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2.6 Kinetics

Studied are the following topics.

• Newton’s Laws

• Free Fall with Constant Gravity

• Air Resistance Effects

• Modelling

• Parachutes

• Lunar Lander

• Escape Velocity

Newton’s Laws

The ideal models of a particle or point mass constrained to move along
the x-axis, or the motion of a projectile or satellite, have been studied
from Newton’s second law

F = ma.(1)

In the mks system of units, F is the force in Newtons, m is the mass in
kilograms and a is the acceleration in meters per second per second.

The closely-related Newton universal gravitation law

F = G
m1m2

R2
(2)

is used in in conjunction with (1) to determine the system’s constant
value g of gravitational acceleration. The masses m1 and m2 have cen-
troids at a distance R. For the earth, g = 9.8 m/s2 is commonly used;
see Table 1.

Other commonly used unit systems are cgs and fps. Table 1 shows some
useful equivalents.

Table 1. Units for fps and mks systems

Unit name fps unit mks unit

Position foot (ft) meter (m)
Time seconds (s) seconds (s)
Velocity feet/sec meters/sec
Acceleration feet/sec2 meters/sec2

Force pound (lb) Newton (N)
Mass slug kilogram (kg)
g 32.088 ft/s2 9.7805 m/s2
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Other units in the various systems are in daily use. Table 2 shows some
equivalents. An international synonym for pound is libre, with abbre-
viation lb. The origin of the word pound is migration of libra pondo,
meaning a pound in weight. Dictionaries cite migrations libra pondo −→
pund for German language, which is similar to English pound.

Table 2. Conversions for the fps and mks systems

inch (in) 1/12 foot 2.54 centimeters
foot (ft) 12 inches 30.48 centimeters
centimeter (cm) 1/100 meter 0.39370079 inches
kilometer (km) 1000 meters 0.62137119 miles (≈ 5/8)
mile (mi) 5280 feet 1.609344 kilometers (≈ 8/5)
pound (lb) ≈ 4.448 Newtons
Newton (N) ≈ 0.225 pounds
kilogram (kg) ≈ 0.06852 slugs
slug ≈ 14.59 kilograms

Velocity and Acceleration

The position, velocity and acceleration of a particle moving along an
axis are functions of time t. Notations vary; this text uses the following
symbols, where primes denote t-differentiation.

x = x(t) The particle’s position at time t.

v = x′(t) The particle’s velocity at time t.

a = x′′(t) The particle’s acceleration at time t.

x(0) The initial position.

v(0) The initial velocity. Synonym x′(0) is

also used.

Free Fall with Constant Gravity

A body falling in a constant gravitational field might ideally move in
a straight line, aligned with the gravitational vector. A typical case is
the lunar lander, which falls freely toward the surface of the moon, its
progress downward controlled by retrorockets. Falling bodies, e.g., an ob-
ject launched up or down from a tall building, can be modeled similarly.
For such ideal cases, in which air resistance and other external forces are
ignored, the acceleration of the body is assumed to be a constant g and
the differential equation model is

x′′(t) = −g, x(0) = x0, x′(0) = v0.(3)

The initial position x0 and the initial velocity v0 must be specified. The
value of g in mks units is g = 9.8 m/s2. The symbol x is the distance
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from the ground (x = 0); meters for mks units. The symbol t is the time
in seconds. Falling body problems normally take v0 = 0 and x0 > 0,
e.g., x0 is the height of the building from which the body was dropped.
Objects ejected downwards have v0 < 0, which decreases the descent
time. Objects thrown straight up satisfy v0 > 0.

Equation (3) can be solved by the method of quadrature to give the
explicit solution

x(t) = −
g

2
t2 + x0 + v0t.(4)

See Technical Details, page 120, and the method of quadrature, page 66.
Applications to free fall and the lunar lander appear in the examples,
page 116.

Typical plots can be made by the following maple code.

X:=unapply(-9.8*t^2+100+(50)*t,t); #v(0)=50m/s,x(0)=100m

plot(X(t),t=0..7);

Y:=unapply(-9.8*t^2+100+(-5)*t,t); #v(0)=-5m/s,x(0)=100m

plot(Y(t),t=0..4);

Air Resistance Effects

The inclusion in a differential equation model of terms accounting for
air resistance has historically two distinct models. The first is linear

resistance, in which the force F due to air resistance is assumed to be
proportional to the velocity v:

F ∝ v.(5)

It is known that linear resistance is appropriate only for slowly moving
objects. The second model is nonlinear resistance, modeled originally
by Sir Isaac Newton himself as F = kv2. The literature considers a
generalized nonlinear resistance assumption

F ∝ v|v|p(6)

where 0 < p ≤ 1 depends upon the speed of the object through the
air; p ≈ 0 is a low speed and p ≈ 1 is a high speed. It will suffice for
illustration purposes to treat just the two cases F ∝ v and F ∝ v|v|.

Linear Air Resistance. The model is determined by the sum of
the forces due to air resistance and gravity, Fair + Fgravity, which by

Newton’s second law must equal F = mx′′(t), giving the differential
equation

mx′′(t) = −kx′(t) − mg.(7)
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In (7), the velocity is v = x′(t) and k is a proportionality constant for the
air resistance force F ∝ v. The negative sign results from the assumed
coordinates: x measures the distance from the ground (x = 0). We
expect x to decrease, hence x′ is negative. Equation (7) written in terms
of the velocity v = x′(t) becomes

v′(t) = −(k/m)v(t) − g.(8)

This equation has a solution v(t) which limits at t = ∞ to a finite

terminal velocity |v∞| = mg/k; see (9) below and Technical Details,
page 121. Physically, this limit is the equilibrium solution of (8),
which is the observable steady state of the model. A quadrature applied
to x′(t) = v(t) solves (7). Then

v(t) = −
mg

k
+

(

v(0) +
mg

k

)

e−kt/m,

x(t) = x(0) −
mg

k
t +

m

k

(

v(0) +
mg

k

)

(

1 − e−kt/m
)

.

(9)

Nonlinear Air Resistance. The model, which applies primarily to
rapidly moving objects, is obtained by the same method as the linear
model, replacing the linear resistance term kx′(t) by the nonlinear term
kx′(t)|x′(t)|. The resulting model is

mx′′(t) = −kx′(t)|x′(t)| − mg,(10)

which in terms of the velocity v = x′(t) is the first order equation

v′(t) = −(k/m)v(t)|v(t)| − g.(11)

The model applies in particular to parachute flight and to certain pro-
jectile problems, like an arrow or bullet fired straight up.

Upward Launch. Separable equation (11) in the case v(0) > 0 for a
launch upward becomes v′(t) = −(k/m)v2(t)− g. The solution for
v(0) > 0 is given below in (12); see Technical Details, page 121.
The equation x′(t) = v(t) can be solved by quadrature. Then for
some constants c and d

v(t) =

√

mg

k
tan





√

kg

m
(c − t)



 ,

x(t) = d +
m

k
ln

∣

∣

∣

∣

∣

∣

cos





√

kg

m
(c − t)





∣

∣

∣

∣

∣

∣

.

(12)

Downward Launch. The case v(0) < 0 for an object launched down-
ward or dropped will use the equation v′(t) = (k/m)v2(t) − g; see
Technical Details, page 121. Then for some constants c and d
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v(t) =

√

mg

k
tanh





√

kg

m
(c − t)



 ,

x(t) = d −
m

k
ln

∣

∣

∣

∣

∣

∣

cosh





√

kg

m
(c − t)





∣

∣

∣

∣

∣

∣

.

(13)

The hyperbolic functions appearing in (13) are defined by

cosh u = 1

2
(eu + e−u) Hyperbolic cosine.

sinhu = 1

2
(eu − e−u) Hyperbolic sine.

tanh u =
eu − e−u

eu + e−u
Hyperbolic tangent. Identity

tanh u = sinhu/ cosh u.

The model applies to parachute problems in particular. Equation (13)
and the limit formula lim|x|→∞ tanh x = 1 imply a terminal velocity

|v∞| =

√

mg

k
.

The value is exactly the square root of the linear model terminal veloc-
ity. Without air resistance effects, e.g., the falling body model (3), the
velocity is allowed to increase to unrealistic speeds.

Modelling

It can be argued from air resistance models that projectiles spend more
time falling to the ground than they spend reaching maximum height2;
see Example 28. Simplistic models ignoring air resistance tend to over-
estimate the maximum height of the projectile and the flight time; see
Example 27. Falling bodies are predicted by air resistance models to
have a terminal velocity.

Significant effects are ignored by the models of this text. Real projectiles
are affected by spin and a flight path that is not planar. The corkscrew

path of a bullet can cause it to miss a target, while a planar model
predicts it will hit the target. The spin of a projectile can drastically
alter its flight path and flight characteristics, as is known by players of
table tennis and court tennis, archery enthusiasts and gun club members.

Gravitational effects assumed constant may in fact not be constant along
the flight path. This can happen in the soft touchdown problem for
a lunar lander, when the lander activates retrorockets high above the
moon’s surface.

2Racquetball, tennis and ping-pong players know about this effect and use it in

their game tactics and timing.
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External effects like wind or the gravitational forces of nearby celestial
bodies, ignored in simplistic models, may indeed produce significant ef-
fects. On the freeway, is it possible to throw an ice cube out the window
ahead of your vehicle? Is it feasible to use forces from the moon to assist

in the launch of an orbital satellite?

Parachutes

In a typical parachute problem, the jumper travels in a parabolic arc to
the ground, buffeted about by up and down drafts in the atmosphere,
but always moving in the direction determined by the airplane’s flight.
In short, a parachutist does not fall to the ground. Their flight path
more closely resembles the path of a projectile, but it is generally not
planar.

Important to skydivers is an absolute limit to their speed, called the
terminal velocity. It depends upon a number of physical factors, the
dominant factor being body shape. A parachutist with excess loose cloth-
ing will dive more slowly than when equipped with a tight lycra jump
suit. When the parachute opens, the flight characteristics are dominated
by physical factors of the open parachute.

The constant k/m > 0 is called the drag coefficient, where m is the
mass and k > 0 appears in the resistive force equation F = kv|v|. In
order for the parachute model to give a terminal velocity of 15 miles per
hour, the drag coefficient must be approximately k/m = 3/2. Without
the parachute, the skydiver can reach speeds of over 45 miles per hour,
which corresponds to a drag coefficient k/m < 1/2.

Who falls the greatest distance after 30 seconds, a 250-pound or a 110-
pound parachutist? The answer is not so easy, because the 110-pound
parachutist has less air resistance due to less body surface area but also
less mass, making it difficult to compare the two drag coefficients. A
layman’s answer might be serendipitously correct!

Lunar Lander

A lunar lander is falling toward the moon’s surface, in the radial direc-
tion, at a speed of 1000 miles per hour. It is equipped with retrorockets
to retard the fall. In free space outside the gravitational effects of the
moon the retrorockets provide a retardation thrust of 9 miles per hour
per second of activation, e.g., 11 seconds of retrorocket power will slow
the lander down by about 100 miles per hour.

A soft touchdown is made when the lander contacts the moon’s surface
falling at a speed of zero miles per hour. This ideal situation can be
achieved by turning on the retrorockets at the right moment.
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The lander is greatly affected by the gravitational field of the moon.
Ignoring this field gives a gross overestimate for the activation time,
causing the lander to reverse its direction and never reach the surface.
The layman answer of 1000/9 ≈ 112 seconds to touchdown from an
altitude of about 16 miles is incorrect by about 10 miles, causing the
lander to crash at substantial speed into the lunar surface.

Escape velocity

Is it possible to fire a projectile from the earth’s surface and reach the
moon? The science fiction author Jules Verne, in his 1865 novel From the

Earth to the Moon, seems to believe it is possible. Modern calculations
give the initial escape velocity v0 as about 25, 000 miles per hour.
There is no record of this actually being tested, so the number 25, 000
remains a theoretical estimate.

This is a different problem than powered rocket flight. All the power
must be applied initially, and it is not allowed to apply power during
flight to the moon. Imagine instead a deep hole, in which a rocket is
launched, the power being turned off just as the rocket exits the hole.
The rocket has to coast to the moon, using just the power gained during
launch.

Newton’s law of universal gravitation gives m1m2G/r2 as the magnitude
of the force of attraction between two point-masses m1, m2 separated
by distance r. The equation g = Gm2/R

2 gives the acceleration due to
gravity at the surface of the planet. For the earth, g = 9.8 meters per
second per second and R = 6, 370, 000 meters.

A spherical projectile of mass m1 hurled straight up from the surface of
a planet moves in the radial direction. Ignoring air resistance, Newton’s
law implies the distance y(t) travelled by the projectile satisfies

m1y
′′(t) = −

m1m2G

(y(t) + R)2
, y(0) = 0, y′(0) = v0,(14)

where R is the radius of the planet, m2 is its mass and G is the exper-
imentally measured universal gravitation constant. Using gR2 = Gm2

and cancelling m1 in (14) gives

y′′(t) = −
gR2

(y(t) + R)2
, y(0) = 0, y′(0) = v0.(15)

The projectile escapes the planet if y(t) → ∞ as t → ∞. The escape

velocity problem asks which minimal value of v0 causes escape.

To solve the escape velocity problem, multiply equation (15) by y′(t),
then integrate over [0, t] and use the initial conditions y(0) = 0, y′(0) = v0
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to obtain
1

2

(

(y′(t))2 − (v0)
2
)

=
gR2

y(t) + R
− Rg.

The square term (y′(t))2 being nonnegative gives the inequality

0 ≤ (v0)
2 +

2gR2

y(t) + R
− 2Rg.

If y(t) → ∞, then v2
0
≥ 2Rg, which gives the escape velocity

v0 =
√

2gR.(16)

For the earth, v0 ≈ 11, 174 meters per second, which is slightly more
than 25, 000 miles per hour.

Examples

25 Example (Free Fall) A ball is thrown straight up from the roof of a 100-
foot building and allowed to fall to the ground. Assume initial velocity

v0 = 32 miles per hour. Estimate the maximum height of the ball and its

flight time to the ground.

Solution: The maximum height H and flight time T are given by

H = 134.41 ft, T = 4.36 sec.

Details: In fps units, v0 = 32(5280)/(3600) = 46.93 ft/sec. Using solution (4)
gives for x0 = 100 and v0 = 46.93

x(t) = −16t2 + 100 + 46.93t.

Then x(t) = H = max when x′(t) = 0, which happens at t = 46.93/32.
Therefore, H = x(46.93/32) = 134.41. The flight time is given by x(T ) = 0
(the ground is x = 0). Solving this quadratic equation for T > 0 gives T = 4.36
seconds.

26 Example (Lunar Lander) A lunar lander falls to the moon’s surface at

v0 = −960 miles per hour. The retrorockets in free space provide a deceler-

ation effect on the lander of a = 18, 000 miles per hour per hour. Estimate

the retrorocket activation height above the surface which will give the lander

zero touch-down velocity.

Solution: Presented here are two models, one which assumes the moon’s grav-
itational field is constant and another which assumes it is variable. The results
obtained for the activation height are different: 93.3 miles for the constant field
model and 80.1 miles for the variable field model. The flight time to touchdown
is estimated to be 11.7 minutes.

The mks unit system will be used for calculations, giving v0 = −429.1584
meters per second and a = 2.2352 meters per second per second.
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Constant field model. Let’s assume constant gravitational acceleration G
due to the moon. Other gravitational effects are ignored.

The acceleration value G is found in mks units from the formula

G =
Gm1

R2
.

Here, m1 = 7.36× 1022 kilograms and R = 1.74× 106 meters (1740 kilometers,
1081 miles) are the mass and radius of the moon. Newton’s universal gravitation
constant is G ≈ 6.6726× 10−11 N(m/kg)2. Then G = 1.621942132.

The lander itself has mass m. Let r(t) be the distance from the lander to the
surface of the moon. The value r(0) is the height above the moon when the
retrorockets are activated for the soft landing at time t0. Then force analysis
and Newton’s second law implies the model

mr′′(t) = ma − mG, r(t0) = 0, r′(t0) = 0, r′(0) = v0.

The objective is to find r(0). Cancel m, then integrate twice to obtain the
quadrature solution

r′(t) = (a − G)t + v0,
r(t) = (a − G)t2/2 + v0t + r(0).

Then r′(t0) = 0 and r(t0) = 0 give the equations

(a − G)t + v0 = 0, r(0) = −v0t0 − (a − G)t20/2.

Evaluation uses mks units: a = 2.2352, v0 = −429.1584, G = 1.621942132.
Solving simultaneously provides the numerical answers

t0 = 11.66 minutes, r(0) = 150.16 kilometers = 93.3 miles.

Variable field model. The constant field model will be modified to obtain
this model. All notation developed above applies. We will replace the constant
acceleration G by the variable acceleration Gm1/(R + r(t))2. Then the model
is

mr′′(t) = ma −
Gmm1

(R + r(t))2
, r(t0) = 0, r′(t0) = 0, r′(0) = v0.

Multiply this equation by r′(t)/m and integrate. Then

(r′(t))2

2
= ar(t) +

Gm1

R + r(t)
+ c, c ≡ −

Gm1

R
.

We want to find r(0), the height above the moon. The equation to solve for
r(0) is found by substitution of t = 0 into the previous equation:

(r′(0))2

2
= ar(0) +

Gm1

R + r(0)
−

Gm1

R
.

After substitution of known values, the quadratic equation for x = r(0) is given
by

92088.46615 = 2.2352x +
2822179.310

1 + x/1740000
− 2822179.310.
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Solving for the positive root gives r(0) ≈ 127.23 kilometers or 79.06 miles. The
analysis does not give the flight time t0 directly.

Answer check. A similar analysis is done in Edwards and Penney [?] for
the case a = 4 meters per second per second, v0 = −450 meters per second,
with result r(0) ≈ 41.87 kilometers. In their example, the retrorocket thrust is
nearly doubled, resulting in a lower activation height. The reader can substitute
v0 = −450 and a = 4 in the variable field model to obtain agreement: r(0) ≈
41.90 kilometers. The constant field model gives r(0) ≈ 42.58 kilometers and
t0 ≈ 3.15 minutes.

27 Example (Flight Time and Maximum Height) Show that the maximum

height and the ascent time of a projectile are over-estimated by a model that

ignores air resistance.

Solution: Treated here is the case of a projectile launched straight up from
the ground x = 0 with velocity v0 > 0. The ascent time is denoted t1 and the
maximum height M is then M = x(t1).

No air resistance. Consider the model v′ = −g, v(0) = v0. The solution is
v = −gt + v0, x = −gt2/2 + v0t. Then maximum height M occurs at v′(t1) = 0
which gives t1 = v0/g and M = x(t1) = t1(v0 − gt1/2) = gv2

0/2.

Linear air resistance. Consider the model v′ = −ρv − g, v(0) = v0. This is
a Newton cooling equation in disguise, with recipe solution given by equation
(9), where ρ = k/m. Then t1 is a function of (ρ, v0) satisfying geρt1 = v0ρ + g,
hence t1 is given by the equation

t1(ρ, v0) =
1

ρ
ln

∣

∣

∣

∣

v0ρ + g

g

∣

∣

∣

∣

.(17)

The limit of t1 = t1(ρ, v0) as ρ → 0 is the ascent time v0/g of the no air
resistance model. We verify in the exercises the following.

Lemma 1 (Linear Ascent Time) The ascent time t1 for linear air resistance sat-

isfies t1(ρ, v0) < v0/g.

The lemma implies that the rise time for linear air resistance is less than the
rise time for no air resistance.

The inequality v′ = −ρv − g < −g holds for v > 0, therefore v(t) < −gt + v0

and x(t) < −gt2/2 + v0t = height for the no air resistance model. Thus the
maximum height x(t1) is less than the maximum height for the no air resistance
model, by Lemma 1; see the exercises page 125.

Nonlinear air resistance. We are technically done with the example, since it
has been shown that the answers for t1 and M decrease when using the linear
model. Similar results can be stated for the nonlinear model v′ = ρv|v| − g; see
the exercises page 125.

28 Example (Modelling) Argue from nonlinear air resistance models that a

projectile takes more time to fall to the ground than it takes to reach max-

imum height.
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Solution: The model will be the nonlinear model of the text, which historically
goes back to Newton himself. The linear air resistance model, appropriate for
slowly moving projectiles, is not considered in this example.

Let t1 and t2 be the ascent and fall times, so that the total flight time from the
ground to maximum height and then to the ground again is t1 + t2.

The times t1, t2 are functions of the initial velocity v0 > 0. As v0 limits to zero,
both t1 and t2 limit to zero. We will show that t2dt2/dv0 − t1dt1/dv0 > 0 in
Lemma 6 below. Then t22− t21 > 0, from which it follows that t2 > t1 for v0 > 0.
This means that the projectile takes more time to fall to the ground (t2) than
it takes to reach maximum height (t1).

Let f1(v) = −(k/m)v2 − g and f2(v) = (k/m)v2 − g. The ascent is controlled
with velocity v1 > 0 satisfying v′1 = f1(v1), v1(0) = v0 > 0, v1(t1) = 0.

The maximum height reached is y0 =
∫ t1
0 v1(t)dt. The descent is controlled

with velocity v2(t) satisfying v′2 = f2(v2), v2(t1) = 0. The flight ends at time

T = t1 + t2, determined by 0 = y0 +
∫ T

t1
v2(t)dt.

The details of proof involve a number of technical results, some of which depend
upon the formulae for the nonlinear functions f1, f2.

Lemma 2 The solution v2(t) = w(t + t1), where w′ = f2(w), w(0) = 0. The

solution w does not involve variables v0, t1, t2.

Lemma 3 Assume f is continuously differentiable. Let v(t, v0) be the solution of

v′ = f(v), v(0) = v0. Then

dv

dv0
= e

∫

t

0
f ′(v(t,v0))dt

.

The function dv/dv0 solves the linear problem z′ = f ′(v(t, v0))z, z(0) = 1.

Lemma 4
dt1
dv0

=
1

g
e
−2k

∫

t1

0

v1(t,v0)dt/m
.

Lemma 5
dt2
dv0

=
−1

v2(t1 + t2)

∫ t1

0

e
−2k

∫

t

0

v1(r,v0)dr/m
dt.

Lemma 6

t2
dt2
dv0

− t1
dt1
dv0

> 0.

Proof of Lemma 6. Lemmas 2 to 5 will be applied. Define w(t) by Lemma
2. Because w′ = f2(w) = (k/m)w2 − g, then f2(w) ≥ −g which implies
w(t) ≥ w(0) − gt. Using w(0) = 0 implies v2(t1 + t2) = w(t2) ≥ −gt2 and
finally, using w(t) < 0 for 0 < t ≤ t2,

1

gt2
≤

−1

v2(t1 + t2)
.

Multiply this inequality by eu(t), u(t) = −2k
∫ t

0
v1(r, v0)dr/m. Integrate over

t = 0 to t = t1. Then Lemma 5 implies

1

gt2

∫ t1

0

eu(t)dt ≤
dt2
dv0

.
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Because u(t) > u(t1), then

1

gt2

∫ t1

0

eu(t1)dt <
dt2
dv0

.

This implies by Lemma 4 the inequality

t1
t2

dt1
dv0

=
t1
gt2

eu(t1) <
dt2
dv0

,

or t2dt2/dv0 − t1dt1/dv0 > 0. The proof is complete.

Proof of Lemma 2. The function z(t) = v2(t + t1) satisfies z′ = f2(z),
z(0) = v2(t1) = 0. So does w(t). By uniqueness, z(t) ≡ w(t).

Proof of Lemma 3. The exponential formula for dv2/dv0 is the unique so-
lution of the first order initial value problem. It remains to show that the
initial value problem is satisfied. Instead of doing the answer check, we mo-
tivate how to find the initial value problem. First, differentiate across the
equation v′2 = f2(v2) with respect to variable v0 to obtain z′ = f ′

2(v2)z where
z = dv2/dv0. Secondly, differentiate the relation v2(0, v0) = v0 on variable v0

to obtain z(0) = 1. The details of the answer check focus on showing Newton
quotients converge to the given answer.

Proof of Lemma 4. Start with the determining equation v1(t1, v0) = 0.
Differentiate using the chain rule on variable v0 to obtain the relation

v′1(t1, v0)
dt1
dv0

+
dv1

dv0
(t1, v0) = 0.

Because f ′

1(u) = −2ku/m, then the preceding lemma implies that dv1/dv0 is
the same exponential function as in this Lemma. Also, v1(t1, v0) = 0 implies
v′1(t1, v0) = f1(0) = −g. Substitution gives the formula for dt1/dv0.

Proof of Lemma 5. Start with y0 =
∫ t1
0 v1(t, v0)dt and y(t) = y0 +

∫ t

t1
v2(t)dt.

Then 0 = y(t2 + t1) implies that

0 = y(t1 + t2)

=
∫ t1
0 v1(t, v0)dt +

∫ t2
0 v2(t + t1)dt

=
∫ t1
0 v1(t, v0)dt +

∫ t2
0 w(t)dt.

Because w(t) is independent of t1, t2, v0 and v1(t1, v0) = 0, then differentiation
on v0 across the preceding formula gives

0 = d
dv0

∫ t1
0 v1(t, v0)dt + w(t2)

dt2
dv0

= v1(t1, v0)
dt1
dv0

+
∫ t1
0

dv1

dv0

(t, v0)dt + w(t2)
dt2
dv0

= 0 +
∫ t1
0

eu(t)dt + w(t2)
dt2
dv0

where u(t) = −2k
∫ t

0
v1(r, v0)dr/m. Use w(t2) = v2(t2 + t1) after division by

w(t2) in the last display to obtain the formula.

Details and Proofs

Proof for Equation (4). The method of quadrature is applied as follows.
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x′′(t) = g The given differential equation.
∫

x′′(t)dt =
∫

−gdt Quadrature step.

x′(t) = −gt + c1 Fundamental theorem of calculus.
∫

x′(t)dt =
∫

(−gt + c1)dt Quadrature step.

x(t) = −g t2

2 + c1t + c2 Fundamental theorem of calculus.

Using initial conditions x(0) = x0 and x′(0) = v0 it follows that c1 = v0 and
c2 = x0. These steps verify the formula x(t) = −gt2/2 + x0 + v0t.

Technical Details for Equation (9).

v′(t) + (k/m)v(t) = −g Standard linear form.

(Qv)′

Q = −g Integrating factor Q = ekt/m.

(Qv)′ = −gQ Quadrature form.

Qv = −mgQ/k + c Method of quadrature.

v = −mg/k + c/Q Velocity equation.

v = −mg
k +

(

v(0) + mg
k

)

e−kt/m Evaluate c and use Q = ekt/m.

The equation x(t) = x(0) +
∫ t

0
v(r)dr gives the last relation in (9):

x(t) = x(0) −
mg

k
t +

m

k

(

v(0) +
mg

k

) (

1 − e−kt/m
)

.

Technical Details for Equation (12), v(0) > 0.

v′(t) = −(k/m)v2(t) − g The upward launch equation.

u′(t) =
√

kg
m (1 + u2(t)) Change of variables u =

√

k
mg v.

u′(t)
1+u2(t) = −

√

kg
m A separated form.

arctan(u(t)) = −
√

kg
m t + c1 Quadrature.

u(t) = tan

(

c1 −
√

kg
m t

)

Apply the tangent on both sides.

v(t) =
√

mg
k tan

(

√

kg
m (c − t)

)

Define c1 =
√

kg
m c.

x(t) =
∫

v(t)dt Quadrature method.

= d + m
k ln

∣

∣

∣

∣

cos

(

√

kg
m (c − t)

)∣

∣

∣

∣

Integration constant d.

Technical Details for Equation (13), v(0) < 0.

v′(t) = (k/m)v2(t) − g Downward launch equation.

u′(t) =
√

kg
m

(

u2(t) − 1
)

Change of variables u =
√

k
mg v.

u′(t)
u2(t)−1 =

√

kg
m A separated form.
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− arctanh(u) = 2t
√

kg
m + c1 Quadrature method and tables.

u = tanh

(

√

kg
m (c − t)

)

Define c by

√

kg
m c = −c1.

v(t) =
√

mg
k tanh

(

√

kg
m (c − t)

)

Use v =
√

mg
k u.

x(t) =
∫

v(t)dt Quadrature.

= d − m
k ln

∣

∣

∣

∣

cosh

(

√

kg
m (c − t)

)∣

∣

∣

∣

Integration constant d.

Exercises 2.6

Newton’s Laws. Review of units and
conversions.

1. An object weighs 100 pounds.
Find its mass in slugs and kilo-
grams.

2. An object has mass 50 kilograms.
Find its mass in slugs and its
weight in pounds.

3. Convert from fps to mks systems:
position 1000, velocity 10, accel-
eration 2.

4. Derive g =
Gm

R2
, where m is the

mass of the earth and R is its ra-
dius.

Velocity and Acceleration. Find the
velocity x′ and acceleration x′′.

5. x(t) = 16t2 + 100

6. x(t) = 16t2 + 10t + 100

7. x(t) = t3 + t + 1

8. x(t) = t(t − 1)(t − 2)

Free Fall with Constant Gravity.
Solve using the model x′′(t) = −g,
x(0) = x0, x′(0) = v0.

9. A brick falls from a tall building,
straight down. Find the distance
it fell and its speed at three sec-
onds.

10. An iron ingot falls from a tall
building, straight down. Find the
distance it fell and its speed at
four seconds.

11. A ball is thrown straight up from
the ground with initial velocity 66
feet per second. Find its maxi-
mum height.

12. A ball is thrown straight up from
the ground with initial velocity 88
feet per second. Find its maxi-
mum height.

13. An arrow is shot straight up from
the ground with initial velocity 23
meters per second. Find the flight
time back to the ground.

14. An arrow is shot straight up from
the ground with initial velocity 44
meters per second. Find the flight
time back to the ground.

15. A car travels 140 kilometers per
hour. Brakes are applied, with
deceleration 10 meters per second
per second. Find the distance the
car travels before stopping.

16. A car travels 120 kilometers per
hour. Brakes are applied, with de-
celeration 40 feet per second per
second. Find the distance the car
travels before stopping.

17. An arrow is shot straight down
from a height of 500 feet, with



2.6 Kinetics 123

initial velocity 44 feet per second.
Find the flight time to the ground
and its impact speed.

18. An arrow is shot straight down
from a height of 200 meters, with
initial velocity 13 meters per sec-
ond. Find the flight time to the
ground and its impact speed.

Linear Air Resistance. Solve us-
ing the linear air resistance model
mx′′(t) = −kx′(t) − mg. An equiv-
alent model is x′′ = −ρx − g, where
ρ = k/m the drag coefficient.

19. An arrow is shot straight up from
the ground with initial velocity 23
meters per second. Find the flight
time back to the ground. Assume
ρ = 0.035.

20. An arrow is shot straight up from
the ground with initial velocity 27
meters per second. Find the max-
imum height. Assume ρ = 0.04.

21. A parcel is dropped from an air-
craft at 32, 000 feet. It has a
parachute that opens automati-
cally after 25 seconds. Assume
drag coefficient ρ = 0.16 without
the parachute and ρ = 1.45 with
it. Find the descent time to the
ground.

22. A first aid kit is dropped from a
helicopter at 12, 000 feet. It has
a parachute that opens automat-
ically after 15 seconds. Assume
drag coefficient ρ = 0.12 without
the parachute and ρ = 1.55 with
it. Find the impact speed with the
ground.

23. A motorboat has velocity v sat-
isfying 1100v′(t) = 6000 − 110v,
v(0) = 0. Find the maximum
speed of the boat.

24. A motorboat has velocity v sat-
isfying 1000v′(t) = 4000 − 90v,
v(0) = 0. Find the maximum
speed of the boat.

25. A parachutist falls until his speed
is 65 miles per hour. He opens
the parachute. Assume drag co-
efficient ρ = 1.57. About how
many seconds must elapse before
his speed is reduced to within 1%
of terminal velocity?

26. A parachutist falls until his speed
is 120 kilometers per hour. He
opens the parachute. Assume
drag coefficient ρ = 1.51. About
how many seconds must elapse be-
fore his speed is reduced to within
2% of terminal velocity?

27. A ball is thrown straight up with
initial velocity 35 miles per hour.
Find the ascent time and the de-
scent time. Assume drag coeffi-
cient 0.042

28. A ball is thrown straight up with
initial velocity 60 kilometers per
hour. Find the ascent time and
the descent time. Assume drag
coefficient 0.042

Linear Ascent and Descent Times.
Find the ascent time t1 and the de-
scent time t2 for the linear model v′ =
−ρv − g, ρ = k/m is the drag coeffi-
cient. Use equation (17) for t1. Find
t2 from x(t2) = 0, where v = x′ and
v′ = −ρv − g, v(0) = 0, x(0) = y0 and

y0 = ρ−1
∫ t1
0

(−g + (v0ρ + g)e−ρt)dt.

29. ρ = 0.01

30. ρ = 0.015

31. ρ = 0.02

32. ρ = 0.018

33. ρ = 0.022

34. ρ = 0.025

35. ρ = 1.5

36. ρ = 1.55
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37. ρ = 1.6

38. ρ = 1.65

39. ρ = 1.45

40. ρ = 1.48

Nonlinear Air Resistance. Assume
ascent velocity v1 satisfies v′1 = −ρv2

1−
g. Assume descent velocity v2 satisfies
v′2 = ρv2

2 − g. Let t1 and t2 be the as-
cent and descent times, so that t1 + t2
is the flight time. Let v1(0) = v0 and
v2(t1) = v1(t1) = 0. Units are mks.
Assume g = 9.8. Define M = maxi-
mum height and vf = impact velocity.

41. Let ρ = 0.0012, v0 = 50. Find t1,
t2

42. Let ρ = 0.0012, v0 = 30. Find t1,
t2

43. Let ρ = 0.0015, v0 = 50. Find t1,
t2

44. Let ρ = 0.0015, v0 = 30. Find t1,
t2

45. Let ρ = 0.001, v0 = 50. Find M ,
vf .

46. Let ρ = 0.001, v0 = 30. Find M ,
vf .

47. Let ρ = 0.0014, v0 = 50. Find M ,
vf .

48. Let ρ = 0.0014, v0 = 30. Find M ,
vf .

49. Find t1, t2, M and vf for ρ =
0.00152, v0 = 60.

50. Find t1, t2, M and vf for ρ =
0.00152, v0 = 40.

Terminal Velocity. Find the terminal
velocity for (a) a linear air resistance
a(t) = ρv(t) and (b) a nonlinear air re-
sistance a(t) = ρv2(t). Use the model
equation v′ = a(t) − g and the given
drag coefficient ρ.

51. ρ = 0.15

52. ρ = 0.155

53. ρ = 0.015

54. ρ = 0.017

55. ρ = 1.5

56. ρ = 1.55

57. ρ = 2.0

58. ρ = 1.89

59. ρ = 0.001

60. ρ = 0.0015

Parachutes. A parachute opens at
timer value t = 0 and the body falls
at speed v given by (a) linear resis-
tance model v′ = ρv − g or (b) non-
linear resistance model v′ = ρv2 − g.
Given the drag coefficient ρ and ini-
tial velocity v(0) = v0, compute the
elapsed distance and elapsed time un-
til the body reaches 98% of its terminal
velocity. Report two values for (a) and
two values for (b).

61. ρ = 1.446, v0 = −66 ft/sec.

62. ρ = 1.446, v0 = −44 ft/sec.

63. ρ = 1.5, v0 = −66 ft/sec.

64. ρ = 1.5, v0 = −44 ft/sec.

65. ρ = 1.55, v0 = −21 ft/sec.

66. ρ = 1.55, v0 = −11 ft/sec.

67. ρ = 1.442, v0 = 0 ft/sec.

68. ρ = 1.442, v0 = −5 ft/sec.

69. ρ = 1.37, v0 = −44 ft/sec.

70. ρ = 1.37, v0 = −22 ft/sec.



2.6 Kinetics 125

Lunar Lander. A lunar lander falls
to the moon’s surface at v0 miles
per hour. The retrorockets in free
space provide a deceleration effect on
the lander of a miles per hour per
hour. Estimate the retrorocket acti-
vation height above the surface which
will give the lander zero touch-down
velocity. Follow Example 26, page 116.

71. v0 = −1000, a = 18000

72. v0 = −980, a = 18000

73. v0 = −1000, a = 20000

74. v0 = −1000, a = 19000

75. v0 = −900, a = 18000

76. v0 = −900, a = 20000

77. v0 = −1100, a = 22000

78. v0 = −1100, a = 21000

79. v0 = −800, a = 18000

80. v0 = −800, a = 21000

Escape velocity. Find the escape ve-
locity of the given planet, given the
planet’s mass m and radius R.

81. (Planet A) m = 3.1 × 1023 kilo-
grams, R = 2.4 × 107 meters.

82. (Mercury) m = 3.18 × 1023 kilo-
grams, R = 2.43 × 106 meters.

83. (Planet B) m = 5.1 × 1024 kilo-
grams, R = 6.1 × 106 meters.

84. (Venus) m = 4.88 × 1024 kilo-
grams, R = 6.06 × 106 meters.

85. (Pluto) m = 1.44 × 1022 kilo-
grams, R = 1.5 × 106 meters.

86. (Mars) m = 6.42 × 1023 kilo-
grams, R = 3.37 × 106 meters.

87. (Neptune) m = 1.03 × 1026 kilo-
grams, R = 2.21 × 107 meters.

88. (Jupiter) m = 1.90 × 1027 kilo-
grams, R = 6.99 × 107 meters.

89. (Uranus) m = 8.68 × 1025 kilo-
grams, R = 2.33 × 107 meters.

90. (Saturn) m = 5.68 × 1026 kilo-
grams, R = 5.85 × 107 meters.

Details and Proofs.

91. (Linear Ascent Time) Using the
inequality eu > 1 + u for u > 0,
show that the ascent time t1 in
equation (17) satisfies

g(1 + ρt1) < geρt1 = v0ρ + g.

Conclude that t1 < v0/g, proving
Lemma 1.

92. (Linear Maximum) Verify that
Lemma 1 plus the inequality
x(t) < −gt2/2+v0t imply x(t1) <
gv2

0/2. Conclude that the maxi-
mum for ρ > 0 is less than the
maximum for ρ = 0.

93. (Linear Ascent Time) Consider
the ascent time t1(ρ, v0) given by
equation (17). Prove that

dt1
dρ

=
ln g

v0ρ+g

ρ2
+

v0

ρ(v0ρ + g)
.

94. (Linear Ascent Time) Consider
dt1(ρ, v0)/dρ given in the previ-
ous exercise. Let ρ = gx/v0.
Show that dt1/dρ < 0 by con-
sidering properties of the function
−(x+1) ln(x+1)+x. Then prove
Lemma 1.

95. (Compare Ascent Times) Show
that the nonlinear ascent time for
the model v′ = −ρv2 − g is less
than the linear ascent time from
model v′ = −ρv − g.

96. (Compare Descent Times) Show
that the nonlinear descent time
for the model v′ = ρv2 − g is less
than the linear descent time from
model v′ = −ρv − g.


