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Chapter 10

Phase Plane Methods

Contents

10.1 Planar Autonomous Systems . . . . . . . . . . . . 751

10.2 Planar Constant Linear Systems . . . . . . . . . . 767

10.3 Planar Almost Linear Systems . . . . . . . . . . . 780

10.4 Biological Models . . . . . . . . . . . . . . . . . . . 790

10.5 Mechanical Models . . . . . . . . . . . . . . . . . . 804

Studied here are planar autonomous systems of differential equations. The topics:

1. Planar Autonomous Systems: Phase Portraits, Stability.

2. Planar Constant Linear Systems: Classification of isolated equilibria, Phase
portraits.

3. Planar Almost Linear Systems: Phase portraits, Nonlinear classifications of
equilibria.

4. Biological Models: Predator-prey models, Competition models, Survival of one
species, Co-existence, Alligators, doomsday and extinction.

5. Mechanical Models: Nonlinear spring-mass system, Soft and hard springs, En-
ergy conservation, Phase plane and scenes.
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10.1 Planar Autonomous Systems

10.1 Planar Autonomous Systems

A set of two scalar differential equations of the form

x′(t) = f(x(t), y(t)),
y′(t) = g(x(t), y(t)).

(1)

is called a planar autonomous system. The term Autonomous means Self-
Governing, justified by the absence of the time variable t in the functions f(x, y),
g(x, y).

To obtain the vector form, let u⃗(t) =

(
x(t)
y(t)

)
, F⃗ (x, y) =

(
f(x, y)
g(x, y)

)
and write

(1) as the first order vector-matrix system

d

dt
u⃗(t) = F⃗ (u⃗(t)).(2)

It is assumed that f , g are continuously differentiable in some region D in the xy-
plane. This assumption makes F⃗ continuously differentiable in D and guarantees
that Picard’s existence-uniqueness theorem for initial value problems applies to
the initial value problem d

dt u⃗(t) = F⃗ (u⃗(t)), u⃗(0) = u⃗0. Accordingly, to each u⃗0 =
(x0, y0) in D there corresponds a unique solution u⃗(t) = (x(t), y(t)), represented
as a planar curve in the xy-plane, which passes through u⃗0 at t = 0.

Such a planar curve is called a Trajectory or Orbit of the system and its
parameter interval is some maximal interval of existence T1 < t < T2, where T1

and T2 might be infinite. A graphic of trajectories drawn as parametric curves in
the xy-plane is called a Phase Portrait and the xy-plane in which it is drawn
is called the Phase Plane.

Trajectories Don’t Cross

Autonomy of the planar system plus uniqueness of initial value problems implies
that trajectories (x1(t), y1(t)) and (x2(t), y2(t)) cannot touch or cross. Hand-
drawn phase portraits are accordingly limited: you cannot draw a solution tra-
jectory that touches another solution curve!

Theorem 10.1 (Identical Trajectories)
Assume that Picard’s existence-uniqueness theorem applies to initial value problems
in D for the planar system

d

dt
u⃗(t) = F⃗ (u⃗(t)), u⃗(t) =

(
x(t)
y(t)

)
.

Let (x1(t), y1(t)) and (x2(t), y2(t)) be two trajectories of the system. If times t1, t2
exist such that

x1(t1) = x2(t2), y1(t1) = y2(t2),(3)
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10.1 Planar Autonomous Systems

then for the value c = t1 − t2 the equations x1(t+ c) = x2(t) and y1(t+ c) = y2(t)
are valid for all allowed values of t. This means that the two trajectories are on one
and the same planar curve, or in the contrapositive, two different trajectories cannot
touch or cross in the phase plane.

Proof: Define x(t) = x1(t+c), y(t) = y1(t+c). By the chain rule, (x(t), y(t)) is a solution
of the planar system, because x′(t) = x′

1(t + c) = f(x1(t + c), y1(t + c)) = f(x(t), y(t)),
and similarly for the second differential equation. Further, (3) implies x(t2) = x2(t2)
and y(t2) = y2(t2), therefore Picard’s uniqueness theorem implies that x(t) = x2(t) and
y(t) = y2(t) for all allowed values of t. ■

Equilibria

A trajectory that reduces to a point, or a constant solution x(t) = x0, y(t) = y0,
is called an Equilibrium Solution. The equilibrium solutions or Equilibria
are found by solving the nonlinear equations

f(x0, y0) = 0, g(x0, y0) = 0.

Each such (x0, y0) in D is a trajectory whose graphic in the phase plane is a
single point, called an Equilibrium Point. In applied literature, it may be
called a Critical Point, Stationary Point or Rest Point. Theorem 10.1 has
the following geometrical interpretation.

Assuming uniqueness, no other trajectory (x(t), y(t)) in the phase
plane can touch an equilibrium point (x0, y0).

Equilibria (x0, y0) are often found from linear equations

ax0 + by0 = e, cx0 + dy0 = f,

which are solved by linear algebra methods. They constitute an important sub-
class of algebraic equations which can be solved symbolically. In this special case,
symbolic solutions exist for the equilibria.

It is interesting to report that in a practical sense the equilibria may be reported
incorrectly, due to the limitations of computer software, even in the case when
exact symbolic solutions are available. An example is x′ = x+ y, y′ = ϵy − ϵ for
small ϵ > 0. The root of the problem is translation of ϵ to a machine constant,
which is zero for small enough ϵ. The result is that computer software detects
infinitely many equilibria when in fact there is exactly one equilibrium point.
This example suggests that symbolic computation be used by default.

Practical Methods for Computing Equilibria

There exists no supporting theory to find equilibria for all choices of F and G.
However, there is a rich library of special methods for solving nonlinear algebraic
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10.1 Planar Autonomous Systems

equations, including numerical methods based on celebrated univariate methods,
such as Newton’s method and the Bisection method.

Computer algebra systems like maple, maxima and mathematica offer convenient
codes to solve the equations, when possible, including symbolic solutions. Applied
mathematics depends on the dynamically expanding library of special methods,
which grows due to new mathematical discoveries. See the exercises for examples.

Population Biology

Planar autonomous systems have been applied to two-species populations like
two species of trout, who compete for food from the same supply, and foxes and
rabbits, who compete in a predator-prey situation.

Certain equilibria are significant, because they represent the population sizes for
Cohabitation. A point in the phase space that is not an equilibrium point cor-
responds to population sizes that cannot coexist, they must change with time.
Some equilibria are consequently Observable or average population sizes while
non-equilibria correspond to snapshot population sizes that are subject to flux.
Biologists expect population sizes of such two-species competition models to un-
dergo change until they reach approximately the observable values, on the aver-
age.

Rabbit-Fox System

This example is a Predator-Prey system, in which the expected observable
population sizes are averages, about which the actual populations size oscillate
about, periodically over time. Certain equilibria for these systems represent ideal
cohabitation. Biological experiments suggest that initial population sizes close
to the equilibrium values cause populations to stay near the initial sizes, even
though the populations oscillate periodically. Observations by field biologists of
large population variations seem to verify that individual populations oscillate
periodically around the ideal cohabitation sizes.

A typical planar system for predator-prey dynamics of x(t) rabbits and y(t) foxes
is the system

dx

dt
=

1

200
x(40− y),

dy

dt
=

1

100
y(x− 50).

Time variable t is in months. The equilibria are (0, 0), (50, 40). With initial
populations x(0) = 60 rabbits and y(0) = 30 foxes, both x′ and y′ are positive
near t = 0, which implies the populations initially increase in size.

After time, the signs of x′ and y′ are alternately positive and negative, which
reflects the oscillating behavior of the populations about the ideal equilibrium
values x = 50, y = 40. The period of oscillation is about 20 months. This
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10.1 Planar Autonomous Systems

predator-prey model predicts coexistence with average populations of 50 rabbits
and 40 foxes.

Trout System

Consider a population of two species of trout who compete for the same food
supply. A typical autonomous planar system for the species x and y is

dx

dt
= x(−2x− y + 180),

dy

dt
= y(−x− 2y + 120).

Equilibria. The equilibrium solutions for the trout system are

(0, 0), (90, 0), (0, 60), (80, 20).

Only nonnegative population sizes are physically significant. Units for the pop-
ulation sizes might be in hundreds or thousands of fish. The equilibrium (0, 0)
corresponds to Extinction of both species, while (0, 60) and (90, 0) correspond to
the unusual situation of extinction for one species. The last equilibrium (80, 20)
corresponds to Co-Existence of the two trout species with observable popula-
tion sizes of 80 and 20.

Phase Portraits

A graphic which contains some equilibria and typical trajectories of a planar
autonomous system (1) is called a Phase Portrait.

While graphing equilibria is not a challenge, graphing typical trajectories, also
called orbits, seems to imply that we are going to solve the differential system.
This is not the case. Approximations will be used that do not require solution
of the differential system.

Equilibria Plot in the xy-plane all equilibria of (1). See Figure 3.

Window Select an x-range and a y-range for the graph window which
includes all significant equilibria (Figure 3).

Grid Plot a uniform grid of N grid points (N ≈ 50 for hand work)
within the graph window, to populate the graphical white space
(Figure 4). The isocline method might also be used to select grid
points.

Field Draw at each grid point a short tangent vector, a replacement
curve for a solution curve through a grid point on a small time
interval (Figure 5).
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10.1 Planar Autonomous Systems

Orbits Draw additional threaded trajectories on long time intervals into
the remaining white space of the graphic (Figure 6). This is
guesswork, based upon tangents to threaded trajectories match-
ing nearby field tangents drawn in the previous step. See Figures
1 and 2 for details.

C

y

x
b

a

Figure 1. Badly threaded orbit.
Threaded solution curve C correctly matches its tan-
gent to the tangent at nearby grid point a, but it fails
to match at grid point b.

Why does a threaded solution curve tangent T⃗1 have to match 1 a tangent T⃗2 at
a nearby grid point (see Figure 2)? A tangent vector is given by T⃗ = d

dt u⃗(t) =

F⃗ (u⃗(t)). Then T⃗1 = F⃗ (u⃗1), T⃗2 = F⃗ (u⃗2). However, u⃗1 ≈ u⃗2 in the graphic, hence
by continuity of F⃗ it follows that F⃗ (u⃗1) ≈ F⃗ (u⃗2), which implies T⃗1 ≈ T⃗2.

u⃗ 2

C

x

y ⃗⃗
T 1

⃗⃗
T 2

u⃗ 1

Figure 2. Tangent matching.

Threaded solution curve C matches its tangent
⃗⃗
T 1 at u⃗1

to direction field tangent
⃗⃗
T 2 at nearby grid point u⃗2.

It is important to emphasize that solution curves starting at a grid point are
defined for a small t-interval about t = 0, and therefore their graphics extend
on both sides of the grid point. We intend to shorten these curves until they
appear to be straight line segments, graphically atop the tangent line, to pixel
resolution. Adding an arrowhead pointing in the tangent vector direction is
usual. After all this construction, the shaft of the arrow is graphically atop a
short solution curve segment. In fact, if 50 grid points were used, then 50 short
solution curve segments have already been entered onto the graphic! Threaded
orbits are added to show what happens to solutions that are plotted on longer
and longer t-intervals.

Phase Portrait Illustration

The method outlined above will be applied to the illustration

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

(4)

The equilibria are (1,−1) and (−1, 1). The graph window is selected as |x| ≤ 2,
|y| ≤ 2, in order to include both equilibria. The uniform grid will be 11 × 11,

1Match means nearly identical, in an approximate sense: graphics of the two tangents are
identical to pixel resolution.
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10.1 Planar Autonomous Systems

although for hand work 5 × 5 is normal. Tangents at the grid points are short
line segments which do not touch each another – they are graphically the same
as short solution curves.

−2
−2

2
y

2

(1,−1)
x

(−1, 1) Figure 3. Equilibria (1,−1), (−1, 1) with
Invented Graph Window.
The equilibria (x, y) are calculated from equa-
tions 0 = x + y, 0 = 1 − x2. The graph window
|x| ≤ 2, |y| ≤ 2 is invented initially, then up-
dated until Figure 5 reveals sufficiently rich field
details.

−2 2

x−2

2
y

Figure 4. Equilibria (1,−1), (−1, 1) and In-
vented 11× 11 Uniform Grid.
The equilibria (squares) happen to cover up two
grid points. The invented size 11 × 11 should fill
the white space in the graphic.

−1

y

−1 1 x

1
Figure 5. Equilibria, Uniform Grid and
Direction Field.
An arrow shaft at a grid point represents a solu-
tion curve over a small time interval. Threaded
solution curves on long time intervals have tan-
gents matching nearby arrow shaft directions.

y

1

−1

−1 1 x

Figure 6. Initial Phase Portrait.
Equilibria (1,−1), (−1, 1) and 11 × 11 uniform
grid with threaded solution curves. Arrow shafts
included from some direction field arrows.
Threaded solution curve tangents are to match
nearby direction field arrow shafts. See Figures 1
and 2 for how to match tangents.
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10.1 Planar Autonomous Systems

1

−1 1 x

−1

y

Figure 7. Final Phase portrait.

Shown are some threaded solution curves and an 11 × 11 grid. The direction field has

been removed for clarity. Threaded solution curves do not actually cross, even though

graphical resolution might suggest otherwise.

Phase Plot by Computer

Illustrated here is how to make a phase plot like Figure 8 or Figure 9, infra, with
computer algebra system maple, for the system of differential equations

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

(5)

Before the computer work begins, the differential equation is defined and the
equilibria are computed. Defaults supplied by maple allow an initial phase por-
trait to be plotted, from which the graph window is invented.

Phase plot tools can simplify initial plot production. To illustrate, maple task
Phase Portrait has this interface:
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10.1 Planar Autonomous Systems

Figure 8. PhasePortrait task in computer algebra system Maple for equations

(5).

Minimal input requires two differential equations, equilibria, a graph window and
time interval for threaded curves. Clicking on the graphic produces threaded
solution curves.

The Phase Portrait Task is unlikely to be able to produce a final, production
figure. Other tools are normally used afterwards, to make the final figure.

The initial plot code:

des:=diff(x(t),t)=x(t)+y(t),diff(y(t),t)=1-x(t)^2:

wind:=x=-2..2,y=-2..2:Times:=t=-20..20:

DEtools[DEplot]([des],[x(t),y(t)],Times,wind);

The initial plot suggests which initial conditions near the equilibria should be
selected in order to create typical orbits on the graphic. The final code with
initial data and options:

des:=diff(x(t),t)=x(t)+y(t),diff(y(t),t)=1-x(t)^2:

wind:=x=-2..2,y=-2..2:Times:=t=-20..20:

opts:=stepsize=0.05,dirgrid=[13,13],

axes=none,thickness=3,arrows=small:

ics:=[[x(0)=-1,y(0)=1.1],[x(0)=-1,y(0)=1.5],

[x(0)=-1,y(0)=.9],[x(0)=-1,y(0)=.6],[x(0)=-1,y(0)=.3],

[x(0)=1,y(0)=-0.9],[x(0)=1,y(0)=-0.6],[x(0)=1,y(0)=-0.6],

[x(0)=1,y(0)=-0.3],[x(0)=1,y(0)=-1.6],[x(0)=1,y(0)=-1.3],

[x(0)=1,y(0)=-1.1]]:

DEtools[DEplot]([des],[x(t),y(t)],Times,wind,ics,opts);
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10.1 Planar Autonomous Systems

1−1

1

−1

y

x

Figure 9. Phase Portrait
for (5).
The graphic shows typical
solution curves and a direction
field. The graphic was pro-
duced in maple using a 13 × 13
grid.

Stability

Consider an autonomous system d
dt u⃗(t) = F⃗ (u⃗(t)) with F⃗ continuously differen-

tiable in a region D in the plane.

Stable equilibrium. An equilibrium point u⃗0 in D is said to be Stable provided
for each ϵ > 0 there corresponds δ > 0 such that

(a) given u⃗(0) in D with ∥u⃗(0) − u⃗0∥ < δ, then the solution u⃗(t) exists on
0 ≤ t < ∞ and

(b) ∥u⃗(t)− u⃗0∥ < ϵ for 0 ≤ t < ∞.

Unstable equilibrium. The equilibrium point u⃗0 is called Unstable provided
it is not stable, meaning at least one of (a) or (b) fails.

Asymptotically stable equilibrium. The equilibrium point u⃗0 is said to be
Asymptotically Stable provided (a) and (b) hold (it is stable), and addition-
ally

(c) limt→∞ ∥u⃗(t)− u⃗0∥ = 0 for ∥u⃗(0)− u⃗0∥ < δ.

Applied accounts of stability tend to emphasize item (b). Careful application of
stability theory requires attention to (a), which is the question of extension of
solutions of initial value problems to the half-axis.

Basic extension theory for solutions of autonomous equations says that (a) will be
satisfied provided (b) holds for those values of t for which u⃗(t) is already defined.
Stability verifications in mathematical and applied literature often implicitly use
extension theory, in order to present details compactly. The reader is advised
to adopt the same predisposition as researchers, who assume the reader to be
equally clever as they.

Physical stability. In the model d
dt u⃗(t) = F⃗ (u⃗(t)), physical stability addresses

changes in F⃗ as well as changes in u⃗(0). The meaning is this: physical parameters
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10.1 Planar Autonomous Systems

of the model, e.g., the mass m > 0, damping constant c > 0 and Hooke’s constant
k > 0 in a damped spring-mass system

x′ = y,

y′ = − c

m
y − k

m
x,

may undergo small changes without significantly affecting the solution.

In physical stability, stable equilibria correspond to Physically Observed data
whereas other solutions correspond to Transient Observations that disappear
over time.

A typical instance is the trout system

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

(6)

Physically observed data in the trout system (6) corresponds to the carrying
capacity, represented by the Stable Equilibrium point (80, 20), whereas tran-
sient observations are snapshot population sizes that are subject to change over
time. The strange extinction equilibria (90, 0) and (0, 60) are unstable equilib-
ria, which disagrees with intuition about zero births for less than two individu-
als, but agrees with graphical representations of the trout system in Figure 10.
Changing F⃗ (u⃗) for a trout system adjusts the physical constants which describe
the birth and death rates, whereas changing u⃗(0) alters the initial population
sizes of the two trout species.

Figure 10. Phase
Portrait for Trout
System (6).
Shown are typical
solution curves and a
direction field. Equi-
librium (80, 20) is
asymptotically stable
(a square). Equilibria
(0, 0), (90, 0), (0, 60)
are unstable (circles).

Direction Fields by Computer

Direction fields are produced by Maple with tool DEtools[dfieldplot] or with
interactive graphical task PhasePortrait. Basic code that produces a direction
field can be written with minimal effort:
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10.1 Planar Autonomous Systems

Maple code:

de1:=diff(x(t),t)=x(t)+y(t);

de2:=diff(y(t),t)=1-x(t)*x(t);vars:=[x(t),y(t)];

trange:=t=-10..10:xrange:=x=-2..2:yrange:=y=-2..2:

opts1:=trange,xrange,yrange:

opts2:=arrows=large,color=cyan,dirfield=[5,5]:

DEtools[dfieldplot]([de1,de2],vars,opts1,opts2);

A Direction Field Procedure

The ideas discussed below for maple apply to other programming languages, such
as Maxima, Mathematica, Ruby, Python and Microsoft developer languages.
Maple code below considers the system

x′ = F1(x, y), y′ = F2(x, y)

with example x′ = F1 = x+ y, y′ = F2 = 1− x2, which was treated above.

F1:=(x,y)->evalf(x+y):F2:=(x,y)->evalf(1-x^2):

P:=directionField(F1,F2):plots[display](P);# proc below
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10.1 Planar Autonomous Systems

Maple function plottools[rectangle] requires two arguments ul, lr, which are
the upper left (ul) and lower right (lr) vertices of the rectangle.

Maple function plottools[arrow] requires five arguments P , Q, sw, aw, af :
the two points P , Q which define the arrow shaft and direction, plus the shaft
width sw, arrowhead width aw and arrowhead length fraction af (fraction of the
shaft length).

The two functions rectangle, arrow plot a polygon from its vertices. Function
rectangle computes four vertices and function arrow computes seven vertices.
Maple function plots[display] plots the vertices.

# 2D phase plane direction field with uniform nxm grid.

# Tangent length is 9/10 the grid box width W0.

directionField:=

proc(F1,F2,a:=-2,b:=2,c:=-2,d:=2,n:=11,m:=11)

description "Custom direction field for F1,F2\

Window: a <= x <= b, c <= y <= d, Grid: n by m\

Tangent length = 9/10 grid box width W0.";

local x,y,X,Y,V,H,K,i,j,M1,M2,W0,h,p1,p2,q1,q2; global P;

H:=evalf((b-a)/(n+1)):K:=evalf((d-c)/(m+1)):W0:=min(H,K):

X:=t->a+H*(t):Y:=t->c+K*(t):P:=[]:

for i from 1 to n do

for j from 1 to m do

x:=X(i):y:=Y(j):M1:=F1(x,y): M2:=F2(x,y):

if (M1 =0 and M2 =0) then # no tangent, make a box

h:=W0/5:V:=plottools[rectangle]([x-h,y+h],[x+h,y-h]):

else

h:=evalf(((1/2)*9*W0/10)/sqrt(M1^2+M2^2)):

p1:=x-h*M1:p2:=y-h*M2:q1:=x+h*M1:q2:=y+h*M2:

V:=plottools[arrow]([p1,p2],[q1,q2],0.2*W0,0.5*W0,1/4):

fi:if (P = []) then P:=V: else P:=P,V: fi:

od:od:
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RETURN (P);

end proc:
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10.1 Planar Autonomous Systems

Exercises 10.1

Autonomous Planar Systems.

Consider

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

(7)

1. (Vector-Matrix Form) System (7) can
be written in vector-matrix form

d

dt
u⃗ = F⃗ (u⃗(t)).

Display formulas for u⃗ and F⃗ .

2. (Picard’s Theorem) Picard’s vector
existence-uniqueness theorem applies to
system (7) with initial data x(0) = x0,
y(0) = y0. Show the details.

Trajectories Don’t Cross.

3. (Theorem 10.1 Details) Show dy
dt =

g(x1(t + c), y1(t + c)), then show that
y′(t) = g(x(t), y(t)) in the proof of The-
orem 10.1.

4. (Orbits Can Cross) The example

dx

dt
= 1,

dy

dt
= 3y2/3

has infinitely many orbits crossing at
x = y = 0. Exhibit two distinct or-
bits which cross at x = y = 0. Does
this example contradict Theorem 10.1?

Equilibria. A point (x0, y0) is called an
Equilibrium provided x(t) = x0, y(t) =
y0 is a solution of the dynamical system.

5. Justify that (1,−1), (−1, 1) are the only
equilibria for the system x′ = x + y,
y′ = 1− x2.

6. Display the details which justify
that (0, 0), (90, 0), (0, 60), (80, 20)
are all equilibria for the sys-
tem x′(t) = x(−2x − y + 180),
y′(t) = y(−x− 2y + 120).

Practical Methods for Computing
Equilibria.

7. (Murray System) The biological sys-
tem

x′ = x(6− 2x− y), y′ = y(4− x− y)

has equilibria (0, 0), (3, 0), (0, 4), (2, 2).
Justify the four answers.

8. (Nullclines) Curves along which either
x′ = 0 or y′ = 0 are called nullclines.
The biological system

x′ = x(6− 2x− y), y′ = y(4− x− y)

has nullclines x = 0, y = 0, 6−2x−y =
0, 4 − x − y = 0. Justify the four an-
swers.

9. (Nullclines by Computer) Produce a
graphical display of the nullclines of the
Murray System above. Maple code be-
low makes a plot from equations x(6 −
2x− y) = 0, y(4− x− y) = 0.

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=-5..5,y=-10..10;

opts:=wind,contours=[0];

plots[contourplot](eqns,opts);

10. (Isoclines by Computer) Level curves
f(x, y) = c are called Isoclines.

Maple will plot level curves f(x, y) =
−2, f(x, y) = 0, f(x, y) = 2 using the
nullcline code above, with replacement
contours=[-2,0,2]. Produce an iso-
cline plot for the Murray System above
with these same contours.

11. (Implicit Plot) Equilibria can be
found graphically by an implicit plot.

# MAPLE implicit plot

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=-5..5,y=-10..10;

plots[implicitplot](eqns,wind);

Produce the implicit plot. Is it the same
as the nullcline plot?

12. (Implicit Plot) Find the equilibria
graphically by an implicit plot. Then
find the equilibria exactly.{

x′(t) = x(t) + y(t),
y′(t) = 4− x2(t).
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10.1 Planar Autonomous Systems

Rabbit-Fox System.

13. (Predator-Prey) Consider a rabbit
and fox system

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

Argue why extinction of the rabbits
(x = 0) implies extinction of the foxes
(y = 0).

14. (Predator-Prey) The rabbit and fox
system

x′ =
1

200
x(40− y),

y′ =
1

100
y(x− 40),

has extinction of the foxes (y = 0) im-
plying Malthusian population explosion
of the rabbits (limt=∞ x(t) = ∞). Ex-
plain.

Trout System. Consider

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

15. (Carrying Capacity) Show details for
calculation of the equilibrium x = 80,
y = 20, which is co-existence.

16. (Stability) Equilibrium point x = 80,
y = 20 is stable. Explain this statement
using geometry from Figure 10 and the
definition of stability.

Phase Portraits. Consider

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

17. (Equilibria) Solve for x, y in the sys-
tem

0 = x+ y,
0 = 1− x2,

for equilibria (1,−1), (−1, 1). Explain
why |x| ≤ 2, |y| ≤ 2 is a suitable graph
window.

18. (Grid Points) Draw a 5 × 5 grid on
the graph window |x| ≤ 2, |y| ≤ 2. La-
bel the equilibria.

19. (Direction Field) Draw direction field
arrows on the 5× 5 grid of the previous
exercise. They coincide with the tan-
gent direction v⃗ = x′⃗ı+ y′ȷ⃗ = (x+ y)⃗ı+
(1−x2)ȷ⃗, where (x, y) is the grid point.
The arrows may not touch.

20. (Threaded Orbits) On the direction
field of the previous exercise, draw or-
bits (threaded solution curves), using
the rules:

1. Orbits don’t cross.

2. Orbits pass direction field arrows
with nearly matching tangent.

Phase Plot by Computer. Use a com-
puter algebra system or a numerical work-
bench to produce phase portraits for the
given dynamical system. A graph window
should contain all equilibria.

21. (Rabbit-Fox System I)

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

22. (Rabbit-Fox System II)

x′ =
1

100
x(50− y),

y′ =
1

200
y(x− 40).

23. (Trout System I)

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

24. (Trout System II)

x′(t) = x(−2x− y + 200),
y′(t) = y(−x− 2y + 120).

Stability Conditions. Consider equilib-
rium point (0, 0) and nearby solution curves
x(t), y(t) with (x(0), y(0)) near (0, 0).
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25. (Instability: Repeller) Prove: If for
every δ > 0 there is one solution
with |x(0)2 + y(0)2| < δ2 such that
limt→∞ |x(t)| + |y(t)| = ∞ then equi-
librium (0, 0) is unstable.

26. (Stability: Attractor) Prove that
x′(t) < 0 and y′(t) < 0 for all nearby
solutions implies stability at (0, 0), but
not asymptotic stability.

27. (Instability in x) Prove that
limt→∞ |x(t)| = ∞ implies insta-
bility at (0, 0).

28. (Instability in y) Prove that
limt→∞ |y(t)| = ∞ implies instability
at (0, 0).

Geometric Stability.

29. (Attractor) Imagine a dust particle in
a fluid draining down a funnel, whose
trace is a space curve. Assume fluid
drains at x = 0, y = 0 and the funnel
centerline is along the z-axis. Project
the space curve onto the xy-plane. Is
this planar orbit stable at (0, 0) in the
sense of the definition?

30. (Repeller) Imagine a paint droplet
from a paint spray can, pointed down-

ward, which traces a space curve.
Project the space curve onto the xy-
plane orthogonal to the spray nozzle di-
rection, centerline along the z-axis. Is
this planar orbit stable at (0, 0) in the
sense of the definition?

Geometric Stability: Phase Portrait.

31. (Rabbit–Fox I Stability) Plot a phase
portrait for system

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

Provide geometric evidence for stability
of equilibrium x = 40, y = 30.

32. (Rabbit–Fox II Instability) Plot a
phase portrait for system

x′ =
1

100
x(50− y),

y′ =
1

200
y(x− 40).

Provide geometric evidence for instabil-
ity of equilibrium x = 0, y = 0 and
stability of equilibrium x = 40, y = 50.
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10.2 Planar Constant Linear Systems

A constant linear planar system is a set of two scalar differential equations of
the form

x′(t) = ax(t) + by(t)),
y′(t) = cx(t) + dy(t)),

(1)

where a, b, c and d are constants. In matrix form,

d

dt
u⃗(t) = Au⃗(t), A =

(
a b
c d

)
, u⃗(t) =

(
x(t)
y(t)

)
.

Solutions drawn in phase portraits don’t cross, because of Picard’s theorem. The
system is autonomous. The origin is always an equilibrium solution. There can
be infinitely many equilibria, found by solving Au⃗ = 0⃗ for the constant vector u⃗,
when A is not invertible.

Formula. System (1) can be solved by a formula which parallels the theorem
for second order constant coefficient equations Ay′′ + By′ + Cy = 0. You are
invited to learn Putzer’s spectral method, page ??, which is used to derive the
formulas. For now, let’s accept the formulas displayed in the next theorem.
Putzer’s result depends only on the Cayley-Hamilton theorem, which says that
a matrix A satisfies the characteristic equation |A − λI| = 0 under substitution
λ = A.

Theorem 10.2 (Planar Constant Linear System: Putzer’s Formula)
Consider the real planar system d

dt u⃗(t) = Au⃗(t). Let λ1, λ2 be the roots of the
characteristic equation det(A − λI) = 0. The real general solution u⃗(t) is given by
the formula

u⃗(t) = Φ(t)u⃗(0)

where the 2× 2 real invertible matrix Φ(t) is defined as follows.

Real λ1 ̸= λ2 Φ(t) = eλ1t I +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I).

Real λ1 = λ2 Φ(t) = eλ1t I + teλ1t (A− λ1I).

Complex λ1 = λ2,
λ1 = a+ bi, b > 0

Φ(t) = eat
(
cos(bt) I + (A− aI)

sin(bt)

b

)
.

Continuity and Redundancy

The formulas are continuous in the sense that limiting λ1 → λ2 in the first
formula or b → 0 in the last formula produces the middle formula for real equal
roots. The first formula is also valid for complex conjugate roots λ1, λ2 = λ1 and
it reduces to the third when λ1 = a+ ib, therefore the third formula is technically
redundant, but nevertheless useful, because it contains no complex numbers.

Recommended: Memorize the first formula, derive the other two.
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About the Newton Quotient. The Newton quotient g(x)−g(x0)
x−x0

in the first

formula of the theorem uses g(x) = ext, x = λ2, x0 = λ1, x − x0 = λ2 − λ1.
Calculus defines g′(x0) as the Newton quotient limit as x → x0.

Illustrations

Typical cases are represented by the following 2 × 2 matrices A. The two roots
λ1, λ2 of the characteristic equation must fall into one of the three possibilities:
real distinct, real equal or complex conjugate.

λ1 = 5, λ2 = 2

A =

(
−1 3
−6 8

) Real distinct roots.

u⃗(t) =

(
e5t

(
1 0
0 1

)
+

e2t − e5t

2− 5

(
−6 3
−6 3

))
u⃗(0).

λ1 = λ2 = 3

A =

(
2 1

−1 4

) Real equal roots.

u⃗(t) = e3t
(
1− t t
−t 1 + t

)
u⃗(0).

λ1 = λ2 = 2 + 3i

A =

(
2 3

−3 2

) Complex conjugate roots.

u⃗(t) = e2t
(

cos 3t sin 3t
− sin 3t cos 3t

)
u⃗(0).

Isolated Equilibria

An autonomous system is said to have an isolated equilibrium at u⃗ = u⃗0
provided u⃗0 is the only constant solution of the system in |u⃗− u⃗0| < r, for r > 0
sufficiently small.

Theorem 10.3 (Isolated Equilibrium)
The following are equivalent for a constant planar system d

dt u⃗(t) = Au⃗(t):

1. The system has an isolated equilibrium at u⃗ = 0⃗.

2. det(A) ̸= 0.

3. The roots λ1, λ2 of det(A− λI) = 0 satisfy λ1λ2 ̸= 0.

Proof: The expansion det(A− λI) = (λ1 − λ)(λ2 − λ) = λ2 − (λ1 + λ2)λ+ λ1λ2 shows
that det(A) = λ1λ2. Hence 2 ≡ 3. We prove now 1 ≡ 2. If det(A) = 0, then Au⃗ = 0⃗
has infinitely many solutions u⃗ on a line through 0⃗, therefore u⃗ = 0⃗ is not an isolated
equilibrium. If det(A) ̸= 0, then Au⃗ = 0⃗ has exactly one solution u⃗ = 0⃗, so the system
has an isolated equilibrium at u⃗ = 0⃗.

768



10.2 Planar Constant Linear Systems

Classification of Isolated Equilibria

For linear equations
d

dt
u⃗(t) = Au⃗(t),

we explain the phase portrait classifications

spiral, center, saddle, node

near the isolated equilibrium point u⃗ = 0⃗, and how to detect them when they
occur. Below, λ1, λ2 are the roots of det(A− λI) = 0.

Figures 13–12 illustrate the classifications. See also duplicate Figures 16–19,
which are organized by geometry.

Figure 11. Spiral Figure 12. Center

Figure 13. Saddle

Figure 14. Proper node Figure 15. Improper node
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Spiral λ1 = λ2 = a+ ib complex, a ̸= 0, b > 0.

A Spiral has solution formula

u⃗(t) = eat cos(bt) c⃗1 + eat sin(bt) c⃗2,

c⃗1 = u⃗(0), c⃗2 =
A− aI

b
u⃗(0).

All solutions are bounded harmonic oscillations of natural frequency
b times an exponential amplitude which grows if a > 0 and decays if
a < 0. An orbit in the phase plane spirals out if a > 0 and spirals
in if a < 0.

Center λ1 = λ2 = a+ ib complex, a = 0, b > 0

A center has solution formula

u⃗(t) = cos(bt) c⃗1 + sin(bt) c⃗2,

c⃗1 = u⃗(0), c⃗2 =
1

b
Au⃗(0).

All solutions are bounded harmonic oscillations of natural frequency
b. Orbits in the phase plane are periodic closed curves of period
2π/b which encircle the origin.

Saddle λ1, λ2 real, λ1λ2 < 0

A saddle has solution formula

u⃗(t) = eλ1tc⃗1 + eλ2tc⃗2,

c⃗1 =
A− λ2I

λ1 − λ2
u⃗(0), c⃗2 =

A− λ1I

λ2 − λ1
u⃗(0).

The phase portrait shows two lines through the origin which are
tangents at t = ±∞ for all orbits.
The line directions are given by the eigenvectors of matrix A. See
Figure 13.

Node λ1, λ2 real, λ1λ2 > 0

The solution formulas are

u⃗(t) = eλ1t (⃗a1 + t⃗a2) , when λ1 = λ2,

a⃗1 = u⃗(0), a⃗2 = (A− λ1I)u⃗(0),

u⃗(t) = eλ1 t⃗b1 + eλ2 t⃗b2, when λ1 ̸= λ2,

b⃗1 =
A− λ2I

λ1 − λ2
u⃗(0), b⃗2 =

A− λ1I

λ2 − λ1
u⃗(0).

Node subclassifications proper and improper are discussed below.
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Definition 10.1 (Node)
A node is defined to be an equilibrium point (x0, y0) such that

1. Either limt→∞(x(t), y(t)) = (x0, y0) or else limt→−∞(x(t), y(t)) = (x0, y0),
for all initial conditions (x(0), y(0) close to (x0, y0).

2. For each initial condition (x(0), y(0)) near (x0, y0), there exists a straight line
L through (x0, y0) such that (x(t), y(t)) is tangent at t = ∞ to L. More
precisely, line L has a tangent vector v⃗ and limt→∞(x′(t), y′(t)) = cv⃗ for some
constant c.

Proper Node. Also called a Star Node. Matrix A is required to have two
eigenpairs (λ1, v⃗1), (λ2, v⃗2) with λ1 = λ2. Then u⃗(0) in R2 = span(v⃗1, v⃗2)
implies u⃗(0) = c1v⃗1 + c2v⃗2 and a⃗2 = (A− λ1I)u⃗(0) = 0⃗. Therefore, u⃗(t) =
eλ1ta⃗1 implies trajectories are tangent to the line through (0, 0) in direction
v⃗ = a⃗1/|⃗a1|. Because u⃗(0) = a⃗1 is arbitrary, v⃗ can be any direction, which
explains the star-like phase portrait in Figure 14.

Improper Node with One Eigenpair. The non-diagonalizable case is also
called a Degenerate Node. Matrix A is required to have just one eigen-
pair (λ1, v⃗1) and λ1 = λ2. Then u⃗′(t) = (⃗a2 + λ1a⃗1 + tλ1a⃗2)e

λ1t im-
plies u⃗′(t)/|u⃗′(t)| ≈ a⃗2/|⃗a2| at |t| = ∞. Matrix A − λ1I has rank 1,
hence Image(A − λ1I) = span(v⃗) for some nonzero vector v⃗. Then
a⃗2 = (A−λ1I)u⃗(0) is a multiple of v⃗. Trajectory u⃗(t) is tangent to the line
through (0, 0) with direction v⃗, as in Figure 15.

Improper Node with Distinct Eigenvalues. Discussed here is the first pos-
sibility when matrix A has real eigenvalues with λ2 < λ1 < 0. Not dis-
cussed is the second possibility λ2 > λ1 > 0, which has similar details.
Then u⃗′(t) = λ1⃗b1e

λ1t+λ2⃗b2e
λ2t implies u⃗′(t)/|u⃗′(t)| ≈ b⃗1/|⃗b1| at t = ∞. In

terms of eigenpairs (λ1, v⃗1), (λ2, v⃗2), we compute b⃗1 = c1v⃗1 and b⃗2 = c2v⃗2
where u⃗(0) = c1v⃗1 + c2v⃗2. Trajectory u⃗(t) is tangent to the line through
(0, 0) with direction v⃗1. See Figure 15.

Attractor and Repeller

An equilibrium point is called an Attractor provided orbits starting nearby
limit to the point as t → ∞. A Repeller is an equilibrium point such that orbits
starting nearby limit to the point as t → −∞. Terms like Attracting node and
Repelling spiral are defined analogously.

Linear Classification Shortcut for d
dtu⃗ = Au⃗

Presented here is a practical method for deciding the classification of center,
spiral, saddle or node for a linear system d

dt u⃗ = Au⃗. The method uses just the
eigenvalues of A and the corresponding Euler atoms.
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Cayley-Hamilton Basis.

A system d
dt u⃗ = Au⃗ will have general solution

u⃗ = d⃗1(Euler Atom 1) + d⃗2(Euler Atom 2).

The vectors d⃗1, d⃗2 depend on A and u⃗(0). They are never explicitly used in the
shortcut, hence never computed.

The two Euler solution atoms are found from roots λ of the characteristic equation
|A− λI| = 0. There are two kinds of atoms:

No sine or cosine appear in the atoms, making a non-rotating phase
portrait, which is either a node or a saddle.

Sine and cosine appear in the atoms, which make a rotating phase
portrait, which is either a center or a spiral.

Table 1. Non-Rotating Phase Portraits

Figure 16. Saddle

Euler solution atoms for a saddle
or node have form eat, ebt or else
eat, teat. There are no sine or cosine
terms.

Figure 17. Proper node Figure 18. Improper node

Table 2. Rotating Phase Portraits

Figure 19. Center Figure 20. Spiral
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Divide and Conquer. Given 2× 2 matrix A with |A| ≠ 0, find the roots of the
characteristic equation |A−λI| = 0 and construct the two Euler solution atoms.
The classification figure, selected from center, spiral, node, saddle, depends only
on the atoms. Examine the atoms for sines and cosines. If present, then it will be
a rotating figure (center, spiral), otherwise it will be a non-rotating figure (node,
saddle). One more divide and conquer decides the figure, because within each
figure group, rotating or non-rotating, there is only one possible choice.

Rotation Test. Suppose sines and cosines appear in the Euler
atoms. If the Euler atoms are pure sine and cosine, then (0, 0) is
a center, otherwise (0, 0) is a spiral.

Non-Rotation Test. Suppose no sines or cosines appear in the
Euler atoms. If at t = ∞ one Euler atom limits to zero and the other
Euler atom limits to infinity, then (0, 0) is a saddle, otherwise it is a
node.

Stability Classification by Euler Atoms.

A center is always stable, characterized by Euler atoms being pure
sine and cosine.

If (0, 0) is not a center, then (0, 0) is stable at t = ∞ if and only if
both Euler atoms limit to zero at t = ∞.

Divide and conquer via Euler atoms requires no table to decide upon the basic
phase portrait classification: spiral, center, saddle, node. Stability is likewise
decided by Euler atoms.

Node Sub-classifications

If finer geometric sub-classifications of a node are useful to you, then eigenanalysis
is required. Assumed below are λ1, λ2 real and λ1λ2 > 0. Diagonalizable means
there are two eigenpairs (λ1, v⃗1), (λ2, v⃗2).

Let (x0, y0) ̸= (0, 0) denote an arbitrary initial point. Start at this point a tra-
jectory (x(t), y(t)). Think of (x0, y0) as click point on the graphic in a computer
phase portrait plotter: the threaded curve goes through (x0, y0).

Separatrix

A separatrix is a union S of equilibria and special trajectories. Separatrices are
graphing tools. The possible separatrices include every solution curve, so there
is art involved to construct a useful separatrix.

Literature may try to describe the phase portrait geometry of linear system x⃗ ′ =
Ax⃗ using eigenvector directions. The terminology assumes you know how
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to construct a separatrix S from the eigenvectors. A separatrix for a nonlinear
system u⃗ ′ = F⃗ (u⃗ ) is not constructed from eigenvectors but from experimentally
found trajectories in a phase portrait plotter.

For nodes, a separatrix S is constructed which divides the plane into two regions
or four regions. A trajectory from (x0, y0) stays in the region where it starts:
trajectories do not cross S. If (x0, y0) is in S then the trajectory remains in
S: crossing means the trajectory changed regions.

Four regions are separated by four cyan
lines each of which is a trajectory, their
union a separatrix S. The linear system
is

x′ = 2x+ y, y′ = 3y

with eigenpairs(
2,

(
1
0

))
,

(
3,

(
1
1

))

The construction for nodes uses eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2) with real nonzero
eigenvalues λ1, λ2. Let v⃗ 2 = v⃗ 1 if λ1 = λ2 and there is only one eigenpair.

Lemma 10.1 A separatrix for a node is S = span(v⃗ 1) ∪ span(v⃗ 2).

Proof. Euler’s method provides trajectories of u⃗ ′ = Au⃗ :

u⃗ 1(t) = eλ1tv⃗ 1, u⃗ 2(t) = −eλ1tv⃗ 1, u⃗ 3(t) = eλ2tv⃗ 2, u⃗ 4(t) = −eλ2tv⃗ 2

The separatrix is constructed as the union of equilibrium (0, 0) and the four
trajectories, it being understood that v⃗ 1 = v⃗ 2 causes there to be only two
trajectories. Then

S = (0, 0) ∪ u⃗ 1 ∪ u⃗ 2 ∪ u⃗ 3 ∪ u⃗ 4 = span(v⃗ 1) ∪ span(v⃗ 2)

■

The exceptional case where the Lemma is not used as a graphing tool is equal
eigenvalues λ1 = λ2 and independent eigenvectors v⃗ 1, v⃗ 2. The general solution
is u⃗ (t) = (c1v⃗ 1 + c2v⃗ 2) e

λ1t = u⃗ (0)eλ1t. Geometrically, a trajectory starting at
(x0, y0) traverses for −∞ < t < ∞ the ray determined by vector u⃗(0), which is
the vector joining (0, 0) to (x0, y0). Each such ray is a separatrix in the sense
that trajectories cannot cross it. The Lemma is correct: S is a separatrix, but it
is not useful for phase plotting. The phase portrait is a star node.

Node with Equal Eigenvalues

There are two sub-classifications for a matrix A with real equal eigenvalues λ1 =
λ2.
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Star Node: Matrix A is diagonalizable with λ1 = λ2 ̸= 0. Trajectories are
rays from the origin. Equilibrium (0, 0) is an attractor (or a repeller) from
all points (x0, y0). Separatrix not used.

Degenerate Node: Matrix A is not diagonalizable with λ1 = λ2 ̸= 0
and one eigenpair (λ1, v⃗1). Equilibrium (0, 0) is an attractor (or a repeller)
from all points (x0, y0). A threaded trajectory from (x0, y0) does not cross
separatrix S = span(v⃗ 1), which is the union of (0, 0) and two trajectories.

Node with Unequal Eigenvalues

Matrix A has two eigenpairs (λ1, v⃗1), (λ2, v⃗2), because λ1 ̸= λ2. Define separatrix
S = span(v⃗ 1) ∪ span(v⃗ 2), which is a union of two lines through the origin
separating the plane into four regions. Equilibrium (0, 0) is an attractor (or a
repeller) from all (x0, y0), the trajectory not crossing separatrix S.

Proper Node and Improper Node Classifications

The classifications proper and improper organize the possible node phase por-
traits. This terminology may appear in dynamical system literature.

Proper Node: The equilibrium is an attractor (or repeller) from all
(x0, y0)s. Phase portrait: star node. Separatrix not used.

Improper Node: The equilibrium is an attractor (or repeller) from
all (x0, y0). Separatrix: S = span(v⃗ 1) for one eigenpair (λ1, v⃗ 1)
and S = span(v⃗ 1)∪span(v⃗ 2) for two eigenpairs (λ1, v⃗ 1), (λ2, v⃗ 2).
Trajectories do not cross S. Phase portraits: degenerate node and
node with unequal eigenvalues.

How to sort out the terminology? The rule is: proper = star. Every non-star
node is improper. It may help to associate the terminology with phase portrait
plots in Figures 17 and 18 on page 772.

Examples and Methods

Example 10.1 (Spiral)
Show the classification details for the spirals represented by the matrices(

5 2
−2 5

)
,

(
−1 3
−3 −1

)
.

Solution: Matrix

(
5 2

−2 5

)
has characteristic equation (λ− 5)2+4 = 0. Then λ = 5± 2i

and the Euler atoms are e5t cos(2t), e5t sin(2t). The atoms have sines and cosines, which
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limits the classification to a center or a spiral. The presence of the exponential factor
e5t implies it is not a center, therefore it is a spiral. Because the atoms limit to zero at
t = −∞, then (0, 0) is a repeller. Classification: unstable spiral.

Matrix

(
−1 3
−3 −1

)
has characteristic equation (λ+1)2+9 = 0. Then λ = −1±3i and the

Euler atoms are e−t cos(3t), e−t sin(3t). The atoms have sines and cosines, which implies
rotation, either a center or a spiral. The presence of the exponential factor e−t implies
it is not a center, therefore it is a spiral. Because the atoms limit to zero at t = ∞, then
(0, 0) is an attractor. Classification: stable spiral.

Example 10.2 (Center)
Show the classification details for matrix

(
0 2

−2 0

)
, which represents a center.

Solution: The characteristic equation λ2+4 = 0 has complex roots λ = ±2i. The Euler
atoms are cos(2t), sin(2t), therefore a rotating figure is expected. Because of pure sines
and cosines and no exponentials, the initial classification of spiral or center reduces to a
center. Always a center is stable. Classification: stable center.

Example 10.3 (Saddle)
Show the classification details for the saddles represented by the matrices(

5 4
10 1

)
,

(
−5 4
2 1

)
Solution: We’ll use the theorem |A − λI| = λ2 + trace(A)(−λ) + |A| to find the
characteristic equation. Symbol trace(A) is the sum of the diagonal elements of A and
symbol |A| is the determinant of A, evaluated by Sarrus’s rule.

The characteristic equations are

λ2 − 6λ− 35 = 0, λ2 + 4λ− 13 = 0.

The roots are 3 ± 2
√
11 (9.6,−3.6) and −2 ±

√
17 (2.1,−6.1), respectively. Therefore,

the roots a, b are real with a > 0 and b < 0. Euler atoms are eat, ebt. The absence
of sines and cosines implies the equilibrium (0, 0) is non-rotating, either a saddle or a
node. Because one atom limits to ∞ and the other to zero, at t = ±∞, then (0, 0) is a
saddle. A saddle is always unstable. Classifications: (0, 0) is an unstable saddle for both
matrices.

Saddles have a separatrix S = span(v⃗ 1) ∪ span(v⃗ 2) that divides the plane into four
regions. The analysis follows the node case, v⃗ 1, v⃗ 2 being the eigenvectors. Calcu-
lus uses the terminology asymptotes to describe S and the limit of a point (x, y)
on a saddle graphic as x2 + y2 → ∞. For instance, the second matrix has separa-

trix S = span

((
0.56
1

))
∪ span

((
−3.56

1

))
, the column vectors defining the calculus

asymptotes.

Example 10.4 (Node Sub-Classification: Equal Eigenvalues)

Show the node classification details for the matrices

(
5 0
0 5

)
,

(
5 1
0 5

)
.

776



10.2 Planar Constant Linear Systems

Solution: A 2× 2 matrix is called diagonalizable provided it has 2 eigenpairs. Then(
5 0
0 5

)
is diagonalizable whereas

(
5 1
0 5

)
is not diagonalizable.

The eigenvalues of both matrices are 5, 5. Euler atoms are the same for both matrices:
e5t, te5t. The absence of sines and cosines limits the classification to saddle or node.
Because these atoms limit to zero at t = −∞, then (0, 0) is a node. For both, (0, 0) is a
repeller.

Classifications:

(
5 0
0 5

)
is an unstable proper node (star node) and

(
5 1
0 5

)
is an un-

stable improper node (degenerate node). See page 773. The star node does not use a
separatrix as a graphing tool. A separatrix S for the degenerate node is the line through

(0, 0) with direction v⃗ 1 =

(
1
0

)
, making for two regions separated by S: the upper

half-plane and the lower half-plane. Expect orbits to be tangent to S at t = −∞.

Example 10.5 (Node Sub-Classification: Unequal Eigenvalues)

Show the node classification details for the matrices

(
−5 0
0 −7

)
,

(
5 0
0 7

)
.

Solution: Both matrices are diagonal. Each has two independent eigenvectors v⃗ 1, v⃗ 2,
the columns of the identity matrix. Eigenvalues are the diagonal elements.

Matrix

(
−5 0
0 −7

)
has unequal eigenvalues −5,−7 with Euler atoms e−5t, e−7t. Absence

of sines and cosines limits the classification to saddle or node. The atoms have limit zero
at t = ∞, which eliminates the saddle classification and classifies (0, 0) as an attractor, a
stable improper node. Orbits are tangent at t = ∞ to ±v⃗1, eigenvector for λ1 = −5. A
separatrix S constructed from eigenvectors v⃗ 1, v⃗ 2 has four regions: the usual 4 quadrants
in the plane.

Matrix

(
5 0
0 7

)
has unequal eigenvalues 5, 7 with Euler atoms e5t, e7t. Absence of sines

and cosines limits the classification to saddle or node. The atoms have limit zero at
t = −∞, which eliminates the saddle classification. Therefore, (0, 0) is a repeller, an
unstable improper node. Orbits are tangent to eigenvector ±v⃗1 at t = −∞. A separatrix
S is identical to the separatrix for the first matrix, because of identical eigenvectors. ■

Computer Phase Portraits. In computer node plots for unequal eigenvalues, an
eigenvector direction can be detected from orbit limits at t = ±∞. Attractors will
have the eigenvector direction for eigenvalue λ with |λ| smallest. Repellers will have the
eigenvector direction for eigenvalue λ with |λ| largest.
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Exercises 10.2

Planar Constant Linear Systems

1. (Picard’s Theorem) Explain why pla-
nar solutions don’t cross, by appeal to
Picard’s existence-uniqueness theorem
for d

dt u⃗=Au⃗.

2. (Equilibria) System du⃗
dt = Au⃗ always

has solution u⃗(t) = 0⃗, so there is always
one equilibrium point. Give an exam-
ple of a matrix A for which there are
infinitely many equilibria.

Putzer’s Formula

3. (Cayley-Hamilton) Define matrices

I⃗ =

(
1 0
0 1

)
, 0⃗ =

(
0 0
0 0

)
. Given matrix

A =

(
a b
c d

)
, expand left and right sides

to verify the Cayley-Hamilton iden-
tity
A2−(a+ d)A+ (ad−bc)⃗I = 0⃗ .

4. (Complex Roots) Verify the Putzer so-
lution u⃗ = Φ(t)u⃗(0) of u⃗′ = Au⃗ for com-
plex roots λ1 = λ2 = a+bi, b > 0, where
Φ(t) is

eat
(
cos(bt) I + (A− aI)

sin(bt)

b

)
.

5. (Distinct Eigenvalues) Solve

du⃗

dt
=

(
−1 1
0 2

)
u⃗.

6. (Real Equal Eigenvalues) Solve

du⃗

dt
=

(
6 −4
4 −2

)
u⃗.

7. (Complex Eigenvalues) Solve

du⃗

dt
=

(
2 3

−3 2

)
u⃗.

8. (Purely Complex Eigenvalues) Solve

du⃗

dt
=

(
0 3

−3 0

)
u⃗.

Continuity and Redundancy

9. (Real Equal Eigenvalues) Show that
limiting λ2 → λ1 in the Putzer formula
for distinct eigenvalues gives Putzer’s
formula for real equal eigenvalues.

10. (Complex Eigenvalues) Assume λ1 =
λ2 = a + ib with b > 0. Then Putzer’s
first formula holds. Show the third for-
mula details for Φ(t):

eat
(
cos(bt) I + (A− aI)

sin(bt)

b

)
.

Illustrations

11. (Distinct Eigenvalues) Show the de-
tails for the solution of

du⃗

dt
=

(
−1 3
−6 8

)
u⃗.

12. (Complex Eigenvalues) Show the de-
tails for the solution of

du⃗

dt
=

(
2 5

−5 2

)
u⃗.

Isolated Equilibria

13. (Determinant Expansion) Verify that
|A− λI| equals

λ2 − (λ1 + λ2)λ+ λ1λ2.

14. (Infinitely Many Equilibria) Explain
why Au⃗ = 0⃗ has infinitely many solu-
tions when det(A) = 0.

Classification of Equilibria

15. (Rotating Figures) When sines and
cosines appear in the Euler atoms, the
phase portrait at (0, 0) rotates around
the origin. Explain precisely why this
is true.

16. (Non-Rotating Figures) When sines
and cosines do not appear in the Euler
atoms, the phase portrait at (0, 0) has
no rotation. Give a precise explanation.
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Attractor and Repeller

17. (Classification) Which of spiral, cen-
ter, saddle, node can be an attractor or
a repeller?

18. (Attractor) Prove that (0, 0) is an at-
tractor if and only if the Euler atoms
have limit zero at t = ∞.

19. (Repeller) Prove that (0, 0) is a re-
peller if and only if the Euler atoms
have limit zero at t = −∞.

20. (Center) A center is neither an attrac-
tor nor a repeller. Explain, using Euler
atoms.

Phase Portrait Linear
Show the classification details for spi-
ral, center, saddle, proper node, improper
node. Include for saddle and node a draw-
ing which shows eigenvector directions.
Notation: ′ = d

dt .

21. (Spiral)

x′ = 2x+ 3y,
y′ = −3x+ 2y.

22. (Center)

x′ = 3y,
y′ = −3x.

23. (Saddle)

x′ = 3x,
y′ = −5y.

24. (Proper Node)

x′ = 2x,
y′ = 2y.

25. (Improper Node: Degenerate)

x′ = 2x+ y,
y′ = 2y.

26. (Improper Node: λ1 ̸= λ2)

x′ = 2x+ y,
y′ = 3y.
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10.3 Planar Almost Linear Systems

A nonlinear planar autonomous system d
dt u⃗(t) = F⃗ (u⃗(t)) is called almost linear

at equilibrium point u⃗ = u⃗0 if

F⃗ (u⃗) = A(u⃗− u⃗0) + G⃗(u⃗),

lim
∥u⃗−u⃗0∥→0

∥G⃗(u⃗)∥
∥u⃗− u⃗0∥

= 0.

The function G⃗ has the same smoothness as F⃗ . We investigate the possibility
that a local phase portrait at u⃗ = u⃗0 for the nonlinear system d

dt u⃗(t) = F⃗ (u⃗(t))
is graphically identical to the one for the linear system v⃗′(t) = Av⃗(t) at v⃗ = 0.

The results will apply to all isolated equilibria of d
dt u⃗(t) = F⃗ (u⃗(t)). This is

accomplished by expanding F in a Taylor series about each equilibrium point,
which implies that the ideas are applicable to different choices of A and G,
depending upon which equilibrium point u⃗0 was considered.

Define the Jacobian matrix of F⃗ =

(
f
g

)
at equilibrium point u⃗0 by the formula

J =

(
fx fy
gx gy

)
.

Taylor’s theorem for functions of two variables says that

F⃗ (u⃗) = J(u⃗− u⃗0) + G⃗(u⃗)

where G⃗(u⃗)/∥u⃗ − u⃗0∥ → 0 as ∥u⃗ − u⃗0∥ → 0. Therefore, for F⃗ continuously
differentiable, we may always take A = J to obtain from the almost linear system
d
dt u⃗(t) = F⃗ (u⃗(t)) its linearization d

dt v⃗(t) = Av⃗(t).

Phase Portrait of an Almost Linear System

For planar almost linear systems d
dt u⃗(t) = F⃗ (u⃗(t)), phase portraits have been

studied extensively, by Poincaré-Bendixson and a long list of researchers. It
is known that only a finite number of local phase portraits are possible near
each isolated equilibrium point of the nonlinear system, the library of figures
being identical to those possibilities for a linear system v⃗′(t) = Av⃗(t). A precise
statement without proof appears below, followed by a summary that is easier to
remember.

Theorem 10.4 (Paste Theorem: Almost Linear Phase Portrait)
Let the planar almost linear system d

dt u⃗(t) = F⃗ (u⃗(t)) be given with F⃗ (u⃗) = A(u⃗−
u⃗0) + G⃗(u⃗) near the isolated equilibrium point u⃗0 (an isolated root of F⃗ (u⃗0) = 0⃗
with |A| ≠ 0). Let λ1, λ2 be the roots of det(A− λI) = 0. Then:
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1. If λ1 = λ2, then the equilibrium u⃗0 of the nonlinear system d
dt u⃗(t) = F⃗ (u⃗(t))

is either a node or a spiral. The equilibrium u⃗0 is an asymptotically stable
attractor if λ1 < 0 and it is a repeller if λ1 > 0. In short, the nonlinear system
inherits stability from the linear system.

2. If λ1 = λ2 = ib with b > 0, then the equilibrium u⃗0 of the nonlinear system
d
dt u⃗(t) = F⃗ (u⃗(t)) is either a center or a spiral. The stability of the equilibrium
u⃗0 cannot be predicted from properties of A.

3. In all other cases, the isolated equilibrium u⃗0 has graphically the same local
phase portrait as the associated linear system d

dt v⃗(t) = Av⃗(t) at v⃗ = 0⃗. In
particular, local phase portraits of a saddle, spiral or node can be graphed from
the linear system. The nonlinear system inherits locally the linearized system
properties of stability and instability.

Paste Theorem Summary: The linearized phase portrait locally pastes
onto the nonlinear phase portrait with two exceptions:
(1) Nodes from equal roots cause pasting of either a node or spiral.
(2) Centers (complex roots ±ib) cause pasting a center or spiral.
Local stability and instability are inherited except for a center.

Classification of Almost Linear Equilibria

A system d
dt u⃗(t) = A (u⃗(t)− u⃗0) + G⃗(u⃗(t)) has a local phase portrait determined

by the linear system v⃗′(t) = Av⃗(t), except in the case when the roots λ1, λ2 of
the characteristic equation det(A − λI) = 0 are equal or purely imaginary (see
Theorem 10.4). To summarize:

Table 3. Equilibria classification for almost linear systems

Eigenvalues of A Nonlinear Classification

λ1 < 0 < λ2 Unstable saddle
λ1 < λ2 < 0 Stable improper node
λ1 > λ2 > 0 Unstable improper node
λ1 = λ2 < 0 Stable node or spiral
λ1 = λ2 > 0 Unstable node or spiral

λ1 = λ2 = a+ ib, a < 0, b > 0 Stable spiral

λ1 = λ2 = a+ ib, a > 0, b > 0 Unstable spiral

λ1 = λ2 = ib, b > 0 Stable or unstable, center or spiral

Almost Linear Equilibria Geometry

Applied literature may refer to an equilibrium point u⃗0 of a nonlinear system
d
dt u⃗(t) = F⃗ (u⃗(t)) as a spiral, center, saddle or node. The geometry of these
classifications is explained below.
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Spiral. To describe a nonlinear spiral, we require that an orbit starting on a
given ray emanating from the equilibrium point must intersect that ray in
infinitely many distinct points on (−∞,∞).

Intuition. Basic understanding of a nonlinear spiral is obtained from a
linear example, e.g.,

d

dt
u⃗(t) =

(
−1 2
−2 −1

)
u⃗(t).

An orbit has component solutions

x(t) = e−t(A cos 2t+B sin 2t), y(t) = e−t(−A sin 2t+B cos 2t)

which oscillate infinity often on (−∞,∞), rotating around equilibrium
point (0, 0) with amplitude Ce−t, for some constant C > 0.

Center. Local orbits are periodic solutions. Each local orbit is a closed curve
which forms a planar region with boundary, having the equilibrium point
interior. As the periodic orbits shrink, the planar region also shrinks, lim-
iting as a planar set to the equilibrium point. Drawings often portray the
periodic orbit as a convex figure, but this is not correct, in general, because
the periodic orbit can have any shape. In particular, the linearized system
may have phase portrait consisting of concentric circles, but the nonlinear
phase portrait has no such exact geometric structure.

Saddle. The term implies that locally the phase portrait looks like a linear sad-
dle. In nonlinear phase portraits, the straight lines to which orbits are
asymptotic appear to be curves instead. These curves are called separa-
trices, which are generally unions of certain orbits and equilibria.

Node. Each orbit starting near the equilibrium is expected to limit to the equi-
librium at either t = ∞ (stable attractor) or t = −∞ (unstable repeller),
in a fashion asymptotic to a direction v⃗. The terminology applies when
the linearized system is a proper node (a.k.a. star node), in which case
there is an orbit asymptotic to v⃗ for every direction v⃗. If there is only one
direction v⃗ possible, or all orbits are asymptotic to just one separatrix, then
the equilibrium is classified as an improper node. The term degenerate
node applies to a subclass of improper nodes – see Example 10.4 page 776.

Pasting Figures to make a Nonlinear Phase Portrait

The plan provided by the theorem is to paste a library source figure, one of spiral,
center, saddle or node, overlaying (0, 0) in the source figure atop equilibrium point
u⃗ = u⃗0 in the nonlinear phase portrait. Some observations follow, about what
works and what fails.

1. The local paste is valid to graphical resolution near u⃗ = u⃗0, and invalid far
away from the equilibrium point.
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2. The pasted figure can mutate into a spiral, if the source figure is either a
center, or else a node with λ1 = λ2. Otherwise, saddle, spiral and node
locally paste into saddle, spiral, node.

3. Stability of the source figure is inherited by the nonlinear portrait, except
when the source is a center. In this one exceptional case, no stability
conclusion can be drawn. However, an attractor or repeller source figure
always pastes into an attractor or a repeller.

Examples and Methods

Example 10.6 (Compute Isolated Equilibria)
Find all equilibria for the nonlinear system

x′(t) = x(t) + y(t), y′(t) = 1− x2(t).

Solution: Equilibria are constant solutions, obtained formally by setting x′ = y′ = 0 in
the two differential equations x′ = x+ y, y′ = 1− x2. Then solve for constants x, y. The
details:

Set x′ = 0 0 = x+ y

Set y′ = 0 0 = 1− x2

Solve for x, y x = ±1, y = −x.

Equilibria (1,−1) and (−1, 1)

Example 10.7 (Linearization at Equilibria)
Find the two linearizations at equilibria (1,−1), (−1, 1) for the nonlinear system

x′(t) = x(t) + y(t), y′(t) = 1− x2(t).

Solution: The system of differential equations is written with function notation in the
form x′ = f(x, y), y′ = g(x, y). Then

f(x, y) = x+ y, g(x, y) = 1− x2.

The Jacobian matrix

J(x, y) =

(
fx fy
gx gy

)
is computed with symbols x, y, f, g as follows.

Partial derivative fx(x, y): fx = ∂x(x+ y) = 1 + 0 = 1

Partial derivative gx(x, y): gx = ∂x(1− x2) = 0− 2x = −2x

Partial derivative fy(x, y): fy = ∂y(x+ y) = 0 + 1 = 1

Partial derivative gy(x, y): gy = ∂y(1− x2) = 0− 0 = 0
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Then

J(x, y) =

(
fx fy
gx gy

)
=

(
1 1

−2x 0

)
.

The symbols x, y are used for the two substitutions: x = 1, y = −1 and x = −1, y = 1.

J(1,−1) =

(
1 1

−2 0

)
, J(−1, 1) =

(
1 1
2 0

)
.

The two linearized problems are

d

dt
u⃗ =

(
1 1

−2 0

)
u⃗,

d

dt
u⃗ =

(
1 1
2 0

)
u⃗.

Example 10.8 (Classification of Linearized Problems)
Classify the two linear problems

d

dt
u⃗ =

(
1 1

−2 0

)
u⃗,

d

dt
u⃗ =

(
1 1
2 0

)
u⃗.

Solution:

The answers:

(
1 1

−2 0

)
is an unstable spiral;

(
1 1
2 0

)
is an unstable saddle.

The two characteristic equations are λ2 − λ + 2 = 0 and λ2 + λ + 2 = 0 with roots,

respectively, 1
2 ± i

√
7
2 and 2,−1. According to the classification theory, page 769, the

equilibrium (0, 0) is respectively an unstable spiral or an unstable saddle.

Example 10.9 (Pasting Linear Portraits onto Nonlinear Portraits)
Classify equilibria (1,−1), (−1, 1) for the nonlinear system

x′(t) = x(t) + y(t), y′(t) = 1− x2(t),

as nonlinear spiral, center, saddle or node. Paste the linear portraits onto the non-
linear direction field portrait for Jacobians J(−1, 1), J(1,−1), if possible.

Solution: Classifications: (−1, 1) is a nonlinear unstable saddle; (1,−1) is a nonlinear
unstable spiral.

Previous examples show that for the linearized problems, (−1, 1) is an unstable saddle
and (−1, 1) is an unstable spiral. Theorem 10.4 applies to conclude that the two linear
phase portraits directly transfer onto the nonlinear phase portrait. This means that
(0, 0) in each source figure can be pasted atop the corresponding equilibrium point in
the nonlinear system, the pasted figure valid locally.

Computer phase portraits show the two pasted library figures with automatic fine tuning.
Especially, the saddle will be tuned, because a library source figure usually has asymp-
totes parallel to the coordinate axes, whereas the computer graphic will show tuned
asymptotes in eigenvector directions.
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x

y

Figure 21. Pasting Source Figures onto a Nonlinear Phase portrait.
Saddle at (−1, 1), spiral at (1,−1). The saddle source uses a linear phase portrait for
d
dt v⃗ = J(−1, 1)v⃗. The standard saddle source can be rotated to match the nonlinear
direction field, with a similar result.

Example 10.10 (Trout System)
Consider a trout model for two species x, y:

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

The equilibria are (0, 0), (90, 0), (0, 60), (80, 20). Find the linearized problem for each
equilibrium, then make a tuned computer plot.

Solution:
System Form. Let f(x, y) = x(−2x− y + 180), g(x, y) = y(−x− 2y + 120) to convert
to system form x′ = f(x, y), y′ = g(x, y).

Jacobian Matrix. Use symbols f, g, x, y to compute the Jacobian J(x, y) =

(
fx fy
gx gy

)
.

fx = ∂
∂x

(
−2x2 − xy + 180x

)
= −4x− y − 180

fy = ∂
∂y

(
−2x2 − xy + 180x

)
= −x

gx = ∂
∂x

(
−xy − 2y2 + 120y

)
= −y

gy = ∂
∂y

(
−xy − 2y2 + 120y

)
= −x− 4y + 120

J(x, y) =

(
fx fy
gx gy

)
=

(
−4x− y − 180 −x

−y −x− 4y + 120

)
Equilibria. To find the equilibria, formally set x′ = y′ = 0. Details:

x′ = 0 = f(x, y) becomes x(−2x− y + 180) = 0

y′ = 0 = g(x, y) becomes y(−x− 2y + 120) = 0

Set the factors to zero, in four possible ways, to obtain the solutions

x = y = 0, x = 0, y = 60, x = 90, y = 0, x = 80, y = 20.
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Linearized Differential Equations. The linear problems d
dt u⃗ = J(x0, y0)u⃗ at equilib-

ria (0, 0), (0, 60), (90, 0), (80, 20) are created from the four Jacobian matrices

J(0, 0) =

(
−180 0
0 120

)
, J(0, 60) =

(
120 0
−60 −120

)
,

J(90, 0) =

(
−180 −90
0 30

)
, J(80, 20) =

(
−160 −80
−20 −40

)
.

Eigenvalues. Answers for the four matrices are respectively:

120, 180; 120,−120; 30,−180; −27.89,−172.11

Linear Classifications. Because there are no complex eigenvalues, then the possible
linear phase portraits are either saddle or node. Checking limits of Euler atoms at
t = ∞ reveals the classifications unstable node, saddle, saddle, stable node. No equal
eigenvalues implies both nodes are improper.

Paste Theorem. All linear source figures paste directly onto the nonlinear phase por-
trait with stability properties inherited. See Theorem 10.4.

Eigenvectors help understanding of the phase portrait. In all four figures, asymptote di-
rections are along an eigenvector. For instance, at (80, 20) the two eigenvector directions

are v⃗1 =

(
−0.6

1

)
, v⃗2 =

(
6.6
1

)
.

y

x

Figure 22. Trout System Phase portrait.
Saddles at (0, 60) and (90, 0). Improper nodes with unequal eigenvalues at (0, 0) and
(80, 20). A separatrix can be visualized, which connects (90, 0) to (0, 0) to (60, 0) along
the coordinate axes, and then to (80, 20).

Example 10.11 (Rabbit-Fox System)
Consider a predator-prey model for rabbits x(t) and foxes y(t):

x′ =
1

200
x(40− y),

y′ =
1

100
y(x− 50).

The equilibria are (0, 0), (50, 40). Find the linearized problem for each equilibrium,
then make a tuned computer plot.
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Solution:
System Form. Let f(x, y) = 1

200x(40− y), g(x, y) = 1
100y(x− 50) to convert to system

form x′ = f(x, y), y′ = g(x, y).

Jacobian Matrix. Symbols f, g, x, y are used in the Jacobian J(x, y) =

(
fx fy
gx gy

)
.

fx = ∂
∂x (x/5− xy/200) = 1/5− y/200

fy = ∂
∂y (x/5− xy/200) = −x/200

gx = ∂
∂x (−y/2 + xy/100) = y/100

gy = ∂
∂y (−y/2 + xy/100) = −x− 4y + 120

J(x, y) =

(
fx fy
gx gy

)
=

(
−4x− y − 180 −x

−y −x− 4y + 120

)
Equilibria. To find the equilibria (0, 0), (50, 40), formally set x′ = y′ = 0. Details:

0 = f(x, y) becomes 1
200x(40− y) = 0

0 = g(x, y) becomes 1
100y(x− 50) = 0

The solutions are x = y = 0 or else x = 50, y = 40.

Linearized Differential Equations. The linear problems d
dt u⃗ = J(x0, y0)u⃗ at equilib-

ria (0, 0), (50, 40) are created from the two Jacobian matrices

J(0, 0) =

(
1
5 0
0 − 1

2

)
, J(50, 40) =

(
0 − 1

4
2
5 0

)
.

Eigenvalues. The answers are 1
5 ,−

1
2 and ±i/

√
10, respectively.

Linear Classifications. Complex eigenvalues imply linear phase portraits of either
center or node. Checking Euler atoms reveals the classification center at (50, 40). Real
unequal eigenvalues at (0, 0) implies a saddle or node. Checking limits of the Euler atoms
at t = ∞ implies (0, 0) is a saddle. Both linear source figures are stable.

Paste Theorem. The linear saddle source figure for (0, 0) pastes directly onto the
nonlinear phase portrait at (0, 0) with stability properties inherited. The linear center
source figure for (50, 40) pastes into a center or a spiral at (50, 40). The paste stability
or instability is not decided. See Theorem 10.4.

The easiest path to deciding the nonlinear portrait at (50, 40) is a computer phase por-
trait, which shows a center structure.

Eigenvectors help understanding of the phase portrait. At (0, 0) the two eigenvector

directions are v⃗1 =

(
1
0

)
, v⃗2 =

(
0
1

)
.
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y

x

Figure 23. Rabbit-Fox System Phase portrait.
Eigenvector directions for the saddle at (0, 0) are parallel to the coordinate axes. The
linear center from J(50, 40) happens to transfer to a nonlinear center at (50, 40).

Exercises 10.3

Almost Linear Systems. Find all equi-
libria (x0, y0) of the given nonlinear sys-
tem. Then compute the Jacobian matrix
A = J(x0, y0) for each equilibria.

1. (Spiral and Saddle)

d
dtx = x+ 2y,
d
dty = 1− x2.

2. (Two Improper Nodes, Spiral)

d
dtx = x− 3y + 2xy,
d
dty = 4x− 6y − xy − x2.

3. (Proper Node, Saddle)

d
dtx = 3x− 2y − x2 − y2,
d
dty = 2x− y.

4. (Center and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = 2x− y − xy.

5. (Proper Node and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = y − xy.

6. (Degenerate Node, Spiral and Two

Saddles)

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.

7. (Improper Node, Saddle)

d
dtx = x− y + x3,
d
dty = 2y + 3xy.

8. (Proper Node and a Saddle)

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

Phase Portrait Almost Linear. Linear li-
brary phase portraits can be locally pasted
atop the equilibria of an almost linear sys-
tem, with limitations. Apply the theory
for the following examples. Complete the
phase diagram by computer, thereby re-
solving the possible mutation of a center
or node into a spiral. Label eigenvector di-
rections where it makes sense.

9. (Center and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = 2x− y − xy.

10. (Degenerate Node, Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = y − xy.
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11. (Degenerate Node, Spiral, Two Sad-

dles)

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.

12. (Improper Node, Saddle)

d
dtx = x− y + x3,
d
dty = 2y + 3xy.

13. (Proper Node, Saddle)

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

14. (Two Improper Nodes and Two Sad-

dles)

d
dtx = (120− 4x− 2y)x,
d
dty = (60− x− 2y)y

Classification of Almost Linear Equilib-
ria. With computer assist, find and classify
the nonlinear equilibria.

15. (Co-existing Species)

x′(t) = x(t)(24− 2x(t)− y(t)),
y′(t) = y(t)(30− 2y(t)− x(t)).

16. (Doomsday-Extinction)

x′(t) = x(t)(x(t)− y(t)− 4),
y′(t) = y(t)(x(t) + y(t)− 8).

Almost Linear Geometry. A separatrix
S is a union of curves and equilibria. Ide-
ally, orbits limit to S. With computer as-
sist, make a plot of threaded curves which
identify one or more separatrices near the
equilibrium.

17. (Saddle (−1, 1))

d
dtx = x+ y,
d
dty = 1− x2.

18. (Saddle (−1/5,−2/5))

d
dtx = 3x− 2y − x2 − y2,
d
dty = 2x− y.

19. (Saddle (−2/3, 3
√

4/3))

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

20. (Degenerate Improper Node (0, 0))

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.

Rayleigh and van der Pol. Each exam-
ple below has a unique periodic orbit sur-
rounding an equilibrium point that is the
limit at t = ∞ of any other orbit. Discuss
the spiral repeller at (0, 0) in the attached
figure, from the linearized problem at (0, 0)
and Paste Theorem 10.4. Create a phase
portrait with computer assist for the non-
linear problem.

21. (Lord Rayleigh 1877, Clarinet Reed

Model)

d
dtx = y,

d
dty = −x+ y − y3.

Figure 24. Clarinet Reed.

22. (van der Pol 1924, Radio Oscillator

Circuit Model)

d
dtx = y,

d
dty = −x+ (1− x2)y.

Figure 25. Oscillator Circuit.
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10.4 Biological Models

Studied here are predator-prey models and competition models for two
populations. Assumed as background from Malthus’ Law (Chapter 1 Section 1)
are the one-dimensional Malthusian model d

dtP = kP and the one-dimensional

Verhulst model d
dtP = (a− bP )P .

Predator-Prey Models

One species called the Predator feeds on the other species called the Prey. The
prey feeds on some constantly available food supply, e.g., rabbits eat plants and
foxes eat rabbits.

Credited with the classical predator-prey model is the Italian mathematician
Vito Volterra (1860-1940), who worked on cyclic variations in shark and prey-
fish populations in the Adriatic sea. The following biological assumptions apply
to model a predator-prey system.

Malthusian Growth The prey population grows according to the growth equa-
tion x′(t) = a x(t), a > 0, in the absence of predators.

Malthusian Decay The predator population decays according to the decay
equation y′(t) = −b y(t), b > 0, in the absence of prey.

Chance Encounters The prey decrease population at a rate −pxy, p > 0, due
to chance encounters of predators y with prey x. Preda-
tors increase population due to these chance interactions
at a rate qxy, q > 0.

The interaction terms qxy and −pxy are justified by arguing that the frequency
of chance encounters is proportional to the product xy. Biologists explain the
proportionality by saying that doubling either population should double the fre-
quency of chance encounters. Adding the Malthusian rates and the chance en-
counter rates gives the Volterra predator-prey system2

x′(t) = (a− p y(t))x(t),
y′(t) = (q x(t)− b)y(t).

(1)

The differential equations are displayed in this form in order to emphasize that
each of x(t) and y(t) satisfy a scalar first order differential equation u′(t) =
r(t)u(t) in which the rate function r(t) depends on time. For initial population
sizes near zero, the two differential equations behave very much like the Malthu-
sian growth model u′(t) = a u(t) and the Malthusian decay model u′(t) = −b u(t).
This basic growth/decay property allows us to identify the predator variable y, or
the prey variable x, regardless of the order in which the differential equations are

2The system is written with prey x and predator y. Alphabetical order predator-prey
would suggest the variables to be reversed, y and then x. History is otherwise.
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written. As viewed from Malthus’ law u′ = ru, the prey population has growth
rate r = a− py which gets smaller as the number y of predators grows, resulting
in fewer prey. Likewise, the predator population has decay rate r = −b + qx,
which gets larger as the number x of prey grows, causing increased predation.
These are the basic ideas of Verhulst, applied to the individual populations x and
y.

System Variables

The system of two differential equations (1) can be written as a planar vector
autonomous system

d

dt
u⃗ = F⃗ (u⃗)

where vector functions F⃗ and u⃗ are defined by

F⃗ (u⃗) =

(
(a− py)x
(qx− b)y)

)
, u⃗ =

(
x(t)
y(t)

)
.(2)

The vector function F⃗ is everywhere defined and continuously differentiable. The
Picard–Lindelöf theorem provides existence-uniqueness.

A planar vector autonomous system d
dt u⃗ = F⃗ (u⃗) can be written in standard scalar

system form
x′ = f(x, y), y′ = g(x, y)

by providing definitions for f(x, y) and g(x, y). For predator-prey system (1),
the definitions are

f(x, y) = (a− p y)x, g(x, y) = (q x− b)y.

Equilibria

The equilibrium points u⃗ =

(
x0
y0

)
satisfy F⃗ (u⃗) = 0⃗. For predator-prey system

(1), the equilibria are (0, 0) and (b/q, a/p), found by solving for x0, y0 in the
equations (a− p y0)x0 = 0, (q x0 − b)y0 = 0.

Linearized Predator-Prey System

The linearized system at equilibrium (x0, y0) is the vector-matrix system d
dt v⃗(t) =

Av⃗(t), where A is the Jacobian matrix J(x, y) evaluated at point x = x0, y = y0,
briefly A = J(x0, y0). In terms of system variables3,

J(x0, y0) =

(
fx(x0, y0) fy(x0, y0)
gx(x0, y0) gy(x0, y0)

)
.

3Notation fx means ∂f/∂x, the calculus x-derivative with all other variables held constant.
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For the predator-prey system, we start by computing

fx =
∂

∂x
(a x− p xy) = a− p y, fy =

∂

∂y
(a x− p xy) = 0− p x,

gx =
∂

∂x
(q xy − b y) = q y − 0, gy =

∂

∂y
(q xy − b y) = q x− b.

The Jacobian matrix is given explicitly by

J(x, y) =

(
fx fy
gx gy

)
=

(
a− p y −p x
q y q x− b

)
.(3)

The matrix J is evaluated at equilibrium points (0, 0), (b/q, a/p) to obtain the
2× 2 matrices for the linearized systems:

J(0, 0) =

(
a 0
0 −b

)
, J(b/q, a/p) =

(
0 −bp/q

aq/p 0

)
.

The linearized systems v⃗′(t) = Av⃗(t) are:

Equilibrium (0, 0) d
dt u⃗(t) =

(
a 0
0 −b

)
u⃗(t)

Equilibrium (b/q, a/p) d
dt u⃗(t) =

(
0 −bp/q

aq/p 0

)
u⃗(t)

Saddle J(0, 0). Matrix

(
a 0
0 −b

)
has unequal real eigenvalues a,−b and associated

Euler atoms eat, e−bt. No rotation implies a saddle or node, but limits at infinity
imply a linear saddle. The Paste Theorem implies system d

dt u⃗(t) = F⃗ (u⃗(t))
has a saddle at equilibrium (0, 0).

Center J(b/q, a/p). Matrix

(
0 −bp/q

aq/p 0

)
has eigenvalues λ = ±i

√
ab and as-

sociated Euler atoms cos(t
√
ab), cos(t

√
ab). Pure rotation (no exponential factor)

implies a linear center. The Paste Theorem implies system d
dt u⃗(t) = F⃗ (u⃗(t))

has either a center or a spiral at equilibrium (b/q, a/p).

Shown below in Theorem 10.5 is that the spiral case does not happen. The
proof of Lemma 10.2 is in the exercises.

Lemma 10.2 (Predator-Prey Implicit Solution)
Let (x(t), y(t)) be an orbit of the predator-prey system (1) with x(0) > 0 and
y(0) > 0. Then for some constant C,

a ln |y(t)|+ b ln |x(t)| − q x(t)− p y(t) = C.(4)

Theorem 10.5 (Spiral Case Eliminated)

Equilibrium (b/q, a/p) of predator-prey system (1) cannot be a spiral.
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Proof: Assume the equilibrium (b/q, a/p) is a spiral point and some orbit touches the
line x = b/q in points (b/q, u1), (b/q, u2) with u1 ̸= u2, u1 > a/p, u2 > a/p. Consider the
energy function E(u) = a ln |u| − p u. Due to relation (4), E(u1) = E(u2) = E0, where
E0 ≡ C + b − b ln |b/q|. By the Mean Value Theorem of calculus, dE/du = 0 at some
u between u1 and u2. This is a contradiction, because dE/du = (a − pu)/u is strictly
negative for a/p < u < ∞. Therefore, equilibrium (b/q, a/p) is not a spiral. ■

Rabbits and Foxes

An instance of predator-prey theory is a Volterra population model for x rabbits
and y foxes given by the system of differential equations

x′(t) =
1

250
x(t)(40− y(t)),

y′(t) =
1

50
y(t)(x(t)− 60).

(5)

The equilibria of system (5) are (0, 0) and (60, 40). A phase portrait for system
(5) appears in Figure 26.

The linearized system at (60, 40) is

x′(t) = − 6

25
y(t),

y′(t) =
4

5
x(t).

This system has eigenvalues ±i
√

24/125. The Euler atoms are sin(t
√

24/125)
and cos(t

√
24/125), which have period 2π/

√
24/125 ≈ 14.33934302. The linear

classification is a center.

The nonlinear classification at (60, 40) is then a center, because of Theorem
10.5. Intuition dictates that the period of smaller and smaller nonlinear orbits
enclosing the equilibrium (60, 40) must approach a value that is approximately
14.3.

The fluctuations in population size x(t) are measured graphically by the maxi-
mum and minimum values of x in the phase portrait, or more simply, by graphing
t versus x(t) in a planar graphic. To illustrate, the orbit for x(0) = 60, y(0) = 100
is graphed in Figure 27, from which it is determined that the rabbit population
x(t) fluctuates between 39 and 87. Similar remarks apply to foxes y(t).
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y

x

0

40

150

11060−10

Figure 26. Rabbit
and Fox System (5).
Equilibria (0, 0) and
(60, 40) are respec-
tively a saddle and a
center. The oscillation
period is about 17 for
the largest orbit and
14.5 for the smallest
orbit.

240
39

87

t

x(t)

Figure 27. Scene Plot of x(t) Rabbits.
An initial rabbit population of 60 and fox population of 100 causes the rabbit population
x(t) to fluctuate from 39 to 87. The plot uses nonlinear equations (5) with x(0) = 60,
y(0) = 100.

Pesticides, Aphids and Ladybugs

The classical predator-prey equations apply for prey Aphid x(t) and predator
Ladybug y(t), which for simplicity are assumed to be

x′(t) = (1− y(t))x(t),
y′(t) = (x(t)− 1)y(t),

(6)

with units in millions.

Consider deployment of an indiscriminate pesticide which kills a certain percent-
age of each insect. Typically available pesticide strengths are s = 0.5, s = 0.75.
Strength s = 0 is no pesticide. We will assume hereafter that 0 ≤ s < 1. The
predator-prey equations mutate by adding terms for pesticide-caused death rates,

794



10.4 Biological Models

resulting in the Pesticide Model

x′(t) = (1− y(t))x(t)− s x(t),
y′(t) = (x(t)− 1)y(t)− s y(t).

(7)

Explained below in Figures 28, 29 and 30 are the results in the following table.

Table 4. Effects of Pesticide on Aphids and Ladybugs

The aphids increase and the ladybugs decrease.

The insecticide had a counterproductive effect. Aphid damage to the
garden plants increased by using a pesticide.

y

1.6

0
0

s = 0

s = 0.5

0.7

3
x

Figure 28. Aphid-Ladybug Portraits s = 0, s = 0.5.
Aphid population max and min are measured by the orbit width. Ladybug
population max and min are measured by the orbit height. Both orbits use
x(0) = y(0) = 0.7. Details appear in the x and y scene plots, infra.

Pesticide model (7) is equivalent to the classical predator-prey system (1) with
replacements a = 1− s, b = 1+ s. The nonlinear phase portrait for the pesticide
model has according to predator-prey theory a saddle at (0, 0) and a center at
(1 + s, 1− s).

The scene plots in Figures 29 and 30 show that the aphids increase and the lady-
bugs decrease, for the two populations, x(t) aphids, y(t) ladybugs in pesticide
system (7), with pesticide strengths s = 0 and s = 0.5 and initial populations
x(0) = 0.7, y(0) = 0.7 (in millions).
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y

10 20
x0

1.5

2.8

s = 0

s = 0.5

0

Figure 29. Aphid
Scene x(t).
Aphids increase when
pesticide strength
s = 0.5 is applied.

y

0.7

1.5

x

s = 0

s = 0.5

0
0 10 20

Figure 30. Ladybug Scene y(t).

Ladybugs decrease when pesticide strength s = 0.5 is applied.

Competition Models

Two populations 1 and 2 feed on some constantly available food supply, e.g., two
kinds of insects feed on fallen fruit. The following biological assumptions apply
to model a two-population competition system.

Verhulst model 1 Population 1 grows or decays according to the logistic
equation x′(t) = (a− bx(t))x(t), in the absence of pop-
ulation 2.

Verhulst model 2 Population 2 grows or decays according to the logistic
equation y′(t) = (c− dy(t))y(t), in the absence of pop-
ulation 1.
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Chance encounters Population 1 decays at a rate−pxy, p > 0, due to chance
encounters with population 2. Population 2 decays at
a rate −qxy, q > 0, due to chance encounters with
population 1.

Adding the Verhulst rates and the chance encounter rates gives the Volterra
competition system

x′(t) = (a− bx(t)− py(t))x(t),
y′(t) = (c− dy(t)− qx(t))y(t).

(8)

The equations show that each population satisfies a time-varying first order dif-
ferential equation u′(t) = r(t)u(t) in which the rate function r(t) depends on
time. For initial population sizes near zero, the two differential equations essen-
tially reduce to the Malthusian growth models x′(t) = ax(t) and y′(t) = cy(t). As
viewed from Malthus’ law u′ = ru, population 1 has growth rate r = a− bx− py
which decreases if population 2 grows, resulting in a reduction of population 1.
Likewise, population 2 has growth rate r = c−dy−qx, which reduces population
2 as population 1 grows. While a, c are Malthusian growth rates, constants b,
d measure inhibition (due to lack of food or space) and constants p, q measure
competition.

Equilibria

The equilibrium points u⃗ satisfy F⃗ (u⃗) = 0⃗ where F⃗ is defined by

F⃗ (u⃗) =

(
(a− bx− py)x
(c− dy − qx)y

)
, u⃗ =

(
x
y

)
.(9)

To isolate the most important applications, the assumption will be made of ex-
actly four roots in population quadrant I. This is equivalent to the condition
bd− qp ̸= 0 plus all equilibria have nonnegative coordinates.

Three of the four equilibria are found to be (0, 0), (a/b, 0), (0, c/d). The last two
represent the carrying capacities of the Verhulst models in the absence of the
second population. The fourth equilibrium (x0, y0) is found as the unique root(
x0
y0

)
of the linear system

(
b p
q d

)(
x0
y0

)
=

(
a
c

)
,

which according to Cramer’s rule is

x0 =
ad− pc

bd− qp
, y0 =

bc− qa

bd− qp
.
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Linearized Competition System

The Jacobian matrix J(x, y) is computed from the partial derivatives of system
variables f, g, which are found as follows.

f(x, y) = (a− b x− p y)x, = a x− b x2 − p xy
g(x, y) = (c− d y − q x) y = c y − d y2 − q xy

fx = ∂
∂x(a x− b x2 − p xy) = a− 2b x− p y

fy = ∂
∂y (a x− b x2 − p xy) = −p x

gx = ∂
∂x(c y − d y2 − q xy) = −q y

gy = ∂
∂y (c y − d y2 − q xy) = c− 2d y − q x

The Jacobian matrix is given explicitly by

J(x, y) =

(
fx fy
gx gy

)
=

(
a− 2bx− py −px

−qy c− 2dy − qx

)
.(10)

The matrix J is evaluated at an equilibrium point (a root of F⃗ (u⃗) = 0⃗) to obtain
a 2 × 2 matrix A for the linearized system d

dt v⃗(t) = A v⃗(t). The four linearized
systems are:

Equilibrium (0, 0)
Nodal Repeller

d
dt u⃗(t) =

(
a 0
0 c

)
u⃗(t)

Equilibrium (a/b, 0)
Saddle or Nodal Attractor

d
dt u⃗(t) =

(
−a −ap/b
0 c− qa/b

)
u⃗(t)

Equilibrium (0, c/d)
Saddle or Nodal Attractor

d
dt u⃗(t) =

(
a− cp/d 0
−qc/d −c

)
u⃗(t)

Equilibrium (x0, y0)
Saddle or Nodal Attractor

d
dt u⃗(t) =

(
−bx0 −px0
−qy0 −dy0

)
u⃗(t)

Equilibria (a/b, 0) and (0, c/d) are either both saddles or both nodal attractors,
accordingly as bd− qp > 0 or bd− qp < 0, because of the requirement that a, b,
c, d, p, q, x0, y0 be positive.

The analysis of equilibrium (x0, y0) is made by computing the eigenvalues λ of the
linearized system, from characteristic equation λ2+(bx0+dy0)λ+(bd−pq)x0y0 =
0, giving

λ =
1

2

(
−(bx0 + dy0)±

√
D
)
, where D = (bx0 − dy0)

2 + 4pqx0y0.

Because D > 0, the equilibrium is a saddle when the roots have opposite sign,
and it is a nodal attractor when both roots are negative. The saddle case is
D > (bx0+dy0)

2 or equivalently 4x0y0(pq−bd) > 0, which reduces to bd−qp < 0.
In summary:
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If bd− qp > 0, then equilibria (a/b, 0), (0, c/d), (x0, y0) are respec-
tively a saddle, saddle, nodal attractor.

If bd− qp < 0, then equilibria (a/b, 0), (0, c/d), (x0, y0) are respec-
tively a nodal attractor, nodal attractor, saddle.

Biological Meaning of bd− qp Negative or Positive

The quantities bd and qp are measures of inhibition and competition.

Survival-Extinction The inequality bd− qp < 0 means that competition qp is
large compared with inhibition bd. The equilibrium point
(x0, y0) is unstable in this case, which biologically means
that the two species cannot coexist: Survival for one
species and Extinction for the other species.

Co-existence The inequality bd − qp > 0 means that competition qp
is small compared with inhibition bd. The equilibrium
point (x0, y0) is asymptotically stable in this case, which
biologically means the two species Co-exist.

Survival of One Species

Consider populations x(t) and y(t) that satisfy the competition model

x′(t) = x(t)(24− x(t)− 2y(t)),
y′(t) = y(t)(30− y(t)− 2x(t)).

(11)

We apply the general competition theory with a = 24, b = 1, p = 2, c = 30,
d = 1, q = 2. The equilibrium points are (0, 0), (0, 30), (24, 0), (12, 6), shown in
Figure 31 as solid circles and squares. Eigenvalues are computed from Jacobian

matrix J(x, y) =

(
24− 2x− 2y −2x

−2y 30− 2y − 2x

)
evaluated at the four equilibria.

The answers:

Equilibrium (0, 0): λ = 24, 30, nodal repeller.

Equilibrium (0, 30): λ = −36,−30, nodal attractor.

Equilibrium (24, 0): λ = −24,−18, nodal attractor.

Equilibrium (12, 6): λ = 8.23,−26.23, saddle.

The Paste Theorem says that the linear portraits can be pasted atop the four
equilibria in the nonlinear phase portrait. The tuned portrait appears in Figure
31, clipped to the population quadrant x ≥ 0, y ≥ 0.
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y

x

Figure 31. Survival
of One Species.
Portrait for system
(11). Equilibria are
(0, 0), (0, 30), (24, 0)
and (12, 6), classified
respectively as nodal
repeller, nodal attractor,
nodal attractor and
saddle. The population
with initial advantage
survives, while the other
dies out.

Co-existence

Consider populations x(t) and y(t) that satisfy the competition model

x′(t) = x(t)(24− 2x(t)− y(t)),
y′(t) = y(t)(30− 2y(t)− x(t)).

(12)

We apply the general competition theory with a = 24, b = 2, p = 1, c = 30, d = 2,
q = 1. The equilibrium points are (0, 0), (0, 15), (12, 0) and (6, 12), shown in
Figure 32 as solid circles and squares. Eigenvalues are computed from Jacobian

matrix J(x, y) =

(
24− 4x− y −x

−y 30− 4y − x

)
evaluated at the four equilibria.

The answers:

Equilibrium (0, 0): λ = 24, 30, nodal repeller.

Equilibrium (0, 30): λ = 18,−24, saddle.

Equilibrium (24, 0): λ = 9,−30, saddle.

Equilibrium (12, 6): λ = −7.61,−28.39, nodal attractor.

The linear portraits can be pasted atop the four equilibria in the nonlinear phase
portrait, according to the Paste Theorem. Figure 32 is the tuned portrait.
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y

x
60 12

0

12

15

Figure 32. Coexis-
tence.
Phase portrait of sys-
tem (12). The equilibria
are (0, 0), (0, 15), (12, 0)
and (6, 12), classified
respectively as nodal
repeller, saddle, saddle,
nodal attractor. A
solution with x(0) > 0,
y(0) > 0 limits at
t = ∞ to the solid
square (6, 12). Co-
existence states are
x = 6, y = 12.

Alligators, Explosion and Extinction

Let us assume a competition-type model (8) in which the Verhulst dynamics has
explosion-extinction type. Accordingly, the signs of a, b, c, d in (8) are assumed
to be negative, but p, q are still positive. The populations x(t) and y(t) are
unsophisticated in the sense that each population in the absence of the other is
subject to only the possibilities of population explosion or population extinction.

It can be verified for this general setting, although we shall not attempt to do
so here, that the population quadrant x(0) > 0, y(0) > 0 is separated into two
regions I and II, whose common boundary is a separatrix consisting of three
equilibria and two orbits. An orbit starting in region I will have (a) x(∞) = 0,
y(∞) = ∞, or (b) x(∞) = ∞, y(∞) = 0, or (c) x(∞) = ∞, y(∞) = ∞. Orbits
starting in region II will satisfy (d) x(∞) = 0, y(∞) = 0. The biological conclu-
sion is that either population explosion or extinction occurs for each population.

Consider the instance

x′(t) = x(t)(x(t)− y(t)− 4),
y′(t) = y(t)(x(t) + y(t)− 8).

(13)

Let’s apply the general competition theory with a = 24, b = 2, p = 1, c = 30,
d = 2, q = 1. The equilibria are (0, 0), (0, 8), (4, 0) and (6, 2), shown in Figure 33
as solid circles and a square. Eigenvalues λ are computed from Jacobian matrix

J(x, y) =

(
2x− y − 4 −x

−y x+ 2y − 8

)
evaluated at the four equilibria. The answers

below and the Paste Theorem predict the tuned portrait in Figure 33.

Equilibrium (0, 0): λ = −4,−8, nodal attractor.
Equilibrium (0, 30): λ = 8,−12, saddle.
Equilibrium (24, 0): λ = 4,−4, saddle.
Equilibrium (12, 6): λ = 4± 2.83 i, spiral repeller.
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0 4 6

2

0

8

y

x

Figure 33. Popula-
tion Explosion or Ex-
tinction.
Phase portrait of system
(13). The equilibria are
(0, 0), (0, 8), (4, 0) and
(6, 2), classified respec-
tively as nodal attractor,
saddle, saddle and spiral
repeller. The node and
two saddles are marked
with a solid disk and the
spiral repeller is marked
with a solid square.

Exercises 10.4

Predator-Prey Models.

Consider the system

x′(t) =
1

250
(1− 2y(t))x(t),

y′(t) =
3

500
(2x(t)− 1)y(t).

1. (System Variables) The system has
vector-matrix form

d

dt
u⃗ = F⃗ (u⃗(t)).

Display formulas for u⃗ and F⃗ .

2. (System Parameters) Identify the val-
ues of a, b, c, d, p, q, as used in the text-
book’s predator-prey system.

3. (Identify Predator and Prey) Which
of x(t), y(t) is the predator?

4. (Switching Predator and Prey) Give
an example of a predator-prey system
in which x(t) is the predator and y(t) is
the prey.

Implicit Solution Predator-Prey. These
exercises prove equation

a ln |y|+ b ln |x| − q x− p y = C

for predator-prey system

x′(t) = (a− p y(t))x(t),
y′(t) = (q x(t)− b)y(t).

5. (First Order Equation) Verify from
the chain rule of calculus the first or-
der equation

dy

dx
=

y′(t)

x′(t)
=

y

x

qx− b

a− py
.

6. (Separated Variables) Verify(
a

y
− p

)
dy =

(
q − b

x

)
dx.

7. (Quadrature) Integrate the equation of
Exercise 6 to obtain

a ln |y| − p y = q x− b ln |x| = C.

Then re-arrange to obtain the reported
implicit solution.

8. (Energy Function) Define E(t) =
a ln |u| − pu. Show that dE/du = (a −
pu)/u. Then show that dE/du < 0 for
a > 0, p > 0 and a/p < u < ∞.

Linearized Predator-Prey System. Con-
sider

x′(t) = (100− 2y(t))x(t),
y′(t) = (2x(t)− 160)y(t).

9. (Find Equilibria) Verify equilibria
(0, 0), (80, 50).

10. (Jacobian Matrix) Compute J(x, y)
for each x, y. Then find J(0, 0) and
J(80, 50).
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11. (Transit Time) Find the transit time
of an orbit for one loop about (0, 0) for

system d
dt v⃗ =

(
0 −160
100 0

)
v⃗ , the lin-

earization about (80, 50).

12. (Paste Theorem) Describe the local
figures expected near equilibria in the
nonlinear phase portrait.

Rabbits and Foxes. Consider

x′(t) =
1

200
x(t)(50− y(t)),

y′(t) =
1

100
y(t)(x(t)− 40).

13. (Equilibria) Verify equilibria (0, 0),
(40, 50), showing all details.

14. (Jacobian) Compute Jacobian J(x, y),
then J(0, 0) and J(40, 50).

15. (Rabbit Oscillation) Find a graphi-
cal estimate for the period of oscilla-
tion of the rabbit population x(t) for
the nonlinear system, given x(0) = 100,
y(0) = 60 and t is in weeks. Answer:
about 23 weeks.

16. (Rabbit-Gerbil Competing Species)

Consider system

x′ =
(
5
4 − x

160 − 3y
1000

)
x,

y′ =
(
3− 3y

500 − 3x
160

)
y.

Verify equilibria (0, 0), (0, 500), (200, 0),
(80, 250). Show the first three are nodes
and the last is a saddle.

Pesticides. Consider the system

x′(t) = (10− y(t))x(t)− s1x(t),
y′(t) = (x(t)− 20)y(t)− s2y(t).

17. (Average Populations) Explain: A
field biologist should count, on the av-
erage, populations of about 20+s2 prey
and 10− s1 predators.

18. (Equilibria) Show details for com-
puting the pesticide system equilibria
(0, 0), (20+s2, 10−s1), where s1, s2 are
the pesticide death rates.

Survival of One Species. Consider

x′(t) = x(t)(24− x(t)− 2y(t)),
y′(t) = y(t)(30− y(t)− 2x(t)).

19. (Equilibria) Find all equilibria.

20. (Interactions) Show that doubling ei-
ther x or y causes the interaction term
2xy to double.

21. (Nonlinear Classification) Classify
each equilibrium point (x0, y0) as cen-
ter, spiral, node, saddle, using the
Paste Theorem. Determine stability
for node and spiral. Make a computer
phase portrait to confirm the classifica-
tions.

22. (Extinction and Competing Species)

Equilibria for which either x = 0 or
y = 0 signal extinction states. Discuss
how the phase portrait of the nonlinear
system shows extinction of one species
but not both.

Co-existence
Find the equilibria, then classify them as
node, saddle, spiral, center using the Paste
Theorem. Determine stability for node
and spiral. Make a computer phase por-
trait to confirm the classifications.

23. (Node, Saddle, Saddle, Node)

x′ = (144− 2x− 3y)x,
y′ = (90− 6y − x)y.

24. (Node, Saddle, Saddle, Node)

x′ = (120− 4x− 2y)x,
y′ = (60− x− 2y)y.

Explosion and Extinction
Find the equilibria, then classify them as
node, saddle, spiral, center using the Paste
Theorem. Determine stability for node
and spiral. Make a computer phase por-
trait to confirm the classifications.

25. (Node, Saddle, Saddle, Spiral)

x′ = x(x− 2y − 4),
y′ = y(x+ 2y − 8).

26. (Node, Saddle, Saddle, Spiral)

x′ = x(x− y − 4),
y′ = y(x+ y − 6).
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10.5 Mechanical Models

Nonlinear Spring-Mass System

The classical linear undamped spring-mass system is modeled by the equation
mx′′(t)+ kx(t) = 0. This equation describes the excursion x(t) from equilibrium
x = 0 of a mass m attached to a spring of Hooke’s constant k, with no damping
and no external forces.

In the nonlinear theory, the Hooke’s force term −kx is replaced by a Restoring
Force F (x) which satisfies these four requirements:

Equilibrium 0. The equation F (0) = 0 is assumed, which gives x = 0 the status
of a rest position.

Oddness. The equation F (−x) = −F (x) is assumed, which says that the force
F depends only upon the magnitude of the excursion from equilibrium,
and not upon its direction. Then force F acts to restore the mass to its
equilibrium position, like a Hooke’s force x → kx.

Zero damping. The damping effects always present in a real physical system
are ignored. In linear approximations, it would be usual to assume a viscous
damping effect −cx′(t); from this viewpoint we assume c = 0.

Zero external force. There is no external force acting on the system. In short,
only two forces act on the mass, (1) Newton’s second law and (2) restoring
force F .

The competition method applies to model the nonlinear spring-mass system via
the two competing forces mx′′(t) and F (x(t)). The dynamical equation:

mx′′(t) + F (x(t)) = 0.(1)

Soft and Hard Springs

A restoring force F modeled upon Hooke’s law is given by the equation F (x) =
kx. With this force, the nonlinear spring-mass equation (1) becomes the un-
damped linear spring-mass system

mx′′(t) + kx(t) = 0.(2)

The linear equation can be thought to originate by replacing the actual spring
force F by the first nonzero term of its Taylor series

F (x) = F (0) + F ′(0)x+ F ′′(0)
x2

2!
+ · · · .
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The assumptions F (−x) = −F (x) and F (0) = 0 imply that F (x) is a function of
the form F (x) = xG(x2), hence all even terms in the Taylor series of F are zero.

Linear approximations to the force F drop the quadratic terms and higher from
the Taylor series. More accurate nonlinear approximations are obtained by re-
taining extra Taylor series terms.

A restoring force F is called hard or soft provided it is given by a truncated
Taylor series as follows.

Hard spring F (x) = kx+ βx3, β > 0.

Soft spring F (x) = kx− βx3, β > 0.

For small excursions from equilibrium x = 0, a hard or soft spring force has
magnitude approximately the same as the linear Hooke’s force F (x) = kx.

Energy Conservation

Given nonlinear spring-mass equation mx′′(t) + F (x(t)) = 0, each solution x(t)
satisfies on its domain of existence the Conservation Law

m

2
(x′(t))2 +

∫ x(t)

x(0)
F (u) du = C, C ≡ m

2
(x′(0))2.(3)

To prove the law, multiply the nonlinear differential equation by x′(t) to obtain
mx′′(t)x′(t) + F (x(t))x′(t) = 0, then apply quadrature to obtain (3).

Kinetic and Potential Energy

Using v = x′(t), the term mv2/2 in (3) is called the Kinetic energy (KE) and
the term

∫ x
x0

F (u)du is called the Potential energy (PE). Equation (3) says
that KE + PE = C or that energy is constant along trajectories.

The conservation laws for the soft and hard nonlinear spring-mass systems, using
position-velocity notation x = x(t) and y = x′(t), are therefore given by the
equations

my2 + kx2 +
1

2
βx4 = C1, C1 = constant > 0,(4)

my2 + kx2 − 1

2
βx4 = C2, C2 = constant.(5)

Phase Plane and Scenes

Nonlinear behavior is commonly graphed in the phase plane, in which x = x(t)
and y = x′(t) are the position and velocity of the mechanical system. The plots
of t versus x(t) or x′(t) are called Scenes; these plots are invaluable for verifying
periodic behavior and stability properties.
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Hard spring

The only equilibrium for a hard spring x′ = y, my′ = −kx − βx3 is the origin
x = y = 0. Conservation law (4) describes a closed curve in the phase plane,
which implies that trajectories are periodic orbits that encircle the equilibrium
point (0, 0). The classification of center applies. See Figures 34 and 35.

y

−2

3
2
1

2

x Figure 34. Hard spring x′′(t) + x(t) +
2x3(t) = 0.
Phase portrait for x′ = y, y′ = −2x3 − x on
|x| ≤ 2, |y| ≤ 3.5. Initial data: x(0) = 0 and
y(0) = 1/2, 1, 2, 3.

−1

1

0
6

t

velocity y
position x

Figure 35. Hard spring x′′(t) + x(t) +
2x3(t) = 0.
Coordinate scenes for x′ = y, y′ = −2x3 − x,
x(0) = 0, y(0) = 1.

More intuition about the orbits can be obtained by finding the energy C1 for each
orbit. The value of C1 decreases to zero as orbits close down upon the origin.
Otherwise stated, the xyz-plot with z = C1 has a minimum at the origin, which
physically means that the equilibrium state x = y = 0 minimizes the energy. See
Figure 36.

(0, 0, 0)

Figure 36. Hard spring energy mini-
mization.
Plot for x′′(t) + x(t) + 2x3(t) = 0, using
z = y2 + x2 + x4 on |x| ≤ 1/2, |y| ≤ 1. The
minimum is realized at x = y = 0.

Soft Spring

There are three equilibria for a soft spring

x′ = y,
my′ = −kx+ βx3.

They are (−α, 0), (0, 0), (α, 0), where α =
√

k/β. If (x(0), y(0)) is given not
at these points, then the mass undergoes motion. In short, the stationary mass
positions are at the equilibria.
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Linearization at the equilibria reveals part of the phase portrait. The linearized
system at the origin is the system x′ = y, my′ = −kx, equivalent to the equation
mx′′ + kx = 0. It has a center at the origin. This implies the origin for the
soft spring is either a center or a spiral. The other two equilibria have linearized
systems equivalent to the equation mx′′ − 2kx = 0; they are saddles.

The phase plot in Figure 37 shows separatrices, which are unions of solution
curves and equilibrium points. Orbits in the phase plane, on either side of a
separatrix, have physically different behavior. Shown is a center behavior interior
to the union of the separatrices, while outside all orbits are unbounded.

y

x
Figure 37. Soft spring x′′(t) + x(t) −
2x3(t) = 0.
A phase portrait for x′ = y, y′ = 2x3 − x on
|x| ≤ 1.2, |y| ≤ 1.2. The 8 separatrices are the
6 bold curves plus the two equilibria (

√
0.5, 0),

(−
√
0.5, 0).

−2

−1.5 1.5
position x

velocity y

t

3

Figure 38. Soft spring x′′(t)+x(t)−2x3(t) =
0.
Coordinate scenes for x′ = y, y′ = 2x3 − x,
x(0) = 0, y(0) = 4.

Nonlinear Pendulum

Consider a nonlinear undamped pendulum of length L making angle θ(t) with
the gravity vector. The nonlinear pendulum equation is given by

d2θ(t)

dt2
+

g

L
sin(θ(t)) = 0(6)

and its linearization at θ = 0, called the linearized pendulum equation, is

d2θ(t)

dt2
+

g

L
θ(t) = 0.(7)

The linearized equation is valid only for small values of θ(t), because of the
assumption sin θ ≈ θ used to obtain (7) from (6).

Damped Pendulum

Physical pendulums are subject to friction forces, which we shall assume propor-
tional to the velocity of the pendulum. The corresponding model which includes
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frictional forces is called the damped pendulum equation:

d2θ(t)

dt2
+ c

dθ

dt
+

g

L
sin(θ(t)) = 0.(8)

It can be written as a first order system by setting x(t) = θ(t) and y(t) = θ′(t):

x′(t) = y(t),

y′(t) = − g

L
sin(x(t))− cy(t).

(9)

Undamped Pendulum

The position-velocity differential equations for the undamped pendulum are ob-
tained by setting x(t) = θ(t) and y(t) = θ′(t):

x′(t) = y(t),

y′(t) = − g

L
sin(x(t)).

(10)

Equilibrium points of nonlinear system (10) are at y = 0, x = nπ, n = 0, ±1,
±2, . . . with corresponding linearized system (see the exercises)

x′(t) = y(t),

y′(t) = − g

L
cos(nπ)x(t).

(11)

The characteristic equation of linear system (11) is r2 − g
L(−1)n = 0, because

cos(nπ) = (−1)n. The roots have different character depending on whether or
not n is odd or even.

Even n = 2m. Then r2 + g/L = 0 and the linearized system (11) is a Center.
The orbits of (11) are concentric circles surrounding x = nπ, y = 0.

Figure 39. Linearized pendulum at
equilibrium x = 2mπ, y = 0.
Orbits are concentric circles.

Odd n = 2m+1. Then r2 − g/L = 0 and the linearized system (11) is classified
as a Saddle. The orbits of (11) are hyperbolas with center x = nπ, y = 0.
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Figure 40. Linearized pendulum at x =
(2m+ 1)π, y = 0.
Orbits are hyperbolas.

Drawing the Nonlinear Phase Diagram. The idea of the plot is to paste the
linearized phase diagram onto the local region centered at the equilibrium point,
when possible. The copying is guaranteed to be correct for the saddle case, but
a center must be copied either as a spiral or a center. Extra analysis is needed
to determine the figure to copy in the case of the center. The result appears in
Figure 41.

Figure 41. Nonlinear Pendulum.
Centers at (−2π, 0), (0, 0), (2π, 0). Saddles at
(−3π, 0), (−pi, 0), (π, 0), (3π, 0). Separatrices
are unions of equilibria and conservation law
curves y2 + 4g

L sin2(x/2)=2E, with E = 2 g
L and

g
L = 10.

We document the analysis used to produce Figure 41. The orbits trace an xy-
curve given by integrating the separable equation

dy

dx
=

−g

L

sinx

y
.

Then the conservation law for the mechanical system is

1

2
y2 +

g

L
(1− cosx) = E

where E is a constant of integration. This equation is arranged so that E is
the sum of the kinetic energy y2/2 and the potential energy g(1 − cosx)/L,
therefore E is the total mechanical energy. Using the double angle identity
cos 2ϕ = 1− 2 sin2 ϕ the conservation law can be written in the shorter form

y2 +
4g

L
sin2(x/2) = 2E

When the energy E is small, E < 2g/L, then the pendulum never reaches the ver-
tical position and it undergoes sustained periodic oscillation: the stable equilibria
(0, 2kπ) have a local center structure.

When the energy E is large, E > 2g/L, then the pendulum reaches the vertical
position and goes over the top repeatedly, represented by a saddle structure. The
statement is verified from the two explicit solutions y = ±

√
2E − 4g sin2(x/2)/L.
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The energy equation y2 + 4g
L sin2(x/2) = 4 g

L (equivalent to E = 2g/L) produces
the separatrix curves. Separatrices consist of equilibrium points plus solution
curves which limit to the equilibria as t → ±∞.

Exercises 10.5

Linear Mechanical Models
Consider the unforced linear model mx′′ +
cx′ + kx = 0, where m, c, k are positive
constants: m=mass, c=dashpot constant,
k=Hooke’s constant.

1. (Dynamical System Form) Write the
scalar problem as u⃗ ′ = Au⃗ . Explicit
definitions of u⃗(t) and A are expected.

2. (Attractor to u⃗ = 0⃗ ) Explain why
limt→∞ u⃗(t) = 0⃗ , giving citations to
theorems in this book.

3. (Isolated Equilibrium) Prove that
u⃗ ′ = Au⃗ has a unique equilibrium at
u⃗ = 0⃗ . Then explain why the equilib-
rium is isolated.

4. (Phase Plots) Classify the cases of
over-damped and under-damped as
a stable node or a stable spiral for u⃗ ′ =
Au⃗ at equilibrium u⃗ = 0⃗ . Why are
classifications center and saddle impos-
sible?

Nonlinear Spring-Mass System
Consider the general model x′′ + F (x) = 0
with the assumptions on page 804.

5. (Harmonic Oscillator) Let F (x) =
ω2 x with ω > 0. Show F is odd and
F (0) = 0. Then find the general solu-
tion x(t) for x′′ + F (x) = 0.

6. (Taylor Series) Show that an odd
function F (x) with Maclaurin series∑∞

n=0 an x
n has all even order terms

zero, that is, an = 0 for n even.

Soft and Hard Springs
Classify as a hard or soft spring. Then
write the conservation law for the equation.

7. x′′ + x+ x3 = 0

8. x′′ + x− x3 = 0

Hard spring

9. Prove that a hard spring has exactly one
equilibrium x = y = 0.

10. Substitute x = x(t), y = x′(t) into
z = y2+x2+x4 to obtain z(t). Function
z(t) has a minimum when dz

dt = 0. Re-
duce this equation to x′′ + x+ 2x3 = 0.

Soft Spring
Consider soft spring x′′ + kx − βx3 = 0,
k > 0, β > 0.

11. (Equilibria) Verify the three equilibria
(0, 0), (0,

√
kβ), (0,−

√
kβ).

12. (Saddles) Verify by linearization and
the Paste Theorem that nonlinear
equilibria (0,

√
kβ), (0,−

√
kβ) are sad-

dles.

13. (Center or Spiral) The Paste The-
orem says that equilibrium (0, 0) of
the nonlinear system is a center or spi-
ral. Verify by computer phase portrait
m = k = 1 and β = 2 Figure 37, page
807.

14. (Mass at Rest) Verify that the only
solutions with the mass at rest are the
equilibria. Mass at rest means veloc-
ity zero: u⃗ ′(t0) = 0⃗ for some t0, vector
notation from Exercise 1.

15. (Phase Portrait) Solve for the equilib-
ria of x′′ + 4x − x3 = 0. Draw a phase
portrait similar to Figure 37, page 807.

16. (Separatrix) The energy equation for
x′′+4x−x3 = 0 is 1

2y
2+2x2− 1

4x
4 = E.

Substitute the saddle equilibria to find
E = 4. Plot implicitly the energy equa-
tion curve. A separatrix is the union of
the two saddle equilibria and this im-
plicit curve.
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Damped Nonlinear Pendulum
Consider d2θ(t)

dt2 + cdθdt + g
L sin(θ(t)) =

0, which has vector-matrix form u⃗ ′ =
G⃗(u⃗ (t)).

17. Display both u⃗ and G⃗ .

18. Find the Jacobian matrix of G⃗ with
respect to u⃗ .

Undamped Nonlinear Pendulum
Consider d2θ(t)

dt2 + g
L sin(θ(t)) = 0, having

vector-matrix form u⃗ ′ = F⃗(u⃗ (t)).

19. Find the Jacobian matrix of F⃗ with re-
spect to u⃗ .

20. Solve F⃗(u⃗ ) = 0⃗ for u⃗ , showing all de-
tails.

21. Evaluate the Jacobian matrix at the
roots of F⃗ (u⃗) = 0⃗ .

22. Plot y2 + 4g
L sin2(x/2) = 4 g

L
implicitly for g

L = 10. The separatrix is
this curve plus equilibria.
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PDF Sources

Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations and
linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the textbook
are available in two volumes at Amazon Kindle Direct Publishing for Amazon’s
cost of printing and shipping. No author profit. Volume I chapters 1-7, ISBN
9798705491124, 661 pages. Volume II chapters 8-12, ISBN 9798711123651, 479
pages. Both paperbacks have extra pages of backmatter: background topics
Chapter A, the whole book index and the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13 MB) with
hyperlink navigation to displayed equations and theorems. The header in an
exercise set has a blue hyperlink  to the same section in the solutions. The
header of the exercise section within a solution Appendix has a red hyperlink
to the textbook exercises. Solutions are organized by chapter, e.g., Appendix 5
for Chapter 5. Odd-numbered exercises have a solution. A few even-numbered
exercises have hints and answers. Computer code can be mouse-copied directly
from the PDF. Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be downloaded
to a tablet, computer or phone to be viewed locally. After download, no internet
is required. Best for computer or tablet using a PDF viewer (Adobe Reader,
Evince) or web browser with PDF support (Chrome, FireFox). Smart phones
can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are duplicated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question or
request an answer, click the link below, then create a GitHub issue and post.
Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues
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