Degree Theory in Rl

Let f : Q — R be continuously differentiable
where 2 is a bounded open set in R, possibly
disconnected. Assume f(x) #% 0 on the bound-
ary of 2, f'(z) # 0 whenever f(z) = 0. Define

/
degree(f,Q2,0) = > _ f,(x) .
£(x)=0 | f/ ()]
This function is well-defined, because the sum
in the definition is finite.

The algebraic sum is an integer, but this value
does not reveal the number of roots. How-
ever, a nonzero degree implies f(x) = 0 has
at least one root in €2. This degree formula is
not defined for functions with multiple roots,
e.g., f(z) = z2. The degree has a continu-
ity property, e.g., f(z) = (z —a)(x —b)(x — ¢)
for |a| + |b| + |c| small and a # b #* ¢ satisfies
degree(f,(—-1,1),0) = 1.
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Degree Theory in R"

Let f: Q — R"™ be continuously differentiable
where €2 is a bounded open set in R™. As-
sume y € R"™, f(x) # y on the boundary of €,
det f/(x) #% 0 whenever f(z) = y. Define

det /()
| det f'(z)|

d(f,,y) = )
f(z)=y
This function is well-defined, because the sum
in the definition is finite.

The algebraic sum is an integer, but this value
does not reveal the number of roots. However,
a nonzero degree implies f(x) = y has at least
one root in 2.

Lemma. Let ¢ : [0,00) —» R! and r > 0 be
given such that ¢(0) = 0, ¢(t) = 0 for t > r,
Jprn &(|z|)dz = 1. Then for all sufficiently small

r>0, d(f,2y) = [_s(If(x) - yDdet f(2)da.
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Lemma 4

Let f : Q — R" belong to C(2). Let y €
R"™, f(z) %« y on 0%, det f'(z) % 0 for f(z) =
y. Let r > 0 be such that |f(z) — y| > r for
x € 0. Let ¢ : [0,00) — R be continuous
and satisfy ¢(0) = 0, ¢(s) = 0 for s > r and
I5° s"14(s)ds = 0. Then

| #(1£() — y)) det f/(z)dw = 0.

Lemma 5

Let f: Q — R™ belong to C1(Q). Let y € R™,
f(x) #= y on 9, det f'(z) # 0 for f(x) = y.
Choose r € R, 0 < r < mingepq |f(x) — yl.
Let ¢ : [0,00) — R be continuous, ¢(0) = O,
#(s) =0 for s > r and [gn ¢(|z|)de = 1. Then
for all such ¢, the integrals

| #(1f(@) = yl) det f'(a)de
have a common value.
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Lemma 6

Let f; and fo be of class C1 on the closure
of a bounded open set 2 in R*, fi(z) # y
and fo(z) # y on 92, and det fj(z) # 0 for
fi(z) =y, detfh(x) # 0 for fo(z) = y. Let
e > 0 be given such that |fi1(z) — y| > 7e and
|fo(z) —y| > 7e for z € 92, and for z € £,

|f1(x) — fo(z)| < e. Then

d(flaQ7y) — d(anﬂay)'

Corollary 7

Let f; and fo be of class C! on the closure
of a bounded open set Q2 in R", fi(zx) # vy
and fo(z) # y on 922, and det fj(z) # O for
fi(x) =y, det f5(x) # 0 for fo(z) = y. Then
for € > 0 sufficiently small, |f1(z) — fo(z)| < €,
x € Q, implies

d(f1,€2,y) = d(f2,2,y).

36



Lemma 8 and Corollary 9

Sard’s Theorem. Assume €2 is a bounded
open set in R™, f : Q — R" is continuously
differentiable and f(x) # y on 8S2. Then for all
small e > 0 there exists h € R™ with 0 < |h| < €
such that det f/(z) # 0 for all z € Q satisfying

f(z) =y+h

Alternatively, let F' be the set of points h € R"
such that det f/(z) #% 0 at a solution =z € Q
of the equation f(x) = y + h. Then Sard’s
theorem says that F'is dense in a neighborhood
of zero.

37



Brouwer Degree

Definition. Let f € C(Q2, R?) satisfy f(x) = vy
on 0%2. Define d(f,<2,y) to be the limit as g —
f of d(g,Q,y) where g € C1(Q,R"), g(z) # y
on 02 and detg'(x) % 0 when g(z) = v.

Lemma. The Brouwer degree for a function
f e C1(QQ,R™) with f(z) # y on 82 can be
represented by the relation

d(f,2,9) = [ ¢(lal) det f'(x) da

where r < infycpa |f(z) —yl, ¢ € C([0,00), R),
®»(0) =0, ¢(s) =0 for s > r and

| é(a) dw = 1.

38



Brouwer Degree Properties
Let f € C(Q2,R™) with f(z) # y on 9¥2.

Solution property. If d(f,<2,y) # 0O, then the
equation f(x) = y has a solution in .

Continuity property. For some ¢ > 0, g €
C(,R™) and g € R with ||[f —gll+ |y — 9| < e
implies

d(f,2,y) = d(g,2,7).

Briefly, the Brouwer degree is a continuous
function of its arguments f and y into the in-
tegers equipped with the discrete topology.
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Properties — continued

Homotopy invariance property. Let i : [a, b] X
Q — R"™ be continuous such that h(t,z) # v,
(t,z) € [a,b] x 02. Then d(h(t,-),2,y) = con-
stant for a <t <b.

This property implies that f(z) = h(a,z) and
g(x) = h(b,x) have the same Brouwer degree,
therefore homotopy invariance provides an ele-
gant tool for computing the degree of a map-
ping. Some applications:

Rouche’s Criterion. Let g € C(Q2,R") be

such that |f(x) — g(z)| < |f(z) —y|, x € I2.
Then d(f,2,y) =d(g,2,y).

Boundary Dependence Property. The equal-
ity d(f,Q2,y) = d(g,Q2,y) holds for any g €
C (2, R™) such that g(z) = f(z) on 0XQ.
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Properties — continued

Additivity property. Let the bounded open
set 2 be the union of m disjoint open sets
Qq,-++,Q2m. Assume f(x) # y for x € U2 10%2;.
Then

=1

EXxcision property. Let K be a closed subset
of Q such that f(z) #y for x € 9QU K. Then

d(f,2,y) =d(f,Q2\ K,y).

Cartesian product formula. Assume the open
bounded set €2 is a product €27 x €25 with €21
open in R?P and 25 open in RY, p+4+ q = n.
For x € R"™ write z = (z1,22), z1 € RP, 2o €
Ri. Write f(z) = (f1(z1), fa(z2)) where f1 €
C(£21,RP), fo € C(£22,RY). Let y = (y1,y2) €

R" satisfy y1(z1) # y1 and ya(xz2) # yo for
x1 € 0821, T2 € 0S22. Then

d(f7 Q7y) — d(f17§217y1)d(f27 QQayQ)'
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Borsuk’s theorem. Let 2 be a bounded open
neighborhood of 0 € R™ such that

re 2 implies —zxe(2.

Let f € C(QQ,R") satisfy f(z) = —f(—z) (f is
an odd map) and assume f(x) # y for x € 0%2.
Then d(f,€2,0) is an odd integer.

Brouwer’s Fixed Point Theorem.

I. Let r > 0 be given and assume Q2 = {z € R":
lz| < r}. Let f e C(2,R") satisfy f(z) € Q2 for
r € Q. Then the equation f(x) = z has a
solution z € Q.

II. If K is a compact convex set in R™ and
F : K — K is continuous, then the equation
F(x) = x has a solution x € K.

Result T implies result II by construction of a
map f(x) = F(r(xz)) which maps a ball con-
taining K into K itself. The map r(z) is a
Dugundji extension of the identity map on K.
A fixed point x = F(r(x)) implies r(z) = z, SO
x is a fixed point of F.
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Degree in a Banach Space

Definition. Let E be a real Banach space, 2
a bounded open set in E and F : QQ — E a con-
tinuous mapping of the form f(z) = x + F(x)
where F € C(2, E1) with E; finite dimensional.
Given y € E, let E be the linear span of y and
E1 with basis vectors e1, ..., en. Define a lin-
ear homeomorphism T : E — R™ by T(e;) =
column ¢ of the n x n identity matrix. Then
the degree of f is defined by the identity

d(f,Q2,y) = d(TfT 1, T(QNE), T(y)).

Lemma 23. The degree is well-defined: the
right side of the definition does not depend on
which finite-dimensional space E; is selected,
nor upon the choice of basis for £ = span (y, E1).
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Leray—Schauder Degree

The degree will be defined for a continuous
mapping f(z) =z + F(xz) on a bounded open
set €2 in a Banach space E. Initially, F will
map 2 into a finite—dimensional space. Fi-
nally, F' will map bounded sets to precompact
sets, which is the setting for Leray—Schauder
degree.

Lemma 24. Let 2 be a bounded open set in
the Banach space E and assume f(z) = =z +
F(z) with F : Q — E completely continuous.
Suppose f(x) # y for x € 92. Then there
exists an integer d with the following property:
If h(z) = =z + H(zx) with H : Q — E finite
dimensional and

sup ||/ (x) —h(@)|| < inf_ [1f(2) ~ ]|

then h(x) # y for z € 92 and d(h,2,y) = d.
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Schauder Projection

Let M be a compact subset of the Banach
space FE, covered by spheres of radius ¢ > O
with centers at vyi1,...,yn. Let co(S) denote
the convex hull of the set S. Define functions
pi - M — [0,00) by p;(y) = € —|ly — y;l| in the
sphere at y; of radius € and u;(y) = 0 otherwise.
Define

oy () R PR
Ai(y) = 2?21 ,uj(y)’ Pe(y) = Z; i (Y)Y

The operator P. : M — co(yi1,...,yn) iS called
the Schauder projection on M determined by
€ Y1y---5Yn-

Lemma 25. The Schauder projection has these
three properties:

1. The Schauder projection P, is continuous.
2. The range of FP¢ is in the span of y1,...,yn.
3. Fory e M, ||P(y) —yll < e.
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Leray—Schauder degree

Lemma 26. Let f(x) = x+ F(xz) where F :
Q — E is completely continuous. Let f(z) # vy
for x € 092. Let ¢ > 0O be such that e <
infoco0|lf(z) —yl||. Let Pe be a Schauder pro-
jection operator determined by € and points
{y1,---,yn} C F(€). Then d(id + P.F,Q,y) =
d, where d is the integer whose existence is
established by Lemma 24.

Definition. The integer d of Lemma 26 is
called the Leray-Schauder degree of f rela-
tive to €2 and the point y and it is denoted by

d(f,2,y).
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Leray-Schauder Degree Properties

The Leray—Schauder degree has the solution,
continuity, homotopy invariance, additivity, and
excision properties similar to the Brouwer de-
gree; the Cartesian product formula also holds.

Borsuk’s Theorem. Let €2 be a bounded
symmetric open neighborhood of O € E and
let f: Q2 — E be a completely continuous odd
perturbation of the identity with f(x) # 0 for
x € 022. Then d(f,€2,0) is an odd integer.

Schauder’s Fixed Point Theorem.

(a) Let K be a compact convex subset of E
and let F: K — K be continuous. Then F' has
a fixed point in K.

(b) Let K be a closed, bounded, convex subset
of £ and let F be a completely continuous
mapping such that F: K — K. Then F has a
fixed point in K.
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