Spaces of continuous functions

Let Ω be an open subset of \mathbf{R}^n . Define $C^0(\Omega, \mathbf{R}^m)$ to be the set of all continuous $f:\Omega\to\mathbf{R}^m$. The norm in $C^0(\Omega,\mathbf{R}^m)$ is defined by $\|f\|_0=\sup_{x\in\Omega}|f(x)|$, where $|\cdot|$ is a norm in \mathbf{R}^m .

Let E be the space of all $f \in C^0(\Omega, \mathbf{R}^m)$ such that $||f||_0 < \infty$. Then E is a Banach space.

Let Ω' be an open set with $\bar{\Omega}\subset\Omega'$. Define $C^0(\bar{\Omega},\mathbf{R}^m)$ to be the set of all restrictions to $\bar{\Omega}$ of functions $f\in C^0(\Omega',\mathbf{R}^m)$. The space $C^0(\bar{\Omega},\mathbf{R}^m)$ is a Banach space.

Spaces of differentiable functions - 1

Let $\beta=(i_1,\cdots,i_n)$ be a multiindex, i.e. $i_k\in \mathbf{Z}$ (the nonnegative integers), $1\leq k\leq n$. We let $|\beta|=\sum_{k=1}^n i_k$.

Let Ω be an open subset of \mathbf{R}^n and assume $f: \Omega \to \mathbf{R}^m$. Then the partial derivative of f of order $\beta, D^{\beta}f(x)$, is given by

$$D^{\beta}f(x) = \frac{\partial^{|\beta|}f(x)}{\partial^{i_1}x_1 \cdots \partial^{i_n}x_n},$$

where $x = (x_1, \dots, x_n)$.

Spaces of differentiable functions - 2

Define $C^j(\Omega, \mathbf{R}^m)$ to be the set of all $f: \Omega \to \mathbf{R}^m$ such that $D^\beta f$ is continuous for all $\beta, |\beta| \le j$. Define the norm on $C^j(\Omega, \mathbf{R}^m)$ by $||f||_j = \sum_{k=0}^j \max_{|\beta| \le k} ||D^\beta f||_0$. Then the set E of all $f \in C^j(\Omega, \mathbf{R}^m)$ such that $||f||_j < +\infty$ is a Banach space.

The space $C^j(\bar{\Omega}, \mathbf{R}^m)$ is defined in a manner similar to the space $C^0(\bar{\Omega}, \mathbf{R}^m)$. If Ω is bounded, then $C^j(\bar{\Omega}, \mathbf{R}^m)$ is a Banach space.

Hölder spaces - 1/2

Let Ω be an open set in \mathbf{R}^n . A function $f:\Omega\to\mathbf{R}^m$ is called Hölder continuous with exponent $\alpha,\ 0<\alpha\leq 1$, at a point $x\in\Omega$, if

$$\sup_{y \neq x} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty,$$

and Hölder continuous with exponent $\alpha, 0 < \alpha \leq 1$, on Ω if it is Hölder continuous with the same exponent α at every $x \in \Omega$. For such f we define

$$H_{\Omega}^{\alpha}(f) = \sup_{\substack{x \neq y \\ x, y \in \Omega}} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$
 (1)

If $f \in C^j(\Omega, \mathbf{R}^m)$ with each $D^{\beta}f$, $|\beta| = j$, Hölder continuous with exponent α on Ω , then we say $f \in C^{j,\alpha}(\Omega, \mathbf{R}^m)$.

Hölder spaces - 2/2

Define the norm on $C^{j,\alpha}(\Omega,{f R}^m)$ by

$$||f||_{j,\alpha} = ||f||_j + \max_{|\beta|=j} H_{\Omega}^{\alpha}(D^{\beta}f).$$

The space E of all $f \in C^{j,\alpha}(\Omega, \mathbf{R}^m)$ such that $||f||_{j,\alpha} < \infty$ is a Banach space.

Define the space $C^{j,\alpha}(\overline{\Omega}, \mathbf{R}^m)$ in analogy with $C^j(\overline{\Omega}, \mathbf{R}^m)$. If Ω is bounded, then $C^{j,\alpha}(\overline{\Omega}, \mathbf{R}^m)$ is a Banach space.

Conventions: $C^{j,0}(\Omega, \mathbf{R}^m)$ is written $C^j(\Omega, \mathbf{R}^m)$ and $C^{j,0}(\bar{\Omega}, \mathbf{R}^m)$ is written $C^j(\bar{\Omega}, \mathbf{R}^m)$.

Functions with compact support

Let Ω be an open subset of ${\bf R}^n$. A function $f:\Omega\to {\bf R}^m$ is said to have compact support in Ω if the set

$$supp f = closure \{x \in \Omega : f(x) \neq 0\}$$
$$= \overline{\{x \in \Omega : f(x) \neq 0\}}$$

is compact.

Define $C_0^{j,\alpha}(\Omega,\mathbf{R}^m)$ to be the set of all $f\in C^{j,\alpha}(\Omega,\mathbf{R}^m)$ such that supp f is a compact subset of Ω . Define $C_0^{j,\alpha}(\bar{\Omega},\mathbf{R}^m)$ similarly.

If Ω is bounded, then the space $C_0^{j,\alpha}(\bar{\Omega},\mathbf{R}^m)$ is a Banach space. It consists of all $f\in C^{j,\alpha}(\bar{\Omega},\mathbf{R}^m)$ such that f(x)=0 for $x\in\partial\Omega$.

L^p spaces

Let Ω be a Lebesgue measurable subset of \mathbf{R}^n and let $f:\Omega\to\mathbf{R}^m$ be a measurable function. For $1\leq p<\infty$, define $\|f\|_{L^p}=(\int_\Omega |f(x)|^pdx)^{1/p}$, and for $p=\infty$, define $\|f\|_{L^\infty}=\mathrm{essup}_{x\in\Omega}|f(x)|$.

The essential supremum essup is defined by

$$\inf\{\alpha : \operatorname{measure} \{x \in \Omega : |f(x)| > \alpha\} = 0\}.$$

Define $L^p(\Omega, \mathbf{R}^m) = \{f : ||f||_{L^p} < +\infty\}$ for $1 \le p \le \infty$. Then $L^p(\Omega, \mathbf{R}^m)$ is a Banach space.

Let $u \cdot v$ denote the inner product of u and v in \mathbf{R}^n . The space $L^2(\Omega, \mathbf{R}^m)$ is a Hilbert space with inner product defined by

$$\langle f, g \rangle = \int_{\Omega} f(x) \cdot g(x) dx.$$

Weak derivatives

Let Ω be an open subset of \mathbf{R}^n . A function $f: \Omega \to \mathbf{R}^m$ is said to belong to class $L^p_{loc}(\Omega, \mathbf{R}^m)$, if for every compact subset $\Omega' \subset \Omega, f \in L^p(\Omega', \mathbf{R}^m)$.

Let $\beta = (\beta_1, \dots, \beta_n)$ be a multi-index. A function $v \in L^1_{loc}(\Omega, \mathbf{R}^m)$ is called the β^{th} weak derivative of f if it satisfies for all $\phi \in C_0^{\infty}(\Omega)$ the relation

$$\int_{\Omega} v\phi dx = (-1)^{|\beta|} \int_{\Omega} f D^{\beta} \phi dx.$$

Write $v=D^{\beta}f$; up to a set of measure zero, v is uniquely determined.

Sobolev spaces

We say that $f \in W^k(\Omega, \mathbf{R}^m)$, if f has weak derivatives up to order k. Define $W^{k,p}(\Omega, \mathbf{R}^m)$ to be the set of all $f \in W^k(\Omega, \mathbf{R}^m)$ such that $D^\beta f \in L^p(\Omega, \mathbf{R}^m)$, $|\beta| \leq k$. The vector space $W^{k,p}(\Omega, \mathbf{R}^m)$ equipped with the norm $||f||_{W^{k,p}} = \left(\int_{\Omega} \sum_{|\beta| \leq k} |D^\beta f|^p dx\right)^{1/p}$ is a Banach space which has $C_0^k(\Omega, \mathbf{R}^m)$ as a subspace.

Denote by $W_0^{k,p}(\Omega, \mathbf{R}^m)$ the closure of $C_0^k(\Omega, \mathbf{R}^m)$ in the space $W^{k,p}(\Omega, \mathbf{R}^m)$. This is generally a proper Banach subspace.

The spaces $W^{k,2}(\Omega,\mathbf{R}^m)$ and $W^{k,2}_0(\Omega,\mathbf{R}^m)$ are Hilbert spaces with inner product $\langle f,g\rangle$ given by $\langle f,g\rangle=\int_{\Omega}\sum_{|\alpha|< k}D^{\alpha}f\cdot D^{\alpha}gdx$.

The completion in $W^{k,p}(\Omega,\mathbf{R}^m)$ of the subspace $C^k(\bar{\Omega},\mathbf{R}^m)$ is denoted by $H^{k,p}(\Omega,\mathbf{R}^m)$. If p=2, then it is a Hilbert space with inner product $\langle\cdot,\cdot\rangle$. The space $H^{k,p}_0(\Omega,\mathbf{R}^m)$ is the completion of $C_0^\infty(\Omega,\mathbf{R}^m)$ in $H^{k,p}(\Omega,\mathbf{R}^m)$.

Spaces of linear operators

Let E and X be normed linear spaces with norms $\|\cdot\|_E$ and $\|\cdot\|_X$, respectively. Let $\mathbf{L}(E;X)$ be the set of all linear continuous functions $f:E\to X$. For $f\in\mathbf{L}(E;X)$, let $\|f\|_{\mathbf{L}}=\sup_{\|x\|_E\leq 1}\|f(x)\|_X$. Then $\|\cdot\|_{\mathbf{L}}$ is a norm for $\mathbf{L}(E;X)$. This space is a Banach space, whenever X is.

Gâteaux and Fréchet differentiability

Let E and X be Banach spaces and let U be an open subset of E. Let $f:U\to X$ be a function. Let $x_0\in U$, then f is said to be **Gâteaux differentiable** (G-differentiable) at x_0 in direction h, if the limit

$$\lim_{t \to 0} \frac{1}{t} \{ f(x_0 + th) - f(x_0) \}$$

exists. It said to be **Fréchet differentiable** (F-differentiable) at x_0 , if there exists $T \in \mathbf{L}(E;X)$ such that for ||h|| small

$$f(x_0 + h) - f(x_0) = T(h) + o(||h||).$$

The Landau symbol $o(\|h\|)$ is defined by the relation $\lim_{\|h\|\to 0} \frac{o(\|h\|)}{\|h\|} = 0$.

Fréchet derivative

The Fréchet-derivative of f at x_0 , if it exists, is unique.

The following symbols are used interchangeably for the Fréchet-derivative of f at x_0 :

$$Df(x_0), \quad f'(x_0), \quad df(x_0).$$

The symbol df is usual for the case $X = \mathbf{R}$.

A function f is said to be of class C^1 in a neighborhood of x_0 if f is Fréchet differentiable there and the mapping $Df: x \mapsto Df(x)$ is a continuous mapping into the Banach space $\mathbf{L}(E;X)$.

Taylor's formula

Theorem. Let $f: E \to X$ and all of its Fréchet-derivatives of order less than m, m > 1, be of class C^1 on an open set U. Let x and x+h be such that the line segment connecting these points lies in U. Then

$$f(x+h) - f(x) = \sum_{k=1}^{m-1} \frac{D^k f(x)h^k}{k!} + \frac{D^m f(z)h^m}{m!},$$

where z is a point on the line segment connecting x to x+h. The remainder $\frac{1}{m!}D^mf(z)h^m$ is also given by

$$\frac{1}{(m-1)!} \int_0^1 (1-s)^{m-1} D^m f(x_0 + sh) h^m ds.$$

Euler-Lagrange equations

Let $g:[a,b]\times \mathbf{R}\times \mathbf{R}\to \mathbf{R}$ be twice continuously differentiable. Let $E=C_0^2[a,b]$ and let $T:E\to \mathbf{R}$ be given by $T(u)=\int_a^b g(t,u(t),u'(t))dt$.

Lemma. The operator $T: E \to \mathbf{R}$ is of class C^1 with Fréchet derivative given by

$$T'(u_0)h = \int_a^b g_u h \, dt + \int_a^b g_{u'} h' \, dt,$$

and all g-partials are evaluated at $(t, u_0(t), u'_0(t))$.

Lemma. If $T(u_0) \leq T(u)$ for $||u - u_0|| \leq r$ (u_0 is an extremal of T), then $T'(u_0) = 0$.

Theorem (Euler-Lagrange). If u_0 is an extremal of T, then $\frac{\partial g}{\partial u} - \frac{d}{dt} \frac{\partial g}{\partial u'} = 0$, where the g-partials are evaluated at $(t, u_0(t), u_0'(t))$.

Completely continuous mappings

Let E and X be Banach spaces and let Ω be an open subset of E, let $f:\Omega\to X$ be a mapping. The function f is called **compact**, whenever $f(\Omega')$ has compact closure in X for every bounded subset Ω' of Ω ($f(\Omega')$ is **precompact**). The function f is called **completely continuous** whenever f is compact and continuous. If f is linear and compact, then f is completely continuous.

Lemma. Let Ω be an open set in E and let $f:\Omega\to X$ be completely continuous and F-differentiable at a point $x_0\in\Omega$. Then the linear mapping $f'(x_0)$ is compact, hence completely continuous.

Proper mappings

Let $M \subset E$, $Y \subset X$ and let $f: M \to Y$ be continuous, then f is called a **proper** mapping if for every compact subset K of Y, $f^{-1}(K)$ is compact in M. The subsets M and Y are treated as metric spaces with metrics induced by the norms of E and X, respectively.

Lemma. Let $h: E \to X$ be completely continuous and let $g: E \to X$ be proper, then f = g - h is a proper mapping, provided

 $\lim_{\|x\|\to\infty} \|f(x)\| = \infty$ (f is coercive).

Lemma. Let $h: E \to E$ be a completely continuous mapping and let f = id - h be coercive (id is the identity map). Then f is proper.

Lemma. Let $f: \mathbf{R}^n \to \mathbf{R}^m$ be continuous. Then f is proper if and only if f is coercive.

Contraction mappings

The Banach fixed point theorem

Theorem (Banach). Let M be a closed subset of the Banach space E. Assume $0 \le k < 1$ and $f: M \to M$ satisfies $||f(x)-f(y)|| \le k||x-y||$ for all x, y in M (f is a **contraction**). Then the equation f(x) = x has a unique solution $x \in M$. Moreover, x is the unique limit of the sequence of iterates $f^n(x_0)$ for any point $x_0 \in M$.

An L^p approach

A Dirichlet Problem

Let T>0 be given and let $f:[0,T]\times \mathbf{R}\times \mathbf{R}\to \mathbf{R}$ be a mapping satisfying **Carathéodory** conditions:

f(t, u, u') is continuous in (u, u') for almost all t and measurable in t for fixed (u, u').

Consider the **Dirichlet problem** of finding a function u satisfying the following differential equation subject to boundary conditions

$$\begin{cases} u'' = f(t, u, u'), & 0 < t < T, \\ u(0) = u(T) = 0. \end{cases}$$

An L^p approach

Theorem (Hai-Schmitt 1994). Let f satisfy $f(x,0,0) \in L^2[0,T]$ and

$$|f(x, u, v) - f(x, \tilde{u}, \tilde{v})| \le a|u - \tilde{u}| + b|v - \tilde{v}|$$

for all $u, \tilde{u}, v, \tilde{v} \in \mathbf{R}$, 0 < t < T, where a, b are nonegative constants such that $\frac{a}{\lambda_1} + \frac{b}{\sqrt{\lambda_1}} < 1$ and λ_1 is the smallest number λ such that the problem

$$\begin{cases} -u'' = \lambda u, & 0 < t < T, \\ u(0) = u(T) = 0 \end{cases}$$

has a nontrivial solution.

Then there is a unique function $u \in C_0^1([0,T])$ with u' absolutely continuous such that u'' = f(t,u,u') almost everywhere on $0 \le t \le T$ and u(0) = u(T) = 0.

The implicit function theorem

Assume E, Λ and X are Banach spaces with U open in E and V open in Λ . Let $f:U\times V\to X$ be a continuous mapping such that for each $\lambda\in V$ the map $f(\cdot,\lambda):U\to X$ is Fréchet-differentiable on U. It is assumed that the mapping $(u,\lambda)\mapsto D_uf(u,\lambda)$ is a continuous mapping from $U\times V$ to $\mathbf{L}(E,X)$.

Theorem (Implicit Function Theorem). Let f satisfy the above assumptions and let there exist $(u_0, \lambda_0) \in U \times V$ such that $D_u f(u_0, \lambda_0)$ is a linear homeomorphism of E onto X (i.e. $D_u f(u_0, \lambda_0) \in \mathbf{L}(E, X)$ and $[D_u f(u_0, \lambda_0)]^{-1} \in \mathbf{L}(X, E)$). Then there exist $\delta > 0$ and r > 0 and unique mapping $u: B_{\delta}(\lambda_0) = \{\lambda: \|\lambda - \lambda_0\| \le \delta\} \to E$ such that

$$f(u(\lambda), \lambda) = f(u_0, \lambda_0)$$

and $||u(\lambda) - u_0|| \le r$, $u(\lambda_0) = u_0$.

A Combustion Model

Consider the nonlinear boundary value problem

$$u'' + \lambda e^u = 0,$$
 $0 < t < \pi,$ $u(0) = 0 = u(\pi).$

This is a mathematical model from the theory of combustion where the scalar variable u represents a dimensionless temperature; see Bebernes-Eberly (1989).

An application of the Implicit Function Theorem shows that for $\lambda \in \mathbf{R}$, in a neighborhood of 0, the problem has a unique solution u(x) with u(x) > 0 in $0 < x < \pi$ and ||u|| small in $C^2([0,\pi],\mathbf{R})$. The heat generation parameter λ is known to satisfy $0 < \lambda < 1$.

Inverse Function Theorem

Let E and X be Banach spaces and let U be an open neighborhood of $a \in E$. Let $f: U \to X$ be a C^1 mapping with Df(a) a linear homeomorphism of E onto X. Then there exist open sets U' and V, $a \in U'$, $f(a) \in V$ and a uniquely determined function g such that:

- (i) V = f(U'),
- (ii) f is one to one on U',
- (iii) $g: V \to U', \ g(V) = U', \ g(f(u)) = u,$ for every $u \in U',$
- (iv) $g \in C^1(V; U')$ and $Dg(f(a)) = [Df(a)]^{-1}$.

Forced Nonlinear Oscillator

Consider the forced periodic boundary value problem

$$u'' + \lambda u + u^2 = g,$$
 $-\infty < t < \infty,$ $u(0) = u(2\pi), \quad u'(0) = u'(2\pi)$

where g is a continuous 2π -periodic function and $\lambda \in \mathbf{R}$, is a parameter.

Let $X = C^0([0, 2\pi], \mathbf{R})$. Let E be the subspace of $C^2([0, 2\pi], \mathbf{R})$ with $u(0) = u(2\pi)$, $u'(0) = u'(2\pi)$.

Then for certain values of λ the problem has a unique solution $u \in E$ for each forcing term $g \in X$ of small norm.

Number of Solutions

Let $f: M \to Y$ be continuous, proper and locally invertible (e.g., the inverse function theorem is applicable at each point). For $y \in Y$ let N(y) be the number of points in the set $f^{-1}(y) = \{u: f(u) = y\}.$

Then the mapping $y\mapsto N(y)$ is finite and locally constant.

Locally Finite Refinement

Partition of Unity

Let M be metric space. A collection of open sets $\{O_{\lambda}\}$, $\lambda \in \Lambda$, is called an **open cover** of M provided M is the union of the O_{λ} .

The open covering $\{O_{\lambda}\}$ is called **locally finite** if every point $u \in M$ has a neighborhood U which intersects at most finitely many elements O_{λ} . A **refinement** of an open cover $\{O_{\lambda}\}$ is a second open cover $\{U_{\gamma}\}$, $\gamma \in \Gamma$, such that each U_{γ} is a subset of some O_{λ} .

Lemma. Let M be a metric space. Then every open cover of M has a locally finite refinement.

Proof: This result appears in Dugundj's topology text, where it is attributed to A. H. Stone. The statement is *Every metric space is paracompact*.

Dugundji's Extension Theorem

A set K in a Banach space is called **convex** if $\lambda x + (1 - \lambda)y \in K$ for x, y in K and $0 \le \lambda \le 1$.

Theorem (Dugundji). Let E and X be Banach spaces. Assume K is convex in X and C is closed in E. Let $f:C\to K$ be continuous. Then there exists a continuous extension of f of the form

$$F(u) = \begin{cases} f(u) & u \in C, \\ \sum_{U} \kappa_{U}(u) f(a_{U}) & u \in E \setminus C, \end{cases}$$

where $a_U \in C \cap U$, $0 \le \kappa_U(u) \le 1$ and $\sum_U \kappa_U(u) = 1$. The symbol U is an open set from a certain open cover of E.

For $x \in E$, $F(x) \in \text{convex hull } (f(C)) \subseteq K$. If defined, $\max_{u \in C} \|f(u)\|_X = \max_{x \in E} \|F(x)\|_X$. The extension of a sum is the sum of the extensions.