Chapter VII: Periodic Solutions

Let A(t) and g(t) be continuous and T-periodic. Let $\Phi(t)$ be a fundamental matrix for u' = A(t)u, with $\Phi(0) = I$, so that $\Phi(t) = C(t)e^{Rt}$ for some class C^1 nonsingular T-periodic matrix C(t) and constant matrix R satisfying $e^{RT} = \Phi(T)$.

The solution of u' = A(t)u + g(t) by variation of constants is given by

$$u(t) = \Phi(t)u(t_0) + \Phi(t) \int_{t_0}^t \Phi^{-1}(s)g(s)ds.$$

Then

$$u(T) = e^{RT} \left(u(t_0) + \int_0^T \Phi^{-1}(s)g(s)ds \right).$$

Proposition 1. The equation u' = A(t)u + g(t) has a unique T-periodic solution for every T-periodic forcing term g if and only if $e^{TR} - I$ is nonsingular.

The periodic solution u is given by u(t) = Qg(t) where Q is defined by the formula

$$Qg(t) = \Phi(t)(I - e^{TR})^{-1}e^{TR} \int_0^T \Phi^{-1}(s)g(s)ds$$
$$+ \Phi(t) \int_0^t \Phi^{-1}(s)g(s)ds.$$

Proposition 2 (Fixed points). Let f(t,u) be continuous and T-periodic in t. Assume $I-e^{TR}$ nonsingular. Let $E=\{u\in C([0,T],\mathbf{R}^N):u(0)=u(T)\}$ with $\|u\|=\max_{t\in[0,T]}|u(t)|$. Define F(u)(t)=f(t,u(t)) and S=QF. Then u'=A(t)u+f(t,u) has a T-periodic solution u whenever the operator S has a fixed point in the space E.

Definition. An equation u' = A(t)u + f(t,u) with A(t) and f(t,u) continuous and T-periodic in t is called **nonresonant** if u' = A(t)u has only the trivial T-periodic solution $u \equiv 0$. Otherwise, it is called **resonant**.

Theorem 3. Let A(t) and f(t,u) be continuous and T-periodic in t. Define $P(r) = \max\{|f(t,u)|: 0 \le t \le T, \ |u| \le r\}$. Assume $I - e^{TR}$ is nonsingular and

$$\liminf_{r \to \infty} \frac{P(r)}{r} = 0.$$

Then u' = A(t)u + f(t,u) has a T- periodic solution u.

Corollary 4. For ϵ small, $u' = A(t)u + \epsilon f(t, u)$ has a T-periodic solution u.

Proof of Theorem 3: Let S = QF as in Proposition 2. Then S is completely continuous and $||Su|| \le KP(r)$ for $||u|| \le r$. Schauder's fixed point theorem applies to S on a large ball in E.

Continua of T-periodic solutions.

Theorem 5. Let A(t) and f(t,u) be continuous and T-periodic in t. Assume $I-e^{TR}$ is nonsingular. Let

$$S^+ = \{(u, \epsilon) \in E \times [0, \infty) : u' = A(t)u + \epsilon f(t, u)\}.$$

Then there exists a continuum $C^+ \subset \mathbf{S}^+$ such that

- (1) $C_0^+ \cap E = \{0\},\$
- (2) C^+ is unbounded in $E \times [0, \infty)$.

Similarly, let

$$\mathbf{S}^- = \{(u, \epsilon) \in E \times (-\infty, 0] : u' = A(t)u + \epsilon f(t, u)\}.$$

Then there exists a continuum $C^- \subset \mathbf{S}^-$ such that

- (3) $C_0^- \cap E = \{0\}$),
- (4) C^- is unbounded in $E \times (-\infty, 0]$.

Resonant Equations

Consider the periodic BVP u' = f(t, u), u(0) = u(T) where f is continuous and T-periodic in t, as a perturbation of u' = 0.

Lemma 6. Let $E = \{u \in C([0,T], \mathbf{R}^N)\}$ with $\|u\| = \max_{t \in [0,T]} |u(t)|$ and define $(Su)(t) = u(T) + \int_0^t f(s,u(s))ds$, a map from E into E. The map S is completely continuous and fixed points u = Su are solutions of u' = f(t,u), u(0) = u(T).

Theorem 7. Assume that f(t,u) is continuous and there exists a bounded open set $\Omega \subset \mathbf{R}^N$ such that the \mathbf{R}^N -map $g(x) = -\int_0^T f(s,x) ds$ does not vanish for $x \in \partial \Omega$. Further assume that the Brouwer degree $\mathrm{d}(g,\Omega,0)$ is nonzero. Then the problem $u' = \epsilon f(t,u), \ u(0) = u(T)$ has a solution for all sufficiently small ϵ .

Corollary 8. Assume the hypotheses of Theorem 7. Let all solutions of $u' = \epsilon f(t,u)$, u(0) = u(T) satisfy $u \notin \partial G$ where $G = \{u \in E : u(t) \in \Omega\}$ and $0 < \epsilon \le 1$. Then u' = f(t,u) has a T-periodic solution.

Proof of Theorem 7. Let $S(u, \lambda, \epsilon)$ equal

$$u(T) + \int_0^{T+\lambda(t-T)} \epsilon f(s, \lambda(u(s)-u(T)) + u(T)) ds.$$

We prove

7-A. $S(\cdot, \lambda, \epsilon)$ is continuous and compact.

7-B. $Id - S(\cdot, \lambda, \epsilon) \neq 0$ on ∂G for small ϵ .

7-C. $d(Id - S(\cdot, \lambda, \epsilon), G, 0) \neq 0$.

Then $u = S(u, 1, \epsilon)$ by **7-C** and the solution property of degree. Setting t = 0 in this equation gives u(0) = u(T). By differentiation, $u' = \epsilon f(t, u(t))$. This completes the proof.

A Liénard equation

Corollary 8 applies to prove the existence of a T-periodic solution to special Liénard equations.

Theorem 9. Let h be continuous and assume e(t) is continuous T-periodic with $T < 2\pi$. Then x'' + h(x)x' + x = e(t) has a T-periodic solution x(t).

Proof outline. The condition $\int_0^T e(t)dt = 0$ can be assumed by changing variables. Let Ω be |x| < R, |y| < R for large R. Then G is the set of continuous functions $t \to (x(t), y(t))$ with |x(t)| < R, |y(t)| < R. The conditions in Corollary 8 are satisfied by proving solutions to $x'' + \epsilon h(x)x' + \epsilon^2 x = \epsilon e(t)$ satisfy |x(t)| < M, |x'(t)| < M for some constant M, $0 < \epsilon \le 1$.

Partial resonance

Theorem 10. Let f(t,u,v), h(t,u,v) be T-periodic in t and continuous for all $t \in R^1$, $u \in R^p$, $v \in R^q$ with values in R^p . Assume B is $q \times q$ and v' = Bv has the unique T-periodic solution v = 0. Let $g(x) = -\int_0^T f(s,x,0)ds$ for $x \in R^p$ and assume $g(x) \neq 0$ on the boundary of an open set $\Omega \subset R^p$. Then for all small ϵ there is a solution u, v to the problem $u' = \epsilon f(t,u,v)$, $v' = By + \epsilon h(t,u,v)$, u(0) = u(T), v(0) = v(T).

Corollary 11. If in the proof of Theorem 10, for $0 < \epsilon \le 1$, u, v solutions of $u' = \epsilon f(t, u, v)$, $v' = By + \epsilon h(t, u, v)$, u(0) = u(T), v(0) = v(T) implies u, $v \notin \partial G$, then u' = f(t, u, v), v' = By + h(t, u, v) has a T-periodic solution pair.