Degree Theory in \mathbb{R}^1

Let $f: \overline{\Omega} \to R$ be continuously differentiable where Ω is a bounded open set in R, possibly disconnected. Assume $f(x) \neq 0$ on the boundary of Ω , $f'(x) \neq 0$ whenever f(x) = 0. Define

$$\operatorname{degree}(f,\Omega,0) = \sum_{f(x)=0} \frac{f'(x)}{|f'(x)|}.$$

This function is well-defined, because the sum in the definition is finite.

The algebraic sum is an integer, but this value does not reveal the number of roots. However, a nonzero degree implies f(x)=0 has at least one root in Ω . This degree formula is not defined for functions with multiple roots, e.g., $f(x)=x^2$. The degree has a continuity property, e.g., f(x)=(x-a)(x-b)(x-c) for |a|+|b|+|c| small and $a\neq b\neq c$ satisfies degree (f,(-1,1),0)=1.

Degree Theory in \mathbb{R}^n

Let $f: \overline{\Omega} \to R^n$ be continuously differentiable where Ω is a bounded open set in R^n . Assume $y \in R^n$, $f(x) \neq y$ on the boundary of Ω , $\det f'(x) \neq 0$ whenever f(x) = y. Define

$$d(f,\Omega,y) = \sum_{f(x)=y} \frac{\det f'(x)}{|\det f'(x)|}.$$

This function is well-defined, because the sum in the definition is finite.

The algebraic sum is an integer, but this value does not reveal the number of roots. However, a nonzero degree implies f(x) = y has at least one root in Ω .

Lemma. Let $\phi:[0,\infty)\to R^1$ and r>0 be given such that $\phi(0)=0$, $\phi(t)=0$ for $t\geq r$, $\int_{R^n}\phi(|x|)dx=1$. Then for all sufficiently small r>0, $\mathrm{d}(f,\Omega,y)=\int_{\Omega}\phi(|f(x)-y|)\mathrm{det}\ f'(x)dx$.

Lemma 4

Let $f:\Omega\to R^n$ belong to $C^1(\overline{\Omega})$. Let $y\in R^n$, $f(x)\neq y$ on $\partial\Omega$, $\det f'(x)\neq 0$ for f(x)=y. Let r>0 be such that |f(x)-y|>r for $x\in\partial\Omega$. Let $\phi:[0,\infty)\to \mathbf{R}$ be continuous and satisfy $\phi(0)=0$, $\phi(s)=0$ for $s\geq r$ and $\int_0^\infty s^{n-1}\phi(s)ds=0$. Then

$$\int_{\Omega} \phi(|f(x) - y|) \det f'(x) dx = 0.$$

Lemma 5

Let $f:\Omega\to R^n$ belong to $C^1(\overline{\Omega})$. Let $y\in R^n$, $f(x)\neq y$ on $\partial\Omega$, $\det f'(x)\neq 0$ for f(x)=y. Choose $r\in R^1$, $0< r\leq \min_{x\in\partial\Omega}|f(x)-y|$. Let $\phi:[0,\infty)\to \mathbf{R}$ be continuous, $\phi(0)=0$, $\phi(s)=0$ for $s\geq r$ and $\int_{\mathbf{R}^n}\phi(|x|)dx=1$. Then for all such ϕ , the integrals

$$\int_{\Omega} \phi(|f(x) - y|) \det f'(x) dx$$

have a common value.

Lemma 6

Let f_1 and f_2 be of class C^1 on the closure of a bounded open set Ω in R^n , $f_1(x) \neq y$ and $f_2(x) \neq y$ on $\partial \Omega$, and $\det f_1'(x) \neq 0$ for $f_1(x) = y$, $\det f_2'(x) \neq 0$ for $f_2(x) = y$. Let $\epsilon > 0$ be given such that $|f_1(x) - y| > 7\epsilon$ and $|f_2(x) - y| > 7\epsilon$ for $x \in \partial \Omega$, and for $x \in \overline{\Omega}$, $|f_1(x) - f_2(x)| < \epsilon$. Then

$$d(f_1, \Omega, y) = d(f_2, \Omega, y).$$

Corollary 7

Let f_1 and f_2 be of class C^1 on the closure of a bounded open set Ω in R^n , $f_1(x) \neq y$ and $f_2(x) \neq y$ on $\partial \Omega$, and $\det f_1'(x) \neq 0$ for $f_1(x) = y$, $\det f_2'(x) \neq 0$ for $f_2(x) = y$. Then for $\epsilon > 0$ sufficiently small, $|f_1(x) - f_2(x)| < \epsilon$, $x \in \overline{\Omega}$, implies

$$d(f_1, \Omega, y) = d(f_2, \Omega, y).$$

Lemma 8 and Corollary 9

Sard's Theorem. Assume Ω is a bounded open set in \mathbf{R}^n , $f:\overline{\Omega}\to\mathbf{R}^n$ is continuously differentiable and $f(x)\neq y$ on $\partial\Omega$. Then for all small $\epsilon>0$ there exists $h\in\mathbf{R}^n$ with $0<|h|<\epsilon$ such that $\det f'(x)\neq 0$ for all $x\in\Omega$ satisfying f(x)=y+h.

Alternatively, let F be the set of points $h \in \mathbb{R}^n$ such that $\det f'(x) \neq 0$ at a solution $x \in \Omega$ of the equation f(x) = y + h. Then Sard's theorem says that F is dense in a neighborhood of zero.

Brouwer Degree

Definition. Let $f \in C(\overline{\Omega}, R^n)$ satisfy $f(x) \neq y$ on $\partial \Omega$. Define $d(f, \Omega, y)$ to be the limit as $g \to f$ of $d(g, \Omega, y)$ where $g \in C^1(\overline{\Omega}, R^n)$, $g(x) \neq y$ on $\partial \Omega$ and $\det g'(x) \neq 0$ when g(x) = y.

Lemma. The Brouwer degree for a function $f \in C^1(\overline{\Omega}, \mathbb{R}^n)$ with $f(x) \neq y$ on $\partial \Omega$ can be represented by the relation

$$d(f, \Omega, y) = \int_{\Omega} \phi(|x|) \det f'(x) dx$$

where $r<\inf_{x\in\partial\Omega}|f(x)-y|$, $\phi\in C([0,\infty),R)$, $\phi(0)=0$, $\phi(s)=0$ for s>r and

$$\int_{R^n} \phi(|x|) \, dx = 1.$$

Brouwer Degree Properties

Let $f \in C(\bar{\Omega}, \mathbf{R}^n)$ with $f(x) \neq y$ on $\partial \Omega$.

Solution property. If $d(f, \Omega, y) \neq 0$, then the equation f(x) = y has a solution in Ω .

Continuity property. For some $\epsilon > 0$, $g \in C(\bar{\Omega}, \mathbf{R}^n)$ and $\hat{y} \in \mathbf{R}$ with $||f - g|| + |y - \hat{y}| < \epsilon$ implies

$$d(f, \Omega, y) = d(g, \Omega, \hat{y}).$$

Briefly, the Brouwer degree is a continuous function of its arguments f and y into the integers equipped with the discrete topology.

Properties – continued

Homotopy invariance property. Let $h:[a,b] imes \bar{\Omega} \to \mathbf{R}^n$ be continuous such that $h(t,x) \neq y$, $(t,x) \in [a,b] \times \partial \Omega$. Then $d(h(t,\cdot),\Omega,y) = \text{constant for } a \leq t \leq b$.

This property implies that f(x) = h(a, x) and g(x) = h(b, x) have the same Brouwer degree, therefore homotopy invariance provides an elegant tool for computing the degree of a mapping. Some applications:

Rouche's Criterion. Let $g \in C(\bar{\Omega}, \mathbf{R}^n)$ be such that $|f(x) - g(x)| < |f(x) - y|, x \in \partial\Omega$. Then $d(f, \Omega, y) = d(g, \Omega, y)$.

Boundary Dependence Property. The equality $d(f, \Omega, y) = d(g, \Omega, y)$ holds for any $g \in C(\overline{\Omega}, \mathbb{R}^n)$ such that g(x) = f(x) on $\partial\Omega$.

Properties – continued

Additivity property. Let the bounded open set Ω be the union of m disjoint open sets $\Omega_1, \dots, \Omega_m$. Assume $f(x) \neq y$ for $x \in \bigcup_{i=1}^m \partial \Omega_i$. Then

$$d(f,\Omega,y) = \sum_{i=1}^{m} d(f,\Omega_i,y).$$

Excision property. Let K be a closed subset of $\overline{\Omega}$ such that $f(x) \neq y$ for $x \in \partial \Omega \cup K$. Then

$$d(f, \Omega, y) = d(f, \Omega \setminus K, y).$$

Cartesian product formula. Assume the open bounded set Ω is a product $\Omega_1 \times \Omega_2$ with Ω_1 open in \mathbf{R}^p and Ω_2 open in \mathbf{R}^q , p+q=n. For $x \in \mathbf{R}^n$ write $x=(x_1,x_2), \ x_1 \in \mathbf{R}^p, \ x_2 \in \mathbf{R}^q$. Write $f(x)=(f_1(x_1),f_2(x_2))$ where $f_1 \in C(\bar{\Omega}_1,\mathbf{R}^p), \ f_2 \in C(\bar{\Omega}_2,\mathbf{R}^q)$. Let $y=(y_1,y_2) \in \mathbf{R}^n$ satisfy $y_1(x_1) \neq y_1$ and $y_2(x_2) \neq y_2$ for $x_1 \in \partial \Omega_1, \ x_2 \in \partial \Omega_2$. Then

$$d(f, \Omega, y) = d(f_1, \Omega_1, y_1)d(f_2, \Omega_2, y_2).$$

Borsuk's theorem. Let Ω be a bounded open neighborhood of $0 \in \mathbf{R}^n$ such that

$$x \in \Omega$$
 implies $-x \in \Omega$.

Let $f \in C(\overline{\Omega}, \mathbf{R}^n)$ satisfy f(x) = -f(-x) (f is an odd map) and assume $f(x) \neq y$ for $x \in \partial \Omega$. Then $d(f, \Omega, 0)$ is an odd integer.

Brouwer's Fixed Point Theorem.

I. Let r>0 be given and assume $\Omega=\{x\in {\bf R}^n: |x|< r\}$. Let $f\in C(\bar\Omega,{\bf R}^n)$ satisfy $f(x)\in \overline\Omega$ for $x\in \overline\Omega$. Then the equation f(x)=x has a solution $x\in \bar\Omega$.

II. If K is a compact convex set in \mathbb{R}^n and $F:K\to K$ is continuous, then the equation F(x)=x has a solution $x\in K$.

Result **I** implies result **II** by construction of a map f(x) = F(r(x)) which maps a ball containing K into K itself. The map r(x) is a Dugundji extension of the identity map on K. A fixed point x = F(r(x)) implies r(x) = x, so x is a fixed point of F.

Degree in a Banach Space

Definition. Let E be a real Banach space, Ω a bounded open set in E and $F: \bar{\Omega} \to E$ a continuous mapping of the form f(x) = x + F(x) where $F \in C(\bar{\Omega}, E_1)$ with E_1 finite dimensional. Given $y \in E$, let \bar{E} be the linear span of y and E_1 with basis vectors e_1, \ldots, e_n . Define a linear homeomorphism $T: \bar{E} \to R^n$ by $T(e_i) = \text{column } i$ of the $n \times n$ identity matrix. Then the **degree** of f is defined by the identity

$$d(f, \Omega, y) = d(TfT^{-1}, T(\Omega \cap \bar{E}), T(y)).$$

Lemma 23. The degree is well-defined: the right side of the definition does not depend on which finite-dimensional space E_1 is selected, nor upon the choice of basis for $\bar{E} = \text{span}(y, E_1)$.

Leray-Schauder Degree

The degree will be defined for a continuous mapping f(x) = x + F(x) on a bounded open set Ω in a Banach space E. Initially, F will map $\bar{\Omega}$ into a finite-dimensional space. Finally, F will map bounded sets to precompact sets, which is the setting for **Leray-Schauder degree**.

Lemma 24. Let Ω be a bounded open set in the Banach space E and assume f(x) = x + F(x) with $F: \bar{\Omega} \to E$ completely continuous. Suppose $f(x) \neq y$ for $x \in \partial \Omega$. Then there exists an integer d with the following property: If h(x) = x + H(x) with $H: \bar{\Omega} \to E$ finite dimensional and

$$\sup_{x \in \Omega} \|f(x) - h(x)\| < \inf_{x \in \partial \Omega} \|f(x) - y\|,$$

then $h(x) \neq y$ for $x \in \partial \Omega$ and $d(h, \Omega, y) = d$.

Schauder Projection

Let M be a compact subset of the Banach space E, covered by spheres of radius $\epsilon > 0$ with centers at y_1, \ldots, y_n . Let $\operatorname{co}(S)$ denote the **convex hull** of the set S. Define functions $\mu_i: M \to [0,\infty)$ by $\mu_i(y) = \epsilon - \|y - y_i\|$ in the sphere at y_i of radius ϵ and $\mu_i(y) = 0$ otherwise. Define

$$\lambda_i(y) = \frac{\mu_i(y)}{\sum_{j=1}^n \mu_j(y)}, \quad P_{\epsilon}(y) = \sum_{i=1}^n \lambda_i(y)y_i.$$

The operator $P_{\epsilon}: M \to \operatorname{co}(y_1, \ldots, y_n)$ is called the **Schauder projection** on M determined by $\epsilon, y_1, \ldots, y_n$.

Lemma 25. The Schauder projection has these three properties:

- 1. The Schauder projection P_{ϵ} is continuous.
- 2. The range of P_{ϵ} is in the span of y_1, \ldots, y_n .
- 3. For $y \in M$, $||P_{\epsilon}(y) y|| \le \epsilon$.

Leray-Schauder degree

Lemma 26. Let f(x) = x + F(x) where $F: \overline{\Omega} \to E$ is completely continuous. Let $f(x) \neq y$ for $x \in \partial \Omega$. Let $\epsilon > 0$ be such that $\epsilon < \inf_{x \in \partial \Omega} \|f(x) - y\|$. Let P_{ϵ} be a Schauder projection operator determined by ϵ and points $\{y_1, \cdots, y_n\} \subset \overline{F(\overline{\Omega})}$. Then $d(\mathrm{id} + P_{\epsilon}F, \Omega, y) = d$, where d is the integer whose existence is established by Lemma 24.

Definition. The integer d of Lemma 26 is called the **Leray-Schauder degree** of f relative to Ω and the point y and it is denoted by $d(f,\Omega,y)$.

Leray-Schauder Degree Properties

The Leray-Schauder degree has the solution, continuity, homotopy invariance, additivity, and excision properties similar to the Brouwer degree; the Cartesian product formula also holds.

Borsuk's Theorem. Let Ω be a bounded symmetric open neighborhood of $0 \in E$ and let $f: \overline{\Omega} \to E$ be a completely continuous odd perturbation of the identity with $f(x) \neq 0$ for $x \in \partial \Omega$. Then $d(f, \Omega, 0)$ is an odd integer.

Schauder's Fixed Point Theorem.

- (a) Let K be a compact convex subset of E and let $F: K \to K$ be continuous. Then F has a fixed point in K.
- **(b)** Let K be a closed, bounded, convex subset of E and let F be a completely continuous mapping such that $F: K \to K$. Then F has a fixed point in K.