4.6 Variation of Parameters

The method of variation of parameters applies to solve

(1)
$$a(x)y'' + b(x)y' + c(x)y = f(x).$$

Continuity of a, b, c and f is assumed, plus $a(x) \neq 0$. The method is important because it solves the largest class of equations. Specifically *included* are functions f(x) like $\ln |x|$, |x|, e^{x^2} .

Homogeneous Equation. The method of variation of parameters uses facts about the homogeneous differential equation

(2)
$$a(x)y'' + b(x)y' + c(x)y = 0$$

The success depends upon writing the general solution of (2) as

(3)
$$y = c_1 y_1(x) + c_2 y_2(x)$$

where y_1 , y_2 are known functions and c_1 , c_2 are arbitrary constants. If a, b, c are constants, then the standard *recipe* for (2) finds y_1, y_2 . It is known that y_1, y_2 as reported by the recipe are *independent*.

Independence. Two solutions y_1 , y_2 of (2) are called **independent** if neither is a constant multiple of the other. The term **dependent** means *not independent*, in which case either $y_1(x) = cy_2(x)$ or $y_2(x) = cy_1(x)$ holds for all x, for some constant c. Independence can be tested through the **Wronskian** of y_1 , y_2 , defined by

$$W(x) = y_1(x)y_2'(x) - y_1'(x)y_2(x).$$

Theorem 13 (Wronskian and Independence)

The Wronskian of two solutions satisfies a(x)W'+b(x)W = 0, which implies **Abel's identity**

$$W(x) = W(x_0)e^{-\int_{x_0}^x (b(t)/a(t))dt}$$

Two solutions of (2) are independent if and only if $W(x) \neq 0$.

The proof appears on page 183.

Theorem 14 (Variation of Parameters Formula)

Let a, b, c, f be continuous near $x = x_0$ and $a(x) \neq 0$. Let y_1, y_2 be two independent solutions of the homogeneous equation ay'' + by' + cy = 0 and let $W(x) = y_1(x)y'_2(x) - y'_1(x)y_2(x)$. Then the non-homogeneous differential equation

$$ay'' + by' + cy = f$$

has a particular solution

(4)
$$y_p(x) = y_1(x) \left(\int \frac{y_2(x)(-f(x))}{a(x)W(x)} dx \right) + y_2(x) \left(\int \frac{y_1(x)f(x)}{a(x)W(x)} dx \right).$$

The proof is delayed to page 183.

History of Variation of Parameters. The solution y_p was discovered by varying the constants c_1 , c_2 in the homogeneous solution (3), assuming they depend on x. This results in formulas $c_1(x) = \int C_1 F$, $c_2(x) = \int C_2 F$ where F(x) = f(x)/a(x), $C_1(t) = \frac{-y_2(t)}{W(t)}$, $C_2(t) = \frac{y_1(t)}{W(t)}$; see the historical details on page 183. Then

$$\begin{split} y &= y_1(x) \int C_1 F + y_2(x) \int C_2 F & \text{Substitute in (3) for } c_1, \, c_2. \\ &= -y_1(x) \int y_2 \frac{F}{W} + y_2(x) \int y_1 \frac{F}{W} & \text{Use (??) for } C_1, \, C_2. \\ &= \int (y_2(x)y_1(t) - y_1(x)y_2(t)) \frac{F(t)}{W(t)} dt & \text{Collect on } F/W. \\ &= \int \frac{y_1(t)y_2(x) - y_1(x)y_2(t)}{y_1(t)y_2'(t) - y_1'(t)y_2(t)} F(t) dt & \text{Expand } W = y_1y_2' - y_1'y_2. \end{split}$$

Any one of the last three equivalent formulas is called a **classical variation of parameters formula**. The fraction in the last integrand is called Cauchy's kernel. We prefer the first, equivalent to equation (4), for ease of use.

18 Example (Independence) Consider y'' - y = 0. Show the two solutions $\sinh(x)$ and $\cosh(x)$ are independent using Wronskians.

Solution: Let W(x) be the Wronskian of $\sinh(x)$ and $\cosh(x)$. The calculation below shows W(x) = -1. By Theorem 10, the solutions are independent.

Background. The calculus *definitions* for hyperbolic functions are $\sinh x = (e^x - e^{-x})/2$, $\cosh x = (e^x + e^{-x})/2$. Their derivatives are $(\sinh x)' = \cosh x$ and $(\cosh x)' = \sinh x$. For instance, $(\cosh x)'$ stands for $\frac{1}{2}(e^x + e^{-x})'$, which evaluates to $\frac{1}{2}(e^x - e^{-x})$, or $\sinh x$.

Wronskian detail. Let $y_1 = \sinh x$, $y_2 = \cosh x$. Then

$W = y_1(x)y_2'(x) - y_1'(x)y_2(x)$	Definition of Wronskian W .
$=\sinh(x)\sinh(x)-\cosh(x)\cosh(x)$	Substitute for y_1 , y_1' , y_2 , y_2' .
$= \frac{1}{4}(e^x - e^{-x})^2 - \frac{1}{4}(e^x + e^{-x})^2$	Apply exponential definitions.
= -1	Expand and cancel terms.

19 Example (Wronskian) Given 2y'' - xy' + 3y = 0, verify that a solution pair y_1 , y_2 has Wronskian $W(x) = W(0)e^{x^2/4}$.

Solution: Let a(x) = 2, b(x) = -x, c(x) = 3. The Wronskian is a solution of W' = -(b/a)W, hence W' = xW/2. The solution is $W = W(0)e^{x^2/4}$, by growth-decay theory.

20 Example (Variation of Parameters) Solve $y'' + y = \sec x$ by variation of parameters, verifying $y = c_1 \cos x + c_2 \sin x + x \sin x + \cos(x) \ln |\cos x|$.

Solution:

Homogeneous solution y_h . The *recipe* for constant equation y'' + y = 0 is applied. The characteristic equation $r^2 + 1 = 0$ has roots $r = \pm i$ and $y_h = c_1 \cos x + c_2 \sin x$.

Wronskian. Suitable independent solutions are $y_1 = \cos x$ and $y_2 = \sin x$, taken from the *recipe*. Then $W(x) = \cos^2 x + \sin^2 x = 1$.

Calculate y_p . The variation of parameters formula (4) is applied. The integration proceeds near x = 0, because $\sec(x)$ is continuous near x = 0.

$$y_p(x) = -y_1(x) \int y_2(x) \sec(x) dx + y_2(x) \int y_1(x) \sec x dx$$

$$= -\cos x \int \tan(x) dx + \sin x \int 1 dx$$

$$= x \sin x + \cos(x) \ln |\cos x|$$
3

Details: 1 Use equation (4). 2 Substitute $y_1 = \cos x$, $y_2 = \sin x$. 3 Integral tables applied. Integration constants set to zero.

21 Example (Two Methods) Solve $y'' - y = e^x$ by undetermined coefficients and by variation of parameters. Explain any differences in the answers.

Solution: The general solution is reported to be $y = y_h + y_p = c_1 e^x + c_2 e^{-x} + xe^x/2$. Details follow.

Homogeneous solution. The characteristic equation $r^2 - 1 = 0$ for y'' - y = 0 has roots ± 1 . The homogeneous solution is $y_h = c_1 e^x + c_2 e^{-x}$.

Undetermined Coefficients Summary. The basic trial solution method gives initial trial solution $y = d_1e^x$, because the RHS = e^x has all derivatives given by a linear combination of the independent function e^x . The fixup rule applies because the homogeneous solution contains duplicate term c_1e^x . The final trial solution is $y = d_1xe^x$. Substitution into $y'' - y = e^x$ gives $2d_1e^x + d_1xe^x - d_1xe^x = e^x$. Cancel e^x and equate coefficients of powers of x to find $d_1 = 1/2$. Then $y_p = xe^x/2$.

Variation of Parameters Summary. The homogeneous solution $y_h = c_1 e^x + c_2 e^{-x}$ found above implies $y_1 = e^x$, $y_2 = e^{-x}$ is a suitable independent pair of solutions. Their Wronskian is W = -2

The variation of parameters formula (11) applies:

$$y_p(x) = e^x \int \frac{-e^{-x}}{-2} e^x dx + e^{-x} \int \frac{e^x}{-2} e^x dx.$$

Integration, followed by setting all constants of integration to zero, gives $y_p(x) = xe^x/2 - e^x/4$.

Differences. The two methods give respectively $y_p = xe^x/2$ and $y_p(x) = xe^x/2 - e^x/4$. The solutions $y_p = xe^x/2$ and $y_p(x) = xe^x/2 - e^x/4$ differ by the homogeneous solution $-xe^x/4$. In both cases, the general solution is

$$y = c_1 e^x + c_2 e^{-x} + \frac{1}{2} x e^x,$$

because terms of the homogeneous solution can be absorbed into the arbitrary constants c_1 , c_2 .

Proof of Theorem 10: The function W(t) given by Abel's identity is the unique solution of the growth-decay equation W' = -(b(x)/a(x))W; see page 3. It suffices then to show that W satisfies this differential equation. The details:

$W' = (y_1 y_2' - y_1' y_2)'$	Definition of Wronskian.
$= y_1 y_2'' + y_1' y_2' - y_1'' y_2 - y_1' y_2'$	Product rule; $y'_1y'_2$ cancels.
$= y_1(-by_2'-cy_2)/a - (-by_1'-cy_1)y_2/a$	Both y_1 , y_2 satisfy (2).
$= -b(y_1y_2' - y_1'y_2)/a$	Cancel common cy_1y_2/a .
= -bW/a	Verification completed.

The independence statement will be proved from the contrapositive: W(x) = 0 for all x if and only if y_1, y_2 are not independent. Technically, independence is defined relative to the common domain of the graphs of y_1, y_2 and W. Henceforth, for all x means for all x in the common domain.

Let y_1, y_2 be two solutions of (2), not independent. By re-labelling as necessary, $y_1(x) = cy_2(x)$ holds for all x, for some constant c. Differentiation implies $y'_1(x) = cy'_2(x)$. Then the terms in W(x) cancel, giving W(x) = 0 for all x.

Conversely, let W(x) = 0 for all x. If $y_1 \equiv 0$, then $y_1(x) = cy_2(x)$ holds for c = 0 and y_1, y_2 are not independent. Otherwise, $y_1(x_0) \neq 0$ for some x_0 . Define $c = y_2(x_0)/y_1(x_0)$. Then $W(x_0) = 0$ implies $y'_2(x_0) = cy'_1(x_0)$. Define $y = y_2 - cy_1$. By linearity, y is a solution of (2). Further, $y(x_0) = y'(x_0) = 0$. By uniqueness of initial value problems, $y \equiv 0$, that is, $y_2(x) = cy_1(x)$ for all x, showing y_1, y_2 are not independent.

Proof of Theorem 11: Let F(t) = f(t)/a(t), $C_1(x) = -y_2(x)/W(x)$, $C_2(x) = y_1(x)/W(x)$. Then y_p as given in (4) can be differentiated twice using the product rule and the fundamental theorem of calculus rule $(\int g)' = g$. Because $y_1C_1 + y_2C_2 = 0$ and $y'_1C_1 + y'_2C_2 = 1$, then y_p and its derivatives are given by

$$\begin{array}{rcl} y_p(x) &=& y_1 \int C_1 F dx + y_2 \int C_2 F dx, \\ y'_p(x) &=& y'_1 \int C_1 F dx + y'_2 \int C_2 F dx, \\ y''_p(x) &=& y''_1 \int C_1 F dx + y''_2 \int C_2 F dx + F(x) \end{array}$$

Let $F_1 = ay_1'' + by_1' + cy_1$, $F_2 = ay_2'' + by_2' + cy_2$. Then

$$ay_{p}'' + by_{p}' + cy_{p} = F_{1} \int C_{1}Fdx + F_{2} \int C_{2}Fdx + aF_{2}$$

Because y_1 , y_2 are solutions of the homogeneous differential equation, then $F_1 = F_2 = 0$. By definition, aF = f. Therefore,

$$ay_p'' + by_p' + cy_p = f.$$

The proof is complete.

Historical Details. The original variation ideas, attributed to Joseph Louis Lagrange (1736-1813), involve substitution of $y = c_1(x)y_1(x) + c_2(x)y_2(x)$ into (1) plus imposing an extra condition on the unknowns c_1 , c_2 :

$$c_1'y_1 + c_2'y_2 = 0.$$

The product rule gives $y' = c'_1y_1 + c_1y'_1 + c'_2y_2 + c_2y'_2$, which then reduces to the two-termed expression $y' = c_1 y'_1 + c_2 y'_2$. Substitution into (1) gives

$$a(c_1'y_1' + c_1y_1'' + c_2'y_2' + c_2y_2'') + b(c_1y_1' + c_2y_2') + c(c_1y_1 + c_2y_2) = f$$

which upon collection of terms becomes

$$c_1(ay_1'' + by_1' + cy_1) + c_2(ay_2'' + by_2' + cy_2) + ay_1'c_1' + ay_2'c_2' = f.$$

The first two groups of terms vanish because y_1, y_2 are solutions of the homogeneous equation, leaving just $ay'_1c'_1 + ay'_2c'_2 = f$. There are now two equations and two unknowns $X = c'_1, Y = c'_2$:

Solving by elimination,

$$X = \frac{-y_2 f}{aW}, \quad Y = \frac{y_1 f}{aW}.$$

Then c_1 is the integral of X and c_2 is the integral of Y, which completes the historical account of the relations

$$c_1(x) = \int \frac{-y^2(x)f(x)}{a(x)W(x)} dx, \quad c_2(x) = \int \frac{y_1(x)f(x)}{a(x)W(x)} dx.$$

Exercises 4.6

8. y'' + y' = 0

Independence. Find solutions y_1, y_2 12. y'' + 16y' + 4y = 0of the given homogeneous differential 13. $x^2y'' + y = 0$ equation which are independent by the Wronskian test, page 180. 14. $x^2y'' + 4y = 0$ 1. y'' - y = 0**15.** $x^2y'' + 2xy' + y = 0$ **2.** y'' - 4y = 016. $x^2y'' + 8xy' + 4y = 0$ **3.** y'' + y = 0Wronskian. Compute the Wronskian, 4. y'' + 4y = 0up a constant multiple, without solving the differential equation. 5. 4y'' = 0**17.** y'' + y' - xy = 0**18.** y'' - y' + xy = 06. y'' = 0

7.
$$4y'' + y' = 0$$

18. $y'' - y' + xy = 0$

19.
$$2y'' + y' + \sin(x)y = 0$$

- 9. y'' + y' + y = 0
- **20.** $4y'' y' + \cos(x)y = 0$ **21.** $x^2y'' + xy' y = 0$ **22.** $x^2y'' 2xy' + y = 0$ 10. y'' - y' + y = 011. y'' + 8y' + 2y = 0

 Variation of Parameters. Find the general solution y_h + y_p by applying a variation of parameters formula. 35. y" = x² 36. y" = x³ 37. y" + y = sin x 	38. $y'' + y = \cos x$ 39. $y'' + y' = \ln x $
35. $y'' = x^2$	40. $y'' + y' = -\ln x $
36. $y'' = x^3$	41. $y'' + 2y' + y = e^{-x}$
37. $y'' + y = \sin x$	42. $y'' - 2y' + y = e^x$