Name. \qquad Section. \qquad

Applied Differential Equations 2250-1 and 2250-3 Midterm Exam 3, Due classtime 13-Nov-2002

Instructions. The four take-home problems below are to be attached to your in-class exam. Answer checks are expected. If maple assist is used, then please attach the maple output.
The in-class portion of the exam is 15 minutes, one problem, of a type similar to one of the four problems. Calculators, hand-written or computer-generated notes are allowed, including xerox copies of tables or classroom xerox notes. Books are not allowed.

1. (Variation of Parameters) Show the steps in the solution of

$$
y^{\prime \prime}-y=x e^{x}
$$

by variation of parameters, to obtain the general solution

$$
y=c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{4}\left(x^{2}-x\right) e^{x} .
$$

Use formula (3), page 335.
2. (Undetermined Coefficients) Show the steps in the solution of

$$
y^{\prime \prime \prime}-y^{\prime}=x+x e^{x}-\sin x
$$

by undetermined coefficients, to obtain the general solution

$$
y=c_{1} e^{x}+c_{2} e^{-x}+c_{3}+\frac{1}{4}\left(x^{2}-3 x+7 / 2\right) e^{x}-\frac{1}{2} x^{2}-\frac{1}{2} \cos x .
$$

3. (Practical Resonance) Given $x^{\prime \prime}+10 x^{\prime}+650 x=100 \cos (\omega t)$, find
(a) the steady-state solution $x=A \cos (\omega t)+B \sin (\omega t)$,
(b) the amplitude $C(\omega)$,
(c) the practical resonant frequency ω^{*}.

Use formulas on pages 346-347. Show all steps used to obtain the answers.
4. (RLC Circuit) Find an RLC-circuit equation $L Q^{\prime \prime}+R Q^{\prime}+(1 / C) Q=E(t)$ whose general solution is given by the charge equation

$$
Q(t)=c_{1} e^{-2 t} \cos (\sqrt{3} t)+c_{2} e^{-2 t} \sin (\sqrt{3} t)+\sin (t)-5 \cos (t) .
$$

Hint: Apply superposition to find Q_{h} and Q_{p}. Once you choose L, R, C, then the differential equation when $Q=Q_{p}$ determines $E(t)$.

