
Math 252
Applied Linear Algebra

Problem Notes on Take-Home Exams I to IX

1. (2 � 2 Linear System) Find all solutions to x1 � 5x2 = 0, �x1 + 5x2 = 0. Express the answer in one of
the three possible parametric forms:

A point. This represents the intersection of two lines.

A line. The parametric form is

x = c1 + td1,

y = c2 + td2,

with �1 < t <1.

A plane. In this case, all points (x; y) are answers.

Solution to 1. To explain geometrically the expected kind of answer, observe that �x1 + 5x2 = 0 is the
same as the �rst equation x1�5x2 = 0, therefore there are not two equations, but only one! The set of planar
points satisfying the two equations is exactly the set of points on the straight line x1 � 5x2 = 0 (an in�nite
number of points). The standard form of the solution is obtained by solving for x1 in terms of x2, e.g.,
x1 = 5x2, then write out the vector solution X as follows:

X =

 
x1
x2

!

=

 
5x2
x2

!

= x2

 
5
1

!

To each value of x2 corresponds a solution of the system of equations, i.e., there are in�nitely many solutions,
represented goemetrically as a line.

1a. (2 � 4 Linear System) Find all solutions to x1 � x2 + 7x3 � x4 = 0, 2x1 + 3x2 � 8x3 + x4 = 0.

Solution to 1a. Subtract two times the �rst equation from the second to get 5x2 � 22x3 +3x4 = 0. Divide
the new equation by 5 to get x2� 22

5
x3+

3

5
x4 = 0. Keep this as the replacement for the second equation. Add

it to the �rst equation to get its replacement x1 +
13

5
x3 � 2

5
x4 = 0. The replacement equations are therefore

x1 +
13

5
x3 � 2

5
x4 = 0;

x2 � 22

5
x3 +

3

5
x4 = 0;

which correspond exactly to the reduced row echelon form of the system. The general solution is0
BBB@

x1
x2
x3
x4

1
CCCA = x3

0
BBB@
�13

5
22

5

1
0

1
CCCA+ x4

0
BBB@

2

5

�3

5

0
1

1
CCCA :

2. (4� 4 Linear System) Find a fraction-free Gauss-elimination form and the reduced row-echelon form for
the following equations: x1�2x2+x3+x4 = 2, 3x1+2x3�2x4 = �8, 4x2�x3�x4 = 1, 5x1+3x3�x4 = 0.
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Solution to 2. A fraction-free Gauss-elimination form can be obtained from the reduced row echelon form
by multiplying each row by a suitable factor, to clear the fractions. In reality, there are in�nitely many
fraction-free forms, so there is no way to give an answer that everyone will arrive at.

It turns out that the reduced row echelon form is also fraction-free, so it can be reported as the fraction-free
answer!

The reduced row-echelon form is obtained from the augmented matrix by row operations, using the basic
pivot algorithm. The answer for both questions:

rref =

0
BBB@

1 0 0 4 0
0 1 0 �2 0
0 0 1 �7 0
0 0 0 0 1

1
CCCA

3. (4 � 3 Linear System) Find all solutions to the 4 � 3 system x1 + x2 � x3 = 0, 4x1 � x2 + 5x3 = 0,
�2x1 + x2 � 2x3 = 0, 3x1 + 2x2 � 6x3 = 0.

Solution to 3. The augmented matrix and its reduced row echelon form are:

aug =

0
BBB@

1 1 �1 0
4 �1 5 0
�1 1 �2 0
3 2 �6 0

1
CCCA ; rref =

0
BBB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1
CCCA

It follows that X = 0 is the only solution.

4. (3 � 4 Linear System) Find all solutions to x1 � x2 + x3 � x4 = �2, �2x1 + 3x2 � x3 + 2x4 = 5,
4x1 � 2x2 + 2x3 � 3x4 = 6.

Solution to 4. The augmented matrix and its reduced row echelon form are:

aug =

0
B@ 1 �1 1 �1 �2
�2 3 �1 2 5
4 �2 2 �3 6

1
CA ; rref =

0
B@ 1 0 0 �1=2 5

0 1 0 1=4 4

0 0 1 �1=4 �3

1
CA

The standard form of the solution is obtained by identifying the lead variables and the arbitrary
variables:

Variables x1, x2 and x3 are the lead variables, because they correspond to a leading 1 in the RREF.

See the boxed 1's above.

Variable x4 is the arbitrary variable, because arbitrary variables are the variables left over after

removal of the lead variables.

The standard form of the solution X is obtained by replacing each lead variable with its corresponding
equation, obtained from the RREF. The arbitrary variables are left untouched. Then:

X =

0
BBB@

x1
x2
x3
x4

1
CCCA =

0
BBB@

1

2
x4 + 5

�1

4
x4 + 4

1

4
x4 � 3
x4

1
CCCA = x4

0
BBB@

1

2
�1

4

3
1

1
CCCA+

0
BBB@

5
4
�3
0

1
CCCA
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4a. (3 � 4 Linear System) Use Gauss-Jordan elimination to �nd the general solution:

x1 + 2x2 + 4x3 � x4 = 3
3x1 + 4x2 + 5x3 � x4 = 7
x1 + 3x2 + 4x3 + 5x4 = 4

Solution to 4a. The augmented matrix and its reduced row echelon form are:

aug =

0
B@ 1 2 4 �1 3

3 4 5 �1 7
1 3 4 5 4

1
CA ; rref =

0
B@ 1 0 0 �5 1

0 1 0 6 1

0 0 1 �2 0

1
CA

Variables x1, x2 and x3 are the lead variables, because they correspond to a leading 1 in the RREF.

See the boxed 1's above.

Variable x4 is the arbitrary variable, because arbitrary variables are the variables left over after

removal of the lead variables.

The standard form of the solution is obtained by replacing the lead variables x1, x2, x3 by their equations
(x1 = 5x4 + 1, x2 = �6x4 + 1, x3 = 2x4), but the arbitrary variable x4 is untouched. Then:

X =

0
BBB@

x1
x2
x3
x4

1
CCCA =

0
BBB@

5x4 + 1
�6x4 + 1

2x4
x4

1
CCCA = x4

0
BBB@

5
�6
2
1

1
CCCA+

0
BBB@

1
1
0
0

1
CCCA

Important: This method for writing out X applies only in case the equations are in reduced echelon form. A
matrix C is in reduced row echelon form provided each nonzero row starts with a leading 1, and above
and below that leading 1 appear only zeros.

5. (Linear Combinations) Compute the result of the linear combination 2u+ v � 3w where

u =

0
B@ 1

1
�2

1
CA ; v =

0
B@ 0

0
2

1
CA ; w =

0
B@ 9

1
�4

1
CA :

Solution to 5. The result of the linear combination is

2u+ v � 3w = 2

0
B@ 1

1
�2

1
CA+

0
B@ 0

0
2

1
CA� 3

0
B@ 9

1
�4

1
CA =

0
B@ �25

�1
10

1
CA :

5a. (Equality of Vectors) Let

u =

0
B@ 1

x
�2

1
CA ; v =

0
B@ x+ 1

0
2

1
CA ; w =

0
B@ 9

1
�4x

1
CA

The linear combination p = 2u+ v � 3w depends upon x. Is there a value of x such that

p =

0
B@ �22:9

�0:8
11:2

1
CA?

3



Solution to 5a. The linear combination p is given by

p = 2

0
B@ 1

x
�2

1
CA+

0
B@ x+ 1

0
2

1
CA� 3

0
B@ 9

1
�4x

1
CA =

0
B@ x� 24

2x� 3
12x� 2

1
CA :

There is a value of x such that

p =

0
B@ �22:9

�0:8
11:2

1
CA

exactly when the components agree, i.e., x � 24 = �22:9, 2x � 3 = �0:8, 12x � 3 = 11:2. This happens for
x = 1:1 (check all three equations!).

6. (Largest Linearly Independent Set) Extract from the list0
B@ �1

1
0

1
CA ;

0
B@ �2

2
0

1
CA ;

0
B@ 1

0
1

1
CA ;

0
B@ 0

1
1

1
CA

a largest set of linearly independent vectors.

Solution to 6. To extract a largest linearly independent set of vectors from a list v1, v2, v3, v4 requires an
algorithm be followed.

The algorithm begins by choosing the set to be the single element v1, already an independent set. Try to
add v2 to the set. This will fail if v2 is a multiple of v1. Then try to add v3 to the set. It will fail if v3 is a
combination of vectors already in the set. Finally, try to add v4 to the set, which fails if v4 is a combination
of vectors already in the set. When complete, the set is independent by construction and of largest size.

The largest independent set from the list0
B@ �1

1
0

1
CA ;

0
B@ �2

2
0

1
CA ;

0
B@ 1

0
1

1
CA ;

0
B@ 0

1
1

1
CA

has size 2. The algorithm gives a basis 0
B@ �1

1
0

1
CA ;

0
B@ 1

0
1

1
CA :

An e�ective way to test independence of vectors is to �nd the RREF of the matrix with these vectors as
columns. If the rank is the same as the number of columns, then the set is independent.

6a. (Vector Spaces) Extract from the list x, x�1, 2x+1, x2�x, x2+x a largest list of linearly independent
functions.

Solution to 6a. The list x, x� 1, 2x+ 1, x2 � x, x2 + x can be mapped to a list of column vectors0
B@ 0

1
0

1
CA ;

0
B@ �1

1
0

1
CA ;

0
B@ 1

2
0

1
CA ;

0
B@ 0
�1
1

1
CA ;

0
B@ 0

1
1

1
CA

where 0
B@ c1

c2
c3

1
CA $ c1 + c2x+ c3x

2:
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Then the largest independent list if column vectors corresponds exactly to the largest set of independent
polynomials. The RREF method gives the largest list as0

B@ 0
1
0

1
CA ;

0
B@ �1

1
0

1
CA ;

0
B@ 0
�1
1

1
CA

and therefore the largest list of independent polynomials is x, x � 1, x2 � x (the size is 3, there are many
independent lists of size 3).

7. (Basis for a Subspace) Find a basis for the set of vectors ~v =

0
B@ x

y
z

1
CA in R3 that satisfy the equation

5x+ 6y � 2z = 0.

Solution to 7. To �nd a basis for the set of vectors X =

0
B@ x

y
z

1
CA inR3 that satisfy the equation 5x+6y�2z =

0, �nd the RREF of the matrix A given above and write out the complete solution X of the linear system
AX = 0:

X =

0
B@ x

y
z

1
CA =

0
B@ (�6=5)y + (2=5)z

y
z

1
CA = y

0
B@ �6=5

1
0

1
CA+ z

0
B@ 2=5

0
1

1
CA :

A basis can be read o� the standard form of the solution X:0
B@ �6=5

1
0

1
CA ;

0
B@ 2=5

0
1

1
CA :

7a. (Subspace Criterion) Show that the set of vectors �!v =

0
B@ x

y
z

1
CA in R3 that satisfy the equation 5x+6y�

2z = 0 is a subspace of R3.

Solution to 7a. To prove a set is a subspace of R3 it su�ces to establish the conditions in the Subspace
Criterion:

(a) If X and Y are in the set, then so is X + Y .
(b) If X is in the set and k is a constant, then kX is in the set.

A set already known to be a subspace of R3 has a basis of one, two or three elements (unless the set is the
origin). A plane given by an equation ax + by + cz = 0 represents a subspace with basis of two elements,
because two independent vectors determine a plane. A line through the origin given by a vector equation0

B@ x
y
z

1
CA = t

0
B@ v1

v2
v3

1
CA

is a subspace with a basis of one element.
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To show that the set of vectors X =

0
B@ x

y
z

1
CA in R3 that satisfy the equation 5x + 6y � 2z = 0 is a subspace

of R3, write the equation as a matrix equation AX = 0 where

A =
�
5 6 �2

�
:

It is routine to check (a) and (b) for the equation AX = 0. For example, to check (a), let AX = 0 and
BY = 0, then A(X + Y ) = AX +AY = 0 + 0 = 0, so X + Y is in the set. Item (b) is similar.

8. (Rank, Nullity and Nullspace) Find the rank, nullity and a basis for the null space, given A has rows
[1;�1; 2; 3], [0; 1; 4; 3], [1; 0; 6; 6].

Solution to 8. Given A has rows [1;�1; 2; 3], [0; 1; 4; 3], [1; 0; 6; 6], then the reduced row echelon form of the
augmented matrix (A : 0) is

rref(A) =

0
B@ 1 0 6 6 0

0 1 4 3 0
0 0 0 0 0

1
CA

The rank and nullity are both 2. The standard form of the solution X to the equation AX = 0 is obtained
using lead variables x1, x2 and arbitrary variables x3, x4 as follows:

X =

0
BBB@

x1
x2
x3
x4

1
CCCA =

0
BBB@
�6x3 � 6x4
�4x3 � 3x4

x3
x4

1
CCCA = x3

0
BBB@
�6
�4
1
0

1
CCCA+ x4

0
BBB@
�6
�3
0
1

1
CCCA

A basis for the null space can be read o� from this answer:0
BBB@
�6
�4
1
0

1
CCCA ;

0
BBB@
�6
�3
0
1

1
CCCA :

8a. (Rank, Nullity and Nullspace) Find the rank, nullity and a basis for the solution space of AX = 0, where

A =

0
B@ 1 2 1 �1 3

1 2 2 1 2
2 4 2 �1 7

1
CA ; X =

0
BBBBB@

x
y
z
u
v

1
CCCCCA :

Solution to 8a. Rather than form (A : 0), we work with A itself and �nd the RREF and also the standard
form of the solution:

A =

0
B@ 1 2 1 �1 3

1 2 2 1 2
2 4 2 �1 7

1
CA ; rref(A) =

0
BBB@

1 2 0 0 7

0 0 1 0 �3
0 0 0 1 1

1
CCCA :
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The rank is 3, the nullity 2. The solution is read o� from the RREF by observing that the lead variables
are x, z, u and the arbitrary variables are y, v. Then

X =

0
BBBBB@

x
y
z
u
v

1
CCCCCA =

0
BBBBB@

�2y � 7v
y
3v
�v
v

1
CCCCCA = y

0
BBBBB@

�2
1
0
0
0

1
CCCCCA+ v

0
BBBBB@

�7
0
3
�1
1

1
CCCCCA :

A basis for the solution space of AX = 0 is given by

0
BBBBB@

�2
1
0
0
0

1
CCCCCA ;

0
BBBBB@

�7
0
3
�1
1

1
CCCCCA :

8b. (Rank, Nullity and Nullspace) Find the rank, nullity and a basis for the solution space of AX = 0, given

A =

0
BBB@

1 �1 2 3
�2 2 �4 �6
2 �2 4 6
3 �3 6 9

1
CCCA ; X =

0
BBB@

x
y
z
w

1
CCCA :

Solution to 8b. Rather than form (A : 0), we work with A itself and �nd the RREF and also the standard
form of the solution:

A =

0
BBB@

1 �1 2 3
�2 2 �4 �6
2 �2 4 6
3 �3 6 9

1
CCCA ; rref(A) =

0
BBB@

1 �1 2 3
0 0 0 0
0 0 0 0
0 0 0 0

1
CCCA :

The solution is read o� from the RREF by observing that the lead variable is x and the arbitrary variables
are y, z, w. Then

X =

0
BBB@

x
y
z
w

1
CCCA =

0
BBB@

y � 2z � 3w
y
z
w

1
CCCA = y

0
BBB@

1
1
0
0

1
CCCA+ z

0
BBB@
�2
0
1
0

1
CCCA+ w

0
BBB@
�3
0
0
1

1
CCCA :

The rank is 1, the nullity is 3 and a basis for the null space is0
BBB@

1
1
0
0

1
CCCA ;

0
BBB@
�2
0
1
0

1
CCCA ;

0
BBB@
�3
0
0
1

1
CCCA :

Maple notes on problems 2{8b. Linear equations can be entered into maple without converting to
matrix form. While this form is not convenient for solving the equations, there is a conversion routine called
genmatrix which creates either the coe�cient matrix or the augmented matrix. An example:
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# Maple V.3 [Augmented matrix errors in V.1, V.2]

eq:=[2*x+3*y-z=0,3*x-4*y+5*z=8,y-z=9];

ans:=[x,y,z];

a:=genmatrix(eq,ans);

# [ 2 3 -1 ]

# a:= [ 3 -4 5 ]

# [ 0 1 -1 ]

#

aug:=genmatrix(eq,ans,1);

# This is what your [ 2 3 -1 0 ]

# book calls the aug:= [ 3 -4 5 8 ]

# augmented matrix. [ 0 1 -1 9 ]

The fraction{free Gauss-Jordan forms are not unique. The preferred form is given by the maple function
ffgausselim. This form combined with the maple command backsub can be used to �nd the solution to a
linear system.

The Reduced Row Echelon form (RREF) is unique. In maple, the command is called rref or gaussjord,
one being a synonym for the other. From this form the general solution of a linear system can determined by
back-substitution using backsub.

The RREF method is preferred for most applications done by hand computation. This form identi�es the
dependent variables as those corresponding to the leading 1's. The other variables will appear as arbitrary
constants in the general solution. For example, if the reduced form of an augmented matrix is (leading 1's
boxed) 0

BBB@
1 �1 0 0 4

0 0 1 0 �5
0 0 0 1 2
0 0 0 0 0

1
CCCA ;

then x1, x3 and x4 are dependent variables while x2 appears in the answer as an arbitrary constant:0
BBB@

x1
x2
x3
x4

1
CCCA =

0
BBB@

4
0
�5
2

1
CCCA+ x2

0
BBB@

1
1
0
0

1
CCCA :

The actual form of the answer in maple will contain variable names starting with the letter t. The factorization
of the answer into basis elements for the kernel is not automatic. Here is an example of how to pass from the
output of gausselim to the general solution, using backsub:

with(linalg):

a:=matrix([[1,3,-2,0,2,0],[2,6,-5,-2,4,-3],[0,0,5,10,0,15],[2,6,0,8,4,18]]);

b:=matrix([[0],[-1],[5],[6]]);

c:=augment(a,b);

M:=gausselim(c);

backsub(M);

#

# [ 1 3 -2 0 2 0 ] [ 0 ]

# [ 2 6 -5 -2 4 -3 ] [ -1 ]

#a:= [ ] b := [ ]

# [ 0 0 5 10 0 15 ] [ 5 ]

# [ 2 6 0 8 4 18 ] [ 6 ]

#

# [ 1 3 -2 0 2 0 0 ] [ 1 3 -2 0 2 0 0 ]

# [ 2 6 -5 -2 4 -3 -1 ] [ 0 0 -1 -2 0 -3 -1 ]

#c := [ ] M := [ ]

# [ 0 0 5 10 0 15 5 ] [ 0 0 0 0 0 6 2 ]

# [ 2 6 0 8 4 18 6 ] [ 0 0 0 0 0 0 0 ]

#

# [ - 3 t2 - 4 t4 - 2 t5, t2, - 2 t4, t4, t5, 1/3 ]
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The format of the general solution obtained above is not what is normally written in a hand computation.
Below is the general solution in the usual hand{written format:

# [ x1 ] [ 0 ] [ -3 ] [ -4 ] [ -2 ]

# [ x2 ] [ 0 ] [ 1 ] [ 0 ] [ 0 ]

# [ x3 ] [ 0 ] [ 0 ] [ -2 ] [ 0 ]

# [ ] = [ ] + t2 [ ] + t4 [ ] + t5 [ ]

# [ x4 ] [ 0 ] [ 0 ] [ 1 ] [ 0 ]

# [ x5 ] [ 0 ] [ 0 ] [ 0 ] [ 1 ]

# [ x6 ] [ 1/3 ] [ 0 ] [ 0 ] [ 0 ]

A maple procedure can be written to display the above general solution. The source �le:

/u/cl/maple/gensol.

# file "gensol"

with(linalg): # Uses linalg package

gensolution:=proc(M) # M:=rref(augment(A,b)):

local x,y,n,w,v,s,u,i:

x:=backsub(M): # Solve Ax=b

n:=coldim(matrix([eval(x)])): # Get number of vars

y:=[seq(x[i],i=1..n)]: # Make list of ans

w:=[seq(t.i,i=1..n)]: # Make list of vars

v:=[seq(x.i,i=1..n)]: # Make list of vars

s:=matrix(n,1,subs(seq(w[i]=0,i=1..n),eval(y)) ): # Particular solution

for i from 1 to n do

u:=matrix(n,1,map(diff,eval(y),w[i])): # basis vector

if norm(u) <> 0 then s:=eval(s)+w[i]*eval(u): fi: # for variable w[i]

od:

s:=matrix(n,1,v)=eval(s): # Write out general solution

RETURN(s): # as an equation.

end:

As an example of how to use this procedure consider the following:

read gensol:

a:=matrix([[4,-1,2,6],[-1,5,-1,-3],[3,4,1,3] ]);

b:=matrix([[b1],[b2],[b3]]);

c:=augment(a,b);

M:=gausselim(c);

M[3,5]:=0: # The system is consistent if and only if M[3,5]:=0

gensolution(M);

#

# [ 4 -1 2 6 ] [ b1 ] [ 4 -1 2 6 b1 ]

# a := [ -1 5 -1 -3 ] b := [ b2 ] c := [ -1 5 -1 -3 b2 ]

# [ 3 4 1 3 ] [ b3 ] [ 3 4 1 3 b3 ]

#

#

# [ 4 -1 2 6 b1 ] This system is inconsistent

# M := [ 0 19/4 -1/2 -3/2 b2 + 1/4 b1 ] unless the last row is all

# [ 0 0 0 0 b3 - b1 - b2 ] zeros: b3 - b1 - b2=0.

#

# [ x1 ] [ 1/19 b2 + 5/19 b1 ] [ -9/19 ] [ -27/19 ]

# [ x2 ] [ 4/19 b2 + 1/19 b1 ] [ 2/19 ] [ 6/19 ]

# [ ] = [ ] + t3 [ ] + t4 [ ]

# [ x3 ] [ 0 ] [ 1 ] [ 0 ]

# [ x4 ] [ 0 ] [ 0 ] [ 1 ]

9. (Inverse Matrix) Compute the inverse of the matrix whose rows are [1; 0; 0], [�2; 0; 1], [4; 6; 1].
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Solution to 9. The inverse of the matrix A whose rows are [1; 0; 0], [�2; 0; 1], [4; 6; 1] is obtained by forming
the augmented matrix B = (A : I) and then the RREF of B. Alternatively, it can be computed from the
adjugate or adjoint formula, using cofactors of A. The answer:

A�1 =

0
B@ 1 0 0
�1 �1=6 1=6
2 1 0

1
CA

9a. (Invertible Matrices) Explain why the matrix whose rows are [1; 0; 0], [�2; 0; 0], [4; 6; 1] is not invertible.

Solution to 9a. The matrix whose rows are [1; 0; 0], [�2; 0; 0], [4; 6; 1] is not invertible, because the rows are
dependent (the �rst and second rows are dependent). Alternatively, the rank is less than the row dimension.
Finally, a third way to analyze it comes from the theory of determinants: a matrix is invertible if and only if
its determinant is nonzero.

10. (Inverse of a Matrix) Calculate A�1 if it exists:

A =

0
BBB@

1 0 2 3
�1 1 0 4
2 1 �1 3
�1 0 0 0

1
CCCA

Solution to 10. The answer, obtained from rref((A : I)):

A =

0
BBB@

1 0 2 3
�1 1 0 4
2 1 �1 3
�1 0 0 0

1
CCCA ; A�1 =

0
BBBBBB@

0 0 0 �1
�4 9 �8 �29
�1 3 �3 �10
1 �2 2 7

1
CCCCCCA
:

11. (Row Space and Column Space) Find bases for the row space, the column space and the null space of
the matrix

A =

0
B@ 4 1 �3 5

2 0 0 �2
6 2 �6 12

1
CA :

Solution to 11. Row reduction to RREF will give a basis for the row space of A. Row reduction for the
transpose of A will give a basis for the column space of A.

A =

0
B@ 4 1 �3 5

2 0 0 �2
6 2 �6 12

1
CA ; rref(A) =

0
B@ 1 0 0 �1

0 1 �3 9
0 0 0 0

1
CA :

At =

0
BBB@

4 2 6
1 0 2
�3 0 �6
5 �2 12

1
CCCA ; rref(At) =

0
BBB@

1 0 2
0 1 �1
0 0 0
0 0 0

1
CCCA :

The row space is generated by the basis�
1; 0; 0;�1

�
;

�
0; 1;�3; 9

�
:
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The column space is generated by the basis0
B@ 1

0
2

1
CA ;

0
B@ 0

1
�1

1
CA :

The null space is generated from rref((A : 0)) by solving the equation AX = 0 for the standard form of the
solution X, as follows:

rref((A : 0)) =

0
B@ 1 0 0 �1 0

0 1 �3 9 0
0 0 0 0 0

1
CA ;

X =

0
BBB@

x1
x2
x3
x4

1
CCCA =

0
BBB@

x4
3x3 � 9x4

x3
x4

1
CCCA = x3

0
BBB@

0
3
1
0

1
CCCA+ x4

0
BBB@

1
�9
0
1

1
CCCA :

A basis for the nullspace is therefore 0
BBB@

0
3
1
0

1
CCCA ;

0
BBB@

1
�9
0
1

1
CCCA :

11a. (Transpose of a Product of Symmetric Matrices) Prove that (AB)t = BA for symmetric n� n matrices
A and B.

Solution to 11a. To prove that (AB)t = BA for symmetric n � n matrices A and B, begin with the
theorem (AB)t = BtAt and use the hypothesis At = A, Bt = B.

12. (False Determinant Rules) Give an example in dimension 2 where det(A+B) 6= det(A) + det(B).

Solution to 12. There are many examples in dimension 2 where det(A+B) 6= det(A)+det(B). The easiest
to �nd is A = B = I. There are many others.

13. (Determinant of a Symmetric Matrix) Assume A�1 = At. Prove that det(A) = �1.

Solution to 13. Assume A�1 = At. We are to prove that det(A) = �1. The determinant rules det(AB) =
det(A) det(B) and det(A) = det(At) can be combined to show det(A)2 = 1, hence the claimed result.

13a. (Permutation Matrices Let P be a 3 � 3 matrix obtained from the identity matrix by interchanging
columns. Argue from the cofactor expansion rule that det(P ) = �1.

Solution to 13a. Let P be a 3 � 3 matrix obtained from the identity matrix by interchanging columns.
Then P must be one of the six matrices below:0

B@ 1 0 0
0 1 0
0 0 1

1
CA ;

0
B@ 1 0 0

0 0 1
0 1 0

1
CA ;

0
B@ 0 1 0

1 0 0
0 0 1

1
CA ;

0
B@ 0 1 0

0 0 1
1 0 0

1
CA ;

0
B@ 0 0 1

1 0 0
0 1 0

1
CA ;

0
B@ 0 0 1

0 1 0
1 0 0

1
CA :

The cofactor expansion rule can be used to evaluate each of the six determinants and verify in each case that
det(P ) = �1.
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14. (Characteristic Equation) Prove that det(A� �I) equals

(��)3 + trace(A)(��)2 + (
3X

i=1

Mii)(��) + det(A)

where Mij is the minor determinant of element ij of matrix A and trace(A) is the sum of the diagonal
elements of A.

Solution to 14. The expansion of

det(A� �I) =

�������
a11 � � a12 a13
a21 a22 � � a23
a31 a32 a33 � �

�������
using the cofactor expansion rule is long and tedious, but direct.

14a. (Vandermonde Determinant) Let

A =

0
B@ 1 1 1

x y z
x2 y2 z2

1
CA :

Prove that det(A) = (y � x)(z � x)(z � y), by viewing the determinant as a quadratic polynomial in x
having roots y and z.

Solution to 14a. Let

f(x) = det

0
B@ 1 1 1

x y z
x2 y2 z2

1
CA :

Then

f(y) = det

0
B@ 1 1 1

y y z
y2 y2 z2

1
CA = 0; f(z) = det

0
B@ 1 1 1

z y z
z2 y2 z2

1
CA = 0;

because a determinant vanishes if two columns are the same. By the cofactor expansion rule, f(x) is a
quadratic polynomial in x, and since two roots are known, f(x) = c(x � y)(x � z), for some c, by the factor
theorem of college algebra. Its easy to check that c is the coe�cient of x2 in the cofactor expansion, and this
can be evaluated directly as (z � y). Left out of this solution are the required page references to relevant
textbooks (for the theorems used) and display of the required calculations .

14b. (Determinants) Prove that the determinant of any product of upper and lower triangular matrices is the
product of the diagonal entries of all the matrices involved.

Solution to 14b. The result depends upon the formula det(AB) = det(A) det(B), valid for n� n matrices
A and B. The formula implies that the determinant of a product of matrices is the product of their individual
determinants. To �nish the proof, it su�ces to show that the determinant of a triangular matrix is the product
of its diagonal elements. This last result is done by appeal to the cofactor expansion rule.

15. (Determinants) Evaluate det(A):

A =

0
BBB@

a b 0 0
c d 0 0
0 0 a �b
0 0 c d

1
CCCA

12



Solution to 15. The answer:

det

0
BBB@

a b 0 0
c d 0 0
0 0 a �b
0 0 c d

1
CCCA = (ad)2 � (bc)2

because

det(A) = det

 
a b
c d

!
� det

 
a �b
c d

!
= (ad� bc)(ad + bc)

16. (Cramer's Rule) Solve by Cramer's rule: x1 + x2 + x3 = 6, 2x1 � x2 = 0, 2x1 + x3 = 1.

16a. (Cramer's Rule) Solve by Cramer`s Rule:0
BBB@

1 1 1 1
2 0 �1 �1
0 0 3 6
0 0 0 �1

1
CCCA
0
BBB@

x
y
z
w

1
CCCA =

0
BBB@

6
4
3
5

1
CCCA :

16b. (Cramer's Rule) Use Cramer's rule to calculate the unknown x3 if x1; x2 and x3 satisfy the following
system of linear equations:

2x1 � x2 + 2x3 = 2
x1 + 10x2 � 3x3 = 5
�x1 + x2 + 5x3 = �7

Solution to 16b. By Cramer's rule, the unknown x3 is given by det(A3)=det(A), where

A =

0
BB@

2 �1 2

1 10 �3
�1 1 5

1
CCA ; A3 =

0
BB@

2 �1 2

1 10 5

�1 1 �7

1
CCA :

Therefore, x3 = �1.

17. (Inverse by Two Methods) Show that the matrix

A =

0
B@ �2 1 1

0 1 1
�3 0 6

1
CA

is invertible and �nd the inverse matrix A�1 by two methods.

Solution to 17. The answer is

A�1 =

0
B@ �2 1 1

0 1 1
�3 0 6

1
CA
�1

=

0
BB@
�1=2 1=2 0

1=4 3=4 �1=6
�1=4 1=4 1=6

1
CCA :

The �rst method is the RREF method, in which rref((A : I)) is computed, giving
�
I : A�1

�
. The second

method is the adjoint method, which amounts to computing one 3�3 determinant and six 2�2 determinants.
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Kindly show all details, by hand. The adjoint matrix (transpose of the matrix of cofactors) and the 3 � 3
determinant are given by

adjoint(A) =

0
BB@

6 �6 0

�3 �9 2

3 �3 �2

1
CCA ; det(A) = �12:

17a. (Inverse by the Adjoint Method) Compute by the adjoint method the inverse of the 4� 4 Hilbert matrix

A =

0
BBBBBB@

1 1=2 1=3 1=4

1=2 1=3 1=4 1=5

1=3 1=4 1=5 1=6

1=4 1=5 1=6 1=7

1
CCCCCCA

Show all steps in the evolution of the solution, in particular, show explicitly the computation of det(A)
and the 16 cofactors, and exhibit the �nal transposition of the matrix of cofactors.

Solution to 17a. The adjoint method for the inverse refers to the formula

A�1 =
1

det(A)
adjoint(A);

where adjoint(A) is the transpose of the matrix of cofactors of A. This problem is tedious without a computer
algebra system, therefore, it is in your best interest to use maple for many of the steps.

The determinant of A is det(A) =
1

6048000
. Please show the computation steps for this determinant, using

the cofactor expansion rule.

The adjoint matrix is given by

adjoint(A) =

0
BBBBBB@

1

378000
� 1

50400

1

25200
� 1

43200

� 1

50400

1

5040
� 1

2240

1

3600

1

25200
� 1

2240

3

2800
� 1

1440

� 1

43200

1

3600
� 1

1440

1

2160

1
CCCCCCA
:

Show all 16 steps in computing this matrix. Do the �rst one by hand and the others by machine. For example,
the matrix formed from A by deleting row 1 and column 1 produces the �rst cofactor C11 as follows:

M11 =

0
BB@

1=3 1=4 1=5

1=4 1=5 1=6

1=5 1=6 1=7

1
CCA ; det(M11) =

1

378000
; C11 = (�1)1+1 det(M11) =

1

378000
:

The matrix of cofactors is [Cij], but adjoint(A) is not this matrix, but instead the transpose! Leaving out
a step produces the wrong matrix, but for this example, the inverse is symmetric, and the classic mistake
(forgetting the transpose) does not surface.

The answer for the inverse is

A�1 =
1

det(A)
adjoint(A) =

0
BBBBBB@

16 �120 240 �140
�120 1200 �2700 1680

240 �2700 6480 �4200
�140 1680 �4200 2800

1
CCCCCCA
:
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Some maple hints. The command A:=hilbert(4); enters the matrix. And minor(A,1,1); produces the
matrix formed by deleting row 1 and column 1. Evaluate determinants with det(B); where B is a square
matrix. The maple command transpose(B); is used to form the transpose of a matrix B. The command
adjoint(A); computes the transpose of the matrix of cofactors of A.

The purpose of the exercise is to learn how to deal with large problems. Do enough hand computation to feel
comfortable. Be driven to maple by tedium, after you have already obtained many of the correct answers by
hand.

18. (Independence of Vectors) Use determinants and textbook theorems to determine whether the following
vectors are linearly dependent.

a1 =

0
B@ �5

1
0

1
CA ; a2 =

0
B@ 1
�1
�1

1
CA ; a3 =

0
B@ 6

1
0

1
CA :

Solution to 18. According to Cramer's Rule, the vectors are linearly independent if and only if the matrix
A whose columns are a1, a2, a3 has rank 3. This can be tested e�ectively with the RREF.

A =

0
BB@
�5 1 6

1 �1 1

0 �1 0

1
CCA ; rref(A) =

0
BB@

1 0 0

0 1 0

0 0 1

1
CCA :

The rank is 3, therefore the vectors are linearly independent.

18a. (Divisibility) Let the 3�3 matrix A be formed by taking as its rows the 9 digits of three 3-digit integers,
e.g., for 228, 266, 323 the matrix is

A =

0
B@ 2 2 8

2 6 6
3 2 3

1
CA :

Prove using Cramer's rule: if an integer m divides each number, then m divides det(A) (e.g., 19 divides
228, 266 and 323 implies 19 divides det(A) in the illustration).

Solution to 18a. As an illustration, let

A =

0
B@ 2 2 8

2 6 6
3 2 3

1
CA ; b =

0
B@ 228

266
323

1
CA ; X =

0
B@ 100

10
1

1
CA :

Then the system of equations AX = b is satis�ed. According to Cramer's rule, each of the integer entries
of X is a quotient det(C)=det(A) for some matrix C. In particular, the third component of X equal to one
implies that det(A) = det(C), where C is the matrix A with the last column replaced by b. Write the last
column of C in factored form (19 factors out of each entry) and see what it says.

Maple notes on problem 11-18a. The method for computing an inverse matrix suggested in most linear
algebra texts involves augmentation of the original matrix A with the identity matrix I of the same size to
create a new matrix C. This matrix C is subjected to RREF to determine the inverse A�1.

A second method is possible, which is based upon Cramer's Rule. The formula

A�1 = (1=det(A))adjoint(A)

is reproduced by these hand calculations:
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(a) Compute the matrix M of minors of A, i.e., Mij is the minor determinant of element aij in matrix A.

(b) Introduce signs into the elements of M by the Checkerboard Rule: element Mij gets a negative sign
if i+ j is odd. The new matrix is called C; it is the matrix of cofactors of A.

(c) Transpose the matrix C to obtain the adjoint matrix of A, called D. Maple can produce this matrix
directly from A by the command D:=adjoint(A).

(d) Compute the determinant det(A) and divide it into each element of the adjoint D; this is the inverse
A�1.

Maple can compute the determinant with command det(A) and the inverse in one step with the command
inverse(A).

The classical hand computation of Cramer's Rule should be learned by everyone because it appears often in
scienti�c literature. To this end we consider the following maple example:

with(linalg):

a:=matrix([[1,0,-1],[-1,1,0],[0,0,-1]]);

b:=vector([3,-5,2]);

#The column b replaces columns 1, 2, 3 of matrix a:

a1:=augment(b,col(a,2),col(a,3)); # Replace col 1 by b

a2:=augment(col(a,1),b,col(a,3)); # Replace col 2 by b

a3:=augment(col(a,1),col(a,2),b); # Replace col 3 by b

#The answers x, y, z are quotients of determinants:

x:=det(a1)/det(a); y:=det(a2)/det(a); z:=det(a3)/det(a);

[ 1 0 -1 ]

a := [ -1 1 0 ] b := [ 3, -5, 2 ]

[ 0 0 -1 ]

[ 3 0 -1 ] [ 1 3 -1 ] [ 1 0 3 ]

a1 := [ -5 1 0 ] a2 := [ -1 -5 0 ] a3 := [ -1 1 -5 ]

[ 2 0 -1 ] [ 0 2 -1 ] [ 0 0 2 ]

# Solve aX=b for X=vector([x,y,z]):

x := 1 y := -4 z := -2

The rank of a matrix A is the number of nonzero rows in the Reduced Row Echelon form of A. The nullity
of A is the number of variables minus the rank, which in the case of a square matrix, equals the number of
zero rows in the RREF. It is a common and fatal error to compute the nullity as the number of zero rows in
the RREF (it only applies when the matrix happens to be square)!

There is a maple command rank which applies to compute the rank of a matrix A: rank(A). There is presently
no command for the nullity, because it depends upon the number of variables, and only you can know if the
given A is augmented or not. Be warned that application of the rank command to an augmented matrix
can fail to give the correct answer: the augmented column may produce an inconsistent RREF and hence an
incorrect count of nonzero rows!

There are various maple commands available for computing the rank and kernel (or nullspace) of a matrix
A. They are: rref, gausselim, rank, kernel. The �rst two produce forms from which the rank can be
deduced. The command rank(A) gives this number directly. A basis for the solutions of Ax = 0 can be
found by the command kernel(A). A common error with the latter command is to apply it to an augmented
matrix, which casts the problem Ax = 0 into the wrong space dimension.

Maple can be used to compute a basis for the row space of a matrix A. The command is rowspace(A).
The column space of a matrix A has a basis which can be obtained by the maple command colspace(A).
The nullspace of matrix A is the set of all solutions x of the equation Ax = 0. A basis for the nullspace is
obtained by the maple command nullspace(A) or kernel(A) (the terms nullspace and kernel are equivalent).
Here is an example:
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with(linalg):

A := matrix(3,2,[2,0,3,4,0,5]);

rowspace(A);

colspace(A);

kernel(A);

kernel(transpose(A));

A1:=rref(A);

A2:=rref(transpose(A));

#

# [ 2 0 ]

# A := [ 3 4 ]

# [ 0 5 ]

#

# {[ 1, 0 ], [ 0, 1 ]}

#

# {[1, 0, -15/8 ], [ 0, 1, 5/4 ]}

#

# {}

#

# {[ 15/8, -5/4, 1 ]}

#

# [ 1 0 ] [ 1 0 -15/8 ]

# A1 := [ 0 1 ] A2 := [ ]

# [ 0 0 ] [ 0 1 5/4 ]

As is apparent from this example, the commands colspace and rowspace can be replaced by extraction of
nonzero rows from the reduced row echelon forms for A and At.

Eigenvalues and Eigenvectors. Find the eigenvalues, eigenvectors, geometric multiplicity and algebraic
multiplicity.

19. (2 Eigenvalues and 3 Eigenvectors)

A =

0
B@ 5 4 2

4 5 2
2 2 2

1
CA :

Solution to 19. To �nd the eigenvalues of the matrix

A =

0
B@ 5 4 2

4 5 2
2 2 2

1
CA

it is required to solve for the roots of the characteristic equation

0 = det(A� �I) = 10� 21�+ 12�2 � �3 = (10� �) (�� 1)2

The eigenvalues are therefore 10, 1 and 1. The eigenvector for � = 10 is found by solving AX = 10X or
equivalently (A � 10I)X = 0, which is a null space problem. The RREF of A � (10)I is found (with some
e�ort) and we obtain eigenvalue, eigenvector pair

� = 10; X =

0
B@ 2

2
1

1
CA :

In a similar way, we �nd the RREF of A� (1)I has a basis of two elements, giving the eigenvalue, eigenvector
pairs

� = 1; X =

0
B@ 0

1
�2

1
CA ; � = 1; X =

0
B@ 1

0
�2

1
CA :
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Left out of these notes is the tedious task of �nding RREF's and standard forms of the solution for two null
space problems (one problem for each eigenvalue). In a student solution, these details must not be left out!

19a. (1 Eigenvalue and 1 Eigenvector)

A =

0
B@ 0 1 0

0 0 1
1 �3 3

1
CA :

Solution to 19a. To �nd the eigenvalues of the matrix

A =

0
B@ 0 1 0

0 0 1
1 �3 3

1
CA

requires solving for the roots of the characteristic equation

0 = det(A� �I) = 3�2 � �3 � 3�+ 1 = (1� �)3:

There is only one eigenvalue and therefore only one null space problem to solve, namely AX = X or (A�I)X =
0. The RREF of A� I is found to have rank 2, nullity 1, so there is only one eigenvalue, eigenvector pair:

� = 1; X =

0
B@ 1

1
1

1
CA :

20. (1 Eigenvalue and 1 Eigenvector)

A =

0
B@ �3 �7 �5

2 4 3
1 2 2

1
CA :

Solution to 20. To �nd the eigenvalues of the matrix

A =

0
B@ �3 �7 �5

2 4 3
1 2 2

1
CA

requires solving for the roots of the characteristic equation

0 = det(A� �I) = (1� �)3:

There is only one eigenvalue, eigenvector pair:

� = 1; X =

0
B@ �3

1
1

1
CA :

20a. (3 Eigenvalues and 3 Eigenvectors)

A =

0
B@ 5 0 2

0 7 �2
2 �2 6

1
CA :
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Solution to 20a. To �nd the eigenvalues of the matrix

A =

0
B@ 5 0 2

0 7 �2
2 �2 6

1
CA :

requires solving for the roots of the characteristic equation

0 = det(A� �I) = (�� 3) (6� �) (�� 9) :

The eigenpairs are

� = 3; X =

0
B@ �2

1
2

1
CA ; � = 6; X =

0
B@ 2

2
1

1
CA ; � = 9; X =

0
B@ 1
�2
2

1
CA :

Maple notes on problems 19{20a. The notions of algebraic multiplicity and geometric multi-

plicity are integer counts taken from certain calculations. Both require that the characteristic equation
be solved:

det(A� �I) = 0:

The algebraic multiplicity of � is the number of times root � is repeated. For example, in the equation

(�� 1)3(�+ 3)2(�2 + 16) = 0

the roots 1, �3, 4i, �4i are repeated 3, 2, 1, 1 times respectively, hence their algebraic multiplicities are 3, 2,
1, 1.

The geometric multiplicity of a root � of the characteristic equation is the number of independent eigenvectors
for �, that is, the number of independent solutions x to the equation (A � �I)x = 0. This number can be
found without computing eigenvectors. Precisely, the geometric multiplicity of root � is the number of
arbitrary variables in the general solution. This number is exactly the nullity of the matrix A � �I, which
is the number of variables minus the rank. If the eigenvectors are not needed, then it su�ces to compute
rank(A-� I). If the eigenvectors are actually needed, then maple determines the count as the number of
basis vectors in the calculation kernel(D) where D = A � �I. A third way to obtain the count is to apply
the maple command eigenvects(A), which contains the desired count in an encrypted syntax (along with
additional information). Here is an example which shows how to compute the eigenvalues and eigenvectors
and incidentally calculate the algebraic and geometric multiplicities:

with(linalg):

A:=matrix([[1,3,-2,0],[2,6,-5,-2],[0,0,5,10],[2,6,0,8]]);

J:=diag(1,1,1,1);

#

# [ 1 3 -2 0 ] [ 1 0 0 0 ]

# [ 2 6 -5 -2 ] [ 0 1 0 0 ]

# A := [ ] J:= [ ]

# [ 0 0 5 10 ] [ 0 0 1 0 ]

# [ 2 6 0 8 ] [ 0 0 0 1 ]

#

u:=[eigenvals(A)]; # Make an eigenvalue list

# # Brackets are not a mistake!

# 1/2 1/2

# u := [0, 0, 10 + I 43 , 10 - I 43 ]

#

# Algebraic multiplicities are 2,1,1 because 0 is repeated.

#

# Now solve the kernel problems for all eigenvalues u[1]..u[4].
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#

v1:=kernel(evalm(A-u[1]*J));

v2:=kernel(evalm(A-u[2]*J)); # Duplicate computation!

v3:=kernel(evalm(A-u[3]*J));

v4:=kernel(evalm(A-u[4]*J));

# v1:={[ -3, 1, 0, 0 ], [ -4, 0, -2, 1 ]}

# v2:={[ -3, 1, 0, 0 ], [ -4, 0, -2, 1 ]}

evalf(map(evalc,v3[1]),3);

# [ - .150 - .328 I, - .500 - .656 I, 1., .500 - .656 I ]

evalf(map(evalc,v4[1]),3);

# [ - .150 - .328 I, - .500 - .656 I, 1., .500 - .656 I ]

#

# Geometric multiplicities: ev=0 mult=2

# ev=10.00 + 6.56 I mult=1

# ev=10.00 - 6.56 I mult=1

It is possible to compute the eigenvalues of a matrix A numerically by the maple command Eigenvals, rather
than symbolically, as is done by eigenvals(A). This is recommended for those cases when the maple output
from eigenvals(A) is too complicated to read. The answers usually require interpretation, as in the following,
where one eigenvalue of 0 is computed as �0:874 � 10�9:

with(linalg):

A:=matrix([[1,3,-2,0],[2,6,-5,-2],[0,0,5,10],[2,6,0,8]]);

evalf(Eigenvals(A),3); # Numeric eigenvalues

# are not used for computations!

# -9

# [ -.874*10 , 10.00 + 6.56 I, 10.00 - 6.56 I, 0 ]

#

21. (Diagonalization) Test for diagonalizability and �nd the diagonal form.

A =

0
B@ 3 �1 �1

1 1 �1
1 �1 1

1
CA :

Solution to 21. A practical test for diagonalizability of a square matrix A is as follows:

(a) Compute all eigenvalues of A. If they are distinct, then A is diagonalizable.
(b) If test (a) fails, then compute the eigenvectors of A. If the number of independent eigenvectors
equals the dimension of A then A is diagonalizable.

If either case (a) or (b) holds, then A is diagonalizable and its diagonal form is the diagonal matrix of
eigenvalues. The maple command Eigenvals(A) (Cap E, not lowercase e) is not very useful for deciding case
(a) because the numerical values may be distinct but the actual values identical | see the example above.
The command eigenvects(A) can be used to decide case (b). By standard theory, case (b) holds whenever
case (a) holds, so you might deduce that case (a) can be eliminated. However, computational complexity
often dictates that (a) be checked �rst.

Diagonalizability for

A =

0
B@ 3 �1 �1

1 1 �1
1 �1 1

1
CA

is tested by �rst computing the eigenvalues. They are 1, 2, 2, not distinct, so we have to check the geometric
multiplicity of � = 2. If it's 2, then the total geometric multiplicity is 3 and A is diagonalizable with diagonal
form 0

B@ 1 0 0
0 2 0
0 0 2

1
CA :
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Otherwise, its not diagonalizable. The geometric multiplicity question is equivalent to �nding the nullity of
A � 2I. So we �nd the rank of A � 2I and subtract from 3 (the number of variables). A quick check gives
rank 1, so the nullity is 2 and A is diagonalizable.

21a. (Diagonalization) Test for diagonalizability and �nd the diagonal form.

A =

0
BBB@
�2 �2 0 0
�5 1 0 0
0 0 2 �1
0 0 5 �2

1
CCCA :

Solution to 21a. Diagonalizability for

A =

0
BBB@
�2 �2 0 0
�5 1 0 0
0 0 2 �1
0 0 5 �2

1
CCCA :

is tested by �rst computing the eigenvalues. They are 3, �4, i and �i (i = p�1). So the eigenvalues are
distinct and A is diagonalizable with diagonal form0

BBB@
3 0 0 0
0 �4 0 0
0 0 i 0
0 0 0 �i

1
CCCA :

22. (Orthogonal Matrices) Find an orthogonal matrix Q such that QtAQ is diagonal:

A =

0
BBB@

1 �1 0 0
�1 3 0 0
0 0 0 0
0 0 0 2

1
CCCA :

Solution to 22. A square matrix Q is orthogonal if each column has length 1 and the columns of Q are
pairwise orthogonal, that is, X � Y = 0 for any pair of columns X and Y of Q.

The matrix P of eigenvectors of a symmetric matrix A already satis�es P�1AP = D, where D is the diagonal
matrix of eigenvalues. An orthogonal matrix Q is constructed from P by changing its columns to unit vectors,
accomplished by dividing each column by its length. Then Q is orthogonal, Q�1 = Qt, and the equation
QtAQ = D holds.

The eigenvalues and eigenvectors of the matrix

A =

0
BBB@

1 �1 0 0
�1 3 0 0
0 0 0 0
0 0 0 2

1
CCCA

are found to be

� = 2 +
p
2; X =

0
BBB@

1�p2
1
0
0

1
CCCA ; � = 2�

p
2; X =

0
BBB@

1 +
p
2
1
0
0

1
CCCA ;
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� = 0; X =

0
BBB@

0
0
1
0

1
CCCA ; � = 2; X =

0
BBB@

0
0
0
1

1
CCCA :

Let a =
q
4� 2

p
2, b =

q
4 + 2

p
2 be the norms of the �rst two eigenvectors. The matrix Q of normalized

eigenvectors is given by

Q =

0
BBB@

(1�p2)=a (1 +
p
2)=b 0 0

1=a 1=b 0 0
0 0 1 0
0 0 0 1

1
CCCA

It is possible to show directly that the columns of Q have unit length and are pairwise orthogonal. Therefore,
Q is orthogonal, which means Q�1 = Qt. Finally, QtAQ is the diagonal matrix of eigenvalues:0

BBB@
2 +

p
2 0 0 0

0 2�p2 0 0
0 0 0 0
0 0 0 2

1
CCCA :

Maple notes on 19{22. A symmetric matrix A with distinct eigenvalues can be transformed to diagonal
form D = diag(�1; : : : ; �n) by the matrix Q of its normalized eigenvectors: Q�1AQ = D. The algorithm for
�nding Q is as follows:

(a) Let u:=[eigenvals(A)]. The values should be distinct.

(b) Evaluate
v:=kernel(evalm(A-u[i]*J))

for i = 1; : : : ; n. Save the n columns

evalm(v/sqrt(dotprod(v,v)))

in a matrix Q using initially Q:=v and then Q:=augment(Q,v) to add columns one at a time until n
columns are �lled.

There is the possibility of using eigenvects(A) to produce the values v of step (b) above. Sometimes
norm(v,2) produces unevaluated absolute values | use sqrt(dotprod(v,v)) instead of norm(v,2).

It is remarked that the above algorithm applies only to symmetric matrices. Application to nonsymmetric
matrices is considered a logical error (the calculation may produce no error message but the answer is likely
incorrect).

with(linalg):

A:=matrix([[16,-3/2],[-3/2,4]]);

v:=[eigenvals(A)]; n:=coldim(A): J:=diag(seq(1,i=1..n)):

for i from 1 to n do

w:=kernel(evalm(A-v[i]*J));

y:=evalm(w[1]/sqrt(dotprod(w[1],w[1]))):

y:=evalf(map(evalc,y),3):

if i=1 then Q:=matrix(n,1,y): else

Q:=augment(Q,matrix(n,1,y)): fi:

od:

Q = evalf(eval(Q),3);

#

# Applies only to symmetric matrices!

#
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# [ 16 -3/2 ] [ .990 .122 ]

# A := [ ] Q = [ ]

# [ -3/2 4 ] [ -.119 .991 ]

#

# 1/2 1/2

# v := [10 + 3/2 17 , 10 - 3/2 17 ]

#

Quadratic Forms. Write the given quadratic as as AX �X for some symmetric matrix A.

23. (Quadratic Form in R4) x21 � x22 + x1x3 � x2x4 + x23 + x24

Solution to 23. The quadratic x21 � x22 + x1x3 � x2x4 + x23 + x24 transforms to AX �X where

X =

0
BBB@

x1
x2
x3
x4

1
CCCA ; A =

0
BBB@

1 0 1=2 0
0 �1 0 �1=2

1=2 0 1 1
0 �1=2 0 1

1
CCCA :

Example. Write the quadratic form

x21 � x22 + x1x3 � 3x2x4 + 4x23 + x24 = 10

in the matrix form XtAX = 10 for some symmetric matrix A.

De�ne

X =

0
BBB@

x1
x2
x3
x4

1
CCCA ; A =

0
BBB@

1 0 1=2 0
0 �1 0 �3=2

1=2 0 4 0
0 �3=2 0 1

1
CCCA :

The trick in de�ning A is is to assign diagonal entries in A to corresponding square terms in the quadratic
form, but to cross terms like �3x2x4 assign two o�{diagonal entries (e.g., assign �3=2 to symmetric entries
a24 and a42 of A).

23a. (Quadratic Form in R3) �x2 + xy + y2 � 4xz + 4yz + z2

Solution to 23a. The quadratic �x2 + xy + y2 � 4xz + 4yz + z2 transforms to AX �X where

X =

0
B@ x

y
z

1
CA ; A =

0
B@ �1 1=2 �2

1=2 1 2
�2 2 1

1
CA :

Maple notes on 23{23a. To calculate the orthogonal matrix R (the rotation matrix) that transforms
a quadratic form xtAx = c into its normal form XtDX = c (D is a diagonal matrix), the algorithm for
symmetric matrices is followed to create an orthogonal matrix Q of eigenvectors of A such that D = Q�1AQ
is the diagonal matrix of eigenvalues of A. Then R is the matrix Q of that algorithm and the normal form
results by taking the change of variables X = Qx.

Example. Find the rotation matrix Q and the standard form for the quadratic 16x2�3xy+4y2 = 10, using
maple.
Solution:
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with(linalg):

k:=10:eq:= 16*x^2 - 3*x*y + 4*y^2=k; # The problem

A:=matrix([[16,-3/2],[-3/2,4]]);

v:=[eigenvals(A)]; n:=coldim(A): J:=array(identity,1..n,1..n):

for i from 1 to n do

w:=kernel(evalm(A-v[i]*J));

y:=evalm(w[1]/sqrt(dotprod(w[1],w[1]))):

y:=evalf(map(evalc,y),3):

if i=1 then Q:=matrix(n,1,y): else

Q:=augment(Q,matrix(n,1,y)): fi:

od:

X:=matrix(n,1,[X1,X2]): # New variables of standard form

eval(X)=evalf(eval(Q),3)*matrix(n,1,[x1,x2]); # Rotation formulas

DD:=diag(seq(v[j],j=1..n));

FORM:=evalm(transpose(X) &* DD &* X); # A 1 by 1 matrix

collect(FORM[1,1],[X1,X2])=k; # Write in standard form

# 2 2

# eq := 16 x - 3 x y + 4 y = 10

#

# [ 16 -3/2 ]

# A := [ ]

# [ -3/2 4 ]

#

# 1/2 1/2

# v := [10 + 3/2 17 , 10 - 3/2 17 ]

#

# [ X1 ] [ .990 .119 ] [ x1 ]

# [ ] = [ ] [ ]

# [ X2 ] [ -.119 .990 ] [ x2 ]

#

# [ 1/2 ]

# [ 10 + 3/2 17 0 ]

# D := [ ]

# [ 1/2 ]

# [ 0 10 - 3/2 17 ]

#

# 1/2 2 1/2 2

# (10 + 3/2 17 ) X1 + (10 - 3/2 17 ) X2 = 10

#

Standard Form of a Quadratic. Write the quadratic in standard form �1X
2 + �2Y

2 = c and display
both the rotation matrix R and the standard form.

24. (Quadratic Forms) 3x2 � 2xy = 5

Solution to 24. The normal form of 3x2 � 2xy = 5 is 
3=2 +

p
13

2

!
X1 2 +

 
3=2 �

p
13

2

!
X2 2 = 5;

 
X1
X2

!
=

 
0:96 0:29
�0:29 0:96

! 
x
y

!
:

24a. (Quadratic Forms) x2 � 3xy + 4y2 = 1

Solution to 24a. The normal form of x2 � 3xy + 4y2 = 1 is 
5=2 +

3
p
2

2

!
X1 2 +

 
5=2� 3

p
2

2

!
X2 2 = 1;

 
X1
X2

!
=

 
�0:380 0:923
0:926 0:383

! 
x
y

!
:
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24b. (Quadratic Forms) 2x2 + xy + y2 = 4

Solution to 24b. The normal form of 2x2 + xy + y2 = 4 is 
3=2 +

p
2

2

!
X1 2 +

 
3=2�

p
2

2

!
X2 2 = 4;

 
X1
X2

!
=

 
0:923 �0:380
0:383 0:926

! 
x
y

!
:

Di�erential Equations. The general solution of a matrix di�erential equation x0(t) = Ax(t) can be written
as x(t) =

Pn
k=1 ckXke

�kt where c1 to cn are arbitrary constants, �1 to �n are the distinct eigenvalues of A
with corresponding eigenvectors X1 to Xn. This solution works only when A has n distinct eigenvalues.

25. (Di�erential Equations) Find the general solution of the system of di�erential equations x0(t) = Ax(t)
where

A =

0
B@ 2 �4 4

0 �2 1
0 0 �1

1
CA :

Solution to 25. To solve di�erential equations x0 = Ax where A is a square matrix we apply the standard
theorem that says, for dimension 3,

x = c1v1 exp(�1t) + c2v2 exp(�2t) + c3v3 exp(�3t)

where �1, �2, �3 are the distinct eigenvalues of the matrix A with corresponding eigenvectors v1, v2, v3. The
symbols c1, c2, c3 represent arbitrary constants in the general solution.

The above method is applicable only in the case where A has distinct eigenvalues. Methods exist to solve
the problem for a general matrix A, however, the theory is beyond the scope of the linear algebra already
developed.

The general solution of the system of di�erential equations x0(t) = Ax(t) where

A =

0
B@ 2 �4 4

0 �2 1
0 0 �1

1
CA

is given by

x(t) = c1 exp(2t)

0
B@ 1

0
0

1
CA+ c2 exp(�2t)

0
B@ 1

1
0

1
CA+ c3 exp(�t)

0
B@ 0

1
1

1
CA

25a. (Di�erential Equations) Solve for the vector solution x(t) in x0(t) = Ax(t), given

A =

0
B@ 4 0 1

0 2 1
0 0 3

1
CA :

Solution to 25a. The vector solution x(t) in x0(t) = Ax(t), given

A =

0
B@ 4 0 1

0 2 1
0 0 3

1
CA ;

is given by

x(t) = c1 exp(2t)

0
B@ 0

1
0

1
CA+ c2 exp(4t)

0
B@ 1

0
0

1
CA+ c3 exp(3t)

0
B@ 1
�1
�1

1
CA
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25b. (Vector Space Basis) Find a basis for the solution space of the linear di�erential equation y000 � 6y00 +
11y0 � 6y = 0.

Solution to 25b. A basis for the solution space of a homogeneous linear di�erential equation can be
extracted from the General Solution of the equation. The basis is obtained formally from the general
solution by identifying the functions multiplying the arbitrary constants in the general solution.

From the general solution
y(x) = C1 exp(x) + C2 exp(�3x) + C3 exp(�2x)

we can infer that exp(x), exp(�3x), exp(�2x) is a basis for the solution space of the di�erential equation
y000 + 4y00 + y0 � 6y = 0.

A basis for the solution space of the linear di�erential equation y000 � 6y00 + 11y0 � 6y = 0 is

ex; e2x; e3x:

Maple Notes on Di�erential Equations. The general solution of a di�erential equation can be found by
generalizing this example:

u:=y(x): u1:=diff(y(x),x):

u2:=diff(y(x),x,x): u3:=diff(y(x),x,x,x):

de:=u3+4*u2+u1-6*u = 0:

dsolve(de,y(x));

# y(x) = _C1 exp(x) + _C2 exp(- 3 x) + _C3 exp(- 2 x)

26


