Initial Value Problem
Let D be an open connected subset of RxRN,
N > 1, and let f : D — RY be a continuous

mapping.

Definition (Solution). Let I be an interval
in R. A function v € C1(I,RY) such that
(t,u(t)) € D and u/(t) = f(t,u(t)), t € I, is
called a solution.

Definition (IVP). Let (tg,ug) € D. An initial
value problem is the problem of finding an
open interval I containing tg and a function
uw € CHI,RY) such that (t,u(t)) € D, ¥/ (t) =
f(t,u(t)) for t € I, and u(tg) = ug.

Theorem. Let I be an open interval contain-
ing tg. Assume v € C1(I,RY) and (¢,u(t)) € D
for t € I. Then u is a solution of the initial
value problem u/'(t) = f(t,u(t)), u(tg) = ug if
and only if u(t) = u(tg) + ftto f(s,u(s))ds.
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Picard—Lindelof Theorem

Let f: D — RYN satisfy a local Lipschitz con-
dition, that is, |f(t,u) — f(t,v)| < L|u — v| for
(t,u), (t,v) in each compact set K C D, with L
depending on K.

If (tg,up) € D, then there exists an interval
I:|t—tg| < r and a function v € C1(I,RY)
such that «/(¢t) = f(t,u(t)) for all t € I, and
u(tg) = ug. Furthermore, any two such func-
tions u defined on I must be equal, that is, the
solution of the IVP is unique.

Remark. The proof actually constructs a par-
allelepiped @ inside D which contains the graph
of the solution curve. Construct @ as |t —tg| <
a, |lu—ug| < b, with @ C D. Then define
m = max|f(t,u)| on Q and let »r = min(a,b/m).
Then |u(t) — ug| < b for |t — tg| < r, hence the
solution curve remains inside Q.
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Picard Iteration
The solution u(t) given by Picard’'s theorem
can be written in the limit form

w(t) = lm un(t)

or the equivalent series form

u(t) =ug+ ) (up41(t) — un(t)).
n=0

Here, ug(t) = ug and u,(t) is defined to be the
nth Picard iterate for the IVP, given explicitly

by
t
un(t) = ug + /O (s, upn_1(s))ds.

The series is the only known explicit formula
for the solution provided by Picard’s theorem.
However, you are warned that it is currently
thought by experts to be completely impracti-
cal. Nevertheless, the formula for u(t) remains
important to applications, because this theo-
retical solution is computed by all numerical
schemes.
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Computer Algebra Systems

Closed-form solutions to differential equations
can be found using computer algebra systems
like maple. Implied is the summation of the
Picard series solution to the resulting formula,
which must represent the unique solution.

Intuition about differential equations can be
improved by becoming familiar with the ex-
tensive number of equation types which have
closed-form solutions. Noteworthy are:

quadrature, separable, linear,
Bernoulli, homogeneous A, B, C, G,

exact, Riccati, d'Alembert, Abel, Chini.

For more types, consult maple help for dsolve.
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Cauchy-Peano Theorem

Let f: D — RN be continuous. If (tg,ug) € D,
then there exists an interval T : |t —tg| < r
and a function u € C1(I, RY) such that «/(¢) =
f(t,u(t)) for all t € I, and u(tg) = ug.

Example. The IVP «' = 3u2/3, 4(0) = 0 has
two solutions, v = 0 and u = z3. There-
fore, the solution predicted by Peano’s theo-
rem need not be unique.

Example. The IVP v = H(t), u(0) = 0 has
a unique solution u(t) = tH(t) (H is Heavi-
side’'s unit step). However, both Picard’s theo-
rem and Peano’s theorem fail to apply, because
f(t,u) = H(t) is discontinuous.

63



Carathéodory Conditions

Let Q be a parallelepiped in D, defined by in-
equalities |u —ug| < b, |t — tg| < a. A function
f.:D— RN is said to satisfy Carathéodory con-
ditions on @Q provided (1) f(t,u) is measurable
in t for each fixed u and continuous in u for
almost all ¢, (2) |f(t,uw)| < m(t) for (t,u) € Q,
for some function m € L! on |t — tg| < a.

Theorem (Carathédory). Let f satisfy for
each parallelepiped Q contained in D a Cara-
théodory condition. If (¢g,ug) € D, then there
exists an interval I : |t —tg| < r and a function
uw € AC(I,RN) such that «/(t) = f(¢t,u(t)) for
almost all t € I, and u(tg) = ug.
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Extension of Solutions

Lemma 5. Assume f : D — RY is contin-
uous and f is bounded by a constant m on
a subdomain Dy C D. Let u(t) be a solu-
tion of v/ = f(t,u) with (t,u(t)) € Dg on a <
t < b. Then wu(t) satisfies a Lipschitz con-
dition |u(t1) — u(te)| < ml|t;1 — to] and hence
u(t) has one-sided limits at ¢t = a and t = b:
limy_, o+ u(t) and limy_,,_ u(t) exist and are fi-
nite.

Definition. A solution u(t) of v’ = f(¢,u) has
maximal interval of existence (w—,w-+) pro-
vided u(t) cannot be continued as a solution to
the right of ¢t = w4+ nor to the left of t = w—.

Theorem 6 (Extension). Let f: D — RN
be continuous and assume u(t) is a solution of
v = f(t,u) defined on some t-interval. Then
u(t) may be extended as a solution to a maxi-
mal interval of existence (w—,w-+) and the so-
lution curve (¢t,u(t)) — 0D as t approaches the
endpoints w—, w+.
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Partially and Linearly Ordered Sets

Let (P, <) be a partially ordered set, that is,
a set P and a relation < in P x P satisfying
(1) =z <z [reflexive],

(2) If z <y, y <z, then z = y [antisymmetric]
(3) z <y and y < z implies = < z [transitive]

If also

(4) z,y € P implies z <y or y < z [trichotomy],
then < is called a linear ordering on P. The
notation z < y means z < y and =z # y. An
element me Pismaximalifz € Pand m<z
implies x = m. A chain in a partially ordered
set (P,<) is a set C C P which is linearly or-
dered by <.

Hausdorff Maximum Principle

Every nonvoid partially ordered set (P, <) con-
tains a linearly ordered subset C such that if
D is linearly ordered and C C D, then D = C.
Briefly, C' is a maximal chain.
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Finite Blowup of Solutions

Corollary 7. Assume f : [to,tg 4+ a] x RN —
RN is continuous and let w(¢) be a solution of
u' = f(t,u) defined on a maximal interval of
existence I C [tg,tp + a] with tg € I. Then
either I = [tg,tg + a] or else I = [tg,w+) with
w+ <tg+a and |u(t)| = oo as t —» w+.

Corollary 8. Assume f : (a,b) x RN — RN is
continuous and |f(t,u)| < a(t)|u| + B(t) where
a, B € L1(a,b) are nonnegative continuous func-
tions. Then the maximal interval of existence
of each solution of v/ = f(¢t,u) is (a,b).
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Dependence upon tg and ug

Theorem 9. Let D be an open connected
subset of R x RN, N > 1. Assume that f :
D — RY is a continuous mapping and that
u' = f(t,u), u(tg) = ug has a unique solution
u(t) = u(t, tg,ug), for every (tg,upg) € D. Then
the solution depends continuously on (tg,ug),
in the following sense: If {(tn,un)} C D con-
verges to (tg,ug) € D, then given € > 0, there
exists ne and an interval I such that for all
n > ne, the solution un(t) = u(t, tn, un), exists
on Ic and maxgcy |u(t) — un(t)| <e.
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Dependence upon tg, ug and f

Corollary 10. Assume that fn : D - R, n=
1,2,---, are continuous mappings and that «/ =
fn(t,u), u(tn) = un has a unique solution u,(t) =
u(t, tn,urn), for every (tn,un) € D. Then the so-
lution depends continuously on (tg,ug), in the
following sense: If {(tn,un)} C D converges to
(tg,up) € D, and f, converges to f, uniformly
on compact subsets of D, then given ¢ > O,
there exists ne and an interval I such that for
all n > ne, the solution up(t) = u(t, tn, un), €x-
ists on I and maxgcr. |u(t) —un(t)| <e.
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Differentiation of u(t,tg,ug) IN ug

Theorem (differentiability). Assume that f:
D — RY and its Fréchet derivative D, f(t,u)
are continuous. Then the initial value problem
u' = f(t,u), u(tg) = ug has a unique solution
w(t) = u(t, tg, ug) of class Cl in the variables
t, tg and ug. Further, if J(t) = Dy f(t,u) with
u = u(t,tog,ug), then Dyyu(t,to,up)h is the so-
lution y of the initial value problem ¢’ = J(%)v,
y(to) = h and D u(t,tg,up) is the vector given
by the product —Duou(t,to,uO)f(to,uQ).
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Dini Derivatives

DFu(t) = limsupy_,oy WiFh=u®)
Diu(t) = liminfy_ o4 “(t+h> u(t),
D~ u(t) = limsupy_o _“(t"'h) “(t)
D_u(t) = liminfj,_.o_ ’“(t+h) u(t),

The operations limsup and Ilmlnf are taken
componentwise.

Definition (Kamke Functions). A function
f: RN 5 RV is said to be of type K (after
Kamke) on a set S ¢ RY, whenever fi(z) <
fr(y) for all z,y € S, =z < vy, z* = y".
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Estimates of Solutions

Theorem 13. Assume f : [a,b] x RY = RV is
continuous and f is of type K for each fixed t.
Let u: [a,b] — R be a solution of v/ = f(t,u).

If v : [a,b] — RY is continuous and satisfies
D~ v(t) > f(t,v(t)) for a < t < b and v(a) >
u(a), then v(t) > u(t) for a <t <b.

If z : [a,b] — RY is continuous and satisfies
D_z(t) < f(t,z(t)) for a < t < b and z(a) <
u(a), then z(t) < u(t) for a <t <b.

Definition. A solution u* of «/ = f(t,u) is
called a right maximal solution on interval
I if for each tg € I and any solution u with
u(tg) < u*(tg) satisfies u(t) < u*(t) for tg <
t € I. A right minimal solution is defined
similarly.
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EXxistence of Maximal Solutions

Theorem 15. Assume f: D — R¥ is contin-
uous and of type K for each fixed t. Then the
initial value problem u' = f(t,u), u(tg) = ug
has a unique right maximal (minimal) solution
for each (tg,ug) € D.

Proof: The idea of the proof is to apply the
previous theorem to approximations of the IVP
obtained by replacing f by f+4+e¢e and ug by ug-e.

Theorem 16. Assume f : [a,b] x RY — RV
is continuous and of type K for each fixed ¢t.
Let v,z : [a,b] = RY be continuous and satisfy
DTo(t) > f(t,v(t)), Dya(t) < f(t,2(t)), 2(t) <
v(t) for a <t < b. Then for every ug, z(a) <
ug < v(a), there exists a solution u of v =
f(t,u), u(a) = ug such that z(t) < u(t) < v(t),
a<t<b.

Definition. The function z in theorem 16 is
called a sub-solution; the function v is called
a super-solution.
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A Priori Bounds

Corollary 17. Assume the hypotheses of T he-
orem 16 and let f satisfy a local Lipschitz con-
dition. Assume furthermore that z(a) < z(b),
v(a) > v(b). Then the problem v = f(t, u),
u(a) = u(b) has a solution u with z(¢t) < u(t) <
v(t), a <t <b.

Theorem 18. Assume that F' : [a,b] Xx Ry —
Ry is continuous and f : [a,b] x RN — RV
is continuous also and |f(t,x)| < F(t,|x|), a <
t<b zeRN. Let u: [a,b] = RY be a so-
lution of «' = f(¢t,u) and let v : [a,b] — Ry
be the continuous and right maximal solution
of v'(t) = F(t,v(t)), a <t <b, v(a) > |u(a)l.
Then v(t) > |u(t)], a <t <b.
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Uniqueness

Theorem 19. Assume that F': (a,b) x Ry —
R is a continuous mapping and that f : (a,b) x
RY — R is a continuous also and |f(t,z) —
F&I < Ftlz—yl), a<t<b, z,y e RY. Let
F(t,0) = 0 and let, for any ¢ € (a,b), w =0
be the only solution of v’ = F(t,w) on (a,c)
such that w(t) = 0(u(t)), t — a where p is a
given positive and continuous function. Then
v’ = f(t,u) cannot have distinct solutions u, v
such that |u(t) —v(t)| = 0(u(t)), t — a.
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