Three Examples. It is possible to solve a variety of differential equations without reading a differential equations textbook:

$$
\begin{array}{ll}
\text { Growth-Decay } & \frac{d A}{d t}=k A(t), A(0)=A_{0} \\
& A(t)=A_{0} e^{k t} \\
\text { Newton Cooling } & \frac{d u}{d t}=-h\left(u(t)-u_{1}\right), u(0)=u_{0} \\
& u(t)=u_{1}+\left(u_{0}-u_{1}\right) e^{-h t} \\
\text { Verhulst Logistic } & \frac{d P}{d t}=(a-b P(t)) P(t), P(0)=P_{0} \\
& P(t)=\frac{a P_{0}}{b P_{0}+\left(a-b P_{0}\right) e^{-a t}}
\end{array}
$$

Like the multiplication tables in elementary school, these models and their solution formulas should be memorized, in order to form a foundation of intuition for all differential equation theory. The last two solutions are derived from the growth-decay equation by variable changes: $A(t)=u(t)-u_{1}$ and $A(t)=P(t) /(a-b P(t))$.

Theorem 1 (Recipe for Second-Order Constant Equations)

Let $a \neq 0, b$ and c be real constants. Each solution $y(x)$ of the constantcoefficient second-order differential equation $a y^{\prime \prime}(x)+b y^{\prime}(x)+c y(x)=0$ is given for some constants c_{1}, c_{2} by the expression

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

where $y_{1}(x), y_{2}(x)$ are two special solutions of $a y^{\prime \prime}+b y^{\prime}+c y=0$ defined by the following recipe:
Let r_{1}, r_{2} be the two roots of the characteristic equation $a r^{2}+b r+c=0$, real or complex. If complex, then let $r_{1}=\overline{r_{2}}=\alpha+i \beta$ with $\beta>0$. Then y_{1}, y_{2} are given by the following three cases, organized by the sign of the discriminant $\mathcal{D}=b^{2}-4 a c$:

1. $\mathcal{D}>0$ (Real distinct roots)
2. $\mathcal{D}=0$ (Real equal roots)

$y_{1}=e^{r_{1} x}$	$y_{2}=e^{r_{2} x}$.
$y_{1}=e^{r_{1} x}$	$y_{2}=x e^{r_{1} x}$.
$y_{1}=e^{\alpha x} \cos (\beta x)$	$y_{2}=e^{\alpha x} \sin (\beta x)$.

A general solution is an expression that represents all solutions of the differential equation. The term recipe means that the general solution can be written out at very high speed with no justification required. Some typical examples ($c_{1}, c_{2}=$ arbitrary constants):

Distinct real roots $\lambda_{1}=5, \lambda_{2}=2$	Equal real roots $\lambda_{1}=3, \lambda_{2}=3$	Complex conjugate roots $\lambda_{1}=\bar{\lambda}_{2}=2+3 i$
$y=c_{1} e^{5 x}+c_{2} e^{2 x}$	$y=c_{1} e^{3 x}+c_{2} x e^{3 x}$	$y=c_{1} e^{2 x} \cos 3 x+c_{2} e^{2 x} \sin 3 x$

Solving planar systems $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$. A 2×2 real system $\mathbf{x}^{\prime}(t)=$ $A \mathbf{x}(t)$ can be solved in terms of the roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$ and the real matrix A. The practical formulas are the analog of the recipe for second order equations with constant coefficients.

Theorem 2 (Planar Constant-Coefficient Linear system)

Consider the real planar system $\overrightarrow{\mathbf{x}}^{\prime}(t)=A \overrightarrow{\mathbf{x}}(t)$. Let λ_{1}, λ_{2} be the roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$. The real general solution $\overrightarrow{\mathbf{x}}(t)$ is given by the formulae

Distinct real roots $\lambda_{1} \neq \lambda_{2}$	Equal real roots $\lambda_{1}=\lambda_{2}$	Complex conjugate roots $\lambda_{1}=\bar{\lambda}_{2}=\alpha+i \beta, \beta>0$
$\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{u}}_{1} e^{\lambda_{1} t}+\overrightarrow{\mathbf{u}}_{2} e^{\lambda_{2} t}$	$\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{u}}_{1} e^{\lambda_{1} t}+\overrightarrow{\mathbf{u}}_{2} t e^{\lambda_{1} t}$	$\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{u}}_{1} e^{\alpha t} \cos \beta t+\overrightarrow{\mathbf{u}}_{2} e^{\alpha t} \sin \beta t$
$\overrightarrow{\mathbf{u}}_{1}=\frac{A-\lambda_{2} I}{\lambda_{1}-\lambda_{2}} \overrightarrow{\mathbf{x}}(0)$	$\overrightarrow{\mathbf{u}}_{1}=\overrightarrow{\mathbf{x}}(0)$	$\overrightarrow{\mathbf{u}}_{1}=\overrightarrow{\mathbf{x}}(0)$
$\overrightarrow{\mathbf{u}}_{2}=\frac{A-\lambda_{1} I}{\lambda_{2}-\lambda_{1}} \overrightarrow{\mathbf{x}}(0)$	$\overrightarrow{\mathbf{u}}_{2}=\left(A-\lambda_{1} I\right) \overrightarrow{\mathbf{x}}(0)$	$\overrightarrow{\mathbf{u}}_{2}=\frac{1}{\beta}(A-\alpha I) \overrightarrow{\mathbf{x}}(0)$

Illustrations. Typical cases are represented by the following 2×2 matrices A :

$$
\begin{array}{ll}
\lambda_{1}=5, \lambda_{2}=2 & \text { Real distinct roots. } \\
A=\left(\begin{array}{ll}
-1 & 3 \\
-6 & 8
\end{array}\right) & \overrightarrow{\mathbf{x}}(t)=\left(\begin{array}{ll}
-1 & 1 \\
-2 & 2
\end{array}\right) \overrightarrow{\mathbf{x}}(0) e^{5 t}+\left(\begin{array}{ll}
2 & -1 \\
2 & -1
\end{array}\right) \overrightarrow{\mathbf{x}}(0) e^{2 t} \\
\lambda_{1}=\lambda_{2}=3 & \text { Real double root. } \\
A=\left(\begin{array}{rr}
2 & 1 \\
-1 & 4
\end{array}\right) & \overrightarrow{\mathbf{x}}(t)=\overrightarrow{\mathbf{x}}(0) e^{3 t}+\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right) \overrightarrow{\mathbf{x}}(0) t e^{3 t}
\end{array}
$$

$$
\lambda_{1}=\bar{\lambda}_{2}=2+3 i \quad \text { Complex conjugate roots. }
$$

$$
A=\left(\begin{array}{rr}
2 & 3 \\
-3 & 2
\end{array}\right) \quad \overrightarrow{\mathbf{x}}(t)=\overrightarrow{\mathbf{x}}(0) e^{2 t} \cos 3 t+\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \overrightarrow{\mathbf{x}}(0) e^{2 t} \sin 3 t
$$

$$
=\left(\begin{array}{cc}
\cos 3 t & \sin 3 t \\
-\sin 3 t & \cos 3 t
\end{array}\right) \overrightarrow{\mathbf{x}}(0) e^{2 t}
$$

