Differential Equations and Linear Algebra 2250 [10:45]
Midterm Exam 1
Version 3: Tuesday, 14 February 2006

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (Quadrature Equation)

Solve for the general solution $y(x)$ in the equation $y' = 2\cot x + \frac{1250x^3}{1 + 25x^2} + x\ln(1 + x^2)$.

\[y = \int y' \, dx = \int F(x) \, dx \]
\[y = 2 \int \cot x \, dx + \int \frac{1250x^3}{1 + 25x^2} \, dx + \int x\ln(1 + x^2) \, dx \]
\[y = I_1 + I_2 + I_3 + C \quad \text{(work split below)} \]

\[I_1 = 2 \int \cot x \, dx \]
\[= 2 \int \frac{\cos x}{\sin x} \, du \]
\[= 2 \ln |\sin x| \]

\[I_2 = \int \frac{1250x^3 \, dx}{1 + 25x^2} \]
\[= \int \left(50x - \frac{50x}{1 + 25x^2} \right) \, dx \]
\[= 25x^2 - \ln(1 + 25x^2) \]

\[I_3 = \int x\ln(1 + x^2) \, dx \]
\[= \int \ln(u) \, \frac{du}{2} \quad \text{with} \quad u = 1 + x^2, \: du = 2x \, dx \]
\[= \frac{1}{2} \left(u \ln u - u \right) \]
\[= \frac{1}{2} \left((1 + x^2) \ln(1 + x^2) - (1 + x^2) \right) \]

\[y = I_1 + I_2 + I_3 + C \]
\[y = (2 \ln |\sin x|) + (25x^2 - \ln(1 + 25x^2)) + \left(\frac{1}{2} (1 + x^2) \ln(1 + x^2) - \frac{x}{2} \right) + C \]

Use this page to start your solution. Attach extra pages as needed, then staple.
2. (Separable Equation Test)

The problem \(y' = f(x, y) \) is said to be separable provided \(f(x, y) = F(x)G(y) \) for some functions \(F \) and \(G \).

(a) [75%] Check the problems that can be put into separable form, but don't supply any details.

| \(x' = -y(2xy + 1) + (2x + 3)y^2 \) | \(xy' = xy^2 + 5x \) |
| \(y' = e^x + e^y \) | \(3y' + 5y = 10 \) |

(b) [25%] State a test which can verify that an equation is not separable. Use the test to verify that \(y' = x + \sqrt{|y|} \) is not separable.

\[
\begin{array}{c|c}
\text{\(y' = -y(2xy + 1) + (2x + 3)y^2 \)} & \text{\(xy' = xy^2 + 5x \)} \\
\text{\(= -2xy^2 - y + 2xy + 3y^2 \)} & \text{\(= x(y^2 + 5) \)} \\
\text{\(= -y + 3y^2 \)} & \text{\(\text{sep.} \)} \\
\text{autonomous \(\Rightarrow \) \(\text{sep.} \)} & \\
\text{\(y' = e^x + e^y \)} & \text{\(3y' + 5y = 10 \)} \\
\text{not \(\text{sep.} \)} & \text{\(y' = \frac{10 - 5y}{3} \)} \\
& \text{autonomous \(\Rightarrow \) \(\text{sep} \)}
\end{array}
\]

\(b \) Let \(F(x) = \frac{f(x, y_0)}{f(x_0, y_0)} \), \(G(y) = \frac{f(x_0, y)}{f(x_0, y_0)} \), \(f(x_0, y_0) \neq 0 \). Then \(FG + f \) implies \(y' = f(x, y) \) is not separable.

Application: Choose \(x_0 = 1, y_0 = 0 \). Then \(f(x, y) = x + \sqrt{|y|} \) implies \(F(x) = \frac{f(x, 0)}{f(1, 0)} = x \), \(G(y) = 1 + \sqrt{|y|} \). Then

\[
\begin{align*}
F &= x \left(1 + \sqrt{|y|} \right) \\
&= x + x\sqrt{|y|} \\
&= x + \sqrt{y} = f
\end{align*}
\]

Use this page to start your solution. Attach extra pages as needed, then staple.
3. (Solve a Separable Equation)

Given \(y^2 y' = \frac{2x^2 + 3x}{1 + x^2} \left(\frac{125}{64} - y^3 \right) \).

(a) Find all equilibrium solutions.

(b) Find the non-equilibrium solution in implicit form.

To save time, **do not solve** for \(y \) explicitly.

\[
\begin{align*}
\text{(a)} \quad F(x) &= \frac{2x^2 + 3x}{1 + x^2} \\
&= 2 + \frac{3x - 2}{1 + x^2} \\
G(y) &= \left(\frac{125}{64} - y^3 \right)^{\frac{1}{3}} \\
G'(y) &= 0 \implies y = \sqrt[3]{\frac{125}{64}} \quad \text{or} \quad y = \frac{5}{4} \\
\hline
\text{(b)} \quad \frac{y'}{G(y)} &= F(x) \\
\int \frac{y'^2}{G(y)} \, dx &= \int F(x) \, dx \\
\int \frac{y^2 \, y'}{\frac{125}{64} - y^3} \, dx &= \int \left(2 + \frac{3}{2} \left(\frac{2x}{1 + x^2} \right) + \frac{2}{1 + x^2} \right) \, dx \\
-\frac{1}{3} \ln \left| \frac{125}{64} - y^3 \right| &= 2x + \frac{3}{2} \ln (1 + x^2) + 2 \arctan(x) + C
\end{align*}
\]

Use this page to start your solution. Attach extra pages as needed, then staple.
4. (Linear Equations)

(a) [60%] Solve $2v'(t) = -32 + \frac{2}{3t+1} v(t)$, $v(0) = -8$. Show all integrating factor steps.

(b) [30%] Solve $2\sqrt{x} + 2 \frac{dy}{dx} = y$. The answer contains symbol c.

(c) [10%] The problem $2\sqrt{x} + 2y' = y - 5$ can be solved using the answer y_h from (b) plus superposition $y = y_h + y_p$. Find y_p. Hint: If you cannot write the answer in a few seconds, then return here after finishing all problems on the exam.

\[y' - \left(\frac{1}{3t+1} \right) v = -16 \quad \text{valid} \quad v(0) = -8 \]

\[Q = e^{-\int \frac{dt}{3t+1}} \]

\[= e^{-\frac{1}{3} \ln |3t+1|} \]

\[= (3t+1)^{-1/3} \]

\[(Qv)/Q = -16 \]

\[c_n V = -16 \int (3t+1)^{-1/3} dt + c \]

\[= -16 \int (3t+1)^{-1/3} \cdot \frac{1}{2} + c \]

\[= -8(3t+1)^{2/3} + c \]

\[v = -8(3t+1) + C (3t+1)^{1/3} \]

\[v = -8 + C \]

\[C = 0 \]

\[v = -8(3t+1) \]

\[v = -24t - 8 \]

(b) \[y' - \frac{1}{2\sqrt{x+2}} y = 0 \]

\[Q = e^{-\int \frac{dx}{\sqrt{x+2}}} \]

\[= e^{-\sqrt{x+2}} \]

\[(Qy)' = 0 \]

\[y = \frac{c}{Q} \]

\[y = ce^{-\sqrt{x+2}} \]

(c) \[y_p = 5 \]

is an equilibrium solution.

Use this page to start your solution. Attach extra pages as needed, then staple.
5. (Stability)
(a) [50%] Draw a phase line diagram for the differential equation

\[\frac{dx}{dt} = 1000 \left(2 - \sqrt[3]{x} \right)^3 \left(2 + 3x \right) \left(9x^2 - 4 \right)^8. \]

Expected in the diagram are equilibrium points and signs of \(x' \) (or flow direction markers < and >).
(b) [50%] Draw a phase diagram using the phase line diagram of (a). Add these labels as appropriate: funnel, spout, node, source, sink, stable, unstable. Show at least 8 threaded curves. A direction field is not expected or required.

Equilibrium solutions are found from

\[1000 \left(2 - x^{\frac{1}{3}} \right)^3 \left(2 + 3x \right) \left(9x^2 - 4 \right)^8 = 0 \]

\[x = 32, \quad x = -\frac{2}{3}, \quad x = \frac{2}{3} \]

Use this page to start your solution. Attach extra pages as needed, then staple.