Differential Equations 5410

Sample Midterm Exam 2 Friday, 29 October 2004

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected.

1. (Undetermined coefficients)

- (a) Solve by the method of undetermined coefficients: $y' = 2y + xe^{2x} + x^2$.
- (b) Let A be an invertible 2×2 matrix. Find a formula for a particular solution using $\begin{pmatrix} 43 & 4 \end{pmatrix}$

undetermined coefficients: $\mathbf{u}' = A\mathbf{u} + \mathbf{F}(t), \ \mathbf{F} = \begin{pmatrix} t^3 - t \\ 1 + t^2 \end{pmatrix}.$

(c) Solve for y_p by the method of undetermined coefficients: $y'' + y = x^2 + x \sin x - \cos x$.

2. (Variation of parameters)

(a) State and prove the variation of parameters formula for a second order linear differential equation.

- (b) Solve by variation of parameters $y'' y = xe^x$.
- (c) Solve by variation of parameters $\mathbf{u}' = A\mathbf{u} + \mathbf{F}(t)$, given $A = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}$ and $\mathbf{F}(t) = \langle \mathbf{u} \cdot \mathbf{v} \rangle$

 $\begin{pmatrix} t \\ 1+t \end{pmatrix}$. The answer contains two arbitrary constants c_1, c_2 .

- 3. (Linear 2×2 systems)
 - (a) Solve x' = 2x, y' = x + y.
 - (b) Solve x' = y, y' = x + y.
 - (c) Solve x' = x y, y' = x + y.

4. (Autonomous equations)

(a) Define stable equilibrium and asymptotically stable equilibrium for a scalar equation u' = f(u).

- (b) State and prove a theorem that says solutions don't cross.
- (c) Give an example of an autonomous equation for which solutions cross.
- (d) Draw a phase line diagram for $u' = u^3 u^2$.

(e) Let $f(x, y) = x^2 + y^2 + 2xy$, g(x, y) = x - 2y. Determine the linearized system at each possible equilibrium point (x_0, y_0) of the system x' = f(x, y), y' = g(x, y).

5. (Theory of linear systems)

(a) State and prove the superposition principle for a 2×2 linear system $\mathbf{u}' = A\mathbf{u}$.

(b) Prove that the general solution of $\mathbf{u}' = A\mathbf{u} + \mathbf{F}(t)$ is the sum of a particular solution and the general solution of the homogeneous equation. The 2 × 2 matrix A is constant. Assume continuity for the vector function \mathbf{F} .

(c) The Picard iterates for the initial value problem $\mathbf{u}' = A\mathbf{u}$, $\mathbf{u}(0) = \mathbf{u}_0$ can be written out explicitly. Give a general formula and write out the solution according to Picard's limit formula. Assume A is constant 2×2 , although the calculation does not depend at all upon the size of A.