Name. KE y 2250 Midterm 2 Ver 3 [10:45]

1. (rref)
Determine a, b such that the system has (1) infinitely many solutions, (2) no solutions.
z + by + z = l+4a
5z + 3y + 22 = 3+3a
6z + 9y + 3bz = 2+4a
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2. (vector spaces)
(a) [25%] Give an example of a vector space of functions of dimension five.
T
(b) [26%] Let S be the vector space of all column vectors | z3 | and let V be the subset of S given
T3
by the equation 2z9 = 3(xzy — z3). Prove that V is a subspace of S. Edwards and Penney Theorem 2

may be referenced in the proof, in order to shorten details. If you cite Theorem 2, then please state the
Theorem.

(c) [50%] Find a basis for the subspace of R?® given by the system of equations

z+4y -2z = 0,
z+2y—3z = 0,
242z = 0,
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3. (independence) Do only two of the following.

1 2 1
(a) [50%] Let u = _1 , V= (1) , W= _? . State and apply a test that decides independence
0 0 0

or dependence of the list of vectors u, v, w.

(b) [60%)] State the pivot theorem [10%], then extract from the list below a largest set of independent
vectors [40%)].

1 1 2 5 2 3
1 -1 -2 -3 0 -1
a = 0 . b= 0 ,C= 0 ,d= 0 , €= 0 ,f= 0
3 -1 -2 -1 2 1
(c) [50%] Assume that matrix D is invertible. Prove:
If Dx;, Dxy, ..., Dx, are independent, then x1, Xg, ..., X, are independent.
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4. (determinants and elementary matrices)

2250 Midterm 2 Ver 3 [10:45]

(a) [50%)] Assume given invertible 3 x 3 matrices A, B. Suppose B? = E3E,E1A? and E,, E;, E3 are

elementary matrices representing repectively a swap, a combination and a multiply by 2. Compute the
possible values of det(—AB™!).

(b) [50%] Let A, B and C be three 5 x 5 matrices such that ABC contains two rows all of whose entries
are sevens. Explain precisely why at least one of the three matrices has zero determinant.
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Applied Differential Equations 2250
Midterm Exam 2, Problem 4 Re-Test, 10:45am
Exam date: Tuesday, 4 April 2006

Instructions: This in-class exam is 10 minutes. No calculators, notes, tables or books. The score on this
problem replaces any previous score.

L% . (determinants and elementary matrices)
(a) [50%] Assume given an invertible 4 x 4 matr} = A. Suppose rref(A) = E4E3E3F1 A and Ey, Ey,

Ej3, E4 are elementary matrices representing repectively a swap, a combination, a swap and a multiply

by —3. Compute det(—2472).
(b) [50%] Let A be a three 5 x 5 matrix which contains one row all of whose entries are 7 and another
row all of whose entries are e”. Explain precisely why Ax =0 has infinitely many solutions x.
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5. (inverses and Cramer’s rule)

2250 Midterm 2 Ver 3 [10:45]
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(a) [50%)] Determine all values of z and y for which A™! fails to exist: A= | 2

0 2
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(b) [50%] Solve for z in Au = b by Cramer’s rule: A= | 3 , u=| vy
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