Name. \qquad
Scores
Problem 1. Periodic harvesting.
Problem 2. Cross bow.
Problem 3. Gaussian algorithm.
Problem 4. Inverse matrix.
Problem 5. In-class, October 18.
Average.

Applied Differential Equations 2250-1 Version A-M Midterm Exam 2 In-Class
 Friday, 18 October, 2002

Instructions: This in-class exam is 15 minutes. Hand-written or computer-generated notes are allowed, including xerox copies of tables or classroom xerox notes. Calculators are allowed. Books are not allowed.
5. (RREF method)

Let a and b denote constants and consider the system of equations

$$
\left(\begin{array}{ccc}
1 & a+b & b \\
0 & 0 & a \\
1 & a+b & a+b
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
a \\
b
\end{array}\right)
$$

(1) Determine those values of a and b such that the system has a solution.
(2) For each of the values in (1), solve the system.
(3) For each of the solutions in (2), check the answer.

Name. \qquad
Scores
\qquad Problem 1. Periodic harvesting.
Problem 2. Cross bow.
Problem 3. Gaussian algorithm.
Problem 4. Inverse matrix.
Problem 5. In-class, October 18.
Average.

Applied Differential Equations 2250-1 Version N-Z
 Midterm Exam 2 In-Class
 Friday, 18 October, 2002

Instructions: This in-class exam is 15 minutes. Hand-written or computer-generated notes are allowed, including xerox copies of tables or classroom xerox notes. Calculators are allowed. Books are not allowed.
5. (RREF method)

Let c and d denote constants and consider the system of equations

$$
\left(\begin{array}{ccc}
1 & c-d & -d \\
0 & 0 & c \\
1 & c-d & c-d
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
0 \\
c \\
-d
\end{array}\right)
$$

(1) Determine those values of c and d such that the system has a solution.
(2) For each of the values in (1), solve the system.
(3) For each of the solutions in (2), check the answer.

Name. \qquad
Scores
Problem 1. Periodic harvesting.
Problem 2. Cross bow.
Problem 3. Gaussian algorithm.
Problem 4. Inverse matrix.
Problem 5. In-class, October 18.
Average.

Applied Differential Equations 2250-3 Midterm Exam 2 In-Class
 Friday, 18 October, 2002

Instructions: This in-class exam is 15 minutes. Hand-written or computer-generated notes are allowed, including xerox copies of tables or classroom xerox notes. Calculators are allowed. Books are not allowed.
5. (RREF method)

Let a and b denote constants and consider the system of equations

$$
\left(\begin{array}{ccc}
1 & a+b & b \\
0 & 0 & a \\
1 & a+b & a+b
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
0 \\
3 a \\
2 b
\end{array}\right)
$$

(1) Determine those values of a and b such that the system has a solution.
(2) For each of the values in (1), solve the system.
(3) For each of the solutions in (2), check the answer.

