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Linear systems

A linear system is a system of differential equations of the form

x′1 = a11x1 + · · · + a1nxn + f1,
x′2 = a21x1 + · · · + a2nxn + f2,

...
... · · ·

...
...

x′m = am1x1 + · · · + amnxn + fm,

(1)

where ′ = d/dt. Given are the functions aij(t) and fj(t) on some interval a < t <
b. The unknowns are the functions x1(t), . . . , xn(t).

The system is called homogeneous if all fj = 0, otherwise it is called non-
homogeneous.
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11.1 Examples of Systems

Matrix Notation for Systems

A non-homogeneous system of linear equations (1) is written as the equivalent
vector-matrix system

x⃗ ′ = A(t)x⃗ + f⃗ (t),

where

x⃗ =

 x1
...
xn

 , f⃗ =

 f1
...
fn

 , A =

 a11 · · · a1n
... · · ·

...
am1 · · · amn

 .

Brine Tank Cascade

Let brine tanks A, B, C be given of volumes 20, 40, 60, respectively, as in Figure
1.
water

C

A

B

Figure 1. Three brine tanks in
cascade.

It is supposed that fluid enters tank A at rate r, drains from A to B at rate r,
drains from B to C at rate r, then drains from tank C at rate r. Hence the
volumes of the tanks remain constant. Let r = 10, to illustrate the ideas.

Uniform stirring of each tank is assumed, which implies uniform salt concen-
tration throughout each tank.

Let x1(t), x2(t), x3(t) denote the amount of salt at time t in each tank. We
suppose water containing no salt is added to tank A . Therefore, the salt in
all the tanks is eventually lost from the drains. The cascade is modeled by the
chemical balance law

rate of change = input rate − output rate.

Application of the balance law, justified below in compartment analysis, results
in the triangular differential system

x′1 = −
1

2
x1,

x′2 =
1

2
x1 −

1

4
x2,

x′3 =
1

4
x2 −

1

6
x3.
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11.1 Examples of Systems

The solution, to be justified later in this chapter, is given by the equations

x1(t) = x1(0)e
−t/2,

x2(t) = −2x1(0)e−t/2 + (x2(0) + 2x1(0))e
−t/4,

x3(t) =
3

2
x1(0)e

−t/2 − 3(x2(0) + 2x1(0))e
−t/4

+ (x3(0)−
3

2
x1(0) + 3(x2(0) + 2x1(0)))e

−t/6.

Cascades and Compartment Analysis

A Linear Cascade is a diagram of compartments in which input and output
rates have been assigned from one or more different compartments. The diagram
is a succinct way to summarize and document the various rates.

The method of compartment analysis translates the diagram into a system of
linear differential equations. The method has been used to derive applied models
in diverse topics like ecology, chemistry, heating and cooling, kinetics, mechanics
and electricity.

The method. Refer to Figure 2. A compartment diagram consists of the
following components.

Variable Names Each compartment is labelled with a variable X.

Arrows Each arrow is labelled with a Flow Rate R.

Input Rate An arrowhead pointing at compartment X documents In-
put Rate R.

Output Rate An arrowhead pointing away from compartment X docu-
ments Output Rate R.

0

x3

x2x1

x3/6

x2/4

x1/2

Figure 2. Compartment analysis
diagram.
The diagram represents the classical
brine tank problem of Figure 1.

Assembly of the single linear differential equation for a diagram compartment X
is done by writing dX/dt for the left side of the differential equation and then
algebraically adding the input and output rates to obtain the right side of the
differential equation, according to the balance law

dX

dt
= sum of input rates− sum of output rates

By convention, a compartment with no arriving arrowhead has input zero, and a
compartment with no exiting arrowhead has output zero. Applying the balance

815



11.1 Examples of Systems

law to Figure 2 gives one differential equation for each of the three compartments
x1 , x2 , x3 .

x′1 = 0− 1

2
x1,

x′2 =
1

2
x1 −

1

4
x2,

x′3 =
1

4
x2 −

1

6
x3.

Recycled Brine Tank Cascade

Let brine tanks A, B, C be given of volumes 60, 30, 60, respectively, as in Figure
3.

A

B

C

Figure 3. Three brine tanks in cas-
cade with recycling.

Suppose that fluid drains from tank A to B at rate r, drains from tank B to C at
rate r, then drains from tank C to A at rate r. The tank volumes remain constant
due to constant recycling of fluid. For purposes of illustration, let r = 10.

Uniform stirring of each tank is assumed, which implies uniform salt concen-
tration throughout each tank.

Let x1(t), x2(t), x3(t) denote the amount of salt at time t in each tank. No salt is
lost from the system, due to recycling. Using compartment analysis, the recycled
cascade is modeled by the non-triangular system

x′1 = −1

6
x1 +

1

6
x3,

x′2 =
1

6
x1 − 1

3
x2,

x′3 =
1

3
x2 − 1

6
x3.

The solution is given by the equations

x1(t) = c1 + (c2 − 2c3)e
−t/3 cos(t/6) + (2c2 + c3)e

−t/3 sin(t/6),

x2(t) =
1

2
c1 + (−2c2 − c3)e

−t/3 cos(t/6) + (c2 − 2c3)e
−t/3 sin(t/6),

x3(t) = c1 + (c2 + 3c3)e
−t/3 cos(t/6) + (−3c2 + c3)e

−t/3 sin(t/6).

At infinity, x1 = x3 = c1, x2 = c1/2. The meaning is that the total amount of
salt is uniformly distributed in the tanks, in the ratio 2 : 1 : 2.
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11.1 Examples of Systems

Pond Pollution

Consider three ponds connected by streams, as in Figure 4. The first pond has
a pollution source, which spreads via the connecting streams to the other ponds.
The plan is to determine the amount of pollutant in each pond.

1

23

f(t)
Figure 4. Three ponds 1, 2, 3 of vol-
umes V1, V2, V3 connected by streams.
The pollution source f(t) is in pond 1.

Assume the following.

• Symbol f(t) is the pollutant flow rate into pond 1 (lb/min).

• Symbols f1, f2, f3 denote the pollutant flow rates out of ponds 1, 2, 3,
respectively (gal/min). It is assumed that the pollutant is well-mixed in
each pond.

• The three ponds have volumes V1, V2, V3 (gal), which remain constant.

• Symbols x1(t), x2(t), x3(t) denote the amount (lbs) of pollutant in ponds
1, 2, 3, respectively.

The pollutant flux is the flow rate times the pollutant concentration, e.g., pond
1 is emptied with flux f1 times x1(t)/V1. A compartment analysis is summarized
in the following diagram.

x2

x3

x1
f1x1/V1f(t)

f3x3/V3 f2x2/V2

Figure 5. Pond diagram.
The compartment diagram represents
the three-pond pollution problem of
Figure 4.

The diagram plus compartment analysis gives the following differential equations.

x′1(t) =
f3
V3

x3(t)−
f1
V1

x1(t) + f(t),

x′2(t) =
f1
V1

x1(t)−
f2
V2

x2(t),

x′3(t) =
f2
V2

x2(t)−
f3
V3

x3(t).

For a specific numerical example, take fi/Vi = 0.001, 1 ≤ i ≤ 3, and let f(t) =
0.125 lb/min for the first 48 hours (2880 minutes), thereafter f(t) = 0. We expect
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11.1 Examples of Systems

due to uniform mixing that after a long time there will be (0.125)(2880) = 360
pounds of pollutant uniformly deposited, which is 120 pounds per pond.

Initially, x1(0) = x2(0) = x3(0) = 0, if the ponds were pristine. The specialized
problem for the first 48 hours is

x′1(t) = 0.001x3(t)− 0.001x1(t) + 0.125,
x′2(t) = 0.001x1(t)− 0.001x2(t),
x′3(t) = 0.001x2(t)− 0.001x3(t),
x1(0) = x2(0) = x3(0) = 0.

The solution to this system is

x1(t) = e−
3t

2000

(
125
√
3

9
sin

( √
3t

2000

)
− 125

3
cos

( √
3t

2000

))
+

125

3
+

t

24
,

x2(t) = −
250
√
3

9
e−

3t
2000 sin

( √
3t

2000

)
+

t

24
,

x3(t) = e−
3t

2000

(
125

3
cos

( √
3t

2000

)
+

125
√
3

9
sin

( √
3t

2000

))
+

t

24
− 125

3
.

After 48 hours elapse, the approximate pollutant amounts in pounds are

x1(2880) = 162.30, x2(2880) = 119.61, x3(2880) = 78.08.

It should be remarked that the system above and its solution will require a change
in order to predict the state of the ponds after 48 hours/ The equations change by
replacing constant 0.125 by zero. The corresponding homogeneous system has an
equilibrium solution x1(t) = x2(t) = x3(t) = 120. This constant solution, called
the steady-state, is the limit at infinity of the solution to the homogeneous
system using the initial values x1(0) ≈ 162.30, x2(0) ≈ 119.61, x3(0) ≈ 78.08,
which are values from the forced system at t = 48 hours.

Home Heating

Consider a typical home with attic, basement and insulated main floor.

Attic

Main
Floor

Basement Figure 6. Typical home with
attic and basement. The below-
grade basement and the attic are un-
insulated. Only the main living area is
insulated.
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11.1 Examples of Systems

It is usual to surround the main living area with insulation, but the attic area
has walls and ceiling without insulation. The walls and floor in the basement are
insulated by earth. The basement ceiling is insulated by air space in the joists,
a layer of flooring on the main floor and a layer of drywall in the basement. We
will analyze the changing temperatures in the three levels using Newton’s cooling
law and the variables

z(t) = Temperature in the attic,

y(t) = Temperature in the main living area,

x(t) = Temperature in the basement,

t = Time in hours.

Initial data. Assume it is winter time and the outside temperature in constantly
35◦F during the day. Also assumed is a basement earth temperature of 45◦F.
Initially, the heat is off for several days. The initial values at noon (t = 0) are
then x(0) = 45, y(0) = z(0) = 35.

Portable heater. A small electric heater is turned on at noon, with thermostat
set for 100◦F. When the heater is running, it provides a 20◦F rise per hour,
therefore it takes some time to reach 100◦F (probably never!). Newton’s cooling
law

Temperature rate = k(Temperature difference)

will be applied to five boundary surfaces: (0) the basement walls and floor, (1)
the basement ceiling, (2) the main floor walls, (3) the main floor ceiling, and (4)
the attic walls and ceiling. Newton’s cooling law gives positive cooling constants
k0, k1, k2, k3, k4 and the equations

x′ = k0(45− x) + k1(y − x),
y′ = k1(x− y) + k2(35− y) + k3(z − y) + 20,
z′ = k3(y − z) + k4(35− z).

The insulation constants will be defined as k0 = 1/2, k1 = 1/2, k2 = 1/4, k3 =
1/4, k4 = 3/4 to reflect insulation quality. The reciprocal 1/k is approximately
the amount of time in hours required for 63% of the temperature difference to
be exchanged. For instance, 4 hours elapse for the main floor. The model:

x′ =
1

2
(45− x) +

1

2
(y − x),

y′ =
1

2
(x− y) +

1

4
(35− y) +

1

4
(z − y) + 20,

z′ =
1

4
(y − z) +

3

4
(35− z).

The homogeneous solution in vector form is given in terms of constants a =
1 +
√
5/4, b = 1−

√
5/4, and arbitrary constants c1, c2, c3 by the formula xh(t)

yh(t)
zh(t)

 = c1e
−t

 −10
2

+ c2e
−at

 2√
5
1

+ c3e
−bt

 2

−
√
5
1

 .
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11.1 Examples of Systems

A particular solution is an equilibrium solution xp(t)

yp(t)

zp(t)

 =


620
11

745
11

475
11

 .

The homogeneous solution has limit zero at infinity, hence the temperatures of
the three spaces hover around x = 56.4, y = 67.7, z = 43.2 degrees Fahrenheit.
Specific information can be gathered by solving for c1, c2, c3 according to the
initial data x(0) = 45, y(0) = z(0) = 35. The answers are

c1 = 5, c2 =
25

2
+

7

2

√
5, c3 =

25

2
− 7

2

√
5.

Underpowered heater. To the main floor each hour is added 20◦F, but the
heat escapes at a substantial rate, so that after one hour y ≈ 68◦F. After five
hours, y ≈ 68◦F. The heater in this example is so inadequate that even after
many hours, the main living area is still under 69◦F.

Forced air furnace. Replacing the space heater by a normal furnace adds the
difficulty of switches in the input, namely, the thermostat turns off the furnace
when the main floor temperature reaches 70◦F, and it turns it on again after a
4◦F temperature drop. We will suppose that the furnace has four times the BTU
rating of the space heater, which translates to an 80◦F temperature rise per hour.
The study of the forced air furnace requires two differential equations, one with
20 replaced by 80 (DE 1, furnace on) and the other with 20 replaced by 0 (DE
2, furnace off). The plan is to use the first differential equation on time interval
0 ≤ t ≤ t1, then switch to the second differential equation for time interval
t1 ≤ t ≤ t2. The time intervals are selected so that y(t1) = 70 (the thermostat
setting) and y(t2) = 66 (thermostat setting less 4 degrees). Numerical work gives
the following results.

Time in minutes Main floor temperature Model Furnace

31.6 70 DE 1 on
40.9 66 DE 2 off
45.3 70 DE 1 on
54.6 66 DE 2 off

The reason for the non-uniform times between furnace cycles can be seen from
the model. Each time the furnace cycles, heat enters the main floor, then escapes
through the other two levels. Consequently, the initial conditions on each floor
applied to models 1 and 2 are changing, resulting in different solutions to the
models on each switch.
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11.1 Examples of Systems

Chemostats and Microorganism Culturing

A vessel into which nutrients are pumped, to feed a microorganism, is called
a Chemostat1. Uniform distributions of microorganisms and nutrients are as-
sumed, for example, due to stirring effects. The pumping is matched by draining
to keep the volume constant.

Output EffluentInput Feed

Figure 7. A Basic Chemostat. A
stirred bio-reactor operated as a chemo-
stat, with continuous inflow and outflow.
The flow rates are controlled to maintain a
constant culture volume.

In a typical chemostat, one nutrient is kept in short supply while all others are
abundant. We consider here the question of survival of the organism subject to
the limited resource. The problem is quantified as follows:

x(t) = the concentration of the limited nutrient in the vessel,

y(t) = the concentration of organisms in the vessel.

A special case of the derivation in J.M. Cushing’s text [?] for the organism
E. Coli2 is the set of nonlinear differential equations3

x′ = −0.075x+ (0.075)(0.005)− 1

63
g(x)y,

y′ = −0.075y + g(x)y,
(2)

where g(x) = 0.68x(0.0016+x)−1. Of special interest to the study of this equation
are two linearized equations at equilibria, given by

u′1 = −0.075u1 − 0.008177008175u2,
u′2 = 0.4401515152u2,

(3)

1The October 14, 2004 issue of the journal Nature featured a study of the co-evolution of
a common type of bacteria, Escherichia coli, and a virus that infects it, called bacteriophage
T7. Postdoctoral researcher Samantha Forde set up ”microbial communities of bacteria and
viruses with different nutrient levels in a series of chemostats – glass culture tubes that provide
nutrients and oxygen and siphon off wastes.”

2In a biology Master’s thesis, two strains of Escherichia coli were grown in a glucose-limited
chemostat coupled to a modified Robbins device containing plugs of silicone rubber urinary
catheter material. Reference: Jennifer L. Adams and Robert J. C. McLean, Applied and Envi-
ronmental Microbiology, September 1999, p. 4285-4287, Vol. 65, No. 9.

3More details can be found in The Theory of the Chemostat Dynamics of Microbial Compe-
tition, ISBN-13: 9780521067348, by Hal Smith and Paul Waltman, June 2008.
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11.1 Examples of Systems

v′1 = −1.690372243 v1 − 0.001190476190 v2,
v′2 = 101.7684513 v1.

(4)

Although we cannot solve the nonlinear system explicitly, nevertheless there are
explicit formulas for u1, u2, v1, v2 that complete the picture of how solutions
x(t), y(t) behave at t = ∞. The result of the analysis is that E. Coli survives
indefinitely in this vessel at concentration y ≈ 0.3.

Culture vessel

pump

Effluent reservoir

magnetic stirrer

overflow

Feed Reservoir

stirring bar

heater/cooler
air inlet

air inlet

Figure 8. Laboratory
Chemostat.
The components are the
Feed reservoir, which
contains the nutrients, a
stirred chemical reactor
labeled the Culture
vessel, and the Effluent
reservoir, which holds
the effluent overflow from
the reactor.

Irregular Heartbeats and Lidocaine

The human malady ofVentricular Arrhythmia or irregular heartbeat is treated
clinically using the drug lidocaine.

Figure 9. Xylocaine label, a brand name for the drug
lidocaine.

To be effective, the drug has to be maintained at a bloodstream concentration
of 1.5 milligrams per liter, but concentrations above 6 milligrams per liter are
considered lethal in some patients. The actual dosage depends upon body weight.
The adult dosage maximum for ventricular tachycardia is reported at 3 mg/kg.4

The drug is supplied in 0.5%, 1% and 2% solutions, which are stored at room
temperature.

A differential equation model for the dynamics of the drug therapy uses

4Source: Family Practice Notebook, http://www.fpnotebook.com/. The author is Scott
Moses, MD, who practises in Lino Lakes, Minnesota.
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11.1 Examples of Systems

x(t) = amount of lidocaine in the bloodstream,

y(t) = amount of lidocaine in body tissue.

A typical set of equations, valid for a special body weight only, appears below;
for more detail see J.M. Cushing’s text [?].

x′(t) = −0.09x(t) + 0.038y(t),
y′(t) = 0.066x(t)− 0.038y(t).

(5)

The physically significant initial data is zero drug in the bloodstream x(0) = 0
and injection dosage y(0) = y0. The answers:

x(t) = −0.3367y0e−0.1204t + 0.3367y0e
−0.0076t,

y(t) = 0.2696y0e
−0.1204t + 0.7304y0e

−0.0076t.

The answers can be used to estimate the maximum possible safe dosage y0 and
the duration of time that the drug lidocaine is effective.

Nutrient Flow in an Aquarium

Consider a vessel of water containing a radioactive isotope, to be used as a tracer
for the food chain, which consists of aquatic plankton varieties A and B.

Plankton are aquatic organisms that drift with the currents, typically in an en-
vironment like Chesapeake Bay. Plankton can be divided into two groups, phy-
toplankton and zooplankton. The phytoplankton are plant-like drifters: diatoms
and other alga. Zooplankton are animal-like drifters: copepods, larvae, and small
crustaceans.

Figure 10. Left: Bacillaria paxillif-
era, phytoplankton. Right: Anomura
Galathea zoea, zooplankton.

Let

x(t) = isotope concentration in the water,

y(t) = isotope concentration in A,

z(t) = isotope concentration in B.

Typical differential equations are

x′(t) = −3x(t) + 6y(t) + 5z(t),
y′(t) = 2x(t)− 12y(t),
z′(t) = x(t) + 6y(t)− 5z(t).
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The answers are

x(t) = 6c1 + (1 +
√
6)c2e

(−10+
√
6)t + (1−

√
6)c3e

(−10−
√
6)t,

y(t) = c1 + c2e
(−10+

√
6)t + c3e

(−10−
√
6)t,

z(t) =
12

5
c1 −

(
2 +
√
1.5
)
c2e

(−10+
√
6)t +

(
−2 +

√
1.5
)
c3e

(−10−
√
6)t.

The constants c1, c2, c3 are related to the initial radioactive isotope concentra-
tions x(0) = x0, y(0) = 0, z(0) = 0, by the 3 × 3 system of linear algebraic
equations

6c1 + (1 +
√
6)c2 + (1−

√
6)c3 = x0,

c1 + c2 + c3 = 0,
12

5
c1 −

(
2 +
√
1.5
)
c2 +

(
−2 +

√
1.5
)
c3 = 0.

Biomass Transfer

Consider a European forest having one or two varieties of trees. We select some
of the oldest trees, those expected to die off in the next few years, then follow
the cycle of living trees into dead trees. The dead trees eventually decay and fall
from seasonal and biological events. Finally, the fallen trees become humus.

Figure 11. Forest Biomass. Total biomass is a parameter used to assess atmospheric

carbon that is harvested by trees. Forest management uses biomass subclasses to classify

fire risk.

Let variables x, y, z, t be defined by

x(t) = biomass decayed into humus,

y(t) = biomass of dead trees,

z(t) = biomass of living trees,

t = time in decades (decade = 10 years).
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11.1 Examples of Systems

A typical biological model is

x′(t) = −x(t) + 3y(t),
y′(t) = −3y(t) + 5z(t),
z′(t) = −5z(t).

Suppose there are no dead trees and no humus at t = 0, with initially z0 units of
living tree biomass. These assumptions imply initial conditions x(0) = y(0) = 0,
z(0) = z0. The solution is

x(t) =
15

8
z0
(
e−5t − 2e−3t + e−t

)
,

y(t) =
5

2
z0
(
−e−5t + e−3t

)
,

z(t) = z0e
−5t.

The live tree biomass z(t) = z0e
−5t decreases according to a Malthusian decay

law from its initial size z0. It decays to 60% of its original biomass in one year.
Interesting calculations that can be made from the other formulas include the
future dates when the dead tree biomass and the humus biomass are maximum.
The predicted dates are approximately 2.5 and 8 years hence, respectively.

The predictions made by this model are trends extrapolated from rate observa-
tions in the forest. Like weather prediction, it is a calculated guess that disap-
points on a given day and from the outset has no predictable answer.

Total biomass is considered an important parameter to assess atmospheric carbon
that is harvested by trees. Biomass estimates for forests since 1980 have been
made by satellite remote sensing data with instances of 90% accuracy (Science
87(5), September 2004).

Pesticides in Soil and Trees

A Washington cherry orchard was sprayed with pesticides.

Figure 12. June Cherries.

Assume that a negligible amount of pesticide was sprayed on the soil. Pesticide
applied to the trees has a certain outflow rate to the soil, and conversely, pesticide
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in the soil has a certain uptake rate into the trees. Repeated applications of the
pesticide are required to control the insects, which implies the pesticide levels in
the trees varies with time. Quantize the pesticide spraying as follows.

x(t) = amount of pesticide in the trees,

y(t) = amount of pesticide in the soil,

r(t) = amount of pesticide applied to the trees,

t = time in years.

A typical model is obtained from input-output analysis, similar to the brine tank
models:

x′(t) = 2x(t)− y(t) + r(t),
y′(t) = 2x(t)− 3y(t).

In a pristine orchard, the initial data is x(0) = 0, y(0) = 0, because the trees
and the soil initially harbor no pesticide. The solution of the model obviously
depends on r(t). The nonhomogeneous dependence is treated by the method of
variation of parameters infra. Approximate formulas are

x(t) ≈
∫ t

0

(
1.10e1.6(t−u) − 0.12e−2.6(t−u)

)
r(u)du,

y(t) ≈
∫ t

0

(
0.49e1.6(t−u) − 0.49e−2.6(t−u)

)
r(u)du.

The exponential rates 1.6 and −2.6 represent respectively the accumulation of
the pesticide into the soil and the decay of the pesticide from the trees. The
application rate r(t) is typically a step function equal to a positive constant
over a small interval of time and zero elsewhere, or a sum of such functions,
representing periodic applications of pesticide.

Forecasting Prices

A manufacturer has a marketing policy based upon the price x(t) of its product.

Figure 13. Pricing and Inven-
tory.
Dynamic pricing reflects demand for
the product, predicted by sales data.
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The Production P (t) and the Sales S(t) are given in terms of the Price x(t)
and the Change in Price x′(t) by the equations

P (t) = 4− 3

4
x(t)− 8x′(t) (Production),

S(t) = 15− 4x(t)− 2x′(t) (Sales).

The differential equations for the price x(t) and inventory level I(t) are

x′(t) = k(I(t)− I0),
I ′(t) = P (t)− S(t).

The inventory level I0 = 50 represents the desired level. The equations can be
written in terms of x(t), I(t) as follows.

x′(t) = kI(t) − kI0,

I ′(t) =
13

4
x(t) − 6kI(t) + 6kI0 − 11.

If k = 1, x(0) = 10 and I(0) = 7, then the solution is given by

x(t) =
44

13
+

86

13
e−13t/2,

I(t) = 50− 43e−13t/2.

The Forecast of price x(t) ≈ 3.38 dollars at inventory level I(t) ≈ 50 is based
upon the two limits

lim
t→∞

x(t) =
44

13
, lim

t→∞
I(t) = 50.

Coupled Spring-Mass Systems

Three masses are attached to each other by four springs as in Figure 14.

m1 m3

k2 k3 k4k1

m2

Figure 14. Three masses connected by
springs. The masses slide along a frictionless
horizontal surface.

The analysis uses the following constants, variables and assumptions.

Mass
Constants

The masses m1, m2, m3 are assumed to be point masses con-
centrated at their center of gravity.

Spring
Constants

The mass of each spring is negligible. The springs operate ac-
cording to Hooke’s law: Force = k(elongation). Constants k1,
k2, k3, k4 denote the Hooke’s constants. The springs restore
after compression and extension.

Position
Variables

The symbols x1(t), x2(t), x3(t) denote the mass positions along
the horizontal surface, measured from their equilibrium positions,
plus right and minus left.
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Fixed Ends The first and last spring are attached to fixed walls.

The competition method is used to derive the equations of motion. In this
case, the law is

Newton’s Second Law Force = Sum of the Hooke’s Forces.

The model equations are

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).

(6)

The equations are justified in the case of all positive variables by observing that
the first three springs are elongated by x1, x2 − x1, x3 − x2, respectively. The
last spring is compressed by x3, which accounts for the minus sign.

Another way to justify the equations is through mirror-image symmetry: inter-
change k1 ←→ k4, k2 ←→ k3, x1 ←→ x3, then equation 2 should be unchanged
and equation 3 should become equation 1.

Matrix Formulation. System (6) can be written as a second order vector-
matrix systemm1 0 0

0 m2 0
0 0 m3

x′′1
x′′2
x′′3

 =

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

x1
x2
x3

 .

More succinctly, the system is written as

M x⃗ ′′(t) = Kx⃗ (t)

where the displacement x⃗ , mass matrix M and stiffness matrix K are
defined by the formulas

x⃗=

x1
x2
x3

 , M=

m1 0 0
0 m2 0
0 0 m3

 , K=

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

 .

Numerical example. Let m1 = 1, m2 = 1, m3 = 1, k1 = 2, k2 = 1, k3 = 1,
k4 = 2. Then the system is given by x′′1

x′′2
x′′3

 =

 −3 1 0
1 −2 1
0 1 −3

 x1
x2
x3

 .
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The vector solution is given by the formula x1
x2
x3

 = (a1 cos t+ b1 sin t)

 1
2
1


+
(
a2 cos

√
3t+ b2 sin

√
3t
) 1

0
−1


+(a3 cos 2t+ b3 sin 2t)

 1
−1
1

 ,

where a1, a2, a3, b1, b2, b3 are arbitrary constants.

Railway Cars

A special case of the coupled spring-mass system is three flatbed rail cars on a
level frictionless track connected by springs, as in Figure 15.

k k

m mm

Figure 15. Three identical rail
cars connected by identical
springs.

Except for the springs on fixed ends, this problem is the same as the one in
equation (6), therefore taking k1 = k4 = 0, k2 = k3 = k, m1 = m2 = m3 = m
gives the system m 0 0

0 m 0
0 0 m

x′′1
x′′2
x′′3

 =

−k k 0
k −2k k
0 k −k

x1
x2
x3

 .

Take k/m = 1 to obtain the illustration

x⃗ ′′ =

−1 1 0
1 −2 1
0 1 −1

 x⃗ ,

which has vector solution

x⃗ = (a1 + b1t)

 1
1
1

+ (a2 cos t+ b2 sin t)

 1
0
−1


+
(
a3 cos

√
3t+ b3 sin

√
3t
) 1
−2
1

 ,

where a1, a2, a3, b1, b2, b3 are arbitrary constants.

The solution expression can be used to discover what happens to the rail cars
when the springs act normally upon compression but disengage upon expansion.
An interesting physical situation is when one car moves along the track, contacts
two stationary cars, then transfers its momentum to the other cars, followed by
disengagement.
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Monatomic Crystals

Figure 16. A Crystal Model.

The n crystals are identical masses m assumed connected by equal springs of Hooke’s

constant k. The last mass is connected to the first mass.

The scalar differential equations for Figure 16 are written for mass positions
x1, . . . , xn, with x0 = xn, xn+1 = x1 to account for the ring of identical masses
(periodic boundary condition). Then for k = 1, . . . , n

m
d2xk
dt2

= k(xk+1 − xk) + k(xk−1 − xk) = k(xk−1 − 2xk + xk+1).

These equations represent a system x′′ = Ax, where the symmetric matrix of
coefficients A = M−1K is given for n = 5 and k/m = 1 by

A =


−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

 .

If n = 3 and k/m = 1, then A =

(−2 1 1
1 −2 1
1 1 −2

)
and the solutions x1, x2, x3 are

linear combinations of the functions 1, t, cos
√
3t, sin

√
3t.

Electrical LR–Network no EMF

Consider the LR-network of Figure 17.

R1

i3
R3R2

L3L2

L1i1

i2

Figure 17. An electrical
network.
There are three resistors R1,
R2, R3 and three inductors
L1, L2, L3. The currents i1,
i2, i3 are defined between
nodes (black dots).

The derivation of the differential equations for the loop currents i1, i2, i3 uses
Kirchhoff’s laws and the voltage drop formulas for resistors and inductors. The
black dots in the diagram are the nodes that determine the beginning and end
of each of the currents i1, i2, i3. Currents are defined only on the outer boundary
of the network. Kirchhoff’s node law determines the currents across L2, L3
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(arrowhead right) as i2 − i1 and i3 − i1, respectively. Similarly, i2 − i3 is the
current across R1 (arrowhead down). Using Ohm’s law VR = RI and Faraday’s
law VL = LI ′ plus Kirchhoff’s loop law algebraic sum of the voltage drops is zero
around a closed loop (see the maple code below), we arrive at the model

i′1 = −
(
R2

L1

)
i2 −

(
R3

L1

)
i3,

i′2 = −
(
R2

L2
+

R2

L1

)
i2 +

(
R1

L2
− R3

L1

)
i3,

i′3 =

(
R1

L3
− R2

L1

)
i2 −

(
R1

L3
+

R3

L1
+

R3

L3

)
i3

A computer algebra system is helpful to obtain the differential equations from the
closed loop formulas. Part of the theory is that the number of equations equals
the number of holes in the network, called the connectivity. Here’s some maple
code for determining the equations in scalar and also in vector-matrix form.

loop1:=L1*D(i1)+R3*i3+R2*i2=0;

loop2:=L2*D(i2)-L2*D(i1)+R1*(i2-i3)+R2*i2=0;

loop3:=L3*D(i3)-L3*D(i1)+R3*i3+R1*(i3-i2)=0;

f1:=solve(loop1,D(i1));

f2:=solve(subs(D(i1)=f1,loop2),D(i2));

f3:=solve(subs(D(i1)=f1,loop3),D(i3));

with(linalg):

jacobian([f1,f2,f3],[i1,i2,i3]);

Electrical LR–Network with EMF

Consider the LR-network of Figure 18. This network produces only two differen-
tial equations, even though there are three holes (connectivity 3). The derivation
of the differential equations parallels the previous network, so nothing will be
repeated here.

A computer algebra system is used to obtain the differential equations from the
closed loop formulas. Below is maple code to generate the equations i′1 = f1,
i′2 = f2, i3 = f3.

loop1:=L1*D(i1)+R2*(i1-i2)+R1*(i1-i3)=0;

loop2:=L2*D(i2)+R3*(i2-i3)+R2*(i2-i1)=0;

loop3:=R3*(i3-i2)+R1*(i3-i1)=E;

f3:=solve(loop3,i3);

f1:=solve(subs(i3=f3,loop1),D(i1));

f2:=solve(subs(i3=f3,loop2),D(i2));
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E

R1 R2

i1 L1

R3

i3 i2

L2

Figure 18. An electri-
cal network.
There are three resistors
R1, R2, R3, two inductors
L1, L2 and a battery E.
The currents i1, i2, i3 are
defined between nodes
(black dots).

The model, in the special case L1 = L2 = 1 and R1 = R2 = R3 = R:

i′1 = − 3R

2
i1 +

3R

2
i2 +

E

2
,

i′2 =
3R

2
i1 − 3R

2
i2 +

E

2
,

i3 =
1

2
i1 +

1

2
i2 +

E

2R
.

It is easily justified that the solution of the differential equations for initial con-
ditions i1(0) = i2(0) = 0 is given by

i1(t) =
E

2
t, i2(t) =

E

2
t.

Logging Timber by Helicopter

Certain sections of National Forest in the USA do not have logging access roads.
In order to log the timber in these areas, helicopters are employed to move the
felled trees to a nearby loading area, where they are transported by truck to the
mill. The felled trees are slung beneath the helicopter on cables.

Figure 19. Helicopter logging.
Left: An Erickson helicopter lifts felled trees.
Right: Two trees are attached to the cable to
lower transportation costs.

The payload for two trees approximates a double pendulum, which oscillates dur-
ing flight. The angles of oscillation θ1, θ2 of the two connecting cables, measured
from the gravity vector direction, satisfy the following differential equations, in
which g is the gravitation constant, m1, m2 denote the masses of the two trees
and L1, L2 are the cable lengths.

(m1 +m2)L
2
1θ

′′
1 + m2L1L2θ

′′
2 + (m1 +m2)L1gθ1 = 0,

m2L1L2θ
′′
1 + m2L

2
2θ

′′
2 + m2L2gθ2 = 0.

This model is derived assuming small displacements θ1, θ2, that is, sin θ ≈ θ for
both angles, using the following diagram.
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θ2

L1

L2

m2

m1
θ1

Figure 20. Logging Timber by Helicopter.
The cables have lengths L1, L2. The angles θ1, θ2 are measured
from vertical.

The lengths L1, L2 are adjusted on each trip for the length of the trees, so that the
trees do not collide in flight with each other nor with the helicopter. Sometimes,
three or more smaller trees are bundled together in a package, which is treated
here as identical to a single, very thick tree hanging on the cable.

Vector-matrix model. The angles θ1, θ2 satisfy the second-order vector-matrix
equation(

(m1 +m2)L1 m2L2

L1 L2

)(
θ1
θ2

)′′
= −

(
m1g +m2g 0

0 g

)(
θ1
θ2

)
.

This system is equivalent to the second-order system

(
θ1
θ2

)′′
=

 −
m1g +m2g

L1m1

m2g

L1m1

m1g +m2 g

L2m1
−(m1 +m2) g

L2m1

( θ1
θ2

)
.

Earthquake Effects on Buildings

A horizontal earthquake oscillation F (t) = F0 cosωt affects each floor of a 5-floor
building; see Figure 21. The effect of the earthquake depends upon the natural
frequencies of oscillation of the floors.

In the case of a single-floor building, the center-of-mass position x(t) of the
building satisfies mx′′+kx = E and the natural frequency of oscillation is

√
k/m.

The earthquake force E is given by Newton’s second law: E(t) = −mF ′′(t). If
ω ≈

√
k/m, then the amplitude of x(t) is large compared to the amplitude of the

force E. The amplitude increase in x(t) means that a small-amplitude earthquake
wave can resonant with the building and possibly demolish the structure.

3

F

4

5

1

2
Figure 21. A 5-Floor Building.
A horizontal earthquake wave F affects ev-
ery floor. The actual wave has wavelength
many times larger than the illustration.

The following assumptions and symbols are used to quantize the oscillation of
the 5-floor building.
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• Each floor is considered a point mass located at its center-of-mass. The
floors have masses m1, . . . , m5.

• Each floor is restored to its equilibrium position by a linear restoring force
or Hooke’s force −k(elongation). The Hooke’s constants are k1, . . . , k5.

• The locations of masses representing the 5 floors are x1, . . . , x5. The
equilibrium position is x1 = · · · = x5 = 0.

• Damping effects of the floors are ignored. This is a frictionless system.

The differential equations for the model are obtained by competition: the New-
ton’s second law force is set equal to the sum of the Hooke’s forces and the ex-
ternal force due to the earthquake wave. This results in the following system,
where k6 = 0, Ej = mjF

′′ for j = 1, 2, 3, 4, 5 and F = F0 cosωt.

m1x
′′
1 = −(k1 + k2)x1 + k2x2 + E1,

m2x
′′
2 = k2x1 − (k2 + k3)x2 + k3x3 + E2,

m3x
′′
3 = k3x2 − (k3 + k4)x3 + k4x4 + E3,

m4x
′′
4 = k4x3 − (k4 + k5)x4 + k5x5 + E4,

m5x
′′
5 = k5x4 − (k5 + k6)x5 + E5.

In particular, the equations for a floor depend only upon the neighboring floors.
The bottom floor and the top floor are exceptions: they have just one neighboring
floor.

Vector-matrix second order system. Define

M =


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

 , x⃗ =


x1
x2
x3
x4
x5

 , H⃗ =


E1

E2

E3

E4

E5

 ,

K =


−k1 − k2 k2 0 0 0

k2 −k2 − k3 k3 0 0
0 k3 −k3 − k4 k4 0
0 0 k4 −k4 − k5 k5
0 0 0 k5 −k5 − k6

 .

In the last row, k6 = 0, to reflect the absence of a floor above the fifth. The
second order system is

M x⃗ ′′(t) = Kx⃗ (t) + H⃗ (t).

The matrixM is called themass matrix and the matrixK is called theHooke’s
matrix. The external force H⃗ (t) can be written as a scalar function E(t) =
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−F ′′(t) times a constant vector:

H⃗ (t) = −ω2F0 cosωt


m1

m2

m3

m4

m5

 .

Identical floors. Let us assume that all floors have the same mass m and the
same Hooke’s constant k. Then M = mI and the equation becomes

x⃗ ′′ = m−1


−2k k 0 0 0

k −2k k 0 0
0 k −2k k 0
0 0 k −2k k
0 0 0 k −k

 x⃗ − F0ω
2 cos(ωt)


1
1
1
1
1

 .

The Hooke’s matrix K is symmetric (KT = K) with negative entries only on the
diagonal. The last diagonal entry is −k (a common error is to write −2k).
Particular solution. The method of undetermined coefficients predicts a trial
solution x⃗p(t) = c⃗ cosωt, because each differential equation has nonhomoge-
neous term −F0ω

2 cosωt. The constant vector c⃗ is found by trial solution sub-
stitution. Cancel the common factor cosωt in the substituted equation to obtain
the equation

(
m−1K + ω2 I

)
c⃗ = F0ω

2b⃗ , where b⃗ is column vector of ones in the

preceding display. Let B(ω) = m−1K + ω2 I. Then the formula B−1 =
adj(B)

det(B)
gives

c⃗ = F0ω
2 adj(B(ω))

det(B(ω))
b⃗ .

The constant vector c⃗ can have a large magnitude when det(B(ω)) ≈ 0. This
occurs when −ω2 is nearly an eigenvalue of m−1K.

Homogeneous solution. The theory of this chapter gives the homogeneous
solution x⃗h(t) as the sum

x⃗h(t) =

5∑
j=1

(aj cosωjt+ bj sinωjt)v⃗ j

where r = ωj and v⃗ = v⃗ j ̸= 0⃗ satisfy(
1

m
K + r2 I

)
v⃗ = 0⃗ .
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Special case k/m = 10. Then

1

m
K =



−20 10 0 0 0

10 −20 10 0 0

0 10 −20 10 0

0 0 10 −20 10

0 0 0 10 −10


and the values ω1, . . . , ω5 are found by solving equation det((1/m)K + ω2I) =
0, to obtain the values in Table 1.

Table 1. Natural Frequencies for the Special Case k/m = 10.

Frequency Value

ω1 0.900078068
ω2 2.627315231
ω3 4.141702938
ω4 5.320554507
ω5 6.068366391

General solution. Superposition implies x⃗ (t) = x⃗h(t) + x⃗p(t). Both terms of
the general solution represent bounded oscillations.

Resonance effects. The special solution x⃗p(t) can be used to obtain some
insight into practical resonance effects between the incoming earthquake wave
and the building floors. When ω is close to one of the frequencies ω1, . . . , ω5,
then the amplitude of a component of x⃗p can be very large, causing the floor
to take an excursion that is too large to maintain the structural integrity of the
floor.

The physical interpretation is that an earthquake wave of the proper fre-
quency, having time duration sufficiently long, can demolish a floor and hence
demolish the entire building. The amplitude of the earthquake wave does not
have to be large: a fraction of a centimeter might be enough to start the oscilla-
tion of the floors.

Earthquakes and Tsunamis

Seismic wave shape was studied for first order equations in Chapter 2 Section
8. Recorded here are some historical notes about seismic waves and earthquake
events.

The original Richter scale, with deprecated use in seismology, was invented by
seismologist C. Richter to rank earthquake power.

The moment magnitude scale (MW ) has largely replaced the original Richter
scale and its modified versions. The highest reported magnitude is 9.5 MW by
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the United States Geological Survey for the Concepción, Chile earthquake of May
22, 1960. News reports and the general public still refer to earthquake magnitude
using the term Richter Scale.

The Sumatra earthquake of December 26, 2004 occurred close to a deep-sea
trench, a subduction zone where one tectonic plate slips beneath another. Most
of the earthquake energy is released in these areas as the two plates grind towards
each other. Estimates of magnitude 8.8 MW to 9.3 MW followed the event. The
US Geological Survey estimated 9.2 MW .

The largest earthquake ever recorded was the 1960 Chile earthquake. There
were three earthquakes May 21-22, 1960, estimated magnitudes 9.4 to 9.6. The
tsunami caused by the Chile earthquake has been well-documented by Dr. Gerard
Fryer of the Hawaii Institute of Geophysics and Planetology in Honolulu.

What happened in the earthquake was that a piece of the Pacific seafloor (or
strictly speaking, the Nazca Plate) about the size of California slid fifty feet
beneath the continent of South America. Like a spring, the lower slopes of
the South American continent offshore snapped upwards as much as twenty
feet while land along the Chile coast dropped about ten feet. This change
in the shape of the ocean bottom changed the shape of the sea surface.
Since the sea surface likes to be flat, the pile of excess water at the surface
collapsed to create a series of waves — the tsunami.

The tsunami, together with the coastal subsidence and flooding, caused
tremendous damage along the Chile coast, where about 2,000 people died.
The waves spread outwards across the Pacific. About 15 hours later the
waves flooded Hilo, on the island of Hawaii, where they built up to 30
feet and caused 61 deaths along the waterfront. Seven hours after that, 22
hours after the earthquake, the waves flooded the coastline of Japan where
10-foot waves caused 200 deaths. The waves also caused damage in the
Marquesas, in Samoa, and in New Zealand. Tidal gauges throughout the
Pacific measured anomalous oscillations for about three days as the waves
bounced from one side of the ocean to the other.
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11.1 Examples of Systems

Image Source: Wikipedia 1960 Valdivia Chile Earthquakes

Exercises 11.1 �

There are no exercises for this section of ex-
amples. Later sections use this section for
definitions, equations and key examples.
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11.2 Fundamental System Methods

Solving 2× 2 Systems

It is shown here that any constant linear system

x⃗ ′ = Ax⃗ , A =

(
a b
c d

)
can be solved by one of the following elementary methods.

(a) The integrating factor method for y′ = p(x)y + q(x).

(b) The second order constant coefficient formulas in Chapter 6, The-
orem 6.1.

Triangular 2× 2 Matrix A

Let’s assume b = 0 in matrix A =

(
a b
c d

)
making A lower triangular. The upper

triangular case is handled similarly. Then x⃗ ′ = Ax⃗ has the scalar form

x′1 = ax1,
x′2 = cx1 + dx2.

The first differential equation is solved by the growth/decay formula:

x1(t) = x0e
at.

Then substitute the answer just found into the second differential equation to
give

x′2 = dx2 + cx0e
at.

This is a linear first order equation of the form y′ = p(x)y + q(x), to be solved
by the integrating factor method. Therefore, a triangular system can always be
solved by the first order integrating factor method.

An illustration. Let us solve x⃗ ′ = Ax⃗ for the triangular matrix

A =

(
1 0
2 1

)
, representing

{
x′1 = x1,
x′2 = 2x1 + x2.

The first equation x′1 = x1 has solution x1 = c1e
t. The second equation x′2 =

2x1 + x2 becomes upon substitution of x1 = c1e
t the new equation

x′2 = 2c1e
t + x2,

which is a first order linear differential equation with linear integrating factor
method solution x2 = (2c1t + c2)e

t. The general solution of x⃗ ′ = Ax⃗ in scalar
form is

x1 = c1e
t, x2 = 2c1te

t + c2e
t.
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The General Solution vector form for x⃗ ′ = Ax⃗ is

x⃗ (t) = c1

(
et

2tet

)
+ c2

(
0
et

)
.

A vector basis B for the solution of x⃗ ′ = Ax⃗ is

B =

{(
et

2tet

)
,

(
0
et

)}
.

Non-Triangular 2× 2 Matrix A

In order that A be non-triangular, both b ̸= 0 and c ̸= 0 must be satisfied. The
scalar form of the system x⃗ ′ = Ax⃗ is{

x′1 = ax1 + bx2,
x′2 = cx1 + dx2,

x⃗ (t) =

(
x1(t)
x2(t)

)
, A =

(
a b
c d

)
.

Theorem 11.1 (Solving 2× 2 Non-Triangular
→
x ′ = A

→
x)

Solutions x1, x2 of x⃗ ′ = Ax⃗ are linear combinations of the list of Euler solution
atoms obtained from roots r of det(A−rI) = 0, which is the characteristic equation
of A.

This result is called Cayley-Hamilton-Ziebur (abbreviated CHZ).

Proof: The method: differentiate the first equation, then use the equations to eliminate
x2, x

′
2. The result is a second order differential equation for x1. The same differential

equation is satisfied also for x2. The details:

x′′
1 = ax′

1 + bx′
2 Differentiate the first equation.

= ax′
1 + bcx1 + bdx2 Use equation x′

2 = cx1 + dx2.

= ax′
1 + bcx1 + d(x′

1 − ax1) Use equation x′
1 = ax1 + bx2.

= (a+ d)x′
1 + (bc− ad)x1 Second order equation for x1 found

The characteristic equation of x′′
1 − (a+ d)x′

1 + (ad− bc)x1 = 0 is

r2 − (a+ d)r + (bc− ad) = 0.

Finally, we show the expansion of det(A− rI) is the same characteristic polynomial:

det(A− rI) =

∣∣∣∣ a− r b
c d− r

∣∣∣∣
= (a− r)(d− r)− bc
= r2 − (a+ d)r + ad− bc.

■

Proposition 11.1 (Differential Equation for x1 and x2)

Let A =

(
a b
c d

)
. Then for x⃗ ′ = Ax⃗ :
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11.2 Fundamental System Methods

det(A− rI) = r2 − trace(A)r + det(A)
u′′ − trace(A)u′ + det(A)u = 0 for u = x1, x2

Proof: The trace of A is a+d and det(A) = ad− bc. Apply proof details from Theorem
11.1. ■

Assume below that A is non-triangular, meaning b ̸= 0 and c ̸= 0.

How to Find x1. Apply Chapter 6 Theorem 6.1 for equation Ay′′+By′+Cy = 0
to solve for x1. This involves writing a list of Euler solution atoms corresponding
to the two roots of the characteristic equation r2−(a+d)r+ad−bc = 0, followed
by expressing x1 as a linear combination of the two Euler atoms.

How to Find x2. Isolate x2 in the first differential equation by division:

x2 =
1

b
(x′1 − ax1).

The two formulas for x1, x2 represent the general solution of the system x⃗ ′ = Ax⃗ ,
when A is 2× 2.

An illustration. Let’s solve x⃗ ′ = Ax⃗ when

A =

(
1 2
2 1

)
, representing

{
x′1 = x1 + 2x2,
x′2 = 2x1 + x2.

The equation det(A−rI) = 0 is (1−r)2−4 = 0 with roots r = −1 and r = 3. The
Euler solution atoms are e−t, e3t. Then x1 = c1e

−t + c2e
3t, a linear combination

of Euler solution atoms. The first equation x′1 = x1+2x2 implies x2 =
1
2(x

′
1−x1)

(we solve the first equation for symbol x2). Insert x1 = c1e
−t+c2e

3t and simplify
to find x2 explicitly. The scalar general solution of x⃗ ′ = Ax⃗ is then

x1 = c1e
−t + c2e

3t, x2 = −c1e−t + c2e
3t.

In vector form, the general solution is

x⃗ = c1

(
e−t

−e−t

)
+ c2

(
e3t

e3t

)
.

History. The fundamental idea in the illustration was developed by Ziebur using
the classical Cayley-Hamilton theorem, which says that a square matrix satisfies
its own characteristic equation. History suggests the name Cayley-Hamilton-Ziebur
(abbreviated CHZ).

The Cayley-Hamilton theorem is the foundation for spectral methods developed in this
chapter. Computer algebra systems provide algorithms for solving any system x⃗ ′(t) =
Ax⃗ (t), possible because of the foundation provided by Cayley-Hamilton.
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Method for n× n Diagonal A

If an n×n matrix A is diagonal, A = diag(a1, . . . , an), then the system x⃗ ′ = Ax⃗
is a set of uncoupled scalar growth/decay equations:

x′1(t) = a1x1(t),
x′2(t) = a2x2(t),

...
x′n(t) = anxn(t).

The solution to the system is given by the formulas

x1(t) = c1e
a1t,

x2(t) = c2e
a2t,

...
xn(t) = cne

ant.

The numbers c1, . . . , cn are arbitrary constants.

Method for n× n Lower Triangular A

Assume a linear system x⃗ ′ = Ax⃗ has a square lower triangular matrix A. The
system can be solved by first order scalar methods. To illustrate the ideas,
consider the 3× 3 lower triangular linear system

x⃗ ′ =

 2 0 0
3 3 0
4 4 4

 x⃗ .

In scalar form, the system is given by the equations

x′1(t) = 2x1(t),
x′2(t) = 3x1(t) + 3x2(t),
x′3(t) = 4x1(t) + 4x2(t) + 4x3(t).

A recursive method. The system is solved recursively by first order scalar
methods only, starting with the first equation x′1(t) = 2x1(t). This growth equa-
tion has general solution x1(t) = c1e

2t. The second equation then becomes the
first order linear equation

x′2(t) = 3x1(t) + 3x2(t)
= 3x2(t) + 3c1e

2t.

The integrating factor method applies: x2(t) = −3c1e2t + c2e
3t is the general

solution. The third and last equation becomes the first order linear equation

x′3(t) = 4x1(t) + 4x2(t) + 4x3(t)
= 4x3(t) + 4c1e

2t + 4(−3c1e2t + c2e
3t).
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11.2 Fundamental System Methods

The integrating factor method is repeated to find the general solution x3(t) =
4c1e

2t − 4c2e
3t + c3e

4t.

In summary, the scalar general solution to the system is given by the formulas

x1(t) = c1e
2t,

x2(t) = −3c1e2t + c2e
3t,

x3(t) = 4c1e
2t − 4c2e

3t + c3e
4t.

Structure of solutions. A system x⃗ ′ = Ax⃗ for n × n triangular A has com-
ponent solutions x1(t), . . . , xn(t) given as polynomials times exponentials. The
exponential factors ea11t, . . . , eannt are expressed in terms of the diagonal ele-
ments a11, . . . , ann of the matrix A. Fewer than n distinct exponential factors
may appear, due to duplicate diagonal elements. These duplications cause the
polynomial factors to appear. The reader is invited to work out the solution to
the system below, which has duplicate diagonal entries a11 = a22 = a33 = 2.

x′1(t) = 2x1(t),
x′2(t) = 3x1(t) + 2x2(t),
x′3(t) = 4x1(t) + 4x2(t) + 2x3(t).

The solution, given below, has polynomial factors t and t2, appearing because of
the duplicate diagonal entries 2, 2, 2, and only one exponential factor e2t.

x1(t) = c1e
2t,

x2(t) = 3c1te
2t + c2e

2t,
x3(t) = 4c1te

2t + 6c1t
2e2t + 4c2te

2t + c3e
2t.

Method for n× n Upper Triangular A

A matrix differential system y⃗ ′(t) = T y⃗ (t) with T upper triangular splits into
scalar equations which can be solved by elementary methods for first order scalar
differential equations. To illustrate, consider the system

y′1 = 3y1 + y2 + y3,
y′2 = 3y2 + y3,
y′3 = 2y3.

The techniques that apply are the growth-decay formula for u′ = ku and the
integrating factor method for u′ = ku + p(t). Working backwards from the last
equation with back-substitution gives

y3 = c3e
2t,

y2 = c2e
3t − c3e

2t,
y1 = (c1 + c2t)e

3t.
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Jordan’s n× n Variable Change for x⃗′ = Ax⃗

What has been said above applies to any triangular system y⃗ ′(t) = T y⃗ (t), in
order to write an exact formula for the solution y⃗ (t).

If A is an n× n matrix, then Jordan’s theorem gives A = PTP−1 with T upper
triangular and P invertible. The change of variable x⃗ (t) = P y⃗ (t) changes x⃗ ′(t) =
Ax⃗ (t) into the triangular system y⃗ ′(t) = T y⃗ (t).

There is no special condition on A to effect the change of variable x⃗ (t) = P y⃗ (t).
The solution x⃗ (t) of x⃗ ′(t) = Ax⃗ (t) is a product of the invertible matrix P
and a column vector y⃗ (t); the latter is the solution of the triangular system
y⃗ ′(t) = T y⃗ (t), obtained by growth-decay and integrating factor methods.

The importance of this idea is to provide a reliable method for solving any system
x⃗ ′(t) = Ax⃗ (t). Later in this chapter, we outline how to find the matrix P and the
matrix T in Jordan’s theorem A = PTP−1. The additional theory provides both
desktop paper-and-pencil and computer matrix methods for solving any system
x⃗ ′(t) = Ax⃗ (t).

Differential Equation Conversion to x⃗′ = Ax⃗

Considered here are source equations in scalar form or in vector form. The ob-
ject is to define a new vector variable x⃗ (t) and a matrix A which converts the
source equations into the system form x⃗ ′ = Ax⃗ . The ideas apply as well to
systems of nonlinear and/or non-homogeneous equations with higher derivatives,
the converted system having the nonlinear form x⃗ ′ = f⃗ (t, x⃗ ), a form precursor
to applying computer numerical methods. The list of source equations to be
considered:

Scalar linear 2nd order au′′ + bu′ + cu = f

Scalar linear 2nd order system

{
a1x

′′
1 + b1x

′
1 + c1x1 = f1,

a2x
′′
2 + b2x

′
2 + c2x2 = f2.

Coupled spring-mass

m1x
′′
1(t)=− k1x1(t) + k2(x2(t)− x1(t)),

m2x
′′
2(t)=− k2(x2(t)− x1(t)) + k3(u3(t)− x2(t)),

m3u
′′
3(t)=− k3(u3(t)− x2(t))− k4u3(t).

Scalar linear nth order y(n) = p0y + · · ·+ pn−1y
(n−1)

Scalar continuous coefficients yiv = a(x)y + b(x)y′ + c(x)y′′ + d(x)y′′′

Forced higher order yiv = 2y + sin(x)y′ + cos(x)y′′ + x2y′′′ + f(x).

Second order system M x⃗ ′′ = Kx⃗

Forced second order system M x⃗ ′′ = Kx⃗ + F⃗ (t).

Damped Forced system M x⃗ ′′ = Bx⃗ ′ +Kx⃗ + F⃗ (t)
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Convert Scalar Linear 2nd Order to x⃗ ′ = Ax⃗

Consider an equation au′′ + bu′ + cu = f where a ̸= 0, b, c, f are allowed to
depend on t, ′ = d/dt. Define the Position-Velocity substitution

x1(t) = u(t), x2(t) = u′(t).

Then x′1 = u′ = x2 and x′2 = u′′ = (−bu′−cu+f)/a = −(b/a)x2− (c/a)x1+f/a.
The resulting system is equivalent to the second order equation, in the sense
that the position-velocity substitution transforms solutions of one system to the
other: {

x′1(t) = (0)x1(t) + (1)x2(t),

x′2(t) = −
(

c(t)
a(t)

)
x1(t) −

(
b(t)
a(t)

)
x2(t) + f(t)

a(t) .

The case of constant coefficients and f a function of t arises often enough to
isolate the result for further reference.

Theorem 11.2 (Constant-Coefficient 2nd Order Conversion)
Let a ̸= 0, b, c be constants and f(t) continuous. Then au′′ + bu′ + cu = f(t) is
equivalent to the first order system

ax⃗ ′(t) =

(
0 a
−c −b

)
w⃗ (t) +

(
0

f(t)

)
, x⃗ (t) =

(
u(t)
u′(t)

)
.

Convert Second Order Scalar Systems to x⃗ ′ = Ax⃗ + F⃗ (t)

A position-velocity substitution can be carried out on a system of two second
order linear differential equations. Assume{

a1x
′′
1 + b1x

′
1 + c1x1 = f1,

a2x
′′
2 + b2x

′
2 + c2x2 = f2.

Then the preceding methods for the scalar case give the equivalence
a1 0 0 0
0 a1 0 0
0 0 a2 0
0 0 0 a2



x1
x′1
x2
x′2


′

=


0 a1 0 0

−c1 −b1 0 0
0 0 0 a2
0 0 −c2 −b2



x1
x′1
x2
x′2

+


0
f1
0
f2

 .

Convert Coupled Spring-Mass Systems to x⃗ ′ = Ax⃗

Springs connecting undamped coupled masses were considered at the beginning
of this chapter, page 827. Typical equations are

m1x
′′
1(t) = −k1x1(t) + k2(x2(t)− x1(t)),

m2x
′′
2(t) = −k2(x2(t)− x1(t)) + k3(u3(t)− x2(t)),

m3u
′′
3(t) = −k3(u3(t)− x2(t))− k4u3(t).

(1)
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The equations can be represented by a second order linear system of dimension
3 of the form M x⃗ ′′ = Kx⃗ , where the Vector Position x⃗ , the mass matrix M
and the Hooke’s matrix K are given by the equalities

x⃗ (t) =

 x1(t)
x2(t)
u3(t)

 , M =

 m1 0 0
0 m2 0
0 0 m3

 ,

K =

 −(k1 + k2) k2 0
k2 −(k2 + k3) k3
0 −k3 −(k3 + k4)

 .

Conversion to x⃗ ′ = Ax⃗ uses a position-velocity substitution to obtain the block
matrix multiply equation (I = identity matrix, 0 = zero matrix)

x⃗ (t) =

(
x⃗ (t)
x⃗ ′(t)

)
, x⃗ ′(t) =

 0 I

M−1K 0

 x⃗ (t).

Convert Higher Order Linear Equations to x⃗ ′ = Ax⃗

Every homogeneous nth order linear differential equation

y(n) = p0y + · · ·+ pn−1y
(n−1)

with constant coefficients can be converted to a linear homogeneous vector-matrix
system

d

dx


y
y′

y′′

...

y(n−1)

 =


0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
p0 p1 p2 · · · pn−1




y
y′

y′′

...

y(n−1)

 .

This is a linear system x⃗ ′ = Ax⃗ where x⃗ (t) is the n×1 column vector consisting
of y(t) and its successive derivatives, while the n × n matrix A is the classical
Companion Matrix5 of the characteristic polynomial

rn = p0 + p1r + p2r
2 + · · ·+ pn−1r

n−1.

To illustrate, the companion matrix (page 846) for r4 = a+ br + cr2 + dr3 is

A =


0 1 0 0
0 0 1 0
0 0 0 1
a b c d

 .

5The transpose of the companion matrix defined in Wikipedia. The companion matrix or
its transpose appears in advanced topics in linear algebra, e.g. the Frobenius Rational Form.
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The preceding companion matrix has the following block matrix form, which is
representative of all companion matrices.

A =

(
0⃗ I

a b c d

)
.

Convert Scalar Continuous-Coefficient Equations to x⃗ ′ = Ax⃗

. Methods above apply equally to higher order linear differential equations with
continuous coefficients. To illustrate, the fourth order linear equation yiv =
a(x)y + b(x)y′ + c(x)y′′ + d(x)y′′′ has first order system form x⃗ ′ = A(x)x⃗ where
A(x) is the companion matrix (page 846) for the polynomial r4 = a(x)+ b(x)r+
c(x)r2 + d(x)r3, x held fixed:

A(x) =


0 1 0 0
0 0 1 0
0 0 0 1

a(x) b(x) c(x) d(x)

 .

Convert Forced Higher Order Equations to x⃗ ′ = Ax⃗ + F⃗ (t)

All that has been said above applies equally to a forced linear equation like

yiv = 2y + sin(x)y′ + cos(x)y′′ + x2y′′′ + f(x).

It has a conversion to a first order nonhomogeneous linear system

x⃗ ′ =


0 1 0 0
0 0 1 0
0 0 0 1
2 sinx cosx x2

 x⃗ +


0
0
0

f(x)

 , x⃗ =


y
y′

y′′

y′′′

 .

Convert 2nd Order System to x⃗ ′ = Ax⃗ + F⃗ (t)

A second order system M x⃗ ′′ = Kx⃗ + F⃗ (t) is called a forced system and F⃗ is
called the external vector force. Such a system can always be converted to
a second order system where the mass matrix is the identity, by multiplying by
M−1:

x⃗ ′′ = M−1Kx⃗ +M−1F⃗(t).

The benign form x⃗ ′′ = Bx⃗ + G⃗(t), where B = M−1K and G⃗ = M−1F⃗ , admits
a block matrix conversion into a forced first order system of the form x⃗ ′ =
Ax⃗ + f⃗ (t):

x⃗ (t) =

(
x⃗(t)
x⃗ ′(t)

)
,

d

dt
x⃗ (t) =

 0 I

M−1K 0

 x⃗ (t) +

(
0⃗

M−1F⃗ (t)

)
.
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Convert Damped 2nd Order System to x⃗ ′ = Ax⃗ + F⃗ (t)

The addition of a dashpot to each of the masses gives a damped second order
system with forcing term

M x⃗ ′′ = Bx⃗ ′ +Kx⃗ + F⃗(t).

In the case of one scalar equation, the matrices M , B, K are constants m, −c,
−k and the external force is a scalar function f(t), hence the system becomes
the classical damped spring-mass equation

mu′′ + cu′ + ku = f(t).

A standard way to write the first order system u⃗ ′ = Au⃗ + G⃗(t) is to introduce

variable u⃗ = M

(
x⃗
x⃗ ′

)
, in order to obtain

u⃗ ′ = M
d

dt

(
M x⃗
x⃗ ′

)
= M

(
x⃗ ′

x⃗ ′′

)
= M

(
x⃗ ′

Bx⃗ ′ +Kx⃗ + F⃗ (t)

)
Then a first order system in block matrix form is given by(

M 0

0 M

)
d

dt

(
x⃗ (t)
x⃗ ′(t)

)
=

(
0 M

K B

)(
x⃗(t)
x⃗ ′(t)

)
+

(
0⃗

F⃗ (t)

)
.

The benign form x⃗ ′′ = M−1Bx⃗ ′ +M−1Kx⃗ +M−1F⃗(t), which is obtained from
left-multiplication by M−1, can be similarly written as a first order system in
block matrix form.

d

dt

(
x⃗(t)
x⃗ ′(t)

)
=

 0 I

M−1K M−1B

( x⃗ (t)
x⃗ ′(t)

)
+

(
0⃗

M−1F⃗ (t)

)

Exercises 11.2 �

Solving 2× 2 Systems

1. Solve x′
1 = 2x1 + x2, x′

2 = x2. Ans:
x1 = c1 e

2 t − c2 e
t, x2 = c2 e

t

2. Discuss how to solve x⃗ ′ =

(
a b
0 d

)
x⃗ .

Triangular 2× 2 Matrix A

3. Solve x⃗ ′ =

(
2 1
0 3

)
x⃗ .

4. Solve x⃗ ′ =

(
2 0
2 3

)
x⃗ .

Non-Triangular 2× 2 Matrix A

5. Solve x⃗ ′ =

(
1 3
3 1

)
x⃗ .

6. Solve x⃗ ′ =

(
1 3
−3 1

)
x⃗ .

Method for n× n Diagonal A

7. Solve x⃗ ′ =

(
1 0 0
0 3 0
0 0 2

)
x⃗ .
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8. Solve x⃗ ′ =

1 0 0 0
0 3 0 0
0 0 4 0
0 0 0 2

 x⃗ .

Method for n× n Lower Triangular

9. Solve x⃗ ′ =

(
1 0 0
1 3 0
1 0 2

)
x⃗ .

10. Solve x⃗ ′ =

(
1 0 0
0 3 0
1 0 2

)
x⃗ .

Method for n× n Upper Triangular

11. Solve x⃗ ′ =

(
1 0 1
0 3 1
0 0 2

)
x⃗ .

12. Solve x⃗ ′ =

(
1 1 0
0 3 1
0 0 2

)
x⃗ .

Jordan’s n× n Variable Change
Let A = PTP−1 with T upper triangular
and P invertible. Define change of variable
x⃗ (t) = P y⃗ (t). Prove these results:

13. If x⃗ (t) solves x⃗ ′(t) = Ax⃗ (t), then
y⃗ (t) = P−1x⃗ (t) solves y⃗ ′(t) = T y⃗ (t).

14. If y⃗ ′(t) = T y⃗ (t), then x⃗ (t) = P y⃗ (t)
solves x⃗ ′(t) = Ax⃗ (t).

Convert Scalar Linear 2nd Order to
u⃗ ′ = Au⃗ + F⃗ (t)

15. x′′ + 2x′ + x = sin t

16. 2x′′ + 3x′ + 8x = 4 cos t

Convert Second Order Scalar System
to u⃗ ′ = Au⃗

17. x′′ = x+ y, y′′ = x− y

18. x′′ = x+ y + sin t, y′′ + y = x+ cos t

Convert Coupled Spring-Mass System
to u⃗ ′ = Au⃗ + F⃗

19. x⃗ ′′ =

(
−2 1
1 −1

)
x⃗ +

(
0

sin t

)

20. x⃗ ′′ =

(
−2 1 0
1 −2 1
0 −1 −2

)
x⃗

Convert Higher Order Linear Equations
to u⃗ ′ = Au⃗

21. x′′′ = x

22.
d4y

dx4 + 16y = 0

Convert Scalar Continuous-Coefficient
Equation to u⃗ ′ = Au⃗

23. x2y′′ + 3xy′ + 2y = 0

24. y′′′ + xy′′ + x2y + y = 0

Convert Forced Higher Order Equation
to u⃗ ′ = Au⃗ + F⃗ (t)

25.
d4y

dx4 = y′′′ + y + sinx

26.
d6y

dx6 =
d4y

dx4 + y + cos t

Convert 2nd Order System to u⃗ ′ =
Au⃗ + G⃗ (t)

27. x⃗ ′′ =

(
−2 1
1 −1

)
x⃗ +

(
1
−1

)

28. x⃗ ′′=

(
−2 1 0
1 −2 1
0 −1 −2

)
x⃗ + et

1
1
1


Convert Damped 2nd Order System to
u⃗ ′ = Au⃗ + G⃗ (t)

29. x⃗ ′′=

(
−2 1
1 −1

)
x⃗ +

(
0 1
1 0

)
x⃗ ′ +

(
1
−1

)

30. x⃗ ′′ =

(
−2 1 0
1 −2 1
0 −1 −2

)
x⃗ + x⃗ ′ + et

1
1
1


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11.3 Structure of Linear Systems

Notation for Linear Systems

A linear system is a system of differential equations of the form

x′1 = a11x1 + · · · + a1nxn + f1,
x′2 = a21x1 + · · · + a2nxn + f2,

...
... · · ·

...
...

x′m = am1x1 + · · · + amnxn + fm,

(1)

where ′ = d/dt. Given are the functions aij(t) and fj(t) on some interval
a < t < b. The unknowns are the functions x1(t), . . . , xn(t).

The system is called homogeneous if all fj = 0, otherwise it is called non-
homogeneous.

Matrix Notation. A non-homogeneous system of linear equations (1) is written
as the equivalent vector-matrix system

x⃗ ′ = A(t)x⃗ + F⃗ (t)

where

x⃗ =

 x1
...
xn

 , F⃗ =

 f1
...
fn

 , A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 .

Existence-Uniqueness

Special results are isolated to illustrate how Picard-Lindelöf theory is applied to
linear systems. Proofs start on page 859.

Theorem 11.3 (Gronwall’s Lemma)
Let u(t), v(t) be continuous functions with v(t) ≥ 0 on interval t0 ≤ t ≤ t0 + H.

Assume u(t) ≤ c+

∫ t

t0

u(r)v(r)dr for t for t0 ≤ t ≤ t0 +H. Then:

u(t) ≤ c e
−
∫ t
t0

v(r)dr
, t0 ≤ t ≤ t0 +H.

Theorem 11.4 (Unique Zero Solution)
Let A(t) be an m× n matrix with entries continuous on t0 ≤ t ≤ t0 +H. Then the
initial value problem

x⃗ ′ = A(t)x⃗ , x⃗ (t0) = 0⃗

has unique solution x⃗ (t) = 0⃗ on t0 ≤ t ≤ t0 +H.
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Theorem 11.5 (Picard-Lindelöf)
Let n-vector F⃗(t) and n × n matrix A(t) be continuous on interval J : a < t < b.
Let t0 be in J . Let x⃗ 0 be in Rn. Then the initial value problem

x⃗ ′ = A(t)x⃗ + F⃗(t), x⃗ (t0) = x⃗ 0

has a unique solution x⃗ (t) defined on all of J .

Theorem 11.6 (Existence-Uniqueness for Constant Linear Systems)
Let A(t) = A be an m×n matrix with constant entries and let t0 be any real number
and let x⃗ 0 be any n-vector. Then the initial value problem

x⃗ ′ = Ax⃗ , x⃗ (t0) = x⃗ 0

has a unique solution x⃗(t) defined for all values of t.

Theorem 11.7 (Uniqueness and Solution Crossings)
Let A(t) be an m×n matrix with entries continuous on a < t < b and assume F⃗ (t) is

also continuous on a < t < b. If x⃗ 1(t) and x⃗ 2(t) are solutions of x⃗
′ = A(t)x⃗ + F⃗ (t)

on a < t < b and x⃗ 1(t0) = x⃗ 2(t0) for some t0, a < t0 < b, then x⃗ 1(t) = x⃗ 2(t) for
a < t < b.

Linearity and Superposition

Linear homogeneous systems have linear structure and nonhomogeneous sys-
tems obey a Principle of Superposition.

Theorem 11.8 (Linear Structure)
Let x⃗ ′ = A(t)x⃗ have two solutions x⃗ 1(t), x⃗ 2(t). If k1, k2 are constants, then
x⃗(t) = k1 x⃗ 1(t) + k2 x⃗ 2(t) is also a solution of x⃗ ′ = A(t)x⃗ .

Theorem 11.9 (Basis)
The solution set of x⃗ ′ = A(t)x⃗ is an n-dimensional subspace of the vector space of
all vector-valued functions x⃗ (t) on a < t < b.

Let a < t0 < b. A standard basis w⃗ 1(t), . . . , w⃗n(t) is defined by w⃗ ′
j(t) =

A(t)w⃗ j(t), w⃗ j(t0) = e⃗ j = column j of the identity matrix I, 1 ≤ j ≤ n.

Every solution x⃗ (t) of x⃗ ′(t) = A(t)x⃗ (t) has a unique basis expansion:

x⃗ (t) = c1w⃗ 1(t) + c2w⃗ 2(t) + · · ·+ cnw⃗n(t)

Theorem 11.10 (Superposition Principle)
Let x⃗ ′ = A(t)x⃗ + F⃗ (t) have a particular solution x⃗p(t). If x⃗ (t) is any solution of

x⃗ ′ = A(t)x⃗+F⃗(t), then x⃗ (t) can be decomposed as homogeneous plus particular:

x⃗ (t) = x⃗h(t) + x⃗p(t).
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Term x⃗h(t) is a certain solution of the homogeneous differential equation x⃗ ′ =
A(t)x⃗ , which means arbitrary constants c1, c2, . . . have been assigned specific values.
The shortest particular solution x⃗p(t) excludes any term y⃗ (t) satisfying y⃗ ′t() =
A(t)y⃗ (t), such terms being absorbed into x⃗h(t).

Theorem 11.11 (Difference of Solutions)
Let x⃗ ′ = A(t)x⃗ + F⃗(t) have two solutions x⃗ = u⃗(t) and x⃗ = v⃗ (t). Define
y⃗ (t) = u⃗(t)− v⃗ (t). Then y⃗ (t) satisfies the homogeneous equation

y⃗ ′ = A(t)y⃗ .

General Solution

The general solution of x⃗ ′ = A(t)x⃗ + F⃗(t) is an expression involving arbitrary
constants c1, c2, . . . and certain functions. The expression may be given in vector
notation, although scalar expressions are commonplace and perfectly acceptable.
Required is that the expression represents all solutions of the differential equation,
in the following sense:

Definition 11.1 (General Solution of
→
x ′ = A(t)

→
x +

→
F (t))

An expression is called a general solution of system x⃗ ′(t) = A(t)x⃗ (t) + F⃗ (t)
provided:

(a) Every assignment of constants in the expression produces a
solution of the differential equation.

(b) Every possible solution is uniquely obtained from the expression
by specializing the constants.

Superposition Theorem 11.10 implies that the constants in the general solution
are identified as multipliers against solutions of the homogeneous differential
equation. The general solution has recognizable structure:

Theorem 11.12 (General Solution)
Let A(t) be an n × n matrix. Let F⃗(t) be an n × 1 vector. Assume A(t) and

F⃗(t) are continuous on an interval a < t < b. Then linear nonhomogeneous system
x⃗ ′ = A(t)x⃗ + F⃗ (t) has general solution x⃗ given by the expression

x⃗ = x⃗h(t) + x⃗p(t).

1. Term y⃗ = x⃗h(t) is a general solution of the homogeneous equation y⃗ ′ = A(t)y⃗
which contains n arbitrary constants c1, . . . , cn.

2. Term x⃗ = x⃗p(t) is a particular solution of x⃗ ′ = A(t)x⃗ + F⃗(t).
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Recognition of Homogeneous Solution Terms

Assume given an expression x⃗ for the general solution of vector-matrix equation
x⃗ ′(t) = A(t)x⃗(t) + F⃗(t), either in scalar component form or in vector form.
Expression x⃗ contains arbitrary constants c1, . . . , cn. It is possible to isolate
both terms x⃗h and x⃗p by a simple procedure.

Finding x⃗p. The first step: set to zero all arbitrary constants c1, c2, . . . , cn.
The resulting expression is free of unresolved constants. The answer sought for
x⃗p(t) has no term y⃗ (t) with A(t)y⃗ (t) = 0⃗ . If the expression contains such a term
y⃗ , then remove it. Repeat inspection and removal until no such term y⃗ appears.
If the expression x⃗ consists of equations in scalar component form, then assemble
the modified equations into vector x⃗p. Otherwise, the modified x⃗ is vector x⃗p.

Finding x⃗h. The first step: take partial derivatives on the general solution
expression x⃗ with respect to the symbols c1, . . . , cn. The formula:

u⃗k(t) =
∂

∂ck
x⃗ , 1 ≤ k ≤ n.

A vector solution basis for y⃗ ′ = A(t)y⃗ is {u⃗k}nk=1. The technique isolates the
vector components of the homogeneous solution from any form of the general
solution, including scalar formulas for the components of x⃗ . Then:

x⃗h(t) = c1u⃗ 1(t) + c2u⃗ 2(t) + · · ·+ cnu⃗n(t).

Vector General Solution. A general solution x⃗ of the nonhomogeneous linear
system x⃗ ′ = A(t)x⃗ + F⃗ (t) is given by the expression

x⃗ = c1u⃗ 1(t) + c2u⃗ 2(t) + · · ·+ cnu⃗n(t) + x⃗p(t).

In this expression, each assignment of the constants c1, . . . , cn produces a solution
of the nonhomogeneous system, and conversely, each possible solution of the
nonhomogeneous system is obtained by a unique specialization of the constants
c1, . . . , cn.

Independence

Constants c1, . . . , cn in the general solution x⃗ = x⃗h + x⃗p appear exactly in the
expression x⃗h, which has the form

x⃗h = c1u⃗ 1 + c2u⃗ 2 + · · ·+ cnu⃗n.

A solution x⃗ of x⃗ ′(t) = A(t)x⃗ (t) + F⃗ (t) uniquely determines the constants. In
particular, the zero solution of the homogeneous equation is uniquely represented,
which can be stated this way:

c1u⃗ 1 + c2u⃗ 2 + · · ·+ cnu⃗n = 0⃗ implies c1 = c2 = · · · = cn = 0.
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This statement equivalently says that the list of n vector-valued functions u⃗ 1(t),
. . . , u⃗n(t) is Linearly Independent, as defined in linear algebra.

Hand calculations might write down a candidate general solution to some 3 × 3
linear system x⃗ ′ = Ax⃗ , the resulting equations looking like

x1 = c1e
t + c2e

t + c3e
2t,

x2 = c1e
t + c2e

t + 2c3e
2t,

x3 = c1e
t + c2e

t + 4c3e
2t.

The example illustrates a classic mistake made in calculations: it is not a general
solution, even though it satisfies x⃗ ′ = Ax⃗ !

How can we detect the mistake, given only that this expression is supposed to
represent the general solution? A required step is to test that u⃗ 1 = ∂x⃗/∂c1,
u⃗ 2 = ∂x⃗/∂c2, u⃗ 3 = ∂x⃗/∂c3 are indeed solutions. To insure the unique repre-
sentation requirement of a general solution ((b) page 852), the vector func-
tions u⃗ 1, u⃗ 2, u⃗ 3 must be linearly independent. Compute partial derivatives on
symbols c1, c2, c3:

u⃗ 1 =

 et

et

et

 , u⃗ 2 =

 et

et

et

 , u⃗ 3 =

 e2t

2e2t

4e2t

 .

Then u⃗ 1 = u⃗ 2, which implies that the functions u⃗ 1, u⃗ 2, u⃗ 3 fail to be indepen-
dent. While it is possible to test independence by a rudimentary test based upon
the definition of independence, the preferred method uses following tests due to
Norwegian mathematician N. H. Abel (1802-1829).

Definition 11.2 (Wronskian Determinant of Vector Functions)
Let u⃗ j(t) : a < t < b→ Rn be given, 1 ≤ j ≤ n. The Wronskian determinant is
W (t) = det(U), where U is the augmented matrix of u⃗ 1(t), . . . , u⃗n(t). In terms of
components uij of vector u⃗ j , 1 ≤ i, j ≤ n:

W (t) =

∣∣∣∣∣∣∣
u11 · · · u1n

...
. . .

...
un1 · · · unn

∣∣∣∣∣∣∣
Theorem 11.13 (Abel-Liouville Formula)
Let vector functions u⃗ 1(t), . . . , u⃗n(t) be solutions of x⃗ ′ = A(t)x⃗ , a < t < b. Let
W (t) be the Wronskian determinant of these solutions. Assume a < t0 < b. Then
the Abel-Liouville formula holds:

W (t) = e
∫ t
t0
trace(A(s))ds

W (t0).
6

In particular, the Wronskian determinant W (t) is either everywhere nonzero or ev-
erywhere zero, accordingly as W (t0) ̸= 0 or W (t0) = 0.

6The trace of a square matrix is the sum of its diagonal elements.
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Theorem 11.14 (Abel’s Wronskian Independence Test)
Vector solutions x⃗ = u⃗ 1, . . . , u⃗n of x⃗ ′ = A(t)x⃗ are linearly independent on a < t <
b if and only if the Wronskian determinant W (t0) is nonzero for some a < t0 < b.

Initial Value Problems and Reduced Echelon Form

An initial value problem is the problem of solving for x⃗ , given

x⃗ ′ = A(t)x⃗ + F⃗ (t), x⃗ (t0) = x⃗ 0.

Assume general solution

x⃗ = c1u⃗ 1(t) + · · ·+ cnu⃗n(t) + x⃗p(t),

then the problem of finding x⃗ reduces to finding c1, . . . , cn in the relation

c1u⃗ 1(t0) + · · ·+ cnu⃗n(t0) + x⃗p(t0) = x⃗ 0.

This is a matrix equation for the unknown constants c1, . . . , cn of the form
Bc⃗ = d⃗ , where B is the augmented matrix of u⃗ 1(t0), . . . , u⃗n(t0):

B = ⟨u⃗ 1(t0)| · · · |u⃗n(t0)⟩, c⃗ =

 c1
...
cn

 , d⃗ = x⃗ 0 − x⃗p(t0).

The reduced row echelon form or rref provides a method to find c⃗ . The method:
perform swap, combination and multiply operations to the augmented matrix
C = ⟨B|d⃗⟩ until rref(C) = ⟨I |⃗c⟩.

Equilibria of x⃗′ = A(t)x⃗

An equilibrium point x⃗ 0 of a linear system x⃗ ′ = A(t)x⃗ is a constant solution,
x⃗(t) = x⃗ 0 for all t. Equilibria make sense when A(t) is constant, although the
definition applies to continuous systems. For a solution x⃗ to be constant means
x⃗ ′ = 0⃗ , hence all equilibria are determined from the equation

A(t)x⃗ 0 = 0⃗ for all t.

This homogeneous system of linear algebraic equations is to be solved for x⃗ 0. It
is not allowed for the answer x⃗ 0 to depend on t: if it does, then it is not an
equilibrium.

The theory for a constant matrix A(t) ≡ A says that either x⃗ 0 = 0⃗ is the unique
solution or else there are infinitely many nonzero answers for x⃗ 0. Expectations
for any matrix A(t) are similar but an algorithm is lacking for finding nonzero
x⃗ 0.
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Examples and Methods

Example 11.1 (Vector Form of the General Solution)

Consider a 3×3 linear system x⃗ ′ = A(t)x⃗+F⃗(t) with general solution x⃗ (components
x1, x2, x3) given in scalar form by the expressions

x1 = c1e
t + c2e

−t + t,
x2 = (c1 + c2)e

t + c3e
2t,

x3 = (2c2 − c1)e
−t + (4c1 − 2c3)e

2t + 2t.
(2)

Find the vector form of the general solution.

Solution to Example 11.1

Find x⃗p(t). Set c1 = c2 = c3 = 0 in scalar equations (2):

x⃗p(t) =

 t
0
2t

 .

Find x⃗h. Take partial derivatives in scalar equations (2) with respect to the variable

names c1, c2, c3 to determine u⃗k =
∂x⃗

∂ck
:

u⃗1 =

 et

et

−e−t + 4e2t

 , u⃗2 =

 e−t

et

2e−t

 , u⃗3 =

 0
e2t

−2e2t

 .

The homogeneous system vector solution:

x⃗h(t) = c1u⃗1(t) + c2u⃗2(t) + c3u⃗3(t)

The nonhomogeneous system vector general solution:

x⃗ (t) = c1u⃗1(t) + c2u⃗2(t) + c3u⃗3(t) + x⃗p(t)

= c1

 et

et

−e−t + 4e2t

+ c2

 e−t

et

2e−t

+ c3

 0
e2t

−2e2t

+

 t
0
2t

 .

To be a general solution, expression x⃗ = c1u⃗1(t)+c2u⃗2(t)+c3u⃗3(t)+ x⃗p(t) must satisfy
required elements (a) and (b) in the definition of general solution (page 852). Already
(a) is satisfied. Issue (b) is not settled: vectors u⃗1, u⃗2, u⃗3 must be independent, to
be settled by Abel’s formula and the Wronskian test infra, details delayed to a further
example.

Example 11.2 (Dependence by Abel’s Wronskian Test)

Assume a 3 × 3 system x⃗ ′ = Ax⃗ was solved by hand for general solution x⃗ =
c1u⃗ 1 + c2u⃗ 2 + c3u⃗ 3 where

u⃗ 1 =

 et

et

et

 , u⃗ 2 =

 et

et

et

 , u⃗ 3 =

 e2t

2e2t

4e2t

 .
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Choose t0 in Abel’s Wronskian Test to establish dependence. The reported expres-
sion x⃗ is not a general solution.

Details for Example 11.2

Wronskian determinant W (t) is quite complicated, but W (0) is zero because it has two
duplicate columns. Choice t0 = 0 in Abel’s Wronskian test detects dependence of
solutions u⃗1, u⃗2, u⃗3.

Example 11.3 (Abel’s Wronskian Test Detects Independence)

Assume a 3 × 3 system x⃗ ′ = Ax⃗ was solved by hand for general solution x⃗ =
c1u⃗ 1 + c2u⃗ 2 + c3u⃗ 3 where

u⃗ 1 =

 2e−t

−e2t + 2et

4e−t + 2e2t

 , u⃗ 2 =

 e−t

e−t − e2t

2e2t + 2e−t

 , u⃗ 3 =

 et

et

3et

 .

Choose t0 in Abel’s Wronskian Test to establish independence. The expression x⃗ is
the general solution.

Details for Example 11.3

At t = 0 the solutions become the column vectors

u⃗1 =

 2
1
6

 , u⃗2 =

 1
0
4

 , u⃗3 =

 1
1
3

 .

Then W (0) = det
(
⟨u⃗1(0)|u⃗2(0)|u⃗3(0)⟩

)
= −1 is nonzero. Vectors u⃗1, u⃗2, u⃗3 are

independent and x⃗ is the general solution.

Example 11.4 (Find A and
→
F from a General Solution)

Assume a 3 × 3 system x⃗ ′(t) = Ax⃗ (t) + F⃗(t) has general solution x⃗ = c1u⃗ 1 +
c2u⃗ 2 + c3u⃗ 3 + x⃗p where

u⃗ 1=

 2e−t

−e2t + 2et

4e−t + 2e2t

 , u⃗ 2=

 e−t

e−t − e2t

2e2t + 2e−t

 , u⃗ 3=

 et

et

3et

 , x⃗p=

1
t
t2

 .

Find matrix A and vector function F⃗(t).

Solution to Example 11.4

Superposition implies u⃗ ′
k(t) = Au⃗k(t), 1 ≤ k ≤ 3. Let t = 0 in these equations and then

re-assemble the equations into a single matrix equation:

⟨u⃗ ′
1(0)|u⃗ ′

2(0)|u⃗ ′
3(0)⟩ = A⟨u⃗1(0)|u⃗2(0)|u⃗3(0)⟩
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 −2 −1 1
−4 −3 1
0 2 3

 = A

 2 1 1
1 0 1
6 4 3


Solve the matrix equation by inversion:

A =

 −9 4 2
−11 6 2
−18 6 5


Vector F⃗(t) can be found from x⃗ ′

p(t) = Ax⃗p(t) + F⃗(t) by solving for F⃗ :

F⃗(t) =

 −2t2 − 4t+ 9
−2t2 − 6t+ 12
−5t2 − 4t+ 18



Example 11.5 (Solve
→
x ′(t) = A

→
x (t)+

→
F (t) with Initial Conditions)

Assume:

x⃗ ′(t) =

 −3 4 2
−2 6 2
−12 6 7

+

 t
0
2t


x1(0) = 1, x2(0) = 0, x3(0) = −1
x1 = c1e

t + c2e
−t + t

x2 = (c1 + c2)e
t + c3e

2t

x3 = (2c2 − c1)e
−t + (4c1 − 2c3)e

2t + 2t

Solve for c1, c2, c3.

Solution to Example 11.5

The equations for x1, x2, x3 evaluated at t = 0 give the system of linear algebraic equa-
tions

1 = c1e
0 + c2e

0 + 0,
0 = (c1 + c2)e

0 + c3e
0,

−1 = (2c2 − c1)e
0 + (4c1 − 2c3)e

0 + 0.

In standard form it is the 3× 3 linear system

c1 + c2 = 1,
c1 + c2 + c3 = 0,

3c1 + 2c2 − 2c3 = −1.

The augmented matrix C:

C =

 1 1 0 1
1 1 1 0
3 2 −2 −1

 . rref(C) =

 1 0 0 −5
0 1 0 6
0 0 1 −1

 .

Then c1 = −5, c2 = 6, c3 = −1.
The final answer:

x1 = −5et + 6e−t + t,
x2 = et − e2t,
x3 = 17e−t − 18e2t + 2t.
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Example 11.6 (Equilibria for
→
x ′(t) = A(t)

→
x (t))

Find all equilibria for system

x′1 = x1 + x2
x′2 = sin(t)x1 + sin(t)x2

Solution to Example 11.6

Let A(t) =

(
1 1

sin(t) sin(t)

)
. Let vector x⃗0 have components x1, x2. Then A(t)x⃗0 = 0⃗

has scalar form: {
x1 + x2 = 0

sin(t)x1 + sin(t)x2 = 0

The equations must hold for all values of t. Because sin(t) ̸= 0 except for t = nπ, an
equivalent system for x1, x2 is {

x1 + x2 = 0
x1 + x2 = 0

Solve the linear system. Then all constant solutions of x⃗ ′ = A(t)x⃗ are:(
x1

x2

)
= t1

(
1
−1

)
, −∞ < t1 <∞

It is an error to report t = π, x1 = 1, x2 = −1 as an equilibrium solution. Reports of
equilibria are constants for x1, x2 which produce a solution of x⃗ ′ = A(t)x⃗ for all values
of t.

Proofs for Theorems 11.3 to 11.14

Proof of Theorem 11.3: Gronwall’s Lemma

Let w(t) = c+

∫ t

t0

u(r)v(r)dr and F (t) = e
∫ t
t0

v(r)dr
. Then:

w′(t) = u(t)v(t) Fundamental Theorem of calculus.

w′(t) ≤ v(t)w(t) Hypothesis u(t) ≤ w(t).

(F (t)w(t))′

F (t)
≤ 0 Integrating factor identity, for t > t0.

(F (t)w(t))′ ≤ 0 For t in J .

F (t)w(t) ≤ F (t0)w(t0) Integrate across the inequality on J .

F (t)w(t) ≤ c Because F (t0) = 1 and w(t0) = c.

w(t) ≤ c e
−
∫ t
t0

v(r)dr
Divide by F (t).

u(t) ≤ c e
−
∫ t
t0

v(r)dr
Hypothesis u(t) ≤ w(t).

Proof of Theorem 11.4: Unique Zero Solution

Zero is a solution because it satisfies both the differential equation and the initial condi-
tion. It remains to prove that zero is the unique global solution.
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Assume x⃗ (t) is another solution to the initial value problem. Let ∥B∥ denote the Eu-

clidean matrix norm. Then |x⃗ (t)| ≤
∫ t

0
∥A(r)∥|x⃗ (r)|dr for t ≥ t0 . Define u(t) = |x⃗ (t)|

and v(t) = ∥A(t)∥. Then u(t) ≤ c +
∫ t

t0
u(r)v(r)dr for c = 0. Apply Gronwall’s Lemma

11.3. Then u(t) ≤ 0, which implies x⃗ (t) = 0 for t0 ≤ t ≤ t0 +H.

Proof of Theorem 11.5: Picard-Lindelöf

Uniqueness is proved by subtracting two possible solutions: x⃗ (t) = x⃗1(t)− x⃗2(t). Then
x⃗ satisfies the hypotheses of Theorem 11.4, implying x⃗ (t) = 0 and then x⃗1(t) = x⃗2(t)
for all t in J .

Existence is proved by modification of the classical Picard-Lindelöf proof. The Picard
iterates are constructed for the associated integral equation:

x⃗ (t) = x⃗ (t0) +

∫ t

t0

A(r)F⃗ (r) dr

The essential step proves that the iterates converge uniformly to a solution x⃗ (t) on the
entire interval J . Details are in the exercises (Advanced Calculus required).

Proof of Theorem 11.6: Existence-Uniqueness for Constant Linear Systems

Picard-Lindelöf Theorem 11.5 applies to any interval a < t < b. Therefore, the unique
solution is defined for all values of t.

Proof of Theorem 11.7: Uniqueness and Solution Crossings

The crossing theorem restates uniqueness in Picard-Lindelöf Theorem 11.5.

Proof of Theorem 11.8: Linear Structure
Let x⃗ (t) = k1 x⃗1(t) + k2 x⃗2(t). Then:

A(t)x⃗ (t) = k1 A(t)x⃗1(t) + k2 A(t)x⃗2(t) Matrix multiply

= k1 x⃗
′
1(t) + k2 x⃗

′
2(t) Because x⃗1, x⃗2 are solutions.

= x⃗ ′(t) Differential equation verified.

Proof of Theorem 11.9: Basis

Let V be the vector space of all real-valued vector functions x⃗ (t) defined on a < t < b.

Let S be the set of all solutions of x⃗ ′ = Ax⃗ , a subset of V .

Construct a standard basis {w⃗ k}nk=1 for S by applying the Picard-Lindelöf theorem
to initial value problem x⃗ ′ = Ax⃗ , x⃗ (t0) = x⃗0, with x⃗0 successively set equal to the
columns of the n × n identity matrix. This produces n solutions w⃗ 1, . . . , w⃗n to the
equation x⃗ ′ = A(t)x⃗ , all of which exist on the same interval a < t < b.

It will be shown that the span in V of W = {w⃗ + 1, . . . , w⃗n} equals S. Then S has a
basis of n elements, which proves the theorem.

span(W ) ⊂ S: Let linear combination

x⃗ (t) = c1w⃗ 1(t) + c2w⃗ 2(t) + · · ·+ cnw⃗n(t)(3)

belong to span(W ). Theorem 11.8 implies that the linear combination x⃗ (t) is a solution
of x⃗ ′ = A(t)x⃗ . Then x⃗ (t) is in S.

S ⊂ span(W ): if x⃗ (t) is in S, then x⃗ (t0) has components c1, . . . , cn. Function y⃗ (t) =
c1w⃗ 1(t)+ c2w⃗ 2(t)+ · · ·+ cnw⃗n(t) is in span(W ), hence in S, and it has the same initial
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11.3 Structure of Linear Systems

condition: y⃗ (t0) equals x⃗ (t0). The Picard theorem says x⃗ (t) = y⃗ (t), therefore x⃗ (t) is
in span(W ).

Proof of Theorem 11.10: Superposition

Assume x⃗ ′
h(t) = A(t)x⃗h(t) and x⃗ ′

p(t) = A(t)x⃗p(t) + F⃗(t).

Let x⃗ (t) = x⃗h(t)+ x⃗p(t). Let’s prove x⃗ (t) is a solution of the nonhomogeneous equation.

x⃗ ′(t) = x⃗ ′
h(t) + x⃗ ′

p(t) Differential calculus.

= A(t)x⃗h(t) +A(t)x⃗p(t) + F⃗(t) Use the two differential equations.

= A(t) (x⃗h(t) + x⃗p(t)) + F⃗(t) Matrix algebra.

= A(t)x⃗ (t) + F⃗(t) Definition of x⃗ (t).

Let x⃗ (t) denote any solution of x⃗ ′(t) = A(t)x⃗ (t) + F⃗(t). To prove: y⃗ (t) = x⃗ (t)− x⃗p(t)
is a solution of the homogeneous equation y⃗ ′(t) = A(t)y⃗ (t). Then for some assignment
of constants y⃗ (t) equals x⃗h(t) and x⃗ = y⃗ + x⃗p = x⃗h + x⃗p.

y⃗ ′(t) = x⃗ ′(t)− x⃗ ′
p(t) Differential calculus.

= A(t)x⃗ (t) + F⃗(t)− x⃗ ′
p(t) Differential equation for x⃗ (t).

= A(t)x⃗ (t) + F⃗(t)−A(t)x⃗p(t)− F⃗(t) Differential equation for x⃗p(t).

= A(t) (x⃗ (t)− x⃗p(t)) Matrix algebra.

= A(t)y⃗ (t) Definition of y⃗ (t).

Proof of Theorem 11.11: Difference of Solutions

y⃗ ′(t) = u⃗ ′(t)− v⃗ ′(t) Differential calculus.

= A(t)u⃗ (t) + F⃗ (t)− v⃗ ′(t) Differential equation for u⃗(t).

= A(t)u⃗ (t) + F⃗ (t)−A(t)v⃗ (t)− F⃗(t) Differential equation for v⃗ (t).

= A(t) (u⃗(t)− v⃗ (t)) Matrix algebra.

= A(t)y⃗ (t) Definition of y⃗ (t).

Proof of Theorem 11.12: General Solution

Claim 1. Term y⃗ = x⃗h(t) is a general solution of the homogeneous equation y⃗ ′ = A(t)y⃗
which contains n arbitrary constants c1, . . . , cn.

Each solution y⃗ = x⃗h(t) of y⃗
′ = A(t)y⃗ can be expanded uniquely as a linear combination

of basis elements w⃗ 1(t), w⃗ 2(t), . . . , w⃗n(t) because of the Picard-Lindelöf Theorem 11.5
and Theorem 11.9. Then y⃗ (t) = c1w⃗ 1(t)+c2w⃗ 2(t)+ · · ·+cnw⃗n(t) for weights c1, . . . , cn
is a general solution of y⃗ ′ = A(t)y⃗ . The weights c1, . . . , cn are the n arbitrary constants
required in the general solution.

Claim 2. Term x⃗ = x⃗p(t) is a particular solution of x⃗ ′ = A(t)x⃗ + F⃗(t).

Let x⃗ (t) = x⃗h(t)+ x⃗p(t) be a general solution of x⃗ ′ = A(t)x⃗ + F⃗ (t). Then x⃗ ′
h = A(t)x⃗h

implies x⃗ ′
p = x⃗ ′ − x⃗ ′

h = A(t)(x⃗h + x⃗p) + F⃗(t)−A(t)x⃗h = A(t)x⃗p + F⃗ (t). Then x⃗p is a
particular solution.

Proof of Theorem 11.13: Abel’s Formula
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Let determinant Dj(t) equal W (t) with row j replaced by its derivative, 1 ≤ j ≤ n. The
derivative of determinant W (t) is the sum of these determinants:

W ′(t) = D1(t) + · · ·+Dn(t)

Determinant D1(t) = a11W (t), discovered as follows. Element d1j of D1(t) is expressed
as a summation

∑n
i=1 a1i(t)uij(t). The details: u⃗ ′

j(t) = A(t)u⃗ j(t) and u⃗ j(t) has com-
ponents u1j , . . . , unj . Determinant D1(t) has value unchanged by adding to row 1 a
linear combination of rows 2 to n. The selected combination adds −

∑n
i=2 a1i(t)uij(t) to

d1j , effectively replacing d1j by a11u1j . Then a11(t) is a common factor in row 1 of the
modified determinant D1(t). Factor out a11(t) from row 1, leaving determinant W (t).
Then D1(t) = a11(t)W (t).

Proceeding similarly: Dj(t) = ajj(t)W (t) for 2 ≤ j ≤ n. Then:

W ′(t) = D1(t) + · · ·+Dn(t)
= (a11(t) + · · ·+ ann(t))W (t)
= trace(A(t))W (t)

The claimed expression for W (t) is the solution of the first order linear differential
equation W ′ = trace(A(t))W , by the linear integrating factor method.

If W (t0) = 0, then the formula implies W (t) = 0 for all t. Conversely, if W (t0) ̸= 0
for some t0, then the formula implies W (t) is never zero, because exponentials are never
zero.

Proof of Theorem 11.14: Abel’s Wronskian Test Linear combination
∑n

i=1 ciu⃗ i(t)

is the zero function if and only if the matrix equation U(t)⃗c = 0⃗ has only the zero
solution c⃗ = 0⃗ , where U(t) is the augmented matrix of u⃗1(t), . . . , u⃗n((t) and vector
c⃗ has components c1, . . . , cn. The matrix equation has only the zero solution c⃗ = 0⃗
if and only if det(U(t)) ̸= 0. The Abel-Liouville formula completes the proof, because
det(U(t)) = W (t), the Wronskian of the n solutions.

Exercises 11.3 �

Linear Systems
Convert to matrix notation u⃗ ′ = Au⃗ +
F⃗(t).

1. x′
1 = 2x1 + x2 + et,

x′
2 + x1 − 2x2 = sinh(t)

2. x′
1 = x1 + x2 + x3,

x′
2 + x1 − 2x2 + x3 = ln |1 + t2|,

x′
3 = x2 + x3 + cosh(t)

Existence-Uniqueness

3. Apply Gronwall’s inequality to
|y(t)| ≤ 4 +

∫ t

0
(1 + r2)|y(r| dr, t ≥ 0.

4. Solve with x1(0) = x2(0) = 0:
x′
1 = etx+ e−tx2,

x′
2 = ln |1 + sinh2(t)|x1 + x2

5. Find the interval on which the solution
is defined:
x′
1 = tx1 + x2, x

′
2 = x1 + tan(t)x2

6. Let matrix A be 2 × 2 constant. Find
A, given x⃗ ′ = Ax⃗ has general solution
x1 = c1e

t + c2e
2t, x2 = 5c12e

t + 4c2e
2t.

7. Let x⃗ ′ = A(t)x⃗ have two solutions :(
1
2

)
,

(
et

et

)
. Solve x⃗ ′ = A(t)x⃗ .

8. Let A =

(
0 0
0 0

)
. Solve x⃗ ′ = Ax⃗ .

9. Let constant matrix A be 10× 10. Two
solutions of x⃗ ′ = Ax⃗ have equal value
at t = 100. Are they the same solution?
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10. Solutions y1, y2 of y
′+p(x)y = q(x) are

zero at x = −2. What assumptions on
p, q imply y1 ≡ y2?

Superposition

11. Explain: et is a solution of y′′ − y = 0
because cosh(t), sinh(t) are a solution
basis.

12. Explain: et+10 is a solution of y′′−y =
−10, therefore 10 is a particular solu-
tion.

13. The shortest solution of y′+y = 100 is
y = 100. Explain why.

14. Let x′
1 = 2x1, x

′
2 = −x2. Report the

matrix form x⃗ ′ = Ax⃗ and the vector
general solution.

15. Let 2-dimensional x⃗ ′ = Ax⃗ + F⃗(t)
have general solution x1 = c1e

t + c2e
3t,

x2 = (c1 + c2)e
t + 2c2e

3t + cos(t). Find
formulas for vectors x⃗h and x⃗p.

16. Let x⃗ ′ = Ax⃗ + F⃗ (t) have two solu-
tions x1 = et + e3t, x2 = 2et + sin(t)
and x1 = e3t, x2 = e3t + sin(t). Find a
solution of x⃗ ′ = Ax⃗ .

Superposition x⃗ ′ = Ax⃗ + F⃗ (t)

17. Let u⃗1(t), . . . , u⃗k(t) be solutions of
x⃗ ′ = A(t)x⃗ . Let c1, . . . , ck be con-

stants. Prove: u⃗ (t) =
∑k

i=1 ciu⃗ i(t) is
a solution of x⃗ ′ = A(t)x⃗ .

18. Find the standard basis
w⃗ 1(t), w⃗ 2(t):

x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗

19. Let matrix A be 2 × 2. For x⃗ ′ =
Ax⃗ + F⃗(t), find x⃗h(t), x⃗p(t):
x1 = c1 + c2t+ et, x2 = (c1 − c2)t+ e2t

20. Let matrix A(t) be 2 × 2. Let

x⃗ ′ = A(t)x⃗ + F⃗(t) have two solutions(
1 + et

1

)
,

(
1 + e−t

−1

)
. Find a solution

of x⃗ ′ = A(t)x⃗ .

General Solution

21. Assume A is 2 × 2 and x⃗ ′ = Ax⃗ has

solutions et
(
1
1

)
, e−t

(
1
−1

)
. Find the

general solution and explain.

22. Assume x⃗ ′ = Ax⃗ +

(
1
1

)
. Prove that

zero is not a solution.

23. Assume x⃗ ′ = Ax⃗ +

(
1
1

)
and x⃗ (t) =

x⃗0 = constant. Find an equation for
x⃗0.

24. Find the vector general solution:

x⃗ ′ =

(
1 0
0 2

)
x⃗ +

(
1
1

)
.

25. Given 3 x⃗ ′ = A(t)x⃗ with scalar gen-
eral solution x1 = c1 + c2t+ c3t

2, x2 =
c2+c3t, x3 = c3, find the vector general
solution.

26. Given 3 x⃗ ′ = A(t)x⃗ with scalar gen-
eral solution x1 = c1 + c2t+ c3t

2, x2 =
c2 + c3t, x3 = c3, find A(t).

27. Find the vector general solution:

x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗ +

(
1
1
0

)
.

28. Find the vector general solution:

x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗ +

(
0
1
0

)
.

Independence

29. Assume A is 2×2 and x⃗ ′ = Ax⃗ has so-

lutions et
(
1
1

)
, e−t

(
1
−1

)
. Prove they

are independent directly from the defi-
nition.

30. Compute the Wronskian:

et
(
1
1

)
, e−t

(
1
−1

)
.

Abel-Liouville Formula

31. Apply Abel’s Independence Test:

et
(
1
1

)
, e−t

(
1
−1

)
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32. Let Φ(t) an invertible matrix satisfy-
ing Φ′(t) = AΦ(t). Prove that the
columns of Φ(t) are independent solu-
tions of x⃗ ′ = Ax⃗ .

33. Let Φ(t) an invertible matrix satisfy-
ing Φ′(t) = AΦ(t). Prove that the
columns of Φ(t) are independent solu-
tions of x⃗ ′ = Ax⃗ .

34. Let Φ(t) any matrix satisfying Φ′(t) =
AΦ(t). Assume the determinant of
Φ(t0) is nonzero. Prove that the
columns of Φ(t) are independent solu-
tions of x⃗ ′ = Ax⃗ .

35. Let Φ(t) any matrix satisfying Φ′(t) =
AΦ(t). Let C be a constant matrix.
Prove that the columns of Φ(t)C are so-
lutions of x⃗ ′ = Ax⃗ .

36. Assume continuous coefficients:
y(n)+pn−1y

(n−1)+ · · ·+p0y=0
Prove from the Abel-Liouville formula
for the companion system
that the Wronskian W (t) of
solutions y1, . . . , yn satisfies
W ′ + pn−1(t)W = 0.

Initial Value Problem

37. Let matrix A be 3 × 3. Assume x⃗ ′ =
A(t)x⃗ + F⃗(t) has scalar general solu-
tion x1 = c1e

t + c2e
−t + t, x2 =

(c1 + c2)e
t + c3e

2t, x3 = (c1 + c2)e
t −

2c2e
−t + c3e

2t + t. Given initial con-
ditions x1(0) = x2(0) = 0, x3(0) = 1,
solve for c1, c2, c3.

38. Let matrix A be 3 × 3. Assume x⃗ ′ =
A(t)x⃗ + F⃗(t) has scalar general solu-
tion x1 = c1 + c2t + c3t

2 + et, x2 =
c2+ c3t+ e2t, x3 = c3. Find the vector
particular solution x⃗ for initial condi-
tions x1(0) = x2(0) = 0, x3(0) = 1.

Equilibria

39. Find all equilibria:

x⃗ ′ =

(
cos(t) cos(t)
2 2

)
x⃗

40. Find all equilibria:

x⃗ ′ =

(
sin(t) sin2(t)
2 2

)
x⃗
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11.4 Matrix Exponential

11.4 Matrix Exponential

The problem
d

dt
x⃗ (t) = Ax⃗ (t), x⃗ (0) = x⃗ 0

has a unique solution, according to the Picard-Lindelöf theorem. Solve the prob-
lem n times, when x⃗ 0 equals a column of the identity matrix, and write w⃗ 1(t),
. . . , w⃗n(t) for the n solutions so obtained. The solutions form the standard
basis. Define the matrix exponential eAt by packaging these n solutions into
the columns of a matrix:

eAt ≡ ⟨w⃗ 1(t)| . . . |w⃗n(t)⟩.
By construction, any possible solution of d

dt x⃗ = Ax⃗ can be uniquely expressed

in terms of the matrix exponential eAt by the formula

x⃗ (t) = eAtx⃗(0).

Matrix Exponential Identities

Announced here are formulas and identities for eAt, the matrix exponential.
Most details are delayed to page 869.

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A− λ1I) A is 2×2, λ1 ̸= λ2 real, The-

orem page 866.

eAt = eλ1tI + teλ1t(A− λ1I) A is 2× 2, λ1 = λ2 real.

eAt = eat cos bt I +
eat sin bt

b
(A− aI) A is 2× 2, λ1 = λ2 = a+ ib,

b > 0.

eAt = r1(t)P1 + · · ·+ rn(t)Pn Putzer’s n × n spectral for-
mula, Theorem page 868.

d

dt

(
eAt

)
= AeAt Columns of eAt satisfy x⃗ ′ =

Ax⃗ . Page 869.

e0 = I Where 0 is the zero matrix.

BeAt = eAtB If AB = BA.

eAteBt = e(A+B)t If AB = BA.

eAteAs = eA(t+ s) Since At and As commute.(
eAt

)−1
= e−At Equivalently, eAte−At = I.

eAt = P−1eJtP Jordan form J = PAP−1

eAt =

∞∑
n=0

An t
n

n!
Picard series identity, proof
on page 870
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11.4 Matrix Exponential

Putzer’s Spectral Formula

The spectral formula of Putzer applies to a system x⃗ ′ = Ax⃗ to find its general
solution. The method uses matrices P1, . . . , Pn constructed from A, the eigenval-
ues λ1, . . . , λn of A, matrix multiplication and the solution r⃗(t) of the first order
n× n initial value problem

r⃗ ′(t) =


λ1 0 0 · · · 0 0
1 λ2 0 · · · 0 0
0 1 λ3 · · · 0 0

...
0 0 0 · · · 1 λn

 r⃗ (t), r⃗ (0) =


1
0
...
0

 .

The system is solved by first order scalar methods and back-substitution. The
formula will be derived separately for the 2 × 2 case (the one used most often)
and the n× n case.

Theorem 11.15 (Putzer’s 2× 2 Spectral Formula)
Let A be a 2 × 2 matrix. Let r = λ1, λ2 be the two real or complex roots of the
characteristic equation det(A− rI) = 0. Let P1 = I, P2 = A− λ1I. Let functions
r1(t), r2(t) be defined by the scalar system{

r′1 = λ1r1, r1(0) = 1,
r′2 = λ2r2 + r1, r2(0) = 0.

Then the 2× 2 system x⃗ ′ = Ax⃗ , x⃗(0) = x⃗ 0 has solution

x⃗ (t) = (r1(t)P1 + r2(t)P2) x⃗ 0

Proof: The Cayley-Hamilton formula (A − λ1I)(A − λ2I) = 0⃗ is valid for any 2 × 2
matrix A, if r = λ1, λ2 are the two roots of the determinant equation det(A − rI) = 0.
See page ??. The Cayley-Hamilton formula is the same as (A − λ2I)P2 = 0⃗ , which
implies the identity AP2 = λ2P2. Compute as follows.

x⃗ ′(t) = (r′1(t)P1 + r′2(t)P2) x⃗0

= (λ1r1(t)P1 + r1(t)P2 + λ2r2(t)P2) x⃗0

= (r1(t)A+ λ2r2(t)P2) x⃗0

= (r1(t)A+ r2(t)AP2) x⃗0

= A (r1(t)I + r2(t)P2) x⃗0

= Ax⃗ (t).

This proves that x⃗ (t) is a solution. Because Φ(t) ≡ r1(t)P1 + r2(t)P2 satisfies Φ(0) = I,
then x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗0 is satisfied. ■
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11.4 Matrix Exponential

Real Distinct Eigenvalues

Suppose A is 2× 2 having real distinct eigenvalues λ1, λ2 and x⃗ (0) is real. Then

r1 = eλ1t, r2 =
eλ1t − eλ2T

λ1 − λ2

and

x⃗ (t) =

(
eλ1tI +

eλ1t − eλ2t

λ1 − λ2
(A− λ1I)

)
x⃗(0).

The matrix exponential formula for real distinct eigenvalues:

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A− λ1I).

Real Equal Eigenvalues

Suppose A is 2× 2 having real equal eigenvalues λ1 = λ2 and x⃗ (0) is real. Then
r1 = eλ1t, r2 = teλ1t and

x⃗ (t) =
(
eλ1tI + teλ1t(A− λ1I)

)
x⃗ (0).

The matrix exponential formula for real equal eigenvalues:

eAt = eλ1tI + teλ1t(A− λ1I).

Complex Eigenvalues

Suppose A is 2 × 2 having complex eigenvalues λ1 = a + bi with b > 0 and
λ2 = a − bi. If x⃗ (0) is real, then a real solution is obtained by taking the real
part of the spectral formula. This formula is formally identical to the case of real
distinct eigenvalues. Then

Re(x⃗ (t)) = (Re(r1(t))I +Re(r2(t)(A− λ1I))) x⃗ (0)

=

(
Re(e(a+ib)t)I +Re(eat sin bt

b
(A− (a+ ib)I))

)
x⃗ (0)

=

(
eat cos bt I + eat

sin bt

b
(A− aI)

)
x⃗ (0)

The matrix exponential formula for complex conjugate eigenvalues:

eAt = eat
(
cos bt I +

sin bt

b
(A− aI)

)
.

867



11.4 Matrix Exponential

How to Remember Putzer’s 2× 2 Formula

The expressions

eAt = r1(t)I + r2(t)(A− λ1I),

r1(t) = eλ1t, r2(t) =
eλ1t − eλ2t

λ1 − λ2

(1)

are enough to generate all three formulas. Fraction r2 is the d/dλ-Newton quo-
tient for r1. It has limit teλ1t as λ2 → λ1, therefore the formula includes the
case λ1 = λ2 by limiting. If λ1 = λ2 = a+ ib with b > 0, then the fraction r2 is
already real, because it has for z = eλ1t and w = λ1 the form

r2(t) =
z − z

w − w
=

sin bt

b
.

Taking real parts of expression (1) gives the complex case formula.

Theorem 11.16 (Putzer’s n× n Spectral Formula)
Let A be an n×n matrix. Let λ1, . . . , λn be the eigenvalues of A, the real or complex
roots r of det(A− rI) = 0. Let

P1 = I, Pk = Pk−1(A− λk−1I) = Πk−1
j=1(A− λjI), k = 2, . . . , n.

Let functions r1(t), . . . , rn(t) be defined by the differential system

r′1 = λ1r1, r1(0) = 1,
r′2 = λ2r2 + r1, r2(0) = 0,

...
r′n = λnrn + rn−1, rn(0) = 0.

Then system x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗ 0 has solution

x⃗ (t) = (r1(t)P1 + r2(t)P2 + · · ·+ rn(t)Pn) x⃗ 0,

Proof on page 871

Theorem 11.17 (Compute eJt for J Triangular)
If J is an upper triangular matrix, then a column u⃗(t) of eJt can be computed by
solving the system u⃗ ′(t) = J u⃗(t), u⃗ (0) = v⃗ , where v⃗ is the corresponding column of
the identity matrix. This problem can always be solved by first-order scalar methods
of growth-decay theory and the integrating factor method. Proof on page 872.

Theorem 11.18 (Exponential of a Diagonal Matrix)
For real or complex constants λ1, . . . , λn,

ediag(λ1,...,λn)t = diag
(
eλ1t, . . . , eλnt

)
.

Proof on page 872.
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11.4 Matrix Exponential

Theorem 11.19 (Block Diagonal Matrix)
If A = diag(B1, . . . , Bk) and each of B1, . . . , Bk is a square matrix, then

eAt = diag
(
eB1t, . . . , eBkt

)
.

Proof on page 872.

Theorem 11.20 (Complex Exponential)

Given real a, b, then e

(
a b
−b a

)
t

= eat
(

cos bt sin bt
− sin bt cos bt

)
.

Proof on page 872

Proofs of Matrix Exponential Identities

The 2× 2 Putzer identities have proofs in the text page 866. Proofs of theorems
are on page 871. The remaining proofs are here.

Verify
(
eAt
)′
= AeAt.

Let x⃗0 denote a column of the identity matrix. Define x⃗ (t) = eAtx⃗0. Then(
eAt
)′
x⃗0 = x⃗ ′(t)

= Ax⃗ (t)
= AeAtx⃗0.

Because this identity holds for all columns of the identity matrix, then (eAt)′ and AeAt

have identical columns. Identity
(
eAt
)′

= AeAt is proved. ■

Verify e0 = I.

e0 = ⟨w⃗ 1(0)| . . . |w⃗n(0)⟩ = I. ■

Verify BeAt = eAtB if AB = BA.

Define w⃗ 1(t) = eAtBw⃗ 0 and w⃗ 2(t) = BeAtw⃗ 0. Calculate w⃗
′
1(t) = Aw⃗ 1(t) and w⃗ ′

2(t) =
BAeAtw⃗ 0 = ABeAtw⃗ 0 = Aw⃗ 2(t), due to BA = AB. Because w⃗ 1(0) = w⃗ 2(0) = w⃗ 0,
then the uniqueness assertion of the Picard-Lindelöf theorem implies that w⃗ 1(t) = w⃗ 2(t).
Because w⃗ 0 is any vector, then eAtB = BeAt. ■

Verify eAteBt = e(A+B)t.

Let x⃗0 be a column of the identity matrix. Define x⃗ (t) = eAteBtx⃗0 and y⃗ (t) =
e(A+B)tx⃗0. We must show that x⃗ (t) = y⃗ (t) for all t. Define u⃗(t) = eBtx⃗0. We
will apply the result eAtB = BeAt, valid for BA = AB. The details:

x⃗ ′(t) =
(
eAtu⃗ (t)

)′
= AeAtu⃗(t) + eAtu⃗ ′(t)
= Ax⃗ (t) + eAtBu⃗(t)
= Ax⃗ (t) +BeAtu⃗(t)
= (A+B)x⃗ (t).
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11.4 Matrix Exponential

Also known is that y⃗ ′(t) = (A + B)y⃗ (t) and since x⃗ (0) = y⃗ (0) = x⃗0, then the Picard-
Lindelöf theorem implies that x⃗ (t) = y⃗ (t) for all t. ■

Verify eAteAs = eA(t+s).

Let t be a variable and consider s fixed. Define x⃗ (t) = eAteAsx⃗0 and y⃗ (t) = eA(t+s)x⃗0.
Then x⃗ (0) = y⃗ (0) and both satisfy the differential equation u⃗ ′(t) = Au⃗(t). By the
uniqueness in the Picard-Lindelöf theorem, x⃗ (t) = y⃗ (t), which implies eAteAs = eA(t+s).

■

Verify
(
eAt
)−1

= e−At.

Let s = −t in the preceding identity eAteAs = eA(t+s). The right side is e0 = I. The
inverse test Chapter 5 Section 2, Theorem 5.9, implies that the two matrices eAt and
e−At are inverses of one another. ■

Verify eAt = P−1eJtP if J = PAP−1.

The proof uses the Picard series identity eAt =

∞∑
n=0

An t
n

n!
, which is proved below. The

issue is the simplification of An using A = P−1JP . Induction is used to derive the
following identities, in which Q = P−1 (then QP = PQ = I):

A = P−1JP = QJP
A2 = QJP QJP = QJ2P

...
An = (QJP ) · · · (QJP ) = QJnP

Then the infinite series simplifies:

eAt =

∞∑
n=0

An t
n

n!

=

∞∑
n=0

QJnP
tn

n!

= Q

( ∞∑
n=0

Jn t
n

n!

)
P

= QeJtP

= P−1eJtP

■

Verify eAt =
∞∑
n=0

An t
n

n!
.

The idea of the proof is to apply Picard iteration. By definition, the columns of eAt are
vector solutions w⃗ 1(t), . . . , w⃗n(t) whose values at t = 0 are the corresponding columns
of the n × n identity matrix. According to the theory of Picard iterates, a particular
iterate is defined by

y⃗n+1(t) = y⃗ 0 +

∫ t

0

Ay⃗n(r)dr, n ≥ 0.
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11.4 Matrix Exponential

Vector y⃗ 0 equals some column k of the identity matrix. The Picard iterates can be found
explicitly, as follows.

y⃗ 1(t) = y⃗ 0 +
∫ t

0
Ay⃗ 0dr

= (I +At) y⃗ 0,

y⃗ 2(t) = y⃗ 0 +
∫ t

0
Ay⃗ 1(r)dr

= y⃗ 0 +
∫ t

0
A (I +At) y⃗ 0dr

=
(
I +At+A2t2/2

)
y⃗ 0,

...

y⃗n(t) =
(
I +At+A2 t2

2 + · · ·+An tn

n!

)
y⃗ 0.

The Picard-Lindelöf theorem implies

lim
n→∞

y⃗n(t) = w⃗ k(t).

This being valid for each index k, then the columns of the matrix converge as N → ∞
to w⃗ 1(t), . . . , w⃗n(t). The matrix limit is formally the infinite series

∞∑
m=0

Am tm

m!
= lim

N→∞

N∑
m=0

Am tm

m!
= ⟨w⃗ 1(t)| . . . |w⃗n(t)⟩

but also eAt ≡ ⟨w⃗ 1(t)| . . . |w⃗n(t)⟩. This proves the matrix identity

eAt =

∞∑
n=0

An t
n

n!
. ■

Proofs of Theorems 11.16–11.20

Theorem 11.16, Proof of Putzer’s n× n Formula:

The Cayley-Hamilton formula (A− λ1I) · · · (A− λnI) = 0⃗ is valid for any n× n matrix
A and the n roots r = λ1, . . . , λn of the determinant equality det(A−rI) = 0. Two facts
will be used: (1) The Cayley-Hamilton formula implies APn = λnPn; (2) The definition
of Pk implies λkPk + Pk+1 = APk for 1 ≤ k ≤ n− 1. Compute as follows.

1 x⃗ ′(t) = (r′1(t)P1 + · · ·+ r′n(t)Pn) x⃗ (0)

2 =

(
n∑

k=1

λkrk(t)Pk +

n∑
k=2

rk−1Pk

)
x⃗0

3 =

(
n−1∑
k=1

λkrk(t)Pk + rn(t)λnPn +

n−1∑
k=1

rkPk+1

)
x⃗0

4 =

(
n−1∑
k=1

rk(t)(λkPk + Pk+1) + rn(t)λnPn

)
x⃗0

5 =

(
n−1∑
k=1

rk(t)APk + rn(t)APn

)
x⃗0
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11.4 Matrix Exponential

6 = A

(
n∑

k=1

rk(t)Pk

)
x⃗0

7 = Ax⃗ (t).

Details: 1 Differentiate the formula for x⃗ (t). 2 Use the differential equations for

r1,. . . ,rn. 3 Split off the last term from the first sum, then re-index the last sum.

4 Combine the two sums. 5 Use the recursion for Pk and the Cayley-Hamilton

formula (A − λnI)Pn = 0⃗ . 6 Factor out A on the left. 7 Apply the definition of
x⃗ (t).

Then x⃗ (t) is a solution. Because Φ(t) ≡
∑n

k=1 rk(t)Pk satisfies Φ(0) = I, then x⃗ (t)
satisfies x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗0. ■

Proof of Theorem 11.17, Compute eJt for J Triangular:

The first statement computes the solution of the problem x⃗ ′ = Ax⃗ , x⃗ (0) = column j of
I, 1 ≤ j ≤ n. These are the columns of eAt, by definition.

Each such problem is known to be solvable by linear first order integrating factor meth-
ods, using the variable list in reverse order.

An example for such a scalar system:

x′
1 = 2x1 + x3,

x′
2 = 3x2 + x3,

x′
3 = 4x3,

x1(0) = 1, x2(0) = x3(0) = 0.

The variable list reversed is x3, x2, x1. The solution starts with x′
3 = 4x3, x3(0) = 0.

The solution is x3 = 0. Then the equation for x2 becomes x′
2 = 3x2 + 0, x2(0) = 0.

Again the solution is x2 = 0. The last equation is x′
1 = 2x1 + 0, x1(0) = 1 with solution

x1 = e2t. ■

Proof of Theorem 11.18, Exponential of a Diagonal Matrix:

It suffices to prove that Φ(t) = diag
(
eλ1t, . . . , eλnt

)
satisfies Φ′(t) = AΦ(t), Φ(0) = I.

Because e0t = 1, then Φ(0) = I. The differential equation is satisfied by the following
steps:

Φ′(t) =

 λ1 e
λ1t · · · 0
...

. . .
...

0 · · · λn e
λnt



=

 λ1 · · · 0
...

. . .
...

0 · · · eλnt


 eλ1t · · · 0

...
. . .

...
0 · · · eλnt


= AΦ(t)

■

Proof of Theorem 11.19, Block Diagonal Matrix Exponential:

Let Φ(t) = diag
(
eB1t, . . . , eBkt

)
. To prove Φ(t) equals eAt, it suffices to prove identities

Φ′(t) = AΦ(t), Φ(0) = I, Already Φ(0) = I. Details for identity Φ′(t) = AΦ(t) will use
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11.4 Matrix Exponential

the formula
d

dt
eCt = C eCt. Apply block differentiation to show Φ′(t) = AΦ(t):

Φ′(t) =

 B1 e
B1t · · · 0
...

. . .
...

0 · · · Bk e
Bkt



=

 B1 · · · 0
...

. . .
...

0 · · · Bk


 eB1t · · · 0

...
. . .

...
0 · · · eBkt


= AΦ(t)

■

Proof of Theorem 11.20, Complex Exponential:

Assume A =

(
a b
−b a

)
with b > 0. Then A has eigenvalues a± bi. Putzer’s 2× 2 formula

will be used, page 867:

eAt = eat
(
cos bt I +

sin bt

b
(A− aI))

)
.

Simplify the matrix expression on the right:

eAt = eat
((

cos bt 0
0 cos bt

)
+ sin bt

b

(
0 b
−b 0

))
= eat

(
cos bt sin bt
− sin bt cos bt

)
■

Exercises 11.4 �

Matrix Exponential.

1. (Picard) Let A be real 2×2. Write out
the two initial value problems which de-
fine the columns w⃗ 1(t), w⃗ 2(t) of e

At.

2. (Picard) Let A be real 3×3. Write out
the three initial value problems which
define the columns w⃗ 1(t), w⃗ 2(t), w⃗ 3(t)
of eAt.

3. Let A be real 2 × 2. Show that x⃗ (t) =
eAtu⃗0 satisfies x⃗ ′ = Ax⃗ , x⃗ (0) = u⃗0.

4. Let A be real n× n. Show that x⃗ (t) =
eAtx⃗0 satisfies x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗0.

Matrix Exponential 2×2. Find eAt from

representation eAt = ⟨w⃗ 1|w⃗ 2⟩. Use first-
order scalar methods.

5. A =

(
1 0
0 2

)
.

6. A =

(
−1 0
0 0

)
.

7. A =

(
1 1
0 0

)
.

8. A =

(
−1 1
0 2

)
.

Matrix Exponential Identities. Verify
from exponential identities.

9. eA e−A = I

10. e−A =
(
eA
)−1

11. A =
d

dt
eAt evaluated at t = 0
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12. If A3 = 0, then eA = I +A+ 1
2A

2.

13. Let A =

(
a 0
0 a

)
and N =

(
0 1
0 0

)
. Ver-

ify N2 = 0 and
eAt+Nt = eAt(I +Nt).

14. Let A be 3 × 3 diagonal and N =(
0 1 0
0 0 1
0 0 0

)
. Prove N3 = 0 and

eAt+Nt = eAt(I +Nt+N2 t
2

2
).

15. e

(
1 1
0 2

)
t

=

(
et e2t − et

0 e2t

)

16. e

(
1 1
0 1

)
t

=

(
et tet

0 et

)
Putzer’s Spectral Formula.

17. Apply Picard-Lindelöf theory to con-
clude that r1, . . . , rn are everywhere de-
fined,

18. Prove that P1, . . . , Pk commute.

Putzer’s Formula 2× 2 .

19. Find a formula for
d

dt
eAt for a 2 × 2

matrix A with eigenvalues 1, 2.

20. Let 2×2 matrix A have duplicate eigen-
values 0, 0. Compute r1, r2 and then re-
port eAt.

Putzer: Real Distinct. Find the matrix
exponential.

21. A =

(
1 2
0 2

)
22. A =

(
1 0
2 3

)
Putzer: Real Equal. Find the matrix ex-
ponential.

23. A =

(
1 0
0 1

)
24. A =

(
1 2
0 1

)

Putzer: Complex Eigenvalues. Find the
matrix exponential.

25. A =

(
1 1
−1 1

)
26. A =

(
0 2
−2 0

)
How to Remember Putzer’s 2× 2 For-
mula.

27. Find limλ→λ1

eλt − eλ1t

λ− λ1
.

28. Let matrix A be 2 × 2 real. Take the

real part: eAt = I +
eit − e−it

2i
A.

Classical n×n Spectral Formula. Find
eAt.

29. A =

(
0 2 0
−2 0 0
0 0 1

)

30. A =

0 0 2 0
0 −2 0 0
0 0 0 1
1 0 0 0


Proofs of Matrix Exponential
Properties.

31. Let Au⃗ = Bu⃗ for all vectors u⃗ . Prove
A = B.

32. Let A =

(
1 2
0 2

)
. Compute the first four

Picard iterates for x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗0.

Special Cases eAt.

33. Show the details to solve
x′
1 = 2x1 + x3,

x′
2 = 3x2 + x3,

x′
3 = 4x3,

x1(0) = 1, x2(0) = x3(0) = 0.

34. Let A = diag(1, 2, 3, 4). Find eAt.

35. Let B =

(
1 1
0 0

)
, A = diag(B,B). Find

eAt.

36. Let B =

(
1 2
−2 1

)
and

A = diag(B,B). Find eAt.
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11.5 Ziebur, Spectral and Eigenanalysis Methods

11.5 Cayley-Hamilton-Ziebur, Spectral and

Eigenanalysis Methods

Established earlier in this chapter:

x⃗ (t) = eAtx⃗ 0 solves x⃗ ′(t) = Ax⃗ (t), x⃗ (0)− x⃗ 0

Matrix eAt is the augmented matrix of solutions w⃗ i(t) to x⃗ ′ = Ax⃗ with w⃗ i(0) =
column i of the identity matrix, 1 ≤ i ≤ n.

Presented in this section are three premier methods for finding eAt:

Eigenanalysis Method
Spectral Method
Cayley-Hamilton-Ziebur (CHZ) Method

Eigenanalysis Method Requirements. The n× n real matrix A is required
to have n independent eigenvectors in its list of eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2),
. . . , (λn, v⃗n). Briefly, matrix A is diagonalizable. It is not required that the
eigenvalues λ1, . . . , λn be distinct and eigenvalues can be real or complex. The
method uses independence of the Euler substitution solutions eλitv⃗ i, 1 ≤ i ≤
n, which are assembled into augmented matrix Φ(t). The general solution is
x⃗ (t) = eAt x⃗(0), using identity eAt = Φ(t) Φ(0)−1. A negative of the method
occurs with complex eigenvalues: real solutions are found with extra effort via
opaque identities. The method works best on diagonalizable matrices with only
real eigenvalues, e.g., symmetric matrices.

Spectral Method Requirements. The method applies to any real n × n
matrix A. Classical spectral theory of A provides a formula for eAt similar to
Putzer’s formula, thereby finding the solution x⃗ = eAt x⃗ (0) of x⃗ ′ = Ax⃗ . Em-
phasis is on theory. Computational details are left to computer algebra systems,
which efficiently implement the formulas. Hand computation is possible for low
dimensions n = 2, 3 with time impact similar to Putzer’s algorithm for eAt.

Cayley-Hamilton-Ziebur Method Requirements. The method applies to
any real n × n matrix A. It provides a basis of n real vector solutions to the
system x⃗ ′ = Ax⃗ , which are found from characteristic equation |A − λI| = 0
and Euler solution atom theory developed for scalar differential equations. The
connection to eAt is direct and simple: eAt = Φ(t) Φ(0)−1 where Φ(t) is the
n × n augmented matrix of the vector solutions. Hand computation is possible
for low dimensional examples (n = 2, 3) with the lowest time impact of the three
methods. A feature of the Cayley-Hamilton-Ziebur method is minimization of
encounters with complex numbers. One important consequence of the method:

Solutions of x⃗ ′ = Ax⃗ are vector linear combinations of Euler solu-
tion atoms.
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Eigenanalysis Method: 2× 2 Matrix

Theorem 11.21 (Eigenanalysis Method 2× 2)
Let matrix A be 2× 2 real with eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2). Assume eigenvectors
v⃗ 1, v⃗ 2 are independent.

Then the general solution of x⃗ ′ = Ax⃗ can be written as

x⃗ (t) = c1e
λ1tv⃗ 1 + c2e

λ2tv⃗ 2.

Proof:

Eigenvalues λ1, λ2 are either both real or a complex conjugate pair λ1 = λ2 = a + ib
with b > 0. Derivatives and calculations below apply in both cases.

x⃗ ′ = c1(e
λ1t)′v⃗ 1 + c2(e

λ2t)′v⃗ 2 Differentiate the formula for x⃗ .

= c1e
λ1tλ1v⃗ 1 + c2e

λ2tλ2v⃗ 2

= c1e
λ1tAv⃗ 1 + c2e

λ2tAv⃗ 2 Use λ1v⃗ 1 = Av⃗ 1, λ2v⃗ 2 = Av⃗ 2.

= A
(
c1e

λ1tv⃗ 1 + c2e
λ2tv⃗ 2

)
Factor A left.

= Ax⃗ Definition of x⃗ .

Re-write the solution x⃗ in the vector-matrix form

x⃗ (t) = ⟨v⃗ 1|v⃗ 2⟩
(

eλ1t 0
0 eλ2t

)(
c1
c2

)
.(1)

Because eigenvectors v⃗ 1, v⃗ 2 are assumed independent, then ⟨v⃗ 1|v⃗ 2⟩ is invertible and
setting t = 0 in (1) gives (

c1
c2

)
= ⟨v⃗ 1|v⃗ 2⟩−1

x⃗ (0).(2)

Because c1, c2 can be chosen to produce any initial condition x⃗ (0), then x⃗ (t) is the
general solution of the system x⃗ ′ = Ax⃗ .

Proposition 11.2 (Exponential Matrix: 2× 2) Let matrix A be 2 × 2 real with
eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2). Assume eigenvectors v⃗ 1, v⃗ 2 are independent.

Then:

eAt = ⟨v⃗ 1|v⃗ 2⟩
(

eλ1t 0
0 eλ2t

)
⟨v⃗ 1|v⃗ 2⟩−1

(3)

Proof: Combine (1) and (2). ■

Formula (3) is immediately useful when the eigenpairs are real. It is problematic
when the eigenvalues are complex. The complex arithmetic inherited by complex
eigenpairs can be minimized by applying results collected into a Proposition.

Proposition 11.3 (Exponential Matrix: Complex λ2 = λ1)
Assume matrix A is 2 × 2 real with eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2). Let eigenvectors
v⃗ 1, v⃗ 2 be independent.
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Assume λ2 = λ1 and λ1 is not real. Define for eigenpair (λ1, v⃗ 1) symbols a, b, P :

λ1 = a+ ib, b > 0, P = ⟨Re(v⃗ 1)| Im(v⃗ 1)⟩
Then

eAt = eatP

(
cos bt sin bt
− sin bt cos bt

)
P−1(4)

Proof on page 886.

Eigenanalysis Method: 3× 3 Matrix

Theorem 11.22 (Eigenanalysis Method: 3× 3)
Let matrix A be 3× 3 real with eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2), (λ3, v⃗ 3). Assume v⃗ 1,
v⃗ 2, v⃗ 3 are independent.

Then the general solution of x⃗ ′ = Ax⃗ is:

x⃗ (t) = c1e
λ1tv⃗ 1 + c2e

λ2tv⃗ 2 + c3e
λ3tv⃗ 3.

Proof on page 887.

Proposition 11.4 (Exponential Matrix: 3× 3 Complex Form)
Let matrix A be 3× 3 real with eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2), (λ3, v⃗ 3). Let v⃗ 1, v⃗ 2,
v⃗ 3 be independent. Then:

eAt = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩
 eλ1t 0 0

0 eλ2t 0
0 0 eλ3t

⟨v⃗ 1|v⃗ 2|v⃗ 3⟩−1
.

The formula applies when the eigenpairs are real and also when the eigenpairs are
complex. Proof on page 887.

Proposition 11.5 (Exponential Matrix: 3× 3 Real Form)
Let matrix A be 3 × 3 real with eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2), (λ3, v⃗ 3). Let v⃗ 1,
v⃗ 2, v⃗ 3 be independent. Assume one eigenvalue λ3 is real and the other eigenvalues
are a complex conjugate pair λ1 = λ2 = a + ib, b > 0. Define matrix P =
⟨Re(v⃗ 1)| Im(v⃗ 1)|v⃗ 3⟩. Then P is invertible and the exponential matrix is:

eAt = P

 eat cos bt eat sin bt 0
−eat sin bt eat cos bt 0

0 0 eλ3t

P−1(5)

Proof on page 887.
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Eigenanalysis Method: n× n Matrix

The general solution formula and the formula for eAt generalize routinely from
the 2× 2 and 3× 3 cases to the general case of an n× n matrix. Proofs are left
as an exercise, guided by the 3× 3 case.

Theorem 11.23 (The Eigenanalysis Method)
Let the n× n real matrix A have eigenpairs

(λ1, v⃗ 1), (λ2, v⃗ 2), . . . , (λn, v⃗n)

with n independent eigenvectors v⃗ 1, . . . , v⃗n. Then the general solution of the linear
system x⃗ ′ = Ax⃗ is given by

x⃗ (t) = c1v⃗ 1e
λ1t + c2v⃗ 2e

λ2t + · · ·+ cnv⃗ne
λnt.(6)

Proposition 11.6 (General Solution: n× n Complex Matrix Form)
General solution (6) can be expressed as a matrix product:

x⃗(t) = ⟨ v⃗ 1| · · · |v⃗n ⟩diag(eλ1t, . . . , eλnt)

 c1
...
cn

 .

Definition 11.3 (Real Diagonal Form)
Assume n× n matrix A is diagonalizable. List all complex eigenvalues of A in pairs

λ1, λ1, . . . , λp, λp. Then list the real eigenvalues r1, . . . , rq, 2p + q = n. List the
eigenpairs as (λi, v⃗ i), (λi, v⃗ i), 1 ≤ i ≤ p and (rj , v⃗ 2p+j), 1 ≤ j ≤ q. Define

P = ⟨ Re(v⃗ 1)| Im(v⃗ 1)| · · · |Re(v⃗ 2p−1)| Im(v⃗ 2p−1)|v⃗ 2p+1| · · · |v⃗n ⟩
Jλ =

(
a b
−b a

)
, λ = a+ ib, b > 0

The real diagonal form:

A = P diag
(
Jλ1 , · · · , Jλp , r1, · · · , rq

)
P−1

Proposition 11.7 (Exponential Matrix: n× n Real Matrix Form)
Define

Rλ(t) = eat
(

cos bt sin bt
− sin bt cos bt

)
, λ+ a+ ib, b > 0.

Let A = P diag
(
Jλ1 , · · · , Jλp , r1, · · · , rq

)
P−1 be the real diagonal form of diag-

onalizable matrix A.

Then:
eAt = P diag(Rλ1(t), . . . , Rλp(t), e

r1t, . . . , erqt)P−1.
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Remark on Euler Solution Atoms. If the characteristic equation is (λ−1)3 =
0 and there are three independent eigenvectors, then the general solution x⃗ (t) =
c1e

λ1tv⃗ 1+c2e
λ2tv⃗ 2+c3e

λ3tv⃗ 3 contains no terms with tet nor t2et. Intuition from
(λ − 1)3 = 0 suggests that solution components should be linear combinations
of et, tet, t2et. How is that possible? The answer is contained in the linear
combination 2et + 0tet + 0t2et: it is indeed a linear combination of Euler atoms
et, tet, t2et.

Classical Spectral Theory Method

The simplicity of Putzer’s spectral method for computing eAt is appreciated, but
we also recognize that the literature has an algorithm to compute eAt, devoid
of differential equations, which is of fundamental importance in linear algebra.
The parallel algorithm computes eAt directly from the eigenvalues λj of A and
certain products of the nilpotent matrices A− λjI. Called spectral formulas,
they can be implemented in a numerical laboratory or computer algebra system,
in order to efficiently compute eAt, even in the case of multiple eigenvalues.

Theorem 11.24 (Spectral Formula for eAt: Simple Eigenvalues)
Let the n × n matrix A have n simple eigenvalues λ1, . . . , λn (possibly complex)
and define constant matrices Q1, . . . , Qn by the formulas

Qj = Πi ̸=j
A− λiI

λj − λi
, j = 1, . . . , n.

Then
eAt = eλ1tQ1 + · · ·+ eλntQn.

Theorem 11.25 (Spectral Formula for eAt: Multiple Eigenvalues)
Let the n × n matrix A have k distinct eigenvalues λ1, . . . , λk of algebraic multi-
plicities m1, . . . , mk. Let p(λ) = det(A − λI) and define polynomials a1(λ), . . . ,
ak(λ) by the partial fraction identity

1

p(λ)
=

a1(λ)

(λ− λ1)m1
+ · · ·+ ak(λ)

(λ− λk)mk
.

Define constant matrices Q1, . . . , Qk by the formulas

Qj = aj(A)Πi ̸=j(A− λiI)
mi , j = 1, . . . , k.

Then

eAt =
k∑

i=1

eλitQi

mi−1∑
j=0

(A− λiI)
j t

j

j!
.(7)

Proof: Let Ni = Qi(A− λiI), 1 ≤ i ≤ k. First:
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Lemma 11.1 (Properties)
1. Q1 + · · ·+Qk = I,
2. QiQj = 0 for i ̸= j,
3. QiQi = Qi,
4. NiNj = 0 for i ̸= j,
5. Nmi

i = 0,

6. A =
∑k

i=1(λiQi +Ni).

To prove exponential formula (7), use Lemma 11.1 as follows:

eAt =
∑k

i=1 Qie
At Lemma 11.1, item 1

=
∑k

i=1 Qie
λiIt+(A−λiI)t

=
∑k

i=1 Qie
λite(A−λiI)t

=
∑k

i=1 Qie
λiteQi(A−λiI)t Lemma 11.1, items 2, 3

=
∑k

i=1 Qie
λiteNit Definition of Ni

=
∑k

i=1 Qie
λit
∑m1−1

j=0 (A− λiI)
j tj

j! Lemma 11.1, item 6

Proof of Lemma 11.1:
Identity 1: Clear fractions in the partial fraction expansion of 1/p(λ):

1 =

k∑
i=1

ai(λ)
p(λ)

(λ− λi)mi
.

Identity 2: Observe that Qi and Qj together contain all the factors of p(A), therefore
QiQj = q(A)p(A) for some polynomial q. The Cayley-Hamilton theorem p(A) = 0
finishes the details.

Identity 3: Multiply identity 1 by Qi and then use 2.

Identity 4: Write NiNj = (A− λiI)(A− λjI)QiQj and apply 3.

Identity 5: Identity 2 implies Qmi
i = Qi, then Nmi

i = (A− λiI)
miQi = p(A) = 0.

Identity 6: Multiply identity 1 by A and rearrange:

A =
∑k

i=1 AQi

=
∑k

i=1 λiQi + (A− λiI)Qi

=
∑k

i=1 λiQi +Ni

■

Cayley-Hamilton-Ziebur for x⃗′(t) = Ax⃗(t)

Given n × n matrix A, determinant |A − rI| is formed by subtracting r from
the diagonal of A. The characteristic polynomial is p(r) = |A − rI| and
|A− rI| = 0 is the characteristic equation.

The famous result of Cayley and Hamilton is restated in Theorem 11.26. An
elementary proof appears in linear algebra Chapter 5, Theorem 5.20, page ??.
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Theorem 11.26 (Cayley-Hamilton)
Every square matrix A satisfies its own characteristic equation.

Let |A− rI| = (−r)n + an−1(−r)n−1 + · · ·+ a0 be the characteristic polynomial of
n× n matrix A. Let I and 0 denote the n× n identity and zero matrix. Then:

(−A)n + an−1(−A)n−1 + · · ·+ a1(−A) + a0I = 0

Theorem 11.27 (Cayley-Hamilton-Ziebur Theorem: Scalar Form)
Let A be an n × n real matrix. Each of the components x1(t), . . . , xn(t) of a real
vector solution x⃗ (t) of system x⃗ ′(t) = Ax⃗ (t) is a solution of an nth order scalar linear
homogeneous constant-coefficient differential equation with characteristic equation
|A − rI| = 0. The result remains true for complex solutions x⃗ (t) and complex A.
Proof on page 888.

Theorem 11.28 (Cayley-Hamilton-Ziebur Theorem: Vector Form)
Let A be an n × n real matrix. Let A1(t), . . . , An(t) be Euler solution atoms con-
structed from the roots of |A − rI| = 0. The solution of system x⃗ ′ = Ax⃗ is a
vector linear combination of A1(t), . . . , An(t):

x⃗ (t) = d⃗ 1A1(t) + · · ·+ d⃗nAn(t).

Constant vectors d⃗ 1, . . . , d⃗n are determined by A and x⃗ (0) (see identity (8) infra).
The result holds for complex A provided d⃗ 1, . . . , d⃗n are complex. Euler atoms may
be replaced by complex exponentials times powers of t. Proof on page 888.

Theorem 11.29 (Cayley-Hamilton-Ziebur Identity: Real)
Let W (t) be the Wronskian matrix of Euler solution atoms {Aj}nj=1 constructed

from the roots of |A − rI| = 0. Let V = W (0)T . Constant vectors d⃗ 1, . . . , d⃗n in
Cayley-Hamilton-Ziebur Theorem 11.28 are determined by:

⟨d⃗ 1| · · · |d⃗n⟩ = ⟨x⃗ (0)|Ax⃗ (0)| · · · |An−1x⃗ (0)⟩V −1.(8)

Proof on page 888.

Theorem 11.30 (Cayley-Hamilton-Ziebur Identity: Complex)
Identity (8) remains valid if set {Aj}nj=1 is replaced by complex independent lin-

ear combinations {Bj}nj=1 of {Aj}nj=1 with {d⃗ j}nj=1 possibly complex and W (t) is
replaced by the Wronskian matrix of {Bj}nj=1. Proof on page 888.

Theorem 11.31 (Vandermonde Matrix and Identity (8))
Assume the results of Theorems 11.29 and 11.30. If roots λ = λ1, . . . , λn of |A −
λI| = 0 are distinct, then matrix V = W (0)T is the Vandermonde matrix of the
roots:

V =


1 λ1 · · · λn−1

1

1 λ2 · · · λn−1
2

...
... · · ·

...
1 λn · · · λn−1

n

 .(9)
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Proof on page 889.

Theorem 11.32 (Eigenvectors and Identity (8))
Assume the results of Theorems 11.29, 11.30. If |A − λI| = 0 has distinct roots

λ1, . . . , λn, then vector d⃗ j is a scalar multiple of eigenvector v⃗ j for eigenvalue λj ,

1 ≤ j ≤ n (Warning: d⃗ j = 0⃗ is possible). Proof on page 889.

Theorem 11.33 (Eigenvectors by Matrix Multiply)
Let A have distinct eigenvalues {λj}nj=1 and define for any n-vector U⃗

V =


1 λ1 · · · λn−1

1
1 λ2 · · · λn−1

2...
... · · ·

...
1 λn · · · λn−1

n

 , P = ⟨U⃗ |AU⃗ | · · · |An−1U⃗⟩V −1.

Then column j of P is either zero or else an eigenvector of A for λj .

Notation: ⟨y⃗ 1| · · · |y⃗n⟩ = augmented matrix of y⃗ 1,. . . ,y⃗n. To determine all eigen-

vectors experimentally, start with all U⃗ -components one, then change some ones in U⃗
to zero or minus one and repeat.

Proof on page 889.

Example 11.7 (Eigenvectors by Matrix Multiply)
Compute by Theorem 11.33 all eigenvectors of matrix A=

(
1 2
−2 1

)
.

Details for Example 11.7:

The matrix of eigenvectors is P = 1
2

(
1− i 1 + i
1 + i 1− i

)
. Solve |A − λI| = 0 for com-

plex eigenvalues λ1, λ2 = 1 ± 2i, then define V =

(
1 λ1
1 λ2

)
, U =

(
1
1

)
. Compute

B = ⟨U |AU⟩ =

(
1 3
−1 1

)
and V −1 = 1

|V | adj(V ) = 1
−4i

(
λ2 −λ1
−1 1

)
. Multiply to find

P = BV −1 = 1
2

(
1− i 1 + i
1 + i 1− i

)
. Maple code to check the computation:

with(LinearAlgebra):A:=<1,2|-2,1>^+;EV:=Eigenvalues(A);

U:=<1,1>;V:=VandermondeMatrix(EV);P:=<U|A.U>.(1/V);

J:=DiagonalMatrix(EV);A.P-P.J; # Check eigenvectors

Inverse of a Vandermonde Matrix

Notation: Symmetric function ek(r1, . . . , rN ) =
∑

1≤i1<···<ik≤N

ri1 · · · rik

Vieta’s formulas7 supply coefficients ak = (−1)N−kek(r1, . . . , rN ) of degree N
polynomial

∑N−1
k=0 aky

k + yN =
∏N

p=1(y − rp) with roots r1, . . . , rN .

7See https://en.wikipedia.org/wiki/Vieta%27s formulas.
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Theorem 11.34 (Vandermode Inverse)

Let A =

1 · · · xn−1
1...

. . .
...

1 · · · xn−1
n

 with x1, . . . , xn distinct. Then A−1 = B = (bi j):

bi j =
(−1)n−jen−j({x1, . . . , xn} \ {xi})

n∏
p=1,p ̸=i

(xj − xp)

, 1 ≤ i, j ≤ n.(10)

Proof on page 890.

Vieta’s Formulas: maple

# Vieta’s formulas, monic polynomial: maple library

n:=3;q:=expand(product((y-x[i]),i=1..n));

ListTools[Reverse]([coeffs(q,y)]);

# Vieta’s formulas: basic algorithm, no library

# Monic polynomial, roots x[1] to x[n]

F:=proc(r) local A,n,i,j;

n:=nops(r);A:=[seq(0,i=1..n+2)];A[n+1]:=1;

for i from 1 to n do for j from n+1-i to n+1 do

A[j]:=A[j]+(-1)*r[i]*A[j+1]; od; od;

return simplify([seq(A[i],i=1..n+1)]); end proc:

F([seq(x[i],i=1..3)]); # Test n=3

Solving Planar Systems x⃗′(t) = Ax⃗(t)

A 2 × 2 real system x⃗ ′(t) = Ax⃗ (t) can be solved in terms of matrix A and the
two roots of the characteristic equation det(A− λI) = 0.

Two distinct methods are explored below, both with minimal use of complex
numbers.

The most-used method on paper is the Cayley-Hamilton-Ziebur Scalar Short-
cut. Implementations for embedded systems might use the formulas obtained
from the Matrix Shortcut. The only requirement on matrix A is that it not
be a diagonal matrix.

Theorem 11.35 (Cayley-Hamilton-Ziebur Scalar 2× 2 Shortcut)

Let b ̸= 0 in the scalar system

x′1 = a x1 + b x2
x′2 = c x1 + d x2

(11)

Define x1(t)=c1y1(t)+ c2y2(t). Solve for x2(t) in the first equation, then replace x1
by c1y1+ c2y2 on the right of bx2 = x′1−ax1 and simplify to find x2 = k1y1+k2y2.
Proof on page 890.
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Theorem 11.36 (Cayley-Hamilton-Ziebur Matrix 2× 2 Shortcut)

Let A =

(
a b
c d

)
with b ̸= 0. Let y1(t), y2(t) be the Euler solution atoms found from

the roots of |A − λI| = 0. Define constant matrix B by identity

(
y′1
y′2

)
= B

(
y1
y2

)
.

Then the general solution of x⃗ ′ = Ax⃗ with arbitrary constants c1, c2 is{
x1(t)=c1y1(t) + c2y2(t),

x2(t)=k1y1(t) + k2y2(t),
where

(
k1
k2

)
=

1

b
(BT − aI)

(
c1
c2

)
.

Proof on page 890.

Remark. Theorems 11.35, 11.36 solve x⃗ ′ = Ax⃗ when A is not a diagonal
matrix (meaning either b ̸= 0 or c ̸= 0). The case b = 0 and c ̸= 0 is treated
by swapping b, c and x1, x2 in both of Theorems 11.35, 11.36.

Example 11.8 ()
(Scalar and Matrix 2× 2 Shortcuts for Real Roots)
Solve the system{

x′1(t) = x1(t) + 2x2(t),
x′2(t) = 2x1(t) + x2(t),

A =

(
1 2
2 1

)
, x⃗ (t) =

(
x1(t)
x2(t)

)
,

verifying the general solution

{
x1(t)= c1e

−t+c2e
3t,

x2(t)=−c1e−t+c2e
3t.

Details Example 11.8:

The characteristic polynomial

∣∣∣∣1− r 2
2 1− r

∣∣∣∣ = (1 − r)2 − 4 = (r + 1)(r − 3) has roots

r = −1, r = 3 and Euler solution atoms e−t, e3t.

Scalar Shortcut Details. To apply Theorem 11.35, define x1 = c1e
−t + c2e

3t. Solve
the first differential equation x′

1 = x1 + 2x2 for 2x2 = x′
1 − x1 = (c1e

−t + c2e
3t)′ − x1 =

−2c1e−t + 2e3t. Then x2 = −e−t + e3t.

Matrix Shortcut Details. To apply Theorem 11.36, first compute matrix B =

(
−1 0
0 3

)
from

d

dt

(
e−t

e3t

)
=

(
−e−t

e3t

)
=

(
−1 0
0 3

)(
e−t

e3t

)
.

Theorem 11.36 implies(
k1
k2

)
=

1

b
(BT − aI)

(
c1
c2

)
=

1

2
(BT − I)

(
c1
c2

)
=

(
−1 0
0 1

)(
c1
c2

)
.

Then x2(t) = −c1y1 + c2y2 = −c1e−t + c2e
3t.

Example 11.9 ()
(Scalar and Matrix 2× 2 Shortcuts for Complex Roots)
Solve the system{

x′1(t) = x1(t) + 2x2(t),
x′2(t) = −2x1(t) + x2(t),

A =

(
1 2
−2 1

)
, x⃗(t) =

(
x1(t)
x2(t)

)
,

verifying the general solution

{
x1(t)=c1e

t cos(2t)+c2e
t sin(2t),

x2(t)=c2e
t cos(2t)−c1et sin(2t).
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Details Example 11.9: Characteristic polynomial

∣∣∣∣ 1− r 2
−2 1− r

∣∣∣∣ = (1− r)2 + 4 has

roots r = 1± 2i and Euler solution atoms et cos(2t), et sin(2t).

Scalar Shortcut Details. To apply Theorem 11.35, let x1 = c1e
t cos(2t)+ c2e

t sin(2t),
then solve the first differential equation x′

1 = x1+2x2 for 2x2 = x′
1−x1 = (c1e

t cos(2t)+
c2e

t sin(2t))′ − x1 = 2c2e
t cos(2t)− 2c1e

t sin(2t). Then x2 = c2e
t cos(2t)− c1e

t sin(2t).

Matrix Shortcut Details. To apply Theorem 11.36, first compute matrix B =(
1 −2
2 1

)
:

d
dt

(
et cos(2t)
et sin(2t)

)
=

(
et cos(2t)− 2et sin(2t)
et sin(2t) + 2et cos(2t)

)
=

(
−2 1
2 1

)(
et cos(2t)
et sin(2t)

)
Theorem 11.36 implies(

k1
k2

)
= 1

b (B
T − aI)

(
c1
c2

)
= 1

2 (B
T − I)

(
c1
c2

)
= 1

2

(
0 2
−2 0

)(
c1
c2

)
.

Then x2(t) = c2y1 − c1y2 = c2e
t cos(2t)− c1e

t sin(2t).

Theorem 11.37 (Putzer’s Spectral Formula: 2× 2)
Consider the real planar system x⃗ ′(t) = Ax⃗ (t). Let λ1, λ2 be the roots of the

characteristic equation det(A−λI) = 0. The real general solution is x⃗ (t) = eAtx⃗ (0)
where the 2× 2 exponential matrix eAt is given by

Real λ1 ̸= λ2 eAt = eλ1tI +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I).

Real λ1 = λ2 eAt = eλ1tI + teλ1t(A− λ1I).

Complex λ1 = λ2,
λ1 = a+ bi, b > 0

eAt = eat cos bt I +
eat sin(bt)

b
(A− aI).

Proof: The formulas are from Putzer’s algorithm page 868 or equivalently from the
spectral formulas with rearranged terms. The complex case is formally the real part of
the distinct root case when λ2 = λ1. The three formulas are analogous to the second
order equation formulas Chapter 6 Section 1, Theorem 6.1. ■

Example 11.10 (Classical and Putzer Spectral Formulas)

Typical cases are represented by the following 2×2 matrices A, which correspond to
roots λ1, λ2 of the characteristic equation det(A− λI) = 0 which are real distinct,
real double or complex conjugate. The solution x⃗ (t) = eAtx⃗ (0) is given here in

two forms, by writing eAt using 1 a classical spectral formula from Theorems

11.24–11.25 and 2 Putzer’s spectral formula from Theorem 11.37.

λ1 = 5, λ2 = 2

A =

(
−1 3
−6 8

) Real distinct roots.

1 eAt =
e5t

3

(
−3 3
−6 6

)
+

e2t

−3

(
−6 3
−6 3

)
2 eAt = e5tI +

e2t − e5t

2− 5

(
−6 3
−6 3

)
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λ1 = λ2 = 3

A =

(
2 1
−1 4

) Real double root.

1 eAt = e3t
(
I + t

(
−1 1
−1 1

))
2 eAt = e3tI + te3t

(
−1 1
−1 1

)
λ1 = λ2 = 2 + 3i

A =

(
2 3
−3 2

) Complex conjugate roots.

1 eAt = 2Re
(
e2t+3it

2(3i)

(
3i 3
−3 3i

))
2 eAt=e2t cos(3t)I+

e2t sin(3t)

3

(
0 3
−3 0

)
The complex eigenvalue example is typical for real n × n matrices A with a
complex conjugate pair of eigenvalues λ1 = λ2. Then Q2 = Q1 for 1 . The
result is that λ2 is not used and a simpler expression results by using the college
algebra equality z + z = 2Re(z):

eλ1tQ1 + eλ2tQ2 = 2Re
(
eλ1tQ1

)
.

This observation explains why eAt is real when A is real, by pairing complex
conjugate eigenvalues in Theorems 11.24–11.25,

Proofs and Methods

Proof of Proposition 11.3:

Eigenpair (λ2, v⃗ 2) is never computed or used, because Av⃗ 1 = λ1v⃗ 1 implies Av⃗ 1 = λ1v⃗ 1,
which implies λ2 (= λ1) has eigenvector v⃗ 2 = v⃗ 1.

If A is real, then eAt is real. Take real parts across the formula for eAt to give a real
formula. Due to the unpleasantness of the complex algebra, we will justify the answer
with minimal use of complex numbers.

The formula is established by showing that the matrix Φ(t) on the right of equation (4)
satisfies Φ(0) = I and Φ′ = AΦ. Then by definition, eAt = Φ(t). For exposition, let

R(t) = eat
(

cos bt sin bt
− sin bt cos bt

)
, Φ(t) = PR(t)P−1.

Identity Φ(0) = I is verified as follows.

Φ(0) = PR(0)P−1

= Pe0
(
1 0
0 1

)
P−1

= I

Express v⃗ 1 = Re(v⃗ 1) + i Im(v⃗ 1). Expand eigenpair relation Av⃗ 1 = λ1v⃗ 1 into real and
imaginary parts:

A (Re(v⃗ 1) + i Im(v⃗ 1)) = (a+ ib) (Re(v⃗ 1) + i Im(v⃗ 1))
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Match real and imaginary parts left and right in this equation to obtain:

AP = P

(
a b
−b a

)
Then:

Φ′(t)Φ−1(t) = PR′(t)P−1PR−1(t)P−1

= PR′(t)R−1(t)P−1

= P

(
aI +

(
0 b
−b 0

))
P−1

= P

(
a b
−b a

)
P−1

= A

Because Φ′(t) = AΦ(t), Φ(0) = I, then Φ(t) = eAt. The general solution is x⃗ (t) =
Φ(t)x⃗ (0). Then

x⃗ (t) = eat⟨Re(v⃗ 1)| Im(v⃗ 1)⟩
(

cos bt sin bt
− sin bt cos bt

)(
c1
c2

)
where values c1, c2 are related to the initial condition x⃗ (0) by identity(

c1
c2

)
= ⟨ Re(v⃗ 1)| Im(v⃗ 1)⟩−1

x⃗ (0)

Proof of Theorem 11.22:

The eigenvalues λ1, λ2, λ3 can be all real or eigenvalue λ3 is real and the other eigenvalues
are complex: λ1 = λ2 = a+ ib with b > 0.

The proposed solution x⃗ can be written in vector-matrix form:

x⃗ (t) = ⟨v⃗ 1|v⃗ 2, v⃗ 3⟩
 eλ1t 0 0

0 eλ2t 0
0 0 eλ3t

 c1
c2
c3


Because the three eigenvectors v⃗ 1, v⃗ 2, v⃗ 3 are assumed independent, then ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩
is invertible. Setting t = 0 in the previous display gives c1

c2
c2

 = ⟨v⃗ 1|v⃗ 2|v⃗ 3⟩−1
x⃗ (0).

Constants c1, c2, c3 can be chosen to produce any initial condition x⃗ (0), therefore x⃗ (t)
is the general solution of the 3× 3 system x⃗ ′ = Ax⃗ .

Proofs of Propositions 11.4 and 11.5:

The proof of Theorem 11.22 supplies the proof details for Proposition 11.4.

Proposition 11.5 is proved in two steps: (1) Show P has independent columns, hence P
is invertible; (2) The exponential matrix is given by equation (5).

(1) Let v⃗ 2 = v⃗ 1. Replace the first two column vectors in P by

Re(v⃗ 1) =
1

2
(v⃗ 1 + v⃗ 2), Im(v⃗ 1) = −

i

2
(v⃗ 1 − v⃗ 2).
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Let d1, d2, d3 be constants. Assume dependency relation P

(
d1
d2
d3

)
= 0⃗ . Then:

1

2
d1(v⃗ 1 + v⃗ 2)−

i

2
d2(v⃗ 1 − v⃗ 2) + d3v⃗ 3 = 0⃗ .

Independence of v⃗ 1, v⃗ 2, v⃗ 3 implies all linear combination weights are zero:

1

2
d1 −

i

2
d2 = 0,

1

2
d1 +

i

2
d2 = 0, d3 = 0.

Solve this system to prove d1 = d2 = d3 = 0. Conclude that the columns of P are
independent.

(2) Let B =

(
a b
−b a

)
. Define block matrix J =

(
B 0
0 λ3

)
. Diagonalization

theory for matrices implies AP = PJ . Then:

eJt =

(
eBt 0⃗
0 eλ3t

)
Theorem 11.19, page 869

eBt =

(
eat cos bt eat sin bt
−eat sin bt eat cos bt

)
Theorem 11.20, page 869

eAt = P eJt P−1 Identities page 865

eAt = P

 eat cos bt eat sin bt 0
−eat sin bt eat cos bt 0

0 0 eλ3t

P−1

Proof of Theorem 11.27. Consider first the case n = 2, which has a routine general-
ization to higher dimensions.

r2 + a1r + a0 = 0 Expanded characteristic equation

A2 + a1A+ a0I = 0 Cayley-Hamilton matrix equation, where I and 0 are the
identity and zero matrix.

A2x⃗ + a1Ax⃗ + a0x⃗ = 0⃗ Right-multiply by x⃗ = x⃗ (t)

x⃗ ′′ = Ax⃗ ′ = A2x⃗ Differentiate x⃗ ′ = Ax⃗

x⃗ ′′ + a1x⃗
′ + a0x⃗ = 0⃗ Replace A2x⃗ → x⃗ ′′, Ax⃗ → x⃗ ′

Multiply the vector relation by the rows of the identity matrix to show the components
x1(t), x2(t) of x⃗ (t) satisfy the two differential equations

x′′
1(t) + a1x

′
1(t) + a0x1(t) = 0,

x′′
2(t) + a1x

′
2(t) + a0x2(t) = 0.

This system implies that the components of x⃗ (t) are solutions of the second order dif-
ferential equation with characteristic equation |A− rI| = 0.

The proof remains valid if real solution x⃗ (t) is replaced by a complex solution, no changes
required in the above text. Because the Cayley-Hamilton theorem is valid for complex
A, the proof is complete for n = 2. Details for any n are left to the reader.

Proofs of Theorems 11.27, 11.28, 11.29 and 11.30. The scalar form Theorem
11.27 can be written

xi(t) = ci1A1 + · · ·+ cinAn, i = 1, . . . , n.
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In matrix form:

x⃗ (t) =

 c11 · · · c1,n
...

...
...

c11 · · · c1,n


 A1

...
An

 .

Then d⃗1 is the first column of matrix (cij) above, and so on, which proves

x⃗ (t) = d⃗1 A1 + · · ·+ d⃗n An(12)

Left to prove is that column vectors d⃗1, . . . , d⃗n depend only on A and initial data x⃗ (0).
We proceed as in the theory of Wronskian determinants by differentiation n− 1 times of
equation (12), then replace t by zero to obtain these formulas:

x⃗ (0) = A1(0) d⃗1 + · · · + An(0) d⃗n

x⃗ ′(0) = A′
1(0) d⃗1 + · · · + A′

n(0) d⃗n

...

x⃗ (n−1)(0) = A
(n−1)
1 (0) d⃗1 + · · · + A

(n−1)
n (0) d⃗n

(13)

The derivatives on the left in equation (13) can be cleverly rewritten as x⃗ (0), Ax⃗ (0),
. . . , An−1x⃗ (0) by successive differentiation of x⃗ ′(t) = Xx(t). For instance, x⃗ ′′(t) =
(Ax⃗ (t))′ = Ax⃗ ′(t) = AAx⃗ (t) = A2x⃗ (t), then t = 0 gives x⃗ ′′(0) = A2x⃗ (0). The result in
matrix form:

⟨x⃗ (0)| · · · |An−1x⃗ (0)⟩ = ⟨d⃗1| · · · |d⃗n⟩
A1(0) · · · A(n−1)

1 (0)
... · · ·

...
An(0) · · · A(n−1)

n (0)

(14)

The augmented matrix ⟨d⃗1| · · · |d⃗n⟩ of vectors d⃗1,. . . ,d⃗n is then obtained by matrix

inversion: ⟨d⃗1| · · · |d⃗n⟩ = ⟨x⃗ (0)| · · · |An−1x⃗ (0)⟩ (W (0)T )−1, where W (t) is the Wron-
skian matrix of the n Euler solution atoms.

Suppose Aj is replaced by Bj which are independent linear combinations of atoms
Aj with complex coefficients. Assume given a solution of x⃗ ′ = Ax⃗ , then x⃗ (t) =∑n

j=1 d⃗ j Bj(t) for some column vectors d⃗ j . Let’s differentiate this relation n− 1 times
and substitute t = 0, as before. The same analysis with matrix multiply, Wronskians
and inverses applies, therefore identity (8) remains valid. Related details appear in the
proof of Theorem 11.31.

Proof of Theorem 11.31. If all roots are real distinct, then the Euler solution atoms
are eλ1t, . . . , eλnt. Find the Wronskian matrix of these functions, then let t = 0, which
makes all exponentials equal to one. The first row is all ones, therefore the transpose
matrix has first column all ones. If complex roots a± bi appear, then in affected atoms
cos bt = 1

2 (e
ibt + e−ibt), sin bt = 1

2i (e
ibt− e−ibt). Collect terms into complex exponentials

e(a+ib)t multiplied by vectors (complex entries allowed). Identity (8) is unchanged except
for replacement of atoms by exponentials. Proceed to identify W (t), W (0) and W (0)T

in the same manner as for real roots.

Proofs of Theorems 11.32, 11.33. Assume the CHZ results of previous theorems
and that A has distinct eigenvalues, complex numbers allowed. Let (λj , v⃗ j), 1 ≤ j ≤ n
be a list of eigenpairs of A. Let Aj = eλjt, 1 ≤ j ≤ n: they are independent functions
with invertible Wronskian matrix W (t) (see the Exercises). The Eigenanalysis method
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supplies solution x⃗ (t) =
∑n

j=1 cjv⃗ j Aj(t) whereas CHZ supplies x⃗ (t) =
∑n

j=1 d⃗ j Aj(t).

Independence of list {Aj(t)}nj=1 implies d⃗ j = cjv⃗ j . However, cj = 0 is possible, therefore

d⃗ j = 0⃗ or else d⃗ j is a nonzero multiple of eigenvector v⃗ j , 1 ≤ j ≤ n.

Theorem 11.33 directly applies Theorem 11.32, which implies the columns of augmented

matrix P = ⟨d⃗1| · · · |d⃗n⟩ are either zero or a nonzero multiple of an eigenvector of A.

Examples choose U⃗ initially to be the column vector of ones, then ones are modified to
zero or minus one: then re-apply the formula to find all eigenvectors.

Proof of Theorem 11.34, Vandermonde Inverse:

Case for n = 3. The inverse matrix B =

(
a0 · ·
a1 · ·
a2 · ·

)
of Vandermonde matrix A =(

1 x1 x
2
1

1 x2 x
2
2

1 x3 x
2
3

)
satisfies AB = I. Match column one on both sides of AB = I using matrix

multiply, then for polynomial p1(y) = a0 + a1y + a2y
2 there are three interpolation

equations to be satisfied:

a0 + a1x1 + a2x
2
1 = 1, a0 + a1x2 + a2x

2
2 = 0, a0 + a1x3 + a2x

2
3 = 0.

Degree 2 polynomial q1(y) = 1
y−x1

∏3
i=1(y − xi) constructs the interpolation problem

unique solution p1(y) =
q1(y)
q1(x1)

. Coefficients a0, a1, a2 are found by matching y-coefficients

after expanding equation a0 + a1y + a2y
2 = q1(y)

q1(x1)
. Define q2, q3, p2, p3 analogously and

repeat for columns 2, 3. Then inverse B equals:(
x2x3 x1x3 x1x2

−x2 − x3 −x1 − x3 −x1 − x2

1 1 1

)( 1
(x1−x2)(x1−x3)

0 0
0 1

(x2−x1)(x2−x3)
0

0 0 1
(x3−x1)(x3−x2)

)

Case for General n. For i from 1 to n, define degree n − 1 polynomials qi(y) =
1

y−xi

∏n
p=1(y − xp), then expand qi(y) =

∑n
j=1 qijy

j−1 to obtain

B = (bij) =

q11 · · · qn1
... · · ·

...
q1n · · · qnn




1
q1(x1)

· · · 0
...

. . .
...

0 · · · 1
qn(xn)

.

Formula for qi(xi). Cancel factor y − xi, then qi(xi) =
∏n

p=1,p̸=i(xi − xp).

Formula for qij . Let N = n − 1. Vieta’s formulas applied to degree N polyno-
mial qi(y) =

∑n
j=1 qi jy

j−1 give qi j = (−1)N−j+1eN−j+1({x1, . . . , xn} \ {xi}), for j =

1, . . . , n− 1. Equality bij =
qij

qi(xi)
then establishes equation (10).

Proof of Theorem 11.35. The details are in the proof of Theorem 11.36, which
discusses the application of Theorem 11.27 and solving the first differential equation for
variable x2. This is the preferred shortcut on paper.

Proof of Theorem (11.36). The formula for x1(t) follows directly from Cayley-
Hamilton-Ziebur Theorem 11.27. Equation x2(t)=k1y1(t) + k2y2(t) follows from the
same theorem, for some constants k1, k2. It remains to prove that the constants are(
k1
k2

)
= 1

b (B
T − aI)

(
c1
c2

)
. Details:

x2 = 1
bx

′
1 − a

bx1 Solve x′
1=ax1 + bx2 for x2.
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x2 = 1
b (c1y

′
1 + c2y

′
2)− a

b (c1y1 + c2y2) Replace x1 = c1y1 + c2y2.

x2 = 1
b

(
c1
c2

)T (
y′1
y′2

)
− a

b

(
c1
c2

)T (
y1
y2

)
Rewrite as matrix multiply.

x2 = 1
b

(
c1
c2

)T

B

(
y1
y2

)
− a

b

(
c1
c2

)T (
y1
y2

)
Definition of B.

x2 = 1
b

(
c1
c2

)T

(B − aI)

(
y1
y2

)
Factor out

(
y1
y2

)
right,

(
c1
c2

)T

left.

x2 = 1
b

((
BT − aI

)(c1
c2

))T (
y1
y2

)
Matrix transpose properties (CD)T =
DTCT and (C +D)T = CT +DT .

x2 =

(
k1
k2

)T (
y1
y2

)
Theorem’s definition of k1, k2.

x2 = k1y1 + k2y2 Verification complete.

Exercises 11.5 �

Determinant |A− rI|
Justify these statements.

1. Subtract r from the diagonal of A to
form |A− rI|.

2. If A is 2×2, then |A−rI| is a quadratic.

3. If A is 3× 3, then |A− rI| is a cubic.

4. Expansion of |A − rI| by the cofactor
rule often preserves factorizations.

5. If A is triangular, then |A − rI| is the
product of diagonal entries.

6. The combo, mult and swap rules for
determinants are generally counter-
productive for expansion of |A− rI|.

Characteristic Polynomial
Show expansion details for |A− rI|.

7. A =

(
2 3
0 4

)
.

Ans: (2− r)(4− r)

8. A =

(
2 3 4
0 5 6
0 0 7

)
.

Ans: (2− r)(5− r)(7− r)

Eigenanalysis Method: 2× 2
Solve x⃗ ′ = Ax⃗ .

9. A =

(
1 0
0 2

)
10. A =

(
1 1
2 2

)
Eigenanalysis Method: 3× 3
Solve x⃗ ′ = Ax⃗ .

11. A =

(
1 1 0
2 2 0
0 0 1

)

12. A =

(
1 1 0
2 2 1
0 0 1

)

Eigenanalysis Method: n× n
Solve x⃗ ′ = Ax⃗ .

13. A =

1 1 0 0
2 2 1 0
0 0 1 0
0 0 0 1



14. A =


1 1 0 0 1
2 2 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


eAt for Simple Eigenvalues
Find aAt using classical spectral theory.
Check by computer.

15. A =

(
1 1
2 2

)
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16. A =

(
1 1 0
2 2 1
0 0 1

)

eAt for Multiple Eigenvalues
Find aAt using classical spectral theory.
Check by computer.

17. A =

(
1 1
0 1

)

18. A =

(
1 1 0
0 1 1
0 0 2

)

Cayley-Hamilton Theorem
Prove the identity by applying the Cayley-
Hamilton Theorem.

19. Let A=

(
a b
c d

)
, a0=|A|=ad−bc,

a1=trace(A)=a+d. Then

A2 + a1(−A) + a0

(
1 0
0 1

)
=

(
0 0
0 0

)

20. Let A=

(
2 3 4
0 5 6
0 0 7

)
. Then:

(2I−A)(5I−A)(7I−A)=

(
0 0 0
0 0 0
0 0 0

)

CHZ Theorem: Scalar Form

21. Write Theorem 11.27 proof missing de-
tails for n = 3.

22. Write Theorem 11.27 proof missing de-
tails for any n.

CHZ Theorem: Vector Form

23. Write Theorem 11.28 proof details for
n = 2.

24. Write Theorem 11.28 proof details for
n = 3.

CHZ Identity: Vandermonde
Find matrixD = ⟨ d⃗1| · · · |d⃗n ⟩ using The-

orems 11.29, 11.31, given x⃗ (0)=

c1
...
cn

.

25. A=

(
1 0
2 2

)
. Ans: W (0)T , D=(

1 2
1 1

)
,

(
0 c1

2c1 + c2 −2c1

)

26. A=

(
1 0 0
2 2 0
0 0 3

)
. Ans: W (0)T , D=(

1 1 1
1 2 4
1 3 9

)
,

(
c1 0 0
−2c1 2c1 + c2 0
0 0 c3

)

CHZ and Eigenvectors
Supply details for the following.

27. Find a scalar 3rd order linear differen-
tial equation that has et, e2it, e−2it as
solutions. Apply theorems to conclude
that the Wronskian of the exponentials
is invertible for every t.

28. Assume eλ1t, . . . , eλnt are independent
exponentials . Apply theorems to con-
clude that the Wronskian of the expo-
nentials is invertible for every t.

29. If d⃗1e
t + d⃗2e

−t + d⃗3e
2t =

0
0
0

, then

d⃗1 = d⃗2 = d⃗3 = 0⃗ .

30. Independence of atoms applied to the
n-vector equation d⃗1e

t + d⃗2e
−t =

c1v⃗ 1e
t+c2v⃗ 2e

−t implies d⃗1 = c1v⃗ 1 and
d⃗2 = c2v⃗ 2.

31. There is a 2 × 2 system x⃗ ′ = Ax⃗
for which CHZ vectors d⃗1, d⃗2 are not
eigenvectors of A.

32. Let A be the 3 × 3 identity matrix.
For x⃗ ′ = Ax⃗ , two of the CHZ vectors
d⃗1, d⃗2, d⃗3 are zero.

Eigenvectors by Matrix Multiply Find
the eigenvectors of A by Theorem 11.33.
Report the choice of U⃗ .

33. A=

(
1 2
−2 1

)
. Ans: U⃗=

(
1
1

)
.

34. A=

(
1 0 0
0 2 1
0 0 3

)
. Ans: U⃗=

 1
1
−1

.
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CHZ 2 × 2 Matrix Shortcut Find the
general solution of x⃗ ′ = Ax⃗ using Theo-
rem 11.36.

35. A =

(
1 3
3 1

)
, r = −2, 4

36. A =

(
1 3
−3 1

)
, r = 1± 3i

CHZ Scalar 2×2 Shortcut Find the gen-
eral solution of x⃗ ′ = Ax⃗ using Theorem
11.35.

37. A =

(
1 4
4 1

)
, r = −3, 5

38. A =

(
1 4
−4 1

)
, r = 1± 4i

Putzer’s 2× 2 Spectral Formula Verify
the identity.

39. A =

(
−1 3
−6 8

)
eAt = e5tI +

e5t − e2t

3

(
−6 3
−6 3

)

40. A =

(
0 1
6 1

)
eAt = e−2tI +

e3t − e−2t

5

(
2 1
6 3

)

41. A =

(
0 1

−16 8

)
eAt = e4tI + te4t

(
−4 1
−16 4

)

42. A =

(
3 2
−2 3

)
, eAt =

e3t cos(2t)I + e3t sin(2t)

(
0 2
−2 0

)
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11.6 Jordan Form and Eigenanalysis

Generalized Eigenanalysis

The main result is Jordan’s decomposition

A = PJP−1,

valid for any real or complex square matrix A. Described here is how to com-
pute the invertible matrix P of generalized eigenvectors and the upper triangular
matrix J , called a Jordan form of A.

Jordan Block

An m×m upper triangular matrix B(λ,m) is called a Jordan block provided all
m diagonal elements are the same eigenvalue λ and all super-diagonal elements
are one:

B(λ,m) =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 (m×m matrix)

Jordan Form

Given an n× n matrix A, a Jordan form J for A is a block diagonal matrix

J = diag(B(λ1,m1), B(λ2,m2), . . . , B(λk,mk)),

where λ1, . . . , λk are eigenvalues of A (duplicates possible) andm1+· · ·+mk = n.
The eigenvalues of J are on the diagonal of J and J has exactly k eigenpairs. If
k < n, then J is non-diagonalizable. Relation AP = PJ implies A has exactly k
eigenpairs and A fails to be diagonalizable for k < n.

The relation A = PJP−1 is called a Jordan decomposition of A. The n × n
matrix P is an augmented matrix of column vectors, i.e., P = ⟨v⃗ 1| . . . |v⃗n⟩,
which is called the matrix of generalized eigenvectors of A. It defines a
coordinate system x⃗ = P y⃗ in which the vector function x⃗ → Ax⃗ is transformed
to the simpler vector function y⃗ → J y⃗ .

If equal eigenvalues are adjacent in J , then Jordan blocks with equal diagonal
entries can be adjacent. Zeros can appear on the super-diagonal of J , because
adjacent Jordan blocks join on the super-diagonal with a zero. A complete spec-
ification of how to build J from A appears below.
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11.6 Jordan Form and Eigenanalysis

Organizing a Jordan Form

One scheme to organize J first lists distinct eigenvalues low to high λ1, . . . , λk.
Then the Jordan blocks appear in J in that order, with block size high to low
for those blocks with the same eigenvalue.

For instance, suppose λ1 = −4, λ1 = 2, λ1 = 7 with respective multiplicities 5, 1
and 3. Then one possible Jordan form is:

J = diag(B(λ1, 3), B(λ1, 2), B(λ2, 1), B(λ3, 3))

=



−4 1 0
0 −4 1
0 0 −4

−4 1
0 −4

2
7 1 0
0 7 1
0 0 7



Decoding a Jordan Decomposition A = PJP−1

If J contains m ×m Jordan block B(λ,m), consuming rows 1 to m of J , then
P = ⟨ v⃗ 1| . . . |v⃗n ⟩ and AP = PJ implies m vector equations:

Av⃗ 1 = λv⃗ 1,
Av⃗ 2 = λv⃗ 2 + v⃗ 1,
...

...
...

Av⃗m = λv⃗m + v⃗m−1.

To justify this, start with AP = PJ . Expand AP = ⟨Av⃗ 1| . . . |Av⃗n ⟩ and match
its first m columns to those of PJ . This exploded view of the relation AP = PJ
according to the Jordan block B(λ,m) is called a Jordan chain. The formulas
can be compacted via matrix N = A− λI into the Jordan chain relations

N v⃗ 1 = 0⃗ , N v⃗ 2 = v⃗ 1, . . . , N v⃗m = v⃗m−1.(1)

The first vector v⃗ 1 is an eigenvector. The remaining vectors v⃗ 2, . . . , v⃗m are not
eigenvectors, they are called generalized eigenvectors. Similar formulas can
be written for each Jordan block in matrix J . A given eigenvalue may appear
multiple times in the chain relations, due to the appearance of two or more
Jordan blocks with the same eigenvalue. It is known that the vectors {v⃗ i}|mi=1

in a Jordan chain are independent from vectors appearing in a different chain.

Theorem 11.38 (Jordan Decomposition)
Every n× n matrix A has a Jordan decomposition A = PJP−1.
Induction proof on page 907.

895



11.6 Jordan Form and Eigenanalysis

Proposition 11.8 (Jordan’s Extension) Any n × n matrix A can be represented
in the block triangular form

A = PTP−1, T = diag(T1, . . . , Tk),

where P is invertible and each matrix Ti is upper triangular with diagonal entries
equal to a single eigenvalue of A.

See also Theorem ?? page ??. The theorem is proved from the Jordan decompo-
sition theorem by defining Ti = Ji, a Jordan Block. A shorter, simpler induction
proof exists for Jordan’s extension, but the structure of the blocks Ti is unknown
with no practical algorithm for their construction.

Geometric and Algebraic Multiplicity

Symbol GeoMult(λ) = dim(kernel(A−λI)) is called the geometric multiplic-
ity. It is defined as the number of basis vectors in a solution to (A− λI)x⃗ = 0⃗ ,
or, equivalently, the number of free variables for this homogeneous problem.

The integer k = AlgMult(λ) is called the algebraic multiplicity, defined by
the condition that (r−λ)k divides the characteristic polynomial det(A−rI), but
larger powers do not.

Eigenvalue λ is called a defective eigenvalue provided inequality GeoMult(λ) <
AlgMult(λ) holds. If matrix A has a defective eigenvalue, then is called a de-
fective matrix. Defective matrices are not diagonalizable, but they do admit a
Jordan decomposition A = PJP−1.

Theorem 11.39 (Algebraic and Geometric Multiplicity)
Let A be a square real or complex matrix. Then

1 ≤ GeoMult(λ) ≤ AlgMult(λ).(2)

In addition, there are the following relationships between the Jordan form J and
algebraic and geometric multiplicities.

GeoMult(λ) Equals the number of Jordan blocks in J with eigenvalue λ,

AlgMult(λ) Equals the number of times λ is repeated along the diagonal
of J .

Proof: Let d = GeoMult(λ0). Construct a basis v1, . . . , vn of Rn such that v1, . . . , vd

is a basis for kernel(A − λ0I). Define S = ⟨v1| . . . |vn⟩ and B = S−1AS. The first d

columns of AS are λ0v1, . . . , λ0vd. Then B =

(
λ0I C
0 D

)
for some matrices C and

D. Cofactor expansion implies some polynomial g satisfies

det(A− λI) = det(S(B − λI)S−1) = det(B − λI) = (λ− λ0)
dg(λ)

and therefore d ≤ AlgMult(λ0). Other details of proof are omitted. ■
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Number of Jordan Blocks

Calculation of generalized eigenvectors of matrix A for eigenvalue λ is organized
by computing only the Jordan chains of a certain size k. The sizes are found by
computing ranks of the powers N j of the nilpotent matrix N = A− λI.

Theorem 11.40 (Number of Jordan Blocks)
Let matrix A have eigenvalue λ. Define N = A − λI. Let p be the least integer
such that Np = Np+1. Then the number M(j) of Jordan blocks B(λ, j) is given by

M(j) = rank(N j+1) + rank(N j−1)− 2 rank(N j), j = 2, . . . , p.

The proof of the theorem8 is in the exercises, where more detail appears for p = 1
and p = 2.

Chains of Generalized Eigenvectors

Given an eigenvalue λ of the matrix A, the topic of generalized eigenanalysis
determines all Jordan blocks B(λ,m) in J and the corresponding columns of P .
The ordering of the blocks in J is not unique. The corresponding columns of P
are not unique.

Let N = A = λI. Suppose an m-chain is known to exist because of Theorem
11.40, m ≤ AlgMult(λ). How exactly do we find v⃗ 1, . . . , v⃗m in Jordan chain
relations (1)?

A first step might be to write the chain relations (1) in reverse order using a new
symbol w⃗ that stands for v⃗m:

v⃗ 1 = Nm−1w⃗ , . . . , v⃗m−1 = Nw⃗ , v⃗m = w⃗(3)

For instance, if m = 3 then the equations are v⃗ 1 = N2w⃗ , v⃗ 2 = Nw⃗ , v⃗ 3 = w⃗ .
The impact of (3) is to change the problem of finding an m-chain into finding a
suitable vector w⃗ . Clearly w⃗ is not unique. Generally, w⃗ is not an eigenvector.

How to Choose Vector w⃗

The requirements on w⃗ are:

(1) Nm−1x⃗ = w⃗ has no solution x⃗ .
(2) Nmw⃗ = 0⃗ or w⃗ ∈ nullspace(Nm)
(3) Nm−1w⃗ ̸= 0⃗ or w⃗ ̸∈ nullspace(Nm−1)

8Jordan matrix. Encyclopedia of Mathematics. URL:
https://encyclopediaofmath.org/index.php?title=Jordan matrix&oldid=17628

An equivalent formula is M(j) = 2nullity(N j)− nullity(N j+1)− nullity(N j−1).
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Proposition 11.9 (Choosing Vector w⃗ )
Let w⃗ ̸= 0⃗ belong to the nullspace of (Nm−1)T . Then Nm−1x⃗ = w⃗ has no
solution x⃗ .

Proof: Assume a solution x⃗ exists. Let B = Nm−1 and S = nullspace(BT ). Given:
w⃗ ∈ S. Equation Bx⃗ = w⃗ implies w⃗ ∈ Image(B). The Fundamental Theorem
of Linear Algebra (FTLA) gives Image(B) = nullspace((BT )⊥ = S⊥. Then w⃗ ∈
S ∩ S⊥. The intersection of S and S⊥ is the zero vector. Then w⃗ ̸= 0⃗ and w⃗ = 0⃗ , a
contradiction. ■

Because of the chain relations of equation (1) the very first vector v⃗ 1 of the
chain is an eigenvector: (A − λI)v⃗ 1 = 0⃗ . The others v⃗ 2, . . . , v⃗ k are not
eigenvectors.

Table 2. Shortcut: How to Choose w⃗

1. Let B = (Nm−1)T . Choose a nonzero vector w⃗ in the nullspace of B
which also satisfies Nmw⃗ = 0⃗ . See Proposition 11.9.

2. Require vector w⃗ to satisfy Bw⃗ ̸= 0⃗ , it is not in the nullspace of
Nm−1.

Jordan Decomposition using maple

The matrix

A =

 4 −2 5
−2 4 −3
0 0 2


has a Jordan decomposition

A = PJP−1 =

 1 4 −7
−1 4 1
0 0 4

 6 0 0
0 2 1
0 0 2

 1
4 1 −7

4
−1

4 1 1
4

0 0 1


# Maple, Find Jordan Form of matrix A

A := Matrix([[4, -2, 5], [-2, 4, -3], [0, 0, 2]]);

factor(LinearAlgebra[CharacteristicPolynomial](A,lambda));

# Answer == (lambda-6)*(lambda-2)^2

J,P:=LinearAlgebra[JordanForm](A,output=[’J’,’Q’]);

zero:=A.P-P.J; # zero matrix expected

The maple algorithm for the Jordan Form employs the Frobenius Normal Form,
which in 2022 differs from Wikipedia and Wolfram references in the ordering of
the diagonal blocks. Expect maple and mathematica to deliver Jordan forms for
a given matrix A with different ordering of Jordan blocks.
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11.6 Jordan Form and Eigenanalysis

Examples: Jordan Form and m-Chain

Calculation of generalized eigenvectors of matrix A for eigenvalue λ is organized
by computing only the Jordan chains of a certain size k. The sizes are found by
rank computation of the powers N j of the nilpotent matrix N = A− λI.

Example 11.11 (Number of Jordan Blocks)
Let A be the 5 × 5 matrix in equation (4), which has one eigenvalue λ = 2 of
multiplicity 5. Verify that a Jordan form of A has two Jordan blocks, one of size 2
and one of size 3, e.g., J = diag(B(λ, 3), B(λ, 2)).

A =


3 −1 1 0 0
2 0 1 1 0
1 −1 2 1 0
−1 1 0 2 1
−3 3 0 −2 3

(4)

Details.
First form the nilpotent matrix N = A− λI, then compute N2 and N3:

N=


1 −1 1 0 0
2 −2 1 1 0
1 −1 0 1 0
−1 1 0 0 1
−3 3 0 −2 1

 , N2=


0 0 0 0 0
−2 2 0 −1 1
−2 2 0 −1 1
−2 2 0 −1 1
2 −2 0 1 −1

 , N3=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Computer assist finds rank(N) = 3 and rank(N2) = 2. Identity N3 = 0 implies
nilpotency p = 3.

Theorem 11.40 applied to Jordan block B(λ, j) provides the equation M(j) =
rank(N j+1)+rank(N j−1)−2 rank(N j), j = 2, . . . , p. ThenM(1) = 0,M(2) =
1,M(3) = 1,M(4) = M(5) = 0. There are only two Jordan blocks, size 2 and 3.
One possible Jordan form:

J = diag(B(λ, 3), B(λ, 2)) =


2 1 0
0 2 1
0 0 2

0 0
0 0
0 0

0 0 0
0 0 0

2 1
0 2


with(LinearAlgebra):

getBlockCounts:=proc(A,lambda) local m,N,j,r,p,txt;

m:=RowDimension(A);

N:=A-lambda*IdentityMatrix(m);

for j from 1 to m do r[j]:=Rank(N^j); od:

for p from m to 2 by -1 do

if(r[p]<>r[p-1])then break;fi:od;

printf("lambda=%d, nilpotency=p=%d\n",lambda,p);
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txt:=(j,x)-> printf("Blocks B(%a,%d):%d\n",lambda,j,x):

for j from p to 2 by -1 do txt(j,-2*r[j]+r[j-1]+r[j+1]):

od:

end proc:

#

A := Matrix([[3,-1,1,0,0],[2,0,1,1,0],[1,-1,2,1,0],

[-1,1,0,2,1],[-3,3,0,-2,3]]);

getBlockCounts(A,2);

The results: λ = 2, nilpotency=3, Blocks B(2, 3) : 1, Blocks B(2, 2) : 1.

The maple answer for J is obtained by the single line JordanForm(A). Also
possible is JordanForm(A,output=[’J’,’Q’]) to print J and Q for identity
AQ = QJ . The maple answers:

J =


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2

 , Q =
1

2


0 1 2 −1 0
−4 2 2 −2 2
−4 1 1 −1 1
−4 −3 1 −1 1
4 −5 −3 1 −3

(5)

Example 11.12 (Generalized Eigenvectors)
Let A be the 5 × 5 matrix in equation (4), which has one eigenvalue λ = 2 of
multiplicity 5. Find the generalized eigenvectors of A as columns of a matrix P ,
verifying the answer satisfies AP = PJ .

Details: Duplicate matrices A, N = A− 2I and J from the preceding example:

A=


3 −1 1 0 0
2 0 1 1 0
1 −1 2 1 0
−1 1 0 2 1
−3 3 0 −2 3

 , N=


1 −1 1 0 0
2 −2 1 1 0
1 −1 0 1 0
−1 1 0 0 1
−3 3 0 −2 1

 , J=


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2

 .

Jordan form J shows there is a 3-chain and a 2-chain of generalized eigenvectors
for eigenvalue λ = 2. We will find the two chains.

The 3-chain. The plan is to find a vector w⃗ with N3w⃗ = 0⃗ , N2w⃗ ̸= 0⃗ and
N2x⃗ = w⃗ has no solution x⃗ . Then v⃗ 1 = N2w⃗ , v⃗ 2 = Nw⃗ , v⃗ 3 = w⃗ are the
columns of P corresponding to Jordan block B(λ, 3), to wit: columns 1,2,3 of P .
Computer assist provides

N=


1 −1 1 0 0
2 −2 1 1 0
1 −1 0 1 0
−1 1 0 0 1
−3 3 0 −2 1

 , N2=


0 0 0 0 0
−2 2 0 −1 1
−2 2 0 −1 1
−2 2 0 −1 1
2 −2 0 1 −1

 , N3=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


We will choose w⃗ to be a basis element for the nullspace of (N2)T , following
Table 2 and Proposition 11.9. This clever choice works because Nm = 0. We
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still have to check N2w⃗ ̸= 0⃗ , as in Table 2. Employ maple to find the nullspace
basis:

nullspace((N2)T ) = span




0
1
0
0
1

 ,


0
−1
0
1
0

 ,


0
−1
1
0
0

 ,


1
0
0
0
0




Choose vector w⃗ to be the last basis vector above, that is, the vector with
components 1, 0, 0, 0, 0. Then (1) equation N2x⃗ = w⃗ is insolvable for x⃗ , (2)
N2w⃗ ̸= 0⃗ , (3) N3w⃗ = 0⃗ .

Columns 1,2,3 of P will be defined by equations

v⃗ 1=N2w⃗ =


0
−2
−2
−2
2

 , v⃗ 2=Nw⃗ =


1
2
1
−1
−3

 , v⃗ 3=w⃗ =


1
0
0
0
0


The computation means that AP = PJ9 where

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3|0⃗ |0⃗⟩ =


0 1 1 0 0
−2 2 0 0 0
−2 1 0 0 0
−2 −1 0 0 0
2 −3 0 0 0

 ,

 N v⃗ 1 = 0⃗
N v⃗ 2 = v⃗ 1

N v⃗ 3 = v⃗ 2

The 2-chain. Let m = 2 (find a 2-chain). The plan is to find a vector w⃗ with
N2w⃗ = 0⃗ , Nw⃗ ̸= 0⃗ and N x⃗ = w⃗ has no solution x⃗ . Then v⃗ 4 = Nw⃗ , v⃗ 5 = w⃗
are the columns of P corresponding to Jordan block B(λ, 2), to wit: columns 4,5
of P .

We will choose w⃗ ̸= 0⃗ to be a vector in the nullspace of NT , following Table 2
and Proposition 11.9. First, find a basis for the nullspace of NT , as in Proposition
11.9. Then write w⃗ in terms of this basis:

nullspace(NT ) = span




−2
2
0
−1
1

 ,


1
−1
1
0
0


 ,

w⃗ = c1


−2
2
0
−1
1

+ c2


1
−1
1
0
0

 .

9Zero columns in P allow rapid testing of AP = PJ .
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Next, we force w⃗ to belong to the nullspace of Nm = N2. Equation

N2w⃗ =


0

10c1 − 4c2
10c1 − 4c2
10c1 − 4c2
−10c1 + 4c2

 = 0⃗

holds if and only if 5c1 − 2c2 = 0. Choose c1 = 2, c2 = 5 to make it so, then
compute

w⃗ = 2


−2
2
0
−1
1

+ 5


1
−1
1
0
0

 =


1
−1
5
−2
2

 , Nw⃗ =


7
7
0
0
0

 ̸= 0⃗

Conclusions: (1) equation N x⃗ = w⃗ is insolvable for x⃗ , (2) Nw⃗ ̸= 0⃗ and (3)
N2w⃗ = 0⃗ . Define

v⃗ 4 = Nw⃗ =


7
7
0
0
0

 , v⃗ 5 = w⃗ =


1
−1
5
−2
2


Then

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3|v⃗ 4|v⃗ 5⟩ =


0 1 1 7 1
−2 2 0 7 −1
−2 1 0 0 5
−2 −1 0 0 −2
2 3 0 0 2


Matrix multiply verifies AP = PJ , which means P is a matrix of generalized
eigenvectors for A. The answer for P is not unique, as illustrated by maple’s
answer in equation (5). ■

Direct Sum Decomposition

The generalized eigenspace of eigenvalue λ of an n×nmatrix A is the subspace
kernel((A − λI)p) where p = AlgMult(λ). We state without proof the main
result for generalized eigenspace bases, because details appear in the exercises. A
proof is included for the direct sum decomposition, even though Putzer’s spectral
theory independently produces the same decomposition.

Theorem 11.41 (Generalized Eigenspace Basis)
The subspace kernel((A−λI)k), k = AlgMult(λ) has a k-dimensional basis whose
vectors are the columns of P corresponding to blocks B(λ, j) of J , in Jordan de-
composition A = PJP−1.
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Theorem 11.42 (Direct Sum Decomposition)
Given n× n matrix A with distinct eigenvalues λ1, . . . , λk, let n1 = AlgMult(λi),
. . . , nk = AlgMult(λk). Then A induces a direct sum decomposition

Cn = kernel((A− λ1I)
n1 ⊕ · · · ⊕ kernel((A− λkI)

nk .

This equation means that each complex vector x⃗ in Cn can be uniquely written as

x⃗ = x⃗ 1 + · · ·+ x⃗k

where each x⃗ i belongs to kernel ((A− λi)
ni), i = 1, . . . , k.

Proof: The previous theorem implies there is a basis of dimension ni for eigenspace
Ei ≡ kernel((A − λiI)

ni), i = 1, . . . , k. Because n1 + · · · + nk = n, then there are n
vectors in the union of these bases. The independence test for these n vectors amounts
to showing that x⃗1 + · · ·+ x⃗k = 0⃗ with x⃗ i in Ei, i = 1, . . . , k, implies all x⃗ i = 0⃗ . This
will be true provided Ei ∩ Ej = {0⃗} for i ̸= j.

Let’s assume a Jordan decomposition A = PJP−1. If x⃗ is common to both Ei and Ej ,
then basis expansion of x⃗ in both subspaces implies a linear combination of the columns
of P is zero, which by independence of the columns of P implies x⃗ = 0⃗ . ■

Remark. If A is real with real eigenvalues, then generalized eigenspaces have
real bases and the decomposition x⃗ = x⃗ 1 + · · ·+ x⃗k uses real vectors.

The Real Jordan Form of A

Given a real matrix A, generalized eigenanalysis seeks to find a real invertible
matrix P and a real upper triangular block matrix J such that A = PJP−1.

If λ is a real eigenvalue of A, then a real Jordan block is a matrix

B = diag(λ, . . . , λ) +N, N =


0 1 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1
0 0 0 · · · 0

 .

If λ = a+ ib is a complex eigenvalue of A, then symbols λ, 1 and 0 are replaced

respectively by 2 × 2 real matrices Λ =

(
a b
−b a

)
, I = diag(1, 1) and O =

diag(0, 0). The corresponding 2m× 2m real Jordan block matrix is given by the
formula

B = diag(Λ, . . . ,Λ) +N , N =


O I O · · · O O
...

...
...

...
...

...
O O O · · · O I
O O O · · · O O

 .
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11.6 Jordan Form and Eigenanalysis

Real Jordan Decomposition

The ideas are best communicated by example. Let

A =

 −3 4 1
0 −4 10
0 −5 6

 .

The eigenpairs are−3,
1
0
0

 ,

1 + 5i,

 −i1− i
1

 ,

1− 5i,

 i
1 + i
1

 .

The complex Jordan decomposition of matrix A is AP = PJ where

J =

 1 0 0
0 1 + 5i 0
0 0 1− 5i

 , P =

 1 −i i
0 1− i 1 + i
0 1 1


The Real Jordan Decomposition of matrix A is AP = PJ where

J =

 1 0 0
0 1 5
0 −1 5

 , P =

 1 0 −1
0 1 −1
0 1 0


The rules:

Replace

(
1 + 5i 0

0 1− 5i

)
by

(
1 5
−1 5

)
Replace the pair of complex eigenvector columns by the real and
imaginary parts of the first eigenvector (the second is not used): −i1− i

1

 ,

 i
1 + i
1

 replaced by

0
1
1

 ,

−1−1
0

.

The method for n × n real matrices with n eigenpairs is similar. Each pair of
complex conjugate eigenvalues a + ib, a − ib produces in J a real Jordan block(

a b
−b a

)
. The corresponding complex eigenvector pair u⃗ + iv⃗ , u⃗ − iv⃗ is

accounted for by inserting into P the real and imaginary parts u⃗ , v⃗ . A real
eigenpair (λ, x⃗ ) creates λ on the diagonal of J and real eigenvector x⃗ is copied
to the corresponding column of P .

Computing Real Exponential Matrices

Discussed here are methods for finding a real exponential matrix eAt when A is
real. Two formulas are given, one for a real eigenvalue and one for a complex
eigenvalue. These formulas supplement the spectral formulas given earlier in the
text.
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Nilpotent Matrices

A matrix N which satisfies Np = 0 for some integer p is called nilpotent. The
least integer p for which Np = 0 is called the nilpotency of N . A nilpotent
matrix N has a finite exponential series:

eNt = I +Nt+N2 t
2

2!
+ · · ·+Np−1 tp−1

(p− 1)!
.

If N = B(λ, p)− λI, then the finite sum has a splendidly simple expression due
to eλt I+Nt = eλteNt. These remarks motivate the following result.

Theorem 11.43 (Exponential of a Jordan Block Matrix)
If λ is real and

B =


λ 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 (p× p matrix)

then

eBt = eλt


1 t t2

2 · · · tp−2

(p−2)!
tp−1

(p−1)!
...

...
...

...
...

...
0 0 0 · · · 1 t
0 0 0 · · · 0 1

 .

The equality also holds if λ is a complex number, in which case both sides of the
equation are complex.

Proof: Let matrix Φ(t) be either the left side or the right side of the matrix equality.
A computation shows that Φ′(t) = BΦ(t), Φ(0) = I. Apply uniqueness in the Picard-
Lindelöf theorem. ■

Real Exponentials for Complex λ

A Jordan decomposition A = PJP−1 in which A has only real eigenvalues has
real generalized eigenvectors appearing as columns in the matrix P, in the order
matching Jordan blocks in J . When λ = a+ ib is complex, b > 0, then the real
and imaginary parts of each generalized eigenvector are entered pairwise into P;
the conjugate eigenvalue λ = a − ib is skipped. The complex entry along the
diagonal of J and the ones on the superdiagonal of J are each changed into a
2× 2 matrix under the correspondence

a+ ib↔
(

a b
−b a

)
.

The result is a real matrix P and a real block upper triangular matrix J which
satisfy A = PJP−1.
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Theorem 11.44 (Real Block Diagonal Matrix, Eigenvalue a+ ib)

Let Λ =

(
a b
−b a

)
, I = diag(1, 1) and O = diag(0, 0). Consider a real Jordan

block matrix of dimension 2m× 2m given by the formula

B =


Λ I O · · · O O
...

...
...

...
...

...
O O O · · · Λ I
O O O · · · O Λ

 .

If R =

(
cos bt sin bt
− sin bt cos bt

)
, then

eBt = eat


R tR t2

2R · · · tm−2

(m−2)!R
tm−1

(m−1)!R
...

...
...

...
...

...
O O O · · · R tR
O O O · · · O R

 .

Proof: Details are similar to the proof of Theorem 11.43. ■

Solving x⃗ ′ = Ax⃗

The solution x⃗ (t) = eAtx⃗ (0) must be real if A is real. The real solution can be
expressed as x⃗ (t) = Py⃗ (t) where y⃗ ′(t) = J y⃗ (t) and J is a real Jordan form of
A, containing real Jordan blocks B1, . . . , Bk down its diagonal. Theorems above
provide explicit formulas for the block matrices eBit in the relation

eJ t = diag
(
eB1t, . . . , eBkt

)
.

The resulting formula
x⃗ (t) = PeJ tP−1x⃗ (0)

contains only real numbers, real exponentials, plus sine and cosine terms, which
are possibly multiplied by polynomials in t.

Numerical Instability

The matrix A =

(
1 1
ε 1

)
has two possible Jordan forms

J(ε) =



(
1 1
0 1

)
ε = 0,

(
1 +
√
ε 0
0 1−

√
ε

)
ε > 0.

When ε ≈ 0, then numerical algorithms become unstable, unable to lock onto
the correct Jordan form. Briefly, limε→0 J(ε) ̸= J(0).
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Details and Proofs

Proof of Theorem 11.38 (Jordan Decomposition) The result holds by default for
1×1 matrices. Assume the result holds for all k×k matrices, k < n. The proof proceeds
by induction on n.

The induction assumes, for any k × k matrix A, that there is a Jordan decomposition
A = PJP−1. Then the columns of P satisfy Jordan chain relations

Ax⃗ j
i = λix⃗

j
i + x⃗ j−1

i , j > 1, Ax⃗1
i = λix⃗

1
i .

Conversely, if the Jordan chain relations are satisfied for k independent vectors {x⃗ j
i},

then the vectors form the columns of an invertible matrix P such that A = PJP−1 with
J in Jordan form. The induction step centers upon producing the chain relations and
proving that the n vectors are independent.

Let B be n× n and λ0 an eigenvalue of B. The Jordan chain relations hold for A = B
if and only if they hold for A = B − λ0I. Without loss of generality, we can assume 0 is
an eigenvalue of B.

Because B has 0 as an eigenvalue, then inequalities p = dim(kernel(B)) > 0 and
k = dim(Image(B)) < n hold, with p+ k = n. If k = 0, then B = 0, which is a Jordan
form, and there is nothing to prove. Assume henceforth p and k positive. Let S =

⟨ col(B, i1)| · · · | col(B, ik)⟩ denote the matrix of pivot columns i1,. . . ,ik ofB. The pivot
columns are known to span Image(B). Let A be the k × k basis representation matrix

defined by the equation BS = SA, or equivalently, B col(S, j) =
∑k

i=1 aij col(S, i). The
induction hypothesis applied to A implies there is a basis of k-vectors satisfying Jordan
chain relations

Ax⃗ j
i = λix⃗

j
i + x⃗ j−1

i , j > 1, Ax⃗1
i = λix⃗

1
i .

The values λi, i = 1, . . . , p, are the distinct eigenvalues of A. Apply S to these equations
to obtain for the n-vectors y⃗ j

i = Sx⃗ j
i the Jordan chain relations

By⃗ j
i = λiy⃗

j
i + y⃗ j−1

i , j > 1, By⃗ 1
i = λiy⃗

1
i .

Because S has independent columns and the k-vectors x⃗ j
i are independent, then the

n-vectors y⃗ j
i are independent.

The plan is to isolate the chains for eigenvalue zero, then extend these chains by one
vector. Then 1-chains will be constructed from eigenpairs for eigenvalue zero to make n
generalized eigenvectors.

Suppose q values of i satisfy λi = 0. We allow q = 0. For simplicity, assume such
values i are i = 1, . . . , q. The key formula y⃗ j

i = Sx⃗ j
i implies y⃗ j

i is in Image(B), while
By⃗ 1

i = λiy⃗
1
i implies y⃗ 1

1,. . . ,y⃗
1
q are in kernel(B). Each eigenvector y⃗ 1

i starts a Jordan

chain ending in y⃗
m(i)
i . Then10 the equation Bu⃗ = y⃗

m(i)
i has an n-vector solution u⃗ .

We label u⃗ = y⃗
m(i)+1
i . Because λi = 0, then Bu⃗ = λiu⃗ + y⃗

m(i)
i results in an extended

Jordan chain
By⃗ 1

i = λiy⃗
1
i

By⃗ 2
i = λiy⃗

2
i + y⃗ 1

i
...

By⃗
m(i)
i = λiy⃗

m(i)
i + y⃗

m(i)−1
i

By⃗
m(i)+1
i = λiy⃗

m(i)+1
i + y⃗

m(i)
i

10The n-vector u⃗ is constructed by setting u⃗ = 0⃗ , then copy components of k-vector x⃗
m(i)
i

into pivot locations: row(u⃗ , ij) = row(x⃗
m(i)
i , j), j = 1, . . . , k.
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Extend the independent set {y⃗ 1
i }

q
i=1 to a basis of kernel(B) by adding s = n − k − q

additional independent vectors v⃗ 1, . . . , v⃗ s. This basis consists of eigenvectors of B for
eigenvalue 0. Then the set of n vectors v⃗ r, y⃗

j
i for 1 ≤ r ≤ s, 1 ≤ i ≤ p, 1 ≤ j ≤ m(i)+1

consists of eigenvectors of B and vectors that satisfy Jordan chain relations. These
vectors are columns of a matrix P that satisfies BP = PJ where J is a Jordan form.

To prove P invertible, assume a linear combination of the columns of P is zero:

p∑
i=q+1

m(i)∑
j=1

bji y⃗
j
i +

q∑
i=1

m(i)+1∑
j=1

bji y⃗
j
i +

s∑
i=1

civ⃗ i = 0⃗ .

Apply B to this equation. Because Bw⃗ = 0⃗ for any w⃗ in kernel(B), then

p∑
i=q+1

m(i)∑
j=1

bjiBy⃗ j
i +

q∑
i=1

m(i)+1∑
j=2

bjiBy⃗ j
i = 0⃗ .

The Jordan chain relations imply that the k vectors By⃗ j
i in the linear combination consist

of λiy⃗
j
i + y⃗ j−1

i , λiy⃗
1
i , i = q + 1, . . . , p, j = 2, . . . ,m(i), plus the vectors y⃗ j

i , 1 ≤ i ≤ q,

1 ≤ j ≤ m(i). Independence of the original k vectors {y⃗ j
i} plus λi ̸= 0 for i > q implies

this new set is independent. Then all coefficients in the linear combination are zero.

The first linear combination then reduces to
∑q

i=1 b
1
i y⃗

1
i +
∑s

i=1 civ⃗ i = 0⃗ . Independence
of the constructed basis for kernel(B) implies b1i = 0 for 1 ≤ i ≤ q and ci = 0 for
1 ≤ i ≤ s. Therefore, the columns of P are independent. The induction is complete. ■

Exercises 11.6 �

Jordan block definition. Write out the
Jordan form matrix explicitly.

1. diag(B(7, 2), B(5, 3))

Answer:


7 1 0 0 0
0 7 0 0 0
0 0 5 1 0
0 0 0 5 1
0 0 0 0 5


2. diag(B(0, 2), B(4, 3))

3. diag(B(−1, 1), B(−1, 2), B(5, 3))

4. diag(B(1, 1), B(5, 2), B(5, 3))

Jordan form definition. Which are Jor-
dan forms and which are not? Explain.

5.


0 1 0 0 0
0 0 0 0 0
0 0 5 1 0
0 0 0 5 1
0 0 0 0 5



6.

5 1 0 0
0 5 0 0
0 0 5 1
0 0 0 5



7.

1 0 0 0
0 7 0 0
0 0 1 0
0 0 5 1



8.


5 1 0 0 0
0 5 0 0 0
0 0 5 1 0
0 0 0 5 0
0 0 0 0 5


Decoding A = PJP−1. Decode A =
PJP−1 in each case, displaying explicitly
the Jordan chain relations and their solu-
tions.

9. A =


4 8 0 0 −8
0 4 0 0 0
2 8 2 0 −8
0 20 0 2 −12
0 8 0 0 −4

,

J = diag(−4, 2, 2, 4, 4)

10. A =


−4 −4 −12 12 4
0 0 0 0 0
−8 4 −12 16 0
−8 4 −16 20 0
0 0 −4 4 0

,
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J = diag(−4, 4, 4, 0, 0)

Geometric and algebraic multiplicity.
Determine GeoMult(λ) and AlgMult(λ).

11. A =


4 8 0 0 −8
0 4 0 0 0
2 8 2 0 −8
0 20 0 2 −12
0 8 0 0 −4

, λ = 4

12. A =


−4 −4 −12 12 4
0 0 0 0 0
−8 4 −12 16 0
−8 4 −16 20 0
0 0 −4 4 0

, λ = 4

Generalized eigenvectors. Find all gen-
eralized eigenvectors and represent A =
PJP−1. Check the answer in a computer
algebra system.

13. A =


4 8 0 0 −8
0 4 0 0 0
2 8 2 0 −8
0 20 0 2 −12
0 8 0 0 −4

,

Answer: J = diag(−4, 4, 4, 2, 2),

P =


1 0 0 1 0
0 0 0 0 1
1 0 1 1 0
2 1 0 0 4
1 0 0 0 1



14. A =


−4 −4 −12 12 4
0 0 0 0 0
−8 4 −12 16 0
−8 4 −16 20 0
0 0 −4 4 0

,

Answer: J = diag(−4, 4, 4, 0, 0),

P =


1 2 0 1 1
0 0 0 2 −1
1 −1 1 0 3
1 0 1 0 3
0 2 0 3 0



15. A =

0 2 −2 −2
2 0 −2 −4
2 2 −4 −2
0 0 0 −4

,

Ans: J = diag(0,−4,−2,−2),

P =

1 0 1 −1
1 1 −4 0
1 0 −3 −1
0 1 0 0



16. A =


−2 2 −1 −1 0
0 1 0 0 0
0 1 1 0 0
0 0 0 2 1
0 0 0 0 2

,

Ans: J = diag(2, 2, B(2, 3)),

P =


1 1 1 −2 3
0 1 0 0 0
1 2 0 0 0
0 0 0 1 −2
0 0 0 0 1



17. A =


2 1 0 1 0
0 2 0 0 0
0 1 2 0 0
0 0 0 2 1
0 0 0 0 2

,

Ans: J = diag(B(2, 3), B(2, 2)),

P =


1 2 1 2 1
0 0 2 0 2
0 2 1 2 1
0 1 0 0 0
0 0 1 0 0



18. A =


2 0 0 1 0
1 3 −1 0 0
1 1 1 0 0
0 0 0 2 1
0 0 0 0 2

,

Ans: J = diag(B(2, 4), 2),

P =


0 1 0 1 1
1 0 0 0 0
1 0 0 1 1
0 0 1 0 0
0 0 0 1 0


Number of Jordan Blocks. Outlined
here is the derivation of

s(j) = 2k(j − 1)− k(j − 2)− k(j).

Definitions:

• s(j)= number of blocks B(λ, j)

• N = A− λI

• k(j) = dim(kernel(N j))

• Lj = kernel(N j−1)⊥ relative to
kernel(N j)

• ℓ(j) = dim(Lj)

• p minimizes
kernel(Np) = kernel(Np+1)

19. Verify k(j) ≤ k(j + 1) from

kernel(N j) ⊂ kernel(N j+1).
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20. Verify the direct sum formula

kernel(N j) = kernel(N j−1)⊕ Lj .

Then k(j) = k(j − 1) + ℓ(j).

21. Given Nmw⃗ = 0⃗ , Nm−1w⃗ ̸= 0⃗ , de-
fine v⃗ i = Nm−iw⃗ , i = 1, . . . ,m. Prove
{v⃗ 1, . . . , v⃗m} is independent and they
satisfy Jordan chain relationsN v⃗ 1 = 0⃗ ,
N v⃗ i+i = v⃗ i.

22. A block B(λ, p) corresponds to a Jor-
dan chain v⃗ 1, . . . , v⃗ p constructed
from the Jordan decomposition. Use
Np−1v⃗ p = v⃗ 1 and kernel(Np) =
kernel(Np+1) to show that the num-
ber of such blocks B(λ, p) is ℓ(p). Then
for p > 1, s(p) = k(p)− k(p− 1).

23. Show that ℓ(j−1)−ℓ(j) is the number
of blocks B(λ, j) for 2 < j < p. Then

s(j) = 2k(j − 1)− k(j)− k(j − 2).

24. Test the formulas above on the special
matrices

A=diag(B(λ, 1), B(λ, 1), B(λ, 1)),

A=diag(B(λ, 1), B(λ, 2), B(λ, 3)),

A=diag(B(λ, 1), B(λ, 3), B(λ, 3)),

A=diag(B(λ, 1), B(λ, 1), B(λ, 3)),

Computing Jordan m-chains. Find the
Jordan m-chain formulas for the given
eigenvalue. Then solve them to find the
generalized eigenvectors.

25. A =


1 0 1 0 1
0 1 0 1 1
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1



26. A =


2 0 0 1 0
1 3 −1 0 0
1 1 1 0 0
0 0 0 2 1
0 0 0 0 2

, λ = 2

Generalized Eigenspace Basis.

Let A be n×n with distinct eigenvalues λi,
ni = AlgMult(λi) and Ei = kernel((A −
λiI)

ni), i = 1, . . . , k. Assume a Jordan de-
composition A = PJP−1.

27. Let Jordan block B(λ,m) appear in J .
Prove that a Jordan chain correspond-
ing to this block is a set of m indepen-
dent columns of P .

28. Let Bλ be the union of all columns of P
originating from Jordan chains associ-
ated with Jordan blocks B(λ, j). Prove
that Bλ is an independent set.

29. Verify that Bλ has AlgMult(λ) basis
elements.

30. Prove that Ei = span (Bλi) and
dim(Ei) = ni, i = 1, . . . , k.

Direct Sum Decomposition.

31. Let A =

(
2 1 0
0 2 1
0 0 2

)
. Let λ = 2. Com-

pute k = AlgMult(λ) and a basis of gen-
eralized eigenvectors for the subspace
kernel((A− λI)k).

32. Let A =

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 4

, y⃗ =

2
0
1
9

.

Find x⃗1, x⃗2 in decomposition y⃗ = x⃗1+
x⃗2 in Theorem 11.42.

Exponential Matrices. Compute the ex-
ponential matrix eAt on paper. Check the
answer using maple.

33. A =

(
2 0 0
0 3 0
0 0 0

)

34. A =

(
2 1 0
0 2 0
0 0 4

)

Nilpotent matrices. Find the nilpotency
of N .

35. N =

(
0 1 0
0 0 0
0 0 0

)

36. N =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


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11.6 Jordan Form and Eigenanalysis

Real Jordan Decomposition
Find Jordan decomposition A = PJP−1

where J and P are real matrices.

37. A =

(
−2 6 −1
0 4 1
0 1 4

)
. Answer:

λ = −2, 4± i,

J =

(
−2 0 0
0 4 1
0 −1 4

)
, P =

(
1 0 1
0 0 1
0 1 0

)

38. A =

(
−31 −10 18
−15 −5 10
−54 −20 32

)
. Answer:

λ = −4,±5i

J =

(
−4 0 0
0 0 5
0 −5 0

)
, P =

(
2 2 0
0 1 −1
3 4 0

)

Solving x⃗ ′ = Ax⃗

Solve for x⃗ in the differential equation.

39. x⃗ ′ =

(
−2 6 −1
0 4 1
0 1 4

)
x⃗ .

40. x⃗ ′ =

(
−31 −10 18
−15 −5 10
−54 −20 32

)
x⃗ .

Numerical Instability
Show directly that Jordan form J of A sat-
isfies limϵ→0+ J(ϵ) ̸= J(0).

41. A =

(
1 1
ϵ 1

)

42. A =

(
0 1 1
0 ϵ 1
0 0 0

)
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11.7 Nonhomogeneous Linear Systems

11.7 Nonhomogeneous Linear Systems

Variation of Parameters

The Method of Variation of Parameters solves a linear nonhomogeneous
system

x⃗ ′ = Ax⃗ + F⃗ (t).

Historically, it is substitution method which solves the nonhomogeneous system
using a trial solution of the form

x⃗(t) = eAt x⃗ 0(t).

The vector function x⃗ 0(t) is to be determined. The method is imagined to origi-
nate by varying x⃗ 0 in the general solution x⃗ (t) = eAt x⃗ 0 of the linear homogenous
system x⃗ ′ = Ax⃗ . The names coined from this idea are variation of parameters
and variation of constants.

Modern use of variation of parameters is through a formula, memorized for rou-
tine use.

Theorem 11.45 (Variation of Parameters: Constant Linear System)
Let A be a constant n× n matrix and F⃗ (t) a continuous function near t = t0. The
unique solution x⃗ (t) of the matrix initial value problem

x⃗ ′(t) = Ax⃗ (t) + F⃗ (t), x⃗ (t0) = x⃗ 0,

is given by the Variation of Parameters formula

x⃗ (t) = eAtx⃗ 0 + eAt

∫ t

t0

e−sAF⃗(s)ds.(1)

Proof of Theorem 11.45. Define

u⃗ (t) = x⃗0 +

∫ t

t0

e−sAF⃗ (s)ds.

To show (1) holds, we must verify x⃗ (t) = eAtu⃗(t). First, the function u⃗ (t) is differ-

entiable with continuous derivative e−tAF⃗(t), by the fundamental theorem of calculus
applied to each of its components. The product rule of calculus applies to give

x⃗ ′(t) =
(
eAt
)′
u⃗(t) + eAtu⃗ ′(t)

= AeAtu⃗(t) + eAte−AtF⃗(t)

= Ax⃗ (t) + F⃗(t).

Therefore, x⃗ (t) satisfies the differential equation x⃗ ′ = Ax⃗ + F⃗(t). Because u⃗ (t0) = x⃗0,
then x⃗ (t0) = x⃗0, which shows the initial condition is also satisfied. ■
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11.7 Nonhomogeneous Linear Systems

Theorem 11.46 (Variation of Parameters: General Linear System)
Let A(t) be an n×n matrix and F⃗ (t) a vector function, both with continuous entries
near t = t0. Let Φ(t) be the n× n matrix solution of Φ′(t) = A(t)Φ(t), Φ(t0) = I,
established by the Picard-Lindelöf Theorem.

Then the unique solution x⃗ (t) of the matrix initial value problem

x⃗ ′(t) = A(t)x⃗(t) + F⃗ (t), x⃗ (t0) = x⃗ 0

is given by

x⃗ (t) = Φ(t)x⃗ 0 +Φ(t)

∫ t

t0

Φ−1(s)F⃗(s)ds.(2)

Proof of Theorem 11.46. Define

u⃗(t) = x⃗0 +

∫ t

t0

Φ−1(s)F⃗(s)ds.

Equation (2) holds provided x⃗ (t) = Φ(t)u⃗(t). First, the function u⃗(t) is differentiable

with continuous derivative Φ(t)F⃗(t), by the fundamental theorem of calculus applied to
each of its components. The product rule of calculus implies

x⃗ ′(t) = (Φ(t))
′
u⃗(t) + Φ(t)u⃗ ′(t)

= A(t)Φ(t)u⃗(t) + Φ(t)Φ−1(t)F⃗ (t)

= A(t)x⃗ (t) + F⃗(t).

Therefore, x⃗ (t) satisfies the differential equation x⃗ ′ = A(t)x⃗+F⃗(t). Because u⃗(t0) = x⃗0,
then x⃗ (t0) = x⃗0 and the initial condition is satisfied. ■

Example 11.13 (Variation of Parameters: 2× 2 System)

Let A =

(
4 0
0 5

)
and F⃗(t) = et

(
2
1

)
. Solve x⃗ ′ = Ax⃗ + F⃗(t) using the formula

x⃗p =
∫ t
0 e

A(t−s)F⃗ (s)ds and find the shortest expression

x⃗p(t) =

(
−2

3 e
t

−1
4 e

t

)

Details for Example 11.13: Because A is diagonal, then eAt =

(
e4t 0
0 e5t

)
. The

integration problem:

x⃗p(t) =

∫ t

0

eA(t−s)F⃗ (s)ds

=

∫ t

0

(
e4t−4s 0

0 e5t−5s

) (
2
1

)
es ds

=

(
2
3 e

4 t − 2
3 e

t

1
4 e

5 t − 1
4 e

t

)
The integration was by CAS maple:
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11.7 Nonhomogeneous Linear Systems

with(LinearAlgebra):A:=Matrix([[4,0],[0,5]]);

V:=t->MatrixExponential(A,t);

F:=t->Vector([2*exp(t),1*exp(t)]);

k:=(t,s)->V(t). V(s)^(-1) . F(s);# integrand=k(t,s)

w:=map(u->int(u,s=0..t),k(t,s));

Shortening the expression depends on superposition: x⃗ = x⃗h + x⃗p. The homogeneous
terms for removal have the form

x⃗h(t) =

(
e4t 0
0 e5t

)(
c1
c2

)
=

(
c1e

4t

c2e
5t

)
Choose c1 = − 2

3 , c2 = − 1
4 , then add this x⃗h(t) to the integration result:

x⃗p(t) =

(
− 2

3 e
t

− 1
4 e

t

)

Theorem 11.47 (Variation of Parameters: Scalar 2nd Order)

Let a ̸= 0, b, c, f be continuous functions defined near t = t0. Let x1(t), x2(t) be two
linearly independent solutions of the homogeneous differential equation a(t)x′′(t) +
b(t)x′(t) + c(t)x(t) = 0. Then the unique solution xp(t) of the second order initial
value problem

a(t)x′′(t) + b(t)x′(t) + c(t)x(t) = f(t), x(t0) = 0, x′(t0) = 0(3)

is given by the Variation of Parameters formula

xp(t) =

∫ t

t0

k(t, s)
f(s)

a(s)
ds, k(t, r) =

∣∣∣∣ x1(s) x2(s)
x1(t) x2(t)

∣∣∣∣∣∣∣∣ x1(s) x2(s)
x′1(s) x′2(s)

∣∣∣∣(4)

Proof of Theorem 11.47. Formula (4) is discovered via Theorem 11.46 using the

companion matrix for scalar equation (3) on 846, which is A(t) =
1

a(t)

(
0 1
−c(t) −b(t)

)
,

and F⃗(t) =
1

a(t)

(
0

f(t)

)
. This proof path is pursued in the exercises. A direct proof will

be given which requires fewer background topics.

Verify Solution. To begin, expand k(t, s) = u1(s)x1(t) + u2(t)x)2(t) where u1(s) =

−x2(s)/W (s), u2(s) = x1(s)/W (s) and W (s) =

∣∣∣∣x1(s) x2(s)
x′
1(s) x

′
2(s)

∣∣∣∣. Then
xp(t) = x1(t)

∫ t

t0

u1(s)
f(s)

a(s)
ds+ x2(t)

∫ t

t0

u2(s)
f(s)

a(s)
ds.

Expression xp(t) is expected to satisfy the differential equation, verified by the following
steps.
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11.7 Nonhomogeneous Linear Systems

1 LHS = ax′′
p + bx′

p + cxp Define xp by (4)

2 =
∫ t

t0
(a(t)x′′

1 + b(t)x′
1 + c(t)x1)

f(s)

a(s)
ds+

∫ t

t0
(a(t)x′′

2 + b(t)x′
2 + c(t)x2)

f(s)

a(s)
ds+

a(t)
f(t)

a(t)

3 = 0 + 0 + f(t) Solution xp verified.

1 : Symbol LHS is the left hand side of (3).

2 : Product rule of calculus and the Fundamental Theorem of Calculus. In particular,
due to cancellations:

x′
p(t) = x′

1(t)
∫ t

t0
u1(s)

f(s)

a(s)
ds+ x′

2(t)
∫ t

t0
u2(s)

f(s)

a(s)
ds,

x′′
p(t) = x′′

1(t)
∫ t

t0
u1(s)

f(s)

a(s)
ds+ x′′

2(t)
∫ t

t0
u2(s)

f(s)

a(s)
ds+ a(t)

f(t)

a(t)
.

3 : The homogeneous equation has solutions x1, x2.

Initial Conditions. Equation xp(t0) = 0 follows because the integral is taken over a

zero-length interval. Equation x′
p(t0) = 0 follows from 2 details.

Example 11.14 (Scalar 2nd Order Euler Differential Equation)

Solve for the general solution:

x2y′′ + 3xy′ + y = ln(x2), x > 0

Details for Example 11.14:
The answer: yp(x) = ln(x2)− 4, yh(t) = c1x

−1 + c2x
−1 ln |x|, details below.

Undetermined Coefficients is applied after a change of variables x = et into the
forced constant equation:

d2y(et)

dt2
+ 2

dy(et)

dt
+ y(et) = 2t

It’s characteristic equation is r2 + 2r + 1 = 0. Then undetermined coefficient solution
2t− 4 implies

y(et) = c1e
−t + c2te

−t + 2t− 4

y(x) = c1
1

x
+ c2

ln |x|
x

+ 2 ln |x| − 4

Variation of Parameters directly finds y(x) by integration. To use the formulas,
change symbols: x→ t and y → x. Then the original differential equation becomes:

t2x′′(t) + 3tx′(t) + x(t) = ln(t2)
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11.7 Nonhomogeneous Linear Systems

Euler differential equation theory finds a basis x1(t) =
1
t , x2(t) =

ln |t|
t for the homoge-

neous problem t2x′′(t) + 3tx′(t) + x(t) = 0. Then
f(s)

a(s)
= s−2 ln(s2) and

k(t, s) =

∣∣∣∣∣∣∣
1

s

ln |s|
s

1

t

ln |t|
t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1

s

ln |s|
s

−1
s2

1

s2
− ln |s|

s2

∣∣∣∣∣∣∣
=

s2 ln |t/s|
t

Choose t0 = 1 in the variation of parameters formula. Then for t > 0:

xp(t) =

∫ t

1

k(t, s)
f(s)

a(s)
ds

=

∫ t

1

(
ln |t/s| ln |s2|

t

)
ds

= ln(t2)− 4 +
2 ln |t|

t
+

4

t

The last two terms of xp are homogeneous solutions, discarded to give the shortest
particular solution xp(t) = ln(t2)− 4.

Example 11.15 (Nonhomogeneous 2× 2 System in CAS maple)

Solve x′ = 2x+ y + t2, y′ = 2x+ y, x(0) = y(0) = 0 by computer algebra.

Details for Example 11.15:

f:=(x,y)->2*x+y; g:=(x,y)->2*x+y;

F:=t->t^2; G:=t->0;

des:=diff(x(t),t)=f(x(t),y(t))+F(t),

diff(y(t),t)=g(x(t),y(t))+G(t);

dsolve({des,x(0)=0,y(0)=0},[x(t),y(t)]);

The reported answer:

x (t) = −2

9
t2 − 4 t

27
+

4 e3 t

81
− 4

81
+ 1/9 t3

y (t) = −2

9
t3 − 2/9 t2 +

4 e3 t

81
− 4 t

27
− 4

81

Undetermined Coefficients

The trial solution method known as the method of undetermined coefficients can
be applied to vector-matrix systems x⃗ ′ = Ax⃗ + F⃗ (t) when the components of F⃗
are linear combinations of terms of the form

tkeat cos(bt) or tkeat sin(bt),

916



11.7 Nonhomogeneous Linear Systems

called Euler solution atoms. It is efficient for exposition to write F⃗ in terms
of the columns e⃗ 1, . . . , e⃗n of the n× n identity matrix I:

F⃗(t) =
n∑

j=1

Fj(t)⃗e j .

Then a particular solution of x⃗ ′ = Ax⃗ + F⃗(t) is given by

x⃗ (t) =
n∑

j=1

x⃗ j(t)

where x⃗ j(t) for 1 ≤ j ≤ n is a particular solution of the simpler equation

x⃗ ′(t) = Ax⃗ (t) + f(t)⃗c , f = Fj , c⃗ = e⃗ j .

A trial solution x⃗ (t) for non-homogeneous equation x⃗ ′(t) = Ax⃗ (t) + f(t)⃗c can
be determined from the following Initial Trial Solution Rule:

Let f(t) be a linear combination of Euler solution atoms. Iden-
tify independent Euler atoms Aj(t) whose linear combinations in-
clude all derivatives of f(t). The initial trial solution is expression

x⃗ (t) =
∑

j Aj(t)d⃗ j, a linear combination of atoms with undeter-

mined vector coefficients
{
d⃗ j

}
.

In the scalar case, the trial solution must be modified if it has an Euler solution
atom which is a solution to the homogeneous equation. In the vector case, if f(t)
is a polynomial, then this correction rule for the initial trial solution is avoided
by assuming the matrix A is invertible. This assumption means that r = 0 is not
a root of det(A− rI) = 0, which prevents the homogenous solution from having
any polynomial terms.

The method substitutes the initial vector trial solution into the differential equa-

tion to find the undetermined coefficients
{
d⃗ j

}
. The answers

{
d⃗ j

}
replaced in

the trial solution determine a particular solution to the non-homogeneous vector
differential equation.

Example 11.16 (Undetermined Coefficients: Polynomial Solution)

Solve by undetermined coefficients:

dx⃗

dt
=

(
1 2
0 −1

)
x⃗ +

(
1 + t
t2

)
Details Example 11.16:

Solution x⃗h:

Let A =

(
1 2
0 −1

)
. Find eAt:
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11.7 Nonhomogeneous Linear Systems

eAt = eλ1tI +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I) Putzer’s formula page 885.

= etI +
e−t − et

−1− 1
(A− I) Because λ1 = 1, λ2 = −1.

= et
(
1 0
0 1

)
+

et − e−t

2

(
0 2
0 −2

)
Because A =

(
1 2
0 −1

)
.

=

(
et et − e−t

0 e−t

)
Verified in maple.

Then

x⃗h(t) = eAt

(
c1
c2

)
= (c1 + c2)e

t

(
1
0

)
+ c2e

−t

(
−1
1

)
The constant vectors in x⃗h(t) are eigenvectors of A. The eigenanalysis method produces
an equivalent formula.

Solution x⃗p:

The desired shortest particular solution is x⃗p(t) =

(
−2t2 − t− 6
t2 − 2t+ 2

)
, obtained by the

method of undetermined coefficients.

The forcing term is a vector linear combination of Euler atoms 1, t, t2:

F⃗ (t) =

(
1 + t
t2

)
=

(
1
0

)
+ t

(
1
0

)
+ t2

(
0
1

)
Select trial solution11 x⃗ (t) = d⃗1 + td⃗2 + t2d⃗3. Substitute it into x⃗ ′ = Ax⃗ + F⃗(t):

d⃗2 + 2td⃗3 = Ad⃗1 + tAd⃗2 + t2Ad⃗3 + F⃗(t)

d⃗2 + 2td⃗3 = Ad⃗1 + tAd⃗2 + t2Ad⃗3 +

(
1
0

)
+ t

(
1
0

)
+ t2

(
0
1

)
Collect left on Euler atoms 1, t, t2:

(1)

(
d⃗2 −Ad⃗1 −

(
1
0

))
+ (t)

(
2d⃗3 −Ad⃗2 −

(
1
0

))
+ (t2)

(
−Ad⃗3 −

(
0
1

))
= 0⃗

Independence of Euler atoms implies the vector coefficients are zero:

d⃗2 −Ad⃗1 −
(
1
0

)
= 0⃗

2d⃗3 −Ad⃗2 −
(
1
0

)
= 0⃗

−Ad⃗3 −
(
0
1

)
= 0⃗

11Derivatives of 1, t, t2 are spanned by 1, t, t2.
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Let B = A−1. Solve as a triangular system, variables reversed:

d⃗3 = −B
(
0
1

)
=

(
−2
1

)
d⃗2 = B

(
2d⃗3 −

(
1
0

))
=

(
−1
−2

)
d⃗1 = B

(
d⃗2 −

(
1
0

))
=

(
−6
2

)
Replace answers d⃗1, d⃗2, d⃗3 in the trial solution to find particular solution:

x⃗p(t) =

(
−6
2

)
+ t

(
−1
−2

)
+ t2

(
−2
1

)

Example 11.17 (Undetermined Coefficients: Polynomial-Exponential)

Solve by undetermined coefficients:

dx⃗

dt
=

(
1 2
0 −1

)
x⃗ + e2t

(
t
3

)
Details Example 11.17:

Solution x⃗h:

Let A =

(
1 2
0 −1

)
. The homogenous solution from Example 11.16:

x⃗h(t) = eAt

(
c1
c2

)
= (c1 + c2)e

t

(
1
0

)
+ c2e

−t

(
−1
1

)
Solution x⃗p:

The desired shortest particular solution is x⃗p(t) =

(
e2t + te2t

e2t

)
, obtained by the method

of undetermined coefficients.

The forcing term is a vector linear combination of Euler atoms e2t, te2t:

F⃗(t) =

(
te2t

3e2t

)
= e2t

(
0
3

)
+ te2t

(
1
0

)
Select trial solution x⃗ (t) = e2td⃗1 + te2td⃗2.

12 Substitute it into x⃗ ′ = Ax⃗ + F⃗ (t):

2e2td⃗1 + e2td⃗2 + 2te2td⃗2 = e2tAd⃗1 + te2tAd⃗2 + e2t
(
0
3

)
+ te2t

(
1
0

)
Cancel e2t. Then collect left on Euler atoms 1, t:

(1)

(
2d⃗1 −Ad⃗1 −

(
0
3

)
+ d⃗2

)
+ (t)

(
2d⃗2 −Ad⃗2 −

(
1
0

))
= 0⃗

12Derivatives of e2t, te2t are spanned by e2t, te2t.
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Independence of Euler atoms implies the vector coefficients are zero:

2d⃗1 −Ad⃗1 −
(
0
3

)
+ d⃗2 = 0⃗

2d⃗2 −Ad⃗2 −
(
1
0

)
= 0⃗

Factor 2I − A from each equation. Let B = (2I − A)−1. Solve as a triangular system,
variables reversed:

d⃗2 = B

(
1
0

)
=

(
1
0

)
d⃗1 = B

((
0
3

)
− d⃗2

)
=

(
1
1

)
Replace d⃗1, d⃗2 in the trial solution to find particular solution

x⃗p(t) = e2t
(
1
1

)
+ te2t

(
1
0

)
=

(
e2t + te2t

e2t

)

There are nuances in the algorithm not revealed in the preceding two examples.
Two theorems formalize the methods.

Theorem 11.48 (Polynomial Solutions)
Let f(t) =

∑k
j=0 pj

tj

j! be a polynomial of degree k. Assume A is an n×n constant in-

vertible matrix. Then u⃗ ′ = Au⃗+f(t)⃗c has a polynomial solution u⃗(t) =
∑k

j=0 d⃗ j
tj

j!

of degree k with vector coefficients
{
d⃗ j

}
given by the relations

d⃗ j = −
k∑

i=j

piA
j−i−1c⃗ , 0 ≤ j ≤ k.

Theorem 11.49 (Polynomial × Exponential Solutions)
Let g(t) =

∑k
j=0 pj

tj

j! be a polynomial of degree k. Assume A is an n× n constant

matrix and B = A − aI is invertible. Then u⃗ ′ = Au⃗ + eatg(t)⃗c has a polynomial-

exponential solution u⃗ (t) = eat
∑k

j=0 d⃗ j
tj

j! with vector coefficients
{
d⃗ j

}
given by

the relations

d⃗ j = −
k∑

i=j

piB
j−i−1c⃗ , 0 ≤ j ≤ k.

Proof of Theorem 11.48. Substitute u⃗ (t) =
∑k

j=0 d⃗ j
tj

j! into the differential equation,
then

k−1∑
j=0

d⃗ j+1
tj

j!
= A

k∑
j=0

d⃗ j
tj

j!
+

k∑
j=0

pj
tj

j!
c⃗ .

Terms on the right for j = k must add to zero and the others must match the left side
coefficients of tj/j!, giving the relations

Ad⃗k + pkc⃗ = 0⃗ , d⃗ j+1 = Ad⃗ j + pj c⃗ .

920



11.7 Nonhomogeneous Linear Systems

Solve the relations recursively to give the formulas

d⃗k = −pkA−1c⃗ ,

d⃗k−1 = −
(
pk−1A

−1 + pkA
−2
)
c⃗ ,

...

d⃗0 = −
(
p0A

−1 + · · ·+ pkA
−k−1

)
c⃗ .

The relations above can be summarized by the formula

d⃗ j = −
k∑

i=j

piA
j−i−1c⃗ , 0 ≤ j ≤ k.

The calculation shows that if u⃗(t) =
∑k

j=0 d⃗ j
tj

j! and d⃗ j is given by the last formula,

then u⃗(t) substituted into the differential equation gives matching LHS and RHS. ■

Proof of Theorem 11.49. Let u⃗ (t) = eatv⃗ (t). Then u⃗ ′ = Au⃗ + eatg(t)⃗c implies
v⃗ ′ = (A− aI)v⃗ + g(t)⃗c . Apply Theorem 11.48 to v⃗ ′ = Bv⃗ + g(t)⃗c . ■

Exercises 11.7 �

Variation of Parameters

Let A(t) =

(
0 1

−c(t)/a(t) −b(t)/a(t)

)
,

F⃗(t) =
1

a(t)

(
0

f(t)

)
, x⃗=

(
u(t)
u′(t)

)
.

1. Verify equivalence of a(t)u′′ + b(t)u′ +

c(t)u = f(t) and x⃗ ′ = A(t)x⃗ + F⃗(t).

2. For u′′ + 100u = sin(t), find A(t) and

F⃗(t).

3. For u′′ = f(t), find A(t) and F⃗(t).

4. For u′′ = f(t), let u1 = 1, u2 = t,

Φ(t) =

(
u1 u2
u′
1 u

′
2

)
. Verify |Φ(t)| = 1,

then find A(t) = Φ′(t)Φ−1(t).

5. State Theorem 11.46 for n = 2, then ex-
plain how it applies to this special case.

6. Prove Theorem 11.47 using the previous
exercise.

Variation of Parameters:
Scalar 2nd Order
Let a(t)u′′ + b(t)u′ + c(t)u = 0 have
two independent solutions u1, u2.

Define Ψ(t) =

(
u1 u2
u′
1 u

′
2

)
. Then:

7. Matrix Ψ(t) has an inverse.

8. Matrix Φ(t) = Ψ(t)Ψ−1(t0) is invertible
and Φ(t0) = I.

9. Let Ψ(t) =

(
1 t
0 1

)
. Define(

u
v

)
= Ψ(t)

∫ t

0
Ψ−1(s)f(s)ds.

Then u is a particular solution of u′′ =
f(t).

10. Let Ψ(t) =

(
et e−t

et −e−t

)
. Define(

u
v

)
= Ψ(t)

∫ t

0
Ψ−1(s)f(s)ds.

Then u is a particular solution of u′′ −
u = f(t).

Variation of Parameters

Let A =

(
2 0
0 3

)
. Solve x⃗ ′ = Ax⃗ + F⃗(t) us-

ing x⃗p =
∫ t

0
eA(t−s)F⃗(s)ds and computer

assist.

11. F⃗(t) = et
(
1
2

)
, x⃗p =

(
e2t − et

e3t − et

)

12. F⃗(t) =

(
et

e−t

)
,

x⃗p=

(
e2t − et

1
4e

3t − 1
4e

−t

)
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Undetermined Coefficients

Let A =

(
1 2
0 −1

)
. Solve x⃗ ′=Ax⃗+F⃗(t) by

undetermined coefficients. Assume

x⃗h(t)=c1e
t

(
1
0

)
+c2e

−t

(
−1
1

)
13. F⃗ (t) = et

(
1
2

)
,

x⃗p=

(
e−t+3tet−et

et−e−t

)
14. F⃗ (t) = 2

(
cos t
et

)
,

x⃗p =

(
2tet+sin(t)− cos(t)+e−t

et−e−t

)
Undetermined Coefficients

Let A =

(
2 0
0 3

)
. Solve x⃗ ′ = Ax⃗ +

F⃗ (t) by undetermined coefficients. Assume

x⃗h(t) =

(
c1e

2t

c2e
3t

)
.

15. F⃗(t) = et
(
1
2

)
, x⃗p = et

(
−1
−1

)

16. F⃗(t) = 4

(
et

e−t

)
, x⃗p = e−t

(
−4
−1

)

17. F⃗(t) = 10

(
cos t
et

)
,

x⃗p =

(
−4 cos(t) + 2 sin(t)

−5et
)

18. F⃗(t) = 2et
(
cos t
1

)
,

x⃗p = et
(
− cos(t) + sin(t)

−1

)
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11.8 Second-order Systems

11.8 Second-order Systems

A model problem for second order systems is the system of three masses coupled
by springs studied in section 11.1, equation (6):

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).

(1)

m1 m3

k2 k3 k4k1

m2

Figure 22. Three masses connected by
springs. The masses slide on a frictionless sur-
face.

In vector-matrix form, this system is a second order system

M x⃗ ′′(t) = Kx⃗ (t)

where the displacement x⃗ , mass matrix M and stiffness matrix K are
defined by the formulas

x⃗=

x1
x2
x3

 , M=

m1 0 0
0 m2 0
0 0 m3

 , K=

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

 .

Because M is invertible, the system can always be written as

x⃗ ′′ = Ax⃗ , A = M−1K.

Euler’s Substitution x⃗ = eλtv⃗

Fundamental substitution x⃗ = eλtv⃗ due to L. Euler applies to any vector-matrix
differential system.

Euler’s substitution x⃗ = eλtv⃗ is perhaps the premier method for remembering
the identities

|A− λ2I| = 0 Characteristic equation of x⃗ ′′ = Ax⃗(
A− r2I

)
v⃗ = 0⃗ , v⃗ ̸= 0⃗ Eigenpair equation

Theorem 11.50 (Properties of Euler’s Substitution
→
x= eλt

→
v)

Equation x⃗ = ertv⃗ defines a nonzero solution of x⃗ ′′ = Ax⃗ if and only if (r2, v⃗ ) is
an eigenpair of matrix A.

Proof: Assume x⃗ = ertv⃗ is a solution of x⃗ ′′ = Ax⃗ . Substitution gives r2ertv⃗ =
Av⃗ert. Cancel the exponential, then r2v⃗ = Av⃗ . Linear algebraic homogeneous system(
A− r2I

)
v⃗ = 0⃗ has a nonzero solution v⃗ if and only if the determinant of coefficients

vanishes: |A− r2I| = 0.

Assume (r2, v⃗ ) is an eigenpair of A. The eigenpair equation: r2v⃗ = Av⃗ . Multiply by
ert: r2ertv⃗ = Av⃗ert. Then x⃗ = ertv⃗ ̸= 0⃗ is a solution of x⃗ ′′ = Ax⃗ .
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11.8 Second-order Systems

Negative Eigenvalues of A

Suppose (λ2, v⃗ ) is an eigenpair of real n×n matrix A but λ2 is negative or zero.
What is the Euler solution x⃗ = eλtv⃗ in this case?

For instance, if λ2 = −4, then λ = ±2i. Nonzero eigenvector v⃗ has real com-
ponents, therefore Euler solution x⃗ (t) = eλtv⃗ is a vector with complex entries:
x⃗ (t) = e2itv⃗ = cos(2t)v⃗ + i sin(2t)v⃗ . If A is real, then cos(2t)v⃗ and sin(2t)v⃗ are
independent real solutions of x⃗ ′′ = Ax⃗ . Formally, they are n-vectors times Euler
solution atoms.

To each negative root λ = −ω2 of |A − λI| = 0 with associ-
ated eigenpair (λ, v⃗ ) corresponds two independent real solutions
cos(ωt)v⃗ and sin(ωt)v⃗ to the equation x⃗ ′′ = Ax⃗ .

Cayley-Hamilton-Ziebur Method for x⃗′′ = Ax⃗

The theory of Euler solution atoms impacts intuition for second order systems in
an essential way. Acronym CHZ abbreviates Cayley-Hamilton-Ziebur. See page
841 for the history.

Theorem 11.51 (Cayley-Hamilton-Ziebur Structure for
→
x ′′ = A

→
x)

The solution x⃗ (t) of second order equation x⃗ ′′(t) = Ax⃗(t) is a vector linear combina-
tion of Euler solution atoms corresponding to roots of the equation det(A−r2I) = 0.

Remarks. The equation |A − r2I| = 0 is formed by substitution of λ = r2

into the eigenanalysis characteristic equation |A − λI| = 0. In symbols, the
structure theorem says x⃗ = d⃗ 1A1 + · · · + d⃗kA2n, where A1, . . . , A2n are Euler
solution atoms corresponding to roots r of the determining equation |A−r2I| = 0.
Because Euler solution atoms are real, then all vectors in the relation have real
entries. However, only 2n arbitrary real constants appear in the 2n2 components
of d⃗ 1, . . . , d⃗ 2n, the remaining components being dependent on them.

Proof of the CHZ Structure Theorem. Consider the case when A is 2× 2 (n = 2),
because the proof details are similar in higher dimensions. Expand |A− λI| = 0 to find
the characteristic equation λ2+cλ+d = 0, for some constants c, d. The Cayley-Hamilton

theorem says that A2 + cA + d

(
1 0
0 1

)
=

(
0 0
0 0

)
. Let x⃗ be a solution of x⃗ ′′(t) = Ax⃗ (t).

Multiply the Cayley-Hamilton identity by vector x⃗ and simplify to obtain

A2x⃗ + cAx⃗ + dx⃗ = 0⃗ .

Using equation x⃗ ′′(t) = Ax⃗ (t) backwards, we compute A2x⃗ = Ax⃗ ′′ = x⃗ ′′′′. Replace the
terms of the displayed equation to obtain the relation

x⃗ ′′′′ + cx⃗ ′′ + dx⃗ = 0⃗ .

Each component y of vector x⃗ (t) then satisfies the 4th order linear homogeneous equation
y(4)+ cy(2)+dy = 0, which has characteristic equation r4+ cr2+d = 0. This equation is
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11.8 Second-order Systems

the expansion of determinant equation |A−r2I| = 0. Therefore y is a linear combination
of the Euler solution atoms found from the roots of this equation. It follows then that
x⃗ (t) is a vector linear combination of the Euler solution atoms so identified. ■

Theorem 11.52 (CHZ Method and Negative Eigenvalues)
Assume n×n matrix A has only negative eigenvalues. Then solution x⃗ (t) of second
order equation x⃗ ′′(t) = Ax⃗ (t) is a vector linear combination of Euler solution atoms
of the form cos(ωt), sin(ωt), where |A− ω2I| = 0.

Proof: The result follows from Theorem 11.51, because negative roots of equation |A−
rI| = 0 have the form r = −ω2 for some positive number ω, which implies the Euler
solution atoms for A are of the form cos(ωt), sin(ωt). ■

Euler Substitution and Solution Atoms

Euler’s substitution x⃗ = ektv⃗ has limited use for solving x⃗ ′′ = Ax⃗ . Advantages
of the CHZ method will be illustrated.

Illustration 1. Assume A is 2 × 2 and |A − λI| = 0 has roots λ = −4,−16.
Then |A − r2I| = 0 has four complex roots ±2i,±4i and Euler solution atom
list cos(2t), cos(4t), sin(2t), sin(4t). Because eigenvectors v⃗ are real, then Euler
substitutions are complex: e2itv⃗ , e−2itv⃗ , e4itv⃗ and e−4itv⃗ .

The CHZ method is free of complex numbers. In the 2 × 2 example we have
x⃗ = d⃗ 1 cos(2t) + d⃗ 2 cos(4t) + d⃗ 3 sin(2t) + d⃗ 4 sin(4t), where d⃗ 1 to d⃗ 4 are real
vectors.

Euler’s Formula eiθ = cos θ+ i sin θ allows the switch between complex solutions
and real solutions. Euler’s substitution x⃗ = e2itv⃗ is a solution of x⃗ ′′ = Ax⃗
provided ((2i)2, v⃗ ) is an eigenpair of A. This means v⃗ is a real eigenvector for
eigenvalue −4 ( Av⃗ = −4v⃗ is required) and therefore x⃗ = e2itv⃗ is a complex
solution of x⃗ ′′ = Ax⃗ .

Illustration 2. Assume A is 2× 2 and |A− λI| = 0 has roots λ = 4, 16. Then
|A− r2I| = 0 has four real roots 2, 2, 4, 4 and Euler atom list e2t, te2t, e4t, te4t.

The CHZ method implies the general solution of x⃗ ′′ = Ax⃗ has the real form
d⃗ 1e

2t + d⃗ 2te
2t + d⃗ 3e

4t + d⃗ 4te
4t.

Euler’s substitution produces only two atoms e2t, e4t and we are left with the
mystery of how atoms te2t, te4t were discovered to be part of the solution.

Converting x⃗′′ = Ax⃗ to u⃗′ = Cu⃗

Given a second order n × n system x⃗ ′′ = Ax⃗ , define the variable u⃗ and the
2n× 2n block matrix C as follows.

u⃗ =

(
x⃗
x⃗ ′

)
, C =

(
0 I

A 0

)
.(2)
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11.8 Second-order Systems

Then each solution x⃗ of the second order system x⃗ ′′ = Ax⃗ produces a corre-
sponding solution u⃗ of the first order system u⃗ ′ = Cu⃗ . Similarly, each solution
u⃗ of u⃗ ′ = Cu⃗ gives a solution x⃗ of x⃗ ′′ = Ax⃗ by the formula x⃗ = ⟨I|0⟩u⃗ .

Characteristic Equation for x⃗′′ = Ax⃗

The characteristic equation for the n × n second order system x⃗ ′′ = Ax⃗ will be
derived anew from the corresponding 2n× 2n first order system u⃗ ′ = Cu⃗ .

Theorem 11.53 (Characteristic Equation)
Let x⃗ ′′ = Ax⃗ be given with n× n constant matrix A. Let

u⃗ =

(
x⃗s
x⃗ ′

)
, C =

(
0 I

A 0

)
.

The first order system for x⃗ ′′ = Ax⃗ is u⃗ ′ = Cu⃗ . Then:

det(C − λI) = (−1)n det(A− λ2I).(3)

Proof: The method of proof is to verify the product formula(
−λI I

A −λI

)(
I 0

λI I

)
=

(
0 I

A− λ2I −λI

)
.

Then the determinant product formula applies to give

det(C − λI) det

(
I 0

λI I

)
= det

(
0 I

A− λ2I −λI

)
.(4)

Cofactor expansion is applied to give the two identities

det

(
I 0

λI I

)
= 1, det

(
0 I

A− λ2I −λI

)
= (−1)n det(A− λ2I).

Then (4) implies (3). ■

Solving u⃗′ = Cu⃗ and x⃗′′ = Ax⃗

Theorem 11.54 (Eigenanalysis of A and C)
Consider the n × n second order system x⃗ ′′ = Ax⃗ and its corresponding 2n × 2n
first order system u⃗ ′ = Cu⃗ defined by

C =

(
0 I

A 0

)
, u⃗ =

(
x⃗
x⃗ ′

)
.(5)

Then (λ, y⃗ ) is an eigenpair of C if and only if (λ2, w⃗ ) is an eigenpair of A and

y⃗ =

(
w⃗

λw⃗

)
.
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11.8 Second-order Systems

Proof: The equivalent statement

(C − λI)

(
w⃗
z⃗

)
= 0⃗ if and only if

{
Aw⃗ = λ2w⃗ ,

z⃗ = λw⃗ .
(6)

is proved from C − λI =

(
−λI I
A −λI

)
and block multiply. ■

Theorem 11.55 (General Solutions of
→
u ′ = C

→
u and

→
x ′′ = A

→
x)

Let A be a given n×n constant matrix and define the corresponding 2n×2n system
by

u⃗ ′ = Cu⃗ , C =

(
0 I

A 0

)
, u⃗ =

(
x⃗
x⃗ ′

)
.

Assume C has eigenpairs {(λj , y⃗ j)}2nj=1 and y⃗ 1, . . . , y⃗ 2n are independent. Let I and

0 denote the n× n identity and zero matrix. Define w⃗ j = ⟨I|0⟩y⃗ j , j = 1, . . . , 2n.
Then u⃗ ′ = Cu⃗ and x⃗ ′′ = Ax⃗ have general solutions

u⃗(t) = c1e
λ1ty⃗ 1 + · · ·+ c2ne

λ2nty⃗ 2n (2n× 1),
x⃗ (t) = c1e

λ1tw⃗ 1 + · · ·+ c2ne
λ2ntw⃗ 2n (n× 1).

Proof:
General solution of u⃗ ′ = Cu⃗ . Independence of vector Euler solutions eλ1ty⃗ 1, . . . ,
eλ2nty⃗ 2n will be verified. Assume a linear combination of these solutions is zero, then
at t = 0 the exponentials equal 1, which reduces to a linear combination of y⃗ 1, . . . ,
y⃗ 2n. By independence of the latter, then all weights are zero: the Euler solutions are
independent. Hence u⃗(t) is a general solution of u⃗ ′ = Cu⃗ .

General solution of x⃗ ′′ = Ax⃗ . Independence of vector Euler solution eλ1tw⃗ 1, . . . ,
eλ2ntw⃗ 2n will be verified. Suppose constants a1, . . . , a2n are given with

∑2n
j=1 aje

λjtw⃗ j =

0⃗ . Replace t = 0 in this relation to give (1)
∑2n

j=1 ajw⃗ j = 0⃗ . Differentiate this relation

on variable t to give
∑2n

j=1 ajλj e
λjtw⃗ j = 0⃗ for all t, then set t = 0 to obtain (2)∑2n

j=1 ajλj w⃗ j = 0⃗ . Combine (1) and (2) using y⃗ j =

(
w⃗ j

λjw⃗ j

)
from Theorem 11.54

into the vector equation
∑2n

j=1 ajy⃗ j = 0⃗ . Independence of y⃗ 1, . . . , y⃗ 2n implies that the
weights are zero: a1 = · · · = a2n = 0. ■

Eigenanalysis for Non-positive Eigenvalues

Assume all eigenvalues µ of A are negative or zero. Eigenvalue µ of A is related
to an eigenvalue λ of C by the relation µ = −ω2 = λ2 for some real ω ≥ 0. Then
λ = ±ωi and ω =

√
|µ|.

Lemma 11.2 (Cosine and Sine Solutions)
Let (−ω2, v⃗ ) be an eigenpair of the real n× n matrix A with ω ≥ 0. Define

u(t) =

{
c1 cosωt+ c2 sinωt ω > 0,
c1 + c2t ω = 0.

Then x⃗ (t) = u(t)v⃗ satisfies x⃗ ′′(t) = Ax⃗ (t).
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Proof:
Then u′′(t) = −ω2u(t) (both sides are zero for ω = 0). Vector function x⃗ (t) = u(t)v⃗
satisfies x⃗ ′′(t) = −ω2x⃗ (t). Also, Ax⃗ (t) = u(t)Av⃗ = −ω2x⃗ (t). This proves x⃗ (t) = u(t)v⃗
satisfies x⃗ ′′(t) = Ax⃗ (t). ■

Theorem 11.56 (Eigenanalysis Solution of
→
x ′′ = A

→
x)

Let real n × n matrix A have eigenpairs {(µj , v⃗ j)}nj=1. Assume A has distinct

eigenvalues µj = −ω2
j with ωj ≥ 0, j = 1, . . . , n and that v⃗ 1, . . . , v⃗n are linearly

independent. Then the general solution of x⃗ ′′(t) = Ax⃗ (t) is given in terms of 2n
arbitrary constants a1, . . . , an, b1, . . . , bn by the formula

x⃗ (t) =

n∑
j=1

(
aj cosωjt+ bj

sinωjt

ωj

)
v⃗ j(7)

This expression uses the limit convention
sinωt

ω

∣∣∣∣
ω=0

= t.

Proof:
Lemma 11.2 and superposition establish that x⃗ (t) is a solution. It only remains to prove
that it is the general solution, meaning that the arbitrary constants can be assigned
to allow any possible initial condition x⃗ (0) = x⃗0, x⃗

′(0) = y⃗ 0. Define the constants
uniquely by the relations

x⃗0 =
∑n

j=1 ajv⃗ j ,

y⃗ 0 =
∑n

j=1 bjv⃗ j ,

which is possible by the assumed independence of the vectors {v⃗ j}nj=1. Then equation

(7) implies x⃗ (0) =
∑n

j=1 ajv⃗ j = x⃗0 and x⃗ ′(0) =
∑n

j=1 bjv⃗ j = y⃗ 0. ■

Why doesn’t equation (7) work for duplicate eigenvalues?

Consider A =

(
−4 0
0 −4

)
for which the characteristic equation |A − r2I| = 0 has du-

plicate complex roots ±2i,±2i. Then CHZ predicts real solution x⃗ = d⃗1 cos(2t) +

d⃗2t cos(2t) + d⃗3 sin(2t) + d⃗4t sin(2t) whereas incorrect application of equation (7) would
report x⃗ = a1v⃗ 1 cos(2t)+a2v⃗ 2 cos(2t)+ b1v⃗ 1 sin(2t)+ b2v⃗ 2 sin(2t), the symbols v⃗ j being
real eigenvectors of A for eigenvalues −4,−4.
Euler solution atoms t cos(2t), t sin(2t) are missing in equation (7), but maybe the equation
is correct anyway? The answer is NO, because differentiation across equation (7) on symbols
a1, a2, b1, b2 reveals there are only two independent vector solutions represented, instead of
the required four. The conclusion: equation (7) doesn’t work for multiple eigenvalues.

Theorem 11.57 (CHZ and Eigenvectors:
→
x ′′ = A

→
x )

If the hypothesis of Theorem 11.56 holds, then in CHZ solution x⃗ =
∑2n

j=1 d⃗ jAj(t)

each d⃗ j is a scalar multiple of an eigenvector of A.13

Proof. Let x⃗ be a solution of x⃗ ′′ = Ax⃗ and represent it in two ways, first by CHZ and
second by eigenanalysis:

x⃗ =

2n∑
j=1

d⃗ jAj(t) =

n∑
j=1

(
aj cosωjt+ bj

sinωjt

ωj

)
v⃗ j

13Warning: A vector d⃗ j can be zero: 0v⃗ is a linear combination of eigenvector v⃗ .
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Assume by re-labeling that the Euler atoms are Aj(t) = cos(ωjt) and Aj+n(t) =
sinωjt

ωj
,

1 ≤ j ≤ n. Then
∑2n

j=1 d⃗ jAj(t) =
∑n

j=1 ajv⃗ jAj(t) + bjv⃗ jAj+n(t). Independence

of {Aj}2nj=1 implies vector coefficients of the atoms on each side of the equation must

match: each d⃗ j is a scalar multiple of an eigenvector of A. ■

Earthquakes

Reproduced here are earthquake modeling formulas from page 833. The formulas
are applied to 5-story buildings using the solution methods of this section.

A horizontal earthquake oscillation F (t) = F0 cosωt affects each floor of a 5-floor
building; see Figure 23. The effect of the earthquake depends upon the natural
frequencies of oscillation of the floors.

3

F

4

5

1

2
Figure 23. A 5-Floor Building.
A horizontal earthquake wave F affects ev-
ery floor. A typical wave has wavelength
many times larger than the illustration.

Assumptions and Symbols for a 5-Floor Building

• Each floor is considered a point mass located at its center-of-mass. The
floors have masses m1, . . . , m5.

• Each floor is restored to its equilibrium position by a linear restoring force
or Hooke’s force −k(elongation). The Hooke’s constants are k1, . . . , k5.

• The locations of masses representing the 5 floors are x1, . . . , x5. The
equilibrium position is x1 = · · · = x5 = 0.

• Damping effects of the floors are ignored: it is a frictionless system.

Derivation Details
The differential equations for the model are obtained by competition: the New-
ton’s second law force is set equal to the sum of the Hooke’s forces and the ex-
ternal force due to the earthquake wave. This results in the following system,
where k6 = 0, Ej = mjF

′′ for j = 1, 2, 3, 4, 5 and F = F0 cosωt.

m1x
′′
1 = −(k1 + k2)x1 + k2x2 + E1,

m2x
′′
2 = k2x1 − (k2 + k3)x2 + k3x3 + E2,

m3x
′′
3 = k3x2 − (k3 + k4)x3 + k4x4 + E3,

m4x
′′
4 = k4x3 − (k4 + k5)x4 + k5x5 + E4,

m5x
′′
5 = k5x4 − (k5 + k6)x5 + E5.
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In particular, the equations for a floor depend only upon the neighboring floors.
The bottom floor and the top floor are exceptions: they have just one neighboring
floor.

Vector-Matrix 2nd Order System
Let:

M =


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

 , x⃗ =


x1
x2
x3
x4
x5

 , H⃗ =


E1

E2

E3

E4

E5

 ,

K =


−k1 − k2 k2 0 0 0

k2 −k2 − k3 k3 0 0
0 k3 −k3 − k4 k4 0
0 0 k4 −k4 − k5 k5
0 0 0 k5 −k5 − k6


In the last row, k6 = 0 reflects the absence of a floor above the fifth floor. The
second order system:

M x⃗ ′′(t) = Kx⃗ (t) + H⃗ (t)

Matrix M is called the mass matrix and matrix K is called the Hooke’s
matrix. The external force H⃗ (t) can be written as a scalar function E(t) =
−F ′′(t) times a constant vector:

H⃗ (t) = −ω2F0 cosωt


m1

m2

m3

m4

m5

 .

Identical Floors
Assume that all floors have the same mass m and the same Hooke’s constant k.
Then M = mI and M x⃗ ′′(t) = Kx⃗ (t) + H⃗ (t) becomes:

x⃗ ′′=
1

m


−2k k 0 0 0

k −2k k 0 0
0 k −2k k 0
0 0 k −2k k
0 0 0 k −k

 x⃗−F0ω
2 cos(ωt)


1
1
1
1
1

(8)

Hooke’s matrix K is symmetric (KT = K) with negative entries only on the
diagonal. The last diagonal entry is −k (a error to write −2k).
Particular Solution: Identical Floors
The method of undetermined coefficients predicts a trial solution x⃗ (t) = c⃗ cosωt.
Terms sinωt cannot appear in the trial solution because the x⃗ ′ term is absent in
equation (8).
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Constant vector c⃗ will be found by trial solution substitution. Let b⃗ equal
the column vector of ones in equation (8). Substitute the trial solution x⃗ (t) =
c⃗ cosωt into (8). Cancel the common factor cosωt. Then

(
m−1K + ω2 I

)
c⃗ =

F0ω
2b⃗ . Let B = m−1K + ω2 I. Determinant formula B−1 =

adj(B)

det(B)
gives:

c⃗ = F0ω
2 adj(B)

det(B)
b⃗

Homogeneous Solution
Theorem 11.56 provides:

x⃗h(t) =
5∑

j=1

(aj cosωjt+ bj sinωjt)v⃗ j

where r = ωj and v⃗ = v⃗ j ̸= 0⃗ satisfy the eigenpair equation:(
1

m
K + r2 I

)
v⃗ = 0⃗

Identical Floors k/m = 10
Then:

1

m
K =



−20 10 0 0 0

10 −20 10 0 0

0 10 −20 10 0

0 0 10 −20 10

0 0 0 10 −10


Let B(ω, k/m) = (1/m)K +ω2I. Natural frequency values ω1, . . . , ω5 are found
by solving for ω in determinant equation |B(ω, 10)| = 0 to obtain Table 3.

Table 3. Natural Frequencies ω for the Special Case k/m = 10.

Frequency Value

ω1 0.900078068
ω2 2.627315231
ω3 4.141702938
ω4 5.320554507
ω5 6.068366391

Identical Floors: General Solution
Superposition provides the general solution x⃗ (t) = x⃗h(t) + x⃗p(t). If the floors
are at rest, then x⃗h = 0⃗ . Term x⃗p measures bounded oscillations of the center
of mass of each floor due to the incoming earthquake wave.
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Identical Floors: Resonance Effects for k/m = 10
Special solution x⃗p(t) can be used to obtain some insight into practical resonance
effects between the incoming earthquake wave and movement of the building
floors.

Let ω be the incoming wave natural frequency. Solution x⃗p has components
A1 cos(ωt), . . . , A5 cos(ωt). Let I have columns e1, . . . , e5. The amplitude formula
for 1 ≤ j ≤ 5:

Aj = eTj c⃗ cos(0) =
F0ω

2

|B(ω, 10)|
eTj adj(B(ω, 10))b⃗

The fraction has bounded numerator. Determinant |B(ω, 10)| in the denominator
can be near zero when ω is close to one of the natural frequencies ω1, . . . , ω5.
Then the amplitude of a component of x⃗p can be very large, which means the
floor takes an excursion that is too large to maintain structural integrity.

Physical Interpretation: An earthquake wave of proper frequency, lasting suf-
ficiently long, can demolish a floor and hence demolish the entire building. Small
amplitude earthquake waves can initiate destructive oscillation of structures hav-
ing unlucky natural frequencies.

Coupled Spring-Mass Systems: Derivations

Reproduced here from page 813 are notation and assumptions for three masses
attached to each other by four springs as in Figure 14.

m1 m3

k2 k3 k4k1

m2

Figure 24. Three masses connected by
springs. The masses slide along a frictionless
track.

The analysis uses the following constants, variables and assumptions.

Mass
Constants

The boxcar masses m1, m2, m3 are assumed to be point masses
concentrated at their center of gravity.

Spring
Constants

The mass of each spring is negligible. The springs obey Hooke’s
law: Force = k(elongation). The Hooke’s constants are denoted
k1, k2, k3, k4. The springs restore after compression and exten-
sion.

Position
Variables

Symbols x1(t), x2(t), x3(t) denote the mass positions along the
horizontal surface, measured from their equilibrium positions,
plus right and minus left.

Fixed Ends The first and last spring are attached to fixed walls.

The competition method is used to derive the equations of motion, using:

Newton’s Second Law Force = Sum of the Hooke’s Forces.
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The model equations are

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).

(9)

The equations are justified in the case of all positive variables by observing that
the first three springs are elongated by x1, x2 − x1, x3 − x2, respectively. The
last spring is compressed by x3, which accounts for the minus sign.

Another way to justify the equations is through mirror-image symmetry: inter-
change k1 ←→ k4, k2 ←→ k3, x1 ←→ x3, then equation 2 should be unchanged
and equation 3 should become equation 1.

Matrix Formulation. System (9) can be written as a second order vector-
matrix systemm1 0 0

0 m2 0
0 0 m3

x′′1
x′′2
x′′3

 =

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

x1
x2
x3

 .

More succinctly, the system is written as

M x⃗ ′′(t) = Kx⃗ (t)

where the displacement x⃗ , mass matrix M and stiffness matrix K are
defined by the formulas

x⃗=

x1
x2
x3

 , M=

m1 0 0
0 m2 0
0 0 m3

 , K=

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

 .

Two Masses

Modeling of two masses connected by springs uses ideas and methods from three-
mass modeling equation (9).

Two Masses, Right End Free

k1 k2

m1 m2

Figure 25. Two masses anchored left and
connected by springs.

The model equations:

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)]

m2x
′′
2(t) = −k2[x2(t)− x1(t)]

(10)
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Two Masses, Both Ends Free

Equations (10) modified with k1 = 0 gives model equations:

m1x
′′
1(t) = k2[x2(t)− x1(t)]

m2x
′′
2(t) = −k2[x2(t)− x1(t)]

(11)

k2

m1 m2

Figure 26. Two masses connected by one
spring.

Example 11.18 (Two Masses with Free Right End)

Consider equation (10) with m1 = 2m2,
k1
m1

=
k2
m2

= 50:

x⃗ ′′ =

(
−75 25
50 −50

)
x⃗

Then the vector solution in terms of arbitrary constants a1, a2, b1, b2 is given by:

x⃗ = (a1 cos 5t+ b1 sin 5t)

(
1
2

)
+ (a2 cos 10t+ b2 sin 10t)

(
1
−1

)
Details Example 11.18:

Eigenpairs of A =

(
−75 25
50 −50

)
are

(
−25,

(
1
2

))
,

(
−100,

(
1
−1

))
. The example is

completed by Theorem 11.56.

Three Rail Cars

A special case of the coupled spring-mass system is three rail cars on a level
frictionless track connected by springs, as in Figure 28.14

k k

m mm

Figure 28. Three identical flatbed
cars connected by identical
springs.

Except for the springs on fixed ends, this problem is the same as the one in Figure
22. Let k1 = k4 = 0, k2 = k3 = k, m1 = m2 = m3 = m to give the systemm 0 0

0 m 0
0 0 m

x′′1
x′′2
x′′3

 =

−k k 0
k −2k k
0 k −k

x1
x2
x3

 .(12)

14The cars are custom flatbed utility cars, not boxcars. Railway cars such as tankers,
hoppers and boxcars are equipped with automatic Janney couplers, compression only dash-
pots/bumpers and safety lanyards.

Figure 27. Railroad Boxcar Silhouette.
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Example 11.19 (Identical Cars with k = m)

Consider equation (12) for k = m:

x⃗ ′′ =

−1 1 0
1 −2 1
0 1 −1

 x⃗

Then the vector solution in terms of arbitrary constants a1, a2, a3, b1, b2, b3 is given
by:

x⃗ = (a1 + b1t)

1
1
1

+ (a2 cos t+ b2 sin t)

 1
0
−1


+
(
a3 cos

√
3t+ b3 sin

√
3t
) 1
−2
1

(13)

Boxcars and Buffer Springs. Boxcars have buffer-spring shock absorbers
which exert a force only under compression. Suppose one car moves along the
track, then contacts two stationary cars, then transfers its momentum to the
other cars, followed by disengagement. This situation could have a matrix model
x⃗ ′′ = Ax⃗ +Bx⃗ ′. Matrix A contains Hooke’s constants depending on x⃗ . Matrix
B contains dashpot constants depending on x⃗ and x⃗ ′. The complexity seems
suited for computer simulation.

Assume the dashpot constants are zero. The shock absorber springs act nor-
mally upon compression; the cars disengage upon full spring expansion. Model
x⃗ ′′ = Ax⃗ has Hooke’s constants in 3 × 3 matrix A. Solution expression (13)
applies until a car disengages, measured by the first time t = t1 > 0 at which
x2(t) = x1(t) or x3(t) = x2(t). When a car contacts another car then the shock
assembly compresses slightly but does not engage: the car making contact trans-
fers momentum.

Analysis of one car moving into contact with two stationary cars uses equation
(13) on 0 ≤ t ≤ t1. For t > t1, model x⃗ ′′ = Ax⃗ is discarded. One example is
the first car transfers momentum and stops, while the other two cars travel at
fixed speed. The model applies to determine both the time t1 and the speed of
the other two cars after t = t1.

Dynamic Dashpot

A dynamic dashpot is a variable shock absorber, a component of active sus-
pension.
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Figure 29. Active Suspension Components.

Bose Corporation (1980) designed variable shock absorbers for truck seats, es-
pecially 18-wheelers. Active suspension solutions for vehicles were designed by
Toyota (1994), General Motors (2002), Volvo (2002), Range-Rover (2004) and
Mercedes-Benz (2013). Camera and road-sensor devices have been implemented
by Mercedes-Benz (2014).

An instance of Figure 29 is one wheel suspension with spring and shock absorber.
Assumptions will fit the system to a damped spring-mass model.

Dashpot

Road

Spring

Wheel

Body

d1X
′

mbY
′′

Y

msX
′′

k2(Y −X)

mb

ms

d2(Y
′ −X ′) X

k1X

F (t)

Figure 30. One wheel suspension with spring and shock absorber.

Assumptions for Figure 30.

Y = body mass displacement from equilibrium Y = 0
mb = body mass
ms = suspension system mass
X = suspension system mass displacement from equilibrium X = 0
k1 = wheel and tire Hooke’s constant
k2 = suspension Hooke’s constant
d1 = wheel and tire dashpot constant
d2 = suspension dashpot constant
F (t) = roadway force on the wheel-suspension-body unit{

msX
′′ = −k1X − d1X

′ − k2(Y −X)− d2(Y
′ −X ′) + F (t),

mbY
′′ = k2(Y −X) + d2(Y

′ −X ′)
(14)

936



11.8 Second-order Systems

Ideal Suspension

Industrial solutions have used a tunable shock absorber, which means c2(t) is a
function of time t defined in response to road data F (t) and the current states
X(t), Y (t). Is it realistic to expect nearly motionless body vibration Y ≈ 0
with suitable real-time changes in suspension dashpot constant c2(t)? Manu-
facturers report yes, given suitably benign roadway data. Simulation uses the
electrical-mechanical analogy to design an electrical circuit for model (14). Road-
way data F (t) from cameras and sensors is modeled by a variable input (emf)
in the electrical circuit while mechanical displacements X,Y appear as electrical
currents. Figure 31 shows an equivalent electrical network for computer simula-
tion, extracted from a 2009 undergraduate Bachelor’s Thesis project at Worcester
Polytechnic Institute.15

1/k1

E(t)

1/k2

ms

mb

Y ′(t)

X ′(t)

d1

d2

Figure 31. Dynamic shock absorber simulator circuit (2009)

Active Suspension Regulator

Added to Figure 30 is a regulator, which can be imagined as a linear electromag-
netic motor that turns a shaft, one voltage input providing an upward force and
the other input a downward force. Electrical supply voltages adjust the forces
dynamically with sensor feedback. Standard suspension is F (t) = 0. Symbol
F (t) in Figures 30, 31 is a force, but each instance has a different meaning.

15Pashaj, B., Bermejo Calle, M. J., and Sebuwufu, P. (2009), Dynamic Shock Absorber,
https://digitalcommons.wpi.edu/mqp-all/2634.
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F(t)

Road

Body

Wheel

Shock
Absorber

Spring

y

x

m2

m1

m1x
′′

m2y
′′

u(t)
k1(x− u)

b(y′ − x′)

k2(y − x)

F (t)

Figure 32. One wheel suspension with spring, shock absorber and regulator

F (t). Variables and forces are defined in the force diagram on the right. All

units MKS.

Assumptions for Figure 32.

m2 = body mass
y = body mass displacement from equilibrium y = 0
m1 = suspension system mass
x = suspension system mass displacement from equilibrium x = 0
k1 = wheel and tire Hooke’s constant
k2 = suspension Hooke’s constant
b = shock absorber dashpot constant
F (t) = regulator force between body and suspension system
u(t) = roadway vertical displacement on the wheel-suspension-body unit

Equations (15) are derived from the force diagram in Figure 32.{
m1x

′′ = k2(y − x) + b(y′ − x′)− k1(x− u)− F (t),
m2y

′′ = −k2(y − x)− b(y′ − x′) + F (t)
(15)

Regulator. Assume system parameters in MKS units:

k1 = 135000 k2 = 5700
m1 = 50 m2 = 465
b = 290 u(t) = 0.015 sin(t),
x(0) = x′(0) = 0 (suspension m1 at rest)
y(t) = 0 (body m2 motionless)

The vertical roadway displacement u(t) = 0.015 sin(t) fits a railroad track, zero
to 1.5 cm deviation from perfectly flat. It is not suited for a highway. Period
2π is selected for simplicity. Equation (15) with values inserted implies equation
(16): 

50x′′=5700y − 140700x+ 290y′ − 290x′ + 2025 sin(t)−F (t),
465 y′′=− 5700y + 5700x− 290y′ + 290x′+F (t),
x(0) = x′(0) = y(0) = y′(0) = 0

(16)
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Let’s verify the ideal suspension regulator force:
F (t) =

2565
√
3

2699
sin
(
30
√
3t
)
− 230850

2699
sin (t)

+
11745

2699
cos
(
30
√
3t
)
− 11745

2699
cos (t)

(17)

if y(t) = 0, then x(t) and F (t) are determined by:
50x′′ = −140700x− 290x′ + 2025 sin(t)− F (t),
0 = 5700x+ 290x′ + F (t),
x(0) = x′(0) = 0

(18)

Add equations (18):

50x′′ = −135000x+ 2025 sin(t), x(0) = x′(0) = 0.

Then x(t) = − 9
√
3

53980
sin(30

√
3t) +

81

5398
sin(t). Solve for F (t) from the second

equation in (18). Then equation (17) holds with approximation

F (t) ≈ 4.35 cos (51.9 t) + 1.64 sin (51.9 t)− 4.35 cos (t)− 85.5 sin (t)

Figure 33. Suspension displace-
ment

Solution x(t) for a motionless body
y(t) = 0 with roadway displacement
u(t) = 0.015 sin(t).

Figure 34. Regulator force

Force F (t) for a motionless body y(t) =
0 with roadway displacement u(t) =
0.015 sin(t).

Jagged edges in Figure 33 are caused by the high frequency term in x(t) =

− 9
√
3

53980
sin(30

√
3t) +

81

5398
sin(t). Similarly for Figure 34.
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Exercises 11.8 �

Euler’s Substitution: u⃗ ′ = Cu⃗

1. Change variables: u⃗ = ertw⃗ . Answer:
w⃗ ′ = (C − rI)w⃗

2. Prove: (λ, v⃗ ) is an eigenpair of C if and
only if (0, v⃗ ) is an eigenpair of C − λI.

3. Let |C − λI| have factor λ2. Let u⃗ ′ =

Cu⃗ have solution u⃗ = d⃗1+ td⃗2. Prove:
Cd⃗2 = 0⃗ , Cd⃗1 = d⃗2. Are d⃗1, d⃗2

eigenvectors of C? Discuss.

4. Let C=

(
0 1
0 0

)
, u⃗ = d⃗1 + td⃗2. Let u⃗

solve u⃗ ′ = Cu⃗ . Find d⃗1, d⃗2 in terms of
arbitrary constants c1, c2.

Euler’s Substitution: x⃗ ′′ = Ax⃗

5. Change variables: x⃗ = erty⃗ . Answer:
y⃗ ′′ + 2ry⃗ ′ = (A− r2I)y⃗

6. Prove: x⃗ = ertv⃗ is a nonzero solution
of x⃗ ′′ = Ax⃗ if and only if (r2, v⃗ ) is an
eigenpair of A.

Repeated Root: x⃗ ′′ = Ax⃗

Let A =

(
0 1
0 0

)
, eigenvalues 0, 0.

7. Verify: Matrix A is a Jordan block with
generalized eigenvectors the columns of
I.

8. Prove: x1 = c1 + c2t + c3
t2

2
+ c4

t3

6
,

x2 = c3 + c4t for arbitrary constants
c1 to c4.

9. Prove: The solution of x⃗ ′′ = Ax⃗ is
a vector linear combination of atoms
1, t, t2, t3.

10. Let x⃗ = d⃗1 + d⃗2t + d⃗3
t2

2
+ d⃗4

t3

6
.

Assume x⃗ solves x⃗ ′′ = Ax⃗ . Prove:
Ad⃗3 = Ad⃗4 = 0⃗ , Ad⃗1 = d⃗3, Ad⃗2 =
d⃗4. These are generalized eigenvector
chains for eigenvalue zero.

CHZ Method

11. Given a 3 × 3 matrix A, supply proof
details for the Cayley-Hamilton-Ziebur
structure theorem.

12. Invent a non-diagonal 3 × 3 example
x⃗ ′′ = Ax⃗ and solve it by CHZ.

13. Solve x⃗ ′′ = Ax⃗ by CHZ for any 2 × 2
diagonal matrix with negative diagonal
elements.

14. Solve x⃗ ′′ = Ax⃗ by CHZ for any 3 × 3
diagonal matrix with negative diagonal
elements.

Conversion

Given x⃗ ′′ = Ax⃗ , let u⃗ =

(
x⃗
x⃗ ′

)
. Display

system u⃗ ′ = Cu⃗ .

15. A =

(
1 3
−1 2

)

16. A =

(
1 1 0
0 1 1
2 −1 2

)

Eigenanalysis λ ≤ 0
Display the general solution of x⃗ ′′ = Ax⃗ .

17. A =

(
−3 3
1 −1

)

18. A =

(
−3 3 0
1 −1 0
5 0 −1

)

Earthquakes
Apply formulas from the Earthquakes sub-
section page 929 to find particular solution
x⃗p, the natural frequencies ωj and the am-
plitudes of x⃗p(t) near the largest natural
frequency. Assume F (t) = F0 cos(ωt).

19. Three-floor problem, k/m = 10.

20. Four-floor problem, k/m = 10.

Two Masses
Assume MKS units. Let m1 = 2, m2 = 0.5,
k1 = 75, k2 = 25 in system:

m1x
′′
1=− k1x1 + k2[x2 − x1]

m2x
′′
2=− k2[x2 − x1]
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21. Convert the system to the form x⃗ ′′ =
Ax⃗ .

22. Show details for finding the vector so-
lution x⃗ (t).

Three Rail Cars: k=2m
Assume MKS units. Consider

x⃗ ′′ =

(
−2 2 0
2 −4 2
0 2 −2

)
x⃗

23. Show eigenpair details for the 3×3 ma-
trix.

24. Find the vector solution x⃗ (t).

Three Rail Cars: Disengagement
For x⃗ ′′ = Ax⃗ , assume FPS units and

A =

(
−4 4 0
6 −12 6
0 4 −4

)

Suppose the springs disengage upon full ex-
pansion. Let the cars engage at t = 0 with
x1 = x2 = x3 = 0.

25. Verify A has eigenvalues λ =
−16, 0,−4 and corresponding eigenvec-
tors 1
−3
1

 ,

1
1
1

 ,

−10
1



26. For x1=x2=x3=0 at t=0, verify:
x1(t)=c1t+c2 sin(2t)−c3 sin(4t),
x2(t) = c1t+ 3c3 sin(4t),
x3(t)=c1t−c2 sin(2t)−c3 sin(4t)

27. Let x′
1 = 48, x′

2 = 0, x′
3 = 0 at t = 0.

Verify disengagement time t1 = π/2
and determine the car velocities there-
after.

28. Let x′
1(0) = 144, x′

2(0) = 48, x′
3(0) =

48. Verify disengagement time t1 = π/2
and determine the car velocities there-
after.
Answer: Velocities 144, 48, 48 at t = t1.

Dynamic Dashpot
Assume conventions for Figure 26 and dy-
namic dashpot system

msX
′′ = −k1X − d1X

′ − k2(Y −X)
− d2(Y

′ −X ′) + F (t),
mbY

′′ = k2(Y −X) + d2(Y
′ −X ′)

See page 936.

29. Assume Y = 0, ideal suspension. De-
rive:

msX
′′ = −k1X − d1X

′ + F (t),
d2X

′ + k2X = 0

30. Assume Y = 0, ideal suspension and
X(0) = 0.015 meters. Find X(t) and
F (t).
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11.9 Numerical Methods for Systems

An initial value problem for a system of two differential equations is given by the
equations

x′(t) = f(t, x(t), y(t)),
y′(t) = g(t, x(t), y(t)),
x(t0) = x0,
y(t0) = y0.

(1)

A numerical method for (1) is an algorithm that computes an approximation
table with first line t0, x0, y0. Generally, the table has equally spaced t-values,
two consecutive t-values differing by a constant value h ̸= 0, called the step size.
To illustrate, if t0 = 2, x0 = 5, y0 = 100, then a typical approximation table for
step size h = 0.1 might look like

t x y

2.0 5.00 100.00
2.1 5.57 103.07
2.2 5.62 104.10
2.3 5.77 102.15
2.4 5.82 101.88
2.5 5.96 100.55

Graphics

The approximation table represents the data needed to plot a solution curve to
system (1) in three dimensions (t, x, y) or in two dimensions, using a tx-scene or
a ty-scene. In all cases, the plot is a simple connect-the-dots graphic.

3D-plot

2 2.5
5

2.522.52

100

104

5.8104

100
ty-scene tx-scene

Figure 35. Dot table plots.
The three dimensional plot is a space curve made directly from the dot table. The tx-
scene and the ty-scene are made from the same approximation table using corresponding
data columns.

Near-Sighted Algorithms

All of the popular algorithms for numerical generation of an approximation table
for system (1) are near-sighted algorithm, because they predict the next line
in the table from the current table line, ignoring effects and errors for all other
preceding table lines. Among such algorithms are Euler’s method, Heun’s
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method and the RK4 method, which are showcased here for learning pur-
poses. Computer production algorithms are available in maple, mathematica
and matlab.

Numerical Algorithms: Planar Case

Stated here without proof are three numerical algorithms for solving planar initial
value problems (1). Justification of the formulas is obtained from the vector
relations in the next subsection.

Notation. Let t0, x0, y0 denote the entries of the approximation table on a
particular line. Let h be the increment for the table and let t0 + h, x, y denote
the table entries on the next line.

Planar Euler Method

x = x0 + hf(t0, x0, y0),
y = y0 + hg(t0, x0, y0).

Planar Heun Method

x1 = x0 + hf(t0, x0, y0),
y1 = y0 + hg(t0, x0, y0),
x = x0 + h(f(t0, x0, y0) + f(t0 + h, x1, y1))/2
y = y0 + h(g(t0, x0, y0) + g(t0 + h, x1, y1))/2.

Planar RK4 Method

k1 = hf(t0, x0, y0),
m1 = hg(t0, x0, y0),
k2 = hf(t0 + h/2, x0 + k1/2, y0 +m1/2),
m2 = hg(t0 + h/2, x0 + k1/2, y0 +m1/2),
k3 = hf(t0 + h/2, x0 + k2/2, y0 +m2/2),
m3 = hg(t0 + h/2, x0 + k2/2, y0 +m2/2),
k4 = hf(t0 + h, x0 + k3, y0 +m3),
m4 = hg(t0 + h, x0 + k3, y0 +m3),

x = x0 +
1

6
(k1 + 2k2 + 2k3 + k4) ,

y = y0 +
1

6
(m1 + 2m2 + 2m3 +m4) .
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Example 11.20 (Planar Methods)
Solve x′ = x, y′ = −2y, x(0) = y(0) = 2 with step size h = 0.1 for 10 steps, using
methods Euler, Heun and RK4 in computer algebra system MAPLE.

Details
Computer code for the three algorithms can be found in the solution to Exercise 1. Newer
MAPLE versions have the algorithms available as documented below.

des:=diff(x(t),t)=x(t),diff(y(t),t)=-2*y(t);ics:=x(0)=2,y(0)=2;

args:=[des,ics],numeric,stepsize=0.1,output=listprocedure;

p:=dsolve(args,method=classical[foreuler]);# or: heunform, rk4

X:=eval(x(t),p); Y:=eval(y(t),p);

printf("Euler\n t X(t) Y(t)\n");

seq(printf("%f %f %f\n",0.1*j,X(0.1*j),Y(0.1*j)),j=0..10);

The expected results are 1, 2, 4 digits of accuracy respectively for the computed values.
At t = 1 the maple code for step size 0.1 computes y(t) for Euler, Heun, RK4 as 0.214748,
0.274896, 0.270679 compared to exact value y(1) = 2e−2 = 0.2706705664.

Numerical Algorithms: General Case

Consider a vector initial value problem

u⃗ ′(t) = F⃗ (t, u⃗(t)), u⃗(t0) = u⃗ 0.

Stated here are the vector formulas for Euler, Heun and RK4 methods. These
myopic algorithms predict the next table entry t0 + h, u⃗ from the current entry
t0, u⃗ 0. The number of scalar values in a table row is 1 + n, where n is the
dimension of the vectors u⃗ and F⃗ .

Vector Euler Method

u⃗ = u⃗ 0 + hF⃗ (t0, u⃗ 0)

Vector Heun Method

w⃗ = u⃗ 0 + hF⃗ (t0, u⃗ 0), u⃗ = u⃗ 0 +
h

2

(
F⃗(t0, u⃗ 0) + F⃗ (t0 + h, w⃗ )

)

944



11.9 Numerical Methods for Systems

Vector RK4 Method

k⃗ 1 = hF⃗(t0, u⃗ 0),

k⃗ 1 = hF⃗(t0 + h/2, u⃗ 0 + k⃗ 1/2),

k⃗ 1 = hF⃗ (t0 + h/2, u⃗ 0 + k⃗ 2/2),

k⃗ 1 = hF⃗ (t0 + h, u⃗ 0 + k⃗ 3),

u⃗ = u⃗ 0 +
1

6

(
k⃗ 1 + 2k⃗ 2 + 2k⃗ 3 + k⃗ 4

)
.

Example 11.21 (Exact Solution
→
u ′ = A

→
u +

→
F (t))

Let A =

(
1 −1 0
1 1 0
0 0 2

)
, F⃗(t) =

1
1
0

. Solve u⃗ ′ = Au⃗ + F⃗(t).

Details
Handwritten method: find a fundamental matrix Φ(t) and then eAt = Φ(t)Φ(0)−1.
The homogeneous solution is uh(t) = eAtc⃗ for constant vector c⃗ . A particular solution
u⃗p(t) is computed from the variation of parameters formula page 912.

CAS method: One possible method uses MAPLE library DEtools:

A:=Matrix([[1, -1 , 0],[1 , 1 , 0],[0 , 0 , 2]]);

F:=Vector([1,1,0]);Sol:=DEtools[matrixDE](A,F,t);

Xh:=Sol[1].Vector([c1,c2,c3]);Xp:=Vector(convert(Sol[2],list));

U:=unapply(Xh+Xp,t);U(t);# General solution of u’=Au+F(t)

simplify(A.U(t)+F-map(diff,U(t),t));# Answer check

u⃗(t) =


et cos (t) c1 + et sin (t) c2 − 1

et sin (t) c1 − et cos (t) c2

e2 tc3



Example 11.22 (Vector Euler Method)

Let A =

(
1 −1 0
1 1 0
0 0 2

)
. F⃗(t) =

et

1
0

. Solve u⃗ ′ = Au⃗ + F⃗ (t), u⃗(0) =

1
0
0

 with step

size h = 0.1 for 10 steps, using the vector Euler method implemented in computer
algebra system MAPLE.

Details
The vector algorithm uses MAPLE functions and basic vector-matrix algebra.
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# Euler’s method with vector notation

A:=Matrix([[1, -1 , 0],[1 , 1 , 0],[0 , 0 , 2]]);

F0:=unapply(A.<x,y,z>+Vector([exp(t),1,0]),(t,x,y,z)):

F0(t,x,y,z);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2],X[3]);# Vector variables

U0:=<1,0,0>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

U:=U0+h*F(t0,U0);U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsEuler:=Vals[n+1];

ValsEuler =


3.1116983042

4.4649291918

0.0



Example 11.23 (Vector Heun Method)

Let A =

(
1 −1 0
1 1 0
0 0 2

)
. F⃗(t) =

et

1
0

. Solve u⃗ ′ = Au⃗ + F⃗ (t), u⃗(0) =

1
0
0

 with step

size h = 0.1 for 10 steps, using the vector Heun method implemented in computer
algebra system MAPLE.

Details

# Heun’s method with vector notation

A:=Matrix([[1, -1 , 0],[1 , 1 , 0],[0 , 0 , 2]]);

F0:=unapply(A.<x,y,z>+Vector([exp(t),1,0]),(t,x,y,z)):

F0(t,x,y,z);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2],X[3]);# Vector variables

U0:=<1,0,0>;n:=10;h:=0.1;t0:=0:Vals:=U0; # Initialize

for j from 1 to n do

w:=U0+h*F(t0,U0);

U:=U0+0.5*h*(F(t0,U0)+F(t0+h,w));U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsHeun:=Vals[n+1];

ValsHeun =


2.8724813157

4.9105494201

0.0


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Example 11.24 (Vector RK4 Method)

Let A =

(
1 −1 0
1 1 0
0 0 2

)
. F⃗(t) =

et

1
0

. Solve u⃗ ′ = Au⃗ + F⃗ (t), u⃗(0) =

1
0
0

 with step

size h = 0.1 for 10 steps, using the vector RK4 method implemented in computer
algebra system MAPLE.

Details

# RK4 method with vector notation

A:=Matrix([[1, -1 , 0],[1 , 1 , 0],[0 , 0 , 2]]);

F0:=unapply(A.<x,y,z>+Vector([exp(t),1,0]),(t,x,y,z)):

F0(t,x,y,z);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2],X[3]);# Vector variables

U0:=<1,0,0>;n:=10;h:=0.1;t0:=0:Vals:=U0; # Initialize

for j from 1 to n do

k1:=h*F(t0,U0);

k2:=h*F(t0+h/2,U0+k1/2);

k3:=h*F(t0+h/2,U0+k2/2);

k4:=h*F(t0+h,U0+k3);

U:=U0+(k1+2*k2+2*k3+k4)/6;U0:=U;t0:=t0+h;Vals:=Vals,U0;od:

ValsRK4:=Vals[n+1];

ValsRK4 =


2.8467234249

4.9149919169

0.0



Example 11.25 (Compare Vector Methods Euler, Heun and RK4)

Let A =

(
1 −1 0
1 1 0
0 0 2

)
, F⃗ (t) =

et

1
0

. Solve u⃗ ′ = Au⃗ + F⃗(t), u⃗(0) =

1
0
0

 with

step size h = 0.1 for 10 steps, using the vector methods Euler, Heun and RK4 in
computer algebra system MAPLE. Compare to 6 digits computed values at t = 1 for
the three methods.

Details
Refer to the previous three examples for maple values ValsEuler, ValsHeun, ValsRK4,

Exact. 
2.872481

4.910549

0.0

 ,


2.872481

4.910549

0.0

 ,


2.846723

4.914992

0.0

 ,


2.846719

4.914968

0.0

 .
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Exercises 11.9 �

Planar Methods
Apply the Euler, Heun and RK4 methods.
Compare with the exact solution in a table.

1. x′ = x, y′ = −y, x(0) = 2, y(0) = 2.
h = 0.1, 10 steps

2. x′ = −3x + y, y′ = x − 3y, x(0) = 2,
y(0) = 0, h = 0.1, 10 steps

3. x′ = −x + y, y′ = −x − y, x(0) = 0,
y(0) = 3, h = 0.2, 5 steps

4. x′ = 2x − 4y, y′ = x − 3y, x(0) = 4,
y(0) = 0, h = 0.1, 10 steps

Vector Methods u⃗ ′ = Au⃗ , 2× 2
Apply vector Euler, Heun and RK4 meth-
ods for 10 steps with h = 0.1.

5. u⃗ ′ =

(
u1 + u2

−u1 + u2

)
, u⃗(0) =

(
2
2

)
.

6. u⃗ ′ =

(
−3u1 + u2

u1 − 3u2

)
, u⃗ (0) =

(
2
0

)
.

Vector Methods u⃗ ′ = Au⃗ + F⃗ (t)
Apply vector Euler, Heun and RK4 meth-
ods for 10 steps with t0 = 0, h = 0.1. Com-
pare results for the last step.

7. A =

(
1 2
−2 1

)
, F⃗ =

(
et

0

)
,

u⃗ (0) =

(
1
1

)
.

Ans Euler: 3.81,−5.33

8. A =

(
1 2 0
−2 1 0
0 0 5

)
, F⃗ =

et

0
0

,

u⃗ (0) =

1
1
0


Ans RK4: 2.576,−5.528, 0.0

Vector Methods u⃗ ′ = Au⃗ , 3× 3
Apply vector Euler, Heun and RK4 meth-
ods for 10 steps with h = 0.1.

9. A =

(
1 2 0
−2 1 0
0 0 5

)
, u⃗(0) =

1
1
0


Ans Heun: 1.36,−3.67, 0.00

10. A =

(
1 3 0
−3 1 0
0 0 1

)
, u⃗(0) =

1
1
0


Ans RK4: −2.307,−3.075, 0.00
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PDF Sources

Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and
linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the textbook
are available in two volumes at Amazon Kindle Direct Publishing for Amazon’s
cost of printing and shipping. No author profit. Volume I chapters 1-7, ISBN
9798705491124, 661 pages. Volume II chapters 8-12, ISBN 9798711123651, 479
pages. Both paperbacks have extra pages of backmatter: background topics
Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with
hyperlink navigation to displayed equations and theorems. The header in an
exercise set has a blue hyperlink � to the same section in the solutions. The
header of the exercise section within a solution Appendix has a red hyperlink �
to the textbook exercises. Solutions are organized by chapter, e.g., Appendix 5
for Chapter 5. Odd-numbered exercises have a solution. A few even-numbered
exercises have hints and answers. Computer code can be mouse-copied directly
from the PDF. Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded
to a tablet, computer or phone to be viewed locally. After download, no internet
is required. Best for computer or tablet using a PDF viewer (Adobe Reader,
Evince) or web browser with PDF support (Chrome, FireFox). Smart phones
can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or
request an answer, click the link below, then create a GitHub issue and post.
Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues
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