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Differential Equations and Linear Algebra 2250-2
Final Exam 10:30am 3 May 2006

Ch3. (Linear Systems and Matrices)

D [60%] Ch3(a): Find the third entry on the fifth row of the inverse matrix B~! by the formula
B~! = adj(B)/det(B). Evaluate determinants by any method: triangular, swap, combo, multiply,
cofactor. The use of 3 x 3 Sarrus’ rule is disallowed (2 x 2 use is allowed).

1 1 -2 00

1 1 0 00

B = 0 -1 2 0 0
1 0 030

-1 0 1 3 4

D [50%] Ch3(b): Determine all values of k such that the system Rx = f has (1) infinitely many
solutions [15%)], (2) a unique solution [15%] and (3) no solution [20%].

2 1 k 0
R=|2 k -2, f=] 1+k
00 4 0

D [25%] Ch3(c): Let A be a 3 x 3 triangular matrix with diagonal entries 3, 1, 0. Prove that Ax = 0
has infinitely many solutions x.

D [25%] Ch3(d): Let A denote a 4 x 3 nonzero matrix. Find an example A such that Ax = 0 has a
unique solution.

D [25%] Ch3(e): There are real 2 x 2 matrices A such that A% = —I, where I is the identity matrix.
Display one such matrix A and justify the claim.
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Staple this page to the top of all Ch3 work. Submit one package per chapter.
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Ch4. (Vector Spaces)

D [40%] Ch4(a): State an RREF test (not a determinant test) to detect the independence or de-
pendence of fixed vectors vy, vo, v3 in R® [10%]. Apply the test to the vectors below [25%]. Report
independent or dependent [5%).

~1 3 4

1 0 -1

vy = 2], voe=} 11|, vy=1| -1
0 0 0

1 1 1

[:] [60%] Ch4(b): Define V to be the set of all vectors x in R5 such that 2z, + 25 = z3 and ¢ - x = 0,
where ¢ has constant components ¢; through cs. Prove that V is a subspace of R®.

D [60%) Ch4(c): Find a basis of fixed vectors in R* for (1) the column space of the 4 x 4 matrix A
below [30%] and (2) the row space of the 4 x 4 matrix A below [30%]. The reported basis must consist
of columns of A and rows of A, respectively.

11 -1 0
11 -1 -4
A= 00 0 5
22 -2 6

D [40%] Ch4(d): Find a 4 x 4 system of linear equations for the constants a, b, ¢, d in the partial
fractions decomposition below [10%)]. Solve for a, b, ¢, d, showing all RREF steps [25%]. Report the
answers [5%].

322 -14z+3  a N b LC d
(z+1)2(z -2 =z4+1 (z+1)2 z-2 (z-2)?
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Staple this page to the top of all Ch4 work. Submit one package per chapter.
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Ch5. (Linear Equations of Higher Order)

D [25%] Ch5(a): Using the recipe for higher order constant-coefficient differential equations, write out
the general solutions of the differential equations whose characteristic equations are given below.

P2

1.[‘1ﬁ%] r3(r? — 5r)2(r? — 25) = 0,

2.[1%] (r—4)*(r* +2r +3)%(r* - 16)° =0
i2

D [25%] Ch5(b): Given a damped spring-mass system mz"(t) + cz'(t) + kz(t) = 0 with m = 10,
¢ = 13 and k = 4, solve the differential equation [25%)] and classify the answer as over-damped, critically
damped or under-damped [5%].

D [50%] Ch5(c): Determine the corrected trial solution for y, according to the method of undeter-
mined coefficients. Do not evaluate the undetermined coefficients!

Y + 9y" = z(z + 2e3%) + 3z cos 3z + 4e73*

D [25%] Ch5(d): Find the steady-state periodic solution for the equation

" + 42’ + 29z = cos(3t).
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Staple this page to the top of all Ch5 work. Submit one package per chapter.
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Ché. (Eigenvalues and Eigenvectors)

13
D LEO/%] Ché(a): Find the eigenvalues of the matrix A:

2 4 -1 0
05 -2 1
A= 090 1
00 1 4

[ ] [25%] Ch6(b): Let A be a 3 x 3 matrix with eigenpairs
(Savl)w (37V2): (—I,Vg).

Let P = aug(vs, vy, v3). Display the answer for Pt AP [20%)]. Justify your claim [5%].

D [25%] Ch6(c): Assume A is a given 4 x 4 matrix with eigenvalues 2 £ 31, 1 + v3i. Find the
eigenvalues of 34 — 21, where I is the identity matrix.

D [25%] Ch6(d): Let 3 x 3 matrices A and B be related by AQ = QB for some invertible matrix Q.
Prove that the roots of the characteristic equations of A and B are identical.

[] [25%] Ché(e): Let A be a 2 x 2 matrix with eigenpairs
O ve), (Mg, vo).

Display Fourier’s model for the matrix A.
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Staple this page to the top of all Ch6 work. Submit one package per chapter.
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Ch7. (Linear Systems of Differential Equations)

D [50%] Ch7(a): Apply the eigenanalysis method to solve the system x' = Ax, given

-4 1 1
A= 1 -4 1
0 0 —4

D [25%] Ch7(b): Solve for z(t) in the system below. Don’t solve for y(t)!

!

r = z+ty,
y = -9z +vy.

D [25%)] Ch7(c): Let A be a 4 x 4 real matrix and assume Fourier’s model is valid for A. Display the
general solution x(t) for x' = Ax in terms of the ingredients of Fourier’s model.

D [25%] Ch7(d): Consider a 4 x 4 system x' = Ax. Assume A has an eigenvalue A = —1/7 with
corresponding eigenvectors

1 1
0

vy = -1 1 Vo = -1
0

Find a nonzero solution of the differential equation with limit zero at infinity.

D [25%] Ch7(e): Let z(t) and y(t) be the amounts of salt in brine tanks A and B, respectively.
Assume fresh water enters A at rate r = 5 gallons/minute. Let A empty to B at rate r, and let B empty

at rate r. Assume the model -
"t) = ——z(t
, T T
= () — ——
z(0) =0, y(0) =10.

Find the maximum amount of salt ever in tank B.
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Staple this page to the top of all Ch7 work. Submit one package per chapter.
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Ch10. (Laplace Transform Methods)
It is assumed that you have memorized the basic 4-item Laplace integral table and know the 6 basic
rules for Laplace integrals. No other tables or theory are required to solve the problems below. If you
don’t know a table entry, then leave the expression unevaluated for partial credit.

D [35%] Ch10(a): Apply Laplace’s method to the system to find a formula for L(y(t)). Find a 2 x 2
system for £(z), L{y) [20%)]. Solve it only for L(y) [15%]. To save time, do not solve for z(t) or y(¢)!

" =3z + 3y +2,

y' =4z + 2y,

z(0) =0, 2'(0)=2,
y(0) =0, ¢'(0)=3.

[ ] [35%] Ch10(b): Solve for z(t), given

s+1 2+s
(s +2)2 52 +5s

L(z(t) = 4 (c(e% sin2t)) +

Is + Lt +sint)|;_;_q -

D [30%] Ch10(c): Find f(t) by partial fraction methods, given

852 — 24
(s = D(s +3)(s+1)*

L) =

D [30%] Ch10(d): Apply Laplace’s method to find a formula for £(z(t)). To save time, do not solve
for z(¢)! Document steps by reference to tables and rules.

oW — 2" =312 +4e7? 4 5elsin2t, x(0) =2'(0) =z2"(0) =0, z"(0)=-1.

s-3  2+%
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@ sl = BRIV dye
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Staple this page to the top of all Ch10 work. Submit one package per chapter.
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