Chapter XI: Sturm-Liouville Theory

This chapter studies a very classical problem
in the theory of ordinary differential equations,
namely linear second order differential equa-
tions which are parameter dependent and are
subject to boundary conditions. While the ex-
istence of eigenvalues (parameter values for
which nontrivial solutions exist) and eigenfunc-
tions (corresponding nontrivial solutions) fol-
lows easily from the abstract Riesz spectral
theory for compact linear operators, it is in-
structive to deduce the same conclusions using
some of the results we have developed up to
now for ordinary differential equations. The
theory presented is for some rather specific
cases, however, more general problems and var-
lous other cases may be considered and similar
theorems may be established.

References: Coddington-Levinson, Cole and
Hartman.
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Linear Boundary Value Problems

Sturm-Liouville Problems.

Let I = [a,b] be a compact interval and let
p,q, 7 € C(I,R), with p,r positive on I. Let A
be a complex parameter. Consider the linear
differential equation and boundary conditions

(p()z") + (Ar(t) + q¢(t))z =0, tel,
z(a) cosa — p(a)x’(a) sina = 0,
z(b) cos B — p(b)z'(b) sin 3 = 0.
The constants o« and 3 are given and without
loss in generality, 0 <a<mw, 0< 8 < .

Values M\ (eigenvalues) are sought for which
there is a nontrivial solution (an eigenfunc-
tion). The spectrum is the set of all eigen-
values. A pair (z,\) with =z % 0 satisfying the
differential equation and the boundary condi-
tions is called an eigenpair.

Lemma. Every eigenvalue of a Sturm-Liouville
problem is real.
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Prufer transformation

Definition. Let u(t) = u(¢t,\) be the solution
of (p(t)u’)’—l— (Ar(t) + q(t))u = O which satisfies
u(a) = sina, p(a)u’(a) = cosa. Then u % 0
satisfies z(a) cosa — p(a)z’(a) sinae = 0. Let

u
p= \/u2 + p2(u)?, ¢ = arctan —.
pU

Then ¢(a) = o and p, ¢ are solutions of the
Prufer equations

pl=— [(Xr +q) — %} p Sin ¢ Cos ¢,

¢ = %cos2 ¢ + (A + q) sin? ¢.
The second differential equation depends only
upon ¢; once ¢ is known, p may be determined

by integrating a linear equation, which in turn
determines u.
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Lemma. Let ¢ be the solution of Prufer’s
equation such that ¢(a) = . Then ¢ satisfies
the following conditions:

1. ¢(b,)\) is a continuous strictly increasing
function of A;

2. limy_ oo 0(b, N) = o0;

3. limy__ o ¢(b,\) = 0.

Theorem. A Sturm-—Liouville boundary value
problem has an unbounded infinite increasing
sequence of eigenvalues A\g < A1 < Ao < ---
with limp—oco An = 00. The eigenspace associ-
ated with each eigenvalue is one dimensional
and the eigenfunctions associated with A\; have
precisely k simple zeros in (a,b).

Lemma. Let (uj;,A;) and (ug, ;) be distinct
eigenpairs of a Sturm—Liouville boundary value
problem. Then u; and wu; are orthogonal with
respect to the weight function r, i.e.,

b
(u;, ug) = / w; (£)uy ()r(£)dt = 0.

a
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Nonhomogeneous Sturm—Liouville Problems

Denote by {(u;, A;)}2, the set of eigenpairs
of a Sturm—Liouville problem, with the eigen-
functions normalized so that [Pru? = 1. Let
h € L?(a,b) be a given function.

A nonhomogeneous Sturm—Liouville boundary
value problem uses the same boundary condi-
tions but replaces the differential equation by

(p()2) + Or(®) + o))z = rh.

Solutions are interpreted in the Carathéodory
sense.

Lemma. For A = Ag, a nonhomogeneous Sturm-—
Liouville problem has a solution w if and only
if [®ruph = 0. If w is another solution, then

u — w = cuy for some constant c.
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Completeness of the Eigenfunctions

Lemma. A Sturm-—Liouville problem has a so-
lution for every A\, £k = 0,1,2,-.-, if and only
if [%ruph =0 for k=0,1,2,---

Lemma. The set {u;}s2, forms an orthonor-
mal system for the Hilbert space L2(a,b) of
all f € L2?(a,b) with inner product (f,g) =

12 F(®)g(®)r(t)dt.
Completeness Criterion
The set {u;}2 4 will be a complete orthonor-

mal system provided it is shown that (see
Rudin’s text)

[buph =0 for k=0,1,2,--- implies h = 0.
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Lemma. If A # A\, £k = 0,1,--., then the
Sturm—Liouville problem has a solution for ev-
ery h € L?(a,b).

Proof. For A\ # A\, Kk =0,1,--- we let u be
a nontrivial solution which satisfies the first
boundary condition and let v be a nontrivial
solution of which satisfies the second boundary
condition. Then the Wronskian of v and v
is uv — v = 1% for some nonzero constant c.
Define the Green’s function

_ 1] v(@®u(s), a<s<t
G(t,5) = E{ v(s)u(t), t<s<b.
Then w(t) = [°G(¢,s)r(s)h(s)ds is the unique
solution of the Sturm—Liouville boundary value
problem.

Corollary. The Green’s function G defines a
continuous mapping G : L?(a,b) — Cl[a,b],
called Green’s operator, by the formula A —
G(h) = w. Further, (Gh,w) = (h, Gw).
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Definition (weakly closed). A set S C L?(a,b)
is called weakly closed if {x,} C S and (xn,h) —
(z,h) for all h € L?(a,b) implies z € S.

Definition (the set S). Define

S ={we L?(a,b): (u;,h) =0, i=0,1,2,---}.

Lemma. The set S is a weakly closed linear
manifold in L?(a,b) and the Green’s operator
G maps S into S.

Lemma. If S contains a nonzero element, then
there exists x € S such that (G(x),z) # 0.

Proof: If (G(z),z) = O for all x € S, then
linearity implies that for all z,y € S and a« € R

0 =(G(z+ ay),z + ay)
= 2a{G(y), x).
Choose z = G(y) to obtain a contradiction,
since y = 0 implies G(y) #= O.
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Lemma. If S contains a nonzero element, then
there exists a nonzero z € S and u #= 0 such
that G(x) = u=.

Proof: Let x € S such that (G(x),z) # 0. If
(G(u),u) < 0 for all w € S, then define p =
inf{(G(u),u) : v € S, ||lu|| = 1}, otherwise de-
fine u = sup{(G(u),u) : u € S, ||u]]| = 1}. There
exists an zg € S with ||zg|| = 1 such that
(G(xg),z0) = u # 0. If S is one dimensional,
then G(xg) = pzg. If S has dimension greater
than 1, then there exists a nonzero y € S
such that (y,zg) = 0. Let z = T2t  then

vV 1+4e€ ’

(G(z),z) has an extremum at e = 0, which im-
plies (G(xzg),y) = 0 for any y € S with (y,zg) =
0. Hence (G(zg) — pxg,zg) = 0 implies that
(G(xg),G(zg) — pxg) = 0 and thus (G(xzg) —
pxrg, G(xg) —pxg) = 0. This proves that p is an
eigenvalue.
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Theorem (Completeness). The set of eigen-
functions {u;}?2, forms a complete orthonor-
mal system in the Hilbert space L2(a,b).

Proof: It will be shown that § = {0}. If this
IS not the case, a previous lemma implies there
exists a nonzero element h € S and a nonzero
number p such that G(h) = uh. Properties of
the Green’'s operator imply that w = G(h) sat-
isfies the boundary conditions and solves the
equation

(p(WA) + (Ar(t) + g())h = h

Therefore, \ — % = Aj for some 5. Hence h =
cu; for some nonzero constant ¢, contradicting
hes.
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EXxercises

1. Find all eigenpairs for
!+ =0
z(0) = 0 = £/(0).
2. Supply the details for the proof of Lemma 2.

3. Prove Lemma 4.

4. Prove that the Green’'s function given by (10) is

continuous on the square [a,b]? and that 26{5) g
continuous for t # s. Discuss the behavior of this
derivative as t — s.

5. Provide the details of the proof of Corollary 7. Also
prove that G : L?(a,b) — L?%(a,b) is a compact map-
ping.

6. Let G(t,s) be defined by equation (10). Show that

> w; (t)ui(s)
G(t,s) = :

where the convergence is in the L2 norm.
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7. Replace the boundary conditions (2) by the peri-
odic boundary conditions xz(a) = z(b), z'(a) = 2'(b).
Prove that the existence and completeness part of
the above theory may be established provided the
functions satisfy p(a) = p(b), q(a) = q(b), r(a) =
r(b).

8. Apply the previous exercise to the problem

x4+ Az =0,
z(0) = z(27)
2'(0) = 2'(2n).

9. Let the differential operator L be given by L(z) =
(tz') + mTQa:, 0 <t < 1, and consider the eigenvalue
problem L(z) = —Atx. In this case the hypotheses
imposed earlier are not applicable and other types of
boundary conditions than those given by (3) must
be sought in order that a development parallel to
that given in Section 2 may be made. Establish
such a theory for this singular problem. Extend this
to more general singular problems.
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