x0)
n−3.

The summations are over a different subscript range in each case, because differ-
entiation eliminates the constant term each time it is applied.

Changing Subscripts

A change of variable t = x−a changes an integral
∫∞
a f(x)dx into

∫∞
0 f(t+a)dt.

This change of variable is indicated when several integrals are added, because
then the interval of integration is [0,∞), allowing the various integrals to be
collected on one integral sign. For instance,∫ ∞

2
f(x)dx+

∫ ∞

π
g(x)dx =

∫ ∞

0
(f(t+ 2) + g(t+ π))dt.

A similar change of variable technique is possible for summations, allowing several
summation signs with different limits of summation to be collected under one
summation sign. The rule:

n=a+h∑
n=a

xn =

h∑
k=0

xk+a.
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12.2 Algebraic Techniques

It is remembered via the change of variable k = n− a, which is formally applied
to the summation just as it is applied in integration theory. If h = ∞, then the
rule reads as follows:

∞∑
n=a

xn =
∞∑
k=0

xk+a.

An illustration, in which LHS refers to the substitution of a trial solution into
the left hand side of some differential equation:

LHS =
∑∞

n=2 n(n− 1)cnx
n−2 + 2x

∑∞
n=0 cnx

n 1

=
∑∞

k=0(k + 2)(k + 1)ck+2x
k +

∑∞
n=0 2cnx

n+1 2

= 2c0 +
∑∞

k=1(k + 2)(k + 1)ck+2x
k +

∑∞
k=1 2ck−1x

k 3

= 2c0 +
∑∞

k=1((k + 2)(k + 1)ck+2 + 2ck−1)x
k. 4

Step details:
1 is the result of substitution of the trial solution into the differential equation
y′′ + 2xy;

2 makes a change of index variable k = n− 2;

3 makes a change of index variable k = n+ 1;

4 adds the two series, which now have the same range of summation and equal
powers of x.

The change of index variable in each case was dictated by attempting to match
the powers of x, e.g., xn−2 = xk in 2 and xn+1 = xk in 3 .

The formulas for derivatives of a trial solution y(x) can all be written with the
same index of summation, if desired:

y(x) =
∞∑
n=0

cn(x− x0)
n,

y′(x) =

∞∑
n=0

(n+ 1)cn+1(x− x0)
n,

y′′(x) =

∞∑
n=0

(n+ 2)(n+ 1)cn+2(x− x0)
n,

y′′′(x) =

∞∑
n=0

(n+ 3)(n+ 2)(n+ 1)cn+3(x− x0)
n.

Linearity and Power Series

The set of all power series convergent for |x| < R forms a vector space under
function addition and scalar multiplication. This means:

1. The sum of two power series is a power series.

2. A scalar multiple of a power series is a power series.
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12.2 Algebraic Techniques

3. The zero power series is the zero function: all coefficients are zero.

4. The negative of a power series is (−1) times the power series.

Cauchy Product

Multiplication and division of power series is possible and the result is again a
power series convergent on some interval |x| < R. The Cauchy product of two
series is defined by the relations( ∞∑

n=0

anx
n

)( ∞∑
m=0

bmxm

)
=

∞∑
k=0

ckx
k, ck =

k∑
n=0

anbk−n.

Division of two series can be defined by its equivalent Cauchy product formula,
which determines the coefficients of the quotient series.

To illustrate, we compute the coefficients {cn} in the formula

∞∑
n=0

cnx
n =

( ∞∑
k=0

xk

k + 1

)
/

( ∞∑
m=0

xm

)
.

Limitations exist: the division is allowed only when the denominator is nonzero.
In the present example, the denominator sums to 1/(1− x), which is never zero.
The equivalent Cauchy product relation is( ∞∑

n=0

cnx
n

)( ∞∑
m=0

xm

)
=

∞∑
k=0

xk

k + 1
.

This relation implies the formula

k∑
n=0

(cn)(1) =
1

k + 1
.

Therefore, back-substitution implies c0 = 1, c1 = −1/2, c2 = −1/6. More
coefficients can be found and perhaps also a general formula can be written for
cn. A general formula is needed infrequently, so we spend no time discussing how
to find it.

Power Series Expansions of Rational Functions

A rational function f(x) is a quotient of two polynomials, therefore it is a quotient
of two power series, hence also a power series. Sometimes the easiest method
known to find the coefficients cn of the power series of f is to apply Maclaurin’s
formula

cn =
f (n)(0)

n!
.
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12.2 Algebraic Techniques

In a number of limited cases, in which the polynomials have low degree, it is
possible to use Cauchy’s product formula to find {cn}. An illustration:

x+ 1

x2 + 1
=

∞∑
n=0

cnx
n, c2k+1 = c2k = (−1)k.

To derive this formula, write the quotient as a Cauchy product:

x+ 1 = (1 + x2)
∞∑
n=0

cnx
n

=

∞∑
n=0

cnx
n +

∞∑
m=0

cmxm+2

= c0 + c1x+
∞∑
n=2

cnx
n +

∞∑
k=2

ck−2x
k

= c0 + c1x+

∞∑
k=2

(ck + ck−2)x
k

The third step uses variable change k = m + 2. The terms on the right then
have the same index range, allowing the addition of the final step. To match
coefficients on each side of the equation, we require c0 = 1, c1 = 1, ck+ ck−2 = 0.
Solving, c2 = −c0, c3 = −c1, c4 = −c2 = (−1)2c0, c5 = −c3 = (−1)2c1. By
induction, c2k = (−1)k and c2k+1 = (−1)k. This gives the series reported earlier.

The same series expansion can be obtained in a more intuitive manner, as fol-
lows. The idea depends upon substitution of r = −x2 into the geometric series
expansion (1− r)−1 = 1 + r + r2 + · · ·, which is valid for |r| < 1.

x+ 1

x2 + 1
= (1 + x)

∞∑
n=0

rn where r = −x2

=
∞∑
n=0

(−x2)n + x
∞∑
n=0

(−x2)n

=

∞∑
n=0

(−1)nx2n +
∞∑
n=0

(−1)nx2n+1

=

∞∑
k=0

ckx
k,

where c2k = (−1)k and c2k+1 = (−1)k. The latter method is preferred to discover
a useful formula. The method is a shortcut to the expansion of 1/(x2 + 1) as
a Maclaurin series, followed by series properties to write the indicated Cauchy
product as a single power series.

Instances exist where neither the Cauchy product method nor other methods are
easy, for instance, the expansion of f(x) = 1/(x2 + x+1). Here, we might find a
formula from cn = f (n)(0)/n!, or equally unpleasant, find {cn} from the formula
1 = (x2 + x+ 1)

∑∞
n=0 cnx

n.
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12.2 Algebraic Techniques

Recursion Relations

The relations
c0 = 1, c1 = 1, ck + ck−2 = 0 for k ≥ 2

are called recursion relations. They are often solved by ad hoc algebraic
methods. Developed here is a systematic method for solving such recursions.

First order recursions. Given x0 and sequences of constants {an}∞n=0, {bn}∞n=0,
consider the abstract problem of finding a formula for xk in the recursion relation

xk+1 = akxk + bk, k ≥ 0.

For k = 0 the formula gives x1 = a0x0 + b0. Similarly, x2 = a1x1 + b1 =
a1a0x0+a1b0+ b1, x3 = a2x2+ b2 = a2a1a0x0+a2a1b0+a2b1+ b2. By induction,
the unique solution is

xk+1 =
(
Πk

r=0ar

)
x0 +

k∑
n=0

(
Πk

r=n+1ar

)
bn.

Two-termed second order recursions. Given c0, c1 and sequences {ak}∞k=0,
{bk}∞k=0, consider the problem of solving for ck+2 in the two-termed second order
recursion

ck+2 = akck + bk, k ≥ 0.

The idea to solve it comes from splitting the problem into even and odd sub-
scripts. For even subscripts, let k = 2n. For odd subscripts, let k = 2n+1. Then
the two-termed second order recursion splits into two first order recursions

c2n+2 = a2nc2n + b2n, n ≥ 0,
c2n+3 = a2n+1c2n+1 + b2n+1, n ≥ 0.

Define xn = c2n or xn = c2n+1 and apply the general theory for first order
recursions to solve the above recursions:

c2n+2 = (Πn
r=0a2r) c0 +

n∑
k=0

(
Πn

r=k+1a2r
)
b2r, n ≥ 0,

c2n+3 = (Πn
r=0a2r+1) c1 +

n∑
k=0

(
Πn

r=k+1a2r+1

)
b2r+1, n ≥ 0.

Two-termed third order recursions. Given c0, c1, c2, {ak}∞k=0, {bk}∞k=0,
consider the problem of solving for ck+3 in the two-termed third order recursion

ck+3 = akck + bk, k ≥ 0.

The subscripts are split into three groups by the equations k = 3n, k = 3n + 1,
k = 3n+2. Then the third order recursion splits into three first order recursions,
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12.2 Algebraic Techniques

each of which is solved by the theory of first order recursions. The solution for
n ≥ 0:

c3n+3 = (Πn
r=0a3r) c0 +

n∑
k=0

(
Πn

r=k+1a3r
)
b3r,

c3n+4 = (Πn
r=0a3r+1) c1 +

n∑
k=0

(
Πn

r=k+1a3r+1

)
b3r+1,

c3n+5 = (Πn
r=0a3r+2) c2 +

n∑
k=0

(
Πn

r=k+1a3r+2

)
b3r+2.

Exercises 12.2

Differentiation
Verify using term–by–term differentiation.
Document all series and calculus steps.

1. d
dx

∑∞
n=1

1
n xn =

∑∞
n=0 x

n.
Is this valid for x = −1?

2. d
dx

∑∞
n=0(−1)n x2n+1=∑∞

n=0(−1)n x2n.

Subscripts
Perform a change of variables to verify the
identity.

3.
∑∞

n=0 cnx
n+2=

∑∞
k=2 ck−2 x

k

4.
∑∞

n=2 n(n− 1)cn(x− x0)
n−2=∑∞

k=0(k + 2)(k + 1)ck+2 (x− x0)
k

5. −1+x+
∑∞

n=2(−1)n+1 xn=∑∞
k=0(−1)k+1 xk

6.
∑∞

n=0
1

n+1 x
n+
∑∞

m=1
1

m+2 x
m=

1 +
∑∞

k=1
2k+1

(k+1)(k+2) x
k

Linearity
Find the power series of the given function.

7. cos(x) + 2 sin(x)

8. ex + sin(x)

Cauchy Product
Find the power series.

9. (1 + x) sin(x)

10. sin(x)
ex

Recursion Relations
Solve the given recursion.

11. xk+1 = 2xk

12. xk+1 = 2xk + 1

13. xk+2 = 2xk + 1

14. xk+3 = 2xk + 1

958



12.3 Power Series Methods

12.3 Power Series Methods

Detailed below are trial solution methods for first and second order differential
equations. A trial solution is an infinite series, a Maclaurin expansion or a
Taylor series expansion about x = x0. Techniques for trial solution methods
involve series methods, undetermined coefficients and algebraic results to solve
recursions. The Taylor series method employs the calculus Taylor polynomial
formula and requires only a calculus background.

A Series Method for First Order

Illustrated here is a method to solve the differential equation y′ − 2y = 0 for a
power series solution. Assume a power series trial solution

y(x) =
∞∑
n=0

cnx
n.

Let LHS stand for the left hand side of y′ − 2y = 0. Substitute the trial series
solution into LHS to obtain:

LHS = y′ − 2y(1)

=

∞∑
n=1

ncnx
n−1 − 2

∞∑
n=0

cnx
n

=
∞∑
k=0

(k + 1)ck+1x
k +

∞∑
n=0

(−2)cnx
n 1

=
∞∑
k=0

((k + 1)ck+1 − 2ck)x
k 2

(2)

The change of variable k = n−1 was used in 1 , the objective being to add on like

powers of x in 2 . Assume LHS = 0. The zero function is uniquely represented
by the power series with all zero coefficients. By uniqueness, all coefficients in
the series for LHS must be zero, which gives the recursion relation

(k + 1)ck+1 − 2ck = 0, k ≥ 0.

This first order two-termed recursion is solved by back-substitution or by using
the general theory for first order recursions which is in the preceding section,
page 957. Using the results, then

ck+1 =

(
Πk

r=0

2

r + 1

)
c0

=
2k+1

(k + 1)!
c0.
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12.3 Power Series Methods

The trial solution becomes a power series solution:

y(x) = c0 +

∞∑
k=0

ck+1x
k+1 Re-index the trial solution.

= c0 +

∞∑
k=0

2k+1

(k + 1)!
c0 x

k+1 Substitute the recursion answer.

= c0 +

( ∞∑
n=1

2n

(n)!
xn

)
c0 Change index n = k + 1.

=

( ∞∑
n=0

(2x)n

(n)!

)
c0 Factor out c0, then reindex.

= e2xc0. Maclaurin expansion library.

The solution y(x) = c0e
2x agrees with the growth-decay theory formula for the

first order differential equation y′ = ky (k = 2 in this case).

A Series Method for Second Order

Shown here are the details for finding two independent power series solutions

y1(x) = 1 +
1

6
x3 +

1

180
x6 +

1

12960
x9 +

1

1710720
x12 + · · ·

y2(x) = x+
1

12
x4 +

1

504
x7 +

1

45360
x10 +

1

7076160
x13 + · · ·

for Airy’s airfoil differential equation

y′′ = xy.

The two independent solutions give the general solution as

y(x) = c1y1(x) + c2y2(x).

The solutions are related to the classical Airy wave functions, denoted AiryAi

and AiryBi in the literature, and documented for example in the computer alge-
bra system maple. The wave functions AiryAi, AiryBi are special linear combi-
nations of y1, y2.

The trial solution in the second order power series method is generally a Taylor
series. In this case, it is a Maclaurin series

y(x) =

∞∑
n=0

cnx
n.

Write Airy’s differential equation in standard form y′′−xy = 0 and let LHS stand
for the left hand side of this equation. Then substitution of the trial solution
into LHS gives:
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LHS = y′′ − xy

=
∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n − x

∞∑
k=0

ckx
k 1

=
∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n −

∞∑
k=0

ckx
k+1 2

= 2c2 +

∞∑
n=1

(n+ 2)(n+ 1)cn+2x
n −

∞∑
n=1

cn−1x
n 3

= 2c2 +
∞∑
n=1

((n+ 2)(n+ 1)cn+2 − cn−1)x
n 4

The steps: 1 Substitute the trial solution into LHS using derivative formulas;

2 Move x inside the summation by linearity; 3 Index change n = k + 1 to

match powers of x; 4 Match summation index ranges and collect on powers of
x.

Because LHS = 0 = RHS and the power series for the zero function has zero
coefficients, all coefficients in the series LHS must be zero. This implies the
relations

c2 = 0, (n+ 2)(n+ 1)cn+2 − cn−1 = 0, n ≥ 1.

Replace n by k+1. Then the relations above become the two-termed third order
recursion

ck+3 =
1

(k + 2)(k + 3)
ck, k ≥ 0.

The answers are obtained from page 957, with appropriate definitions of ak and
bk:

c3n+3 =

(
Πn

r=0

1

(3r + 2)(3r + 3)

)
c0,

c3n+4 =

(
Πn

r=0

1

(3r + 3)(3r + 4)

)
c1,

c3n+5 =

(
Πn

r=0

1

(3r + 4)(3r + 5)

)
c2

= 0 (because c2 = 0).

Taking c0 = 1, c1 = 0 gives one solution

y1(x) = 1 +
∞∑
n=0

(
Πn

r=0

1

(3r + 2)(3r + 3)

)
x3n+3.

Taking c0 = 0, c1 = 1 gives a second independent solution

y2(x) = x+
∞∑
n=0

(
Πn

r=0

1

(3r + 3)(3r + 4)

)
x3n+4

= x

(
1 +

∞∑
n=0

(
Πn

r=0

1

(3r + 3)(3r + 4)

)
x3n+3

)
.
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Power Series Maple Code

It is possible to reproduce the first few terms (below, up to x20) of the power
series solutions y1, y2 using the computer algebra system maple. Here’s how:

de1:=diff(y1(x),x,x)-x*y1(x)=0; Order:=20;

dsolve({de1,y1(0)=1,D(y1)(0)=0},y1(x),type=series);

de2:=diff(y2(x),x,x)-x*y2(x)=0;

dsolve({de2,y2(0)=0,D(y2)(0)=1},y2(x),type=series);

The maple global variable Order assigns the number of terms to compute in the
series method for dsolve().

The Airy wave functions are defined so that

√
3 AiryAi(0) = AiryBi(0) ≈ 0.6149266276,

−
√
3 AiryAi′(0) = AiryBAi′(0) ≈ 0.4482883572.

A warning: the Airy wave functions are not identical to y1, y2.

A Simple Taylor Polynomial Method

The first power series solution

y(x) = 1 +
1

6
x3 +

1

180
x6 +

1

12960
x9 +

1

1710720
x12 + · · ·

for Airy’s airfoil differential equation y′′ = xy can be found without knowing
anything about recursion relations or properties of infinite series. Detailed here
is a Taylor polynomial method which requires only a calculus background. The
computation reproduces by hand the answer given by the maple code below.

de:=diff(y(x),x,x)-x*y(x)=0; Order:=10;

dsolve([de,y(0)=1,D(y)(0)=0],y(x),type=series);

The calculus background:

Theorem 12.4 (Taylor Polynomials)
Let f(x) have n + 1 continuous derivatives on a < x < b and assume given x0,
a < x0 < b. Then

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)
(x− x0)

n

n!
+Rn(3)

where the remainder Rn has the form

Rn = f (n+1)(x1)
(x− x0)

n+1

(n+ 1)!

for some point x1 between a and b.
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The polynomial on the right in (3) is called the Taylor polynomial of degree n
for f(x) at x = x0. If f is infinitely differentiable, then it has Taylor polynomials
of all orders. The Taylor series of f is the infinite series obtained formally by
letting n = ∞ and Rn = 0.

For the Airy differential equation problem, x0 = 0. Let’s assume that y(x) is
determined by initial conditions y(0) = 1, y′(0) = 0. The method is a simple
one:

Differentiate the differential equation formally several times, then set
x = x0 in all these equations. Resolve from the several equations
the values of y′′(x0), y

′′′(x0), y
iv(x0), . . . and then write out the

Taylor polynomial approximation

y(x) ≈ y(x0) + y′(x0)(x− x0) + y′′(x0)
(x− x0)

2

2
+ · · ·

The successive derivatives of Airy’s differential equation are

y′′ = xy,
y′′′ = y + xy′,
yiv = 2y′ + xy′′,
yv = 3y′′ + xy′′′,

...

Set x = x0 = 0 in the above equations. Then

y(0) = 1 Given.

y′(0) = 0 Given.

y′′(0) = xy|x=0

= 0
Use Airy’s equation y′′ = xy.

y′′′(0) = (y + xy′)|x=0

= 1
Use y′′′ = y + xy′.

yiv(0) = (2y′ + xy′′)|x=0

= 0
Use yiv = 2y′ + xy′′.

yv(0) = (3y′′ + xy′′′)|x=0

= 0
Use yv = 3y′′ + xy′′′.

yvi(0) = (4y′′′ + xyiv)|x=0

= 4
Use yvi = 4y′′′ + xyiv.

Finally, we write out the Taylor polynomial approximation of y:

y(x) ≈ y(0) + y′(0)x+ y′′(0)
x2

2
+ · · ·

= 1 + 0 + 0 +
x3

6
+ 0 + 0 +

4x6

6!
+ · · ·

= 1 +
x3

6
+

x6

180
+ · · ·
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Computer algebra systems can replace the hand details, finding the Taylor poly-
nomial directly.

Exercises 12.3

First Order Series Method
Solve by power series.

1. y′ − 4y = 0

2. y′ − xy = 0

Second Order Series Method
Solve by power series using the Airy equa-
tion example.

3. y′′ = 4y

4. y′′ + y = 0

Taylor Series Method
Solve by Taylor series about x = 0, finding
the first 8 terms.

5. y′ = 16y

6. y′′ = y

7. y′ = (1 + x)y

8. y′′ = (2 + x)y
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12.4 Ordinary Points

Developed here is the mathematical theory for 2nd order differential equations
and their Taylor series solutions. Assume a differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0, a(x) ̸= 0.(1)

Such an equation can always be converted by division of a(x) ̸= 0 to the stan-
dard form

y′′ + p(x)y′ + q(x)y = 0,(2)

using formulas
p(x) = b(x)/a(x), q(x) = c(x)/a(x).

A point x = x0 is called an Ordinary Point of equation (2) provided both p(x)
and q(x) have Taylor series expansions valid in an interval |x− x0| < R, R > 0.
Any point that is not an ordinary point is called a Singular Point. For equation
(1), x = x0 is an ordinary point provided a(x) ̸= 0 at x = x0 and each of a(x),
b(x), c(x) has a Taylor series expansion valid in some interval about x = x0.

Theorem 12.5 (Power series solutions)
Let a(x)y′′ + b(x)y′ + c(x)y = 0, a(x) ̸= 0, be given and assume that x = x0 is an
ordinary point. If the Taylor series of both p(x) = b(x)/a(x) and q(x) = c(x)/a(x)
are convergent in |x − x0| < R, then the differential equation has two independent
Taylor series solutions

y1(x) =
∞∑
n=0

an(x− x0)
n, y2(x) =

∞∑
n=0

bn(x− x0)
n,

convergent in |x−x0| < R. Any solution y(x) defined in |x−x0| < R can be written
as y(x) = c1y1(x) + c2y2(x) for a unique set of constants c2, c2.

A proof of this result can be found in Birkhoff-Rota [?]. The maximum allowed
value of R is the distance from x0 to the nearest singular point.

Ordinary Point Illustration

Two independent solutions y1, y2 of Theorem 12.5 will be determined for the
second order differential equation

y′′ − 2xy′ + y = 0.

Let LHS stand for the left side of the differential equation. Assume a trial solution
y =

∑∞
n=0 cnx

n. Then formulas on pages 953 and 954 imply

LHS = y′′ − 2xy′ + y
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=
∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n − 2x

∞∑
n=1

ncnx
n−1 +

∞∑
n=0

cnx
n

=

∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n +

∞∑
n=1

(−2)ncnx
n +

∞∑
n=0

cnx
n

= 2c2 + c0 +
∞∑
n=1

((n+ 1)(n+ 2)cn+2 − 2ncn + cn)x
n

= 2c2 + c0 +
∞∑
n=1

((n+ 1)(n+ 2)cn+2 − (2n− 1)cn)x
n

The power series LHS equals the zero power series, which gives rise to the recur-
sion relations 2c2 + c0 = 0, (n+ 1)(n+ 2)cn+2 − (2n− 1)cn = 0, n ≥ 1, or more
succinctly the two-termed second order recursion

cn+2 =
2n− 1

(n+ 1)(n+ 2)
cn, n ≥ 0.

Using the formulas on page 957, we obtain the recursion answers

c2k+2 =

(
Πk

r=0

4r − 1

(2r + 1)(2r + 2)

)
c0,

c2k+3 =

(
Πk

r=0

4r + 1

(2r + 2)(2r + 3)

)
c1.

Taking c0 = 1, c1 = 0 gives y1 and taking c0 = 0, c1 = 1 gives y2:

y1(x) = 1 +
∞∑
k=0

(
Πk

r=0

4r − 1

(2r + 1)(2r + 2)

)
x2k+2,

y2(x) = x+

∞∑
k=0

(
Πk

r=0

4r + 1

(2r + 2)(2r + 3)

)
x2k+3.

These solutions have Wronskian 1 at x = 0, hence they are independent and they
form a basis for the solution space of the differential equation.

Plots and Computation in maple

It is possible to directly program the basis y1, y2 in maple, ready for plotting
and computation of solutions to initial value problems. At the same time, we
can check the series formulas against the maple engine, which is able to solve for
the series solutions y1, y2 to any order of accuracy.

f:=t->(2*t-1)/((t+1)*(t+2)):

c1:=k->product(f(2*r),r=0..k):

c2:=k->product(f(2*r+1),r=0..k):
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y1:=(x,N)->1+sum(c1(k)*x^(2*k+2),k=0..N);

y2:=(x,N)->x+sum(c2(k)*x^(2*k+3),k=0..N);

de:=diff(y(x),x,x)-2*x*diff(y(x),x)+y(x)=0: Order:=10:

dsolve({de,y(0)=1,D(y)(0)=0},y(x),type=series); # find y1

’y1’=y1(x,5);

dsolve({de,y(0)=0,D(y)(0)=1},y(x),type=series); # find y2

’y2’=y2(x,5);

opts:=font=[courier,18],axes=boxed,thickness=3;

plot(2*y1(x,infinity)+3*y2(x,infinity),x=0..3);

plot([y1(x,infinity),y2(x,infinity)],x=0..1.5,opts);

The maple dsolve formulas are

y1(x) = 1− 1

2
x2 − 1

8
x4 − 7

240
x6 − 11

1920
x8 + · · ·

y2(x) = x+
1

6
x3 +

1

24
x5 +

1

112
x7 +

13

8064
x9 + · · ·

Approximation of 2y1+3y2 to order 20 agrees with the exact solution for the first
8 digits. Often the N =infinity required for the exact solution can be replaced
by integer N = 10 to produce exactly the same plot.

Exercises 12.4

Standard Form
Convert to form y′′ + p(x)y′ + q(x)y =
0. Find the singular points and ordinary
points.

1. (x+ 1)y′′ + xy′ + y = 0

2. x2y′′ + 3xy′ + 4y = 0

3. x(1 + x)y′′ + xy′ + (1 + x)y = 0

4. xy′′ = (1 + x)y′ + exy

Ordinary Point Method
Find a power series solution, following the
method in the text for y′′ − 2xy′ + y = 0.
Use a CAS or mathematical workbench to
check the answer.

5. y′′ + xy′ = 0

6. y′′ + x2y′ + y = 0
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12.5 Regular Singular Points

The model differential equation for Frobenius singular point theory is the 2nd
order Cauchy-Euler differential equation

ax2y′′ + bxy′ + cy = 0.(1)

The Frobenius theory treats a perturbation of the Cauchy-Euler equation ob-
tained by replacement of the constants a, b, c by Maclaurin power series. A
Frobenius differential equation has the special form

x2a(x)y′′ + xb(x)y′ + c(x)y = 0

where a(x) ̸= 0, b(x), c(x) have Maclaurin series expansions.

Intuition from the Cauchy-Euler Equation

The Cauchy-Euler differential equation (1) provides intuition about the possible
kinds of solutions for Frobenius equations. It is known that equation (1) can be
transformed to a constant-coefficient differential equation

a
d2z

dt2
+ (b− a)

dz

dt
+ cz = 0(2)

via the change of variables

z(t) = y(et), x = et.

By constant-coefficient formulas from Chapter 6, Theorem ?? page ??, a Cauchy-
Euler equation (1) has three kinds of possible solutions, organized by the char-
acter of the roots r1, r2 of the characteristic equation ar2 + (b − a)r + c = 0 of
(2). The three kinds are

Case 1:
Discriminant positive
Real r1 ̸= r2

y = c1x
r1 + c2x

r2

Case 2:
Discriminant zero
Real r1 = r2

y = c1x
r1 + c2x

r1 ln |x|

Case 3:
Discriminant negative
Complex r1 = r2 = α+ iβ

y = c1x
α cos(β ln |x|)

+ c2x
α sin(β ln |x|)

The last solution is Singular at x = 0, the location where the leading coefficient
ax2 in (1) is zero. The second solution is singular at x = 0 when c2 ̸= 0. The
other solutions involve powers xr; they can be singular solutions at x = 0 if r < 0.
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Cauchy-Euler Conjecture

The conjecture about solutions of Frobenius equations is often made by differen-
tial equation rookies:

Isn’t it true that a Frobenius differential equation has a general
solution obtained from the general solution of the Cauchy-Euler dif-
ferential equation

x2a(0)y′′ + xb(0)y′ + c(0)y = 0

by replacement of the constants c1, c2 by Maclaurin power series?

As a tribute to this intuitive conjecture, we can say in hindsight that theCauchy-
Euler conjecture is almost correct! Perhaps it is a good way to remember the
results of the Frobenius theory which follows.

Frobenius theory

A Frobenius differential equation singular at x = x0 has the form

(x− x0)
2A(x)y′′ + (x− x0)B(x)y′ + C(x)y = 0(3)

where A(x0) ̸= 0 and A(x), B(x), C(x) have Taylor series expansions at x = x0
valid in an interval |x− x0| < R, R > 0. Such a point x = x0 is called a regular
singular point of (3). Any other point x = x0 is called an irregular singular
point.

A Frobenius regular singular point differential equation generalizes the Cauchy-
Euler differential equation, because if the Taylor series are constants and the
translation x → x−x0 is made, then the Frobenius equation reduces to a Cauchy-
Euler equation.

The Indicial Equation of (3) is defined to be the quadratic equation

A(x0)r
2 + (B(x0)−A(x0))r + C(x0) = 0.

Technically, the definition is a useful shortcut, because the indicial equation is
obtained by calculation in two steps:

(1) Transform the Cauchy-Euler differential equation

(x− x0)
2A(x0)y

′′ + (x− x0)B(x0)y
′ + C(x0)y = 0

by the change of variables x − x0 = et, z(t) = y(x0 + et) to obtain the
constant-coefficient differential operator form

A(x0)(D − 1)Dz +B(x0)Dz + C(x0)z = 0, D =
d

dt
.

The expanded constant-coefficient equation is

A(x0)
d2z

dt2
+ (B(x0)−A(x0))

dz

dt
+ C(x0)z = 0
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(2) The indicial equation is the characteristic equation of the constant-coefficient
differential equation.

The indicial equation can be used to directly solve Cauchy-Euler differential equa-
tions. The roots of the indicial equation plus the constant-coefficient formulas
in Theorem 6.1 provide answers which directly transcribe the general solution of
the Cauchy-Euler equation.

The Frobenius theory analyzes the Frobenius differential equation only in the
case when the roots of the indicial equation are real, which corresponds to the
discriminant positive or zero in the discriminant table, page 968.

The cases in which the discriminant is non-negative have their own complications.
Expected from the Cauchy-Euler conjecture is a so-called Frobenius solution

y(x) = (x− x0)
r
(
c0 + c1(x− x0) + c2(x− x0)

2 + · · ·
)
,

in which r is a root of the indicial equation. Two independent Frobenius solutions
may or may not exist, therefore the Cauchy-Euler conjecture turns out to be
partly true, but false in general.

The last case, in which the discriminant of the indicial equation is negative, is
not treated here.

Theorem 12.6 (Frobenius Solutions)
Let x = x0 be a regular singular point of the Frobenius equation

(x− x0)
2A(x)y′′ + (x− x0)B(x)y′ + C(x)y = 0.(4)

Let the indicial equation A(x0)r
2 + (B(x0)− A(x0))r + C(x0) = 0 have real roots

r1, r2 with r1 ≥ r2. Then equation (4) always has one Frobenius series solution y1
of the form

y1(x) = (x− x0)
r1

∞∑
n=0

cn(x− x0)
n, c0 ̸= 0.

The root r1 has to be the larger root: the equation can fail for the smaller root r2.

Equation (4) has a second independent solution y2 in the following cases.

(a) If r1 ̸= r2 and r1 − r2 is not an integer, then, for some coefficients {dn} with
d0 ̸= 0,

y2(x) = (x− x0)
r2

∞∑
n=0

dn(x− x0)
n.

(b) If r1 ̸= r2 and r1 − r2 is a positive integer, then, for some coefficients {dn}
with d0 ̸= 0 and either C = 0 or C = 1,

y2(x) = Cy1(x) ln |x− x0|+ (x− x0)
r2

∞∑
n=0

dn(x− x0)
n.
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(c) If r1 = r2, then, for some coefficients {dn} with d0 = 0,

y2(x) = y1(x) ln |x− x0|+ (x− x0)
r1

∞∑
n=0

dn(x− x0)
n.

Proof: A Frobenius theorem proof can be found in Birkhoff-Rota [?] 4th edition page
282. The method of proof, due to Frobenius, is a generalization of Cauchy’s Method of
Majorants [?] page 113. ■

Independence tests for y1, y2 plus calculation details for y1, y2 appear below in the
examples. In part (b) of the theorem, the formula compresses two trial solutions
into one, but the intent is that they be tried separately, in order C = 0, then
C = 1. Sometimes it is possible to combine the two trials into one complicated
computation, but that is not for the faint of heart.

The examples use symbol L(y), defined by

L(y) = (x− x0)
2A(x)y′′ + (x− x0)B(x)y′ + C(x)y,

which is the left hand side of the Frobenius equation (4). Implicit use is made of
the linearity property L(c1y1 + c2y2) = c1L(y1) + c2L(y2).

Example 12.1 (Frobenius Theorem Case (a))

Use the Frobenius theory to solve for y1, y2 in the differential equation 2x2y′′+xy′+
xy = 0.

Solution: The indicial equation is 2r2 + (1 − 2)r + 0 = 0 with roots r1 = 1/2, r2 = 0.
The roots do not differ by an integer, therefore two independent Frobenius solutions y1,
y2 exist, according to Theorem 12.6(a). The answers are

y1(x) = x1/2

(
1− 1

3
x+

1

30
x2 − 1

630
x3 +

1

22680
x4 + · · ·

)
,

y2(x) = x0

(
1− x+

1

6
x2 − 1

90
x3 +

1

2520
x4 + · · ·

)
.

The method. Let r be a variable, to eventually be set to either root r = r1 or r = r2.
We expect to compute two solutions y1 = y(x, r1), y2 = y(x, r2) from

y(x, r) = xr
∞∑

n=0

c(n, r)xn.

The symbol c(n, r) plays the role of cn during the computation, but emphasizes the
dependence of the coefficient on the root r.

Independence of y1, y2. Assume k1y1(x) + k2y2(x) = 0 for all x. Proving k1 = k2 = 0
implies y1, y2 are independent. Divide the equation k1y1 + k2y2 = 0 by xr2 . The
series representations of y1, y2 contain factors xr2 , xr2 . The division by xr2 leaves two
Maclaurin series and a factor of xr1−r2 on the y1-series. This factor equals zero at x = 0,
because r1 − r2 > 0. Substitute x = 0 to show that k2 = 0. Then k1y1(x) + k2y2(x) = 0
gives k1 = 0 because y1 ̸= 0. The test of independence is complete.
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A formula for c(n, r). The method applied is substitution of the series y(x, r) into the
differential equation in order to resolve the coefficients. At certain steps, series indexed
from zero to infinity are split into the n = 0 term plus the rest of the series, in order to
match summation ranges. Index changes are used to match powers of x. The details:

x2A(x)y′′ = 2x2y′′(x, r)

= 2x2
∞∑

n=0

(n+ r)(n+ r − 1)c(n, r)xn+r−2

= 2r(r − 1)c(0, r)xr +

∞∑
n=1

2(n+ r)(n+ r − 1)c(n, r)xn+r,

xB(x)y′ = xy′(x, r)

=

∞∑
n=0

(n+ r)c(n, r)xn+r

= rc(0, r)xr +

∞∑
n=1

(n+ r)c(n, r)xn+r

C(x)y = xy(x, r)

=

∞∑
n=0

c(n, r)xn+r+1

=

∞∑
n=1

c(n− 1, r)xn+r.

Recursion. Let p(r) = 2r(r − 1) + r + 0 be the indicial polynomial. Let LHS stand for
the left hand side of the Frobenius differential equation. Add the preceding equations.
Then

LHS = 2x2y′′(x, r) + xy′(x, r) + xy(x, r)

= p(r)c(0, r)xr +

∞∑
n=1

(p(n+ r)c(n, r) + c(n− 1, r))xn+r.

Because LHS equals the zero series, all coefficients are zero, which implies p(r) = 0,
c(0, r) ̸= 0, and the recursion relation

p(n+ r)c(n, r) + c(n− 1, r) = 0, n ≥ 1.

Solution of the recursion. The recursion answers on page 957 imply for c0 = c(0, r) =
1 the relations

c(n+ 1, r) = (−1)n+1

(
Πn

k=0

1

p(k + 1 + r)

)
c(n+ 1, r1) = (−1)n+1

(
Πn

k=0

1

p(k + 3/2)

)
c(n+ 1, r2) = (−1)n+1

(
Πn

k=0

1

p(k + 1)

)
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Then y1(x) = y(x, r1), y2(x) = y(x, r2) imply

y1(x) = x1/2

(
1 +

∞∑
n=0

(−1)n+1

(
Πn

k=0

1

(2k + 3)(k + 1)

)
xn+1

)

= x1/2

(
1 +

∞∑
n=0

(−1)n+1 2n+1

(2n+ 3)!
xn+1

)
,

y2(x) = x0

(
1 +

∞∑
n=0

(−1)n+1

(
Πn

k=0

1

(k + 1)(2k + 1)

)
xn+1

)

= x0

(
1 +

∞∑
n=0

(−1)n+1 2n

(n+ 1)(2n+ 1)!
xn+1

)
.

Answer checks. It is possible to verify the answers using maple, as follows.

c:=n->(-1)^(n+1)*product(1/((2*k+3)*(k+1)),k=0..n);

d:=n->(-1)^(n+1)*product(1/((2*k+1)*(k+1)),k=0..n);

N:=6;1+sum(c(n)*x^(n+1),n=0..N);

1+sum((-1)^(n+1)*2^(n+1)/((2*n+3)!)*x^(n+1),n=0..N);

1+sum(d(n)*x^(n+1),n=0..N);

1+sum((-1)^(n+1)*2^(n)/((n+1)*(2*n+1)!)*x^(n+1),n=0..N);

Verified by maple is exact solution formula y(x) = c1 cos(
√
2x)+ c2 sin(

√
2x) in terms of

elementary functions. Details:

de:=2*x^2*diff(y(x),x,x)+x*diff(y(x),x)+x*y(x)=0;

dsolve(de,y(x));

Example 12.2 (Frobenius Theorem Case (b))
Use the Frobenius theory to solve for y1, y2 in the differential equation x2y′′+x(3+
x)y′ − 3y = 0.

Solution: The indicial equation is r2 + (3 − 1)r − 3 = 0 with roots r1 = 1 (the larger
root) and r2 = −3. The roots differ by an integer, therefore one Frobenius solution y1
exists and the second independent solution y2 must be computed according to Theorem
12.6 part (b). The answers are

y1(x) = x

(
1− 1

5
x+

1

30
x2 − 1

210
x3 +

1

1680
x4 + · · ·

)
,

y2(x) = x−3

(
1− x+

1

2
x2 − 1

6
x3

)
.

Let r denote either root r1 or r2. We expect to compute solutions y1, y2 by the following
scheme.

y(x, r) = xr
∞∑

n=0

c(n, r)xn,

y1(x) = y(x, r1),

y2(x) = Cy1(x) ln(x) + xr2

∞∑
n=0

dnx
n.
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The constant C is either zero or one, but the value cannot be decided until the end of
the computation. Likewise, d0 ̸= 0 is known, but little else about the sequence {dn} is
known.

Find a formula for c(n, r). The method substitutes the series y(x, r) into the differ-
ential equation and then solves for the undetermined coefficients. The details:

x2A(x)y′′ = x2y′′(x, r)

= x2
∞∑

n=0

(n+ r)(n+ r − 1)c(n, r)xn+r−2

= r(r − 1)c(0, r)xr +

∞∑
n=1

(n+ r)(n+ r − 1)c(n, r)xn+r

xB(x)y′ = (3 + x)xy′(x, r)

= (3 + x)xy′(x, r)

= (3 + x)x

∞∑
n=0

(n+ r)c(n, r)xn+r−1

=

∞∑
n=0

3(n+ r)c(n, r)xn+r +

∞∑
n=0

(n+ r)c(n, r)xn+r+1

= 3rc(0, r)xr +

∞∑
n=1

3(n+ r)c(n, r)xn+r

= +

∞∑
n=1

(n+ r − 1)c(n− 1, r)xn+r

C(x)y = −3y(x, r)

= −3c(0, r)xr +

∞∑
n=1

−3c(n, r)xn+r.

Find the recursions. Let p(r) = r(r− 1)+3r− 3 be the indicial polynomial. Let LHS
denote the left hand side of x2y′′ + x(3 + x)y′ − 3y = 0. Add the three equations above.
Then

LHS = x2y′′(x, r) + (3 + x)xy′(x, r)− 3y(x, r)

= p(r)c(0, r)xr +

∞∑
n=1

(p(n+ r)c(n, r) + (n+ r − 1)c(n− 1, r))xn+r.

Symbol LHS equals the zero series, therefore all the coefficients are zero. Given c(0, r) ̸=
0, then p(r) = 0 and we have the recursion relation

p(n+ r)c(n, r) + (n+ r − 1)c(n− 1, r) = 0, n ≥ 1.

Solve the recursion. Using c(0, r) = 1 and the recursion answers on page 957 gives

c(n+ 1, r) = (−1)n+1

(
Πn

k=0

k + r

p(k + 1 + r)

)
c(n+ 1, 1) = (−1)n+1

(
Πn

k=0

k + 1

(k + 1)(k + 5)

)
= (−1)n+1 24

(n+ 5)!
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Therefore, the first few coefficients cn = c(n, 1) of y1 are given by

c0 = 1, c1 =
−1

5
, c2 =

1

30
, c3 =

−1

210
, c4 =

1

1680
.

This agrees with the reported solution y1, whose general definition is

y1(x) = 1 +

∞∑
n=0

(−1)n+1 24

(n+ 5)!
xn+1.

Find the second solution y2. Assume that C = 0 in the trial solution y2. Let
dn = c(n, r2). Then the preceding formulas give the recursion relations

p(r2)d0 = 0, p(n+ r2)dn + (n+ r2 − 1)dn−1 = 0, n ≥ 1.

We require r2 = −3 and d0 ̸= 0. The recursions reduce to

p(n− 3)dn + (n− 4)dn−1 = 0, n ≥ 1.

The solution for 0 ≤ n ≤ 3 is found from dn = − n− 4

p(n− 3)
dn−1:

d0 ̸= 0, d1 = −d0, d2 =
1

2
d0, d3 = −1

6
d0.

There is no condition at n = 4, leaving d4 arbitrary. This gives the recursion

p(n+ 2)dn+5 + (n+ 1)dn+4 = 0, n ≥ 0.

The solution of this recursion is

dn+5 = (−1)n+1

(
Πn

k=0

k + 1

p(k + 2)

)
d4

= (−1)n+1

(
Πn

k=0

k + 1

(k + 1)(k + 5)

)
d4

= (−1)n+1 24

(n+ 5)!
d4.

For the moment let d4 = 1. Then

d4 = 1, d5 = −1

5
, d6 =

1

30
, d7 = − 1

210
,

and then the series terms for n = 4 and higher equal

x−3

(
x4 − 1

5
x5 +

1

30
x6 − 1

210
x7 + · · ·

)
= y1(x).

This implies
y2(x) = x−3

(
d0 + d1x+ d2x

2 + d3x
3
)
+ d4y1(x)

= x−3

(
1− x+

1

2
x2 − 1

6
x3

)
d0 + d4y1(x).

By superposition, y1 can be dropped from the formula for y2. The conclusion for case
C = 0 is

y2(x) = x−3

(
1− x+

1

2
x2 − 1

6
x3

)
.
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False path for C = 1. We take C = 1 and repeat the derivation of y2, just to see why
this path leads to no solution with a ln(x)-term. We have a 50% chance in Frobenius
series problems of taking the wrong path to the solution. We will see details for success
and also the signal for failure.

Let L(y) = x2y′′ + x(3+ x)y′ − 3y denote the left hand side of the Frobenius differential
equation.

Decompose y2 = A+B where A = y1(x) ln(x) and B = xr2
∑∞

n=1 dnx
n. Then L(y2) = 0

becomes L(B) = −L(A).

Compute L(B). The substitution of B into the differential equation to obtain LHS
has been done above. Let dn = c(n, r2), r2 = −3. The equation p(r2) = 0 eliminates
the extra term p(r2)c(0, r2)x

r2 . Split the summation into 1 ≤ n ≤ 4 and 5 ≤ n < ∞.
Change index n = m+ 4 to obtain:

L(B) =

∞∑
n=1

(p(n+ r2)c(n, r2) + (n+ r2 − 1)c(n− 1, r2))x
n+r2

=

3∑
n=1

(p(n− 3)dn + (n− 4)dn−1)x
n−3 + (p(1)d4 + (0)d3)x

+

∞∑
m=1

(p(m+ 1)dm+4 + (m)dm+3)x
m+1.

Compute L(A). Use L(y1) = 0 in the third step and r1 = 1 in the last step, below.

L(A) = x2(y′′1 ln(x) + 2x−1y′1 − x−2y1)
+(3 + x)x(y′1 ln(x) + x−1y1)− 3y1 ln(x)

= L(y1) ln(x) + (2 + x)y1 + 2xy′1
= (2 + x)y1 + 2xy′1

=

∞∑
n=0

2cnx
n+r1 +

∞∑
n=1

cn−1x
n+r1 +

∞∑
n=0

2(n+ r1)cnx
n+r1

= 4c0x+

∞∑
n=1

((2n+ 4)cn + cn−1)x
n+1.

Find {dn}. The equation L(B) = −L(A) produces recursion relations by matching
corresponding powers of x on each side of the equality. We are given d0 ̸= 0. For
1 ≤ n ≤ 3, the left side matches zero coefficients on the right side, therefore as we saw
in the case C = 0,

d0 ̸= 0, d1 = −d0, d2 =
1

2
d0, d3 = −1

6
d0.

The term for n = 4 on the left is (p(1)d4 + (0)d3)x, which is always zero, regardless of
the values of d3, d4. On the other hand, there is the nonzero term 4c0x on the right.
We can never match terms, therefore there is no solution with C = 1. This is the only
signal for failure.

Independence of y1, y2. Two functions y1, y2 are called independent provided k1y1(x)+
k2y2(x) = 0 for all x implies k1 = k2 = 0. For the given solutions, test independence by
solving for k1, k2 in the equation

k1x

(
1− 1

5
x+

1

30
x2 − 1

210
x3 + · · ·

)
+ k2x

−3

(
1− x+

1

2
x2 − 1

6
x3

)
= 0.
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Divide the equation by xr2 , then set x = 0. We get k2 = 0. Substitute k2 = 0 in the
above equation. Divide by xr1 , then set x = 0 to obtain k1 = 0. Therefore, k1 = k2 = 0
and the independence test is complete.

Answer checks. The simplest check uses maple as follows. It is interesting that both
y1 and y2 are expressible in terms of elementary functions, seen by executing the code
below, and detected as a matter of course by maple dsolve().

de:=x^2*diff(y(x),x,x)+x*(3+x)*diff(y(x),x)+(-3)*y(x)=0;

Order:=5;dsolve({de},y(x),type=series);

c:=n->(-1)^(n+1)*product((k+1)/((k+5)*(k+1)),k=0..n);

y1:=x+sum(c(n)*x^(n+2),n=0..5);

x+sum(c(n)*x^(n+2),n=0..infinity);

y2:=x->x^(-3)*( 1-x + x^2/2 -(1/6)*x^3);

simplify(subs(y(x)=y2(x),de));

dsolve(de,y(x));

Example 12.3 (Frobenius Theorem Case (c))
Use the Frobenius theory to solve for y1, y2 in the differential equation x2y′′+x(3+
x)y′ + y = 0.

Solution: The indicial equation is r2+(3−1)r+1 = 0 with roots r1 = −1, r2 = −1. The
roots are equal, therefore one Frobenius solution y1 exists and the second independent
solution y2 must be computed according to Theorem 12.6. The answers:

y1(x) = x−1(1 + x),

y2(x) = x−1

(
−3x− 1

4
x2 +

1

36
x3 − 1

288
x4 +

1

2400
x5 + · · ·

)
Trial solution formulas for y1, y2. Based upon statement (c) of the Frobenius
theorem page 970, we expect to compute the two solutions as follows.

y(x, r) = xr
∞∑

n=0

c(n, r)xn,

y1(x) = y(x, r1),

y2(x) =
∂y(x, r)

∂r

∣∣∣∣
r=r1

=

(
y(x, r) ln(x) + xr

∞∑
n=0

∂c(n, r)

∂r
xn

)∣∣∣∣∣
r=r1

= y(x, r1) ln(x) + xr1

∞∑
n=1

dnx
n

for some constants d1, d2, d3, . . . . In some applications, it seems easier to use the partial
derivative formula, in others, the final expression in symbols {dn} is more tractable.
Finally, we might reject both methods in favor of the reduction of order formula for y2.

Independence of y1, y2. To test independence, let k1y1(x) + k2y2(x) = 0 for all x.
Proving k1 = k2 = 0 implies y1, y2 are independent. Divide the equation k1y1+k2y2 = 0
by xr1 . The series representations of y1, y2 contain a factor xr1 which divides out, leaving
two Maclaurin series and a ln(x)-term. Then ln(0) = −∞ and assumption c(0, r1) ̸= 0
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together with finiteness of the series shows that k2 = 0. Hence also k1 = 0. This
completes the independence test.

Find a formula for c(n, r). The method is to substitute the series y(x, r) into the
differential equation and then resolve the coefficients. The details:

x2A(x)y′′ = x2y′′(x, r)

= x2
∞∑

n=0

(n+ r)(n+ r − 1)c(n, r)xn+r−2

= r(r − 1)c(0, r)xr +

∞∑
n=1

(n+ r)(n+ r − 1)c(n, r)xn+r

xB(x)y′ = (3 + x)xy′(x, r)

= (3 + x)x

∞∑
n=0

(n+ r)c(n, r)xn+r−1

=

∞∑
n=0

3(n+ r)c(n, r)xn+r +

∞∑
n=0

(n+ r)c(n, r)xn+r+1

= 3rc(0, r)xr +

∞∑
n=1

3(n+ r)c(n, r)xn+r

= +

∞∑
n=1

(n+ r − 1)c(n− 1, r)xn+r

C(x)y = y(x, r)

= c(0, r)xr +

∞∑
n=1

c(n, r)xn+r.

Find the recursions. Let p(r) = r(r − 1) + 3r + 1 be the indicial polynomial. Let
LHS stand for the left hand side of the Frobenius differential equation. Add the above
equations. Then

LHS = x2y′′(x, r) + (3 + x)xy′(x, r) + y(x, r)

= p(r)c(0, r)xr +

∞∑
n=1

(p(n+ r)c(n, r) + (n+ r − 1)c(n− 1, r))xn+r.

Because LHS equals the zero series, all coefficients are zero, which implies p(r) = 0 for
c(0, r) ̸= 0, plus the recursion relation

p(n+ r)c(n, r) + (n+ r − 1)c(n− 1, r) = 0, n ≥ 1.

Solve the recursions. Using the recursion answers on page 957 gives

c(n+ 1, r) = (−1)n+1

(
Πn

k=0

k + r

p(k + 1 + r)

)
c(0, r)

c(n+ 1,−1) = (−1)n+1

(
Πn

k=0

k − 1

(k + 1)2

)
c(0, r).

Therefore, c(0,−1) ̸= 0, c(1,−1) = c(0,−1), c(n+ 1,−1) = 0 for n ≥ 1.

A formula for y1. Choose c(0,−1) = 1. Then the formula for y(x, r) and the require-
ment y1(x) = y(x, r1) gives

y1(x) = x−1(1 + x).
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A formula for y2. Of the various expressions for the solution, we choose

y2(x) = y1(x) ln(x) + xr1

∞∑
n=1

dnx
n.

Let us put the trial solution y2 into the differential equation left hand side L(y) =
x2y′′+x(3+x)y′+ y in order to determine the undetermined coefficients {dn}. Arrange
the computation as y2 = A + B where A = y1(x) ln(x) and B = xr1

∑∞
n=1 dnx

n. Then
L(y2) = L(A)+L(B) = 0, or L(B) = −L(A). The work has already been done for series
B, because of the work with y(x, r) and LHS. We define d0 = c(0, r1) = 0, dn = c(n, r1)
for n ≥ 1. Then

L(B) = 0 +

∞∑
n=1

(p(n+ r)dn + (n+ r − 1)dn−1)x
n+r1 .

A direct computation, tedious and routine, gives

L(A) = 3 + x.

Comparing terms in the equation L(B) = −L(A) results in the recursion relations

d1 = −3, d2 = −1

4
, dn+1 = − n− 1

(n+ 1)2
dn (n ≥ 2).

Solving for the first few terms duplicates the coefficients reported earlier:

d1 = −3, d2 = −1

4
, d3 =

1

36
, d4 =

−1

288
, d5 =

1

2400
.

A complete formula:

y2(x) = x−1

(
(1 + x) ln(x)− 3x− 1

4
x2 +

1

4

∞∑
n=2

(−1)n
(
Πn

k=2

k − 1

p(k)

)
xn+1

)

= x−1

(
(1 + x) ln(x)− 3x− 1

4
x2 +

∞∑
n=2

(−1)n
(n− 1)!

((n+ 1)!)2
xn+1

)

= x−1

(
(1 + x) ln(x)− 3x− 1

4
x2 +

∞∑
n=2

(−1)n

n(n+ 1)

xn+1

(n+ 1)!

)
.

Answer check. The solutions displayed here can be checked in maple as follows.

de:=x^2*diff(y(x),x,x)+x*(3+x)*diff(y(x),x)+y(x);

y1:=((1+x)/x)*ln(x);

eqA:=simplify(subs(y(x)=y1,de));

dsolve(de=0,y(x),series);

d:=n->(-1)^(n-1)/((n-1)*n*(n!));

y2:=x^(-1)*((1+x)*ln(x)-3*x-x^2/4+sum(d(n+1)*x^(n+1),n=2..6));
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Exercises 12.5

Regular Singular Point
Test the equation for regular singular
points.

1. x2y′′ + xy′ + y = 0

2. x2(x− 1)y′′ + sin(x)y′ + y = 0

3. x3(x2−1)y′′−x(x+1)y′+(1−x)y = 0

4. x3(x− 1)y′′ + (x− 1)y′ + 2xy = 0

Indicial Equation
Each equation is an Euler differential equa-
tion ax2y′′ + bxy′ + cy = 0 with a, b, c re-
placed by power series. Find the Euler dif-
ferential equation and the indicial equation.

5. x2y′′ − 2x(x+ 1)y′ + (x− 1)y = 0
Ans: x2y′′ − 2xy′ − y = 0, r(r − 1) −
2r − 1 = 0.

6. x2y′′ − 2xy′ + y = 0
Ans: The same equation, r(r−1)−2r+
1 = 0.

7. xy′′ + (1− x)y′ + 2y = 0

8. x2y′′ − 2xy′ + (2 + sinx)y = 0

Frobenius Solutions
Find two linearly independent solutions.
Follow Examples 1, 2, 3 for cases (a), (b),
(c) in the Frobenius Theorem page 970.
Examples: (a) page 971, (b) page 973, (c)
page 977.

9. 2x2y′′ + xy′ − y = 0

10. 4x2y′′ + (2x− 7)y′ + 6y = 0

11. 4x2(x+ 1)y′′ + x(3x− 1)y′ + y = 0

12. 3x2y′′ + xy′ − (1 + x)y = 0

13. x2y′′ + 3xy′ + (1 + x)y = 0

14. xy′′ + (1− x)y′ + 3y = 0

15. x2y′′ + x(x− 1)y′ + (1− x)y = 0

16. xy′′ + (2x+ 3)y′ + 4y = 0
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12.6 Bessel Functions

The work of Friedrich W. Bessel (1784-1846) on planetary orbits led to his 1824
derivation of the equation known in this century as the Bessel differential
equation or order p:

x2y′′ + xy′ + (x2 − p2)y = 0.

This equation appears in a 1733 work on hanging cables by Daniel Bernoulli
(1700-1782). A particular solution y is called a Bessel function. While any
real or complex value of p may be considered, we restrict the case here to p ≥ 0
an integer.

Frobenius theory page 970 applies directly to Bessel’s equation, which has a
regular singular point at x = 0. The indicial equation is r2 − p2 = 0 with
roots r1 = p and r2 = −p. The assumptions imply that cases (b) and (c) of
the Frobenius theorem apply: either r1 − r2 = positive integer [case (b)] or else
r1 = r2 = 0 and p = 0 [case (c)]. In both cases there is a Frobenius series
solution for the larger root. This solution is referenced as Jp(x) in the literature,
and called a Bessel function of nonnegative integral order p. The formulas
most often used appear below.

Jp(x) =
∞∑
n=0

(−1)n(x/2)p+2n

n!(p+ n)!
,

J0(x) = 1− (x/2)2 +
(x/2)4

42
− (x/2)6

62
+ · · ·

J1(x) =
x

2
− (x/2)3

(1)(2)
+

(x/2)5

(2)(6)
− (x/2)7

(6)(24)
+ · · ·

The derivation of the formula for Jp is obtained by substitution of the trial
solution y = xr

∑∞
n=0 cnx

n into Bessel’s equation. Let Q(r) = r(r − 1) − p2 be
the indicial polynomial. The result is

∞∑
n=0

Q(n+ r)cnx
n+r +

∞∑
n=0

cnx
n+p+2 = 0.

Matching terms on the left to the zero coefficients on the right gives the recursion
relations

Q(r)c0 = 0, Q(r + 1)c1 = 0, Q(n+ r)cn + cn−2 = 0, n ≥ 2.

To resolve the relations, let r = p (the larger root), c0 = 1, c1 = 0 (because
Q(p+ 1) ̸= 0), and

cn+2 =
−1

Q(n+ 2 + p)
cn.
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This is a two-termed second order recursion which can be solved with formulas
developed on page 957 to give

c2n+2 = (−1)n+1

(
n∏

k=0

1

(2k + 2 + p)2 − p2

)
c0

= (−1)n+1
n∏

k=0

1

4(k + 1)(k + 1 + p)

=
(−1)n+1

4n+1

1

(n+ 1)!

p!

(n+ 1 + p)!

= (2pp!)
(−1)n+1

22n+2+p

1

(n+ 1)!

1

(n+ 1 + p)!

c2n+3 = (−1)n+1

(
n∏

k=0

1

(2k + 3 + p)2 − p2

)
c1

= 0.

The common factor (2pp!)xp can be factored out from each term except the first,
which is c0x

p or xp. Dividing the answer so obtained by (2pp!) gives the series
reported for Jp.

Properties of Bessel Functions

Sine and cosine identities from trigonometry have direct analogs for Bessel func-
tions. We would like to say that cos(x) ↔ J0(x), and sin(x) ↔ J1(x), but that
is not exactly correct. There are asymptotic formulas

J0(x) ≈
√

2
πx cos

(
x− π

4

)
,

J1(x) ≈
√

2
πx sin

(
x− π

4

)
.

See the reference by G.N. Watson [?] for details about these asymptotic formulas.
At a basic level, based upon the series expressions for J0 and J1, the following
identities can be quickly checked.

Bessel Functions Trig Functions

J0(0) = 1 cos(0) = 1
J ′
0(0) = 0 (cos(x))′

∣∣
x=0

= 0

J1(0) = 0 sin(0) = 0
J ′
1(0) = 1/2 (sin(x))′

∣∣
x=0

= 1

J0(−x) = J0(x) cos(−x) = cos(x)
J1(−x) = −J1(x) sin(−x) = − sin(x)

Some deeper relations exist, obtained by series expansion of both sides of the
identities. Suggestions for the derivations are in the exercises. Watson’s basic
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reference [?] can be consulted to find complete details.

J ′
0(x) = −J1(x)

J ′
1(x) = J0(x)−

1

x
J1(x)

(xpJp(x))
′ = xpJp−1(x), p ≥ 1,(

x−pJp(x)
)′

= −x−pJp+1(x), p ≥ 0,

Jp+1 =
2p

x
Jp+1(x)− Jp−1(x), p ≥ 1,

Jp+1(x) = −2J ′
p(x) + Jp−1(x), p ≥ 1.

The Zeros of Bessel Functions

It is a consequence of the second order differential equation for Bessel functions
that these functions have infinitely many zeros on the positive x-axis. As seen
from asymptotic expansions, the zeros of J0 satisfy x − π/4 ≈ (2n − 1)π/2 and
the zeros of J1 satisfy x− π/4 ≈ nπ. These approximations are already accurate
to one decimal digit for the first five zeros, as seen from the following table.

The positive zeros of J0 and J1

n J0(x) J1(x)

(
2n− 1

2
+

1

4

)
π nπ +

π

4
1 2.40482556 3.83170597 2.35619449 3.92699082
2 5.52007811 7.01558667 5.49778714 7.06858347
3 8.65372791 10.17346813 8.63937980 10.21017613
4 11.79153444 13.32369194 11.78097245 13.35176878
5 14.93091771 16.47063005 14.92256511 16.49336143

The values are conveniently obtained by the following maple code.

seq(evalf(BesselJZeros(0,n)),n=1..5);

seq(evalf(BesselJZeros(1,n)),n=1..5);

seq(evalf((2*n-1)*Pi/2+Pi/4),n=1..5);

seq(evalf((n)*Pi+Pi/4),n=1..5);

The Sturm theory of oscillations of second order differential equations provides
the theory which shows that Bessel functions oscillate on the positive x-axis.
Part of that theory translates to the following theorem about the interlaced
zero property. Trigonometric graphs verify the interlaced zero property for sine
and cosine. The theorem for p = 0 says that the zeros of J0(x) ↔ cos(x) and
J1(x) ↔ sin(x) are interlaced.

Theorem 12.7 (Interlaced Zeros)
Between pairs of zeros of Jp there is a zero of Jp+1 and between zeros of Jp+1 there
is a zero of Jp. In short, the zeros of Jp and Jp+1 are interlaced.

Proof: A complete proof including the basic Sturm theory can be found in the text by
Kreider, Kuller, Ostberg and Perkins (1966), [?] page 234. ■
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Exercises 12.6

Values of J0 and J1
Use series representations and identities to
find an identity for values of the following
functions. Use a computer algebra system
to compute the answers.

1. J0(1)

2. J1(1)

3. J0(1/2)

4. J1(1/2)

Bessel Function Properties
Prove the following relations by expanding
LHS and RHS in series.

5. J ′
0(x) = −J1(x)

6. J ′
1(x) = J0(x)−

1

x
J1(x)

7. (xpJp(x))
′
= xpJp−1(x),

p ≥ 1

8.
(
x−pJp(x)

)′
= −x−pJp+1(x),

p ≥ 0

Bessel Function Recursion Proofs
Add and subtract the expanded equations
of the previous exercises.

9. Jp+1 =
2p

x
Jp(x)− Jp−1(x),

p ≥ 1

10. Jp+1(x) = −2J ′
p(x) + Jp−1(x),

p ≥ 1

Recurrence Relations
Use results of the previous exercises.

11. Express J3 and J4 in terms of J0 and
J1.

12. Prove by induction that Jp(x) =
c1(1/x)J0(x) + c2(1/x)J1(x) where c1
and c2 are polynomials.

Laplace Transform
Assume Laplace identity L(Jn(t)) =
(
√
s2+1−s)

n

√
s2+1

holds for s ≥ 0. Prove the fol-

lowing results.

13.
∫∞
0

Jn+1(x)dx =
∫∞
0

Jn−1(x)dx

for integers n > 0.

14.

∫ ∞

0

Jn(x)dx

x
=

1

n

for integers n > 0

Bessel Function Bounds
Assume L. J. Landau’s result Jp(x) ≤
c|x|−1/3 for all x and p > 0, where c =
0.78574687 . . . is the best possible constant.
Prove the following results.

15. limx→∞ J1(x) = 0

16. limx→∞ J ′
0(x) = 0
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12.7 Legendre Polynomials

12.7 Legendre Polynomials

The differential equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

is called the Legendre differential equation of order n, after the French math-
ematician Adrien Marie Legendre (1752-1833), because of his work on gravita-
tion.1 The value of n is a nonnegative integer. For each n, the corresponding
Legendre equation is known to have a polynomial solution Pn(x) of degree n,
called the nth Legendre polynomial. The first few of these are recorded be-
low.

P0(x) = 1

P1(x) = x

P2(x) =
3

2
x2 − 1

2

P3(x) =
5

2
x3 − 3

2
x

P4(x) =
35

8
x4 − 15

4
x2 +

3

8

P5(x) =
63

8
x5 − 35

4
x3 +

15

8
x,

P6(x) =
231

16
x6 − 315

16
x4 +

105

16
x2 − 5

16
.

The general formula for Pn(x) is obtained by using ordinary point theory on
Legendre’s differential equation. The polynomial is normalized to satisfy Pn(1) =
1. The Legendre polynomial of order n is defined by

Pn(x) =
1

2n

N∑
k=0

(−1)k(2n− 2k)!

k!(n− 2k)!(n− k)!
xn−2k,(1)

according to n = 2N even or n = 2N + 1 odd. Proof on page 989.

There are alternative formulas available from which to compute Pn. The most
famous one is Rodrigues’ formula, after the French economist and mathemati-
cian Olinde Rodrigues (1794-1851),

Pn(x) =
1

2n n!

dn

dxn
(
x2 − 1

)n
,

proof on page 993. The classical generating function derivation is in Exercise 5.
Equally famous is Bonnet’s recursion

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x),

which was used to produce the table of Legendre polynomials above. Bonnet’s
recursion is derived from Rodrigues’ formula on page 993.

1Legendre is recognized more often for his 40 years of work on elliptic integrals.
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Properties of Legendre Polynomials

The main relations known for Legendre polynomials Pn are recorded here.

Pn(1) = 1

Pn(−1) = (−1)n

P2n+1(0) = 0

P ′
2n(0) = 0

Pn(−x) = (−1)nPn(x)

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

P ′
n+1(x)− P ′

n−1(x) = (2n+ 1)Pn(x)

P ′
n+1(x)− xP ′

n(x) = (n+ 1)Pn(x)

(1− 2xt+ t2)−1/2 =
∞∑
n=0

Pn(x)t
n

∫ 1

−1
|Pn(x)|2dx =

2

2n+ 1∫ 1

−1
Pn(x)Pm(x)dx = 0 (n ̸= m)

Example 12.4 (Boundary Data for Pn)
The polynomial solution Pn(x) of Legendre’s equation (1−x2)y′′−2xy′+n(n+1)y =

0 satisfies Pn(1) = 1 and P ′
n(1) =

n(n+ 1)

2
.

Details for Example 12.4
Identity Pn(1) = 1 is derived in the proof of the Legendre polynomial formula page 989.

Used in calculations below are identities from algebra and calculus:

(1) (a+ b)k =

k∑
r=0

(
k

r

)
arbk−r Binomial theorem

(2) (uv)(n) =

n∑
r=0

(
n

r

)
u(r)v(n−r) Product theorem

Identity P ′
n(1) =

n(n+ 1)

2
for n > 1 will be derived from Rodrigues’ formula and

identities (1), (2). For n = 0, 1, the identity follows from P0(x) = 1, P1(x) = x. Assume

n ≥ 1. Let c =
1

2nn!
. Then Rodrigues’ formula implies

P ′
n(x) = c

d

dx

(
(x2 − 1)n

)(n)
= c

(
d

dx

(
x2 − 1)n

))(n)

= c
(
2nx(x2 − 1)n−1

)(n)
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= 2nc (uv)
(n) where u = x, v = (x2 − 1)n−1

= 2nc

n∑
r=0

(
n

r

)
u(r)v(n−r) by identity (2)

Let x = 1 in the last display. Because u(x) = x, then u(1) = u′(1) = 1 and u(r) = 0 for
r ≥ 2. The sum reduces to two terms:

P ′
n(1) = 2nc

(
n

0

)
v(n)(1) + 2nc

(
n

1

)
v(n−1)(1)

Insert

(
n

0

)
= 1 and

(
n

1

)
= n, then:

P ′
n(1) = 2ncv(n)(1) + 2n2cv(n−1)(1)

Calculus with mathematical induction on formula v = (x2 − 1)n−1 gives these results:

v(n−1)(1) = 2n−1(n− 1)!, v(n)(1) = 2n−2(n− 1)n!

The details are aided by substitution y = x− 1. Then v = (y2 + 2y)n−1 is a polynomial

in y obtained explicitly by expansion (1). Then 2n−1 n! =
1

2c
implies:

P ′
n(1) = 2ncv(n)(1) + 2ncn v(n−1)(1)

= c(2n−2(2)(n!)(n)(n− 1)) + c(2n−1(2n)(n)(n− 1)!)

=
n(n+ 1)

2

Gaussian Quadrature

A high-speed low overhead numerical procedure Gaussian quadrature is de-
fined in terms of the zeros {xk}nk=1 of Pn(x) = 0 in −1 < x < 1 and certain
constants {ak}nk=1 by the approximation formula∫ 1

−1
f(x)dx ≈

n∑
k=1

akf(xk).

The approximation is exact when f is a polynomial of degree less than 2n. This
fact is enough to evaluate the sequence of numbers {ak}nk=1, because we can
replace f by the basis functions 1, x, . . . , xn−1 to get an n × n system for the
variables a1, . . . , an. The last critical element: the sequence {xk}nk=1 is the set
of n distinct roots of Pn(x) = 0 in −1 < x < 1. Here we need some theory, that
says that these roots number n and are all real.

Theorem 12.8 (Roots of Legendre Polynomials)
The Legendre polynomial Pn has exactly n distinct real roots x1, . . . , xn located in
the interval −1 < x < 1.
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12.7 Legendre Polynomials

The importance of the Gaussian quadrature formula lies in the ability to make
a table of values that generates the approximation, except for the evaluations
f(xk). This makes Gaussian quadrature a very high speed method, because it is
based upon function evaluation and a dot product for a fixed number of vector
entries. Vector parallel computers are able to perform these operations at high
speed.

A question: How is Gaussian quadrature different than the rectangular rule?
They are similar methods in the arithmetic requirements of function evaluation
and dot product. The answer: the rectangular rule has less accuracy than Gaus-
sian quadrature.

Gaussian quadrature can be compared with Simpson’s rule. For n = 3, which
uses three function evaluations, Gaussian quadrature becomes∫ 1

−1
f(x)dx ≈ 5f(

√
.6) + 8f(0) + 5f(−

√
.6)

9
,

whereas Simpson’s rule with one interval is∫ 1

−1
f(x)dx ≈ 1

3
f(−1) +

4

3
f(0) +

1

3
f(1).

Left as a puzzle is comparison of the two approximations using polynomials f of
degree higher than 4, or perhaps a smooth positive function f on −1 < x < 1,
say f(x) = cos(x).

Table generation. The pairs (xj , aj), 1 ≤ j ≤ n, required for the right side of
the Gaussian quadrature formula, can be generated just once for a given n by
the following maple procedure.

GaussQuadPairs:=proc(n)

local a,x,xx,ans,p,eqs;

xx:=fsolve(orthopoly[P](n,x)=0,x);

x:=array(1..n,[xx]);

eqs:=seq(sum(a[j]*x[j]^k,j=1..n)=int(t^k,t=-1..1),

k=0..n-1);

ans:=solve({eqs},{seq(a[j],j=1..n)});

assign(ans);

p:=[seq([x[j],a[j]],j=1..n)];

end proc;

For simple applications, the maple code above can be attached to the application
to generate the table on-the-fly. To generate tables, such as the one below, run
the procedure for a given n, e.g., to generate the table for n = 5, insert the above
procedure, then use the command GaussQuadPairs(5); .
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Table 1. Gaussian Quadrature Pairs for n = 5

j xj aj
1 −0.9061798459 0.2369268851
2 −0.5384693101 0.4786286705
3 0.0000000000 0.5688888887
4 0.5384693101 0.4786286705
5 0.9061798459 0.2369268851

Derivation: Legendre Polynomial Formula

Let’s start with the differential equation

(1− x2)y′′ − 2xy′ + λy = 0

where λ is a real constant. It will be shown that the differential equation has a
polynomial solution if and only if λ = n(n + 1) for some nonnegative integer n,
in which case the polynomial solution is a scalar multiple of Pn, which is given
by equation (1) page 985.

Proof: The trial solution is a Maclaurin series y =
∑∞

n=0 cnx
n. We will find two

independent solutions y1, y2, a basis of solutions on an interval about x = 0. The
background required is the theory of ordinary points. 2

Substitute the trial solution into Legendre’s equation:

(1− x2)y′′ =

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
n=2

n(n− 1)cnx
n,

−2xy′ =

∞∑
n=1

−2ncnx
n,

λy =

∞∑
n=0

λcnx
n.

Let L(y) = (1− x2)y′′ − 2xy′ + λy, then, adding the above equations,

L(y) = (1− x2)y′′ − 2xy′ + λy
= (2c2 + λc0) + (6c3 − 2c1 + λc1)x

+

∞∑
n=2

((n+ 2)(n+ 1)cn+2 + (−n(n− 1)− 2n+ λ)cn)x
n.

The requirement L(y) = 0 makes the right side coefficients equal the coefficients of the
zero series, giving the relations

2c2 + λc0 = 0,
6c3 − 2c1 + λc1 = 0,
(n+ 2)(n+ 1)cn+2 + (−n(n− 1)− 2n+ λ)cn = 0 (n ≥ 2).

2Legendre polynomials Pn are solutions of Legendre’s equation for n ≥ 0 an integer, known
to be orthogonal on [−1, 1]. Legendre’s equation has regular singular points at x = ±1 and
x = ∞. Frobenius theory applies to find solutions when n in the factor n(n + 1) is a real
number (not an integer). The solutions are called a Legendre function of the first kind and
a Legendre function of the second kind, denoted LegendreP(n,x) and LegendreQ(n,x) in
both maple and mathematica languages.

989
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These compress to a single two-termed second order recursion

cn+2 =
n2 + n− λ

(n+ 2)(n+ 1)
cn = 0, (n ≥ 0),

whose solution is

c2n+2 =

(
Πn

k=0

2k(2k + 1)− λ

(2k + 1)(2k + 2)

)
c0,

c2n+3 =

(
Πn

k=0

(2k + 1)(2k + 2)− λ

(2k + 2)(2k + 3)

)
c1.

Let y1 be the series solution using c0 = 1, c1 = 0 and let y2 be the series solution using
c0 = 0, c1 = 1. Then

y1 = 1 +
∑∞

n=0 a2n+2x
2n+2, a2n+2 =

∏n
k=0

2k(2k + 1)− λ

(2k + 1)(2k + 2)

y2 = x+
∑∞

n=0 b2n+3x
2n+3, b2n+3 =

∏n
k=0

(2k + 1)(2k + 2)− λ

(2k + 2)(2k + 3)

The radius of convergence of y1 and y2 is 1, by the ratio test. They form a basis of
solutions to Legendre’s equation defined on −1 < x < 1.

Lemma A. If λ = m(m+1) for some integer m ≥ 0, then one of the two series solutions
y1, y2 is a polynomial.

Proof of Lemma A: For m = 2n + 2 (m even), there is a zero factor in the product
equation for a2n+2, causing a2j+2 = 0 for j ≥ n, which means y1 is a polynomial.
Similarly, if m = 2n + 3 (m is odd), then b2j+3 = 0 for j ≥ n: y2 is a polynomial. If
m = 0, then c2 = 0 from the recursion relations, giving polynomial solution y1 = 1. If
m = 1, then c0 = c2k+2 = 0, c1 = 1,c2k+3 = 0 for k ≥ 0, giving polynomial solution
y2 = x. The proof of Lemma B is complete. ■

Lemma B. If some solution y is a nonzero polynomial, then λ = n(n + 1) for some
integer n ≥ 0.

Proof of Lemma B: Assume some solution y is a nonzero polynomial. Assume the
contrary, that λ does not equal n(n+1) for any integer n ≥ 0. Let’s seek a contradiction
to complete the proof.

Because y1, y2 are a basis of solutions, then y = d1y1 + d2y2 for some |d1|+ |d2| > 0 and
the derivative y(m) is identically zero for m equal to one plus the degree of polynomial
y.

Differentiate y = d1y1 + d2y2 to obtain the two equations

d1y
m
1 (0) + d2y

m
2 (0) = 0,

d1y
m+1
1 (0) + d2y

m+1
2 (0) = 0

Then d1, d2 satisfy the 2× 2 linear system(
y
(m)
1 (0) y

(m)
2 (0)

y
(m+1)
1 (0) y

(m+1)
2 (0)

)(
d1
d2

)
=

(
0
0

)
.

Because |d1| + |d2| > 0 , then the 2 × 2 linear system has a nonzero solution, implying
the determinant of coefficients must vanish:

D =

∣∣∣∣∣ y
(m)
1 (0) y

(m)
2 (0)

y
(m+1)
1 (0) y

(m+1)
2 (0)

∣∣∣∣∣ = 0
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Series y1 and y2 are Maclaurin expansions. The four derivatives in determinant D appear

in the series expansions of y1 and y2. For instance, y
(m)
1 (0)/m! is the coefficient of xm

in series y1. Assume m > 1 and m = 2n+ 2 (m is even).

The odd case m > 1 and m = 2n+ 3 is treated similarly, details omitted.

Then y
(m)
1 (0)/m! = a2n+2 by the definition of y1, giving relation

D =

∣∣∣∣ (2n+ 2)!a2n+2 y2(2n+ 2)(0)

(2n+ 3)!a2n+3 y
(2n+3)
2 (0)

∣∣∣∣ = 0

Even terms of y2 are zero, therefore y(2n+2)(0) = 0 and the determinant evaluates to

D = (2n+ 2)!a2n+2y
(2n+3)
2 (0). If λ is not the product of two consecutive integers, then

product a2n+2 ̸= 0, and y
(2n+3)
2 (0) ̸= 0 by a similar analysis, using the recursion product

formulas for a2n+2 and b2n+3, which contain nonzero factors of the form j(j+1)−λ. So
D ̸= 0. The contradiction: D = 0 and D ̸= 0.

Two cases remain: (1) m = 0, (2) m = 1. Consider case (1), then

D =

∣∣∣∣∣ y
(m)
1 (0) y

(m)
2 (0)

y
(m+1)
1 (0) y

(m+1)
2 (0)

∣∣∣∣∣
=

∣∣∣∣ y1(0) y2(0)
y′1(0) y′2(0)

∣∣∣∣
=

∣∣∣∣ 1 0
0 1

∣∣∣∣ ̸= 0.

Consider case (2), then

D =

∣∣∣∣∣ y
(m)
1 (0) y

(m)
2 (0)

y
(m+1)
1 (0) y

(m+1)
2 (0)

∣∣∣∣∣
=

∣∣∣∣ y′1(0) y′2(0)
y′′1 (0) y′′2 (0)

∣∣∣∣
=

∣∣∣∣ 0 1
a2 y′′2 (0)

∣∣∣∣
= −a2 = −(−λ/2)

Because λ is not of the form n(n+ 1) then λ ̸= 0 and again a contradiction: D is both
zero and nonzero. The proof of Lemma B is complete. ■

Simplification of Coefficients.
Let Pn = y1 for n even and Pn = y2 for n odd. Only the case of n even, n = 2N , will
be verified. The odd case is left as an easily-solved puzzle. The equation 2r(2r + 1) −
n(n+ 1) = (2r − n)(n+ 2r + 1) implies the following relation for the coefficients of y1:

c2p+2 = c0Π
p
r=0

2r(2r + 1)− n(n+ 1)

(2r + 1)(2r + 2)

= c0Π
p
r=0

(2r − n)(n+ 2r + 1)

(2r + 1)(2r + 2)
.

Choose

c0 =
(−1)N

2n(N !)2
(n = 2N even).
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Let’s match coefficients in the reported formula for Pn against the series solution. The
constant terms match by the choice of c0. To match powers xn−2k and x2p+2, we require
n− 2k = 2p+ 2. To match coefficients, we must prove

c2p+2 =
1

2n
(−1)r(2n− 2k)!

k!(n− 2k)!(n− k)!
.

Solving n− 2k = 2p+ 2 for p when n = 2N gives p = N − k − 1 and then

c2p+2 = c0Π
p
r=0

(−1)(n− 2r)(n+ 2r + 1)

(2r + 1)(2r + 2)

=
(−1)2N−k

2n(N !)2
ΠN−k−1

r=0

(n− 2r)(n+ 2r + 1)

(2r + 1)(2r + 2)
.

The product factor will be converted to powers and factorials.

1 = ΠN−k−1
r=0 (n− 2r)

= (2N)(2N − 2) · · · (2k + 2)

= 2N−k(N)(N − 1) · · · (k + 1)

= 2N−kN !

k!
.

2 = ΠN−k−1
r=0 (n+ 2r + 1)

= (2N + 1)(2N + 3) · · · (4N − 2k − 1)

=
(2N + 1)(2N + 2) · · · (4N − 2k − 1)(4N − 2k)

(2N + 2)(2N + 4) · · · (4N − 2k)

=
(4N − 2k)!

(2N)!(2N)(4N) · · · (4N − 2k)

=
(4N − 2k)!

(2N)!2N−k(N + 1)(N + 2) · · · (2N − k)

=
(4N − 2k)!N !

(2N)!2N−k(2N − k)!

=
(2n− 2k)!N !

(n)!2N−k(n− k)!
because n = 2N .

3 = ΠN−k−1
r=0 (2r + 1)(2r + 2)

= [1 · 2][3 · 4] · · · [(2N − 2k − 1)(2N − 2k)]

= (n− 2k)! because n = 2N .

Then

c2p+2 =
(−1)2N−k

2n(N !)2
1 2

3

=
(−1)2N−k

2n(N !)2

2N−kN !

k!

(2n− 2k)!N !

(n)!2N−k(n− k)!

(n− 2k)!

=
(−1)k

2nk!(n− 2k)!(n− k)!
.

This completes the derivation of the Legendre polynomial formula. ■
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12.7 Legendre Polynomials

Derivation of Rodrigues’ Formula

It must be shown that Legendre’s polynomial formula

Pn(x) =
1

2n

N∑
k=0

(−1)k(2n− 2k)!

k!(n− 2k)!(n− k)!
xn−2k,

derived above from ordinary point theory applied to Legendre’s differential equa-
tion, is also given by Rodrigues’ formula

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
.

Proof: Start with the binomial expansion (a + b)n =
∑n

k=0

(
n
k

)
ak bn−k. Substitute

a = −1, b = x2,

(
n
k

)
=

n!

k! (n− k)!
to obtain

(−1 + x2)n =

n∑
k=0

(−1)kn!

k!(n− k)!
x2n−2k.

The plan is to differentiate this equation n times. Calculus derivative (d/du)num can be

written as
m!

(m− n)!
um−n. Each differentiation annihilates the constant term. Therefore,

there are N = n/2 terms for n even and N = (n− 1)/2 terms for n odd, and we have

dn

dxn

(
(−1 + x2)n

)
=

N∑
k=0

(−1)kn!(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k

= n! 2n
1

2n

N∑
k=0

(−1)k(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k

= 2nn!Pn(x).

■

Derivation of Bonnet’s Recursion

Proof: Rodrigues’ formula will be used to define Pn:

Pn(x) = cnD
n(un), u = x2 − 1, D =

d

dx
, cn =

1

n!2n

To be proved is Bonnet’s recursion:

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x)

Lemma A. cm = 2(m+ 1)cm+1

Lemma B. Bonnet’s recursion is equivalent to the identity

Dn+1un+1 = 2(2n+ 1)xDnun − 4n2Dn−1un−1(2)
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12.7 Legendre Polynomials

Lemma C. Dn+1un+1 = 2(n+ 1)(2n+ 1)Dn−1un + 4n(n+ 1)Dn−1un−1

Lemma D. (n+ 1)Dn−1un = xDnun − 2nDn−1un−1

Proof of Bonnet’s recursion: Let’s verify that equation (2) in Lemma B is satisfied:

LHS = Dn+1un+1 Left side of (2).

=

{
2(n+ 1)(2n+ 1)Dn−1un

+4n(n+ 1)Dn−1un−1 By Lemma C.

=

{
2(2n+ 1)

(
xDnun − 2nDn−1un−1

)
+4n(n+ 1)Dn−1un−1 By Lemma D.

=

{
2(2n+ 1)xDnun

+4n (−(2n+ 1) + (n+ 1))Dn−1un−1 Expand.

= 2(2n+ 1)xDnun − 4n2Dn−1un−1 Which equals the RHS of (2) in
Lemma B.

This completes the proof of Bonnet’s recursion, except for proofs of the lemmas.

Proof of Lemma A: See the Exercise 3 solution. ■

Proof of Lemma B: Replace Pk(x) by ckD
kuk in Bonnet’s recursion:

(n+ 1)cn+1D
n+1un+1 = (2n+ 1)xDnun − ncn−1D

n−1un−1

Divide by (n+ 1)cn+1 and simplify using Lemma A:

Dn+1un+1 =
2n+ 1

(n+ 1)cn+1
xDnun − ncn−1

(n+ 1)cn+1
Dn−1un−1

= 2(n+ 1)xDnun − 2n(n)(2)(n+ 1)cn+1

(n+ 1)cn+1
Dn−1un−1

= 2(n+ 1)xDnun − 4n2Dn−1un−1

All steps are reversible, so Bonnet’s recursion is equivalent to equation (2). ■

Proof of Lemma C: Let’s write x2 = (x2 − 1) + 1 = u+ 1 to strip symbol x from the
expansion. The calculus product rule and definition u = x2 − 1 gives

Dn+1un+1 = Dn−1
(
D
(
Dun+1

))
= Dn−1 (D (2(n+ 1)xun))

= Dn−1
(
2n(n+ 1)un + 4n(n+ 1)x2un−1

)
= Dn−1

(
2n(n+ 1)un + 4n(n+ 1)(u+ 1)un−1

)
= Dn−1

(
2n(n+ 1)(2n+ 1)un + 4n(n+ 1)un−1

)
= 2n(n+ 1)(2n+ 1)Dn−1un + 4n(n+ 1)Dn−1un−1

■

Proof of Lemma D: The Leibitz Rule for differentiation of a power (fg)k gives

Dn(xun) = xDnun − 2nDn−1un(3)

because there are only two nonzero terms

(
n
r

)
Dr(x)Dn−r(un) in the Leibnitz identity.

The calculus product rule gives

Dn(xun) = (2n+ 1)Dn−1un + 2nDn−1un−1(4)
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12.7 Legendre Polynomials

because
Dn(Dn(xun) = Dn−1(D(xun))

= Dn−1(un + 2nx2un−1

= Dn−1un + 2nDn−1((u+ 1)un−1)

= (2n+ 1)Dn−1un + 2nDn−1un−1

Subtract equation (4) from equation (3).

0 = xDnun + nDn−1un − (2n+ 1)Dn−1un − 2nDn−1un − 2nDn−1un−1

= xDnun − (n+ 1)Dn−1un − 2nDn−1un−1

Rearrange this equation to

(n+ 1)Dn−1un = xDnun − 2nDn−1un−1

■

Exercises 12.7

Equivalent Legendre Equations
Prove the following are equivalent to
(1−x2)y′′−2xy′+n(n+1)y=0

1. ((1− x2)y′)′ + n(n+ 1)y = 0

2. Let x = cos θ, ′ = d
dθ , then

sin θy′′+cos θy′+n(n+1) sin θy=0.

Proof of Bonnet’s Recursion

3. Define cn = 1
n!2n .

Prove cm = 2(m+ 1)cm+1.

4. Let D = d
dx , u = x2 − 1. Verify

D2u2 = 12x2− 4 using D and the bino-
mial theorem.

5. Prove Bonnet’s recursion from the gen-
erating function equation

1√
1− 2xt+ t2

=

∞∑
n=0

Pn(x)t
n

6. Prove that Pn(1) = 1 directly from Ro-
drigues’ formula.

Boundary Data at x = ±1
Use these identities:

(1) (a+ b)k=
∑k

r=0

(
k
r

)
arbk−r

(2) (uv)(n)=
∑n

r=0

(
n
r

)
u(r)v(n−r)

7. In Rodrigues’ formula, let Let y = x−1
to prove

Pn(y + 1)= 1
n!2n

(
d

dy

)n (
y2 + 2y

)n
8. Verify from identity (1):(

y2+2y
)n

=
∑n

r=0

(
n
r

)
2ry2n−r

9. Prove Pn(1) = 1 from Bonnet’s recur-
sion.

10. Assume Pn(−x)=(−1)nPn(x) and

P ′
n(1) =

n(n+ 1)

2
. Prove

Pn(−1) = (−1)n and

P ′
n(−1) = (−1)n

n(n+ 1)

2
.

Legendre Integrals
Use Legendre properties page 986.

11. Use (2n+1)Pn = P ′
n+1−P ′

n−1 to prove∫ 1

0
Pn(x)dx = 0 for n > 0 even.

12. Use Bonnet’s recursion to show that∫ 1

0
Pn(x)dx = Pn−1(0)

n+1 for n > 0.
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12.8 Orthogonality

12.8 Orthogonality

The notion of orthogonality originates in R3, where nonzero vectors v⃗ 1, v⃗ 2 are
defined to be orthogonal, written v⃗ 1 ⊥ v⃗ 2, provided v⃗ 1 · v⃗ 2 = 0. The dot
product in R3 is defined by

x⃗ · y⃗ =

 x1
x2
x3

 ·

 y1
y2
y3

 = x1y1 + x2y2 + x3y3.

Similarly, x⃗ · y⃗ = x1y1 + x2y2 + · · · + xnyn defines the dot product in Rn.
Literature uses the notation (x⃗ , y⃗ ) as well as x⃗ · y⃗ . Modern terminology uses
Inner Product instead of dot product, to emphasize the use of functions and
abstract properties. The inner product (x⃗ , y⃗ ) satisfies the following properties.

(x⃗ , x⃗) ≥ 0 Non-negativity.

(x⃗ , x⃗) = 0 implies x⃗ = 0⃗ Uniqueness.

(x⃗ , y⃗ ) = (y⃗ , x⃗ ) Symmetry.

k(x⃗ , y⃗ ) = (kx⃗ , y⃗ ) Homogeneity.

(x⃗ + y⃗ , z⃗) = (x⃗ , z⃗) + (y⃗ , z⃗) Additivity.

The storage system of choice for answers to differential equations is a real vector
space V of functions f . A real inner product space is a vector space V with
real-valued inner product function (x⃗ , y⃗ ) defined for each x⃗ , y⃗ in V , satisfying
the preceding rules.

Dot Product for Functions

The extension of the notion of dot product to functions replaces x⃗ · y⃗ by average
value. Insight can be gained from the approximation

1

b− a

∫ b

a
F (x)dx ≈ F (x1) + F (x2) + · · ·+ F (xn)

n

where b− a = nh and xk = a+ kh. The left side of this approximation is called
the average value of F on [a, b]. The right side is the classical average of F
at n equally spaced values in [a, b]. If we replace F by a product fg, then the

average value formula reveals that
∫ b
a fgdx acts like a dot product:

1

b− a

∫ b

a
f(x)g(x)dx ≈ x⃗ · y⃗

n
, x⃗ =

f(x1)
...

f(xn)

 , y⃗ =

g(x1)
...

g(xn)

 .

The formula says that
∫ b
a f(x)g(x)dx is approximately a constant multiple of the

dot product of samples of f , g at n points of [a, b].
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12.8 Orthogonality

Given functions f and g integrable on [a, b], the formula

(f, g) =

∫ b

a
f(x)g(x)dx

defines a dot product satisfying the abstract properties cited above. When dealing
with solutions to differential equations, this dot product, along with the abstract
properties of a dot product, provide the notions of distance and orthogonality
analogous to those in R3.

Orthogonality, Norm and Distance

Define nonzero functions f and g to be orthogonal on [a, b] provided (f, g) = 0.
Define the norm or the distance from f to 0 to be the number ∥f∥ =

√
(f, f)

and the distance from f to g to be ∥f − g∥. The basic properties of the norm
∥ · ∥ are as follows.

∥f∥ ≥ 0 Non-negativity.

∥f∥ = 0 implies f = 0 Uniqueness.

∥cf∥ = |c|∥f∥ Homogeneity.

∥f∥ =
√
(f, f) Norm and the inner product.

∥f + g∥ ≤ ∥f∥+ ∥g∥ The triangle inequality.

|(f, g)| ≤ ∥f∥ ∥g∥ Cauchy-Schwartz inequality.

Weighted Dot Product

In applications of Bessel functions, use is made of the weighted dot product

(f, g) =

∫ b

a
f(x)g(x)ρ(x)dx,

where ρ(x) > 0 on a < x < b.

The possibility that ρ(x) = 0 at some set of points in (a, b) has been considered
by researchers, as well as the possibility of a singularity at x = a or x = b, or
a = −∞ and/or b = ∞. Properties advertised here mostly hold in these extended
cases, provided appropriate additional assumptions are invoked.

Theorem 12.9 (Orthogonality of Legendre Polynomials)
The Legendre polynomials {Pn}∞n=0 satisfy the orthogonality relation∫ 1

−1
Pn(x)Pm(x)dx = 0, n ̸= m.

The relation means that Pn and Pm (n ̸= m) are orthogonal on [−1, 1] relative to
the dot product (f, g) =

∫ 1
−1 f(x)g(x)dx.
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Proof: The details use only the Legendre differential equation (1−x2)y′′−2xy′+n(n+
1)y = 0 in the form ((1− x2)y′)′ + n(n+ 1)y = 0 and the fact that a(x) = 1− x2 is zero
at x = ±1. From the definition of the Legendre polynomials, the following differential
equations are satisfied:

(aP ′
n)

′ + n(n+ 1)Pn = 0,

(aP ′
m)′ +m(m+ 1)Pm = 0.

Multiply the first by Pm and the second by Pn, then subtract to obtain

(m(m+ 1)− n(n+ 1))PnPm = (aP ′
n)

′Pm − (aP ′
m)′Pn.

Re-write the right side of this equation as (aP ′
nPm − aP ′

mPn)
′. Then integrate over

−1 < x < 1 to obtain

LHS = (m(m+ 1)− n(n+ 1))

∫ 1

−1

Pn(x)Pm(x)dx

= (a(x)P ′
n(x)Pm(x)− a(x)P ′

m(x)Pn(x))|
x=1
x=−1

= 0.

The result is zero because a(x) = 1− x2 is zero at x = 1 and x = −1. The dot product
of Pn and Pm is zero, because m(m+ 1)− n(n+ 1) ̸= 0. ■

Theorem 12.10 (Orthogonality of Bessel Functions)
Let the Bessel function Jn have positive zeros {bmn}∞m=1. Given R > 0, define
fm(r) = Jn(bmnr/R). Then the following weighted orthogonality relation holds.∫ R

0
fi(r)fj(r)rdr = 0, i ̸= j.

The relation means that fi and fj (i ̸= j) are orthogonal on [0, R] relative to the

weighted dot product (f, g) =
∫ R
0 f(r)g(r)ρ(r)dr, where ρ(r) = r.

Proof: The details depend entirely upon the Bessel differential equation of order n,
x2y′′ + xy′ + (x2 − n2)y = 0, and the condition y(bmn) = 0, valid when y = Jn. Let λ =
bmn/R and change variables by x = λr, w(r) = y(λr). Then w satisfies dw/dr = y′(x)λ,
d2w/dr2 = y′′(x)λ2 and the differential equation for y implies the equation

r2
d2w

dr2
(r) + r

dw

dr
(r) + (λ2r2 − n2)w(r) = 0.

Apply this change of variables to Bessel’s equation of orders i and j. Then

r2f ′′
i (r) + rf ′

i(r) + (b2inr
2R−2 − n2)fi(r) = 0,

r2f ′′
j (r) + rf ′

j(r) + (b2jnr
2R−2 − n2)fj(r) = 0.

Multiply the first equation by fj(r) and the second by fi(r), then subtract and divide
by r to obtain

rf ′′
i fj − rf ′′

j fi + f ′
ifj − f ′

jfi + (b2in − b2jn)rR
−2fifj = 0.
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Because of the calculus identities rw′′+w′ = (rw′)′ and (rw′
1w2− rw′

2w2)
′ = (rw′

1)
′w2−

(rw′
2)

′w1, this equation can be re-written in the form

(b2jn − b2in)R
−2rfifj = (rf ′

ifj − rf ′
jfi)

′.

Integrate this equation over 0 < r < R. Then the right side evaluates to zero, because
of the conditions fi(R) = fj(R) = 0. The left side evaluates to a nonzero multiple of∫ R

0
fi(r)fj(r)rdr. Therefore, the weighted dot product of fi and fj is zero. ■

Series of Orthogonal Functions

Let (f, g) denote a dot product defined for functions f , g. Especially, we include

(f, g) =
∫ b
a fgdx and a weighted dot product (f, g) =

∫ b
a fgρdx. Let {fn} be a

sequence of nonzero functions orthogonal with respect to the dot product (f, g),
that is, a system {fn}∞n=1 satisfying the orthogonality relations

(fi, fj) = 0, i ̸= j, (fi, fi) > 0, i = 1, 2, . . . .

A Generalized Fourier series is a convergent series of such orthogonal func-
tions

F (x) =
∞∑
n=1

cnfn(x).

The coefficients {cn} are called the Generalized Fourier Coefficients of F .
Convergence is taken in the sense of the norm ∥g∥ =

√
(g, g), defined as follows:

F =
∞∑
n=1

cnfn means lim
N→∞

∥∥∥∥∥
N∑

n=1

cnfn − F

∥∥∥∥∥ = 0.

For example, when ∥g∥ =
√
(g, g) and (f, g) =

∫ b
a fgdx, then series convergence

is called Mean-Square convergence, defined by

lim
N→∞

√√√√∫ b

a

∣∣∣∣∣
N∑

n=1

cnfn(x)− F (x)

∣∣∣∣∣
2

dx = 0.

Orthogonal Series Method. The coefficients {cn} in an orthogonal series are
determined by a technique called the Orthogonal series method, described in
words as follows.

The coefficient cn in an orthogonal series is found by taking the dot
product of the equation with the orthogonal function that multiplies
cn.

The details of the method:

(F, fn) =

( ∞∑
k=1

ckfk, fn

)
Dot product the equation with fn.
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(F, fn) =
∞∑
k=1

ck(fk, fn) Apply dot product properties.

(F, fn) = cn(fn, fn) By orthogonality, just one term re-
mains from the series on the right.

Division after the last step leads to the Fourier Coefficient Formula

cn =
(F, fn)

(fn, fn)
.

Orthogonal Projection

The shadow projection of vector X⃗ onto the direction of vector Y⃗ is the number
d defined by

d =
X⃗ · Y⃗
|Y⃗ |

.

The triangle determined by X⃗ and d
Y⃗

|Y⃗ |
is a right triangle.

d

X⃗

Y⃗
Figure 1. Shadow projection d of vector X⃗
onto the direction of vector Y⃗ .

The vector shadow projection of X⃗ onto the line L through the origin in the
direction of Y⃗ is defined by

projY⃗ (X⃗) = d
Y⃗

|Y⃗ |
=

X⃗ · Y⃗
Y⃗ · Y⃗

Y⃗ .

Shadow Projection and Fourier Coefficients

The term cnfn in a generalized Fourier series can be expanded as

cnfn =
(F, fn)

(fn, fn)
fn = Shadow projection of F onto fn.

This formula appears in Gram-Schmidt formulas and in Least Squares formulas,
because those formulas also involve orthogonal projections. The complexity of
such formulas is removed by thinking of the results as sums of shadow projections
or as subtractions of shadow projections.
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Bessel inequality and Parseval equality

Assume given a dot product (f, g) for an orthogonal series expansion

F (x) =

∞∑
n=1

cnfn(x).

Bessel’s inequality
N∑

n=1

|(F, fn)|2

∥fn∥2
≤ ∥F∥2

is proved as follows. Let N ≥ 1 be given and let SN =
∑N

n=1 cnfn. Then

(SN , SN ) =

(
N∑

n=1

cnfn,
N∑
k=1

ckfk

)
Definition of SN .

=

N∑
n=1

N∑
k=1

cnck(fn, fk) Linearity properties of the dot
product.

=
N∑

n=1

cncn(fn, fn) Because (fn, fk) = 0 for n ̸= k.

=
N∑

n=1

|cn|2∥fn∥2 Because ∥g∥2 = (g, g).

(F, SN ) =
N∑

n=1

cn(F, fn) Linearity of the dot product.

=
N∑

n=1

|cn|2∥fn∥2 Fourier coefficient formula.

Then

0 ≤ ∥F − SN∥2 The norm is non-negative.

= (F − SN , F − SN ) Use ∥g∥2 = (g, g).

= (F, F ) + (SN , SN )− 2(F, SN ) Dot product properties.

= (F, F )−
∑N

n=1 |cn|2∥fn∥2 Apply previous formulas.

This proves
N∑

n=1

|cn|2∥fn∥2 ≤ (F, F ),

or what is the same, because of the Fourier coefficient formula,

N∑
n=1

|(F, fn)|2

∥fn∥2
≤ (F, F ).
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Letting N → ∞ gives Bessel’s inequality
∑∞

n=1
|(F,fn)|2
∥fn∥2 ≤ (F, F ).

Parseval’s equality is equality in Bessel’s inequality:

∥F∥2 =
N∑

n=1

|(F, fn)|2

∥fn∥2
.

There is a fundamental relationship between Parseval’s equality and the possi-
bility to expand a function F as an infinite orthogonal series in the functions
{fn}. In literature, the relationship is known as completeness of the orthogo-
nal sequence {fn}. The definition: {fn} is complete if and only if each function
F has a series expansion F =

∑∞
n=1 cnfn for some set of coefficients {cn}. When

equality holds, the coefficients cn are given by Fourier’s coefficient formula.

Theorem 12.11 (Parseval)
A sequence {fn} is a complete orthogonal sequence if and only if Parseval’s equality
holds.

Therefore, the equation F =
∑∞

n=1
(F,fn)
(fn,fn)

fn holds for every F if and only if Parse-
val’s equality holds for every F .

Legendre series

A convergent series of the form

F (x) =

∞∑
n=0

cnPn(x)

is called a Legendre series. The orthogonal system {Pn} on [−1, 1] under the
dot product (f, g) =

∫ 1
−1 f(x)g(x)dx together with Fourier’s coefficient formula

gives

cn =

∫ 1
−1 F (x)Pn(x)dx∫ 1
−1 |Pn(x)|2dx

.

The denominator in this fraction can be evaluated for all values of n:∫ 1

−1
|Pn(x)|2dx =

2

2n+ 1
.

Theorem 12.12 (Legendre expansion)
Let F be defined on −1 ≤ x ≤ 1 and assume F and F ′ are piecewise continuous.
Then the Legendre series expansion of F converges and equals F (x) at each point
of continuity of F . At other points, the series converges to 1

2(F (x+) + F (x−)).
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Bessel series

A convergent infinite series of the form

F (r) =
∞∑
n=1

cnJm(bnmr/R), 0 < r < R,

is called a Bessel series. The index m, assumed here to be a non-negative
integer, is fixed throughout the series terms. The sequence {bnm}∞n=1 is an ordered
list of the positive zeros of Jm.

The weighted dot product (f, g) =
∫ R
0 f(r)g(r)rdr is used. It is known that the

sequence of functions fn(r) = Jm(bnmr/R) is orthogonal relative to the weighted
dot product (·, ·). Then Fourier’s coefficient formula implies

cn =

∫ R
0 F (r)Jm(bnmr/R)rdr∫ R
0 |Jm(bnmr/R)|2rdr

.

To evaluate the denominator of the above fraction, let’s denote ′ = d/dr, y(r) =
fn(r) = Jm(bnmr/R). Use r(ry′)′ + (b2nmr2R−2 − n2)y = 0, the equation used to
prove orthogonality of Bessel functions. Multiply this equation by 2y′. Re-write
the resulting equation as

[(ry′)2]′ + (b2nmr2R−2 − n2)[y2]′ = 0.

Integrate this last equation over [0, R]. Use parts on the term involving r2[y2]′.
Then use Jm(0) = 0, y′ = (bnm/R)J ′

m(bnmr/R) and xJ ′
m(x) = mJm(x) −

xJm+1(x) to obtain∫ R

0
|Jm(bnmr/R)|2rdr =

R2

2
|Jm+1(bnm)|2.

Theorem 12.13 (Bessel expansion)
Let F be defined on 0 ≤ x ≤ R and assume F and F ′ are piecewise continuous.

Then the Bessel series expansion of F converges and equals F (x) at each point of
continuity of F . At other points, the series converges to the average 1

2(F (x+) +
F (x−)) of left-hand and right-hand limits.

Exercises 12.8

Legendre series. Establish the following
results.

1. Prove using orthogonality that∫ 1

−1
Pn(x)F (x)dx = 0 for any polyno-

mial F (x) of degree less than n.

2. Use identity
xP ′

n(x)− P ′
n−1(x) = nPn(x)

to prove
∫ 1

−1
|Pn(x)|2dx = 2

2n+1 .

3. Let ⟨f, g⟩ =
∫ π

0
f(x)g(x) sin(x)dx.

Show that the sequence {Pn(cosx)} is
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12.8 Orthogonality

orthogonal on 0 ≤ x ≤ π with respect

to inner product ⟨f, g⟩.
4. Let F (x) = sin3(x)− sin(x) cos(x). Ex-

pand F as a Legendre series
F (x) =

∑∞
n=0 cnPn(cosx).

Chebyshev Series. The Cheby-
shev polynomials are Tn(x) =
cos(n arccos(x)) with inner product

(f, g) =
∫ 1

−1
f(x)g(x)(1− x2)−1/2dx.

5. Show that T0(x) = 1, T1(x) = x,
T2(x) = 2x2 − 1.

6. Show that T3(x) = 4x3 − 3x.

7. Prove that (f, g) satisfies the abstract
properties of an inner product.

8. Show that Tn is a solution of the
Chebyshev equation
(1− x2)y′′ − xy′ + n2y = 0.

9. Prove that {Tn} is orthogonal relative
to the weighted inner product (f, g).

10. Prove: Tn(x) is an even function for n
even and an odd function for n odd.

Hermite Polynomials. Define the Her-
mite polynomials by H0(x) = 1,

Hn(x) = (−1)nex
2 dn

dxn

(
e−x2

)
.

Define the inner product
(f, g) =

∫∞
−∞ f(x)g(x)e−x2

dx.

11. Verify: H1(x) = 2x, H2(x) = 4x2 − 2,
H3(x) = 8x3 − 12x, H4(x) = 16x4 −
48x2 + 12.

12. Prove: Hn(−x) = (−1)nHn(x).

13. Prove H ′
n(x)=2xHn(x)−Hn+1(x).

Then use recursion Hn+1(x) =
2xHn(x) − 2nHn−1(x) to show
H ′

n(x) = 2nHn−1(x).

14. Let y = H5 = 32x5 − 160x3 + 120x.
Show y satisfies Hermite’s equation
y′′ − 2xy′ + 2ny = 0 with n = 5.

15. Prove recursion
Hn+1(x) = 2xHn(x)− 2nHn−1(x).

16. Show that the sequence {Hn(x)} is or-
thogonal with respect to (f, g).

Alternate Laguerre Polynomials. De-
fine the alternate Laguerre polynomials by
Ln(x) = ex dn

dxn (xne−x). Define (f, g) =∫∞
0

f(x)g(x)e−xdx. A warning: Laguerre

polynomials in the literature are 1
n!Ln.

17. Prove: L1(x) = 1− x and
L2(x) = 2− 4x+ x2.

18. Prove:
L3(x) = 6− 18x+ 9x2 − x3.

19. Prove that (f, g) satisfies the abstract
properties for an inner product.

20. Show that L0, L1, L2, L3 are orthog-
onal with respect to the inner product
(f, g), using direct integration methods.

21. Prove:
Ln(x) =

∑n
k=0

(−1)k (n!)2

(n−k)!(k!)2x
k.

22. Show that {Ln} is an orthogonal se-
quence with respect to (f, g).

23. Find an expression for a polynomial so-
lution to Laguerre’s equation xy′′ +
(1− x)y′ + ny = 0 using Frobenius the-
ory.

24. Show that y = ex dn

dxn (x
ne−x) satisfies

Laguerre’s equation: xy′′+(1−x)y′+
ny = 0.

25. Verify by computer the Laguerre for-
mulas

L0(x)=1
L1(x)=− x+ 1
L2(x)=x2 − 4x+ 2
L3(x)=− x3 + 9x2 − 18x+ 6

26. Find to 6 digits by computer the roots
of L4(x).

27. Prove: Up to a constant, Ln is the only
polynomial solution of xy′′+(1−x)y′+
ny = 0, n ≥ 0 an integer.

28. Assume standard Laguerre polynomi-
als {Ln} satisfy recurrence
(n+1)Ln+1(x)=(2n+1−x)Ln(x)

−nLn−1(x).
Prove: The alternate Laguerre poly-
nomials {Ln} satisfy recurrence
Ln+1(x)=(2n+1−x)Ln(x)

−n2Ln−1(x).
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PDF Sources

Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and
linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the textbook
are available in two volumes at Amazon Kindle Direct Publishing for Amazon’s
cost of printing and shipping. No author profit. Volume I chapters 1-7, ISBN
9798705491124, 661 pages. Volume II chapters 8-12, ISBN 9798711123651, 479
pages. Both paperbacks have extra pages of backmatter: background topics
Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with
hyperlink navigation to displayed equations and theorems. The header in an
exercise set has a blue hyperlink  to the same section in the solutions. The
header of the exercise section within a solution Appendix has a red hyperlink
to the textbook exercises. Solutions are organized by chapter, e.g., Appendix 5
for Chapter 5. Odd-numbered exercises have a solution. A few even-numbered
exercises have hints and answers. Computer code can be mouse-copied directly
from the PDF. Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded
to a tablet, computer or phone to be viewed locally. After download, no internet
is required. Best for computer or tablet using a PDF viewer (Adobe Reader,
Evince) or web browser with PDF support (Chrome, FireFox). Smart phones
can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or
request an answer, click the link below, then create a GitHub issue and post.
Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues

1005

https://math.utah.edu/~gustafso/indexUtahBookGG.html
https://github.com/ggustaf/github.io
https://gitlab.com/ggustaf/answers
https://github.com/ggustaf/github.io/issues

	Table of Contents
	Series Methods
	Review of Calculus Topics
	Algebraic Techniques
	Power Series Methods
	Ordinary Points
	Regular Singular Points
	Bessel Functions
	Legendre Polynomials
	Orthogonality

	Paperback and PDF Sources

