Bifurcation Points

Let X and Y be real Banach spaces and let $F: X \times \mathbf{R} \to Y$ be a mapping with $F(0, \lambda) = 0$, $\lambda \in \mathbf{R}$, and F of class C^2 in a neighborhood of $\{0\} \times \mathbf{R}$.

We shall be interested in obtaining existence of solutions $u \neq 0$ of the equation $F(u, \lambda) = 0$.

A number λ_0 a **bifurcation value** or a point $(0, \lambda_0)$ is a **bifurcation point** provided every neighborhood of $(0, \lambda_0)$ in $X \times \mathbf{R}$ contains solutions of $F(u, \lambda) = 0$ with $u \neq 0$.

Theorem. If the point $(0, \lambda_0)$ is a bifurcation point for the equation $F(u, \lambda) = 0$, then the Fréchet derivative $F_u(0, \lambda_0)$ cannot be a linear homeomorphism of X to Y.

Fredholm Operators

Definition. A linear operator $L: X \rightarrow Y$ is called a **Fredholm operator** provided:

- $ker(L) = \{x : L(x) = 0\}$ is finite dimensional.
- $\operatorname{im}(L) = \{y : y = L(x)\}$ is closed in Y.
- coker L = Y/im(L) is finite dimensional.

Lemma. Let $F_u(0,\lambda_0)$ be a Fredholm operator with kernel V and cokernel Z. Then there exists a closed subspace W of X and a closed subspace T of Y (not necessarily unique) such that $X = V \oplus W$ and $Y = Z \oplus T$. The operator $F_u(0,\lambda_0)$ restricted to W is a linear homeomorphism of W onto T.

Splitting Equations

Let $L = F_u(0, \lambda_0)$, $V = \ker(L)$, $Z = \operatorname{coker}(L)$. Due to the decompositions $X = V \oplus W$, $Y = Z \oplus T$ the equation $F(u, \lambda) = 0$ is split into two equations $F_1 = 0$ and $F_2 = 0$. The first is solved by implicit function theory and the second by finite-dimensional methods. In terms of linear projections $P: X \to V$ and $Q: Y \to Z$, the splitting equations may be written as

$$(I - Q)F(u_1 + u_2, \lambda) = 0,$$

 $QF(u_1 + u_2, \lambda) = 0,$
 $u_1 = Pu, \quad u_2 = (I - P)u.$

Theorem (Implicit Equation). Assume that $F_u(0,\lambda_0)$ is a Fredholm operator with W non-trivial. Then there exist $\epsilon>0,\ \delta>0$ and a unique function $u_2(u_1,\lambda)$ defined for $|\lambda-\lambda_0|+\|u_1\|<\epsilon$ with $\|u_2(u_1,\lambda)\|<\delta$ which solves the equation

$$(I-Q)F(u_1 + u_2(u_1, \lambda), \lambda) = 0.$$

Proof: The implicit function theorem will be applied. First of all, $u_1 = 0$, $\lambda = \lambda_0$, $u_2 = 0$ solve the equation. The Fréchet derivative with respect to u_2 at this point is the identity mapping on W. Therefore, implicit function theory applies to give $u_2(u_1, \lambda)$.

Bifurcation Equations

Solve for the finite-dimensional variables u_1 , λ whenever $|\lambda-\lambda_0|+\|u_1\|<\epsilon$ in the finite-dimensional equation

$$QF(u_1 + u_2(u_1, \lambda), \lambda) = 0.$$

Bifurcation at a Simple Eigenvalue

Theorem (Simple Kernel and Cokernel).

Let $L = F_u(0, \lambda_0)$ and assume the kernel and cokernel of L have dimension one with spanning elements ϕ and 1, respectively. Let $Q: Y \to \operatorname{coker}(L)$ be a linear projection. If

$$QF_{u\lambda}(0,\lambda_0)(\phi,1)\neq 0,$$

then $(0,\lambda_0)$ is a bifurcation point and there exists a unique curve $u=u(\alpha)$, $\lambda=\lambda(\alpha)$, defined near $\alpha=0$ so that u(0)=0, $u(\alpha)\neq 0$ for $\alpha\neq 0$, $\lambda(0)=\lambda_0$ and $F(u(\alpha),\lambda(\alpha))=0$. The curve equations have for some function $\mu(\alpha)$ the special form

$$u(\alpha) = \alpha \phi + u_2(\alpha \phi, \lambda),$$

 $\lambda(\alpha) = \lambda_0 + \mu(\alpha).$

Simple Eigenvalue Example

The 2π -periodic solution problem

$$u'' + \lambda(u + u^3) = 0,$$

 $u(0) = u(2\pi), \quad u'(0) = u'(2\pi),$

can be placed in the framework above by defining X to be the subspace of $C^2[0,2\pi]$ with 2π -periodic boundary conditions. The space Y is the subspace of $C[0,2\pi]$ with $u(0)=u(2\pi)$. Operator F is $F(u,\lambda)=u''+\lambda(u+u^3)$. The Fréchet derivative $L=F_u(0,\lambda_0)$ has the one-dimenional requirement only for $\lambda_0=0$. We show $Qh=(2\pi)^{-1}\int_0^{2\pi}h(t)dt$ and $\mathrm{im}(L)=\{h:\int_0^{2\pi}h=0\}$. The simple eigenvalue theorem applies. The problem has a 2π -periodic solution branch $u(\alpha)$, $\lambda(\alpha)$ near $\alpha=0$.