1. (rref)

Determine a, b such that the system has (1) infinitely many solutions, (2) no solutions.

$$\begin{pmatrix}
1 & 6 & 7 & 1 + \alpha \\
5 & 3 & 2 & 3 + 3\alpha \\
6 & 9 & 3 & 2 + \alpha
\end{pmatrix}$$

$$\stackrel{\sim}{=} \left(\begin{array}{c|cc}
1 & 6 & 1 & 1+a \\
0 & -27 & -3 & -2 & -2a \\
0 & -27 & 3b-6 & -4 & -5a
\end{array} \right)$$

answer (1): 00-many sols (last row is all Zeros

answer (2): No solutions

Signal equation

| last now is 000 x

with x to

| b=1, a \pm -2/3

2. (vector spaces)

- (a) [25%] Give an example of a vector space of functions of dimension five.
- (b) [25%] Let S be the vector space of all column vectors $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ and let V be the subset of S given

by the equation $2x_2 = 3(x_1 - x_3)$. Prove that V is a subspace of S. Edwards and Penney Theorem 2 may be referenced in the proof, in order to shorten details. If you cite Theorem 2, then please state the Theorem.

(c) [50%] Find a basis for the subspace of \mathbb{R}^3 given by the system of equations

$$\begin{array}{rcl} x + 4y - 2z & = & 0, \\ x + 2y - 3z & = & 0, \\ 2y + z & = & 0, \end{array}$$

- ⓐ V = all linear combinations of atoms 1, x, x², x³, x⁴
- (b) Apply Thm 2, E&P. Define $A = \begin{pmatrix} 3 2 3 \\ 0 & 0 & 0 \end{pmatrix}$. Then $A\vec{x} = \vec{0}$ defines V. By Thm 2, V is a subspace.

(e)
$$\begin{pmatrix} 1 & 4 & -2 & | & 0 \\ 1 & 2 & -3 & | & 0 \\ 0 & 2 & 1 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 4 & -2 & | & 0 \\ 0 & -2 & -1 & | & 0 \\ 0 & 2 & 1 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 4 & -2 & | & 0 \\ 0 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\sim}{=} \begin{pmatrix} 1 & 0 &$$

Use this page to start your solution. Attach extra pages as needed, then staple.

3. (independence) Do only two of the following.

(a) [50%] Let
$$\mathbf{u} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix}$. State and apply a test that decides independence

or dependence of the list of vectors u, v, w.

(b) [50%] State the pivot theorem [10%], then extract from the list below a largest set of independent vectors [40%].

$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 3 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ -1 \end{pmatrix}, \ \mathbf{c} = \begin{pmatrix} 2 \\ -2 \\ 0 \\ -2 \end{pmatrix}, \ \mathbf{d} = \begin{pmatrix} 5 \\ -3 \\ 0 \\ -1 \end{pmatrix}, \ \mathbf{e} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 2 \end{pmatrix}, \ \mathbf{f} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 1 \end{pmatrix}.$$

(c) [50%] Assume that matrix D is invertible. Prove:

If $D\mathbf{x}_1, D\mathbf{x}_2, \ldots, D\mathbf{x}_n$ are independent, then $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ are independent.

- Q Veetors $\tilde{u}, \tilde{v}, \tilde{w}$ are independent \iff rank $(au_{1}(\tilde{u}, \tilde{v}, \tilde{w}))=3$. $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \stackrel{\sim}{=} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \stackrel{\sim}{=} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \quad \text{rank}=2 \implies \text{dependent}$
- D Pivot Theorem: The pivot columns of A are independent and any other column of A is dependent on Them.

pirot cols are 1,2. Independent cols of A are 1,2

Use this page to start your solution. Attach extra pages as needed, then staple.

4. (determinants and elementary matrices)

- (a) [50%] Assume given invertible 3×3 matrices A, B. Suppose $B^2 = E_3 E_2 E_1 A^2$ and E_1 , E_2 , E_3 are elementary matrices representing respectively a swap, a combination and a multiply by 2. Compute the possible values of $\det(-AB^{-1})$.
- (b) [50%] Let A, B and C be three 5×5 matrices such that ABC contains two rows all of whose entries are sevens. Explain precisely why at least one of the three matrices has zero determinant.

$$det (-AB^{-1}) = det (-I)(A)(B^{-1})$$
= $det (-I) det (AB^{-1})$
= $(-1)^3 det (AB^{-1})$

prod sulo for determinants triangular sule, 3x3

det
$$B^2 = dut (F_3 E_2 F_1 A^2)$$

 $(dut B)^2 = dut (E_3) dut (E_2) dut (E_1) (dut (A))^2$
 $(dut B)^2 = (x)(1)(-1) (dut (A))^2$

prod rule

$$dut(A B^{-1}) = dut(A) dut(B^{-1})$$

$$= dut(A) \overline{dut(B)}$$

$$= dut(A) \overline{dut(B)}$$

$$= dut(A) \overline{dut(B)}$$

$$= -t\sqrt{(dut(A))^{2}}$$

$$= -t\sqrt{-1}$$

because det BB=detI

any correct segment of steps was given full eredit. A retist was scheduled for Those who were stopped by The typo (X = -2 was The fix, but never applied).

Applied Differential Equations 2250

Midterm Exam 2, Problem 4 Re-Test, 10:45am Exam date: Tuesday, 4 April 2006

Instructions: This in-class exam is 10 minutes. No calculators, notes, tables or books. The score on this problem replaces any previous score.

4. (determinants and elementary matrices)

- (a) [50%] Assume given an invertible 4×4 matrix. A. Suppose $\mathbf{rref}(A) = E_4 E_3 E_2 E_1 A$ and E_1 , E_2 , E_3 , E_4 are elementary matrices representing repectively a swap, a combination, a swap and a multiply by -3. Compute $\det(-2A^{-2})$.
 - (b) [50%] Let A be a three 5×5 matrix which contains one row all of whose entries are π and another row all of whose entries are e^{π} . Explain precisely why $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions \mathbf{x} .
- (a) A invertible 4x4 (rref(A) = I. Then

$$I = E_4 E_3 E_2 E_1 A$$

$$dit(I) = dit(E_4 E_3 E_2 E_1 A)$$

$$I = dit(E_4) dit(E_3) dit(E_2) dit(E_1) dit(A) \qquad prod . Thm.$$

$$I = (-3)(-1)(1)(-1) dit(A)$$

$$dit (-2 A^{-2}) = dit (-2I)(A)^{-2}$$

$$= dit (-2I) dit (A^{-1}) dit (A^{-1}) \qquad prod . Thin$$

$$= (-2)^{4} (dit (A))^{-1} (dit (A))^{-1} \qquad Triang Ml, 4X4$$

$$= \frac{16}{(dit (A))^{2}}$$

$$= \frac{16}{(-\frac{1}{3})^{2}}$$

(b) The mutrix has proportional rows, so a combo will produce a row of zeros. By To four rules of a later min ants, combo, plus them a zero row => zero determ mant it follows That det(t)=0.

By Cramers rule There are 00 - many solutions to A = 0.

Use this page to start your solution. Attach extra pages as needed, then staple.

5. (inverses and Cramer's rule)

- (a) [50%] Determine all values of x and y for which A^{-1} fails to exist: $A = \begin{pmatrix} 1 & x 1 & 0 \\ 2 & 0 & -3 \\ 0 & 2y & 1 \end{pmatrix}$.
- (b) [50%] Solve for z in $A\mathbf{u} = \mathbf{b}$ by Cramer's rule: $A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 0 & 4 \\ 5 & 6 & 7 \end{pmatrix}$, $\mathbf{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

$$(1)(6y) - (x-1)(2-0) = 0$$

$$(3) [6y -2x + 2 = 0]$$

$$6y-2x+2=0$$

$$\begin{array}{ccc}
\boxed{D} & \overline{7} = & \frac{\Delta_3}{\Delta} \\
\hline
2 & = & \frac{24}{-26}
\end{array}$$

$$\Delta = \begin{vmatrix} 1 & 2 & 0 \\ 3 & 0 & 9 \\ 5 & 6 & 7 \end{vmatrix}$$

$$= (1) (0 - 24) - 2 (21 - 20)$$

$$= -24 - 2$$

$$= -26$$

$$\Delta_3 = \begin{vmatrix} 1 & 2 & 0 \\ 3 & 6 & -1 \end{vmatrix}$$

$$= (1)(0-0) - 2(-3-0) + 1(18)$$

$$= 6 + 18$$

$$= 24$$