Applied Differential Equations 2250 Sample Midterm Exam 2, 7:30 and 10:45 Monday, 31 October 2005

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (rref)

(a) Determine b such that the system has infinitely many solutions:

Answer: 1 - 2b = 0

(b) Determine a, b such that the system has infinitely many solutions:

Answer: -3 + b = 0 and 3a - 1 = 0

2. (vector spaces)

(a) Give two examples of vector spaces of functions, one of dimension two and one of dimension three. (b) Let V be the vector space of all continuous functions on the real line and let S be the subset of V given by all solutions of the differential equation y' = -2y. Prove that S is a subspace of V. (c) Find a basis for the subspace of \mathcal{R}^3 given by the system of equations

$$\begin{array}{rcl} x + 2y - z &=& 0, \\ x + y - 2z &=& 0, \\ y + z &=& 0, \end{array}$$

Answer (a): $V = \{c_1 + c_2t\}$ and $W = \{c_1 + c_2t + c_3t^2\}$ are vector spaces of polynomials with dim(V) = 2and $\dim(W) = 3$.

Solution (b): All functions y in Slook like $y = c_1 e^{-2t}$. Adding two such functions gives a function in S and multiplying such a function by a scalar gives a function in S. Then S is closed under addition and scalar multiplication. Therefore, S is a subspace of V.

Answer (c):
$$x = 3t_1, y = -t_1, z = t_1$$
. A basis is $\partial_{t_1} \mathbf{x} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$.

3. (independence)

(a) Let $\mathbf{u} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$. State and apply a test that shows \mathbf{u} , \mathbf{v} , \mathbf{w} are

dependent.

(b) Extract from the list below a largest set of independent vectors.

$$\mathbf{a} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ -1 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 2 \\ -2 \\ 0 \\ -2 \end{pmatrix}, \ \mathbf{c} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \ \mathbf{d} = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 4 \end{pmatrix}, \ \mathbf{e} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 3 \end{pmatrix}.$$

Solution (a): Let A = aug(u, v, w). The test is

 $\mathbf{rref}(A)$ has three leading ones if and only if $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are independent.

Computing $\operatorname{rref}(A)$ shows it has a row of zeros, so the vectors are dependent.

Solution (b): Let $A = \operatorname{aug}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e})$. Find $\operatorname{rref}(A)$. Then leading ones are in columns 1 and 3, giving corresponding columns \mathbf{a} , \mathbf{c} as the pivot columns of A. Answer: $\{\mathbf{a}, \mathbf{c}\}$ is a largest independent subset.

4. (determinants and elementary matrices)

(a)Assume given 3×3 matrices A, B. Suppose $B = E_1 E_2 A$ and E_1 , E_2 are elementary matrices representing swap rules. Explain precisely why $\det(B) = \det(A)$.

(b) Let A and B be two 7×7 matrices such that AB contains two duplicate rows. Explain precisely why either det(A) or det(B) is zero.

Solution (a): $\det(B) = \det(E_1) \det(E_2) \det(A)$ by the product rule for determinants. Each swap rule has determinant -1. So $\det(B) = (-1)(-1) \det(A) = \det(A)$.

Solution (b): det(AB) = 0 because the determinant has two duplicate rows. Then det(A) det(B) = 0 by the product theorem for determinants. Hence either det(A) = 0 or det(B) = 0.

5. (inverses and Cramer's rule)

(a) Determine all values of x for which A^{-1} exists: $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & -3 \\ 0 & 0 & -3 \end{pmatrix}$.

(b) Solve for
$$y$$
 in $A\mathbf{u} = \mathbf{b}$ by Cramer's rule: $A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 0 & 2 \\ 2 & -2 & 1 \end{pmatrix}$, $\mathbf{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

Answer (a): $det(A) \neq 0$ which is $x \neq 4/3$.

Answer (b): $\Delta = 6$, x = 0, y = 1/2, z = 0. The answer for y only is obtained as a quotient of two determinants, so it takes less time than finding all three values.