Differential Equations 5410

Sample Midterm Exam 2
Friday, 29 October 2004
Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected.

1. (Undetermined coefficients)
(a) Solve by the method of undetermined coefficients: $y^{\prime}=2 y+x e^{2 x}+x^{2}$.
(b) Let A be an invertible 2×2 matrix. Find a formula for a particular solution using undetermined coefficients: $\mathbf{u}^{\prime}=A \mathbf{u}+\mathbf{F}(t), \mathbf{F}=\binom{t^{3}-t}{1+t^{2}}$.
(c) Solve for y_{p} by the method of undetermined coefficients: $y^{\prime \prime}+y=x^{2}+x \sin x-\cos x$.
2. (Variation of parameters)
(a) State and prove the variation of parameters formula for a second order linear differential equation.
(b) Solve by variation of parameters $y^{\prime \prime}-y=x e^{x}$.
(c) Solve by variation of parameters $\mathbf{u}^{\prime}=A \mathbf{u}+\mathbf{F}(t)$, given $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 2\end{array}\right)$ and $\mathbf{F}(t)=$ $\binom{t}{1+t}$. The answer contains two arbitrary constants c_{1}, c_{2}.
3. (Linear 2×2 systems)
(a) Solve $x^{\prime}=2 x, y^{\prime}=x+y$.
(b) Solve $x^{\prime}=y, y^{\prime}=x+y$.
(c) Solve $x^{\prime}=x-y, y^{\prime}=x+y$.

4. (Autonomous equations)

(a) Define stable equilibrium and asymptotically stable equilibrium for a scalar equation $u^{\prime}=f(u)$.
(b) State and prove a theorem that says solutions don't cross.
(c) Give an example of an autonomous equation for which solutions cross.
(d) Draw a phase line diagram for $u^{\prime}=u^{3}-u^{2}$.
(e) Let $f(x, y)=x^{2}+y^{2}+2 x y, g(x, y)=x-2 y$. Determine the linearized system at each possible equilibrium point $\left(x_{0}, y_{0}\right)$ of the system $x^{\prime}=f(x, y), y^{\prime}=g(x, y)$.

5. (Theory of linear systems)

(a) State and prove the superposition principle for a 2×2 linear system $\mathbf{u}^{\prime}=A \mathbf{u}$.
(b) Prove that the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}+\mathbf{F}(t)$ is the sum of a particular solution and the general solution of the homogeneous equation. The 2×2 matrix A is constant. Assume continuity for the vector function \mathbf{F}.
(c) The Picard iterates for the initial value problem $\mathbf{u}^{\prime}=A \mathbf{u}, \mathbf{u}(0)=\mathbf{u}_{0}$ can be written out explicitly. Give a general formula and write out the solution according to Picard's limit formula. Assume A is constant 2×2, although the calculation does not depend at all upon the size of A.

