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Introduced here are notation, definitions and background results suitable
for use in differential equations.

Prerequisites include college algebra, coordinate geometry, differential
calculus and integral calculus. The examples and exercises include a
review of some calculus topics, especially derivatives, integrals, numeri-
cal integration, hand and computer graphing. A significant part of the
review is algebraic manipulation of logarithms, exponentials, sines and
cosines.

New topics of an elementary nature are introduced. The chapter starts
immediately with applications to differential equations that require only
a background from pre-calculus in exponential and logarithmic functions.
No differential equations background is assumed or used.

Differential equations are defined and insight is given into the notion of
answer for differential equations in science and engineering.

Basic topics included here are direction fields, phase line diagrams and
bifurcation diagrams, which require only a calculus background. Ap-
plications of these ideas appear later in the text, after more solution
methods have been introduced.

Advanced topics include existence-uniqueness theory and implicit func-
tions. Included are some practical methods for employing computer al-
gebra systems to assist with finding solutions, verifying equations, mod-
eling, and related topics.
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1.1 Exponential Modeling

The model differential equation 3’ = ky is studied through a variety

of specific applications. All applications use the exponential solution
kt

Y = Yoe™.

Three Examples

These applications are studied:

Growth—Decay Models
Newton Cooling
Verhulst Logistic Model

It is possible to solve a variety of differential equations without reading
this book or any other differential equations text. Given in the table
below are three exponential models and their known solutions, all of
which will be derived from principles of elementary differential calculus.

Growth-Decay % = kA(t), A(0) = Ay
A(t) = Aoekt
. du
Newton Cooling i —h(u(t) —uy), u(0) = ug
u(t) = ug + (up — up)e ™
- dpP
Verhulst Logistic i (a —bP(t))P(t), P(0) =Py
aPO
P =
(t) bPy + (CL — bPo)e_at

These models and their solution formulas form a foundation of intuition
for all of differential equation theory. Considerable use will be made of
the models and their solution formulas.

The physical meanings of the constants k, Ag, h, w1, ug, a, b, P, and
the variable names A(t), u(t), P(t) are given below, as each example is
discussed.

Background

Mathematical background used in exponential modeling is limited to
algebra and basic calculus. The following facts are assembled for use in
applications.
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Ine* =gz, MY = Yy In words, the exponential and the logarithm
are inverses. The domains are —oo < = < 00,
0 <y <o0.

=1, In(1) =0 Special values, usually memorized.

e?th — el In words, the exponential of a sum of terms is
the product of the exponentials of the terms.

(e9)? = e Negatives are allowed, e.g., (¢%)"! = e 9.

!/
(e“(t)> = ' (t)e*® The chain rule of calculus implies this formula

from the identity (e%)" = €.
ImAB=InA+InB In words, the logarithm of a product of factors
is the sum of the logarithms of the factors.

1
Bln(A) =In (AB) Negatives are allowed, e.g., —In A =1n R
/
t
(Infu(t)]) = 7; ((t)) The identity (In(z)) = 1/z implies this gen-

eral version by the chain rule.

Applied topics using exponentials inevitably lead to equations involving
logarithms. Conversion of exponential equations to logarithmic equa-
tions, and the reverse, happens to be an important subtopic of differen-
tial equations. The examples and exercises contain typical calculations.

Growth-Decay Equation

Growth and decay models in science are based upon the exponential
equation

(1) y = yoet?.

The exponential €*® increases if k& > 0 and decreases if k& < 0. Models
based upon exponentials are called growth models if £ > 0 and decay
models if £ < 0. Examples of growth models include population growth
and compound interest. Examples of decay models include radioactive
decay, radiocarbon dating and drug elimination. Typical growth and
decay curves appear in Figure 1.

20 20
Growth Decay

Figure 1. Growth and
0 0 1 0 0 1 decay curves.

Definition 1 (Growth-Decay Equation)
The differential equation

dy
2 =k
(2) o = kY
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is called a growth-decay differential equation.

A solution of (2) is given by (1); see the verification on page 9. It
is possible to show directly that the differential equation has no other
solutions, hence the terminology the solution y = yoek* is appropriate;
see the verification on page 10. The solution y = yoe*® in (1) satisfies
the growth-decay initial value problem :

dy
3 A 0) = vo.
(3) a2 y(0) = o

Recipe for Solving a Growth-Decay Equation. Numerous ap-
plications to first order differential equations are based upon equations
that have the general form ¢ = ky. Whenever this form is encountered,
immediately the solution is known: y = yge*?.

The report of the answer without solving the differential equation is
called a recipe for the solution. The recipe for 3y = ky has an imme-
diate generalization to the second order differential equations which are
studied in electrical circuits and mechanical systems.

Newton Cooling Equation

If a fluid is held at constant temperature, then the cooling of a body
immersed in the fluid is subject to Newton’s cooling law :

The rate of temperature change of the body is proportional
to the difference between the body's temperature and the
fluid's constant temperature.

Translation to mathematical notation gives the differential equation

d
(4) = = —h(u(t) - w)
where u(t) is the temperature of the body, w; is the constant ambient
temperature of the fluid and h > 0 is a constant of proportionality.

A typical instance is the cooling of hot chocolate in a room. Here, uy
is the wall thermometer reading and w(t) is the reading of a dial ther-
mometer immersed in the chocolate drink.

Theorem 1 (Solution of Newton's Cooling Equation)

The change of variable y(t) = u(t) — u; translates the cooling equation
du/dt = —h(u—uy) into the growth-decay equation y'(t) = —hy(t). There-
fore, the cooling solution is given in terms of ug = u(0) by the equation

(5) u(t) = uy + (up — up)e ",
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The result is proved on page 10. It shows that a cooling model is just
a translated growth-decay model. The solution formula (5) can be ex-
pressed in words as follows:

The dial thermometer reading of the hot chocolate equals
the wall thermometer reading plus an exponential decay
term.

Cooling problems have curious extra conditions, usually involving phys-
ical measurements, for example the three equations

u(0) =100, wu(1) =90 and wu(c0)=22.

The extra conditions implicitly determine the actual values of the three
undetermined parameters h, ui, ug. The logic is as follows. Equation
(5) is a relation among 5 variables. Substitution of values for ¢ and u
eliminates 2 of the 5 variables and gives an equation for wy, ug, h. The
system of three equations in three unknowns can be solved for the actual
values of u1, ug, h.

Stirring Effects. Exactly how to maintain a constant ambient tem-
perature is not addressed by the model. One method is to stir the liquid,
as in Figure 2, but the mechanical energy of the stirrer will inevitably
appear as heat in the liquid. In the simplest case, stirring effects add a
fixed constant temperature Sy to the ambient temperature u;. For slow
stirring, Sop = 0 is assumed, which is the above model.

Figure 2. Flask Cooling with Stirring.

Populations

The human population of the world reached six billion in 1999, ac-
cording to the U.S. Census Bureau.

World Population Estimate
12/1999

6,033,366,287

Source: U.S. Census Bureau

The term population refers to humans. In literature, it may also refer
to bacteria, insects, rodents, rabbits, wolves, trees, yeast and similar
living things that have birth rates and death rates.
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Malthusian Population Equation. A constant birth rate or a
constant death rate is unusual in a population, but these ideal cases
have been studied. The biological reproduction law is called Malthus’s
law :

The population flux is proportional to the population itself.

This biological law can be written in calculus terms as

dP
— =kP(t
o (t)

where P(t) is the population count at time t. The reasoning is that
population flux is the expected change in population size for a unit
change in ¢, or in the limit, dP/dt. A careful derivation of such calculus
laws from English appears in Example 6 on page 683.

The theory of growth-decay differential equations implies that population
studies based upon Malthus’s law employ the exponential model

P(t) = PyeFt—10),

The number k is the difference of the birth and death rates, or com-
bined birth-death rate , t;y is the initial time and F; is the initial
population size at time ¢ = tg.

Verhulst Logistic Equation. The population model P’ = kP was
studied around 1840 by the Belgian demographer and mathematician
Pierre-Francois Verhulst (1804-1849) in the special case when k depends
on the population size P(t). Under Verhulst’s assumptions, k = a — bP
for positive constants a and b, so that & > 0 (growth) for populations
smaller than a/b and & < 0 (decay) when the population exceeds a/b.
The result is called the logistic equation :

(6) P = (a —bP)P.
Verhulst established the limit formula
(7) tlim P(t) =a/b,

which has the interpretation that initial populations P(0), regardless
of size, will after a long time stabilize to size approximately a/b. The
constant a/b is called the carrying capacity of the population.

Limit formula (7) follows directly from solution formula (8) below.

Theorem 2 (Verhulst Logistic Solution)
The change of variable y(t) = P(t)/(a — bP(t)) transforms the logistic
equation P'(t) = (a — bP(t))P(t) into the growth-decay equation y/(t) =
ay(t). Then the logistic equation solution is given by

aP(0)
bP(0) + (a — bP(0))e—at

(8) P(t) =
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The derivation appears on page 11. The viewpoint of the result is that
a logistic model is obtained from a growth-decay model by a fractional
change of variable. When b = 0, the logistic model and the growth-decay
model are the same and formula (8) reduces to the solution of growth-
decay equation y’ = ay. The recipe formula for the solution remains
valid regardless of the signs of a and b, provided the quotient is defined.

Examples

Example (Growth-Decay Recipe) Solve the initial value problem 3/ = 2y,
y(0) = 4.

Solution: This is a growth-decay equation y' = ky, y(0) = yo with k = 2,
yo = 4. Therefore, the solution is y = 4€2*. No method is required to solve the
equation 3’ = 2y, because of the theory on page 3.

Example (Newton Cooling Recipe) Solve the initial value problem u' =
—3(u —72), u(0) = 190.

Solution: This is a Newton cooling equation v’ = —h(u — uy), u(0) = ug with
h =3, u1 = 72, ug = 190. Therefore, the solution is u(t) = 72 + 1183
No method is required to solve the equation u' = —3(u — 72), because of the

theorem on page 4.

Example (Verhulst Logistic Recipe) Solve the initial value problem P’ =
(1—2P)P, P(0) = 500.

Solution: This is a Verhulst logistic equation P’ = (a — bP)P, P(0) = P,

with a = 1, b = 2, Py = 500. Therefore, the solution is P(t) = $
— e

No method is required to solve the equation P’ = (1 — 2P)P, because of the
theorem on page 6.

Example (Standing Room Only) Justify the estimate 2600 for the year in
which each human has only one square foot of land to stand upon. Assume
the Malthus model P(t) = 3.34¢0-02(t=196%) \yith ¢ in years and P in billions.

Solution: The mean radius of the earth is 3965 miles or 20, 935, 200 feet. The
surface area formula 47?2 gives 5,507,622 billion square feet. About 20% of
this is land, or 1,101, 524 billion square feet.

The estimate 2600 is obtained by solving for ¢ years in the equation
3.340:02(t1965) — 1101524,

The college algebra details:

5 1101524
0-02(¢-1965) _ - 22227 Isolate the exponential on the left.

3.34 Solving for ¢.
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In e0-02(t=1965) _ 1y, 3297976

0.02(¢ — 1965) = 12.706234

12.706234

t = 1965
+ 0.02

= 2600.3.

Simplify the right side and take the
logarithm of both sides.

On the right, compute the loga-
rithm. Use Ine* = w on the left.

Solve for t.

About the year 2600.

5 Example (Rodent Growth) A population of two rodents in January re-
produces to population sizes 20 and 110 in June and October, respectively.
Determine a Malthusian law for the population and test it against the data.

Solution: However artificial this example might seem, it is almost a real exper-
iment; see Braun [?], Chapter 1, and the reference to rodent Microtus Arvallis

Pall.

The law proposed is P = 2€2!/, which is 40% growth, k = 2/5. For a 40% rate,
P(6) ~ 2¢'%/% = 22.046353 and P(10) ~ 2¢%(19/5> = 109.1963. The agreement
with the data is reasonable. It remains to explain how this “40% law” was

invented.

The Malthusian model P(t) = Pye*, with ¢ in months, fits the three data
items P(0) = 2, P(6) = 20 and P(10) = 110 provided Py = 2, 2¢5% = 20
and 2¢!%% = 110. The exponential equations are solved for k¥ = In(10)/6 and
k = In(55)/10, resulting in the two growth constants & = 0.38376418 and
k = 0.40073332. The average growth rate is 39.2%, or about 40%.

6 Example (Flask Cooling) A flask of water is heated to 95C and then al-
lowed to cool in ambient room temperature 21C. The water cools to 80C in
three minutes. Verify the estimate of 48 minutes to reach 23C.

Solution: Basic modeling by Newton’s law of cooling gives the temperature as
u(t) = uy + (up — u1)e ™% where uy, up and k are parameters. Three conditions
are given in the English statement of the problem.

u(o0) =21 The ambient air temperature is 21C.
u(0) = 95 The flask is heated at ¢ = 0 to 95C.
u(3) = 80 The flask cools to 80C in three minutes.

In the details below, it will be shown that the parameter values are u; = 21,

ug — u1 = 74, k = 0.075509216.
To find uq:

21 = u(o0)
= lim u(t)

t—o0

= lim wuy + (ug — up)e ™
t—oo

:ul

To calculate Ag = 74 from u(0) = 95:

Given ambient temperature condition.
Definition of u(00).

Definition of w(t).

The exponential has limit zero.
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95 = u(0) Given initial temperature condition.
= up + (ug — up)e *O® Definition of u(t) at ¢t = 0.
=21+ Aq Use e = 1.

Therefore, Ag = 95 — 21 = 74.

Computation of k starts with the equation w(3) = 80, which reduces to 21 +
74e~3F = 80. This exponential equation is solved for k as follows:

. 80—21
e 3k = 1 Isolate the exponential factor on the
left side of the equation.
3k 80 — 21 . .
Ine =1In - Take the logarithm of both sides.
—3k =1n(59/74) Simplify the fraction. Apply Ine* = u
on the left.
1
k= §1n<74/59) Divide by —3, then on the right use

—Ilnz =1In(1/z).

The estimate u(48) ~ 23 will be verified. The time ¢ at which u(t) = 23 is found
by solving the equation 21 +74e~** = 23 for . A checkpoint is —kt = In(2/74),
from which ¢ is isolated on the left. After substitution of k = 0.075509216, the
value is t = 47.82089.

Example (Baking a Roast) A beef roast at room temperature 70F is put
into a 350F oven. A meat thermometer reads 100F after four minutes.
Verify that the roast is done (340F) in 120 minutes.

Solution: The roast is done when the thermometer reads 340F or higher. If
u(t) is the meat thermometer reading after ¢ minutes, then it must be verified
that «(120) > 340.

Even though the roast is heating instead of cooling, the beef roast temperature
u(t) after ¢ minutes is given by the Newton cooling equation u(t) = u; + (ug —
up)e™ ", where u;, uy and k are parameters. Three conditions appear in the
statement of the problem:

u(00) = 350 The ambient oven temperature is 350F.
u(0) =70 The beef is 70F at t = 0.
u(4) = 100 The roast heats to 100F in four minutes.

As in the flask cooling example, page 8, the first two relations above lead to
uy = 350 and ug —u; = —280. The last relation determines k from the equation
350 —280e~** = 100. Solving by the methods of the flask cooling example gives
k = ;1n(280/250) ~ 0.028332171. Then u(120) = 350—280e 2% ~ 340.65418.

Details and Proofs

Growth-Decay Equation Existence Proof. It will be verified that y = yoe*®
is a solution of ¥’ = ky. It suffices to expand the left side (LHS) and right side
(RHS) of the differential equation and compare them for equality.
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d d
LHS = % The left side of % = ky is dy/dz.
d
= — (yoek’”) Substitute y = ype”®.
dx
= yoker” Apply the rule (e*)" = u'e".
d
RHS = ky The right side of ﬁ — ky is ky.
= k(yoe*®) Substitute y = ypek®.

Therefore, LHS = RHS. This completes the proof.

Growth-Decay Equation Uniqueness Proof. It will be shown that y =
yoe™™ is the only solution of ¥ = ky, y(0) = yo. The idea is to reduce the
question to the application of a result from calculus. This is done by a clever
change of variables, which has been traced back to Kiimmer.!

Assume that y is a given solution of ¥/ = ky, y(0) = yo. It has to be shown
that y = yoek®.

Define v = y(x)e~* . This defines a change of variable from y into v. Then

v = (e Fey) Compute v’ from v = e~ *%y,
= —ke FTy 4+ ehTy/ Apply the product rule (uy)’ = u'y + uy'.
= —ke "y 4 e R (ky) Use the differential equation ¢’ = ky.
=0. The terms cancel.

In summary, v’ = 0 for all z. The calculus result to be applied is:

The only function v(z) that satisfies v’(z) = 0 on an interval is v(z) =
constant.

The conclusion is v(x) = v for some constant vg. Then v = e %y gives

y = voe¥®. Setting 2 = 0 implies vy = yo and finally y = yoe*®. This completes
the verification.

Newton Cooling Solution Verification (Theorem 1). The substitution
A(t) = u(t) — uy will be applied to find an equivalent growth-decay equation:

A d

il (u(t) — uq) Definition of A =u — uy.
=u'(t) -0 Derivative rules applied.
= —h(u(t) —u1) Cooling differential equation applied.
= —hA(t) Definition of A.

The conclusion is that A’(t) = —hA(t). Then A(t) = Age™"*, from the theory
of growth-decay equations. The substitution gives u(t) —u; = Age™", which
is equivalent to equation (5), provided Ay = ug — u1. The proof is complete.

!The German mathematician E. E. Kiimmer, in his paper in 1834, republished in
1887 in J. fiir die reine und angewandte Math., considered changes of variable y = wv,
where w is a given function of x and v is the new variable that replaces y.
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Logistic Solution Verification (Theorem 2). Given a > 0, b > 0 and the
logistic equation P’ = (a — bP)P, the plan is to derive the solution formula

aP(0)e

P(t) = bP(0)e" + a — bP(0)’

Assume P(t) satisfies the logistic equation. Suppose it has been shown (see
below) that the variable u = P/(a — bP) satisfies &' = au. By the exponential
theory, u = uge®, hence

P = 1 j_ub Solve w = P/(a —bP) for P in terms of w.
U
at
= % Substitute u = uge®.
Uge?
at
= W Divide by ug.
aet
= (@ bP(0))/P(0)  hert Ve U0 = u(0) and u=P/(a—bP),
aP(0)e

= bP(0)e +a — bP(0)’ Formula verified.

The derivation using the substitution u = P/(a — bP) requires only differential
calculus. The substitution was found by afterthought, already knowing the
solution; historically, integration methods have been applied.

The change of variables (¢, P) — (t,u) is used to justify the relation v’ = au as
follows.

P li
! H [
u = (a—bP> It will be shown that v’ = au.
P'(a—bP) — P(-bP'

= (a @ _) bP)z( ) Quotient rule applied.
—bP)P

= % Simplify and substitute the equation

(a —bP) P’ = (a —bP)P.
=au Substitute u = P/(a — bP).

This completes the motivation for the formula. To verify that it works in the
differential equation is a separate issue, which is settled in the exercises.

Exercises 1.1

Growth-decay Recipe. Solve the | 5. 3P’ — P =0, P(0) = 10
given initial value problem using the

growth-decay recipe; see page 3 and | g, 4p/ 4 3p = 0, P(0) = 11
Example 1, page 7.

1.y = =3y, y(0) =20 7. I' = 0.005I, I(to) = I,
2.y =3y,y(0)=1

3. 34" = A, A(0) =1
4. 44+ A =0, A(0) =3 9. ¥ =ay, ylt) =1

8. I' = —0.0151, I(to) = Io
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10. ' = —ay, y(to) =yo
Growth-decay Theory.

11. Graph without a computer y =
10(2*) on =3 <z < 3.

12. Graph without a computer y =
10(27*) on =3 < x < 3.

13. Find the doubling time for the
growth model P = 100e%-015¢,

14. Find the doubling time for the

growth model P = 1000e%-0195¢,

15. Find the elapsed time for the de-
cay model A = 1000e 911237 yn-
til |A(t)] < 0.00001.

16. Find the elapsed time for the de-
cay model A = 5000e~0-01247¢ yy_
til |A(t)| < 0.00005.

Newton Cooling Recipe. Solve the
given cooling model. Follow Example
2 on page 7.

17. v = —10(u — 4), u(0) =5

18. ' = —5(y — 2), y(0) =10

19. v =1+ u, u(0) =100

20. ¢y =—1—2y, y(0) =4

21. o = —10 + 4u, u(0) = 10
1

22. y' =10+ 3y, y(0) =

23. 2u' + 3 = 6u, u(0) =8

24. 4y’ +y=10,y(0) =5

25. ' +3(u+1)=0, u(0) = -2

0
26. v +5(u+2) =0, u(0) =—-1

27.
28.

Newton Cooling Model. The cool-
ing model u(t) = ug + Age " is ap-
plied; see page 4. Methods paral-
lel those in the flask cooling example,
page 8, and the baking example, page
9.

29. (Ingot Cooling) A metal ingot
cools in the air at temperature
20C from 130C to 75C in one
hour. Predict the cooling time to
23C.

30. (Rod Cooling) A plastic rod
cools in a large vat of 12-degree
Celsius water from 75C to 20C
in 4 minutes. Predict the cooling
time to 15C.

31. (Murder Mystery) A body dis-
covered at 1:00 in the afternoon,
March 1, 1929, had tempera-
ture 80F. Over the next hour the
body’s temperature dropped to
76F. Estimate the date and time
of the murder.

32. (Time of Death) A dead person
found in a 40F river had body
temperature 70F. The coroner re-
quested that the body be left in
the river for 45 minutes, where-
upon the body’s temperature was
63F. Estimate the time of death,
relative to the discovery of the
body.

Verhulst Recipe. Solve the given Ver-
hulst logistic equation using formula
(8). Follow Example 3 on page 7.

33. P'=P(2-P), P(0) =1
34. P'=P(4—P), P(0)=5
35. ¥ =y(y—1),y(0) =2

36. y' =y(y—2),y(0)=1

37.
38.
39.

40.
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Inverse Modeling. Given the model,
find the differential equation and ini-
tial condition.

41. A= A064t
42. A = Age 3
43. P = 1000e0-115¢
44. P = 2000e~ /5
45. u=1+¢ 3
46. u =10 —2e~%
10
47. P= ——
10 — 8e—2¢
5
48. P=——
15 — 14e—t
1
49. P=——
5 —4et
2
50. P= ——
4 — 3e—t

Populations. The following exercises
use Malthus’s population theory, page
5, and the Malthusian model P(t) =
PyeFt. Methods appear in Examples 4
and 5; see page 7.

51. (World Population) In June of
1993, the world population of
5,500,000,000 people was
creasing at a rate of 250,000 peo-
ple per day. Predict the date
when the population reaches 10
billion.

in-

52. (World Population) Suppose the
world population at time ¢t = 0 is
5 billion. How many years before
that was the population one bil-

lion?

53. (Population Doubling) A popu-
lation of rabbits increases by 10%
per year. In how many years does

the population double?

54. (Population Tripling) A popula-
tion of bacteria increases by 15%
per day. In how many days does

the population triple?

55. (Population Growth) Trout in a
river are increasing by 15% in 5
years. To what population size
does 500 trout grow in 15 years?

56. (Population Growth) A region
of 400 acres contains 1000 for-
est mushrooms per acre. The
population is decreasing by 150
mushrooms per acre every 2 years.
Find the population size for the

400-acre region in 15 years.

Verhulst Equation. Write out the so-
lution to the given differential equation
and, when it makes sense, report the
carrying capacity

M = tlirgo P(t).
57. P'=(1— P)P
58. P'= (2 P)P
59. P’ = 0.1(3 — 2P)P

60. P' =0.1(4—3P)P

61. P’ =0.1(3+2P)P

62. P'=0.1(4+3P)P

63. P' =0.2(5 — 4P)P

64. P' =0.2(6 — 5P)P

65. P/ =11P — 17P?

66. P’ =51P — 13P?

Logistic Equation. The following ex-
ercises use Verhulst’s logistic equation
P’ = (a — bP)P, page 6. Some meth-
ods appear on page 11.

67. (Protozoa) Experiments on the
protozoa Paramecium determined
growth rate ¢ = 2.309 and car-
rying capacity a/b = 375 us-
ing initial population P(0) = 5.
Establish the formula P(t) =

375

1+ T4e—2-309t°
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68.

69.

70.

(World Population) Demogra-
phers incorrectly projected the
world population in the year 2000
as 6.5 billion (in 1970) and 5.9 bil-
lion (in 1976). Use P(1965) =
3.358 x 10°, ¢ = 0.029 and car-
rying capacity a/b = 1.0760668 x
10'° to compute the logistic equa-
tion projection for year 2000.

(Harvesting) A fish population
satisfying P/ = (a — bP)P is
subjected to harvesting, the new
model being P’ = (a —bP)P — H.
Assume a = 0.04, a/b = 5000 and
H = 1000. Using algebra, rewrite
it as P’ = b(a—P)(P—[3) in terms
of the roots v, 8 of ay—by?> —H =
0. Apply the change of variables
u=(a— P)/(P— () to solve it.

(Extinction) Let an endangered
species satisfy P’ = bP? — aP for
a > 0,b> 0. The term bP? repre-
sents births due to chance encoun-
ters of males and females, while
the term aP represents deaths.
Use the change of variable u =
P/(bP — a) to solve it. Show from
the answer that population sizes
below a/b become extinct.

71.

72.

(Logistic Solution) Let P =
au/(1 4+ bu), u = wupe™, ug =
Py/(a — bPy). Verify that P(t) is
a solution the differential equation
P’ = (a—bP)P and P(0) = F.

(Logistic Equation) Let k, «, 3
be positive constants, a < pf.
Solve w' = k(a — w)(8 — w),
w(0) = wp by the substitution
u = (e —w)/(8 — w), showing
that w = (o — Bu)/(1 —u), u =
upe @Ik uy = (a0 — wp) /(B —
wp). This equation is a special
case of the harvesting equation
P'=(a—bP)P+ H.

Growth-Decay Uniqueness Proof.

73.

74.

State precisely and give a calcu-
lus text reference for Rolle’s The-
orem, which says that a function
vanishing at ¢ = a and x = b must
have slope zero at some point in
a<z<b.

Apply Rolle’s Theorem to prove
that a differentiable function v(z)
with v/(z) =0 on a < x < b must
be constant.
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1.2 Exponential Application Library

The model differential equation ¢y’ = ky, and its variants via a change of
variables, appears in various applications to biology, chemistry, finance,
science and engineering. All the applications below use the exponential
model y = yoett.

Light Intensity Chemical Reactions
Electric Circuits Drug Elimination

Drug Dosage Continuous Interest
Radioactive Decay Radiocarbon Dating

Light Intensity

Physics defines the lumen unit to be the light flux through a solid unit
angle from a point source of 1/621 watts of yellow light.?2 The lumen
is designed for measuring brightness , as perceived by the human eye.
The intensity F = % is the flux F' per unit area A, with units Lux
or Foot-candles (use A = 1m? or A = 1ft?, respectively). At a radial
distance r from a point source, in which case A = 4712, the intensity is
given by the inverse square law

F
FE = .
47?2

An exposure meter , which measures incident or reflected light inten-
sity, consists of a body, a photocell and a readout in units of Lux or
Foot-candles. Light falling on the photocell has energy, which is trans-
ferred by the photocell into electrical current and ultimately converted
to the readout scale.

In classical physics experiments, a jeweler’s bench is illuminated by a
source of 8000 lumens. The experiment verifies the inverse square law,
by reading an exposure meter at 1/2, 1 and 3/2 meters distance from
the source.

As a variant on this experiment, consider a beaker of jeweler’s cleaning
fluid which is placed over the exposure meter photocell; see Figure 3.
Successive meter readings with beaker depths of 0, 5, 10, 15 centime-
ters show that fluid absorption significantly affects the meter readings.
Photons? striking the fluid convert into heat, which accounts for the
rapid loss of intensity at depth in the fluid.

2Precisely, the wavelength of the light is 550-nm. The unit is equivalent to one
candela , one of the seven basic SI units, which is the luminous intensity of one
sixtieth of a square centimeter of pure platinum held at 1770C.

3A photon is the quantum of electromagnetic radiation, of energy hv, where v is
the radiation frequency and h is Planck’s constant.



16 Fundamentals

source

& 8000 lumen

beaker Figure 3. Jeweler’s bench
exposure meter experiment.

The exposure meter measures light
intensity at the beaker’s base.

Empirical evidence from experiments suggests that light intensity I(x)
at a depth z in the fluid changes at a rate proportional to itself, that is,

dl
de
If Iy is the surface intensity and I(x) is the intensity at depth z me-
ters, then the theory of growth-decay equations applied to (9) gives the

solution
(10) I(x) = Ipe™**.

(9) —kI.

Equation (10) says that the intensity I(z) at depth z is a percentage of
the surface intensity Iy, the percentage decreasing with depth z.
Electric Circuits

Classical physics analyzes the RC-circuit in Figure 4 and the L R-circuit
in Figure 5. The physics background will be reviewed.

000
L
ony ¢ —— @
R R
— WV VWY
Figure 4. An RC-Circuit, no Figure 5. An LR-Circuit, no
emf. emf.

First, the charge Q(t) in coulombs and the current I(¢) in amperes
are related by the rate formula I(t) = Q'(t). Secondly, there are some
empirical laws that are used. There is Kirchhoff’s voltage law :

The algebraic sum of the voltage drops around a closed loop
is zero.

Kirchhoff’s node law is not used here, because only one loop appears
in the examples.

There are the voltage drop formulas for an inductor of L henrys, a
resistor of R ohms and a capacitor of C farads:
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Faraday’s law Vi =LI
Ohm’s law Ve = RI
Coulomb’s law Ve=Q/C

In Figure 4, Kirchhoff’s law implies Vg + Vo = 0. The voltage drop
formulas show that the charge Q(t) satisfies RQ'(t) + (1/C)Q(t) = 0.
Let Q(0) = Q. Growth-decay theory, page 3, gives Q(t) = Qoe t/(EO),

In Figure 5, Kirchhoff’s law implies that V;, + Vr = 0. By the voltage
drop formulas, LI'(t) + RI(t) = 0. Let I(0) = Iy. Growth-decay theory
gives I(t) = Ipe Bt/L.

In summary:

RC-Circuit RQ' + (1/C)Q =0, Q(0) = Qo,
Q = Qe V/(ECO)
LR-Circuit LI+ RI =0, I(0)= I

I = Ioeth/L

The ideas outlined here are illustrated in Examples 9 and 10, page 21.

Interest

The notion of simple interest is based upon the financial formula
A= (1 + T)t Ao

where Ay is the initial amount, A is the final amount, ¢ is the number
of years and r is the annual interest rate or rate per annum ( 5%
means 7 = 5/100). The compound interest formula is

r nt
A= (1 + ) Ap
n
where n is the number of times to compound interest per annum. Use

n = 4 for quarterly interest and n = 360 for daily interest .

The topic of continuous interest has its origins in taking the limit
as n — 00 in the compound interest formula. The answer to the limit
problem is the continuous interest formula

A= Aoert
which by the growth-decay theory arises from the initial value problem

A'(t) = rA(t),
A(0) = Aq.

Shown on page 26 are the details for taking the limit as n — oo in
the compound interest formula. In analogy with population theory, the
following statement can be made about continuous interest.
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The amount accumulated by continuous interest increases
at a rate proportional to itself.

Applied often in interest calculations is the geometric sum formula
from algebra:
rntl 1

Ldr+ = —
r—1

Radioactive Decay

A constant fraction of the atoms present in a ra-
dioactive isotope will spontaneously decay into an-
other isotope of the identical element or else into

atoms of another element. Empirical evidence gives 2
the following decay law:

A radioactive isotope decays at a rate proportional to the
amount present.

In analogy with population models the differential equation for radioac-

tive decay is

dA
S = kAt
dt ( )?

where k£ > 0 is a physical constant called the decay constant , A(t) is
the number of atoms of radioactive isotope and ¢ is measured in years.

Radiocarbon Dating. The decay constant k& ~ 0.0001245 is known
for carbon-14 (14C). The model applies to measure the date that an
organism died, assuming it metabolized atmospheric carbon-14.

The idea of radiocarbon dating is due to Willard S. Libby* in the late
1940s. The basis of the chemistry is that radioactive carbon-14, which
has two more electrons than stable carbon-12, gives up an electron to
become stable nitrogen-14. Replenishment of carbon-14 by cosmic rays
keeps atmospheric carbon-14 at a nearly constant ratio with ordinary
carbon-12 (this was Libby’s assumption). After death, the radioactive
decay of carbon-14 depletes the isotope in the organism. The percentage
of depletion from atmospheric levels of carbon-14 gives a measurement
that dates the organism.

Definition 2 (Half-Life)

The half-life of a radioactive isotope is the time T required for half of
the isotope to decay. In functional notation, it means A(7T") = A(0)/2,
where A(t) = A(0)e* is the amount of isotope at time .

4Libby received the Nobel Prize for Chemistry in 1960.



1.2 Exponential Application Library 19

For carbon-14, the half-life is 5568 years plus or minus 30 years, according
to Libby (some texts and references give 5730 years). The decay constant
k =~ 0.0001245 for carbon-14 arises by solving for k£ = In(2)/5568 in
the equation A(5568) = £A(0). Experts believe that carbon-14 dating
methods tend to underestimate the age of a fossil.

Uranium-238 undergoes decay via alpha and beta radiation into vari-
ous nuclides, the half-lives of which are shown in Table 1. The table
illustrates the range of possible half-lives for a radioactive substance.

Table 1. Uranium-238 nuclides by alpha or beta radiation.

Nuclide Half-Life
uranium-238 4,500,000,000 years
thorium-234 24.5 days
protactinium-234 1.14 minutes
uranium-234 233,000 years
thorium-230 83,000 years
radium-236 1,590 years
radon-222 3.825 days
polonium-218 3.05 minutes
lead-214 26.8 minutes
bismuth-214 19.7 minutes
polonium-214 0.00015 seconds
lead-210 22 years
bismuth-210 5 days
polonium-210 140 days
lead-206 stable

Tree Rings. Libby’s work was based
upon calculations from sequoia tree rings.
Later investigations of 4000-year old trees
showed that carbon ratios have been non-
constant over past centuries.

Libby’s method is advertised to be useful for material 200 years to 40, 000
years old. Older material has been dated using the ratio of disintegration
byproducts of potassium-40, specifically argon-40 to calcium-40.

An excellent reference for dating methods, plus applications and histor-
ical notes on the subject, is Chapter 1 of Braun [?].
Chemical Reactions

If the molecules of a substance decompose into smaller molecules, then
an empirical law of first-order reactions says that the decomposition
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rate is proportional to the amount of substance present. In mathematical
notation, this means

dA
— = —hA(t
o (t)

where A(t) is the amount of the substance present at time ¢ and h is a
physical constant called the reaction constant .

The law of mass action is used in chemical kinetics to describe second-
order reactions . The law describes the amount X (¢) of chemical C'
produced by the combination of two chemicals A and B. A chemical
derivation produces a rate equation

(11) X' = k(a— X)(3- X), X(0) = Xo,

where k, « and (3 are physical constants, « < f3; see Zill-Cullen [Z-C],
Chapter 2. The substitution u = (o« —X)/(6—X) is known to transform
(11) into v’ = k(o — B)u (see page 11 for the technique and the exercises
in this section). Therefore,

a — fu(t)
1—u(t)’

Oé—Xo
f—Xo

(12) X(t) = u(t) = uge@ PR 4y =

Drug Elimination

Some drugs are eliminated from the bloodstream by an animal’s body
in a predictable fashion. The amount D(¢) in the bloodstream declines
at a rate proportional to the amount already present. Modeling drug
elimination exactly parallels radioactive decay, in that the translated
mathematical model is

dD
— = —hD(t
= ()

where h > 0 is a physical constant, called the elimination constant of
the drug.

Oral drugs must move through the digestive system and into the gut
before reaching the bloodstream. The model D'(t) = —hD(t) applies
only after the drug has reached a stable concentration in the bloodstream
and the body begins to eliminate the drug.

Examples

Example (Light intensity) Light intensity in a lake is decreased by 75%
at depth one meter. At what depth is the intensity decreased by 95%?7

Solution: The answer is 2.16 meters (7 feet, 11—16 inches). This depth will be
justified by applying the light intensity model I(x) = Ipe™**, where Ij is the
surface intensity.
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At one meter the intensity is I(1) = Ipe™*, but also it is given as 0.25I. The
equation e~ ® = 0.25 results, to determine k = In4 ~ 1.3862944. To find the
depth x when the intensity has decreased by 95%, solve I(x) = 0.05I for z. The
value I cancels from this equation, leaving e =% = 1/20. The usual logarithm
methods give x ~ 2.2 meters, as follows:

Ine " =1n(1/20) Take the logarithm across e %% = 1/20.
—kx = —In(20) Use Ine” = w and —Inu = In(1/u).
In(20
z = n(k ) Divide by —F.
In(20)
= k =1n(4).
(1) Use n(4)
~ 2.16 meters. Only 5% of the surface intensity remains

at 2.16 meters.

Example (RC-Circuit) Solve the RC-circuit equation RQ'+ (1/C)Q =0
when R =2, C' = 1072 and the voltage drop across the capacitor at t = 0
is 1.5 volts.

Solution: The solution is Q = 0.015e~°%. To justify this equation, start with
the voltage drop formula Vo = Q/C, page 17. Then 1.5 = Q(0)/C implies
Q(0) = 0.015. The differential equation is @' + 50Q = 0; page 3 gives the
solution @ = Q(0)e 5.

Example (LR-Circuit) Solve the LR-circuit equation LI’ + RI = 0 when
R =2, L = 0.1 and the voltage drop across the resistor at ¢ = 0 is 1.0
volts.

Solution: The solution is I = 0.5e 2%, To justify this equation, start with the
voltage drop formula Vi = RI, page 17. Then 1.0 = RI(0) implies I(0) = 0.5.
The differential equation is I’ 4201 = 0; page 3 gives the solution I = I(0)e~2%,

Example (Compound Interest) Compute the fixed monthly payment for
a 5-year auto loan of $18,000 at 9% per annum, using (a) daily interest and
(b) continuous interest.

Solution: The payments are (a) $373.94 and (b) $373.95, which differ by one
cent; details below.

Let Ag = 18000 be the initial amount. It will be assumed that the first payment
is due after 30 days and monthly thereafter. To simplify the calculation, a day
is defined to be 1/360th of a year, regardless of the number of days in that
year, and payments are applied every 30 days. Late fees apply if the payment
is not received within the grace period , but it will be assumed here that all
payments are made on time.

Part (a). The daily interest rate is R = 0.09/360 applied for 1800 periods
(5 years). Between payments P, daily interest is applied to the balance A(t)
owed after ¢ periods. The balance grows between payments and then decreases
on the day of the payment. The problem is to find P so that A(1800) = 0.
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Payments are subtracted every 30 periods making balance A(30k). Let B =
(14 R)?° and Ay, = A(30k). Then

Ay, = A(30k) Balance after £ months.
= AgB* — P(1+---+ BF Y Fork=1,2,3,...
A BF —1 , _
= AyB" - P Geometric sum formula applied, page
B-1 18
B% —1
AgB® =P Use A(1800) = 0, which corresponds
B-1 —
to k = 60.
B60
P = Ao(B — 1)m SOlVe fOr P.
= 373.93857 By calculator.

Part (b). The details are the same except for the method of applying interest.
Let s = 30(0.09)/360, then

Ay = Agel® — Peks—s (1 +e7? For k = 1,2,3,..., by examination of
oo eThets) cases A(30) and A(60).
X k: efks -1
= Age"® — Pe7° (_g1> Apply the geometric sum formula with
€ common ratio e™%.

—60s __ 1

Ape®s = Pe605*567871 Set k = 60 and A(1800) = 0 in the
€ - previous formula.

—e®+1
P = Aom SOlVe for P.
= 373.94604 By calculator.

12 Example (Effective Annual Yield) A bank advertises an effective annual

yield of 5.73% for a certificate of deposit with continuous interest rate 5.5%
per annum. Justify the rate.

Solution: The effective annual yield is the simple annual interest rate which
gives the same account balance after one year. The issue is whether one year
means 365 days or 360 days, since banks do business on a 360-day cycle.

Suppose first that one year means 365 days. The model used for a saving
account is A(t) = Age™ where r = 0.055 is the interest rate per annum. For
one year, A(1) = Age”. Then e” = 1.0565406, that is, the account has increased
in one year by 5.65%. The effective annual yield is 0.0565 or 5.65%.

Suppose next that one year means 360 days. Then the bank pays 5.65% for
only 360 days to produce a balance of A; = Ape”. The extra 5 days make 5/360
years, therefore the bank records a balance of A;e%/369 which is Age3657/360
The rate for 365 days is then 5.73%, by the calculation

365
——0.0565406 = 0.057325886.
3600 0565406 = 0.057325886
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Example (Retirement Funds) An engineering firm offers a starting salary
of 40 thousand per year, which is expected to increase 3% per year. Re-
tirement contributions are 11% of salary, deposited monthly, growing at 6%
continuous interest per annum. The company advertises a million dollars in
retirement funds after 40 years. Justify the claim.

Solution: The salary is estimated to be S(t) = 40000(1.03)" after ¢ years,
because it starts with S(0) = 40000 and each year it takes a 3% increment.
After 39 years of increases the salary has increased from $40,000 to $126, 681.

Let A, be the amount in the retirement account at the end of year n. Let P, =
(40000(1.03)™)(0.11)/12 be the monthly salary for year n+1. The interest rates
are r = 0.06 (annual) and s = 0.06/12 (monthly). For brevity, let R = 1.03.

During the first year, the retirement account accumulates 12 times for a total

Ay = Py + -+ Ppel'® Continuous interest at rate s on amount
Py for 1 through 11 months.

e —1 . . .
=P ] Geometric sum with common ratio e®.
es —
= 4523.3529. Retirement balance after one year.

During the second and later years the retirement account accumulates by the
rule

Apy1=Ape" + P, One year's accumulation at continuous
+ P.e® + -+ Pye'ls rate r on amount A,, plus monthly accu-
mulations on retirement contributions P, .
' e —1 ) ]
= A,e" + Pnsi1 Apply the geometric sum formula with
e common ratio e®.
e’ —1
= Ape” + R"Py— Use P, = PyR™.
es —
e —1
= Aner + RnAl App'y A1 = Po s _ 1

After examining cases n = 1,2, 3, the recursion is solved to give

n—1
Ap=Ar > bR

k=0

To establish this formula, induction is applied:

Apy1 = Ape” + R Ay Derived above.
n—1
= Aye" Y e RITR 4 RMA, Apply the induction hypothesis.
k=0
n
= A Z ek pr—k Rewrite the sum indices.
k=0

(e /R 1

1R e'/R—1

Use the geometric sum formula
with common ratio " /R.
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The advertised retirement fund after 40 years should be the amount A4, which
is obtained by setting n = 39 in the last equality. Then A4y = 1102706.60.

Example (Half-life of Radium) A radium sample loses 1/2 percent due to
disintegration in 12 years. Verify the half-life of the sample is about 1,660
years.

Solution: The decay model A(t) = Age %! applies. The given information
A(12) = 0.995A(0) reduces to the exponential equation e~!2* = (0.995 with
solution k = In(1000/995)/12. The half-life T" satisfies A(T) = +A(0), which
reduces to e *T = 1/2. Since k is known, the value T' can be found as T =

In(2)/k =~ 1659.3909 years.

Example (Radium Disintegration) The disintegration reaction
wR220 ., R2

of radium-226 into radon has a half-life of 1700 years. Compute the decay
constant k in the decay model A’ = —kA.

Solution: The half-life equation is A(1700) = 1A4(0). Since A(t) = Age ¥,
the equation reduces to e 179% = 1/2. The latter is solved for k by logarithm
methods (see page 7), giving k = In(2)/1700 = 0.00040773364.

Example (Radiocarbon Dating) The ratio of carbon-14 to carbon-12 in
a dinosaur fossil is 6.34 percent of the current atmospheric ratio. Verify the
dinosaur’s death was about 22,160 years ago.

Solution: The method due to Willard Libby will be applied, using his assump-
tion that the ratio of carbon-14 to carbon-12 in living animals is equal to the
atmospheric ratio. Then carbon-14 depletion in the fossil satisfies the decay
law A(t) = Ape™** for some parameter values k and Ay.

Assume the half-life of carbon-14 is 5568 years. Then A(5568) = $A(0) (see
page 18). This equation reduces to Age=>*68% = 1 4,¢0 or k = In(2)/5568. In
short, k is known but Ag is unknown. It is not necessary to determine Ag in
order to do the verification.

At the time t( in the past when the organism died, the amount A; of carbon-14
began to decay, reaching the value 6.344;/100 at time ¢ = 0 (the present).
Therefore, Ay = 0.0634A; and A(tp) = A;. Taking this last equation as the
starting point, the final calculation proceeds as follows.

Ay = A(ty) The amount of carbon-14 at death is Ay, —tg
years ago.
= Age Fto Apply the decay model A = Age "t at t =t,.
= 0.0634A,¢ ko Use Ay = 6.34A4;/100.

The value A; cancels to give the new relation 1 = 0.0634e~%%. The value
k =1n(2)/5568 gives an exponential equation to solve for ¢y:
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ekto = 0.0634 Multiply by e*0 to isolate the exponential.
Ine*o =1n(0.0634) Take the logarithm of both sides.
1
to = z In(0.0634) Apply Ine* = u and divide by k.
5568
=T In(0.0634) Substitute k& = In(2)/5568.
= —22157.151 years. By calculator. The fossil's age is the negative.

17 Example (Percentage of an Isotope) A radioactive isotope disintegrates
by 5% in ten years. By what percentage does it disintegrate in one hundred
years?

Solution: The answer is not 50%, as is widely reported by lay persons. The
correct answer is 40.13%. It remains to justify this non-intuitive answer.

The model for decay is A(t) = Age *t. The decay constant k is known because
of the information ... disintegrates by 5% in ten years. Translation to equa-
tions produces A(10) = 0.95A4,, which reduces to e~!%* = 0.95. Solving with
logarithms gives k£ = 0.11n(100/95) &~ 0.0051293294.

After one hundred years, the isotope present is A(100), and the percentage is
—100k

100 Af(‘:tg;)). The common factor Ay cancels to give the percentage 100e

59.87. The reduction is 40.13%.

To reconcile the lay person’s answer, observe that the amounts present after one,
two and three years are 0.95A4¢, (0.95)24¢, (0.95)2A4¢. The lay person should
have guessed 100 times 1 — (0.95)!°, which is 40.126306. The common error is
to simply multiply 5% by the ten periods of ten years each. By this erroneous
reasoning, the isotope would be depleted in two hundred years, whereas the
decay model says that about 36% of the isotope remains!

18 Example (Chemical Reaction) The manufacture of ¢-butyl alcohol from
t-butyl chloride is made by the chemical reaction

(CH3)3CCL + NaOH — (CHs3)3COH + NaCL.

Model the production of ¢-butyl alcohol, when N% of the chloride remains
after tg minutes.

Solution: Tt will be justified that the model for alcohol production is A(t) =
Co(1 — e7*t) where k = In(100/N)/to, Cy is the initial amount of chloride and
t is in minutes.

According to the theory of first-order reactions, the model for chloride depletion
is C(t) = Cye™** where Cj is the initial amount of chloride and k is the reaction
constant. The alcohol production is A(t) = Cy — C(t) or A(t) = Co(1 — e~ k?).
The reaction constant k is found from the initial data C(tg) = %CO, which
results in the exponential equation e~ %% = N/100. Solving the exponential

equation gives k = In(100/N) /to.



19

26 Fundamentals

Example (Drug Dosage) A veterinarian applies general anesthesia to an-
imals by injection of a drug into the bloodstream. Predict the drug dosage
to anesthetize a 25-pound animal for thirty minutes, given:

1. The drug requires an injection of 20 milligrams per pound of body weight in
order to work.

2. The drug eliminates from the bloodstream at a rate proportional to the
amount present, with a half-life of 5 hours.

Solution: The answer is about 536 milligrams of the drug. This amount will
be justified using exponential modeling.

The drug model is D(t) = Dge™ "', where Dy is the initial dosage and h is
the elimination constant. The half-life information D(5) = 1D, determines
h =1n(2)/5. Depletion of the drug in the bloodstream means the drug levels
are always decreasing, so it is enough to require that the level at 30 min-
utes exceeds 20 times the body weight in pounds, that is, D(1/2) > (20)(25).
The critical value of the initial dosage Dy then occurs when D(1/2) = 500 or
Doy = 500e/2 = 500e%1™() which by calculator is approximately 535.88673

milligrams.

Drugs like sodium pentobarbital behave somewhat like this example, although
injection in a single dose may not be preferable. An intravenous drip can be
employed to sustain the blood levels of the drug, keeping the level closer to the
target 500 milligrams.

Details and Proofs

Verification of Continuous Interest by Limiting. Derived here is the
continuous interest formula by limiting as n — oo in the compound interest
formula.

r nt ) .
(1 + —) = B In the exponential rule B* = ¢! B the base
" is B=1+r/n.
_ entlnB Use B* = e® In B with = = nt.
rIn(14u) t .
=e = Substitute w = r/n. Then u — 0 as n — 0.

~ et Because In(1 + w)/u ~ 1 as u — 0, by
L'Hospital's rule.

Exercises 1.2

Light Intensity. The following ex- | 1. The light intensity is I(t) =

ercises apply the theory of light in- Ipe™14* in a certain swimming
tensity on page 15, using the model pool. At what depth does the
I(t) = Ine™** with 2 in meters. Meth- light intensity fall off by 50%?

ods parallel Example 8 on page 20.
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2.

RC-Electric Circuits.

The light intensity in a swimming
pool falls off by 50% at a depth
of 2.5 meters. Find the deple-
tion constant k in the exponential
model.

. Plastic film is used to cover win-

dow glass, which reduces the in-
terior light intensity by 10%. By
what percentage is the intensity
reduced, if two layers are used?

. Double-thickness colored window

glass is supposed to reduce the
interior light intensity by 20%.
What is the reduction for single-
thickness colored glass?

In the exer-

cises below, solve for Q(t) when Qo =
10 and graph Q(¢) on 0 <t < 5.

5.

6.

10.
11.

12.

L R-Electric Circuits.

R=1,C =0.0L.

R =0.05, C = 0.001.

. R=0.05C =001

. R=5C=0.1.
. R=2,C=0.0L.
R=4,C=0.15.
R=4,C =0.02.

R =50, C = 0.001.

In the exer-

cises below, solve for I(¢) when Iy =5
and graph I(t) on 0 <t < 5.

13.

14.

15.

16.

17.

18.

19.

L=1R=05.
L=0.1, R=05.

L=0.1, R = 0.05.
L =0.01, R =0.05.
L =02, R=0.0l
L =0.03, R=0.01.

L =0.05, R = 0.005.

20.

L =0.04, R = 0.005.

Interest and Continuous Interest.
Financial formulas which appear on
page 17 are applied below, following
the ideas in Examples 11, 12 and 13,
pages 21-23.

21.

22,

23.

24.

25.

26.

27.

(Total Interest) Compute the to-
tal daily interest and also the total
continuous interest for a 10-year
loan of 5,000 dollars at 5% per an-
num.

(Total Interest) Compute the to-
tal daily interest and also the total
continuous interest for a 15-year
loan of 7,000 dollars at 51% per
annum.

(Monthly Payment) Find the
monthly payment for a 3-year
loan of 8,000 dollars at 7% per an-
num compounded continuously.

(Monthly Payment) Find the
monthly payment for a 4-year
loan of 7,000 dollars at 61% per

annum compounded continuously.

(Effective Yield) Determine the
effective annual yield for a cer-
tificate of deposit at 74% interest
per annum, compounded continu-
ously.

(Effective Yield) Determine the
effective annual yield for a cer-
tificate of deposit at 5%% interest
per annum, compounded continu-
ously.

(Retirement Funds) Assume a
starting salary of 35,000 dollars
per year, which is expected to
increase 3% per year. Retire-
ment contributions are 10%% of
salary, deposited monthly, grow-
ing at 5%% continuous interest
per annum. Find the retirement
amount after 30 years.
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28.

29.

30.

(Retirement Funds) Assume a
starting salary of 45,000 dollars
per year, which is expected to
increase 3% per year. Retire-
ment contributions are 9%% of
salary, deposited monthly, grow-
ing at 6%% continuous interest
per annum. Find the retirement
amount after 30 years.

(Actual Cost) A van is purchased
for 18,000 dollars with no money
down. Monthly payments are
spread over 8 years at 12%% inter-
est per annum, compounded con-
tinuously. What is the actual cost
of the van?

(Actual Cost) Furniture is pur-
chased for 15,000 dollars with no
money down. Monthly payments
are spread over 5 years at 11%%
interest per annum, compounded
continuously. What is the actual
cost of the furniture?

Radioactive Decay. Assume the de-
cay model A’ = —kA from page 18.
Below, A(T) = 0.5A(0) defines the
half-life T. Methods parallel Examples
14— 17 on pages 24— 25.

31.

32.

33.

34.

35.

31.(Half-Life) Determine the half-
life of a radium sample which de-
cays by 5.5% in 13 years.

(Half-Life) Determine the half-
life of a radium sample which de-
cays by 4.5% in 10 years.

(Half-Life) Assume a radioac-
tive isotope has half-life 1800
years. Determine the percentage
decayed after 150 years.

(Half-Life) Assume a radioac-
tive isotope has half-life 1650
years. Determine the percentage
decayed after 99 years.

(Disintegration Constant) De-
termine the constant k£ in the

36.

37.

38.

39.

40.

41.

42.

model A’ = —kA for radioac-
tive material that disintegrates by
5.5% in 13 years.

(Disintegration Constant) De-
termine the constant k in the
model A’ = —kA for radioac-
tive material that disintegrates by
4.5% in 10 years.

(Radiocarbon Dating) A fossil
found near the town of Dinosaur,
Utah contains carbon-14 at a ra-
tio of 6.21% to the atmospheric
value. Determine its approximate
age according to Libby’s method.

(Radiocarbon Dating) A fos-
sil found in Colorado contains
carbon-14 at a ratio of 5.73% to
the atmospheric value. Determine
its approximate age according to
Libby’s method.

(Radiocarbon Dating) In 1950,
the Lascaux Cave in France con-
tained charcoal with 14.52% of
the carbon-14 present in living
wood samples nearby. Estimate
by Libby’s method the age of the
charcoal sample.

(Radiocarbon Dating) At an ex-
cavation in 1960, charcoal from
building material had 61% of the
carbon-14 present in living wood
nearby. Estimate the age of the
building.

(Percentage of an Isotope) A ra-
dioactive isotope disintegrates by
5% in 12 years. By what percent-
age is it reduced in 99 years?

(Percentage of an Isotope) A ra-
dioactive isotope disintegrates by
6.5% in 1,000 years. By what
percentage is it reduced in 5,000
years?

Chemical Reactions. Assume below
the model A’ = kA for a first-order re-
action. See page 19 and Example 18,
page 25.
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43.

44.

45.

46.

47.

48.

(First-Order A+ B — C) A first
order reaction produces product
C from chemical A and catalyst
B. Model the production of C,
given N% of A remains after tg
minutes.

(First-Order A+ B — C) A first
order reaction produces product
C from chemical A and catalyst
B. Model the production of C,
given M% of A is depleted after
to minutes.

(Law of Mass-Action) Consider
a second-order chemical reaction
X(t) with k = 0.14, a = 1, § =
1.75, X(0) = 0. Find an explicit
formula for X (¢t) and graph it on
t=0tot=2.

(Law of Mass-Action) Consider
a second-order chemical reaction
X(t) with & = 0.015, a = 1,
8 =135, X(0) = 0. Find an ex-
plicit formula for X (¢) and graph
itont=0tot=10.

(Derive Mass-Action Solution)
Let k, a, 8 be positive constants,
a < 8. Solve X' = k(a— X)(8—
X), X(0) = Xy by the substitu-
tionu = (a—X)/(8—X), showing
that X = (o — Bu)/(1 — u), u =
uge @k g = (a — X0)/(B —
Xo).

(Verify Mass-Action Solution)
Let k, «, 8 be positive constants,
a < . Define X = (o —fu)/(1—
u), where u = wugel® #* and
ug = (o — Xo)/(8 — Xp). Verify
by calculus computation that (1)
X' = k(e — X)(8 — X) and (2)
X(0) = Xo.

Drug Dosage. Employ the drug
dosage model D(t) = Dge " given
on page 20. Let h be determined by
a half-life of three hours. Apply the
techniques of Example 19, page 26.

49. (Injection Dosage) Bloodstream
injection of a drug into an ani-
mal requires a minimum of 20 mil-
ligrams per pound of body weight.
Predict the dosage for a 12-pound
animal which will maintain a drug
level 3% higher than the minimum
for two hours.

50. (Injection Dosage) Bloodstream
injection of an antihistamine into
an animal requires a minimum of
4 milligrams per pound of body
weight. Predict the dosage for
a 40-pound animal which will
maintain an antihistamine level
5% higher than the minimum for
twelve hours.

51. (Oral Dosage) An oral drug with
first dose 250 milligrams is ab-
sorbed into the bloodstream af-
ter 45 minutes. Predict the num-
ber of hours after the first dose at
which to take a second dose, in
order to maintain a blood level of
at least 180 milligrams for three
hours.

52. (Oral Dosage) An oral drug with
first dose 250 milligrams is ab-
sorbed into the bloodstream af-
ter 45 minutes. Determine three
(small) dosage amounts, and their
administration time, which keep
the blood level above 180 mil-
ligrams but below 280 milligrams
over three hours.



