Chapter VI: Linear Equations

Let I be a real interval. Let A: I — L(RN,RM)
and f: I — R¥ be continuous functions. Con-
sider the linear systems v/ = A(t)u+f(t), t € I,
and v/ = A(t)u, te 1.

Proposition 1. The initial value problem u/ =
A()u—+ f(t), u(tg) = ug is uniquely solvable for
each tg € I, ug € RY and the solution u(t) is
defined on all of I.

If A and f are measurable on I and locally
integrable there, then a parallel theory can be

developed.

Proposition 2. The set of solutions of v/ =
A(t)u is a vector space of dimension N.
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Fundamental Solutions

Lemma 4 (Abel—Liouville). Let ©(t) be an
N x N matrix solution of v/ = A(¢t)u. Then
g(t) = detPd(¢t) satisfies the differential equa-
tion ¢’ = trace(A(t))g. In particular, ®(t) is
nonsingular for all t € I if and only if ®(tg) is
nonsingular for one tg € I.

Definition. A nonsingular matrix ®(t) whose
columns are solutions of v’ = A(t)w is called
a fundamental matrix solution or a funda-
mental system.

Proposition 5. Let ¢ be a given fundamen-
tal matrix solution of v/ = A(¢t)u. Then every
other fundamental matrix solution W has the
form W = &C, where C is a constant nonsingu-
lar N x N matrix. Furthermore the set of all so-
lutions of u/ = A(t)u is given by {dc:ce RV},
where & is a fundamental system.
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Variation of Constants Formula

Proposition 6. Let ® be a fundamental ma-
trix solution of v/ = A(t)u and let tg € I. Then
up(t) = (t) ftto d~1(s)f(s)ds is a solution of
u = A()u + f(t). Hence the set of all solu-
tions of v/ = A(t)u + f(t) is given by

{Cb(t) (c—l— /t:) Cb_l(s)f(s)ds> L C € RN} :

where @& is a fundamental system of v/ = A(¢)u.

Exponential Matrix
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This series expansion is valid for constant ma-
trices A. It converges uniformly on compact
t-sets. The series represents a fundamental
matrix for the equation v/ = Aw which is the
identity matrix at t = 0.
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Real Jordan Form

The matrix formula J = P~1AP summarizes
the real Jordan form of A. In this form, P is
formed from the real and imaginary parts of
the generalized eigenvectors of A, while J =
diag(Jy,...,J;); the matrices Jy, ..., J, are
called Jordan blocks. The structure of a Jor-
dan block is as follows: the diagonal entries
are either a real eigenvalue A of A or else the

2 X 2 matrix [_g g - which corresponds to

the complex eigenvalue a 4+ 8. On the super-
diagonal of the Jordan block there are ones (1)
or 2 x 2 identity matrices.
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Calculation of AT

If matrices E and N commute, then etV =
efeN. A Jordan block C can be written as a
sum C = E + N where E is block-diagonal,
N is nilpotent (N" = 0 for some r > 1) and
EN = NE. Therefore, e¢t = eETeNt, The ex-
ponential et is again block-diagonal, while the
series eVt is a finite sum. There are two cases,
corresponding to real or complex eigenvalues
of A.

Proposition 7. Let A be an N x N constant
matrix and consider the differential equation
u' = Au. Then:
1. All solutions u of v/ = Awu satisfy u(t) — O,
as t — oo, if and only if ReX < 0O, for all eigen-
values \ of A.
2. All solutions v of v/ = Aw are bounded on
[0, 00), if and only if Rex < 0, for all eigenval-
ues X of A and those with zero real part are
semisimple.
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Floquet Theory

Let A(t) be an N x N continuous matrix such
that A+ T) = A(t), —o0o <t < co. Consider
the differential equation v’ = A(t)uw.

Proposition 8. Let ®(¢t) be a fundamental
matrix solution of v/ = A(t)u with A(t) T-
periodic and continuous. Then W(t) = (¢t +
T) is also a fundamental matrix.

Theorem 9 (Floquet). Let the N x N ma-
trix A(t) be T-periodic and continuous. There
exists a constant matrix R and a T-periodic
nonsingular matrix C(¢) such that the change
of variable v = C(t)y changes v/ = A(t)wu into
the constant-coefficient equation vy’ = Ry.

In particular, there is a fundamental matrix
®(t) for u' = A(t)u of the form d(t) = C(¢¥)e'*t,
where R is a constant matrix and C(t) is a
T-periodic nonsingular matrix of class Cl. If
®(0) = I, then C(0) = C(T) = I and T =
d(T).
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Corollary 10. Let the N x N matrix A(t) be
T-periodic and continuous. Let ®(t) be a fun-
damental matrix for «/ = A(¢)u. Then, there
exists a solution u(t) # 0 of period mT if and
only if @~1(0)®(T) has an eigenvalue )\ with
AT =1.

Solving Q = ¢X for X when det(Q) # 0
The condition det(Q) #= 0 means that all eigen-
values of Q are nonzero. Write Q = P~ 1JP
where J is a block-diagonal matrix whose di-
agonal entries are complex Jordan blocks.

It suffices to solve for X in AI + N = X when
A #= 0, I is the identity and N is nilpotent,
because this is the form of a complex Jordan
block.

A candidate for the solution X in this special
case is given by a formal logarithmic series X =
AIN(14+N/A) = In(ANI-YF_ (—=N/XN)k/k where
NP = 0. To verify that this solution X indeed
satisfies A\T + N = e is routine, because there
IS NO issue of convergence.
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Hill’'s equation v’ + p(t)y =0

Write vy’ + p(t)y = 0 as a system v’ = A(t)u

where
_ o 1 | y(®)
4 [ —p(t) O ] Y [ y' () ] '

Let d(¢) be a fundamental matrix with ®(0) =
I. Let [y1,y>] be the first row of ® and define
a=1y1(T)4y5>(T). Corollary 10 says that Hill's
equation has a periodic solution of period mT
if and only if &(T) has an eigenvalue X with
A™ = 1. An eigenvalue A\ must satisfy A2 —
ax+ 1 =0, therefore the condition for an mT-
periodic solution is

a:l:\/a2—4 m_l

5 —
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