\qquad

Applied Differential Equations 2250-1 and 2250-2 Midterm Exam 2, Fall 2003, Version T-Z Due Wed 15 Oct $(1,2)$ and Fri 17 Oct $(3,4)$
 Inclass Exam Date: Monday, 20 October, 2003

Instructions. Choose the exam version based upon your last name, e.g., John Timpson chooses exam version T-Z, because \mathbf{T} of $\mathbf{T i m p s o n}$ is between \mathbf{T} and \mathbf{Z}.

The four problems below are take-home, due on the dates above at class time. Answer checks are expected. If maple assist is used, then please attach the maple output. The remaining 20% of the exam is in class, the last 15 minutes of the hour, one problem, of a type similar to \# 3 or 4 below. No books, notes, calculators, computers or outside materials allowed.

1. (Periodic harvesting) The population equation $y^{\prime}=3 y(4-y)-11 \sin (2 \pi t)$ appears to have a steady-state periodic solution that oscillates about $y=4$. (a) Apply ideas from the example below to make a computer graphic with 6 solution curves that oscillate about $y=4$. Submit the plot and the maple code. (b) Find by computer experiment a threshold population size y_{1} so that $y(0)<y_{1}$ implies $y(t)=0$ (population dies out) for some later time t, while $y(0)>y_{1}$ implies $y(t)>0$ forever and the solution $y(t)$ oscillates about $y=3$. See Figure 2.5.12, page 128.
```
# Example. See Figure 12, section 2.5
with(DEtools):
de:=diff (y(t),t)=y(t)*(2-y(t))-4*\operatorname{cos}(4*Pi*t) :
ic:=[y(0)=1.7],[y(0)=2],[y(0)=2.4],[y(0)=2.8]:
DEplot(de,y(t),t=0..4,y=1..3,[ic],stepsize=0.05);
```

2. (Jules Verne Problem) Assume a model

$$
\frac{d^{2} r}{d t^{2}}=-\frac{G m_{1}}{\left(R_{1}+r\right)^{2}}+\frac{G m_{2}}{\left(R_{2}-R_{1}-r\right)^{2}}, \quad r(0)=0, \quad r^{\prime}(0)=v_{0}
$$

where R_{2} is the mean center-to-center distance from the earth to the moon and R_{1} is the mean radius of the earth. The mass m_{1} of the earth and m_{2} of the moon appear, plus the universal gravitation constant G. All units are $M K S$.
(a) Explain why this model takes into account the gravitational attraction of both the moon and the earth.
(b) Calculate the distance r^{*} at which the projectile has net acceleration zero. Give a symbolic answer and also a numerical answer $\approx 3.39 \times 10^{8}$ meters.
(c) Conduct a numerical experiment to find the flight time to the moon, when the launch velocity $r^{\prime}(0)$ is $32 \mathrm{~m} / \mathrm{s}$ faster than the minimal launch velocity $v_{0}=$ $\sqrt{2 F(0)-2 F\left(r^{*}\right)}, F(r)=\frac{G m_{1}}{R_{1}+r}+\frac{G m_{2}}{R_{2}-R 1-r}$. Use the sample maple code below to do the experiment.

```
# Group 1
G:=6.6726e-11: m1:=5.975e24: m2:=7.36e22:
R1:=6.378e6: R2:=3.84e8: v0:=1000: T:=210:
de:=diff(r(t),t,t)=-G*m1/(r(t)+R1)^ 2+G*m2/(R2-R1-r(t))^ 2:
ic:=r(0)=0,D(r)(0)=v0:
p:=dsolve({de,ic},r(t),type=numeric,method=lsode);
Y:=t->rhs(p(t)[2]):
plot('Y(t)',t=0..T);
# Plot done. Change v0, T and re-execute group 1.
```

3. (Gaussian algorithm) Solve for x, y, z in the 3×3 linear system

$$
\begin{aligned}
& 2 x+2(a-b) y+c z=-b \\
& 3 x+(a-b) y+2 c z=2 b \\
& 5 x+3(a-b) y+3 c z=b
\end{aligned}
$$

using the Gaussian algorithm, for all constant values of a, b, c. Include all algorithm details and an answer check for each of the three separate cases. Sanity check: $a+b \neq 0$ is one case, with parametric solution $x=5 b / 4-3 c t_{1} / 4, y=-7 b /(4 a-$ $4 b)+c t_{1} /(4 a-4 b), z=t_{1}$. The case $a-b=0$ has subcases $c \neq 0$ and $c=0$, for one of which you will report no solution.
4. (Inverse matrix) Determine by rref methods the inverse matrix of

$$
A=\left(\begin{array}{rrr}
1 & b & 0 \\
-a & 0 & -b \\
0 & 1 & 1
\end{array}\right)
$$

Please state conditions on a, b for when the inverse exists. Show all hand details. Prove that in the absence of your condition, no inverse exists. Include an answer check, preferably done in maple.

