Chapter VIII: Stability

Definition (stability). Assume f continuous and f(t,0) = 0. The trivial solution of u' = f(t,u) is:

- (i) **stable** (s) on $[t_0, \infty)$, if for every $\epsilon > 0$ there exists $\delta > 0$ such that any solution of v' = f(t,v) with $|v(t_0)| < \delta$ exists on $[t_0, \infty)$ and satisfies $|v(t)| < \epsilon$, $t_0 \le t < \infty$;
- (ii) asymptotically stable (a.s) on $[t_0, \infty)$, if it is stable and $\lim_{t\to\infty} v(t) = 0$, where v is as in (i);
- (iii) unstable (us), if it is not stable;
- (iv) **uniformly stable** (u.s) on $[t_0, \infty)$, if for every $\epsilon > 0$ there exists $\delta > 0$ such that any solution of v' = f(t, v) with $|v(t_1)| < \delta$, $t_1 \geq t_0$ exists on $[t_1, \infty)$ and satisfies $|v(t)| < \epsilon$, $t_1 \leq t < \infty$;

- (v) uniformly asymptotically stable (u.a.s), if it is uniformly stable and there exists $\delta > 0$ such that for all $\epsilon > 0$ there exists $T = T(\epsilon)$ such that any solution of v' = f(t,v) with $|v(t_1)| < \delta$, $t_1 \geq t_0$ exists on $[t_1,\infty)$ and satisfies $|v(t)| < \epsilon$, $t_1 + T \leq t < \infty$;
- (v) **strongly stable** (s.s) on $[t_0, \infty)$, if for every $\epsilon > 0$ there exists $\delta > 0$ such that any solution of v' = f(t, v) with $|v(t_1)| < \delta$ exists on $[t_0, \infty)$ and satisfies $|v(t)| < \epsilon$, $t_0 \le t < \infty$.

Proposition 2. The following implications are valid for non-autonomous and autonomous equations:

u' = f(t, u)				u' = F(u)		
	u.a.s	\Rightarrow	a.s	u.a.s	\Leftrightarrow	a.s
	\downarrow		\downarrow	↓		₩
$s.s \Rightarrow$	u.s	\Rightarrow	s.	u.s	\Leftrightarrow	S.

Stability of linear equations

Theorem 4. Let Φ be a fundamental matrix solution of u' = A(t)u. Then the equation is :

- (i) **stable** iff there exists K > 0 such that $|\Phi(t)| \le K$, $t_0 \le t < \infty$;
- (ii) **uniformly stable** iff there exists K > 0 such that $|\Phi(t)\Phi^{-1}(s)| \leq K$, $t_0 \leq s \leq t < \infty$;
- (iii) **strongly stable** iff there exists K > 0 such that $|\Phi(t)| \le K$, $|\Phi^{-1}(t)| \le K$, $t_0 \le t < \infty$;
- (iv) asymptotically stable iff $\lim_{t\to\infty} |\Phi(t)| = 0$;
- (v) uniformly asymptotically stable iff there exist K>0, $\alpha>0$ such that $|\Phi(t)\Phi^{-1}(s)|\leq Ke^{-\alpha(t-s)}$, $t_0\leq s\leq t<\infty$.

Corollary 5. The equation u' = Au is:

- (i) **stable** iff every eigenvalue of A has non-positive real part and those with zero real part are semisimple.
- (ii) **strongly stable** iff all eigenvalues of A have zero real part and are semisimple.
- (iii) **asymptotically stable** iff all eigenvalues of A have negative real part.

Theorem 6. The equation u' = A(t)u is unstable whenever $\limsup_{t \to \infty} \int_{t_0}^t \operatorname{trace} A(s) ds = \infty$. If u' = A(t)u is stable, then it is **strongly stable** if and only if $\liminf_{t \to \infty} \int_{t_0}^t \operatorname{trace} A(s) ds > -\infty$.

Let $|\cdot|$ be a norm on R^N and let $|\cdot|$ satisfy for $N\times N$ matrices $A,\ B$ the properties

- (1) $||Ax|| \le ||A|||x|$,
- $(2) ||A + B|| \le ||A|| + ||B||,$
- (3) ||cA|| = |c||A||.

Usually, (1), (2), (3) will be obtained by assuming (4) $||A|| = \sup_{|x|=1} |Ax|$.

Definition 7. For an $N \times N$ matrix A, let $Q(A,t) = (\|I + tA\| - \|I\|)/t$. The **Lozinskii–Dahlquist** measure is $\mu(A) = \lim_{t \to 0+} Q(A,t)$.

Proposition 8. Assume (1), (2), (3). Then

- 1. Q(A,t) is nondecreasing in t;
- 2. $|\mu(A)| \le |Q(A,t)| \le ||A||$;
- 3. $\mu(\alpha A) = \alpha \mu(A), \ \alpha \geq 0;$
- 4. $\mu(A+B) \le \mu(A) + \mu(B)$;
- 5. $|\mu(A) \mu(B)| \le ||A B||$.

Lemma. Let $|\cdot|$ be an R^N -norm and define $\|A\| = \sup_{|x|=1} |Ax|$. If u' = A(t)u and r(t) = |u(t)|, then the right derivative $r'_+(t)$ exists and satisfies $r'_+(t) \leq \mu(A(t)) \, r(t)$. Similarly, $r'_-(t)$ exists and satisfies $r'_-(t) \geq -\mu(-A(t)) \, r(t)$.

Proposition 9. Let $|\cdot|$ be an R^N -norm and define $||A|| = \sup_{|x|=1} |Ax|$. Let A(t) be a continuous $N \times N$ matrix and let u' = A(t)u on $t_0 \le t < \infty$. Then

$$|u(t)|e^{-\int_{t_0}^t \mu(A(s))ds} \leq |u(t_0)| \leq |u(t)|e^{\int_{t_0}^t \mu(-A(s))ds}.$$

The left side of this inequality is nonincreasing and the right side is nondecreasing, on $t_0 \le t < \infty$.

Corollary 10. If A is a constant $N \times N$ matrix, then $e^{-t\mu(-A)} \leq |e^{tA}| \leq e^{t\mu(A)}$.

Theorem 11. Let $|\cdot|$ be an R^N -norm and define $\|A\| = \sup_{|x|=1} |Ax|$. The system u' = A(t)u is:

- 1. unstable if $\liminf_{t\to\infty} \int_{t_0}^t \mu(-A(s)) ds = -\infty$;
- 2. **stable** if $\limsup_{t\to\infty} \int_{t_0}^t \check{\mu}(A(s)) ds < \infty$;
- 3. asymptotically stable if $\lim_{t\to\infty}\int_{t_0}^t \mu(A(s))ds = -\infty$;
- 4. uniformly stable if $\mu(A(t)) \leq 0, t \geq t_0$;
- 5. uniformly asymptotically stable if $\mu(A(t)) \le -\alpha < 0, \ t \ge t_0$.

Stability of u' = A(t)u + f(t, u)

Assume $f: \mathbf{R} \times \mathbf{R}^N \to \mathbf{R}^N$ is continuous and $|f(t,x)| \leq \gamma(t)|x|$, $x \in \mathbf{R}^N$, where γ is positive and continuous. Let the $N \times N$ matrix A be continuous on \mathbf{R} . Denote by $\Phi(t)$ a fundamental matrix solution of u' = A(t)u. Variation of constants implies solutions of u' = A(t)u + f(t,u) satisfy

$$u(t) = \Phi(t) \left(\Phi^{-1}(t_0)u(t_0) + \int_{t_0}^t \Phi^{-1}(s)f(s,u(s))ds \right).$$

Theorem 12. Assume $\int_{-\infty}^{\infty} \gamma(s) ds < \infty$ and $|\Phi(t)\Phi^{-1}(s)| \leq K$, $t_0 \leq s \leq t < \infty$. Then there exists a positive constant $L = L(t_0)$ such that any solution of u' = A(t)u + f(t,u) is defined for $t \geq t_0$ and satisfies $|u(t)| \leq L|u(t_1)|$, $t \geq t_1 \geq t_0$. Further, $\lim_{t \to \infty} |\Phi(t)| = 0$ implies $\lim_{t \to \infty} |u(t)| = 0$. Therefore, u' = A(t)u + f(t,u) is u.s., u.a.s. or s.s. whenever the same is true for u' = A(t)u.

Theorem 14. Assume $|\Phi(t)\Phi^{-1}(s)| \leq Ke^{-\alpha(t-s)}$, $t_0 \leq s \leq t < \infty$, and γ is constant, with $\beta = \alpha - \gamma K > 0$. Then any solution of u' = A(t)u + f(t,u) exists for $t \geq t_0$ and satisfies $|u(t)| \leq Ke^{-\beta(t-t_1)}|u(t_1)|$, $t \geq t_1 \geq t_0$. Further, u' = A(t)u + f(t,u) is u.a.s. whenever the same is true for u' = A(t)u.

Lyapunov stability example

Let |a| < 1 and k be constants and consider the example

$$x' = ax - y + kx (x^2 + y^2),$$

 $y' = x - ay + ky (x^2 + y^2).$

Lyapunov theory employs a **guiding function** v, in this case $v(x,y) = x^2 - 2axy + y^2$. The level curves v(x,y) = c meet orbits (x(t),y(t)) transversally toward the origin, indirectly establishing asymptotic stability of the example.

Lyapunov stability

Assume f(t,u) is continuous for $t \in R$, $u \in R^N$ and f(t,0) = 0. Let $v: R \times R^N \to R$ be given (a guiding function) with v(t,0) = 0.

Definition 16. The functional v is called:

- 1. **positive definite**, if there exists a continuous nondecreasing function $\phi:[0,\infty)\to [0,\infty)$, with $\phi(0)=0,\ \phi(r)\neq 0,\ r\neq 0$ and $\phi(|x|)\leq v(t,x),\ x\in\mathbf{R}^N$, $t\geq t_0$;
- 2. **radially unbounded**, if it is positive definite and $\lim_{r\to\infty} \phi(r) = \infty$;
- 3. **decrescent**, if it is positive definite and there exists a continuous increasing function $\psi:[0,\infty)\to[0,\infty)$, with $\psi(0)=0$, and $\psi(|x|)\geq v(t,x),\ x\in\mathbf{R}^N,\ t\geq t_0$.

Theorem 17. Let there exist a positive definite functional v and $\delta_0 > 0$ such that for every solution of u' = f(t,u) with $|u(t_0)| \leq \delta_0$, the function $v^*(t) = v(t,u(t))$ is nonincreasing with respect to t. Then the trivial solution of u' = f(t,u) is stable.

Proof: Inequality $|u(t)| < \epsilon$ results from proving $\phi(|u(t)|) < \phi(\epsilon)$. The latter follows from $\phi(|u(t)|) \le v(t,u(t)) \le v(t_0,u_0) < \phi(\epsilon)$, valid for all initial conditions $u(t_0) = u_0$ near zero.

Theorem 18. Let there exist a positive definite functional v which is decrescent and $\delta_0 > 0$ such that for every solution of u' = f(t,u) with $|u(t_1)| \le \delta_0$, $t_1 \ge t_0$ the function $v^*(t) = v(t,u(t))$ is nonincreasing with respect to t, then the trivial solution of u' = f(t,u) is uniformly stable.

Proof: Stability follows from Theorem 17. The chain of inequalities $\phi(|u(t)|) \leq v(t,u(t)) \leq v(t_1,u_0) \leq \psi(|u_0|)$ plus $\psi(0) = 0$ implies uniform stability.

2D Uniform Stability example

Let a(t), b(t) be continuous with $b(t) \leq 0$. Consider the two dimensional system

$$x' = a(t)y + b(t)x(x^2 + y^2),$$

 $y' = -a(t)x + b(t)y(x^2 + y^2).$

Uniform stability will be established by applying Theorem 18.

Choose guiding function $v(x,y) = x^2 + y^2$. Compute

$$\frac{dv^*}{dt} = \frac{\partial v}{\partial t} + \nabla v \cdot f(t, u),$$

$$= 2b(t) (x^2 + y^2)^2$$

$$< 0.$$

The function v is positive definite and decrescent. Theorem 18 applies.

Theorem 19 (Instability). The trivial solution of u' = f(t, u) is unstable, provided there exists a continuous functional $v : \mathbf{R} \times \mathbf{R}^N \to \mathbf{R}$ with these properties:

- 1. There exists a continuous increasing function $\psi:[0,\infty)\to[0,\infty)$, such that $\psi(0)=0$ and $|v(t,x)|\leq\psi(|x|)$;
- **2**. For all $\delta > 0$, and $t_1 \geq t_0$, there exists x_0 , $|x_0| < \delta$ such that $v(t_1, x_0) < 0$;
- 3. If $u'=f(t,u),\ u(t)=x,$ then $\lim_{h\to 0+}\frac{v(t+h,u(t+h))-v(t,x)}{h}\leq -c(|x|),$

where c is a continuous increasing function with c(0) = 0.

Theorem 20 (Asymptotic stability). Let there exist a positive definite functional v(t,x) such that

$$\frac{dv^*}{dt} = \frac{dv(t, u(t))}{dt} \le -c(v(t, u(t)))$$

for every solution of u'=f(t,u) with $|u(t_0)| \leq \delta_0$, where c a continuous increasing function with c(0)=0. Then the trivial solution of u'=f(t,u) is asymptotically stable. If v is also decrescent, then the trivial solution is uniformly asymptotically stable.

Proof: The plan is to prove that u(t) exists on $t \geq t_0$ and $\lim_{t\to\infty} \phi(|u(t)|) = 0$. Then $\lim_{t\to\infty} |u(t)| = 0$, proving asymptotic stability.

Perturbed linear systems

Consider the equation u' = Au + g(t, u), where A is a constant $N \times N$ matrix and $g: [t_0, \infty) \times \mathbf{R}^N \to \mathbf{R}^N$ is continuous with g(t, x) = o(|x|), uniformly for $t \in [t_0, \infty)$.

We seek a quadratic guiding function $v(x) = x^T B x$, where B is a constant $N \times N$ matrix. The matrix $C = A^T B + B A$ appears in stability criteria, because of the following computation:

$$\frac{dv^*}{dt} = \frac{dv(t, u(t))}{dt}$$

$$= u^T (A^T B + BA) u + g^T(t, u) Bu + u^T Bg(t, u).$$

Proposition 21. Let A be a constant $N \times N$ matrix having the property that for any eigenvalue λ of A, $-\lambda$ is not an eigenvalue of A. Then for any $N \times N$ matrix C, there exists a unique $N \times N$ matrix B such that $C = A^T B + B A$.

Corollary 22. Let A be a constant $N \times N$ matrix. Then for any $N \times N$ matrix C, there exists $\mu > 0$ and a unique $N \times N$ matrix B such that $2\mu B + C = A^T B + B A$.

Proof: Apply Proposition 21 to $A - \mu I$ and C, for $0 < \mu < \mu_0$, where μ_0 is small.

Corollary 23. Let A be a constant $N \times N$ matrix having the property that all eigenvalues λ of A have negative real parts. Then for any negative definite $N \times N$ matrix C, there exists a unique positive definite $N \times N$ matrix B such that $C = A^T B + B A$.

Corollary 24. A necessary and sufficient condition that an $N \times N$ matrix A have all of its eigenvalues with negative real part is that there exists a unique positive definite matrix B such that $A^TB + BA = -I$.

Definition. An $N \times N$ matrix A is called **critical** if all its eigenvalues have nonpositive real part and there exists at least one eigenvalue with zero real part. It is alled **noncritical** otherwise.

Theorem 26. Assume A is a noncritical $N \times N$ matrix and let $g:[t_0,\infty)\times R^N\to R^N$ be continuous with g(t,x)=o(|x|) uniformly in t. Then the stability behavior of the trivial solution of u'=Au+g(t,u) is the same as that of the trivial solution of u'=Au+g(t,u) is uniformly asymptotically stable if all eigenvalues of A have negative real part and it is unstable if A has an eigenvalue with positive real part.