Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (Quadrature Equation)
 Solve for the general solution $y(x)$ in the equation $y' = xe^{-x} + \csc^2 x + 2\sec^2 x + \frac{16x^4}{1 + 4x^2}$.
 [Integral tables will be supplied for anything other than basic formulae. This sample problem would require no integral table. The exam problem will be shorter.]

2. (Separable Equation Test)
 The problem
 $$y' = x \left(e^{2x} \frac{x^2}{3} ye^y + \sin(x) ye^y \right) - x \sin(x) \sin(y) - e^{2x} \frac{x^5}{3} \sin(y)$$
 may or may not be separable. If it is, then write formulae for F, G which decompose the problem as $y' = F(x)G(y)$. Otherwise, explain in detail why it fails to be separable. Do not solve for y!

3. (Solve a Separable Equation)
 Given $yy' = \frac{6x^3 + 12x}{1 + x}(1 - 4y^2)$,
 (a) Find all equilibrium solutions,
 (b) Find the non-equilibrium solution in implicit form.
 Do not solve for y explicitly.

4. (Linear Equations)
 (a) Solve $2v'(t) = -64 + \frac{4}{t + 1}v(t)$, $v(0) = 3$. Show all integrating factor steps.
 (b) Using the answer $v(t)$ from (a), solve $y'(t) = v(t)$, $y(0) = 2$. Show all quadrature steps.

5. (Stability)
 (a) Draw a phase line diagram for the differential equation
 $$dx/dt = (2 - 5x)^3(1 - 2x)(1 - 4x^2).$$
 Expected in the diagram are equilibrium points and signs of x' (or flow direction markers < and >).
 (b) Draw a phase diagram using the phase line diagram of (a). Add these labels as appropriate: funnel, spout, node, stable, unstable. Show at least 10 threaded curves. A direction field is not required.