Name. \qquad Section. \qquad

Applied Differential Equations 2250-1 and 2250-2 Midterm Exam 4, Due classtime April 18, 2003

Instructions. Answer checks are expected. If maple assist is used, then please attach the maple output.

The in-class portion of the exam (April 21) is 15 minutes, one problem, of a type similar to one of the last two problems. Calculators, hand-written or computer-generated notes are allowed, including xerox copies of tables or classroom xerox notes. Books are not allowed.

1. (Eigenanalysis) Find the 3×3 matrix P which under the change of variables $x=P Y$ converts the system $x^{\prime}=A x$ into $Y^{\prime}=D Y$, where

$$
A=\left(\begin{array}{rrr}
2 & 0 & 0 \\
-3 & 3 & -4 \\
-3 & 0 & -1
\end{array}\right), \quad D=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

Represent the general solution of $x^{\prime}=A x$ as a matrix product, by solving $Y^{\prime}=D Y$ and then back-substituting the answer into the relation $x=P Y$.
2. (Coupled spring-mass system) The system

$$
\begin{align*}
& m_{1} x_{1}^{\prime \prime}=-k_{1} x_{1}+k_{2}\left(x_{2}-x_{1}\right), \\
& m_{2} x_{2}^{\prime \prime}=-k_{2}\left(x_{2}-x_{1}\right)+k_{3}\left(x_{3}-x_{2}\right), \tag{1}\\
& m_{3} x_{3}^{\prime \prime}=-k_{3}\left(x_{3}-x_{2}\right)-k_{4} x_{3}
\end{align*}
$$

represents three masses m_{1}, m_{2}, m_{3} coupled by springs of Hooke's constant k_{1}, k_{2}, k_{3}, k_{4} as in Figure 7.4.1, Edwards-Penney. Let $m_{1}=m_{2}=m_{3}=2, k_{1}=k_{2}=k_{3}=$ $k_{4}=1$. Find the natural frequencies $\omega_{1}, \omega_{2}, \omega_{3}$ of ocillation of system (1). Do Not Solve for x_{1}, x_{2}, x_{3} !
3. (Laplace transform) Solve $x^{\prime \prime}+x=5 \sin 4 t, x(0)=0, x^{\prime}(0)=0$ by two methods: (1) Undetermined coefficients and (2) Laplace transform. Show all steps, thus verifying the answer $x=-\frac{1}{3} \sin (4 t)+\frac{4}{3} \sin (t)$.
4. (Laplace inverse transform) Show the partial fraction steps involved in solving for $f(t)$ in the Laplace equation

$$
\mathcal{L}(f(t))=\frac{2 s}{(s+1)(s+2)\left(s^{2}+1\right)} .
$$

Kindly flag the step where Lerch's theorem is applied to give the answer $f(t)=$ $-e^{-t}+\frac{4}{5} e^{-2 t}+\frac{1}{5} \cos (t)+\frac{3}{5} \sin (t)$.

