Chapter IX: Invariant Sets

Let D ¢ R be open and connected and let
f: D — RY be locally Lipschitz continuous.

Consider the initial value problem u' = f(u),
u(0) = ug € D.

Definition. An invariant subset M C D is
defined by the property that the solution w(t)
stays in M whenever ug € M, for all t € Iy,
the maximal t-interval of existence.

Examples of invariant sets.

1. An equilibrium point, f(ug) = 0.
2. A periodic solution, u(0) = u(T).
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Definition. The flow determined by f is the
mapping u : Iy, X D — D defined by (t,ug) —
u(t,ug). The set U = U,cply X {v}, which is a
subset of R x R, is the natural domain.

Lemma 1. The flow determined by f has the
following properties:

1. The flow v : U — D is continuous.

2. u(0,ug) = ug for all ug € D.

3. Ifugp € D, s € luyg and t € L,(;,.) then
s+t e Iy, and u(s+t,ug) = u(t, u(s,up)).

Definition. A mapping having the three prop-
erties of the lemma is called a flow on D. A
flow may be defined without the underlying dif-
ferential equation.
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Orbits and Flows

If u |s a flow for f and S is a subset of I,; =
(tuo,tuo) then u(S,ug) is the set

{u(t,ug) : t € S}.

Given v € U, denote by

~v(v) = u(ly,v) the orbit,

~vFH(v) = u([0,t]),v) the positive semiorbit,
v~ (v) = u((t,,0]),v) the negative semiorbit.

Definition. Call v € D satisfying f(v) = 0 a
stationary point or critical point of the flow.

Lemma. If v € D is a stationary point of
the flow u, then I, = R and v(v) = vt (v) =

v~ (v) = {v}.

Definition. Call v € D satisfying u(0,v) =
u(T,v) for some T > 0 a periodic point of
period T of the flow. If in addition, u(0,v) #
u(t,v), 0 <t < T, then T is called the minimal
period.
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Proposition 2. Let v be the flow determined
by f and let v € D. Then either:

1. v is a stationary point, or

2. v IS a periodic point having a minimal pos-
itive period, or

3. the flow u(-,v) is injective.

If vT(v) is relatively compact, then tT(v) =
+o0. If v~ (w) is relatively compact, then t—(v) =
—oo. If v(v) is relatively compact, then I, = R.

Proof.

The three options are mutually exclusive: a
constant solution has no minimal period and an
injective map cannot satisfy u(t1,v) = u(to,v)
for t1 = t>. The first part of the proof assumes
1 and 2 do not hold and then 3 is proved.

The formulas for t—(v), tT(v) result from appli-
cation of the extension theory for solutions of
v = f(u). For example, if © remains bounded
for t > 0, then the theory implies that the tra-
jectory (t,u(t)) reaches the boundary at ¢t = oo.
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Definition. A subset M C D is positively in-
variant with respect to the the flow u deter-
mined by f whenever v+ (v) C M, for allv e M.
A subset M C D is negatively invariant pro-
vided v~ (v) € M, for all v € M. A subset
M C D is invariant provided it is both posi-
tively and negatively invariant.

Proposition 3. Let u be the flow determined
by f and let V C D. Then there exists a small-
est positively invariant subset M, V C M C
D, and there exists a largest invariant set M,
M C V. Also there exists a largest negatively
invariant subset M, V D M, and there exists a
smallest invariant set M, M D V. As a conse-
quence V, contains a largest invariant subset
and it is contained in a smallest invariant set.
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Corollary 4.

(i) If a set M is positively invariant with respect
to the flow u, then so are M and int(M).

(ii) A closed set M is positively invariant with
respect to the flow u if and only if for every v €
OM there exists e > 0 such that u([0,¢),v) C M.
(iii) A set M is positively invariant if and only if
comp(M), the complement of M, is negatively
invariant.

(iv) If a set M is invariant, then so is OM. If
OM is invariant, then so are M, R\ M, and
int(M).

Theorem b. Let M C D be a closed set.
Then M is positively invariant with respect to
the flow u determined by f if and only if for
every v e M

iminf dist(v+tf(v), M) _
t—0+4 t

0.
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Proof of Theorem 5. Taylor's expansion
u(t,v) = v + tf(v) + o(t) proves the neces-
sity. To prove sufficiency, assume the iden-
tity holds and define w(t) = dist(u(t,v), M) =
lu(t,v) — v¢|, where vy € M and lim;_,o4 v = v.
Using a Lipschitz constant L for f it follows
that

w(t +s) < w(t) 4 sLw(t) 4 dist(vy +tf(vg), M),

hence Dy w(t) < Lw(t). This implies w(t) = 0
near t = 0, completing the proof.

Theorem 6. Consider ¢ € C1(D, R) with V¢(v) #
0 when ¢(v) = 0. Let M = ¢~ 1(—00,0]. Then

M is positively invariant with respect to the
flow determined by f if and only if Vo(v) -
f(v) <0 for all v e dM = ¢—1(0).
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Limit Sets

Definition. The positive limit set of v is
the set Mt (v) of all limits w = liMp—co u(tn, v)
where {t,} is a sequence with limit tF. The
negative limit set of v is the set '~ (v) of
all limits w = limp—o00 u(tn,v) where {t,} is a
sequence with limit ¢, . If t is finite, then
r+(v) C dD. If t; is finite, then I~ (v) C 8D.

Proposition 7.

(i) vt () =T () UTT(v).

(i) Mt (v) = ﬂw€7+(v)7+(’w}-

(i) If vT(v) is bounded, then Mt (v) # @ and
compact.

(iv) If I+t (v) # 0 and bounded, then

im,_, .+ dist (u(t,v), I_+(v)> = 0.

(v) Tt (v) N D is an invariant set.
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Proof of proposition 7—(v). To show that
r+t(v) N D is an invariant set, it will be shown
that solutions through points of 't (v) are de-
fined for all time and their orbit remains in
().

Let w € Tt (v) N D. Then there exists a se-
quence {tn}o2 1, tn — oo, such that u(tn,v) —
w. For each n > 1, the function u,(t) =
u(t + tn,v) is the unique solution of v’ = f(w),
u(0) = u(tn,v), and hence the maximal inter-
val of existence of u, will contain the interval
[—tn,o0). Since u(tn,v) — w, there will exist
a subsequence of {un(t)}, which we relabel as
{un(t)} converging to the solution, call it y, of
v = f(u), v(0) = w. We note that given any
compact interval [a, b] the sequence {u,(t)} will
be defined on [a,b] for n sufficiently large and
hence y will be defined on [a,b]. Since this in-
terval is arbitrary it follows that y is defined on

(—o0,0). Furthermore for any tg
y(to) = lim un(to) = lim u(to + tn,v),

and hence y(ig) € M (v).
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Theorem 8. If vT(v) is contained in a com-
pact subset K C D, then Mt (v) # 0 is a com-
pact connected set, i.e., a continuum.

Proof. Proposition 7 implies Tt (v) is com-
pact. To be shown is connectedness. Suppose
it is not. Then there exist nonempty disjoint
compact sets M and N such that Mt (v) =
MUN. Let § =inf{lv—-—w| : v € M, w €
N} > 0. Since M Cc It (v) and N C 't (v),
there exist values of ¢ arbitrarily large such that
dist(u(t,v), M) < % and values of t arbitrarily
large such that dist(u(t,v), N) < % and hence
there exists a sequence {t, — oo} such that
dist(u(tn,v), M) = %. The sequence {u(tp,v)}
must have a convergent subsequence and hence
has a limit point which is in neither M nor N,
a contradiction.
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LaSalle’s Theorem

Let o: D — R be a Cl function. The notation
¢'(v) = Vo(v) - f(v) will be used.

Lemma 9. Assume that V¢(v) - f(v) <0, for
all v e D. Then for all v € D, ¢ is constant on
the set Mt (v) N D.

Proof. The function ¢(u(¢,v)) is nonincreas-
ing in t and therefore there is an inequality
d(u(sn,v)) < ¢(u(ty,v)) valid for each t;, when
sn, 1S sufficiently large. This inequality implies
that oé(ws) < ¢(wq) for wi,wr € Tt (v) N D.
Therefore, swapping roles of wq and wo gives
o(w1) < d(wr), hence ¢(w) =constant.
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Theorem 10. Let there exist a compact set
K C D such that Vo(v) - f(v) <0, for allv e K.
Let K ={ve K :¢(v) =0} and let M be the
largest invariant set contained in K. Then for
all v € D such that vT(v) C K

lim dist (u(t,v), M) = 0.
t—00

Proof. Let v € D such that vT(v) C K, then,
using the previous lemma, we have that ¢ is
constant on Tt (v), which is an invariant set
and hence contained in M.

Theorem 11 (LaSalle’s Theorem). Assume
that D = RY and let Vé(z) - f(z) < 0, for
all z € RY. Furthermore suppose that ¢ is
bounded below and that ¢(x) — oo as |z| — .
Let E = {v: ¢'(v) = 0}, then

lim dist (u(t,v), M) = 0,
t—0o0

for all v € RY, where M is the largest invariant
set contained in E.
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Two Dimensional Systems

Definition. A point v € D is a regular point
if it is not a critical point of f, that is, f(v) #
0. A compact straight line segment ¢ C D
through v is a transversal through v, provided
¢ contains only regular points and if for all w &
¢, f(w) is not parallel to the direction of /.

Lemma 12. Let v € D be a regular point of
f. Then there exists a transversal ¢ containing
v in its relative interior. An orbit associated
with f which crosses ¢ must cross always in
the same direction.

Lemma 13. Let v be an interior point of some
transversal £. Then for every € > 0 there exists
a circular disc D¢ with center at v such that
for every w € D¢, u(t,w) will cross £ in time ¢,
1t] < e.
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Proof of Lemma 12. Let v be a regular point
of f. Choose a neighborhood V of v consist-
ing of regular points only. Let n € R? be any
direction not parallel to f(v), i.e., nx f(v) # 0,
(here x is the cross product in R3). We may
restrict V further such that n x f(w) # 0, for
all w € V, and is bounded away from 0 on V.
We then may take ¢ to be the intersection of
the straight line through v with direction n and
V. The proof is completed by observing that
n x f(w) = (0,0, |n||f(w)|sin@), where 0 is the
angle between n and f(w).

Proof of Lemma 13. Let v € int(#¥) and let
¢t ={z:z2z=wv+4+sn sg < s < s1}. Let B
be a disc centered at v containing only reg-
ular points of f. Let L(t,w) = aul(t,w) +
bu?(t,w) + ¢, where u(t,w) is the solution with
initial condition w and aul! + bu?2 4+ ¢ = 0 is
the equation of the straight line containing ¥.
Then L(0,v) =0, and 9L(0,v) = (a,b) - f(v) #
0. We hence may apply the implicit function
theorem to complete the proof.
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Lemma 14. Let ¢ be a transversal and let
= {w = u(t,v) : a < t < b} be a closed
arc of an orbit u associated with f which has
the property that u(t1,v) # u(tr,v), a < t1 <
to < b. Then if I" intersects ¢ it does so at a
finite number of points whose order on I is the
same as the order on £. If the orbit is periodic
it intersects ¢ at most once.

The proof relies on the Jordan curve theorem:

Theorem (Jordan). If J is a curve in R? given
by a continuous function ¢ : [0,1] — R?2 such
that ¢(0) = ¢g(1) and ¢g(t) % g(s) for 0 < t <
s < 1, then the complement of J is the union of
a unbounded open connected set Ext(J) and a
bounded open connected set Int(J) such that
J is the boundary of each set.

Lemma 15. Let v (v) be a semiorbit which
does not intersect itself and let w € Tt (v) be a
regular point of f. Then any transversal con-
taining w in its interior contains no other points
of Mt (v) in its interior.
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Lemma 16. Let v (v) be a semiorbit which
does not intersect itself and which is contained
iIn @ compact set K C D and let all points
in Mt (v) be regular points of f. Then Mt (v)
contains a periodic orbit.

Proof. Let w € Mt (v). it follows from Propo-
sition 7 that Tt (v) is an invariant set and
hence that v+ (w) ¢ Tt (v), and thus also Mt (w) C
rt(v). Let z € It (w), and let £ be a transver-
sal containing z in its relative interior. It fol-
lows that the semiorbit v (w) must intersect

¢ and by the above for an infinte number of
values of t. On the other hand, the previous
lemma implies that all these point of intersec-
tion must be the same.

Theorem 17 (Poincaré—Bendixson). Let
~t(v) be a semiorbit which does not intersect
itself and which is contained in a compact set
K C D and let all points in T t(v) be regular
points of f. Then Mt (v) is the orbit of a peri-
odic solution up with smallest positive period
T.
124



Proof. It follows from Lemma 16 that every
point in T T(v) is a point on some periodic or-
bit of a minimal positive period. On the other
hand, it also follows from earlier results that
t(v) is a compact connected set. Hence,
if for some w € Mt (v), v(w) = rt(v), then
r+(v)\v(w) must be a relatively open set with
A=TT)\v(w) Nv(w) # 0. One now easily
obtains a contradiction by examining transver-
sals through points of A. One hence concludes
that in fact under the hypotheses of Lemma
16, the limit set Tt (v) is a periodic orbit.
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Theorem 18. Let [ be a periodic orbit of
v’ = f(u) which together with its interior is
contained in a compactset K C D. Then there
exists at least one singular point of f in the
interior of D.

Proof. Let 2 = interior[. Then f is contin-
uous on £ and does not vanish on I = 0N2.
Let us assume that f has no stationary points
in 2. Then for each w € , M (w) is a pe-
riodic orbit. We partially order the collection
{Ta}tacr, Where I is an index set, of all periodic
orbits which are contained in €, by saying that

o < T'g < interiorl o C interiorl g.

One now employs the Hausdorff minimum prin-
ciple together with LaSalle's Theorem to arrive
at a contradiction.
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