Name. \qquad Section.

Applied Differential Equations 2250-1 and 2250-2 Midterm Exam 3, Due classtime 7 April 2003

Instructions. Answer checks are expected. If maple assist is used, then please attach the maple output.
The in-class portion of the exam on April 4 is 15 minutes, one problem, of a type similar to one of the four problems. Calculators, hand-written or computer-generated notes are allowed, including xerox copies of tables or classroom xerox notes. Books are not allowed.

1. (Variation of Parameters) Show the steps in the solution of

$$
y^{\prime \prime}-y=-x e^{-x}
$$

by variation of parameters, to obtain the general solution

$$
y=c_{1} e^{x}+c_{2} e^{-x}+(1 / 4) x(1+x) e^{-x} .
$$

Use formula (3), page 335.
2. (Undetermined Coefficients) Show the steps in the solution of

$$
y^{\prime \prime \prime}-y^{\prime}=x^{2}+x e^{-x}+\sin x
$$

by undetermined coefficients, to obtain the general solution

$$
y=c_{1} e^{x}+c_{2} e^{-x}+c_{3}-(1 / 3) x^{3}-2 x+(1 / 2) \cos (x)+(1 / 4) e^{-x} x^{2}+(3 / 4) x e^{-x}+(7 / 8) e^{-x} .
$$

3. (Practical Resonance) Given $x^{\prime \prime}+10 x^{\prime}+50 x=16 \cos (\omega t)$, find
(a) the derivative of the amplitude $C(\omega)$,
(b) the practical resonant frequency ω^{*}.

Use formulas on pages 346-347. Show all steps used to obtain the answers.
4. (Spring-mass system) Find a spring-mass equation $m x^{\prime \prime}+c x^{\prime}+k x=F(t)$ whose general solution is given by

$$
x(t)=c_{1} e^{-t} \cos (\sqrt{2} t)+c_{2} e^{-t} \sin (\sqrt{2} t)+\sin (2 t)+5 \cos (2 t)
$$

Hint: Apply superposition to determine x_{h} and x_{p}. Let $m=1$. Choose c and k to match x_{h}. Compute $F(t)$ from the differential equation with x replaced by x_{p}.

