Differential Equations and Linear Algebra 2250-2
 10:45 Midterm Exam 3, Spring 2006

Version 3

Calculators, books, notes and computers are not allowed. Answer checks are not expected or required. First drafts are expected, not complete presentations. The midterm exam has 5 problems, some with multiple parts, suitable for 50 minutes.

1. (ch4) Complete enough of the following to add to 100%.
(a) $[100 \%]$ Let S be the vector space of all continuously differentiable functions defined on $-2 \leq x \leq 2$. Define V to be the set of all functions $f(x)$ in S such that $\int_{0}^{2} x f^{\prime}(x) d x=0$. Prove that V is a subspace of S, by using the Subspace Criterion.
(b) [30%] Let S be the set of all 3×1 column vectors \mathbf{x} with components x_{1}, x_{2}, x_{3}. Assume the usual \mathcal{R}^{3} rules for addition and scalar multiplication. Let V be the subset of S defined by the dot product equations $(\mathbf{a}+\mathbf{b}) \cdot \mathbf{x}=\mathbf{0}, \mathbf{b} \cdot \mathbf{x}=\mathbf{0}$, where \mathbf{a} and \mathbf{b} are vectors in S. Prove that V is a subspace of S.
(c) [70\%] Solve for the unknowns a, b, c, d in the system of equations below by augmented matrix RREF methods, showing all details. Briefly, show the entire snapshot sequence to the rref, then display the general solution with variables t_{1}, t_{2}, \ldots.

$$
\begin{aligned}
a+b-2 c+d & =2 \\
+b+2 c+d & =0 \\
a+2 b+d & =2 \\
a+3 b+2 c+d & =2
\end{aligned}
$$

Solution 1(a). Use the subspace criterion: (a) Given f and g in V, write details to show $f+g$ is in V; (b) Given f in V and k constant, write details to show $k f$ is in V. Let $h(x)=x$, which is a function in S. Details for (a): Given $\int_{0}^{2} f^{\prime}(x) h(x) d x=0$ and $\int_{0}^{2} g^{\prime}(x) h(x) d x=0$, add the equations to obtain the equation $\int_{0}^{1}\left(f^{\prime}(x)+g^{\prime}(x)\right) h(x) d x=0$. This finishes (a). Details for (b): Given $\int_{0}^{2} f^{\prime}(x) h(x) d x=0$ and k constant, multiply the equation by k and re-arrange factors to obtain the new equation $\int_{0}^{2}\left(k f^{\prime}(x)\right) h(x) d x=0$. This proves (b).

Solution 1(b). Let \mathbf{a} and \mathbf{b} be given. Let A be the matrix whose rows are $\mathbf{a}+\mathbf{b}, \mathbf{b}, \mathbf{0}$. Then the restriction equations given are equivalent to $A \mathbf{x}=\mathbf{0}$. By Theorem 2 in Edwards-Penney, V is a subspace of S.
Solution 1(c). The answer is $\left(\begin{array}{c}2+4 t_{1}-t_{2} \\ -2 t_{1} \\ t_{1} \\ t_{2}\end{array}\right)=\left(\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right)+t_{1}\left(\begin{array}{r}4 \\ -2 \\ 1 \\ 0\end{array}\right)+t_{2}\left(\begin{array}{r}-1 \\ 0 \\ 0 \\ 1\end{array}\right)$.
2. (ch5) Complete (a) and either (b) or (c). Do not do both (b) and (c).
(a) [30\%] Given $4 x^{\prime \prime}(t)+4 x^{\prime}(t)+5 x(t)=0$, which represents a damped spring-mass system with $m=4$, $c=4, k=5$, solve the differential equation [20\%] and classify the answer as over-damped, critically damped or under-damped [10\%].
(b) $[70 \%]$ Display by variation of parameters a particular solution x_{p} for the equation $x^{\prime \prime}+2 x^{\prime}=f(t)$. Leave the answer in unevaluated integral form. Evaluate all symbols except $f(t)$ appearing in (33) of Edwards-Penney.
(c) $[70 \%]$ Find by undetermined coefficients the steady-state periodic solution for the equation $x^{\prime \prime}+$ $2 x^{\prime}+2 x=5 \sin (t)$.
Solution 2(a).
Use $4 r^{2}+4 r+5=0$ and the quadratic formula to obtain roots $r_{1}=-1 / 2+i, r_{2}=-1 / 2-i$. Case 3 of the recipe gives $x(t)=c_{1} e^{-t / 2} \cos t+c_{2} e^{-t / 2} \sin t$. This is under-damped.

Solution 2(b).

Solve $x^{\prime \prime}+2 x^{\prime}=0$ by the recipe to get $x_{h}=c_{1} x_{1}+c_{2} x_{2}, x_{1}=1, x_{2}=e^{-2 t}$. Compute the Wronskian $W=x_{1} x_{2}^{\prime}-x_{1}^{\prime} x_{2}=-2 e^{-2 t}$. Then

$$
x_{p}=x_{1} \int x_{2} \frac{-f}{W} d t+x_{2} \int x_{1} \frac{f}{W} d t
$$

becomes

$$
x_{p}=\int \frac{f}{2} d t+e^{-2 t} \int \frac{-f(t) e^{2 t}}{2} d t .
$$

Solution 2(c). The trial solution is $x=d_{1} \cos t+d_{2} \sin t$. Substitute the trial solution to obtain the answers $d_{1}=-2, d_{2}=1$. The unique periodic solution x_{SS} is extracted from the general solution $x=x_{h}+x_{p}$ by crossing out all negative exponential terms (terms which limit to zero at infinity). If $x=x_{h}+x_{p}$ and $x_{p}=$ $d_{1} \cos t+d_{2} \sin t=-2 \cos t+\sin t$, then all terms of $x_{h}=c_{1} e^{-t} \cos t+c_{2} e^{-t} \sin t$ are crossed out, giving the steady-state solution

$$
x_{\mathrm{SS}}=-2 \cos t+\sin t .
$$

3. (ch5) Complete all parts below.
(a) [75\%] Determine for $y^{v}-9 y^{\prime \prime \prime}=2 x e^{3 x}+3 x^{3}+2 \cos 3 x+\sin 3 x$ the corrected trial solution for y_{p} according to the method of undetermined coefficients. To save time, do not evaluate the undetermined coefficients (that is, do undetermined coefficient steps $\mathbf{1}$ and 2 , but skip steps $\mathbf{3}$ and $\mathbf{4}$)! Undocumented detail or guessing earns no credit.
(b) [25\%] Using the recipe for higher order constant-coefficient differential equations, write out the general solution when the characteristic equation is $\left(r^{2}-4\right)^{3}(r+2)\left(r^{2}+6 r+10\right)^{2}=0$.
Solution 3(a).
The homogeneous solution is $y_{h}=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} e^{2 x}+c_{5} e^{-2 x}$, because the characteristic polynomial has roots $0,0,0,2,-2$.
1 An initial trial solution y is constructed for atoms $1, x, x^{2}, x^{3}, e^{3 x}, x e^{3 x}, \cos 3 x, \sin 3 x$ giving

$$
\begin{aligned}
& y=y_{1}+y_{2}+y_{3}, \\
& y_{1}=d_{1}+d_{2} x+d_{3} x^{2}+d_{4} x^{3}, \\
& y_{2}=\left(d_{5}+d_{6} x\right) e^{3 x}, \\
& y_{3}=d_{7} \cos 3 x+d_{8} \sin 3 x .
\end{aligned}
$$

Linear combinations of the listed independent atoms are supposed to reproduce, by assignment of constants, all derivatives of the right side of the differential equation.
2 The fixup rule $\left[d_{j} \rightarrow d_{j} x^{s_{j}}\right]$ is applied individually to each atom to give the corrected trial solution

$$
\begin{aligned}
& y=y_{1}+y_{2}+y_{3}, \\
& y_{1}=x^{3}\left(d_{1}+d_{2} x+d_{3} x^{2}+d_{4} x^{3}\right), \\
& y_{2}=x\left(d_{5}+d_{6} x\right) e^{3 x}, \\
& y_{3}=d_{7} \cos 3 x+d_{8} \sin 3 x .
\end{aligned}
$$

The powers $x^{s_{j}}$ multiplied in each case are designed to eliminate terms in the initial trial solution which duplicate atoms appearing in the homogeneous solution y_{h}. The factor is exactly x^{s} of the Edwards-Penney table, where s is the multiplicity of the characteristic equation root r that produced the related atom in the homogeneous solution y_{h}. By design, unrelated atoms are unaffected by the fixup rule $\left[s_{j}=0\right.$ in this case and factor $x^{0}=1$] and that is why y_{3} was unaltered.
3 Undetermined coefficient step skipped, according to the problem statement.
4 Undetermined coefficient step skipped, according to the problem statement.

Solution 3(c).

Write $\left(r^{2}-4\right)^{3}(r+2)\left(r^{2}+6 r+10\right)^{2}=0$ as $(r-2)^{3}(r+2)^{4}\left(r^{2}+6 r+10\right)^{2}=0$, then $y=u_{1} e^{2 x}+u_{2} e^{-2 x}+u_{3} e^{-3 x} \cos x+$ $u_{4} e^{-3 x} \sin x$. The polynomials are $u_{1}=c_{1}+c_{2} x+c_{3} x^{2}(3$ terms for multiplicity 3$), u_{2}=c_{4}+c_{5} x+c_{6} x^{2}+c_{7} x^{3}$ [4 terms for multiplicity 4], $u_{3}=c_{8}+c_{9} x, u 4=c_{10}+c_{11} x$.
4. (ch6) Complete all of the items below.
(a) $[40 \%]$ Find the eigenvalues of the matrix $A=\left[\begin{array}{rrrr}4 & 1 & -1 & 0 \\ 0 & 5 & -2 & 1 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 5 & 1\end{array}\right]$. To save time, do not find eigenvectors!
(b) $[60 \%]$ Given $A=\left[\begin{array}{rrr}1 & 1 & -1 \\ 0 & 5 & 1 \\ 0 & 1 & 5\end{array}\right]$, then there exists an invertible matrix P and a diagonal matrix D such that $A P=P D$. Find a column of P so that 6 appears in the same column of D.

Solution 4(a).

Subtract λ from the diagonal elements of A and expand the determinant $\operatorname{det}(A-\lambda I)$ to obtain the characteristic polynomial $(4-\lambda)(5-\lambda)[(1-\lambda)(1-\lambda)+20]=0$. The eigenvalues are the roots: $\lambda=4,5,1+2 \sqrt{5} i, 1-2 \sqrt{5} i$. Used here was the cofactor rule for determinants. Sarrus' rule does not apply for 4×4 determinants (an error) and the triangular rule likewise does not directly apply (another error).
Solution 4(b).
Details: According to the theory of diagonalizable matrices, P is the matrix package of eigenvectors and D is the matrix package of eigenvalues. There are $3!=6$ possible orderings to make these packages, hence 6 possible choices exist, all of which are correct. In all cases, an eigenpair is entered in the same location in each package. One way to package:

$$
P=\left(\begin{array}{rrr}
0 & 1 & 2 \\
1 & 0 & 3 \\
1 & 0 & -3
\end{array}\right), \quad D=\left(\begin{array}{rrr}
6 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

The problem is solved without displaying the packages. It suffices to recognize that $A \mathbf{x}=6 \mathbf{x}$ defines the eigenvector \mathbf{x} corresponding to $\lambda=6$. Solving gives column 1 of P above.
5. (ch6) Complete all parts below.

Consider a given 3×3 matrix A having three eigenpairs

$$
5,\left(\begin{array}{c}
4 \\
5 \\
0
\end{array}\right) ; \quad-3,\left(\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right) ; \quad 3,\left(\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right)
$$

(a) $[50 \%]$ Display the vector general solution $\mathbf{x}(t)$ of the linear differential system $\mathbf{x}^{\prime}=A \mathbf{x}$.
(b) $[20 \%]$ Write a matrix algebra formula for the matrix A of (a) above. To save time, do not evaluate anything.
(c) $[30 \%]$ Let B be a certain 2×2 matrix. Fourier's model for the computation of $B \mathbf{x}$ is known to be

$$
\begin{aligned}
& \mathbf{x}=c_{1}\binom{1}{2}+c_{2}\binom{-1}{2} \\
& B \mathbf{x}=-c_{1}\binom{1}{2}-3 c_{2}\binom{-1}{2}
\end{aligned}
$$

Find B.

Solution 5(a).

Answer: The eigenanalysis method implies

$$
\mathbf{x}(t)=c_{1} e^{5 t}\left(\begin{array}{l}
4 \\
5 \\
0
\end{array}\right)+c_{2} e^{-3 t}\left(\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right)+c_{3} e^{3 t}\left(\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right)
$$

Solution 5(b).

$$
A P=P D \text { implies } A=P D P^{-1} .
$$

Solution 5(c).
Answer: Fourier's model implies the eigenpairs of B are given by

$$
\left(-1,\binom{1}{2}\right), \quad\left(-3,\binom{-1}{2}\right) .
$$

Then $D=\left(\begin{array}{rr}-1 & 0 \\ 0 & -3\end{array}\right)$ and $P=\left(\begin{array}{rr}1 & -1 \\ 2 & 2\end{array}\right)$ implies by $B P=P D$ that $B=P D P^{-1}$ and finally

$$
B=\left(\begin{array}{rr}
-2 & 1 / 2 \\
2 & -2
\end{array}\right) \text {. }
$$

