Introduction to Linear Algebra 2270-1 Sample Midterm Exam 3 Fall 2003

In-class Exam Date: Wednesday, November 19, 2003

Instructions. Calculators are not allowed. Books and notes are not allowed. Time: 15 minutes. You will be given a variety of problems from which to select. The object is to solve two of them in 15 minutes. The longer ones will be identified as worth two problems.

5. (Exam 3 in-class)

- (a) Prove \mathbf{v}_1 , \mathbf{v}_2 orthogonal and A an $n \times n$ orthogonal matrix implies $A\mathbf{v}_1$, $A\mathbf{v}_2$ orthogonal.
- (b) Prove $(\sum_{k=1}^{n} x_k)^2 \le n \sum_{k=1}^{n} |x_k|^2$.
- (c) Prove or disprove: A orthogonal implies A^2 orthogonal.
- (d) Let A be $n \times n$ with eigenpairs $(\lambda_i, \mathbf{v}_i), 1 \leq i \leq n$. Prove that $(A \lambda_1 I) \cdots (A \lambda_n I) = 0$.
- (e) Let V be a subspace of \mathcal{R}^n . Prove that V and V^{\perp} meet only in the zero vector.
- (f) Let A be $m \times n$. Prove that $\ker(A) = \{0\}$ implies $A^T A$ is invertible.

(g) Let V be an inner product space. Suppose that $\mathbf{v} = \sum_{k=1}^{n} c_k \mathbf{v}_k$ and $\{\mathbf{v}_k\}$ is an orthogonal set. Compute c_2 .

(h) Find a 3 × 3 matrix A such that $det(A - \lambda I) = -\lambda^3 + 15\lambda^2 - 3\lambda + e^2$.