Chapter VII: Periodic Solutions

Let A(t) and ¢g(t) be continuous and T-periodic.
Let ®(t) be a fundamental matrix for v =
A(t)u, with ©(0) = I, so that ®(¢) = C(¢¥)elt
for some class C! nonsingular T-periodic ma-
trix C'(¢) and constant matrix R satisfying eltf =
& (T).

The solution of v/ = A(t)u + ¢g(t) by variation
of constants is given by

t o1
u(t) = S(Hulty) + d(t) /t & ()g(s)ds

Then

w(T) = ef'T (u(to) + /OT ¢_1(s)g(s)ds> :
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Proposition 1. The equation v = A(t)u +
g(t) has a unique T—periodic solution for every
T—periodic forcing term g if and only if elR_ T
IS nonsingular.

The periodic solution u is given by u(t) = Qg(t)
where (@ is defined by the formula

Qg(t) = P(t)(I — e F)y~1eTE [ &~ 1(s)g(s)ds

+ @(t) J§ P (s)g(s)ds.

Proposition 2 (Fixed points). Let f(¢,u) be
continuous and T-periodic in t. Assume I —el2t
nonsingular. Let E = {u € C([0,T],RY) :
u(0) = u(T)} with ||lul] = max,cg 7 [u(?)|. De-
fine F(u)(t) = f(t,u(t)) and S = QF. Then
v = A@)u+ f(t,uv) has a T-periodic solution u
whenever the operator S has a fixed point in
the space E.
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Definition. An equation v = A(t)u + f(t, u)
with A(t) and f(¢,u) continuous and T-periodic
in t is called nonresonant if v/ = A(t)u has
only the trivial T-periodic solution v = 0. Oth-
erwise, it is called resonant.

Theorem 3. Let A(t) and f(t,u) be con-
tinuous and T-periodic in t. Define P(r) =
max{|f(t,u)| : 0 <t < T, |u] < r}. Assume
I — eI is nonsingular and
P

imine 24 —

r—00 r
Then v = A(t)u + f(t,u) has a T— periodic
solution wu.

0.

Corollary 4. For e small, v’ = A(t)u + €f (¢, u)
has a T-periodic solution .

Proof of Theorem 3: Let S = QF as in
Proposition 2. Then S is completely continu-
ous and ||Sul|| < KP(r) for ||ul| <r. Schauder’s
fixed point theorem applies to S on a large ball
in E.
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Continua of T-periodic solutions.

Theorem 5. Let A(¢) and f(¢,u) be contin-
uous and T-periodic in t. Assume I —elR js
nonsingular. Let

ST ={(u,¢e) € Ex[0,00) : v/ = A(t)utef(¢t,u)}.

Then there exists a continuum Ct ¢ ST such
that

(1) ¢ nE = {0},

(2) ¢t is unbounded in E x [0, 00).

Similarly, let

S™ = {(u,€) € Ex(—00,0] : v/ = A(t)utef(t,u)}.

Then there exists a continuum C— C S~ such
that

(3) Cy NE = {0}),

(4) C~ is unbounded in E x (—o0,0].
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Resonant Equations

Consider the periodic BVP 4/ = f(t,u), u(0) =
uw(T) where f is continuous and T-periodic in
t, as a perturbation of ' = 0.

Lemma 6. Let E = {u € C([0,T],RM)} with
|u|| = MaXc[o.77] lu(t)| and define (Su)(t) =
u(T) + [§ f(s,u(s))ds, a map from E into E.
The map S is completely continuous and fixed
points uw = Su are solutions of v = f(t,u),
u(0) = u(T).

Theorem 7. Assume that f(¢,u) is continuous
and there exists a bounded open set 2 ¢ RV
such that the RN—-map g(z) = — [d f(s,z)ds
does not vanish for x € 0L2. Further assume
that the Brouwer degree d(g,€2,0) is nonzero.
Then the problem « = ef(t,u), u(0) = u(T)
has a solution for all sufficiently small e.
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Corollary 8. Assume the hypotheses of The-
orem 7. Let all solutions of v = ef(t,u),
u(0) = u(T) satisfy u ¢ 0G where G = {u €
E:u(t) e Q}and 0<e<1. Then v = f(t,u)
has a T-periodic solution.

Proof of Theorem 7. Let S(u, A\, ¢) equal

T+A(—T)

u(T)+ 0 ef (s, A(u(s) —u(T))+u(T))ds.

We prove

7-A. S(-, )\, ¢) is continuous and compact.
7-B. Id — S(-,\,e) # 0 on 0G for small e.
7-C. d(Id - S(-, A\, ¢e),G,0) # 0.

Then u = S(u,1l,¢) by 7-C and the solution
property of degree. Setting ¢t = 0 in this equa-
tion gives u(0) = (7). By differentiation,
u' = ef(t,u(t)). This completes the proof.
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A Liénard equation

Corollary 8 applies to prove the existence of
a T-periodic solution to special Liénard equa-
tions.

Theorem 9. Let h be continuous and as-
sume e(t) is continuous T-periodic with T <
2. Then 2" + h(x)x + z = e(t) has a T-
periodic solution z(t).

Proof outline. The condition [ e(t)dt = 0
can be assumed by changing variables. Let Q2
be |z| < R, |y| < R for large R. Then G is
the set of continuous functions t — (x(¢t), y(t))
with |z(t)| < R, |y(t)| < R. The conditions in
Corollary 8 are satisfied by proving solutions
to 2’ + eh(z)x’ + 2z = ee(t) satisfy |z(¢)| < M,
|z’ (t)| < M for some constant M, 0 <e < 1.
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Partial resonance

Theorem 10. Let f(t,u,v), h(t,u,v) be T-
periodic in ¢ and continuous for all t € RY, uw €
RP, v € R1 with values in RP. Assume B is g X q
and v/ = Bv has the unique T-periodic solution
v = 0. Let g(x) = —fgf(s,x,O)ds for x € RP
and assume g(x) # 0 on the boundary of an
open set €2 C RP. Then for all small ¢ there is
a solution u, v to the problem v = ef(t,u,v),
v/ = By+eh(t,u,v), u(0) = u(T), v(0) = v(T).

Corollary 11. If in the proof of Theorem 10,
for 0 < e <1, u, v solutions of v/ = ef(t,u,v),
v/ = By + eh(t,u,v), u(0) = u(T), v(0) = v(T)
implies u, v ¢ 0G, then v = f(t,u,v), v/ =
By + h(t,u,v) has a T-periodic solution pair.
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