Differential Equations 5410

Sample Midterm Exam 3

Tuesday, 7 December 2004

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected.

1. (Variation of parameters)

(a) [50%] State and prove the variation of parameters formula for a second order linear differential equation.
(b) $[50 \%]$ Solve by variation of parameters $y^{\prime \prime}-y=x e^{x}$.
(c) $[50 \%]$ Solve by variation of parameters $\mathbf{u}^{\prime}=A \mathbf{u}+\mathbf{F}(t)$, given $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 2\end{array}\right)$ and $\mathbf{F}(t)=\binom{t}{1+t}$. The answer contains two arbitrary constants c_{1}, c_{2}.
2. ()
(a) [50%] Find the linearized equation at each equilibrium point: $x^{\prime}=x y-y, y^{\prime}=x^{2}-x^{3} y$.
(b) $[50 \%]$ Classify the equilibria as stable or unstable: $x^{\prime}=3 x, y^{\prime}=x(y-1), z^{\prime}=x+z$.
(c) [50\%] Prove that a matrix equation $\mathbf{x}^{\prime}=A \mathbf{x}$ is asymptotically stable at $\mathbf{x}=\mathbf{0}$, if the real part of each eigenvalue of A is negative.
(d) [50\%] Classify as a center, spiral, saddle or node: $\mathbf{x}^{\prime}=A \mathbf{x}, A=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$, when $b>0$, for all possible choices of a.
3. (Linear 3×3 systems)
(a) [50\%] Solve $x^{\prime}=x-2 y, y^{\prime}=x+y, z^{\prime}=z$ by Putzer's spectral recipe.
(b) [50\%] Solve $x^{\prime}=x-z, y^{\prime}=y-x, z^{\prime}=z+y$ by eigenanalysis.
(c) [50\%] Solve $x^{\prime}=x-z, y^{\prime}=y-x, z^{\prime}=z+y$ by a spectral formula.
4. (Resonance)
(a) [50\%] Define pure resonance. Find a periodic solution in the non-resonant case for $x^{\prime \prime}+16 x=\cos (\omega t)$.
(b) [50%] Define practical resonance. Find the unique periodic solution of $x^{\prime \prime}+2 x^{\prime}+x=$ $\cos (\omega t)$.
(c) $[50 \%]$ Prove that practical resonance occurs exactly when $\omega=\sqrt{k / m-c^{2} /\left(2 m^{2}\right)}$ is positive, for the equation $m x^{\prime \prime}+c x^{\prime}+k x=F_{0} \cos (\omega t)$.

5. (Theory of linear systems)

(a) $[50 \%]$ State the existence-uniqueness theorem for $\mathbf{x}^{\prime}=A(t) \mathbf{x}+\mathbf{F}(t)$. Include a statement about the domain of the unique solution $\mathbf{x}(t)$.
(b) [50\%] State and prove the superposition principle for $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}(t)$.
(c) State and prove Abel's formula for $\mathbf{x}^{\prime}=A \mathbf{x}$.

