Spaces of continuous functions

Let Q be an open subset of R®. Define CO(2, R™)
to be the set of all continuous f : 2 — R™.
The norm in CO(Q,R™) is defined by ||f|lo =
Sup.cq |f(x)|, where | -| is a norm in R™.

Let E be the space of all f € C9(2,R™) such
that ||fllo < oo. Then E is a Banach space.

Let Q' be an open set with Q C Q'. Define
C9(2,R™) to be the set of all restrictions to
Q of functions f € CO(Q/,R™). The space
C9(2,R™) is a Banach space.



Spaces of differentiable functions - 1

Let 8 = (i1, --,in) be @ multiindex, i.e. i € Z
(the nonnegative integers), 1 <k <n. We let

Let €2 be an open subset of R™ and assume
f Q2 — R™. Then the partial derivative of f
of order 3, DPf(z), is given by

oA (x)

a?’lxl o o o a’lnl’n,

D f(z) =

where x = (x1,---,Zn).



Spaces of differentiable functions - 2

Define C7(2,R™) to be the set of all f: Q2 —
R™ such that DPf is continuous for all 8, |3] <
j. Define the norm on C’(Q2,R™) by |[|f|l; =
Zi:o rnax|5|§k||Dﬂf||o. Then the set E of all
f € CI(2,R™) such that ||f||; < o0 is a Ba-
nach space.

The space CI(2,R™) is defined in a manner
similar to the space C°(2,R™). If Q is bounded,
then C7(2,R™) is a Banach space.



Holder spaces — 1/2

Let 2 be an opensetin R™. A function f: Q2 —
R™ is called HAlder continuous with exponent
a, 0O<a<1l, at a point z € €2, if

Sup |f(x) — f(y)] <
y#r  |T —y|®

?

and Holder continuous with exponent «,0 <
a<1,on L ifitis HOlder continuous with the
same exponent o at every x € €2. For such f
we define

TFEY |5C — y|a
x,y€s2

(1)

If f € C9(Q, R™) with each DPf, |8| = j, Holder
continuous with exponent o on €2, then we say
feCcr(,R™).



Holder spaces — 2/2

Define the norm on C7%(2,R™) by
| £l = [I£1l; + max H& (D).
1Bl=3
The space E of all f € C»%(2,R™) such that
| fll;,o < o0 is @ Banach space.

Define the space C7%($2,R™) in analogy with
CI(2,R™). If Q is bounded, then C%»%(2, R™)
IS @ Banach space.

Conventions: C7:9(Q,R™) is written CJ(Q,R™)
and C79(,R™) is written C7(, R™).



Functions with compact support

Let 2 be an open subset of R™. A function
f 2 — R™ is said to have compact support
in €2 if the set

supp f closure{z € Q2 : f(x) # 0}

{re: f(z) # 0}

IS compact.

Define C’g’o‘(Q,Rm) to be the set of all f €
C7*(€2,R™) such that supp f is a compact sub-
set of Q. Define C{“(£2, R™) similarly.

If Q is bounded, then the space Cé’o‘(f_z,Rm) is
a Banach space. It consists of all f € C72(2, R™)
such that f(x) = 0 for x € 90122.



LP spaces
Let 2 be a Lebesgue measurable subset of R"
and let f: 2 — R™ be a measurable function.

For 1 < p < oo, define || fll» = (J |f (@)[Pda)'/?,
and for p = oo, define ||f||fcc = essup,cq|f(x)].

The essential supremum essup is defined by
inf{a : measure{zx € Q : |f(x)| > a} = 0}.

Define LP(Q2Q,R™) = {f : ||fllrr < +o0} for 1 <
p < oo. Then LP(2,R™) is a Banach space.

Let u-v denote the inner product of v and v
in R™. The space L2(2,R™) is a Hilbert space
with inner product defined by

(f,9) = Jo f(x) - g(x)dzx.



Weak derivatives

Let €2 be an open subset of R". A func-
tion f . 2 — R™ is said to belong to class
LP (Q,R™), if for every compact subset Q' C

loc

Q, f € LP(Q,R™).

Let 8= (01,...,0n) be a multi—index. A func-
tion v € Li (2,R™) is called the g weak

derivative of f if it satisfies for all ¢ € C§°(€2)
the relation

— (—_1)I8l 6
/qubda:—( 1) /QfD bdz.

Write v = DPf; up to a set of measure zero, v
IS uniquely determined.



Sobolev spaces

We say that f € Wk(Q,R™), if f has weak
derivatives up to order k. Define WkP(Q, R™)
to be the set of all f € Wk(Q,R™) such that
DPf ¢ LP(QQ,R™), |B] < k. The vector space
WkP(Q,R™) equipped with the norm || f||yykp =

1
(fQ 2_|8|<k IDﬂf|Pd:z:) /?is a Banach space which
has CE(Q2,R™) as a subspace.

Denote by Wé“’p(Q, R™) the closure of CE(2, R™)
in the space WkP(2, R™). This is generally a
proper Banach subspace.

The spaces WFk2(Q, R™) and WC’)“’Q(Q,Rm) are
Hilbert spaces with inner product (f,g) given
by (f,9) = JQ X|aj<k D*f - D¥gdz.

The completion in WkP(Q2, R™) of the sub-
space CF($2,R™) is denoted by HFP(Q,R™).
If p = 2, then it is a Hilbert space with inner
product (-,-). The space Hg’p(Q,Rm) is the
completion of C(2,R™) in HFP(Q,R™).
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Spaces of linear operators

Let £ and X be normed linear spaces with
norms ||-||g and ||-||x, respectively. Let L(E; X)
be the set of all linear continuous functions
f:E — X. For f € L(E;X), let |[fll, =
SUP |z g<1 [1f(@)][x. Then |-, is a norm for
L(FE; X). This space is a Banach space, when-
ever X is.
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Gateaux and Fréchet differentiability

Let £ and X be Banach spaces and let U be
an open subset of . Let f: U — X be a func-
tion. Let zg € U, then f is said to be Gateaux
differentiable (G-differentiable) at xqg in direc-
tion h, if the limit

lim (o + th) — f(z0))

exists. It said to be Fréchet differentiable (F-
differentiable) at zg, if there exists T' € L(FE; X)
such that for ||h|| small

f(xzo + h) — f(zo) =T(h) + o(||R]]).

The Landau symbol o(||h||) is defined by the

: : o(||h]]) _
relation I|m||h||_>ow =
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Fréchet derivative

The Fréchet—derivative of f at zq, if it exists,
IS unique.

The following symbols are used interchange-
ably for the Fréchet—derivative of f at zg:

Df(xzo), f'(z0), df(xzo).
The symbol df is usual for the case X = R.

A function f is said to be of class C! in a
neighborhood of zg if f is Fréchet differen-
tiable there and the mapping Df : x — Df(x)
IS @ continuous mapping into the Banach space
L(FE; X).
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Taylor’s formula

Theorem. Let f : EFE — X and all of its
Fréchet—derivatives of order less than m, m >
1, be of class C! on an open set U. Let z and
x—+ h be such that the line segment connecting
these points lies in U. Then

m k k m m
fle+h) - fl@) = Y BLph 4 DEfhe
k=1

where z is a point on the line segment connect-
ing x to z + h. The remainder %Dmf(z)hm is
also given by

ﬁ fo(1 = 8)m 1D™f(zg + sh)h™ds.

13



Euler-Lagrange equations

Let g: [a,b] x R xR — R be twice continuously
differentiable. Let E = C3[a,b] and let T : E —
R be given by T'(u) = [ g(t, u(t), v (t))dt.

Lemma. The operator T : E — R is of class
C1 with Fréchet derivative given by

T'(ug)h = [P guhdt + [0 g, 1 dt,
and all g-partials are evaluated at (¢, ug(t), ug(t)).

Lemma. If T'(ug) < T(u) for ||u — ug|| <7 (ug
is an extremal of T), then T'(ug) = O.

Theorem (Euler-Lagrange). If ug is an ex-
tremal of T, then % — %% — 0, where the

g-partials are evaluated at (¢, ug(t),up(t)).
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Completely continuous mappings

Let £ and X be Banach spaces and let €2 be
an open subset of F, let f: <2 — X be a map-
ping. The function f is called compact, when-
ever f(2) has compact closure in X for every
bounded subset Q' of Q (f(2)) is precom-
pact). The function f is called completely
continuous whenever f is compact and con-
tinuous. If f is linear and compact, then f is
completely continuous.

Lemma. Let 2 be an open set in E and let
f Q2 — X be completely continuous and F-
differentiable at a point zg € €2. Then the
linear mapping f/(zg) is compact, hence com-
pletely continuous.
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Proper mappings

Let M C E, Y C X and let f : M — Y Dbe
continuous, then f is called a proper mapping
if for every compact subset K of Y, f~1(K)
IS compact in M. The subsets M and Y are
treated as metric spaces with metrics induced
by the norms of E and X, respectively.

Lemma. Let h: E — X be completely con-
tinuous and let g : £ — X be proper, then
f =g — his a proper mapping, provided

iM)|z|—o00 IF(@)|| = 00 (f is coercive).

Lemma. Let h: F — E be a completely con-
tinuous mapping and let f = id—h be coercive
(id is the identity map). Then f is proper.

Lemma. Let f : R®™ — R™ be continuous.
Then f is proper if and only if f is coercive.
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Contraction mappings
The Banach fixed point theorem

Theorem (Banach). Let M be a closed sub-
set of the Banach space E. Assume 0 <k < 1
and f: M — M satisfies || f(z)— f(y)| < k|lz—yl||
forall z, y in M (f is a contraction). Then the
equation f(x) = x has a unique solution x € M.
Moreover, x is the unique limit of the sequence
of iterates f™(xg) for any point xg € M.
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An LP approach
A Dirichlet Problem

Let T" > O be given and let f : [0,7T] x R X
R — R be a mapping satisfying Carathéodory
conditions:

f(t,u,u') is continuous in (u,u’) for al-
most all ¢ and measurable in ¢ for fixed

(u,u’).

Consider the Dirichlet problem of finding a
function u satisfying the following differential
equation subject to boundary conditions

u" = f(t,u,u'), 0<t<T,
u(0) = u(T) = 0.
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An LP approach

Theorem (Hai-Schmitt 1994). Let f satisfy
f(z,0,0) € L?[0,T] and

|f(z,u,v) — f(z,4,0)| < alu —a| + blv — v
for all u,u,v,v € R, 0 <t < T, Wherea b are
nonegative constants such that “1 + \/— <1
and A\ is the smallest number X such that the
problem

—u"'=Mu, O0<t<T,
uw(0) =u(T) =0

has a nontrivial solution.

Then there is a unique function u € C4([0,T])
with «/' absolutely continuous such that v/ =
f(t,u,u') almost everywhere on 0 < ¢t < T and
u(0) = u(T) = 0.
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The implicit function theorem

Assume FE, AN and X are Banach spaces with
U open in E and V open in A. Let f : U X
V — X be a continuous mapping such that
for each X € V the map f(-,\) : U — X is
Fréchet-differentiable on U. It is assumed that
the mapping (u, \) — Dy f(u,\) is a continuous
mapping from U x V to L(F, X).

Theorem (Implicit Function Theorem). Let
f satisfy the above assumptions and let there
exist (upg,\g) € U x V such that Dy f(ug, \og)
is a linear homeomorphism of E onto X (i.e.
Duf(ug,Ao) € L(E,X) and [Dyuf(ug, o)™t €
L(X,FE)). Then there exist § > 0 and r > 0 and
unique mapping u : Bs(Ag) = {A : ||A — Agl| <
0} — E such that

f(u(A), A) = f(uo, Ao)
and |lu(A) —ug|| <7, u(Ag) = up.
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A Combustion Model

Consider the nonlinear boundary value problem

u’ + Ne¥ = 0, O<t<m,

u(0) = 0 = u(mw).
This is a mathematical model from the the-
ory of combustion where the scalar variable
u represents a dimensionless temperature; see
Bebernes—Eberly (1989).

An application of the Implicit Function Theo-
rem shows that for A € R, in a neighborhood
of 0, the problem has a unique solution u(x)
with u(z) > 0 in 0 < z < 7 and ||u|| small in
C2([0,n],R). The heat generation parameter
A IS known to satisfy 0 < A < 1.

21



Inverse Function Theorem

Let £ and X be Banach spaces and let U be
an open neighborhood ofae F. Let f .U — X
be a C! mapping with Df(a) a linear homeo-
morphism of E onto X. Then there exist open
sets U’ and V, a € U’, f(a) € V and a uniquely
determined function g such that:

(i) V=f£uU),

(if) f is one to one on U/,

(i) g: VU, g(V)=U', g(f(u)) =,
for every u € U/,

(iv) gecl(v;U") and
Dg(f(a)) = [Df(a)] 1.
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Forced Nonlinear Oscillator

Consider the forced periodic boundary value
problem

u”—l—)\u—l—u2=g, —oo < t < 00,
u(0) = u(27), 4/ (0) =/ (2n)

where g is a continuous 2mw-periodic function
and XA € R, is a parameter.

Let X = C9([0,27],R). Let E be the subspace
of C2([0,2x],R) with u(0) = u(2r), ¥/ (0) =
u'(27).

Then for certain values of XA the problem has
a unique solution u € E for each forcing term
g € X of small norm.
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Number of Solutions

Let f: M — Y be continuous, proper and lo-
cally invertible (e.g., the inverse function the-
orem is applicable at each point). For y € Y
let N(y) be the number of points in the set

FHy) = {u: flu) =y}

Then the mapping y — N(y) is finite and lo-
cally constant.
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Locally Finite Refinement
Partition of Unity

Let M be metric space. A collection of open
sets {O,}, A € A, is called an open cover of
M provided M is the union of the O,.

The open covering {O,} is called locally fi-
nite if every point v € M has a neighborhood
U which intersects at most finitely many el-
ements O,. A refinement of an open cover
{0,} is a second open cover {U~}, v € ', such
that each Uy is a subset of some O,.

Lemma. Let M be a metric space. Then
every open cover of M has a locally finite re-
finement.

Proof: This result appears in Dugundj’s topol-
ogy text, where it is attributed to A. H. Stone.
The statement is Every metric space is para-
compact.
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Dugundji’s Extension Theorem

A set K in a Banach space is called convex if
XM+ (1 —-XNye K forx, yin Kand 0 <A< 1.

Theorem (Dugundji). Let £ and X be Ba-
nach spaces. Assume K is convex in X and C
is closed in E. Let f: (C — K be continuous.
Then there exists a continuous extension of f
of the form

f(u) u € C,
F(u) =1 Yy flay) uwe E\C,
U

where ary € CNU, 0 < ky(u) < 1and X pykry(u) =
1. The symbol U is an open set from a certain
open cover of FE.

For x € E, F(x) € convex hull (f(C)) C K. If
defined, maxyec|lf(W)llx = Maxeep |F(2)lx.
The extension of a sum is the sum of the ex-

tensions.
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