Continuation Principle

Let ¥ be a real Banach space. Let O C E X
[a,b] be an open bounded set in the relative
topology of E x [a,b]. Define Oy = {u € E :
(u,\) € O}.

Generalized Homotopy Principle.

Let F : O — E be a completely continuous
mapping. Define f(u,\) = u — F(u,\) and as-
sume that f(u,A) # 0 for (u, A) in the boundary
of O. Then fora < A <b

d(f(-, ), 0y,0) = constant.

Leray—Schauder Continuation.
Assume O and f as in the generalized homo-
topy principle. Assume d(f(-,a),Oq,0) #= 0 and
define S = {(u,\) € O : f(u,A\) = 0}. Then
there exists a closed connected set C C S such
that Co N Oy = 0 and Cy N Oy £ 0.
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Example

Let T = [0,1] and let g : [0,1] x R — R be
continuous. Consider the nonlinear Dirichlet
problem

u" + g(z,u) 0, 0<z<1,
u(x) 0, x € 0l.

Let there exist constants a < O < b such that
g(z,a) > 0> g(x,b), z € Q2. Then the Dirichlet
problem has a solution u € C2([0,1],R) such
that a < u(z) < b, x € 1.

Proof. Let £ = C][0,1]. Write the problem as
u = ALG(u), v € E, where w = LG(u) solves
w” 4+ g(z,u(z)) =0, w(0) = w(1l) = 0. Let O
beall (u,\) withue EF,0<)A<1,a<u(x) <b.
We show u = ALG(u) implies (u,A) ¢ 00 and
d(I — ALG,0,,0) = 1. Now apply the Leray-
Schauder continuation theorem.
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Globalization of Implicit Functions

Assume that F : E xR — FE is a completely
continuous mapping and consider the equation
f(u,\) =u—F(u,\) = 0. Let f(ug,Ag) = 0 and
suppose fy(ug, Ag) iS @ homeomorphism.

The implicit function theorem implies that the
equation

flu,A\) =0

has a solution v = w(\) defined in a neigh-
borhood of A = A\g such that u(\g) = ug. If
O is a suitable small neighborhood of u = ug,
then the proof of the implicit function theorem
shows that d(f(-,Ag),0,0) # 0.

The globalization refers to the existence of a
continuum of solutions (u,\) emanating from
(ug, Ag), extending to both A = oc and \ =
—OQ.
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Global Implicit Function Theorem

Let O be a bounded open subset of E and
assume that the equation f(u,A\g) = 0 has a
unique solution v = wug in O. Suppose that

d(.f(7 )‘0)7 O, O) # 0.

Define

ST = {(u,\) € E x [Xg,00) : f(u,\) = O}.

Then there exists a continuum CT ¢ St such
that C’;\'(')HO = {ug} and either C;\';ﬂ(E\b) # 0
or else C7T is unbounded in E x [\g, ).

Similarly, define

S™ = {(u,\) € E x (=00, Ag] : f(u,A) = O}.

Then there exists a continuum C— C S™ such
that €3 NO = {up} and either C;OD(E\b) =0
or else C~ is unbounded in E x (—oo0, Ag].
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Cones and Positive Maps

Let £ be a real Banach space. A cone K is a
closed convex subset of E such that

(1) ifue K and t > 0, then

(2) Kn{-K} ={0}.

A cone K induces a partial order defined by
u<wvifand only if v—u € K. A linear operator
L : E — E which maps K into itself is called
positive.

Theorem. Let F be a real Banach space with
a cone K and let L : F — E be a positive
compact linear operator. Assume there exists
w € K, w# 0 and a constant m > 0 such that
w < mLw, where < is the partial order induced
by K. Then there exists \g > 0 and u € K,
||lu|| = 1, such that u = AgLu.
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Krein-Rutman Theorem

If K is a cone with nonvoid interior and L maps
K\{0} into int(K), then L is called a strongly
positive operator.

Theorem. Let E have a cone K with nonvoid
interior int(K). Let L be a strongly positive
compact linear operator. Then there exists a
unique A\g > 0 with the following properties:
(1) There exists u € int(K) with u = AgLu.
(2) If v = ALv with X % Xg and v #= 0, then
vgd KU{—K} and \g < ||
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Branching from the Trivial Solution

Let E be a real Banach space and assume
F: E xR — FE is completely continuous with
F(0,\) =0, for all A € R.

Let f(u,\) = u— F(u,\). Then the equation
f(u, \) = 0 has the trivial solution u = 0 for all
A.

To demonstrate the existence of global branches
of nontrivial solutions bifurcating from the triv-
ial branch, the main tools will be Leray-Schauder
degree theory and Whyburn's lemma.

Lemma (Whyburn). Let A and B be disjoint
closed sets in a compact metric space K. Then
either there exists a compact connected set C
in K with ANC # 0 and BN C #* 0 or else
there are two open sets U, V in K with A C U,
BCcV,UnNnv=0p=UnV.
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Global Bifurcation

Let E be a real Banach space and assume
F : E xR — FE is completely continuous with
F(O,A\) = 0, for all X € R. Let f(u,\) =
u— F(u, \).

Theorem. Let real numbers a < b be given
with v = 0 an isolated solution of f(u,a) = 0
and also f(u,b) = 0. Assume that neither a
nor b are bifurcation points, that B,(0) = {u €
E : ||lu|| < r} is an isolating neighborhood of
the trivial solution and

d(f() a’)aBT(O)a O) # d(f() b)) BT(O)a O)
Let So = {0} X [a,b] and define

S = {(u,\) : f(u,\) =0, u#0}USp.

Let C C S be the maximal connected subset of
S which contains Sg. Then

(i) C is unbounded in E x R, or else

(i) Cn {0} x (R\][a,bd]) # 0.
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Example 13

Let f(u,\) = uw(u? + X2 —1). Let S; be the
circle u24 X2 =1, uw # 0. The only bifurcation
points are at u =0, A = %1, therefore choices
for a, b in the theorem should be points near
A= —-1or AX=1. Theset § = S UJSp is
bounded, therefore the theorem concludes that
the continuum C = S;U{(0,1),(0,—1)} wraps
back onto the A-axis.

Example 14

Let f(u,A) = u(l — A+ sin(1/u)). Define S
to be the solution set of A — 1 = sin(1/u) for
u = 0. Every value A from O to 2 produces a
bifurcation point, therefore a < 0 and b > 2 is
required. The degree requirement is met. The
continuum C = S U {0} x [0,2] in the theorem
IS unbounded.
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Compact Linear Maps

Proposition 15. Assume F(u,\) = ABu +
o(||u]|]) as ||u]| — O with B a compact linear
map. If (0, )\g) is a bifurcation point from the
trivial solution for f(u,A) = 0, then X\p is a
characteristic value of B.

Theorem 16. Assume F(u,A\) = ABu—+ o(||ul|)
as ||lu|l| = 0 with B a compact linear map. Let
Ao be a characteristic value of B of odd alge-
braic multiplicity. Then there exists a contin-
uum C of nontrivial solutions of f(u,A\) = 0
which bifurcates from the set of trivial solu-
tions at (0, )\g) and C is either unbounded in
E x R or else C also bifurcates from the triv-
ial solution set at (0, A1), where Ay is another
characteristic value of B.
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Example 17

The scalar system z = Az + 3, y = Ay — 23
has only the trivial solution x = y = 0 for all
A. The value A\g = 1 is a characteristic value
of B of multiplicity two and this characteristic
value does not yield a bifurcation point.

Example 18

The boundary value problem u” + Asinu = 0,
u(0) = u(w) = 0 is equivalent to an operator
equation u = AF'(u) where F maps E = C|0, «]
into itself. After analysis of the Fréchet deriva-
tive of F' it is found that the bifurcation points
are found from the eigenvalues A = k2 (k =
1,2,...) of F/(0). The eigenspaces are one di-
mensional and the theorem applies to yield a
bifurcation point for each characteristic value.
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