Continuation Principle

Let E be a real Banach space. Let $O \subset E \times [a,b]$ be an open bounded set in the relative topology of $E \times [a,b]$. Define $O_{\lambda} = \{u \in E : (u,\lambda) \in O\}$.

Generalized Homotopy Principle.

Let $F: \overline{O} \to E$ be a completely continuous mapping. Define $f(u,\lambda) = u - F(u,\lambda)$ and assume that $f(u,\lambda) \neq 0$ for (u,λ) in the boundary of O. Then for $a \leq \lambda \leq b$

$$d(f(\cdot,\lambda),O_{\lambda},0) = constant.$$

Leray—Schauder Continuation.

Assume O and f as in the generalized homotopy principle. Assume $d(f(\cdot,a),O_a,0)\neq 0$ and define $S=\{(u,\lambda)\in \bar O: f(u,\lambda)=0\}$. Then there exists a closed connected set $C\subset S$ such that $C_a\cap O_a\neq \emptyset$ and $C_b\cap O_b\neq \emptyset$.

Example

Let I=[0,1] and let $g:[0,1]\times \mathbf{R}\to \mathbf{R}$ be continuous. Consider the nonlinear Dirichlet problem

$$\begin{cases} u'' + g(x, u) = 0, & 0 \le x \le 1, \\ u(x) = 0, & x \in \partial I. \end{cases}$$

Let there exist constants a < 0 < b such that g(x,a) > 0 > g(x,b), $x \in \Omega$. Then the Dirichlet problem has a solution $u \in C^2([0,1],\mathbf{R})$ such that a < u(x) < b, $x \in I$.

Proof: Let E=C[0,1]. Write the problem as $u=\lambda LG(u)$, $u\in E$, where w=LG(u) solves w''+g(x,u(x))=0, w(0)=w(1)=0. Let O be all (u,λ) with $u\in E$, $0\le \lambda\le 1$, a< u(x)< b. We show $u=\lambda LG(u)$ implies $(u,\lambda)\notin\partial O$ and $d(I-\lambda LG,O_\lambda,0)=1$. Now apply the Leray-Schauder continuation theorem.

Globalization of Implicit Functions

Assume that $F: E \times \mathbf{R} \to E$ is a completely continuous mapping and consider the equation $f(u,\lambda) \equiv u - F(u,\lambda) = 0$. Let $f(u_0,\lambda_0) = 0$ and suppose $f_u(u_0,\lambda_0)$ is a homeomorphism.

The implicit function theorem implies that the equation

$$f(u,\lambda) = 0$$

has a solution $u=u(\lambda)$ defined in a neighborhood of $\lambda=\lambda_0$ such that $u(\lambda_0)=u_0$. If O is a suitable small neighborhood of $u=u_0$, then the proof of the implicit function theorem shows that $d(f(\cdot,\lambda_0),O,0)\neq 0$.

The *globalization* refers to the existence of a continuum of solutions (u, λ) emanating from (u_0, λ_0) , extending to both $\lambda = \infty$ and $\lambda = -\infty$.

Global Implicit Function Theorem

Let O be a bounded open subset of E and assume that the equation $f(u, \lambda_0) = 0$ has a unique solution $u = u_0$ in O. Suppose that $d(f(\cdot, \lambda_0), O, 0) \neq 0$.

Define

$$\mathbf{S}^+ = \{(u, \lambda) \in E \times [\lambda_0, \infty) : f(u, \lambda) = 0\}.$$

Then there exists a continuum $C^+ \subset \mathbf{S}^+$ such that $C_{\lambda_0}^+ \cap O = \{u_0\}$ and either $C_{\lambda_0}^+ \cap (E \setminus \overline{O}) \neq \emptyset$ or else C^+ is unbounded in $E \times [\lambda_0, \infty)$.

Similarly, define

$$\mathbf{S}^- = \{(u, \lambda) \in E \times (-\infty, \lambda_0] : f(u, \lambda) = 0\}.$$

Then there exists a continuum $C^- \subset \mathbf{S}^-$ such that $C_{\lambda_0}^- \cap O = \{u_0\}$ and either $C_{\lambda_0}^- \cap (E \setminus \overline{O}) \neq \emptyset$ or else C^- is unbounded in $E \times (-\infty, \lambda_0]$.

Cones and Positive Maps

Let E be a real Banach space. A **cone** K is a closed convex subset of E such that

- (1) if $u \in K$ and $t \geq 0$, then
- (2) $K \cap \{-K\} = \{0\}.$

A cone K induces a partial order defined by $u \le v$ if and only if $v - u \in K$. A linear operator $L: E \to E$ which maps K into itself is called **positive**.

Theorem. Let E be a real Banach space with a cone K and let $L:E\to E$ be a positive compact linear operator. Assume there exists $w\in K,\ w\neq 0$ and a constant m>0 such that $w\leq mLw$, where \leq is the partial order induced by K. Then there exists $\lambda_0>0$ and $u\in K$, ||u||=1, such that $u=\lambda_0 Lu$.

Krein-Rutman Theorem

If K is a cone with nonvoid interior and L maps $K\setminus\{0\}$ into $\operatorname{int}(K)$, then L is called a **strongly positive operator**.

Theorem. Let E have a cone K with nonvoid interior int(K). Let L be a strongly positive compact linear operator. Then there exists a unique $\lambda_0 > 0$ with the following properties:

- (1) There exists $u \in \text{int}(K)$ with $u = \lambda_0 L u$.
- (2) If $v = \lambda Lv$ with $\lambda \neq \lambda_0$ and $v \neq 0$, then $v \notin K \cup \{-K\}$ and $\lambda_0 < |\lambda|$.

Branching from the Trivial Solution

Let E be a real Banach space and assume $F: E \times \mathbf{R} \to E$ is completely continuous with $F(0,\lambda) \equiv 0$, for all $\lambda \in \mathbf{R}$.

Let $f(u,\lambda) = u - F(u,\lambda)$. Then the equation $f(u,\lambda) = 0$ has the trivial solution u = 0 for all λ .

To demonstrate the existence of global *branches* of nontrivial solutions bifurcating from the trivial branch, the main tools will be Leray-Schauder degree theory and Whyburn's lemma.

Lemma (Whyburn). Let A and B be disjoint closed sets in a compact metric space K. Then either there exists a compact connected set C in K with $A \cap C \neq \emptyset$ and $B \cap C \neq \emptyset$ or else there are two open sets U, V in K with $A \subset U$, $B \subset V$, $\bar{U} \cap V = \emptyset = U \cap \bar{V}$.

Global Bifurcation

Let E be a real Banach space and assume $F: E \times \mathbf{R} \to E$ is completely continuous with $F(0,\lambda) \equiv 0$, for all $\lambda \in \mathbf{R}$. Let $f(u,\lambda) = u - F(u,\lambda)$.

Theorem. Let real numbers a < b be given with u = 0 an isolated solution of f(u, a) = 0 and also f(u, b) = 0. Assume that neither a nor b are bifurcation points, that $B_r(0) = \{u \in E : ||u|| < r\}$ is an isolating neighborhood of the trivial solution and

$$d(f(\cdot,a),B_r(0),0) \neq d(f(\cdot,b),B_r(0),0).$$

Let $S_0 = \{0\} \times [a, b]$ and define

$$S = \overline{\{(u,\lambda) : f(u,\lambda) = 0, u \neq 0\}} \cup S_0.$$

Let $C \subset S$ be the maximal connected subset of S which contains S_0 . Then

- (i) C is unbounded in $E \times \mathbf{R}$, or else
- (ii) $\mathbf{C} \cap \{0\} \times (\mathbf{R} \setminus [a, b]) \neq \emptyset$.

Example 13

Let $f(u,\lambda)=u(u^2+\lambda^2-1)$. Let S_1 be the circle $u^2+\lambda^2=1$, $u\neq 0$. The only bifurcation points are at u=0, $\lambda=\pm 1$, therefore choices for a, b in the theorem should be points near $\lambda=-1$ or $\lambda=1$. The set $S=S_1\cup S_0$ is bounded, therefore the theorem concludes that the continuum $C=S_1\cup\{(0,1),(0,-1)\}$ wraps back onto the λ -axis.

Example 14

Let $f(u,\lambda) = u(1-\lambda+\sin(1/u))$. Define S_1 to be the solution set of $\lambda-1=\sin(1/u)$ for $u \neq 0$. Every value λ from 0 to 2 produces a bifurcation point, therefore a<0 and b>2 is required. The degree requirement is met. The continuum $C=S_1\cup\{0\}\times[0,2]$ in the theorem is unbounded.

Compact Linear Maps

Proposition 15. Assume $F(u,\lambda) = \lambda Bu + o(\|u\|)$ as $\|u\| \to 0$ with B a compact linear map. If $(0,\lambda_0)$ is a bifurcation point from the trivial solution for $f(u,\lambda) = 0$, then λ_0 is a characteristic value of B.

Theorem 16. Assume $F(u,\lambda) = \lambda Bu + o(\|u\|)$ as $\|u\| \to 0$ with B a compact linear map. Let λ_0 be a characteristic value of B of odd algebraic multiplicity. Then there exists a continuum C of nontrivial solutions of $f(u,\lambda) = 0$ which bifurcates from the set of trivial solutions at $(0,\lambda_0)$ and C is either unbounded in $E \times R$ or else C also bifurcates from the trivial solution set at $(0,\lambda_1)$, where λ_1 is another characteristic value of B.

Example 17

The scalar system $x = \lambda x + y^3$, $y = \lambda y - x^3$ has only the trivial solution x = y = 0 for all λ . The value $\lambda_0 = 1$ is a characteristic value of B of multiplicity two and this characteristic value does not yield a bifurcation point.

Example 18

The boundary value problem $u'' + \lambda \sin u = 0$, $u(0) = u(\pi) = 0$ is equivalent to an operator equation $u = \lambda F(u)$ where F maps $E = C[0,\pi]$ into itself. After analysis of the Fréchet derivative of F it is found that the bifurcation points are found from the eigenvalues $\lambda = k^2$ ($k = 1,2,\ldots$) of F'(0). The eigenspaces are one dimensional and the theorem applies to yield a bifurcation point for each characteristic value.